1
|
Bauby H, Ward CC, Hugh-White R, Swanson CM, Schulz R, Goujon C, Malim MH. HIV-1 Vpr Induces Widespread Transcriptomic Changes in CD4 + T Cells Early Postinfection. mBio 2021; 12:e0136921. [PMID: 34154423 PMCID: PMC8263007 DOI: 10.1128/mbio.01369-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 05/19/2021] [Indexed: 12/12/2022] Open
Abstract
The interactions between a virus and its host are complex but can be broadly categorized as either viral manipulation of cellular functions or cellular responses to infection. These processes begin at the earliest point of contact between virus and cell and frequently result in changes to cellular gene expression, making genome-wide transcriptomics a useful tool to study them. Several previous studies have used transcriptomics to evaluate the cellular responses to human immunodeficiency virus type 1 (HIV-1) infection; however, none have examined events in primary CD4+ T cells during the first 24 h of infection. Here, we analyzed CD4+ T cells at 4.5, 8, 12, 24, and 48 h following infection. We describe global changes to host gene expression commencing at 4.5 h postinfection and evolving over the ensuing time points. We identify upregulation of genes related to innate immunity, cytokine production, and apoptosis and downregulation of those involved in transcription and translation. We further demonstrate that the viral accessory protein Vpr is necessary for almost all gene expression changes seen at 12 h postinfection and the majority of those seen at 48 h. Identifying this new role for Vpr not only provides fresh perspective on its possible function but also adds further insight into the interplay between HIV-1 and its host at the cellular level. IMPORTANCE HIV-1, while now treatable, remains an important human pathogen causing significant morbidity and mortality globally. The virus predominantly infects CD4+ T cells and, if not treated with medication, ultimately causes their depletion, resulting in AIDS and death. Further refining our understanding of the interaction between HIV-1 and these cells has the potential to inform further therapeutic development. Previous studies have used transcriptomics to assess gene expression changes in CD4+ T cells following HIV-1 infection; here, we provide a detailed examination of changes occurring in the first 24 h of infection. Importantly, we define the viral protein Vpr as essential for the changes observed at this early stage. This finding has significance for understanding the role of Vpr in infection and pathogenesis and also for interpreting previous transcriptomic analyses of HIV-1 infection.
Collapse
Affiliation(s)
- Hélène Bauby
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
| | - Christopher C. Ward
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
| | - Rupert Hugh-White
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
| | - Chad M. Swanson
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
| | - Reiner Schulz
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
| | - Caroline Goujon
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
| | - Michael H. Malim
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
| |
Collapse
|
2
|
Ao Z, Huang J, Tan X, Wang X, Tian T, Zhang X, Ouyang Q, Yao X. Characterization of the single cycle replication of HIV-1 expressing Gaussia luciferase in human PBMCs, macrophages, and in CD4+ T cell-grafted nude mouse. J Virol Methods 2016; 228:95-102. [DOI: 10.1016/j.jviromet.2015.11.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 11/24/2015] [Accepted: 11/25/2015] [Indexed: 11/26/2022]
|
3
|
Huang F, Zhang J, Zhang Y, Geng G, Liang J, Li Y, Chen J, Liu C, Zhang H. RNA helicase MOV10 functions as a co-factor of HIV-1 Rev to facilitate Rev/RRE-dependent nuclear export of viral mRNAs. Virology 2015; 486:15-26. [PMID: 26379090 DOI: 10.1016/j.virol.2015.08.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 08/20/2015] [Accepted: 08/25/2015] [Indexed: 12/25/2022]
Abstract
Human immunodeficiency virus type 1 (HIV-1) exploits multiple host factors during its replication. The REV/RRE-dependent nuclear export of unspliced/partially spliced viral transcripts needs the assistance of host proteins. Recent studies have shown that MOV10 overexpression inhibited HIV-1 replication at various steps. However, the endogenous MOV10 was required in certain step(s) of HIV-1 replication. In this report, we found that MOV10 potently enhances the nuclear export of viral mRNAs and subsequently increases the expression of Gag protein and other late products through affecting the Rev/RRE axis. The co-immunoprecipitation analysis indicated that MOV10 interacts with Rev in an RNA-independent manner. The DEAG-box of MOV10 was required for the enhancement of Rev/RRE-dependent nuclear export and the DEAG-box mutant showed a dominant-negative activity. Our data propose that HIV-1 utilizes the anti-viral factor MOV10 to function as a co-factor of Rev and demonstrate the complicated effects of MOV10 on HIV-1 life cycle.
Collapse
Affiliation(s)
- Feng Huang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Junsong Zhang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Yijun Zhang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Guannan Geng
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Juanran Liang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Yingniang Li
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Jingliang Chen
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Chao Liu
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.
| | - Hui Zhang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
4
|
Human immunodeficiency virus type 1 modified to package Simian immunodeficiency virus Vpx efficiently infects macrophages and dendritic cells. J Virol 2011; 85:6263-74. [PMID: 21507971 DOI: 10.1128/jvi.00346-11] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The lentiviral accessory protein Vpx is thought to facilitate the infection of macrophages and dendritic cells by counteracting an unidentified host restriction factor. Although human immunodeficiency virus type 1 (HIV-1) does not encode Vpx, the accessory protein can be provided to monocyte-derived macrophages (MDM) and monocyte-derived dendritic cells (MDDC) in virus-like particles, dramatically enhancing their susceptibility to HIV-1. Vpx and the related accessory protein Vpr are packaged into virions through a virus-specific interaction with the p6 carboxy-terminal domain of Gag. We localized the minimal Vpx packaging motif of simian immunodeficiency virus SIVmac(239) p6 to a 10-amino-acid motif and introduced this sequence into an infectious HIV-1 provirus. The chimeric virus packaged Vpx that was provided in trans and was substantially more infectious on MDDC and MDM than the wild-type virus. We further modified the virus by introducing the Vpx coding sequence in place of nef. The resulting virus produced Vpx and replicated efficiently in MDDC and MDM. The virus also induced a potent type I interferon response in MDDC. In a coculture system, the Vpx-containing HIV-1 was more efficiently transmitted from MDDC to T cells. These findings suggest that in vivo, Vpx may facilitate transmission of the virus from dendritic cells to T cells. In addition, the chimeric virus could be used to design dendritic cell vaccines that induce an enhanced innate immune response. This approach could also be useful in the design of lentiviral vectors that transduce these relatively resistant cells.
Collapse
|
5
|
Albin JS, Harris RS. Interactions of host APOBEC3 restriction factors with HIV-1 in vivo: implications for therapeutics. Expert Rev Mol Med 2010; 12:e4. [PMID: 20096141 PMCID: PMC2860793 DOI: 10.1017/s1462399409001343] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Restriction factors are natural cellular proteins that defend individual cells from viral infection. These factors include the APOBEC3 family of DNA cytidine deaminases, which restrict the infectivity of HIV-1 by hypermutating viral cDNA and inhibiting reverse transcription and integration. HIV-1 thwarts this restriction activity through its accessory protein virion infectivity factor (Vif), which uses multiple mechanisms to prevent APOBEC3 proteins such as APOBEC3G and APOBEC3F from entering viral particles. Here, we review the basic biology of the interactions between human APOBEC3 proteins and HIV-1 Vif. We also summarise, for the first time, current clinical data on the in vivo effects of APOBEC3 proteins, and survey strategies and progress towards developing therapeutics aimed at the APOBEC3-Vif axis.
Collapse
Affiliation(s)
- John S. Albin
- Department of Biochemistry, Molecular Biology & Biophysics, Institute for Molecular Virology, Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA 55455, Phone: +1 612-624-0457; Fax: +1 612-625-2163
| | - Reuben S. Harris
- Department of Biochemistry, Molecular Biology & Biophysics, Institute for Molecular Virology, Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA 55455, Phone: +1 612-624-0457; Fax: +1 612-625-2163
| |
Collapse
|
6
|
Abstract
PURPOSE OF REVIEW One of the major problems in HIV chemotherapy is appearance of drug-resistant virus strains. Novel HIV intervention strategies are required and new targets must be considered. The nuclear export of intron-containing HIV-1 mRNA is an essential step in the viral replication cycle and is a prospective antiviral target. This nucleocytoplasmic transport is mediated by the viral protein Rev. Rev binds as a multimeric complex to the viral mRNA and exports it to the cytoplasm exploiting the CRM1-mediated cellular machinery. Inhibitors acting on the interface between virus and cell could overcome the problems of drug resistance against virus-specific treatments. These drugs have an added value in combination therapy as they are expected to be less prone to virus-drug resistance selection, but they are likely to be more cytotoxic. RECENT FINDINGS We will discuss the therapeutic approaches aimed at interfering with Rev function, both now and likely in the future, and the recent attempts that have been undertaken to design small molecules against this target. SUMMARY Recent approaches provide leads for development of new compounds. A better understanding of the mechanism of Rev action and its interaction with the cellular transport pathway is required to identify and rationally design novel strategies that may have potential for future antiretroviral intervention.
Collapse
|
7
|
Giri K, Scott RA, Maynard EL. Molecular structure and biochemical properties of the HCCH-Zn2+ site in HIV-1 Vif. Biochemistry 2009; 48:7969-78. [PMID: 19588889 DOI: 10.1021/bi900677w] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Virion infectivity factor (Vif) is an HIV accessory protein that is essential for the infection of CD4(+) T cells. Vif recruits a Cullin 5 (Cul5)-based ubiquitin ligase that targets a host cytidine deaminase, apolipoprotein B mRNA editing enzyme catalytic polypeptide-like 3G (APOBEC3G), for proteasomal degradation. The Vif N-terminus binds APOBEC3G, and the C-terminus interacts with the Cul5-based ubiquitin ligase machinery. Within the C-terminus, a highly conserved H(108)-X(5)-C(114)-X(17-18)-C(133)-X(3-5)-H(139) (HCCH) motif binds zinc and is implicated in the Vif-Cul5 interaction. We have employed the biomimetic peptide HCCHp (HIV-1 Vif amino acids 101-142) in order to determine the zinc ligands and investigate the role of zinc binding in Cul5 recognition. Using CD spectroscopy, a competitive zinc binding assay, and a light scattering assay, we found that mutation of the conserved His and Cys residues in HCCHp had little effect on secondary structure but reduced zinc binding affinity and altered the aggregation properties of the peptides. X-ray absorption spectroscopy was used to study zinc coordination in wild-type HCCHp. The data are consistent with S(2)N(imid)(2) coordination and strongly suggest that His-108, Cys-114, Cys-133, and His-139 are zinc ligands. Mutation of one or both conserved Cys residues in HCCHp led to a decrease in Cys ligation, and an increase in the number of (N, O) ligands, with noninteger coordination numbers suggesting zinc site heterogeneity. A purified fragment of human Cul5 was found to inhibit zinc-induced aggregation of HCCHp, and pull-down experiments revealed that zinc binding to HCCHp increases the strength of the HCCHp-Cul5 interaction by 8-fold.
Collapse
Affiliation(s)
- Kalyan Giri
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, USA
| | | | | |
Collapse
|
8
|
Affiliation(s)
- Klaus Strebel
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious, Diseases, National Institutes of Health, 4/312, Bethesda, MD 20892, USA
| |
Collapse
|
9
|
Abstract
Human immunodeficiency virus type-1 (HIV-1) relies on both partial and complete splicing of its full-length RNA transcripts to generate a distribution of essential spliced mRNA products. The complexity of the splicing process, which can employ multiple alternative splice sites, challenges our ability to understand how mutations in splice sites may influence the composition of the resulting mRNA pool and, more broadly, the development of viral progeny. Here, we begin to systematically address these issues by developing a mechanistic mathematical model for the splicing process. We identify as key parameters the probabilities that the cellular splice machinery selects specific splice acceptors, and we show how the splicing process depends on these probabilities. Further, by incorporating this splicing model into a detailed kinetic model for HIV-1 intracellular development we find that an increase in the fraction of either rev or tat mRNA in the HIV-1 mRNA pool is generally beneficial for HIV-1 growth. However, a splice site mutation that excessively increases the fraction of either mRNA can be detrimental due to the corresponding reduction in the other mRNA, suggesting that a balance of Rev and Tat is needed in order for HIV-1 to optimize its growth. Although our model is based on still very limited quantitative data on RNA splicing, Rev-mediated splicing regulation and nuclear export, and the effects of associated mutations, it serves as a starting point for better understanding how variations in essential post-transcriptional functions can impact the intracellular development of HIV-1.
Collapse
Affiliation(s)
- Hwijin Kim
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 3633 Engineering Hall, 1415 Engineering Drive, Madison, Wisconsin 53706-1607, USA
| | | |
Collapse
|
10
|
. RF, . SS, . GM. Human Immunodeficiency Virus (HIV-1) Auxiliary Protein Vif and Cellular APOBEC Deaminases: Their Roles Unveiled? ACTA ACUST UNITED AC 2005. [DOI: 10.3923/jbs.2005.855.863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
11
|
Victoria JG, Robinson WE. Disruption of the putative splice acceptor site for SIV(mac239)Vif reveals tight control of SIV splicing and impaired replication in Vif non-permissive cells. Virology 2005; 338:281-91. [PMID: 15950999 DOI: 10.1016/j.virol.2005.05.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2005] [Revised: 04/25/2005] [Accepted: 05/06/2005] [Indexed: 11/24/2022]
Abstract
Vif is dispensable for simian immunodeficiency virus (SIV) replication in some cells, termed permissive (i.e., CEM-SS), but not in others, termed non-permissive (i.e., H9, CEMx174, and peripheral blood lymphocytes). Non-permissive cells express the RNA editing enzyme, APOBEC3G. To determine whether vif mRNA could be alternatively spliced, a mutation altering the putative vif splice acceptor site (SA1) was introduced into SIV(mac239) (SIV(Deltavif-SA)). Despite three consensus splice acceptor sites nearby SA1, SIV(Deltavif-SA) did not efficiently generate alternatively spliced vif mRNA. SIV(Deltavif-SA) was growth attenuated in CEMx174 and H9 cells but not in CEM-SS cells. Following SIV(Deltavif-SA), but not SIV(mac239), infection in either H9 or CEMx174 cells viral cDNA contained numerous G to A mutations; no such differences were observed in CEM-SS cells. This pattern is consistent with mutations generated by APOBEC3G in the absence of Vif. Therefore, efficient splicing of SIV vif mRNA is tightly controlled and requires the SA1 site.
Collapse
Affiliation(s)
- Joseph G Victoria
- Department of Microbiology and Molecular Genetics, University of California, Irvine, CA 92697-4800, USA
| | | |
Collapse
|
12
|
Rose KM, Marin M, Kozak SL, Kabat D. Regulated production and anti-HIV type 1 activities of cytidine deaminases APOBEC3B, 3F, and 3G. AIDS Res Hum Retroviruses 2005; 21:611-9. [PMID: 16060832 DOI: 10.1089/aid.2005.21.611] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
APOBEC3G and 3F (A3G and A3F) cytidine deaminases incorporate into retroviral cores where they lethally hypermutate nascent DNA reverse transcripts. As substantiated here, the viral infectivity factor (Vif) encoded by human immunodeficiency virus type-1 (HIV-1) binds A3G and A3F and induces their degradation, thereby precluding their incorporation into viral progeny. Previous evidence suggested that A3G is expressed in H9 and other nonpermissive cells that contain this antiviral defense but not in several permissive cells, and that overexpression of A3G or A3F makes permissive cells nonpermissive. Using a broader panel of cell lines, we confirmed a correlation between A3G and cellular abilities to inactivate HIV-1(Deltavif). However, there was a quantitative discrepancy because several cells with weak antiviral activities had similar amounts of wild-type A3G mRNA and protein compared to H9 cells. Antiviral activity of H9 cells was also attenuated in some conditions. These quantitative discrepancies could not be explained by the presence of A3F or other A3G paralogs in some of the cell lines. Thus, A3A, A3B, and A3C had weak but significant anti-HIV-1 activities and did not dominantly interfere with A3G or A3F antiviral functions. Control of A3G synthesis by the protein kinase C/mitogen-activated protein kinase kinase/extracellular signal-regulated kinase pathway was also similar in permissive and nonpermissive cells. A3G in highly permissive cells is degraded by Vif, suggesting that it is not in a sequestered site, and is specifically incorporated in low amounts into HIV-1(Deltavif). Although A3G and/or A3F inactivate HIV-1(Deltavif) and are neutralized by Vif, the antiviral properties of cell lines are also influenced by other cellular and viral factors.
Collapse
Affiliation(s)
- Kristine M Rose
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon 97239-3098, USA
| | | | | | | |
Collapse
|
13
|
Santa-Marta M, da Silva FA, Fonseca AM, Goncalves J. HIV-1 Vif can directly inhibit apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3G-mediated cytidine deamination by using a single amino acid interaction and without protein degradation. J Biol Chem 2004; 280:8765-75. [PMID: 15611076 DOI: 10.1074/jbc.m409309200] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3G (APOBEC3G), also known as CEM-15, is a host-cell factor involved in innate resistance to retroviral infection. HIV-1 viral infectivity factor (Vif) protein was shown to protect the virus from APOBEC3G-mediated viral cDNA hypermutation. The mechanism proposed for protection of the virus by HIV-1 Vif is mediated by APOBEC3G degradation through ubiquitination and the proteasomal pathway. Here we show that in Escherichia coli the APOBEC3G-induced cytidine deamination is inhibited by expression of Vif without depletion of deaminase. Moreover, inhibition of deaminase-mediated bacterial hypermutation is dependent on a single amino acid substitution D128K that renders APOBEC3G resistant to Vif inhibition. This single amino acid was elegantly proven by other authors to determine species-specific sensitivity. Our results show that in bacteria this single amino acid substitution controls Vif-dependent blocking of APOBEC3G that is dependent on a strong protein interaction. The C-terminal region of Vif is responsible for this strong protein-protein interaction. In conclusion, our experiments suggest a complement to the model of Vif-induced degradation of APOBEC3G by bringing to relevance that deaminase inhibition can also result from a direct interaction with Vif protein.
Collapse
Affiliation(s)
- Mariana Santa-Marta
- Unidade de Retrovirus e Infecçôes Associadas, Centro de Patogénese Molecular, Faculdade de Farmácia, Universidade de Lisboa, Av. das Forças Armadas, 1649-019 Lisboa, Portugal
| | | | | | | |
Collapse
|
14
|
Feng F, Davis A, Lake JA, Carr J, Xia W, Burrell C, Li P. Ring finger protein ZIN interacts with human immunodeficiency virus type 1 Vif. J Virol 2004; 78:10574-81. [PMID: 15367624 PMCID: PMC516435 DOI: 10.1128/jvi.78.19.10574-10581.2004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Virion infectivity factor (Vif) protein of human immunodeficiency virus type 1 (HIV-1) is essential for the productive infection of primary human CD4 T lymphocytes and macrophages. Vif overcomes the HIV-inhibitory effects of cellular factor APOBEC3G, which has cytidine deaminase activity. We previously reported the isolation of a Vif-interacting ring finger protein, Triad 3, from a human leukocyte cDNA library, using the yeast two-hybrid system. The full-length cellular protein homologue of Triad 3 has been recently identified as the zinc finger protein inhibiting NF-kappaB (ZIN). Sequence analysis indicates that Triad 3 protein contains all four major ring-like motifs of ZIN. We report here that ZIN binds to purified Vif in vitro and that Triad 3/ZIN interacts with HIV-1 Vif in transfected human 293T cells, as demonstrated by coimmunoprecipitation. To test the biological relevance of this interaction, we produced infectious HIV-1 NL4.3 in the presence or absence of cotransfected ZIN. HIV-1 NL4.3 virus stocks produced in the presence of exogenously expressed ZIN were twofold less infectious in a single-cycle infectivity assay than virus produced in the absence of exogenous ZIN. It was further shown that cells infected with HIV NL4.3 virus stocks produced in the presence of exogenously expressed ZIN were impaired in viral DNA synthesis by twofold. The impairment in viral reverse transcription and the reduction in single-cycle viral infectivity were both shown to be dependent on the presence of Vif in the virus producer cells. The possible mechanisms by which ZIN interferes with the early events of HIV-1 replication are discussed.
Collapse
Affiliation(s)
- Feng Feng
- Australian Centre for Hepatitis and HIV Virology Research, Infectious Disease Laboratories, Institute of Medical and Veterinary Science, Frome Rd., Adelaide, Australia 5000
| | | | | | | | | | | | | |
Collapse
|
15
|
Goncalves J, Santa-Marta M. HIV-1 Vif and APOBEC3G: multiple roads to one goal. Retrovirology 2004; 1:28. [PMID: 15383144 PMCID: PMC521195 DOI: 10.1186/1742-4690-1-28] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2004] [Accepted: 09/21/2004] [Indexed: 11/10/2022] Open
Abstract
The viral infectivity factor, Vif, of human immunodeficiency virus type 1, HIV-1, has long been shown to promote viral replication in vivo and to serve a critical function for productive infection of non-permissive cells, like peripheral blood mononuclear cells (PBMC). Vif functions to counteract an anti-retroviral cellular factor in non-permissive cells named APOBEC3G. The current mechanism proposed for protection of the virus by HIV-1 Vif is to induce APOBEC3G degradation through a ubiquitination-dependent proteasomal pathway. However, a new study published in Retrovirology by Strebel and colleagues suggests that Vif-induced APOBEC3G destruction may not be required for Vif's virus-protective effect. Strebel and co-workers show that Vif and APOBEC3G can stably co-exist, and yet viruses produced under such conditions are fully infectious. This new result highlights the notion that depletion of APOBEC3G is not the sole protective mechanism of Vif and that additional mechanisms exerted by this protein can be envisioned which counteract APOBEC3G and enhance HIV infectivity.
Collapse
Affiliation(s)
- Joao Goncalves
- URIA-Centro de Patogénese Molecular, Faculdade de Farmácia, Universidade de Lisboa, 1649-019 Lisboa, Portugal
| | - Mariana Santa-Marta
- URIA-Centro de Patogénese Molecular, Faculdade de Farmácia, Universidade de Lisboa, 1649-019 Lisboa, Portugal
| |
Collapse
|
16
|
Zheng YH, Irwin D, Kurosu T, Tokunaga K, Sata T, Peterlin BM. Human APOBEC3F is another host factor that blocks human immunodeficiency virus type 1 replication. J Virol 2004; 78:6073-6. [PMID: 15141007 PMCID: PMC415831 DOI: 10.1128/jvi.78.11.6073-6076.2004] [Citation(s) in RCA: 383] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Recently, APOBEC3G has been identified as a host factor that blocks retroviral replication. It introduces G to A hypermutations in newly synthesized minus strand viral cDNA at the step of reverse transcription in target cells. Here, we identified the human APOBEC3F protein as another host factor that blocks human immunodeficiency virus type 1 (HIV-1) replication. Similar to APOBEC3G, APOBEC3F also induced G to A hypermutations in HIV genomic DNA, and the viral Vif protein counteracted its activity. Thus, APOBEC family members might have evolved as a general defense mechanism of the body against retroviruses, retrotransposons, and other mobile genetic elements.
Collapse
Affiliation(s)
- Yong-Hui Zheng
- Departments of Medicine, Microbiology, and Immunology, University of California, San Francisco, 3rd and Parnassus Ave., San Francisco, CA 94143-0703, USA
| | | | | | | | | | | |
Collapse
|
17
|
Abstract
The viral infectivity factor (Vif) of HIV type-1 (HIV-1) is essential for efficient viral replication, yet was, until recently, enigmatic. This resulted from the complexity and cellular specificity of its function and the correspondingly complex systems that are required for its investigation. These limitations have been overcome and Vif function has been rapidly elucidated, with implications for the development of drugs to block its activity. These studies have revealed a novel component of the innate immune system, APOBEC3G, that lethally hypermutates retroviruses, including HIV-1. For HIV-1, the competition between the virus and APOBEC3G is tipped in favor of the invader by Vif, which binds to APOBEC3G and triggers its polyubiquitination and rapid degradation, thereby preventing its entry into progeny virions.
Collapse
Affiliation(s)
- Kristine M Rose
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University Portland, Oregon 97239-3098, USA
| | | | | | | |
Collapse
|
18
|
Marin M, Rose KM, Kozak SL, Kabat D. HIV-1 Vif protein binds the editing enzyme APOBEC3G and induces its degradation. Nat Med 2003; 9:1398-403. [PMID: 14528301 DOI: 10.1038/nm946] [Citation(s) in RCA: 632] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2003] [Accepted: 09/15/2003] [Indexed: 12/18/2022]
Abstract
The viral infectivity factor (Vif) encoded by HIV-1 neutralizes a potent antiviral pathway that occurs in human T lymphocytes and several leukemic T-cell lines termed nonpermissive, but not in other cells termed permissive. In the absence of Vif, this antiviral pathway efficiently inactivates HIV-1. It was recently reported that APOBEC3G (also known as CEM-15), a cytidine deaminase nucleic acid-editing enzyme, confers this antiviral phenotype on permissive cells. Here we describe evidence that Vif binds APOBEC3G and induces its rapid degradation, thus eliminating it from cells and preventing its incorporation into HIV-1 virions. Studies of Vif mutants imply that it contains two domains, one that binds APOBEC3G and another with a conserved SLQ(Y/F)LA motif that mediates APOBEC3G degradation by a proteasome-dependent pathway. These results provide promising approaches for drug discovery.
Collapse
Affiliation(s)
- Mariana Marin
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Mail Code L224, Portland, Oregon 97239-3098, USA
| | | | | | | |
Collapse
|
19
|
Gaddis NC, Chertova E, Sheehy AM, Henderson LE, Malim MH. Comprehensive investigation of the molecular defect in vif-deficient human immunodeficiency virus type 1 virions. J Virol 2003; 77:5810-20. [PMID: 12719574 PMCID: PMC154025 DOI: 10.1128/jvi.77.10.5810-5820.2003] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Replication of human immunodeficiency virus type 1 (HIV-1) in primary blood lymphocytes, certain T-cell lines (nonpermissive cells), and most likely in vivo is highly dependent on the virally encoded Vif protein. Evidence suggests that Vif acts late in the viral life cycle during assembly, budding, and/or maturation to counteract the antiviral activity of the CEM15 protein and possibly other antiviral factors. Because HIV-1 virions produced in the absence of Vif are severely restricted at a postentry, preintegration step of infection, it is presumed that such virions differ from wild-type virions in some way. In the present study, we established a protocol for producing large quantities of vif-deficient HIV-1 (HIV-1/Delta vif) from an acute infection of nonpermissive T cells and performed a thorough examination of the defect in these virions. Aside from the expected lack of Vif, we observed no apparent abnormalities in the packaging, modification, processing, or function of proteins in Delta vif virions. In addition, we found no consistent defect in the ability of Delta vif virions to perform intravirion reverse transcription under a variety of assay conditions, suggesting that the reverse transcription complexes in these particles can behave normally under cell-free conditions. Consistent with this finding, neither the placement of the primer tRNA3Lys nor its ability to promote reverse transcription in an in vitro assay was affected by a lack of Vif. Based on the inability of this comprehensive analysis to uncover molecular defects in Delta vif virions, we speculate that such defects are likely to be subtle and/or rare.
Collapse
Affiliation(s)
- Nathan C Gaddis
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | |
Collapse
|
20
|
Baraz L, Hutoran M, Blumenzweig I, Katzenellenbogen M, Friedler A, Gilon C, Steinitz M, Kotler M. Human immunodeficiency virus type 1 Vif binds the viral protease by interaction with its N-terminal region. J Gen Virol 2002; 83:2225-2230. [PMID: 12185277 DOI: 10.1099/0022-1317-83-9-2225] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
The vif gene, one of the six auxiliary genes of human immunodeficiency virus (HIV), is essential for virus propagation in peripheral blood lymphocytes and macrophages and in certain T-cell lines. Previously, it was demonstrated that Vif inhibits the autoprocessing of truncated HIV type 1 (HIV-1) Gag-Pol polyproteins expressed in bacterial cells, as well as the protease-mediated cleavage of synthetic peptides in vitro. Peptides derived from the aa 78-98 region in the Vif molecule specifically inhibit and bind the HIV-1 protease in vitro and arrest the production of infectious viruses in HIV-1-infected cells. This study demonstrates that (i) purified recombinant Vif protein and HIV-1 but not avian sarcoma leukaemia virus protease specifically bind each other and (ii) the interaction between these two proteins takes place at the N terminus of the protease (aa 1-9) and the central part of Vif (aa 78-98). The data presented in this report suggest a model in which Vif interacts with the dimerization sites of the viral protease.
Collapse
Affiliation(s)
- Lea Baraz
- Experimental Pathology, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel1
| | - Marina Hutoran
- Experimental Pathology, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel1
| | - Immanuel Blumenzweig
- Experimental Pathology, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel1
| | - Mark Katzenellenbogen
- Experimental Pathology, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel1
| | - Assaf Friedler
- Department of Organic Chemistry, The Hebrew University, Givat Ram, Jerusalem 91904, Israel2
| | - Chaim Gilon
- Department of Organic Chemistry, The Hebrew University, Givat Ram, Jerusalem 91904, Israel2
| | - Michael Steinitz
- Experimental Pathology, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel1
| | - Moshe Kotler
- Experimental Pathology, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel1
| |
Collapse
|
21
|
Jenkins Y, Sanchez PV, Meyer BE, Malim MH. Nuclear export of human immunodeficiency virus type 1 Vpr is not required for virion packaging. J Virol 2001; 75:8348-52. [PMID: 11483780 PMCID: PMC115079 DOI: 10.1128/jvi.75.17.8348-8352.2001] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human immunodeficiency virus type 1 Vpr protein is both packaged into virions and efficiently localized to the nucleus. In this report, we show that a significant fraction of Vpr also accumulates in the cytoplasm of virus-producing cells. Although Vpr shuttles between the nucleus and the cytoplasm, studies with an export-deficient Vpr mutant reveal that nuclear export is not required for virion incorporation.
Collapse
Affiliation(s)
- Y Jenkins
- Departments of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6148, USA
| | | | | | | |
Collapse
|
22
|
Bour S, Strebel K. HIV accessory proteins: multifunctional components of a complex system. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2001; 48:75-120. [PMID: 10987089 DOI: 10.1016/s1054-3589(00)48004-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Affiliation(s)
- S Bour
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892-0460, USA
| | | |
Collapse
|
23
|
O'Doherty U, Swiggard WJ, Malim MH. Human immunodeficiency virus type 1 spinoculation enhances infection through virus binding. J Virol 2000; 74:10074-80. [PMID: 11024136 PMCID: PMC102046 DOI: 10.1128/jvi.74.21.10074-10080.2000] [Citation(s) in RCA: 553] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The study of early events in the human immunodeficiency virus type 1 (HIV-1) life cycle can be limited by the relatively low numbers of cells that can be infected synchronously in vitro. Although the efficiency of HIV-1 infection can be substantially improved by centrifugal inoculation (spinoculation or shell vial methods), the underlying mechanism of enhancement has not been defined. To understand spinoculation in greater detail, we have used real-time PCR to quantitate viral particles in suspension, virions that associate with cells, and the ability of those virions to give rise to reverse transcripts. We report that centrifugation of HIV-1(IIIB) virions at 1,200 x g for 2 h at 25 degrees C increases the number of particles that bind to CEM-SS T-cell targets by approximately 40-fold relative to inoculation by simple virus-cell mixing. Following subsequent incubation at 37 degrees C for 5 h to allow membrane fusion and uncoating to occur, the number of reverse transcripts per target cell was similarly enhanced. Indeed, by culturing spinoculated samples for 24 h, approximately 100% of the target cells were reproducibly shown to be productively infected, as judged by the expression of p24(gag). Because the modest g forces employed in this procedure were found to be capable of sedimenting viral particles and because CD4-specific antibodies were effective at blocking virus binding, we propose that spinoculation works by depositing virions on the surfaces of target cells and that diffusion is the major rate-limiting step for viral adsorption under routine in vitro pulsing conditions. Thus, techniques that accelerate the binding of viruses to target cells not only promise to facilitate the experimental investigation of postentry steps of HIV-1 infection but should also help to enhance the efficacy of virus-based genetic therapies.
Collapse
Affiliation(s)
- U O'Doherty
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6148, USA
| | | | | |
Collapse
|
24
|
Abstract
The vif gene of human immunodeficiency virus type 1 (HIV-1) greatly enhances the infectivity of HIV-1 virions that are released from cells classified as nonpermissive (e.g., lymphocytes, macrophages, and H9 leukemic T cells) but is irrelevant in permissive cells (e.g., HeLa or COS cells). Recently, it was reported that vif expression in nonpermissive cells dramatically increases infectivity not only of HIV-1 but also of other enveloped viruses, including murine leukemia viruses (MLVs). This was surprising in part because MLVs and other murine retroviruses lack vif genes yet replicate efficiently in T lymphocytes. To investigate these issues, we first developed improved methods for producing substantial quantities of HIV-1 virions with vif deletions from healthy H9 cells. These virions had approximately the same amounts of major core proteins and envelope glycoproteins as the control wild-type virions but were only approximately 1% as infectious. We then produced H9 cells that contained wild-type or vif deletion HIV-gpt proviruses, which lack a functional env gene. After superinfection with either xenotropic or amphotropic MLVs, these cells released HIV-gpt virions pseudotyped with an MLV envelope plus replication-competent MLV. Interestingly, the pseudotyped HIV-gpt (vif deletion) virions were noninfectious, whereas the MLV virions simultaneously released from the same H9 cells were fully infectious. These results strongly suggest that the Vif protein functions in a manner that is both cell specific and at least substantially specific for HIV-1 and related lentiviruses. In addition, these results confirm that vif deletion HIV-1 virions from nonpermissive cells are blocked at a postpenetration stage of the infection pathway.
Collapse
Affiliation(s)
- N Madani
- Department of Biochemistry and Molecular Biology, Oregon Health Sciences University, Portland 97201-3098, USA
| | | |
Collapse
|
25
|
Cornille F, Wecker K, Loffet A, Genet R, Roques B. Efficient solid-phase synthesis of Vpr from HIV-1 using low quantities of uniformly 13C-, 15N-labeled amino acids for NMR structural studies. THE JOURNAL OF PEPTIDE RESEARCH : OFFICIAL JOURNAL OF THE AMERICAN PEPTIDE SOCIETY 1999; 54:427-35. [PMID: 10563508 DOI: 10.1034/j.1399-3011.1999.00129.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The 96-amino acid protein Vpr functions as a regulator of cellular processes involved in the human immunodeficiency virus, type 1 (HIV-1) life cycle, including cell-cycle arrest at the G2/M check point, promotion of the HIV-1 preintegration complex for nuclear transport, induction of apoptosis and transcriptional activation of a variety of viral and cellular promoters. Preliminary 1H NMR experiments performed on Vpr fragments showed the presence of several helical regions. However, the assignment of many protons in the amide region of the complete sequence of Vpr proved to be impossible due to the overlap of multiple NOE cross peaks. Moreover, because of its cytotoxicity, it is difficult to produce large quantities of 15N- and 13C-labeled Vpr using molecular biology approaches. Therefore, the solid-phase peptide synthesis of (1-96)Vpr, labeled at 22 selected positions, using recently commercially available uniformly 13C-, 15N-labeled fmoc amino acids, has been optimized to produce large quantities (104 mg, 15% yield) of pure compound, while minimizing the quantity of labeled amino acids used for each coupling. As expected two-dimensional heteronuclear NMR experiments performed with this protein allowed the unequivocal assignments of all the proton signals. This study shows that introduction of few labeled 13C/15N labeled amino acids in selected positions facilitates the determination of structure solution of small protein accessible by solid-phase peptide synthesis, and could allow dynamic studies of their conformational behavior to be carried out.
Collapse
Affiliation(s)
- F Cornille
- Département de Pharmacochimie Moléculaire et Structurale, U266 INSERM, UMR 8600 CNRS, UFR des Sciences Pharmaceutiques et Biologiques, Paris, France
| | | | | | | | | |
Collapse
|
26
|
Sakai K, Horiuchi M, Iida S, Fukumori T, Akari H, Adachi A. Mutational analysis of human immunodeficiency virus type 1 vif gene. Virus Genes 1999; 18:179-81. [PMID: 10403705 DOI: 10.1023/a:1008089207013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Mutations were introduced into scattered regions of the HIV-1 vif gene. The twelve in-frame mutants generated were evaluated for the replication potentials in cells by transfection and infection experiments. All the mutants produced a normal level of progeny virions upon transfection, indicating the absence of the late function of HIV-1 Vif protein. The infectivity of virions obtained was monitored in H9 cells, which are non-permissive for HIV-1 without the Vif function. Most of the mutations in various parts of the vif gene, including those in the three conserved regions among HIV/SIV, abrogated the infectivity of the virus. In contrast, the cysteine residue at position 133, which was reported to be critical for viral infectivity, was found not to be essential. In addition, the C-terminal eight amino acid residues (185-192) in the Vif protein could be deleted with no effects on viral growth potential.
Collapse
Affiliation(s)
- K Sakai
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
27
|
Bachand F, Yao XJ, Hrimech M, Rougeau N, Cohen EA. Incorporation of Vpr into human immunodeficiency virus type 1 requires a direct interaction with the p6 domain of the p55 gag precursor. J Biol Chem 1999; 274:9083-91. [PMID: 10085158 DOI: 10.1074/jbc.274.13.9083] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The 96-amino acid Vpr protein is the major virion-associated accessory protein of the human immunodeficiency virus type 1 (HIV-1). As Vpr is not part of the p55 Gag polyprotein precursor (Pr55(gag)), its incorporation requires an anchor to associate with the assembling viral particles. Although the molecular mechanism is presently unclear, the C-terminal region of the Pr55(gag) corresponding to the p6 domain appears to constitute such an anchor essential for the incorporation of the Vpr protein. In order to clarify the mechanism by which the Vpr accessory protein is trans-incorporated into progeny virion particles, we tested whether HIV-1 Vpr interacted with the Pr55(gag) using the yeast two-hybrid system and the maltose-binding protein pull-down assay. The present study provides genetic and biochemical evidence indicating that the Pr55(gag) can physically interact with the Vpr protein. Furthermore, point mutations affecting the integrity of the conserved L-X-S-L-F-G motif of p6(gag) completely abolish the interaction between Vpr and the Pr55(gag) and, as a consequence, prevent Vpr virion incorporation. In contrast to other studies, mutations affecting the integrity of the NCp7 zinc fingers impaired neither Vpr virion incorporation nor the binding between Vpr and the Pr55(gag). Conversely, amino acid substitutions in Vpr demonstrate that an intact N-terminal alpha-helical structure is essential for the Vpr-Pr55(gag) interaction. Vpr and the Pr55(gag) demonstrate a strong interaction in vitro as salt concentrations as high as 900 mM could not disrupt the interaction. Finally, the interaction is efficiently competed using anti-Vpr sera. Together, these results strongly suggest that Vpr trans-incorporation into HIV-1 particles requires a direct interaction between its N-terminal region and the C-terminal region of p6(gag). The development of Pr55(gag)-Vpr interaction assays may allow the screening of molecules that can prevent the incorporation of the Vpr accessory protein into HIV-1 virions, and thus inhibit its early functions.
Collapse
Affiliation(s)
- F Bachand
- Laboratoire de rétrovirologie humaine, Département de Microbiologie et Immunologie, Faculté de Médecine, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | | | | | | | | |
Collapse
|
28
|
D'Aloja P, Olivetta E, Bona R, Nappi F, Pedacchia D, Pugliese K, Ferrari G, Verani P, Federico M. gag, vif, and nef genes contribute to the homologous viral interference induced by a nonproducer human immunodeficiency virus type 1 (HIV-1) variant: identification of novel HIV-1-inhibiting viral protein mutants. J Virol 1998; 72:4308-19. [PMID: 9557721 PMCID: PMC109661 DOI: 10.1128/jvi.72.5.4308-4319.1998] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
We previously demonstrated that expression of the nonproducer F12-human immunodeficiency virus type 1 (HIV-1) variant induces a block in the replication of superinfecting HIV that does not depend on the down-regulation of CD4 HIV receptors. In order to individuate the gene(s) involved in F12-HIV-induced interference, vectors expressing each of the nine F12-HIV proteins were transfected in HIV-susceptible HeLa CD4 cells. Pools of cell clones stably producing each viral protein were infected with HIV-1, and virus release was measured in terms of reverse transcriptase activity in supernatants. We hereby demonstrate that HeLa CD4 cells expressing the F12-HIV gag, vif, or nef gene were resistant, to different degrees, to infection with T-cell-line-adapted HIV-1 strains. Conversely, expression of either the tat, rev, or vpu F12-HIV gene increased the rate of HIV release, and no apparent effects on HIV replication were observed in cells expressing either the F12-HIV vpr, pol, or env gene. No variation of CD4 exposure was detected in any of the uninfected HeLa CD4 pools. These data indicate that F12-HIV homologous viral interference is the consequence of the synergistic anti-HIV effects of Gag, Vif, and Nef proteins. Retrovirus vectors expressing F12-HIV vif or nef allowed us to further establish that the expression of each mutated protein (i) inhibits the replication of clinical HIV-1 isolates as well, (ii) impairs the infectivity of the virus released by cells chronically infected with HIV-1, and (iii) limitedly to F12-HIV Vif protein, induces HIV resistance in both vif-permissive and vif-nonpermissive cells. The levels of action of F12-HIV vif and nef anti-HIV effects were also determined. We observed that HIV virions emerging from the first viral cycle on F12-HIV vif-expressing cells, although released in unaltered amounts, had a strongly reduced ability to initiate the retrotranscription process when they reinfected parental HeLa CD4 cells. Differently, we observed that expression of F12-HIV Nef protein affects the HIV life cycle at the level of viral assembling and/or release. For the first time, an inhibitory effect on the HIV life cycle in both acutely and chronically infected cells induced by mutated Vif and Nef HIV-1 proteins is described. These genes could thus be proposed as new useful reagents for anti-HIV gene therapy.
Collapse
Affiliation(s)
- P D'Aloja
- Laboratory of Virology, Istituto Superiore di Sanità, Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Subbramanian RA, Kessous-Elbaz A, Lodge R, Forget J, Yao XJ, Bergeron D, Cohen EA. Human immunodeficiency virus type 1 Vpr is a positive regulator of viral transcription and infectivity in primary human macrophages. J Exp Med 1998; 187:1103-11. [PMID: 9529326 PMCID: PMC2212198 DOI: 10.1084/jem.187.7.1103] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
It is currently well established that HIV-1 Vpr augments viral replication in primary human macrophages. In its virion-associated form, Vpr has been suggested to aid efficient translocation of the proviral DNA into the cell nucleus. Although Vpr growth-arrests dividing T cells, the relevance of this biological activity in nondividing macrophages is unclear. Here we use Vpr-mutants to demonstrate that the molecular determinants involved in G2-arresting T cells are also involved in increasing viral transcription in macrophages, even though these cells are refractive to the diploid DNA status typical of G2 phase. Our results suggest that the two phenotypes, namely the nuclear localization and the G2-arrest activity of the protein, segregate functionally among the late and early functions of Vpr. The nuclear localization property of Vpr correlates with its ability to effectively target the proviral DNA to the cell nucleus early in the infection, whereas the G2-arrest phenotype correlates with its ability to activate viral transcription after establishment of an infection. These two functions may render Vpr's role essential and not accessory under infection conditions that closely mimic the in vivo situation, that is, primary cells being infected at low viral inputs.
Collapse
Affiliation(s)
- R A Subbramanian
- Laboratory of Human Retrovirology, Department of Microbiology and Immunology, University of Montreal, Montreal, Quebec, Canada H3C3J7
| | | | | | | | | | | | | |
Collapse
|
30
|
Mahalingam S, Ayyavoo V, Patel M, Kieber-Emmons T, Kao GD, Muschel RJ, Weiner DB. HIV-1 Vpr interacts with a human 34-kDa mov34 homologue, a cellular factor linked to the G2/M phase transition of the mammalian cell cycle. Proc Natl Acad Sci U S A 1998; 95:3419-24. [PMID: 9520381 PMCID: PMC19851 DOI: 10.1073/pnas.95.7.3419] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Several important and possibly interrelated functions have been identified for the HIV-1 accessory gene product Vpr. These include import of the HIV reverse transcription complex into the nucleus of nondividing cells, cellular differentiation including cell cycle arrest at the G2/M phase border, immune suppression, and enhancement of virus replication. We have cloned a candidate Vpr ligand, termed human Vpr interacting protein (hVIP/MOV34), by using a yeast two-hybrid assay. This gene is homologous to a simultaneously identified 34-kDa human mov34 homologue. The MOV34 family includes proteins that function as transcriptional and proteolytic regulators of cell growth and differentiation. We demonstrate direct interactions between the putative ligand hVIP/MOV34 and Vpr in vitro and in vivo. hVIP/MOV34 localizes to the nucleus and appears to function as a component of the cell cycle cascade. We observe an association between the induction of cell cycle arrest at the G2/M phase border by Vpr and a change in the subcellular localization of hVIP/MOV34 from a nuclear to a perinuclear localization. This was further associated with the inhibition of maturation promoting factor-associated histone H1 kinase activity. We conclude that hVIP/MOV34 is involved in the regulation of the cell cycle and a likely cellular cofactor for HIV-1 Vpr.
Collapse
Affiliation(s)
- S Mahalingam
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Hamaia S, Cassé H, Gazzolo L, Duc Dodon M. The human T-cell leukemia virus type 1 Rex regulatory protein exhibits an impaired functionality in human lymphoblastoid Jurkat T cells. J Virol 1997; 71:8514-21. [PMID: 9343209 PMCID: PMC192315 DOI: 10.1128/jvi.71.11.8514-8521.1997] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The Rex protein of human T-cell leukemia virus type 1 (HTLV-1) intervenes in the posttranscriptional regulation of proviral gene expression. Its binding to the Rex response element (XRE) present in the 3' long terminal repeat ensures the coordinate cytoplasmic accumulation of spliced and unspliced forms of viral messengers. Consequently, synthesis of viral structural and enzymatic proteins is strictly dependent on the Rex posttranscriptional activity. Here we report that synthesis of HTLV-1 envelope glycoproteins by Jurkat T cells could be detected only when they were regulated in a Rex-independent manner. Indeed, Jurkat T cells transfected with a Rex-dependent env expression vector (encompassing both the env and pX open reading frames) do not produce significant levels of envelope glycoproteins despite the production of significant amounts of Rex protein. The analysis of levels and distribution patterns of the unspliced env and of the singly spliced tax/rex transcripts suggests that the failure in envelope glycoprotein synthesis may be ascribed to a deficiency of Rex in mediating the nucleocytoplasmic transport of unspliced env RNAs in these cells. Furthermore, despite the synthesis of regulatory proteins, HTLV-1 structural proteins were not detected in Jurkat T cells transfected with an HTLV-1 infectious provirus. Conversely, and as expected, structural proteins were produced by Jurkat cells transfected by a human immunodeficiency virus type 1 (HIV-1) infectious provirus. This phenotype appeared to be linked to a specific dysfunction of Rex, since the functionally equivalent Rev protein of HIV-1 was shown to be fully efficient in promoting the synthesis of HTLV-1 envelope glycoproteins in Jurkat cells. Therefore, it seems likely that the block to Rex function in these lymphoblastoid T cells is determined by inefficient Rex-XRE interactions. These observations suggest that the acquisition of this Rex-deficient phenotype by in vivo-infected HTLV-1 T cells may represent a critical event in the lymphoproliferation induced by this human retrovirus, leading to leukemia.
Collapse
Affiliation(s)
- S Hamaia
- Immuno-Virologie Moléculaire et Cellulaire, UMR 5537, Centre National de la Recherche Scientifique-Université Claude Bernard Lyon I, Faculté de Médecine, France
| | | | | | | |
Collapse
|
32
|
Mahalingam S, Ayyavoo V, Patel M, Kieber-Emmons T, Weiner DB. Nuclear import, virion incorporation, and cell cycle arrest/differentiation are mediated by distinct functional domains of human immunodeficiency virus type 1 Vpr. J Virol 1997; 71:6339-47. [PMID: 9261351 PMCID: PMC191907 DOI: 10.1128/jvi.71.9.6339-6347.1997] [Citation(s) in RCA: 150] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The vpr gene product of human immunodeficiency virus type 1 (HIV-1) is a virion-associated protein that is essential for efficient viral replication in monocytes/macrophages. Vpr is primarily localized in the nucleus when expressed in the absence of other viral proteins. Vpr is packaged efficiently into viral particles through interactions with the p6 domain of the Gag precursor polyprotein p55gag. We developed a panel of expression vectors encoding Vpr molecules mutated in the amino-terminal helical domain, leucine-isoleucine (LR) domain, and carboxy-terminal domain to map the different functional domains and to define the interrelationships between virion incorporation, nuclear localization, cell cycle arrest, and differentiation functions of Vpr. We observed that substitution mutations in the N-terminal domain of Vpr impaired both nuclear localization and virion packaging, suggesting that the helical structure may play a vital role in modulating both of these biological properties. The LR domain was found to be involved in the nuclear localization of Vpr. In contrast, cell cycle arrest appears to be largely controlled by the C-terminal domain of Vpr. The LR and C-terminal domains do not appear to be essential for virion incorporation of Vpr. Interestingly, we found that two Vpr mutants harboring single amino acid substitutions (A30L and G75A) retained the ability to translocate to the nucleus but were impaired in the cell cycle arrest function. In contrast, mutation of Leu68 to Ser resulted in a protein that localizes in the cytoplasm while retaining the ability to arrest host cell proliferation. We speculate that the nuclear localization and cell cycle arrest functions of Vpr are not interrelated and that these functions are mediated by separable putative functional domains of Vpr.
Collapse
Affiliation(s)
- S Mahalingam
- Department of Pathology, School of Medicine, University of Pennsylvania Medical Center, Philadelphia 19104, USA
| | | | | | | | | |
Collapse
|
33
|
Kotler M, Simm M, Zhao YS, Sova P, Chao W, Ohnona SF, Roller R, Krachmarov C, Potash MJ, Volsky DJ. Human immunodeficiency virus type 1 (HIV-1) protein Vif inhibits the activity of HIV-1 protease in bacteria and in vitro. J Virol 1997; 71:5774-81. [PMID: 9223465 PMCID: PMC191831 DOI: 10.1128/jvi.71.8.5774-5781.1997] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) Vif is required for productive infection of T lymphocytes and macrophages. Virions produced in the absence of Vif have abnormal core morphology and those produced in primary T cells carry immature core proteins and low levels of mature capsid (M. Simm, M. Shahabuddin, W. Chao, J. S. Allan, and D. J. Volsky, J. Virol. 69:4582-4586, 1995). To investigate whether Vif influences the activity of HIV-1 protease (PR), the viral enzyme which is responsible for processing Gag and Gag-Pol precursor polyproteins into mature virion components, we transformed bacteria to inducibly express truncated Gag-Pol fusion proteins and Vif. We examined the cleavage of polyproteins consisting of matrix to PR (Gag-PR), capsid to PR (CA-PR), and p6Pol to PR (p6Pol-PR) and evaluated HIV-1 protein processing at specific sites by Western blotting using antibodies against matrix, capsid, and PR proteins. We found that Vif modulates HIV-1 PR activity in bacteria mainly by preventing the release of mature MA and CA from Gag-PR, CA from CA-PR, and p6Pol from p6Pol-PR, with other cleavages being less affected. Using subconstructs of Vif, we mapped this activity to the N-terminal half of the molecule, thus identifying a new functional domain of Vif. Kinetic study of p6Pol-PR autocatalysis in the presence or absence of Vif revealed that Vif and N'Vif reduce the rate of PR-mediated proteolysis of this substrate. In an assay of in vitro proteolysis of a synthetic peptide substrate by purified recombinant PR we found that recombinant Vif and the N-terminal half of the molecule specifically inhibit PR activity at a molar ratio of the N-terminal half of Vif to PR of about 1. These results suggest a mechanism and site of action of Vif in HIV-1 replication and demonstrate novel regulation of a lentivirus PR by an autologous viral protein acting in trans.
Collapse
Affiliation(s)
- M Kotler
- Department of Molecular Genetics, Hadassah Medical School, Hebrew University, Jerusalem, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Cartier C, Deckert M, Grangeasse C, Trauger R, Jensen F, Bernard A, Cozzone A, Desgranges C, Boyer V. Association of ERK2 mitogen-activated protein kinase with human immunodeficiency virus particles. J Virol 1997; 71:4832-7. [PMID: 9151881 PMCID: PMC191709 DOI: 10.1128/jvi.71.6.4832-4837.1997] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Here we report the presence of a protein kinase activity associated with human immunodeficiency virus type 1 (HIV-1) particles. We observed phosphorylation of five major proteins by the endogenous protein kinase activity. Phosphoamino acid analysis revealed phosphorylated serine and threonine residues. In addition, we observed autophosphorylation of two proteins in the presence of gamma-ATP in an in-gel phosphorylation assay. These two proteins are not linked by a disulfide bond, suggesting that two different protein kinases are associated with HIV-1 virions. Our results indicate the presence of ERK2 mitogen-activated protein kinase and of a 53,000-molecular-weight protein kinase associated with virions. Moreover, the use of different HIV strains derived from T cells and promonocytic cells, as well as the use of human T-cell leukemia virus type 1 particles, demonstrates that ERK2 is strongly associated with retrovirus particles in a cell-independent manner. Exogenous substrates, such as histone proteins, and a viral substrate, such as Gag protein, are phosphorylated by virus-associated protein kinases.
Collapse
|
35
|
Abstract
There indeed seems to be a new mood of optimism in researchers and clinicians studying HIVs and patients infected with these viruses. A new understanding of the virology, biology, and therapy of HIV-1 includes the following: (1) The level of HIV-1 viremia, as measured by the HIV-1 plasma RNA, is a critical determinant of the time to development of AIDS and death. (2) Lessons from nonprogressors or long-term survivors, who do not develop AIDS or immune impairment despite their long-term infection, show clearly that the HIV-1 replication is significantly lower (4 to 20 times) than in people with progressive disease, and there is a vigorous and specific immune response against HIV-1. (3) Reducing viremia with antiretroviral drugs can delay the onset of AIDS and prolong survival. (4) Combination drug therapies, including an RT inhibitor and a PR inhibitor, can lower viremia to undetectable levels and delay the development of drug-resistant HIV-1. (5) HIV-1 subgroups have marked geographically distinct distributions, which may specify the routes of infection in different populations at risk.
Collapse
Affiliation(s)
- W D Hardy
- Center for Infectious Diseases, Bronx-Lebanon Hospital Center, New York, USA
| |
Collapse
|
36
|
Abstract
The human immunodeficiency virus type 1 (HIV-1) Vif protein is necessary at the time of viral particle formation yet functionally manifests its effect after virions enter target cells. This suggests that Vif either acts on another viral protein or is itself incorporated into particles. In this study, we have examined the latter possibility. We confirm our previous observation that Vif is incorporated into human immunodeficiency virus type 1 virions at a ratio of approximately 1 molecule of Vif for every 75 to 220 molecules of p24, or 7 to 20 molecules per virion. Furthermore, we demonstrate that the relative concentration of Vif is much lower in particles than in infected cells, whereas the opposite is observed for the main virus components. The viral envelope, Nef, Vpr, Vpu, protease, reverse transcriptase, integrase, nucleocapsid, and p6gag proteins as well as the viral genomic RNA are dispensable for Vif packaging. Furthermore, mutating several highly conserved residues (H-108, C-114, C-133, L-145, and Q-146) or deleting the C-terminal 18 amino acids of Vif, either of which severely impairs Vif function, does not abolish its incorporation into virions. Finally, Vif can be packaged into murine leukemia virus particles. On the basis of these data, we conclude that the specificity of Vif incorporation into virions remains an open question.
Collapse
Affiliation(s)
- D Camaur
- Infectious Disease Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | | |
Collapse
|
37
|
Nagashunmugam T, Friedman HM. Cell-free HIV-1Zr6 vif mutants are defective in binding to peripheral blood mononuclear cells and in internalization. DNA Cell Biol 1996; 15:353-61. [PMID: 8924209 DOI: 10.1089/dna.1996.15.353] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The vif gene of the human immunodeficiency virus (HIV-1) is required for productive virus infection of primary blood mononuclear cells (PBMCs) and macrophages in vitro. Replication of HIV-1 vif- mutants in T-lymphoid cell lines varies and is dependent on the cell line used for virus production. To further understand the role of Vif in HIV-1 infection, we constructed to vif deletion mutants from a molecular clone derived from an African patient (HIV-1Zr6). Cell-free Zr6 vif- virus pools made from transfected rhabdomyosarcoma (RD) cells do not replicate when added to cultures of stimulated PBMCs. However, vif mutants were able to spread from transfected RD cells to PBMCs if cell-to-cell contact was permitted. By Western blot analysis, viral structural proteins expressed after transfection of RD cells by wild-type or vif mutant proviruses were indistinguishable. However, binding of vif mutants to PBMCs or to purified CD4 and virus internalization were significantly reduced when compared with wild-type virus. The defects in cell-free infection, CD4 binding, and internalization were rescued by transcomplementation using a vif expression plasmid. Our results suggest a novel level at which the HIV-1 vif gene product acts to enhance cell-free infection and indicate that vif plays an important role in promoting HIV-1 binding and internalization. Combined with the previous reports of vif's effect at other steps in infection, this suggests that vif is a pleuripotent gene product that affects multiple stages of the infective process.
Collapse
Affiliation(s)
- T Nagashunmugam
- Department of Medicine, University of Pennsylvania, Philadelphia 19104-6073, USA
| | | |
Collapse
|
38
|
Kondo E, Göttlinger HG. A conserved LXXLF sequence is the major determinant in p6gag required for the incorporation of human immunodeficiency virus type 1 Vpr. J Virol 1996; 70:159-64. [PMID: 8523520 PMCID: PMC189800 DOI: 10.1128/jvi.70.1.159-164.1996] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The vpr gene product of human immunodeficiency virus type (HIV-1) is a virion-associated regulatory protein. A transferable virion association motif for Vpr is located in the p6 domain of the HIV-1 Gag polyprotein. To map the sequences in p6 that are involved in Vpr incorporation, we analyzed the ability of mutant forms of p6 to direct the incorporation of Vpr into chimeric viral particles. Our results show that the determinants which govern Vpr incorporation are largely confined to a C-terminal region of the p6 domain. Within this region, three hydrophobic residues in a highly conserved sequence motif (L-X-S-L-F-G) are absolutely required. Remarkably, the transfer of the conserved motif and of a single flanking residue to a heterologous Gag polyprotein was sufficient to transfer the ability to incorporate Vpr at moderate levels. The transfer of residues 32 to 46 of p6 led to Vpr incorporation levels that were comparable to those obtained with full-length HIV-1 Gag protein, indicating that this region contains essentially all the information required for efficient Vpr incorporation.
Collapse
Affiliation(s)
- E Kondo
- Division of Human Retrovirology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | | |
Collapse
|
39
|
Karczewski MK, Strebel K. Cytoskeleton association and virion incorporation of the human immunodeficiency virus type 1 Vif protein. J Virol 1996; 70:494-507. [PMID: 8523563 PMCID: PMC189838 DOI: 10.1128/jvi.70.1.494-507.1996] [Citation(s) in RCA: 127] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) Vif protein has an important role in the regulation of virus infectivity. This function of Vif is cell type specific, and virions produced in the absence of Vif in restrictive cells have greatly reduced infectivity. We show here that the intracellular localization of Vif is dependent on the presence of the intermediate filament vimentin. Fractionation of acutely infected T cells or transiently transfected HeLa cells demonstrates the existence of a soluble and a cytoskeletal form and to a lesser extent the presence of a detergent-extractable form of Vif. Confocal microscopy suggests that in HeLa cells, Vif is predominantly present in the cytoplasm and closely colocalizes with the intermediate filament vimentin. Treatment of cells with drugs affecting the structure of vimentin filaments affect the localization of Vif accordingly, indicating a close association of Vif with this cytoskeletal component. The association of Vif with vimentin can cause the collapse of the intermediate filament network into a perinuclear aggregate. In contrast, analysis of Vif in vimentin-negative cells reveals significant staining of the nucleus and the nuclear membrane in addition to diffuse cytoplasmic staining. In addition to the association of Vif with intermediate filaments, analyses of virion preparations demonstrate that Vif is incorporated into virus particles. In sucrose density gradients, Vif cosediments with capsid proteins even after detergent treatment of virus preparations, suggesting that Vif is associated with the inner core of HIV particles. We propose a model in which Vif has a crucial function as a virion component either by regulating virus maturation or following virus entry into a host cell possibly involving an interaction with the cellular cytoskeletal network.
Collapse
Affiliation(s)
- M K Karczewski
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland 20892-0460, USA
| | | |
Collapse
|
40
|
Yao XJ, Subbramanian RA, Rougeau N, Boisvert F, Bergeron D, Cohen EA. Mutagenic analysis of human immunodeficiency virus type 1 Vpr: role of a predicted N-terminal alpha-helical structure in Vpr nuclear localization and virion incorporation. J Virol 1995; 69:7032-44. [PMID: 7474123 PMCID: PMC189623 DOI: 10.1128/jvi.69.11.7032-7044.1995] [Citation(s) in RCA: 155] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The Vpr gene product of human immunodeficiency virus type 1 is a virion-associated protein that is important for efficient viral replication in nondividing cells such as macrophages. At the cellular level, Vpr is primarily localized in the nucleus when expressed in the absence of other viral proteins. Incorporation of Vpr into viral particles requires a determinant within the p6 domain of the Gag precursor polyprotein Pr55gag. In the present study, we have used site-directed mutagenesis to identify a domain(s) of Vpr involved in virion incorporation and nuclear localization. Truncations of the carboxyl (C)-terminal domain, rich in basic residues, resulted in a less stable Vpr protein and in the impairment of both virion incorporation and nuclear localization. However, introduction of individual substitution mutations in this region did not impair Vpr nuclear localization and virion incorporation, suggesting that this region is necessary for the stability and/or optimal protein conformation relevant to these Vpr functions. In contrast, the substitution mutations within the amino (N)-terminal region of Vpr that is predicted to adopt an alpha-helical structure (extending from amino acids 16 to 34) impaired both virion incorporation and nuclear localization, suggesting that this structure may play a pivotal role in modulating both of these biological properties. These results are in agreement with a recent study showing that the introduction of proline residues in this predicted alpha-helical region abolished Vpr virion incorporation, presumably by disrupting this secondary structure (S. Mahalingam, S. A. Khan, R. Murali, M. A. Jabbar, C. E. Monken, R. G. Collman, and A. Srinivasan, Proc. Natl. Acad. Sci. USA 92:3794-3798, 1995). Interestingly, our results show that two Vpr mutants harboring single amino acid substitutions (L to F at position 23 [L23F] and A30F) on the hydrophobic face of the predicted helix coded for relatively stable proteins that retained their ability to translocate to the nucleus but exhibited dramatic reduction in Vpr incorporation, suggesting that this hydrophobic face might mediate protein-protein interactions required for Vpr virion incorporation but not nuclear localization. Furthermore, a single mutation (E25K) located on the hydrophilic face of this predicted alpha-helical structure affected not only virion incorporation but also nuclear localization of Vpr. The differential impairment of Vpr nuclear localization and virion incorporation by mutations in the predicted N-terminal alpha-helical region suggests that this region of Vpr plays a role in both of these biological functions of Vpr.
Collapse
Affiliation(s)
- X J Yao
- Département de Microbiologie et Immunologie, Faculté de Médecine, Université de Montréal, Québec, Canada
| | | | | | | | | | | |
Collapse
|
41
|
Reddy TR, Kraus G, Suhasini M, Leavitt MC, Wong-Staal F. Identification and mapping of inhibitory sequences in the human immunodeficiency virus type 2 vif gene. J Virol 1995; 69:5167-70. [PMID: 7609089 PMCID: PMC189340 DOI: 10.1128/jvi.69.8.5167-5170.1995] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Human immunodeficiency virus (HIV) regulates the expression of its genes temporally at the mRNA processing step. A subset of the mRNA species which encode the structural and some accessory genes contains inhibitory sequences (INS or CRS elements) which prevent nuclear export of the RNA or its utilization in the cytoplasm. Such inhibition is overridden by the interaction of a viral protein, Rev, with its RNA target sequence, RRE. The vif gene product, which is essential for virus replication in vivo, is encoded by a singly spliced mRNA, and its expression is dependent on rev in infected cells. However, INS elements have not been found in the HIV-1 vif gene itself, although such elements have been observed in Gag, Pol, and Env coding sequences. We have now identified an INS within the 5' half of HIV-2 vif which does not show any homology with cellular mRNAs or other previously identified INS and CRS elements of HIV. These results suggest that retroviral mRNAs have novel labile sequences different from those of cellular mRNAs.
Collapse
Affiliation(s)
- T R Reddy
- Department of Medicine, University of California, San Diego, La Jolla 92093-0665, USA
| | | | | | | | | |
Collapse
|
42
|
Orsini MJ, Thakur AN, Andrews WW, Hammarskjöld ML, Rekosh D. Expression and purification of the HIV type 1 Rev protein produced in Escherichia coli and its use in the generation of monoclonal antibodies. AIDS Res Hum Retroviruses 1995; 11:945-53. [PMID: 7492441 DOI: 10.1089/aid.1995.11.945] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
We have developed a simple and rapid procedure for the purification of large amounts of Rev protein overexpressed in E. coli. The purification method, which does not require denaturation of the protein, takes advantage of the positively charged nature of Rev and the ability of Rev to interact with nucleic acids. The purified protein was used to develop three novel murine monoclonal antibodies against Rev. Using fusion proteins between glutathione S-transferase (GST) and various fragments of the Rev protein, we mapped the specificity of these antibodies to different regions of the Rev protein. One antibody, 3H6, is directed against the nucleolar localization/RRE-binding domain of Rev between amino acids 38 and 44. Another antibody, 3G4, recognizes an epitope between amino acids 90 and 116 of Rev. A third antibody, 2G2, does not recognize any of the fusion proteins, and may be directed against a conformational epitope. All three antibodies are able to detect Rev on Western blots and to immunoprecipitate Rev under native conditions. However, only 3H6 and 3G4 immunoprecipitate Rev under denaturing conditions and are able to detect Rev expressed in transfected cells by indirect immunofluorescence. These antibodies should prove useful in further studies of Rev function.
Collapse
Affiliation(s)
- M J Orsini
- Department of Biochemistry, University at Buffalo, New York 14214, USA
| | | | | | | | | |
Collapse
|
43
|
Simon JH, Southerling TE, Peterson JC, Meyer BE, Malim MH. Complementation of vif-defective human immunodeficiency virus type 1 by primate, but not nonprimate, lentivirus vif genes. J Virol 1995; 69:4166-72. [PMID: 7769676 PMCID: PMC189153 DOI: 10.1128/jvi.69.7.4166-4172.1995] [Citation(s) in RCA: 107] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The productive infection of many susceptible human cells, including lymphocytes and macrophages derived from peripheral blood, by the pathogenic lentivirus human immunodeficiency virus type 1 requires expression of the virally encoded vif (for virion infectivity factor) gene. Interestingly, this gene appears to have been conserved among all of the lentiviruses of primates and almost all of the lentiviruses of nonprimates. Using T cells constitutively expressing vif genes derived from diverse sources and virus replication assays, we show that the vif gene of a second primate lentivirus, simian immunodeficiency virus from macaques, complements vif-defective human immunodeficiency virus type 1 but that those of three distinct nonprimate lentiviruses do not. Although the molecular basis for Vif function has yet to be defined, the potential implications of this noted restriction of vif complementarity are discussed.
Collapse
Affiliation(s)
- J H Simon
- Howard Hughes Medical Institute, University of Pennsylvania School of Medicine, Philadelphia 19104-6148, USA
| | | | | | | | | |
Collapse
|
44
|
Parolin C, Sodroski J. A defective HIV-1 vector for gene transfer to human lymphocytes. J Mol Med (Berl) 1995; 73:279-88. [PMID: 7583450 DOI: 10.1007/bf00231614] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- C Parolin
- Dana-Farber Cancer Institute, Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
45
|
Reddy TR, Kraus G, Yamada O, Looney DJ, Suhasini M, Wong-Staal F. Comparative analyses of human immunodeficiency virus type 1 (HIV-1) and HIV-2 Vif mutants. J Virol 1995; 69:3549-53. [PMID: 7745702 PMCID: PMC189069 DOI: 10.1128/jvi.69.6.3549-3553.1995] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Virion infectivity factor (vif), a gene found in all lentiviruses, plays an essential role in virus replication in certain target cells. We examined the replication competence of the human immunodeficiency virus type 2 (HIV-2) vif mutant in different T-cell lines and primary cells in comparison with that of the HIV-1 vif mutant. Both mutant viruses were unable to replicate in peripheral blood-derived mononuclear cells but replicated with wild-type efficiency in certain T-cell lines, such as SupT1 and MOLT-4/8. These results confirm the importance of vif in the infection of relevant target cells and imply that some cellular factor(s) could compensate for vif function. However, HIV-1 and HIV-2 vif mutant viruses also show differential replications in other cell lines, suggesting either different threshold requirements for the same cellular factor(s) or the involvement of different factors to compensate for vif-1 and vif-2 functions. By cross complementation experiments, we showed that vif-1 and vif-2 have similar functions. Our studies further indicate the existence of two kinds of nonpermissive cells: H9 is unable to complement HIV-1 delta vif but is susceptible to a one-round infection with HIV-1 delta vif produced from permissive cells. In contrast, U937 is nonpermissive for HIV-2 delta vif produced from permissive cells but, once infected, is able to complement the delta vif function. In both types of nonpermissive cells, a step prior to proviral DNA synthesis is affected.
Collapse
Affiliation(s)
- T R Reddy
- Department of Medicine, University of California at San Diego, La Jolla 92093-0665, USA
| | | | | | | | | | | |
Collapse
|
46
|
Sakai H, Furuta RA, Tokunaga K, Kawamura M, Hatanaka M, Adachi A. Rev-dependency of expression of human immunodeficiency virus type 1 gag and env genes. FEBS Lett 1995; 365:141-5. [PMID: 7540150 DOI: 10.1016/0014-5793(95)00444-e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Structural gene expression of human immunodeficiency virus type 1 (HIV-1) requires a viral regulatory protein, Rev transactivator. We investigated Rev-dependency of HIV-1 gene expression by various reporter systems. Expression of unspliced and single-spliced viral mRNAs was demonstrated to be differentially dependent on the Rev function. This difference of Rev-dependency was found not to be determined by cis-elements in gag, pol, and env coding sequences reported so far, and was lost when the reporter constructs containing minimum elements for Rev-responsiveness such as splice signals and rev responsive element were used for experiments. These findings indicated that the fundamental structure of HIV-1 mRNA was critical for the differential regulation of gene expression by Rev transactivator.
Collapse
Affiliation(s)
- H Sakai
- Institute for Virus Research, Kyoto University, Japan
| | | | | | | | | | | |
Collapse
|
47
|
Mahalingam S, Khan SA, Murali R, Jabbar MA, Monken CE, Collman RG, Srinivasan A. Mutagenesis of the putative alpha-helical domain of the Vpr protein of human immunodeficiency virus type 1: effect on stability and virion incorporation. Proc Natl Acad Sci U S A 1995; 92:3794-8. [PMID: 7731985 PMCID: PMC42048 DOI: 10.1073/pnas.92.9.3794] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
vpr is one of the auxiliary genes of human immunodeficiency virus type 1 (HIV-1) and is conserved in the related HIV-2/simian immunodeficiency virus lentiviruses. The unique feature of Vpr is that it is the only nonstructural protein incorporated into the virus particle. Secondary structural analysis predicted an amphipathic alpha-helical domain in the amino terminus of Vpr (residues 17-34) which contains five acidic and four leucine residues. To evaluate the role of specific residues of the helical domain for virion incorporation, mutagenesis of this domain was carried out. Substitution of proline for any of the individual acidic residues (Asp-17 and Glu-21, -24, -25, and -29) eliminated the virion incorporation of Vpr and also altered the stability of Vpr in cells. Conservative replacement of glutamic residues of the helical domain with aspartic residues resulted in Vpr characteristic of wild type both in stability and virion incorporation, as did substitution of glutamine for the acidic residues. In contrast, replacement of leucine residues of the helical domain (residues 20, 22, 23, and 26) by alanine eliminated virion incorporation function of Vpr. These data indicate that acidic and hydrophobic residues and the helical structure in this region are critical for the stability of Vpr and its efficient incorporation into virus-like particles.
Collapse
Affiliation(s)
- S Mahalingam
- Institute of Biotechnology and Advanced Molecular Medicine, Jefferson Cancer Institute, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Borman AM, Quillent C, Charneau P, Dauguet C, Clavel F. Human immunodeficiency virus type 1 Vif- mutant particles from restrictive cells: role of Vif in correct particle assembly and infectivity. J Virol 1995; 69:2058-67. [PMID: 7884851 PMCID: PMC188871 DOI: 10.1128/jvi.69.4.2058-2067.1995] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Disruption of the vif gene of human immunodeficiency virus (HIV) type 1 affects virus infectivity to various degrees, depending on the T-cell line used. We have concentrated our studies on true phenotypic Vif- mutant particles produced from CEMx174 or H9 cells. In a single round of infection, Vif- virus is approximately 25 (from CEMx174 cells) to 100 (from H9 cells) times less infectious than wild-type virus produced from these cells or than the Vif- mutant produced from HeLa cells. Vif- virions recovered from restrictive cells, but not from permissive cells, are abnormal both in terms of morphology and viral protein content. Notably, they contain much reduced quantities of envelope proteins and altered quantities of Gag and Pol proteins. Although wild-type and Vif- virions from restrictive cells contain similar quantities of viral RNA, no viral DNA synthesis was detectable after acute infection of target cells with phenotypically Vif- virions. To examine the possible role of Vif in viral entry, attempts were made to rescue the Vif- defect in H9 cells by pseudotyping Vif+ and Vif- HIV particles with amphotropic murine leukemia virus envelope. Vif- particles produced in the presence of HIV envelope could not be propagated when pseudotyped. In contrast, when only the murine leukemia virus envelope was present, significant propagation of Vif- HIV particles could be detected. These results demonstrate that Vif is required for proper assembly of the viral particle and for efficient HIV Env-mediated infection of target cells.
Collapse
Affiliation(s)
- A M Borman
- Unité d'Oncologie Virale, CNRS URA 1157, Département Sida et Rétrovirus, Institut Pasteur, Paris, France
| | | | | | | | | |
Collapse
|
49
|
Levy DN, Refaeli Y, Weiner DB. Extracellular Vpr protein increases cellular permissiveness to human immunodeficiency virus replication and reactivates virus from latency. J Virol 1995; 69:1243-52. [PMID: 7815499 PMCID: PMC188697 DOI: 10.1128/jvi.69.2.1243-1252.1995] [Citation(s) in RCA: 135] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The vpr gene product of human immunodeficiency virus (HIV) and simian immunodeficiency virus is a virion-associated regulatory protein that has been shown using vpr mutant viruses to increase virus replication, particularly in monocytes/macrophages. We have previously shown that vpr can directly inhibit cell proliferation and induce cell differentiation, events linked to the control of HIV replication, and also that the replication of a vpr mutant but not that of wild-type HIV type 1 (HIV-1) was compatible with cellular proliferation (D. N. Levy, L. S. Fernandes, W. V. Williams, and D. B. Weiner, Cell 72:541-550, 1993). Here we show that purified recombinant Vpr protein, in concentrations of < 100 pg/ml to 100 ng/ml, increases wild-type HIV-1 replication in newly infected transformed cell lines via a long-lasting increase in cellular permissiveness to HIV replication. The activity of extracellular Vpr protein could be completely inhibited by anti-Vpr antibodies. Extracellular Vpr also induced efficient HIV-1 replication in newly infected resting peripheral blood mononuclear cells. Extracellular Vpr transcomplemented a vpr mutant virus which was deficient in replication in promonocytic cells, restoring full replication competence. In addition, extracellular Vpr reactivated HIV-1 expression in five latently infected cell lines of T-cell, B-cell, and promonocytic origin which normally express very low levels of HIV RNA and protein, indicating an activation of translational or pretranslational events in the virus life cycle. Together, these results describe a novel pathway governing HIV replication and a potential target for the development of anti-HIV therapeutics.
Collapse
Affiliation(s)
- D N Levy
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia 19104-4283
| | | | | |
Collapse
|
50
|
Affiliation(s)
- D N Levy
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia 19104, USA
| | | | | |
Collapse
|