1
|
Baxter AL, Schwartz KR, Johnson RW, Kuchinski AM, Swartout KM, Srinivasa Rao ASR, Gibson RW, Cherian E, Giller T, Boomer H, Lyon M, Schwartz R. Rapid initiation of nasal saline irrigation to reduce severity in high-risk COVID+ outpatients. EAR, NOSE & THROAT JOURNAL 2024; 103:30S-39S. [PMID: 36007135 DOI: 10.1177/01455613221123737] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE To determine whether initiating saline nasal irrigation after COVID-19 diagnosis reduces hospitalization and death in high-risk outpatients compared with observational controls, and if irrigant composition impacts severity. METHODS Participants 55 and older were enrolled within 24 hours of a + PCR COVID-19 test between September 24 and December 21, 2020. Among 826 screened, 79 participants were enrolled and randomly assigned to add 2.5 mL povidone-iodine 10% or 2.5 mL sodium bicarbonate to 240 mL of isotonic nasal irrigation twice daily for 14 days. The primary outcome was hospitalization or death from COVID-19 within 28 days of enrollment by daily self-report confirmed with phone calls and hospital records, compared to the CDC Surveillance Dataset covering the same time. Secondary outcomes compared symptom resolution by irrigant additive. RESULTS Seventy-nine high-risk participants were enrolled (mean [SD] age, 64 [8] years; 36 [46%] women; 71% Non-Hispanic White), with mean BMI 30.3. Analyzed by intention-to-treat, by day 28, COVID-19 symptoms resulted in one ED visit and no hospitalizations in 42 irrigating with alkalinization, one hospitalization of 37 in the povidone-iodine group, (1.27%) and no deaths. Of nearly three million CDC cases, 9.47% were known to be hospitalized, with an additional 1.5% mortality in those without hospitalization data. Age, sex, and percentage with pre-existing conditions did not significantly differ by exact binomial test from the CDC dataset, while reported race and hospitalization rate did. The total risk of hospitalization or death (11%) was 8.57 times that of enrolled nasal irrigation participants (SE = 2.74; P = .006). Sixty-two participants completed daily surveys (78%), averaging 1.8 irrigations/day. Eleven reported irrigation-related complaints and four discontinued use. Symptom resolution was more likely for those reporting twice daily irrigation (X2 = 8.728, P = .0031) regardless of additive. CONCLUSION SARS-CoV-2+ participants initiating nasal irrigation were over 8 times less likely to be hospitalized than the national rate.
Collapse
Affiliation(s)
- Amy L Baxter
- Department of Emergency Medicine, Augusta University, Augusta, GA, USA
| | | | - Ryan W Johnson
- Medical College of Georgia, Augusta University, Augusta, GA, USA
| | | | - Kevin M Swartout
- Department of Psychology, Georgia State University, Atlanta, GA, USA
| | - Arni S R Srinivasa Rao
- Laboratory for Theory and Mathematical Modeling, Department of Medicine-Division of Infectious Diseases, Medical College of Georgia, Augusta University, Augusta, GA, USA
- Department of Mathematics, Augusta University, Augusta, GA, USA
| | - Robert W Gibson
- Department of Emergency Medicine, Augusta University, Augusta, GA, USA
| | - Erica Cherian
- Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Taylor Giller
- Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Houlton Boomer
- Department of Emergency Medicine, Augusta University, Augusta, GA, USA
| | - Matthew Lyon
- Department of Emergency Medicine, Augusta University, Augusta, GA, USA
| | - Richard Schwartz
- Department of Emergency Medicine, Augusta University, Augusta, GA, USA
| |
Collapse
|
2
|
Ashokkumar S, Kaushik NK, Han I, Uhm HS, Park JS, Cho GS, Oh YJ, Shin YO, Choi EH. Persistence of Coronavirus on Surface Materials and Its Control Measures Using Nonthermal Plasma and Other Agents. Int J Mol Sci 2023; 24:14106. [PMID: 37762409 PMCID: PMC10531613 DOI: 10.3390/ijms241814106] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/30/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has been responsible for the initiation of the global pandemic since 2020. The virus spreads through contaminated air particles, fomite, and surface-contaminated porous (i.e., paper, wood, and masks) and non-porous (i.e., plastic, stainless steel, and glass) materials. The persistence of viruses on materials depends on porosity, adsorption, evaporation, isoelectric point, and environmental conditions, such as temperature, pH, and relative humidity. Disinfection techniques are crucial for preventing viral contamination on animated and inanimate surfaces. Currently, there are few effective methodologies for preventing SARS-CoV-2 and other coronaviruses without any side effects. Before infection can occur, measures must be taken to prevent the persistence of the coronavirus on the surfaces of both porous and non-porous inanimate materials. This review focuses on coronavirus persistence in surface materials (inanimate) and control measures. Viruses are inactivated through chemical and physical methods; the chemical methods particularly include alcohol, chlorine, and peroxide, whereas temperature, pH, humidity, ultraviolet irradiation (UV), gamma radiation, X-rays, ozone, and non-thermal, plasma-generated reactive oxygen and nitrogen species (RONS) are physical methods.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yung Oh Shin
- Plasma Bioscience Research Center, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Eun Ha Choi
- Plasma Bioscience Research Center, Kwangwoon University, Seoul 01897, Republic of Korea
| |
Collapse
|
3
|
Sanchez-Galan JE, Ureña G, Escovar LF, Fabrega-Duque JR, Coles A, Kurt Z. Challenges to detect SARS-CoV-2 on environmental media, the need and strategies to implement the detection methodologies in wastewaters. JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING 2021; 9:105881. [PMID: 34221893 PMCID: PMC8239206 DOI: 10.1016/j.jece.2021.105881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 04/15/2021] [Accepted: 06/13/2021] [Indexed: 06/13/2023]
Abstract
Understanding risks, putting in place preventative methods to seamlessly continue daily activities are essential tools to fight a pandemic. All social, commercial and leisure activities have an impact on the environmental media. Therefore, to accurately predict the fate and behavior of viruses in the environment, it is necessary to understand and analyze available detection methods, possible transmission pathways and preventative techniques. The aim of this review is to critically analyze and summarize the research done regarding SARS-COV-2 virus detection, focusing on sampling and laboratory detection methods in environmental media. Special attention will be given to wastewater and sewage sludge. This review has summarized the survival of the virus on surfaces to estimate the risk carried by different environmental media (water, wastewater, air and soil) in order to explain which communities are under higher risk. The critical analysis concludes that the detection of SARS-CoV-2 with current technologies and sampling strategies would reveal the presence of the virus. This information could be used to design systematic sampling points throughout the sewage systems when available, taking into account peak flows and more importantly economic factors on when to sample. Such approaches will provide clues for potential future viral outbreak, saving financial resources by reducing testing necessities for viral detection, hence contributing for more appropriate confinement policies by governments and could be further used to define more precisely post-pandemic or additional waves measures if/ when needed.
Collapse
Affiliation(s)
- Javier E Sanchez-Galan
- Facultad de Ingeniería de Sistemas Computacionales (FISC), Universidad Tecnológica de Panamá, Panama
- Grupo de Investigación en Biotecnología, Bioinformática y Biología de Sistemas (GIBBS), Universidad Tecnológica de Panamá, Panama
- Institute of Scientific Research and High Technology Services, Panama City, Panama
| | - Grimaldo Ureña
- Grupo de Investigación en Biotecnología, Bioinformática y Biología de Sistemas (GIBBS), Universidad Tecnológica de Panamá, Panama
- Theoretical Evolutionary Genetics Laboratory, University of Houston, Houston, TX, USA
| | | | - Jose R Fabrega-Duque
- Centro de Investigaciones Hidráulicas e Hidrotécnicas (CIHH), Universidad Tecnologica de Panama, Panama
| | - Alexander Coles
- Centro de Investigaciones Hidráulicas e Hidrotécnicas (CIHH), Universidad Tecnologica de Panama, Panama
| | - Zohre Kurt
- Grupo de Investigación en Biotecnología, Bioinformática y Biología de Sistemas (GIBBS), Universidad Tecnológica de Panamá, Panama
- Urban Risk Center, Florida State University-Panama, Panama
- Institute of Scientific Research and High Technology Services, Panama City, Panama
- Department of Environmental Engineering, Middle East Technical University, Ankara, Turkey
| |
Collapse
|
4
|
Rashedi J, Mahdavi Poor B, Asgharzadeh M. Sodium Bicarbonate Nebulized Therapy in Patients with Confirmed COVID-19. Adv Pharm Bull 2021; 11:397-398. [PMID: 34513614 PMCID: PMC8421625 DOI: 10.34172/apb.2021.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 11/09/2022] Open
Affiliation(s)
- Jalil Rashedi
- Department of Laboratory Sciences, School of Paramedicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behroz Mahdavi Poor
- Department of Laboratory Sciences, School of Paramedicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Asgharzadeh
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
5
|
Costa JH, Mohanapriya G, Bharadwaj R, Noceda C, Thiers KLL, Aziz S, Srivastava S, Oliveira M, Gupta KJ, Kumari A, Sircar D, Kumar SR, Achra A, Sathishkumar R, Adholeya A, Arnholdt-Schmitt B. ROS/RNS Balancing, Aerobic Fermentation Regulation and Cell Cycle Control - a Complex Early Trait ('CoV-MAC-TED') for Combating SARS-CoV-2-Induced Cell Reprogramming. Front Immunol 2021; 12:673692. [PMID: 34305903 PMCID: PMC8293103 DOI: 10.3389/fimmu.2021.673692] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 06/17/2021] [Indexed: 12/19/2022] Open
Abstract
In a perspective entitled 'From plant survival under severe stress to anti-viral human defense' we raised and justified the hypothesis that transcript level profiles of justified target genes established from in vitro somatic embryogenesis (SE) induction in plants as a reference compared to virus-induced profiles can identify differential virus signatures that link to harmful reprogramming. A standard profile of selected genes named 'ReprogVirus' was proposed for in vitro-scanning of early virus-induced reprogramming in critical primary infected cells/tissues as target trait. For data collection, the 'ReprogVirus platform' was initiated. This initiative aims to identify in a common effort across scientific boundaries critical virus footprints from diverse virus origins and variants as a basis for anti-viral strategy design. This approach is open for validation and extension. In the present study, we initiated validation by experimental transcriptome data available in public domain combined with advancing plant wet lab research. We compared plant-adapted transcriptomes according to 'RegroVirus' complemented by alternative oxidase (AOX) genes during de novo programming under SE-inducing conditions with in vitro corona virus-induced transcriptome profiles. This approach enabled identifying a major complex trait for early de novo programming during SARS-CoV-2 infection, called 'CoV-MAC-TED'. It consists of unbalanced ROS/RNS levels, which are connected to increased aerobic fermentation that links to alpha-tubulin-based cell restructuration and progression of cell cycle. We conclude that anti-viral/anti-SARS-CoV-2 strategies need to rigorously target 'CoV-MAC-TED' in primary infected nose and mouth cells through prophylactic and very early therapeutic strategies. We also discuss potential strategies in the view of the beneficial role of AOX for resilient behavior in plants. Furthermore, following the general observation that ROS/RNS equilibration/redox homeostasis is of utmost importance at the very beginning of viral infection, we highlight that 'de-stressing' disease and social handling should be seen as essential part of anti-viral/anti-SARS-CoV-2 strategies.
Collapse
Affiliation(s)
- José Hélio Costa
- Functional Genomics and Bioinformatics Group, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Brazil
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), coordinated from Foros de Vale de Figueira, Alentejo, Portugal
| | - Gunasekaran Mohanapriya
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), coordinated from Foros de Vale de Figueira, Alentejo, Portugal
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
| | - Revuru Bharadwaj
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), coordinated from Foros de Vale de Figueira, Alentejo, Portugal
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
| | - Carlos Noceda
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), coordinated from Foros de Vale de Figueira, Alentejo, Portugal
- Cell and Molecular Biotechnology of Plants (BIOCEMP)/Industrial Biotechnology and Bioproducts, Departamento de Ciencias de la Vida y de la Agricultura, Universidad de las Fuerzas Armadas-ESPE, Sangolquí, Ecuador
| | - Karine Leitão Lima Thiers
- Functional Genomics and Bioinformatics Group, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Brazil
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), coordinated from Foros de Vale de Figueira, Alentejo, Portugal
| | - Shahid Aziz
- Functional Genomics and Bioinformatics Group, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Brazil
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), coordinated from Foros de Vale de Figueira, Alentejo, Portugal
| | - Shivani Srivastava
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), coordinated from Foros de Vale de Figueira, Alentejo, Portugal
- Centre for Mycorrhizal Research, Sustainable Agriculture Division, The Energy and Resources, Institute (TERI), TERI Gram, Gurugram, India
| | - Manuela Oliveira
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), coordinated from Foros de Vale de Figueira, Alentejo, Portugal
- Department of Mathematics and CIMA - Center for Research on Mathematics and Its Applications, Universidade de Évora, Évora, Portugal
| | - Kapuganti Jagadis Gupta
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), coordinated from Foros de Vale de Figueira, Alentejo, Portugal
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Aprajita Kumari
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), coordinated from Foros de Vale de Figueira, Alentejo, Portugal
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Debabrata Sircar
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), coordinated from Foros de Vale de Figueira, Alentejo, Portugal
- Department of Biotechnology, Indian Institute of Technology Roorkee, Uttarakhand, India
| | - Sarma Rajeev Kumar
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), coordinated from Foros de Vale de Figueira, Alentejo, Portugal
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
| | - Arvind Achra
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), coordinated from Foros de Vale de Figueira, Alentejo, Portugal
- Department of Microbiology, Atal Bihari Vajpayee Institute of Medical Sciences & Dr Ram Manohar Lohia Hospital, New Delhi, India
| | - Ramalingam Sathishkumar
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), coordinated from Foros de Vale de Figueira, Alentejo, Portugal
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
| | - Alok Adholeya
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), coordinated from Foros de Vale de Figueira, Alentejo, Portugal
- Centre for Mycorrhizal Research, Sustainable Agriculture Division, The Energy and Resources, Institute (TERI), TERI Gram, Gurugram, India
| | - Birgit Arnholdt-Schmitt
- Functional Genomics and Bioinformatics Group, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Brazil
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), coordinated from Foros de Vale de Figueira, Alentejo, Portugal
| |
Collapse
|
6
|
Roostaei Firozabad A, Meybodi ZA, Mousavinasab SR, Sahebnasagh A, Jelodar MG, Karimzadeh I, Habtemariam S, Saghafi F. Efficacy and safety of Levamisole treatment in clinical presentations of non-hospitalized patients with COVID-19: a double-blind, randomized, controlled trial. BMC Infect Dis 2021; 21:297. [PMID: 33761870 PMCID: PMC7988635 DOI: 10.1186/s12879-021-05983-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 03/10/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Levamisole has shown clinical benefits in the management of COVID-19 via its immunomodulatory effect. However, the exact role of Levamisole effect in clinical status of COVID-19 patients is unknown. We aimed to evaluate the efficacy of Levamisole on clinical status of patients with COVID-19 during their course of the disease. METHODS This prospective, double-blind, randomized controlled clinical trial was performed in adult patients with mild to moderate COVID-19 (room-air oxygen saturation > 94%) from late April 2020 to mid-August 2020. Patients were randomly assigned to receive a 3-day course of Levamisole or placebo in combination with routine standard of care. RESULTS With 25 patients in each arm, 50 patients with COVID-19 were enrolled in the study. Most of the study participants were men (60%). On days 3 and 14, patients in Levamisole group had significantly better cough status distribution when compared to the placebo group (P-value = 0.034 and 0.005, respectively). Moreover, there was significant differences between the two groups in dyspnea at follow-up intervals of 7 (P-value = 0.015) and 14 (P-value = 0.010) days after receiving the interventions. However, no significant difference in fever status was observed on days 1, 3, 7, and 14 in both groups (P-value > 0.05). CONCLUSION The results of the current study suggest that Levamisole may improve most of clinical status of patients with COVID-19. The patients receiving Levamisole had significantly better chance of clinical status including cough and dyspnea on day 14 when compared to the placebo. However, the effect-size of this finding has uncertain clinical importance. TRIAL REGISTRATION The trial was registered as IRCT20190810044500N7 (19/09/2020).
Collapse
Affiliation(s)
- Amirreza Roostaei Firozabad
- Pharmaceutical Sciences Research Center, Student Research Committee, School of Pharmacy, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Zohreh Akhoundi Meybodi
- Infectious disease research center, Shahid Sadoughi hospital, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Seyed Ruhollah Mousavinasab
- Resident of Clinical Pharmacy, Department of Clinical Pharmacy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Adeleh Sahebnasagh
- Clinical Research Center, Department of Internal Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Mohsen Gholinataj Jelodar
- Department of Internal Medicine, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Iman Karimzadeh
- Department of Clinical Pharmacy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Solomon Habtemariam
- Pharmacognosy Research Laboratories and Herbal Analysis Services UK, University of Greenwich, Central Avenue, Chatham-Maritime, Kent, ME4 4TB UK
| | - Fatemeh Saghafi
- Department of Clinical Pharmacy, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
7
|
Altalhi TA, Alswat K, Alsanie WF, Ibrahim MM, Aldalbahi A, El-Sheshtawy HS. Chloroquine and hydroxychloroquine inhibitors for COVID-19 sialic acid cellular receptor: Structure, hirshfeld atomic charge analysis and solvent effect. J Mol Struct 2021; 1228:129459. [PMID: 33082599 PMCID: PMC7558245 DOI: 10.1016/j.molstruc.2020.129459] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 02/06/2023]
Abstract
COVID-19, the pandemic disease recently discovered in Wuhan (China), severely spread and affected both social and economic activity all over the world. Attempts to find an effective vaccine are challenging, time-consuming though interminable. Hence, re-proposing effective drugs is reliable and effective alternative. Taking into account the genome similarity of COVID-19 with SARS-CoV, drugs with safety profiles could be fast solution. Clinical trials encouraged the use of Chloroquine and Hydroxychloroquine for COVID-19 inhibition. One of the possible inhibition pathways is the competitive binding with the angiotension-converting enzyme-2 (ACE-2), in particular with the cellular Sialic acid (Neu5Ac). Here, we investigate the possible binding mechanism of ClQ and ClQOH with sialic acid both in the gas phase and in water using density functional theory (DFT). We investigated the binding of the neutral, monoprotonated and diprotonated ClQs and ClQOHs to sialic acid to simulate the pH effect on the cellular receptor binding. DFT results reveals that monoprotonated ClQ+ and ClQOH+, which account for more than 66% in the solution, possess high reactivity and binding towards sialic acid. The Neu5Ac-ClQ and the analogues Neu5Ac-ClQOH adducts were stabilized in water than in the gas phase. The molecular complexes stabilize by strong hydrogen bonding and π - π stacking forces. In addition, proton-transfer in Neu5Ac-ClQOH+ provides more stabilizing power and cellular recognition binding forces. These results shed light on possible recognition mechanism and help future breakthroughs for COVID-19 inhibitors.
Collapse
Affiliation(s)
- Tariq A. Altalhi
- Department of Chemistry, Collage of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia,Corresponding authors
| | - Khaled Alswat
- Department of internal medicine, Collage of medicine, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Walaa F. Alsanie
- Department of Clinical Laboratories Science, Collage of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Mohamed M. Ibrahim
- Department of Chemistry, Collage of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia,Chemistry Department, Faculty of Science, Kafrelsheikh University, 33516 Kafr ElSheikh, Egypt
| | - Ali Aldalbahi
- Department of Chemistry, College of Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Hamdy S. El-Sheshtawy
- Chemistry Department, Faculty of Science, Kafrelsheikh University, 33516 Kafr ElSheikh, Egypt,Corresponding authors
| |
Collapse
|
8
|
Dongol K, Neupane Y, Das Dutta H, Raj Gyawali B, Kharel B. Prevalence of Foreign Body Aspiration in Children in a Tertiary Care Hospital. JNMA J Nepal Med Assoc 2021; 59:111-115. [PMID: 34506471 PMCID: PMC8959221 DOI: 10.31729/jnma.5393] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Indexed: 11/11/2022] Open
Abstract
Introduction: Foreign body aspiration is a common problem in children with significant mortality and morbidity. This study aims to determine the prevalence of foreign body aspiration in children in a tertiary care hospital of Nepal. Methods: A descriptive cross-sectional study was conducted at Tribhuvan University Teaching Hospital from April 2010 to March 2016 after obtaining ethical approval from Institutional Review Committee (Reference number- 08(6-11)E277/78). All children of age up to 15 years with suspected foreign body aspiration were included. The data was collected from the medical record section and entered in Microsoft Excel. The descriptive statistical analysis was performed. Results: A total of 26,294 patients were included in the study. The prevalence of foreign body aspiration in children was found to be 98 (0.37%). On rigid bronchoscopy, 82 patients (83.6%) were confirmed to have a foreign body in the airway. The peak incidence of foreign body aspiration was seen in patients of age group one to two years. The commonest foreign body in the airway was a peanut. Conclusions: The prevalence of foreign body aspiration in children was low, which is similar to other studies. Foreign body aspiration may lead to dreadful complications. Therefore, both the clinicians and the public need to be cautious about it.
Collapse
Affiliation(s)
- Kripa Dongol
- Department of ENT, Tribhuvan University Teaching Hospital, Maharajgunj, Kathmandu, Nepal
| | - Yogesh Neupane
- Department of ENT, Tribhuvan University Teaching Hospital, Maharajgunj, Kathmandu, Nepal
| | - Heempali Das Dutta
- Department of ENT, Tribhuvan University Teaching Hospital, Maharajgunj, Kathmandu, Nepal
| | - Bigyan Raj Gyawali
- Department of ENT, Tribhuvan University Teaching Hospital, Maharajgunj, Kathmandu, Nepal
| | - Bijaya Kharel
- Department of ENT, Tribhuvan University Teaching Hospital, Maharajgunj, Kathmandu, Nepal
| |
Collapse
|
9
|
Abstract
The frequent outbreaks of life-threatening RNA viruses, including the ongoing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), pose tremendous challenges to humanity. The author proposes that creating a more alkaline extracellular environment that is unsuitable for the fusion between the envelope of SARS-CoV-2 and the host cell membrane is a promising method to prevent the entry of coronaviruses into human cells. The alkaline environment could be achieved by exposing the general public to water-clustered negative air ions (NAIs), both indoors and outdoors, to induce a gradual increase in the pH of the human body. Previous studies have demonstrated that there are no harmful effects of high-concentration NAIs on human health.
Collapse
Affiliation(s)
- Bin Wang
- Department of Chemistry, Marshall University, Huntington, WV 25755, USA.,Department of Chemistry, Marshall University, Huntington, WV 25755, USA
| |
Collapse
|
10
|
Simonis A, Theobald SJ, Fätkenheuer G, Rybniker J, Malin JJ. A comparative analysis of remdesivir and other repurposed antivirals against SARS-CoV-2. EMBO Mol Med 2021; 13:e13105. [PMID: 33015938 PMCID: PMC7646058 DOI: 10.15252/emmm.202013105] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/22/2020] [Accepted: 09/25/2020] [Indexed: 02/06/2023] Open
Abstract
The ongoing SARS-CoV-2 pandemic stresses the need for effective antiviral drugs that can quickly be applied in order to reduce morbidity, mortality, and ideally viral transmission. By repurposing of broadly active antiviral drugs and compounds that are known to inhibit viral replication of related viruses, several advances could be made in the development of treatment strategies against COVID-19. The nucleoside analog remdesivir, which is known for its potent in vitro activity against Ebolavirus and other RNA viruses, was recently shown to reduce the time to recovery in patients with severe COVID-19. It is to date the only approved antiviral for treating COVID-19. Here, we provide a mechanism and evidence-based comparative review of remdesivir and other repurposed drugs with proven in vitro activity against SARS-CoV-2.
Collapse
Affiliation(s)
- Alexander Simonis
- Department I of Internal MedicineDivision of Infectious DiseasesUniversity of CologneCologneGermany
- Faculty of MedicineCenter for Molecular Medicine Cologne (CMMC)University of CologneCologneGermany
| | - Sebastian J Theobald
- Department I of Internal MedicineDivision of Infectious DiseasesUniversity of CologneCologneGermany
- Faculty of MedicineCenter for Molecular Medicine Cologne (CMMC)University of CologneCologneGermany
| | - Gerd Fätkenheuer
- Department I of Internal MedicineDivision of Infectious DiseasesUniversity of CologneCologneGermany
| | - Jan Rybniker
- Department I of Internal MedicineDivision of Infectious DiseasesUniversity of CologneCologneGermany
- Faculty of MedicineCenter for Molecular Medicine Cologne (CMMC)University of CologneCologneGermany
- German Center for Infection Research (DZIF)Partner Site Bonn‐CologneCologneGermany
| | - Jakob J Malin
- Department I of Internal MedicineDivision of Infectious DiseasesUniversity of CologneCologneGermany
- Faculty of MedicineCenter for Molecular Medicine Cologne (CMMC)University of CologneCologneGermany
| |
Collapse
|
11
|
Hebditch M, Warwicker J. Protein-sol pKa: prediction of electrostatic frustration, with application to coronaviruses. Bioinformatics 2020; 36:5112-5114. [PMID: 32683439 PMCID: PMC7454282 DOI: 10.1093/bioinformatics/btaa646] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/18/2020] [Accepted: 07/13/2020] [Indexed: 12/02/2022] Open
Abstract
Motivation Evolution couples differences in ambient pH to biological function through protonatable groups, in particular, those that switch from buried to exposed and alter protonation state in doing so. We present a tool focusing on structure-based discovery and display of these groups. Results Since prediction of buried group pKas is computationally intensive, solvent accessibility of ionizable groups is displayed, from which the user can iteratively select pKa calculation centers. Results are color-coded, with emphasis on buried groups. Utility is demonstrated with benchmarking against known pH sensing sites in influenza virus hemagglutinin and in variants of murine hepatitis virus, a coronavirus. A pair of histidine residues, which are conserved in coronavirus spike proteins, are predicted to be electrostatically frustrated at acidic pH in both pre- and post-fusion conformations. We suggest that an intermediate expanded conformation at endosomal pH could relax the frustration, allowing histidine protonation and facilitating conformational conversion of coronavirus spike protein. Availability and implementation This tool is available at http://www.protein-sol.manchester.ac.uk/pka/.
Collapse
Affiliation(s)
- Max Hebditch
- School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Institute of Biotechnology, Manchester M1 7DN, UK
| | - Jim Warwicker
- School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Institute of Biotechnology, Manchester M1 7DN, UK
| |
Collapse
|
12
|
Milewska A, Falkowski K, Kulczycka M, Bielecka E, Naskalska A, Mak P, Lesner A, Ochman M, Urlik M, Diamandis E, Prassas I, Potempa J, Kantyka T, Pyrc K. Kallikrein 13 serves as a priming protease during infection by the human coronavirus HKU1. Sci Signal 2020; 13:13/659/eaba9902. [PMID: 33234691 PMCID: PMC7857416 DOI: 10.1126/scisignal.aba9902] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Unlike SARS-CoV-2, the human coronavirus HKU1 normally causes relatively mild respiratory tract infections; however, it shares with SARS-CoV-2 the mechanism of using its surface spike (S) protein to enter target cells. Because the host receptor for HCoV-HKU1 is unknown, efforts to study the virus in cell culture systems have proved difficult. Milewska et al. found that knockout of the protease kallikrein 13 (KLK13) in human airway epithelial cells blocked their infection by HCoV-HKU1, that overexpression of KLK13 in nonpermissive cells enabled their infection by the virus, and that KLK13 cleaved the viral S protein. Together, these findings suggest that KLK13 is a priming enzyme for viral entry and may help to establish cell lines that can facilitate further investigation of the mechanism of viral pathogenesis. Human coronavirus HKU1 (HCoV-HKU1) is associated with respiratory disease and is prevalent worldwide, but an in vitro model for viral replication is lacking. An interaction between the coronaviral spike (S) protein and its receptor is the primary determinant of tissue and host specificity; however, viral entry is a complex process requiring the concerted action of multiple cellular elements. Here, we found that the protease kallikrein 13 (KLK13) was required for the infection of human respiratory epithelial cells and was sufficient to mediate the entry of HCoV-HKU1 into nonpermissive RD cells. We also demonstrated the cleavage of the HCoV-HKU1 S protein by KLK13 in the S1/S2 region, suggesting that KLK13 is the priming enzyme for this virus. Together, these data suggest that protease distribution and specificity determine the tissue and cell specificity of the virus and may also regulate interspecies transmission.
Collapse
Affiliation(s)
- Aleksandra Milewska
- Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387 Krakow, Poland.,Microbiology Department, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Katherine Falkowski
- Microbiology Department, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Magdalena Kulczycka
- Laboratory of Proteolysis and Post-translational Modification of Proteins, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Ewa Bielecka
- Laboratory of Proteolysis and Post-translational Modification of Proteins, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Antonina Naskalska
- Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387 Krakow, Poland
| | - Pawel Mak
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7 St., 30-387 Krakow, Poland
| | - Adam Lesner
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Marek Ochman
- Department of Cardiac, Vascular and Endovascular Surgery and Transplantology, Medical University of Silesia in Katowice, Silesian Centre for Heart Diseases, Zabrze, Poland
| | - Maciej Urlik
- Department of Cardiac, Vascular and Endovascular Surgery and Transplantology, Medical University of Silesia in Katowice, Silesian Centre for Heart Diseases, Zabrze, Poland
| | - Elftherios Diamandis
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.,Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Canada.,Department of Clinical Biochemistry, University Health Network, Toronto, Canada.,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
| | - Ioannis Prassas
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Canada.,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
| | - Jan Potempa
- Microbiology Department, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland.,Centre for Oral Health and Systemic Diseases, University of Louisville School of Dentistry, Louisville, KY 40202, USA
| | - Tomasz Kantyka
- Laboratory of Proteolysis and Post-translational Modification of Proteins, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland.,Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway
| | - Krzysztof Pyrc
- Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387 Krakow, Poland.
| |
Collapse
|
13
|
Taştemur Ş, Ataseven H. Is it possible to use Proton Pump Inhibitors in COVID-19 treatment and prophylaxis? Med Hypotheses 2020; 143:110018. [PMID: 32679422 PMCID: PMC7834647 DOI: 10.1016/j.mehy.2020.110018] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 06/17/2020] [Indexed: 12/15/2022]
Abstract
Coronaviruses (CoV), discovered after 1960, caused human life-threatening outbreaks. SARS-CoV2, which appeared in Wuhan, China in December 2019, causing Severe Acute Respiratory Syndrome and has different features than other coronaviruses, has been determined and the disease caused by the virus has been called "Coronavirus Disease-2019" (COVID-19). This disease activates both the natural and acquired immune system. The cytokin storm, in which blood levels of proinflammatory cytokines are detected excessively high is developing and the uncontrolled inflammatory response causes local and systemic tissue damages. Although a spesific drug has not been found yet, the medications currently in use for other indications, whose pharmacokinetic- pharmacodynamic properties and toxic doses are already known; are included in the treatment practice of COVID-19. These drugs affect the entry of the virus into the cell and its intracellular distribution. They also have anti-inflammatory and immunomodulating effects too. Therefore, we think that Proton Pump Inhibitors (PPI's) with similar mechanisms of action may also be involved in COVID-19 treatment and prophylaxis.
Collapse
Affiliation(s)
- Şeyma Taştemur
- Department of Internal Medicine, Sivas Numune Hospital, Sivas, Turkey.
| | - Hilmi Ataseven
- Department of Internal Medicine, Discipline of Gastroenterology, Faculty of Medicine, Sivas Cumhuriyet University, Sivas, Turkey.
| |
Collapse
|
14
|
Arefi MF, Poursadeqiyan M. A review of studies on the COVID-19 epidemic crisis disease with a preventive approach. Work 2020; 66:717-729. [PMID: 32925133 DOI: 10.3233/wor-203218] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND COVID-19 is a highly contagious acute respiratory syndrome and has been declared a pandemic in more than 209 countries worldwide. At the time of writing, no preventive vaccine has been developed and tested in the community. This study was conducted to review studies aimed at preventing the spread of the coronavirus worldwide. METHODS This study was a review of the evidence-based literature and was conducted by searching databases, including Google Scholar, PubMed, and ScienceDirect, until April 2020. The search was performed based on keywords including "coronavirus", "COVID-19", and "prevention". The list of references in the final studies has also been re-reviewed to find articles that might not have been obtained through the search. The guidelines published by trustworthy organizations such as the World Health Organization and Center for Disease Control have been used in this study. CONCLUSION So far, no vaccine or definitive treatment for COVID-19 has been invented, and the disease has become a pandemic. Therefore, observation of hand hygiene, disinfection of high-touch surfaces, observation of social distance, and lack of presence in public places are recommended as preventive measures. Moreover, to control the situation and to reduce the incidence of the virus, some of the measures taken by the decision-making bodies and the guidelines of the deterrent institutions to strengthen telecommuting of employees and reduce the presence of people in the community and prevent unnecessary activities, are very important.
Collapse
Affiliation(s)
- Maryam Feiz Arefi
- Department of Occupational Health Engineering, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran.,Health Sciences Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Mohsen Poursadeqiyan
- Department of Occupational Health Engineering, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran.,Health Sciences Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| |
Collapse
|
15
|
Poursadeqiyan M, Bazrafshan E, Arefi MF. Review of environmental challenges and pandemic crisis of Covid-19. JOURNAL OF EDUCATION AND HEALTH PROMOTION 2020; 9:250. [PMID: 33224994 PMCID: PMC7657409 DOI: 10.4103/jehp.jehp_420_20] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 05/19/2020] [Indexed: 05/21/2023]
Abstract
INTRODUCTION Spread of novel coronavirus (severe acute respiratory syndrome coronavirus 2 [SARS-CoV-2]) has become a global and pandemic crisis. Some measures such as excessive use of disinfectants, increased production of nonbiodegradable waste, and water pollution will be the consequences of fighting against coronavirus disease 2019 (COVID-19), which harms the environment. Due to the fact that these effects will be identified in the long term, they may be neglected in the current situation. Therefore, the aim of this study was to investigate the environmental challenges caused by the SARS-CoV-2 pandemic crisis. MATERIALS AND METHODS This was a review study conducted by search in databases, including Scopus, PubMed, and science direct until early May 2020. Keywords included "SARS-CoV-2," "COVID-19," and "Environment." Studies published in English and conducted in different countries were also selected for the analysis. The guidelines published by reputable organizations such as the World Health Organization, the Centers for Disease Control prevention (CDC), and the Ministry of Health have also been used in this study. CONCLUSION The results of this study have shown that the COVID-19 virus, in addition to human damage and mortality, also affects the environment, and the damages and losses resulting from this pandemic may be identified later. Water pollution, increasing chemical pollution in the air, and increasing the production of nonbiodegradable waste are of these issues. For this purpose, it is recommended that, in addition to trying to improve the control of this pandemic, other environmental aspects in disinfection methods and disposal of dry and wet contaminated waste should be done more accurately and based on standard protocols. Infectious waste, in addition to the problem of standard sanitation, will become a major challenge that pollutes the environment. Based on this, it can be said that if home quarantine is observed voluntarily, in addition to reducing the risk of the SARS-CoV-2 and reducing the volume of visits to medical centers, it can be associated with another positive achievement, which is the reduction in waste production and protection of the environment.
Collapse
Affiliation(s)
- Mohsen Poursadeqiyan
- Department of Occupational Health EngineeringTorbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
- Health Sciences Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Edris Bazrafshan
- Health Sciences Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
- Health Promotion Research Center, Zahedan University of Medical of Sciences, Zahedan, Iran
| | - Maryam Feiz Arefi
- Department of Occupational Health EngineeringTorbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
- Health Sciences Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| |
Collapse
|
16
|
Hashem AM, Alghamdi BS, Algaissi AA, Alshehri FS, Bukhari A, Alfaleh MA, Memish ZA. Therapeutic use of chloroquine and hydroxychloroquine in COVID-19 and other viral infections: A narrative review. Travel Med Infect Dis 2020; 35:101735. [PMID: 32387694 PMCID: PMC7202851 DOI: 10.1016/j.tmaid.2020.101735] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 12/17/2022]
Abstract
The rapidly spreading Coronavirus Disease (COVID-19) pandemic, caused by the severe acute respiratory syndrome coronavirus (SARS-CoV-2), represents an unprecedented serious challenge to the global public health community. The extremely rapid international spread of the disease with significant morbidity and mortality made finding possible therapeutic interventions a global priority. While approved specific antiviral drugs against SARS-CoV-2 are still lacking, a large number of existing drugs are being explored as a possible treatment for COVID-19 infected patients. Recent publications have re-examined the use of Chloroquine (CQ) and/or Hydroxychloroquine (HCQ) as a potential therapeutic option for these patients. In an attempt to explore the evidence that supports their use in COVID-19 patients, we comprehensively reviewed the previous studies which used CQ or HCQ as an antiviral treatment. Both CQ and HCQ demonstrated promising in vitro results, however, such data have not yet been translated into meaningful in vivo studies. While few clinical trials have suggested some beneficial effects of CQ and HCQ in COVID-19 patients, most of the reported data are still preliminary. Given the current uncertainty, it is worth being mindful of the potential risks and strictly rationalise the use of these drugs in COVID-19 patients until further high quality randomized clinical trials are available to clarify their role in the treatment or prevention of COVID-19.
Collapse
Affiliation(s)
- Anwar M Hashem
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia; Vaccines and Immunnotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Badrah S Alghamdi
- Department of Physiology, Neuroscience Unit, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia; Pre-Clinical Research Unit, King Fahad Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Abdullah A Algaissi
- Department of Medical Laboratories Technology, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia; Medical Research Center, Jazan University, Jazan, Saudi Arabia.
| | - Fahad S Alshehri
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia.
| | - Abdullah Bukhari
- Department of Medicine, Faculty of Medicine, Imam Mohammed Ibn Saud Islamic University, Riyadh, Saudi Arabia.
| | - Mohamed A Alfaleh
- Vaccines and Immunnotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia; Faculty of Pharmacy; King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Ziad A Memish
- King Saud Medical City, Research & Innovation Center, Ministry of Health, Saudi Arabia; Al-Faisal University, Riyadh, Saudi Arabia; Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA.
| |
Collapse
|
17
|
Identification of H209 as Essential for pH 8-Triggered Receptor-Independent Syncytium Formation by S Protein of Mouse Hepatitis Virus A59. J Virol 2018. [PMID: 29514915 DOI: 10.1128/jvi.00209-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The spike glycoprotein (S) of murine coronavirus mouse hepatitis virus (MHV) strain A59 uses murine carcinoembryonic antigen-related cell adhesion molecule 1a as its receptor for cell entry, but S protein can also be triggered in the absence of receptor by pH 8.0 alone at 37°C. The mechanism by which conformational changes of this S glycoprotein can be triggered by pH 8.0 has not yet been determined. Here, we show that MHV-A59 S protein is triggered by pH 8.0 at 37°C to induce receptor-independent syncytium (RIS) formation on 293T cells, and that the conformational changes in S proteins triggered by pH 8.0 are very similar to those triggered by receptor binding. We systemically mutated each of 15 histidine residues in S protein and found that H209 is essential for pH 8.0-triggered RIS formation, while H179, H441, H643, and H759 also play important roles in this process. Replacement of H209 with Ala had no effect on receptor binding, but in murine 17Cl.1 cells mutant H209A MHV-A59 showed delayed growth kinetics and was readily outcompeted by wild-type virus when mixed together, indicating that the H209A mutation caused a defect in virus fitness. Finally, the H209A mutation significantly increased the thermostability of S protein in its prefusion conformation, which may raise the energy barrier for conformational change of S protein required for membrane fusion and lead to a decrease in virus fitness in cell culture. Thus, MHV-A59 may have evolved to lower the stability of its S protein in order to increase virus fitness.IMPORTANCE Enveloped viruses enter cells through fusion of viral and cellular membranes, and the process is mediated by interactions between viral envelope proteins and their host receptors. In the prefusion conformation, viral envelope proteins are metastable, and activation to the fusion conformation is tightly regulated, since premature activation would lead to loss of viral infectivity. The stability of viral envelope proteins greatly influences their activation and virus fitness. Here, we report that, similar to the A82V mutation in Ebola glycoprotein, in the S glycoprotein of murine coronavirus MHV-A59, the histidine residue at position of 209 significantly affects the thermal stability of the S protein, determines whether S protein can be activated at 37°C by either pH 8.0 alone or by receptor binding, and affects viral fitness in cell culture. Thus, the spike glycoprotein of MHV-A59 has evolved to retain histidine at position 209 to optimize virus fitness.
Collapse
|
18
|
Neurovirulent Murine Coronavirus JHM.SD Uses Cellular Zinc Metalloproteases for Virus Entry and Cell-Cell Fusion. J Virol 2017; 91:JVI.01564-16. [PMID: 28148786 DOI: 10.1128/jvi.01564-16] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 01/24/2017] [Indexed: 12/27/2022] Open
Abstract
The coronavirus (CoV) S protein requires cleavage by host cell proteases to mediate virus-cell and cell-cell fusion. Many strains of the murine coronavirus mouse hepatitis virus (MHV) have distinct, S-dependent organ and tissue tropisms despite using a common receptor, suggesting that they employ different cellular proteases for fusion. In support of this hypothesis, we found that inhibition of endosomal acidification only modestly decreased entry, and overexpression of the cell surface protease TMPRSS2 greatly enhanced entry, of the highly neurovirulent MHV strain JHM.SD relative to their effects on the reference strain, A59. However, TMPRSS2 overexpression decreased MHV structural protein expression, release of infectious particles, and syncytium formation, and endogenous serine protease activity did not contribute greatly to infection. We therefore investigated the importance of other classes of cellular proteases and found that inhibition of matrix metalloproteinase (MMP)- and a disintegrin and metalloprotease (ADAM)-family zinc metalloproteases markedly decreased both entry and cell-cell fusion. Suppression of virus by metalloprotease inhibition varied among tested cell lines and MHV S proteins, suggesting a role for metalloprotease use in strain-dependent tropism. We conclude that zinc metalloproteases must be considered potential contributors to coronavirus fusion.IMPORTANCE The family Coronaviridae includes viruses that cause two emerging diseases of humans, severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS), as well as a number of important animal pathogens. Because coronaviruses depend on host protease-mediated cleavage of their S proteins for entry, a number of protease inhibitors have been proposed as antiviral agents. However, it is unclear which proteases mediate in vivo infection. For example, SARS-CoV infection of cultured cells depends on endosomal acid pH-dependent proteases rather than on the cell surface acid pH-independent serine protease TMPRSS2, but Zhou et al. (Antiviral Res 116:76-84, 2015, doi:10.1016/j.antiviral.2015.01.011) found that a serine protease inhibitor was more protective than a cathepsin inhibitor in SARS-CoV-infected mice. This paper explores the contributions of endosomal acidification and various proteases to coronavirus infection and identifies an unexpected class of proteases, the matrix metalloproteinase and ADAM families, as potential targets for anticoronavirus therapy.
Collapse
|
19
|
The nsp1, nsp13, and M proteins contribute to the hepatotropism of murine coronavirus JHM.WU. J Virol 2015; 89:3598-609. [PMID: 25589656 DOI: 10.1128/jvi.03535-14] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
UNLABELLED Mouse hepatitis virus (MHV) isolates JHM.WU and JHM.SD promote severe central nervous system disease. However, while JHM.WU replicates robustly and induces hepatitis, JHM.SD fails to replicate or induce pathology in the liver. These two JHM variants encode homologous proteins with few polymorphisms, and little is known about which viral proteins(s) is responsible for the liver tropism of JHM.WU. We constructed reverse genetic systems for JHM.SD and JHM.WU and, utilizing these full-length cDNA clones, constructed chimeric viruses and mapped the virulence factors involved in liver tropism. Exchanging the spike proteins of the two viruses neither increased replication of JHM.SD in the liver nor attenuated JHM.WU. By further mapping, we found that polymorphisms in JHM.WU structural protein M and nonstructural replicase proteins nsp1 and nsp13 are essential for liver pathogenesis. M protein and nsp13, the helicase, of JHM.WU are required for efficient replication in vitro and in the liver in vivo. The JHM.SD nsp1 protein contains a K194R substitution of Lys194, a residue conserved among all other MHV strains. The K194R polymorphism has no effect on in vitro replication but influences hepatotropism, and introduction of R194K into JHM.SD promotes replication in the liver. Conversely, a K194R substitution in nsp1 of JHM.WU or A59, another hepatotropic strain, significantly attenuates replication of each strain in the liver and increases IFN-β expression in macrophages in culture. Our data indicate that both structural and nonstructural proteins contribute to MHV liver pathogenesis and support previous reports that nsp1 is a Betacoronavirus virulence factor. IMPORTANCE The Betacoronavirus genus includes human pathogens, some of which cause severe respiratory disease. The spread of severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV) into human populations demonstrates the zoonotic potential of emerging coronaviruses, and there are currently no vaccines or effective antivirals for human coronaviruses. Thus, it is important to understand the virus-host interaction that regulates coronavirus pathogenesis. Murine coronavirus infection of mice provides a useful model for the study of coronavirus-host interactions, including the determinants of tropism and virulence. We found that very small changes in coronavirus proteins can profoundly affect tropism and virulence. Furthermore, the hepatotropism of MHV-JHM depends not on the spike protein and viral entry but rather on a combination of the structural protein M and nonstructural replicase-associated proteins nsp1 and nsp13, which are conserved among betacoronaviruses. Understanding virulence determinants will aid in the design of vaccines and antiviral strategies.
Collapse
|
20
|
Belouzard S, Millet JK, Licitra BN, Whittaker GR. Mechanisms of coronavirus cell entry mediated by the viral spike protein. Viruses 2012; 4:1011-33. [PMID: 22816037 PMCID: PMC3397359 DOI: 10.3390/v4061011] [Citation(s) in RCA: 898] [Impact Index Per Article: 74.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 06/13/2012] [Accepted: 06/14/2012] [Indexed: 12/12/2022] Open
Abstract
Coronaviruses are enveloped positive-stranded RNA viruses that replicate in the cytoplasm. To deliver their nucleocapsid into the host cell, they rely on the fusion of their envelope with the host cell membrane. The spike glycoprotein (S) mediates virus entry and is a primary determinant of cell tropism and pathogenesis. It is classified as a class I fusion protein, and is responsible for binding to the receptor on the host cell as well as mediating the fusion of host and viral membranes—A process driven by major conformational changes of the S protein. This review discusses coronavirus entry mechanisms focusing on the different triggers used by coronaviruses to initiate the conformational change of the S protein: receptor binding, low pH exposure and proteolytic activation. We also highlight commonalities between coronavirus S proteins and other class I viral fusion proteins, as well as distinctive features that confer distinct tropism, pathogenicity and host interspecies transmission characteristics to coronaviruses.
Collapse
Affiliation(s)
- Sandrine Belouzard
- Center for Infection and Immunity of Lille, CNRS UMR8204, INSERM U1019, Institut Pasteur de Lille, Université Lille Nord de France, 59000 Lille, France;
| | - Jean K. Millet
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA; (J.K.M.); (B.N.L.)
| | - Beth N. Licitra
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA; (J.K.M.); (B.N.L.)
| | - Gary R. Whittaker
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA; (J.K.M.); (B.N.L.)
- Author to whom correspondence should be addressed; ; Tel.: +1-607-253-4021; Fax: +1-607-253-3384
| |
Collapse
|
21
|
Heald-Sargent T, Gallagher T. Ready, set, fuse! The coronavirus spike protein and acquisition of fusion competence. Viruses 2012; 4:557-80. [PMID: 22590686 PMCID: PMC3347323 DOI: 10.3390/v4040557] [Citation(s) in RCA: 238] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 03/29/2012] [Accepted: 04/02/2012] [Indexed: 12/16/2022] Open
Abstract
Coronavirus-cell entry programs involve virus-cell membrane fusions mediated by viral spike (S) proteins. Coronavirus S proteins acquire membrane fusion competence by receptor interactions, proteolysis, and acidification in endosomes. This review describes our current understanding of the S proteins, their interactions with and their responses to these entry triggers. We focus on receptors and proteases in prompting entry and highlight the type II transmembrane serine proteases (TTSPs) known to activate several virus fusion proteins. These and other proteases are essential cofactors permitting coronavirus infection, conceivably being in proximity to cell-surface receptors and thus poised to split entering spike proteins into the fragments that refold to mediate membrane fusion. The review concludes by noting how understanding of coronavirus entry informs antiviral therapies.
Collapse
Affiliation(s)
| | - Tom Gallagher
- Department of Microbiology and Immunology, Loyola University Medical Center, 2160 South First Avenue, Maywood, IL 60153, USA;
| |
Collapse
|
22
|
Abstract
Coronaviruses infect many species of animals including humans, causing acute and chronic diseases. This review focuses primarily on the pathogenesis of murine coronavirus mouse hepatitis virus (MHV) and severe acute respiratory coronavirus (SARS-CoV). MHV is a collection of strains, which provide models systems for the study of viral tropism and pathogenesis in several organs systems, including the central nervous system, the liver, and the lung, and has been cited as providing one of the few animal models for the study of chronic demyelinating diseases such as multiple sclerosis. SARS-CoV emerged in the human population in China in 2002, causing a worldwide epidemic with severe morbidity and high mortality rates, particularly in older individuals. We review the pathogenesis of both viruses and the several reverse genetics systems that made much of these studies possible. We also review the functions of coronavirus proteins, structural, enzymatic, and accessory, with an emphasis on roles in pathogenesis. Structural proteins in addition to their roles in virion structure and morphogenesis also contribute significantly to viral spread in vivo and in antagonizing host cell responses. Nonstructural proteins include the small accessory proteins that are not at all conserved between MHV and SARS-CoV and the 16 conserved proteins encoded in the replicase locus, many of which have enzymatic activities in RNA metabolism or protein processing in addition to functions in antagonizing host response.
Collapse
Affiliation(s)
- Susan R Weiss
- Department of Microbiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, USA
| | | |
Collapse
|
23
|
Abstract
Coronaviruses infect many species of animals including humans, causing acute and chronic diseases. This review focuses primarily on the pathogenesis of murine coronavirus mouse hepatitis virus (MHV) and severe acute respiratory coronavirus (SARS-CoV). MHV is a collection of strains, which provide models systems for the study of viral tropism and pathogenesis in several organs systems, including the central nervous system, the liver, and the lung, and has been cited as providing one of the few animal models for the study of chronic demyelinating diseases such as multiple sclerosis. SARS-CoV emerged in the human population in China in 2002, causing a worldwide epidemic with severe morbidity and high mortality rates, particularly in older individuals. We review the pathogenesis of both viruses and the several reverse genetics systems that made much of these studies possible. We also review the functions of coronavirus proteins, structural, enzymatic, and accessory, with an emphasis on roles in pathogenesis. Structural proteins in addition to their roles in virion structure and morphogenesis also contribute significantly to viral spread in vivo and in antagonizing host cell responses. Nonstructural proteins include the small accessory proteins that are not at all conserved between MHV and SARS-CoV and the 16 conserved proteins encoded in the replicase locus, many of which have enzymatic activities in RNA metabolism or protein processing in addition to functions in antagonizing host response.
Collapse
Affiliation(s)
- Susan R Weiss
- Department of Microbiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, USA
| | | |
Collapse
|
24
|
Phillips JM, Weiss SR. Pathogenesis of neurotropic murine coronavirus is multifactorial. Trends Pharmacol Sci 2010; 32:2-7. [PMID: 21144598 PMCID: PMC3022387 DOI: 10.1016/j.tips.2010.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Revised: 11/04/2010] [Accepted: 11/08/2010] [Indexed: 11/17/2022]
Abstract
Although coronavirus tropism is most often ascribed to receptor availability, increasing evidence suggests that for the neurotropic strains of the murine coronavirus mouse hepatitis virus (MHV), spike–receptor interactions cannot fully explain neurovirulence. The canonical MHV receptor CEACAM1a and its spike-binding site have been extensively characterized. However, CEACAM1a is poorly expressed in neurons, and the extremely neurotropic MHV strain JHM.SD infects ceacam1a−/− mice and spreads among ceacam1a−/− neurons. Two proposed alternative MHV receptors, CEACAM2 and PSG16, also fail to account for neuronal spread of JHM.SD in the absence of CEACAM1a. It has been reported that JHM.SD has an unusually labile spike protein, enabling it to perform receptor-independent spread (RIS), but it is not clear if the ability to perform RIS is fully responsible for the extremely neurovirulent phenotype. We propose that the extreme neurovirulence of JHM.SD is multifactorial and might include as yet unidentified neuron-specific spread mechanisms.
Collapse
Affiliation(s)
- Judith M Phillips
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6076, USA
| | | |
Collapse
|
25
|
A structural analysis of M protein in coronavirus assembly and morphology. J Struct Biol 2010; 174:11-22. [PMID: 21130884 PMCID: PMC4486061 DOI: 10.1016/j.jsb.2010.11.021] [Citation(s) in RCA: 495] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Revised: 11/23/2010] [Accepted: 11/26/2010] [Indexed: 12/11/2022]
Abstract
The M protein of coronavirus plays a central role in virus assembly, turning cellular membranes into workshops where virus and host factors come together to make new virus particles. We investigated how M structure and organization is related to virus shape and size using cryo-electron microscopy, tomography and statistical analysis. We present evidence that suggests M can adopt two conformations and that membrane curvature is regulated by one M conformer. Elongated M protein is associated with rigidity, clusters of spikes and a relatively narrow range of membrane curvature. In contrast, compact M protein is associated with flexibility and low spike density. Analysis of several types of virus-like particles and virions revealed that S protein, N protein and genomic RNA each help to regulate virion size and variation, presumably through interactions with M. These findings provide insight into how M protein functions to promote virus assembly.
Collapse
|
26
|
Liu Y, Herbst W, Cao J, Zhang X. Deficient incorporation of spike protein into virions contributes to the lack of infectivity following establishment of a persistent, non-productive infection in oligodendroglial cell culture by murine coronavirus. Virology 2010; 409:121-31. [PMID: 21035161 PMCID: PMC3032362 DOI: 10.1016/j.virol.2010.10.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 09/18/2010] [Accepted: 10/03/2010] [Indexed: 11/02/2022]
Abstract
Infection of mouse oligodendrocytes with a recombinant mouse hepatitis virus (MHV) expressing a green fluorescence protein facilitated specific selection of virus-infected cells and subsequent establishment of persistence. Interestingly, while viral genomic RNAs persisted in infected cells over 14 subsequent passages with concomitant synthesis of viral subgenomic mRNAs and structural proteins, no infectious virus was isolated beyond passage 2. Further biochemical and electron microscopic analyses revealed that virions, while assembled, contained little spike in the envelope, indicating that lack of infectivity during persistence was likely due to deficiency in spike incorporation. This type of non-lytic, non-productive persistence in oligodendrocytes is unique among animal viruses and resembles MHV persistence previously observed in the mouse central nervous system. Thus, establishment of such a culture system that can recapitulate the in vivo phenomenon will provide a powerful approach for elucidating the mechanisms of coronavirus persistence in glial cells at the cellular and molecular levels.
Collapse
Affiliation(s)
- Yin Liu
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR 72205-7199, USA
| | | | | | | |
Collapse
|
27
|
Bender SJ, Weiss SR. Pathogenesis of murine coronavirus in the central nervous system. J Neuroimmune Pharmacol 2010; 5:336-54. [PMID: 20369302 PMCID: PMC2914825 DOI: 10.1007/s11481-010-9202-2] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Accepted: 03/05/2010] [Indexed: 12/15/2022]
Abstract
Murine coronavirus (mouse hepatitis virus, MHV) is a collection of strains that induce disease in several organ systems of mice. Infection with neurotropic strains JHM and A59 causes acute encephalitis, and in survivors, chronic demyelination, the latter of which serves as an animal model for multiple sclerosis. The MHV receptor is a carcinoembryonic antigen-related cell adhesion molecule, CEACAM1a; paradoxically, CEACAM1a is poorly expressed in the central nervous system (CNS), leading to speculation of an additional receptor. Comparison of highly neurovirulent JHM isolates with less virulent variants and the weakly neurovirulent A59 strain, combined with the use of reverse genetics, has allowed mapping of pathogenic properties to individual viral genes. The spike protein, responsible for viral entry, is a major determinant of tropism and virulence. Other viral proteins, both structural and nonstructural, also contribute to pathogenesis in the CNS. Studies of host responses to MHV indicate that both innate and adaptive responses are crucial to antiviral defense. Type I interferon is essential to prevent very early mortality after infection. CD8 T cells, with the help of CD4 T cells, are crucial for viral clearance during acute disease and persist in the CNS during chronic disease. B cells are necessary to prevent reactivation of virus in the CNS following clearance of acute infection. Despite advances in understanding of coronavirus pathogenesis, questions remain regarding the mechanisms of viral entry and spread in cell types expressing low levels of receptor, as well as the unique interplay between virus and the host immune system during acute and chronic disease.
Collapse
Affiliation(s)
- Susan J Bender
- Department of Microbiology, University of Pennsylvania School of Medicine, 36th Street and Hamilton Walk, Philadelphia, PA 19104-6076, USA
| | | |
Collapse
|
28
|
Abstract
Enveloped viruses enter into cells via fusion of their envelope and cellular membrane. Spike (S) protein of coronavirus (CoV) is responsible for entry events. We studied the cell entry mechanisms of two different CoVs, murine coronavirus mouse hepatitis virus (MHV) and severe acute respiratory syndrome coronavirus (SARS-CoV). MHV-JHM that induces syncytia in infected cells entered directly from cell surface, i.e., fusion of envelope and plasma membrane, whereas SARS-CoV and MHV-2 that fail to induce syncytia entered via endosome in a protease-dependent fashion, i.e., fusion of envelope and endosomal membrane. The latter viruses entered directly from cell surface, when receptor-bound viruses were treated with proteases that activate fusion activity of their S proteins. The entry pathway of SARS-CoV could influence the severity of the disease. It was also reveled that a highly neurovirulent JHM spread in a receptor-independent fashion, which could result in a high neuropathogenicity of the virus.
Collapse
Affiliation(s)
- Fumihiro Taguchi
- Laboratory of Virology and Viral Diseases, Faculty of Veterinary Medicine, Nippon Veterinary and Life Science University.
| | | |
Collapse
|
29
|
The spike protein of murine coronavirus regulates viral genome transport from the cell surface to the endoplasmic reticulum during infection. J Virol 2009; 83:10653-63. [PMID: 19570858 DOI: 10.1128/jvi.00956-09] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
We observed that the nonfusogenic mouse hepatitis virus (MHV) strain MHV-2 reached a titer of approximately 2 log10 higher than that of the fusogenic strain A59 in astrocytoma DBT cells. To determine whether the spike protein is responsible for the difference, a recombinant virus, Penn-98-1, that contains the A59 genome with a spike from MHV-2 was used to infect DBT cells. Results showed that Penn-98-1 behaved like MHV-2, thus establishing a role for the spike protein in viral growth. The inverse correlation between viral fusogenicity and growth was further established in four different cell types and with a fusogenic mutant, the S757R mutant, derived from isogenic Penn-98-1. While both A59 and Penn-98-1 entered cells at similar levels, viral RNA and protein syntheses were significantly delayed for A59. Interestingly, when the genomic RNAs were delivered directly into the cells via transfection, the levels of gene expression for these viruses were similar. Furthermore, cell fractionation experiments revealed that significantly more genomic RNAs for the nonfusogenic MHVs were detected in the endoplasmic reticulum (ER) within the first 2 h after infection than for the fusogenic MHVs. Pretreatment of Penn-98-1 with trypsin reversed its properties in syncytium formation, virus production, and genome transport to the ER. These findings identified a novel role for the spike protein in regulating the uncoating and delivery of the viral genome to the ER after internalization.
Collapse
|
30
|
Proteolytic activation of the spike protein at a novel RRRR/S motif is implicated in furin-dependent entry, syncytium formation, and infectivity of coronavirus infectious bronchitis virus in cultured cells. J Virol 2009; 83:8744-58. [PMID: 19553314 DOI: 10.1128/jvi.00613-09] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The spike (S) protein of the coronavirus (CoV) infectious bronchitis virus (IBV) is cleaved into S1 and S2 subunits at the furin consensus motif RRFRR(537)/S in virus-infected cells. In this study, we observe that the S2 subunit of the IBV Beaudette strain is additionally cleaved at the second furin site (RRRR(690)/S) in cells expressing S constructs and in virus-infected cells. Detailed time course experiments showed that a peptide furin inhibitor, decanoyl-Arg-Val-Lys-Arg-chloromethylketone, blocked both viral entry and syncytium formation. Site-directed mutagenesis studies revealed that the S1/S2 cleavage by furin was not necessary for, but could promote, syncytium formation by and infectivity of IBV in Vero cells. In contrast, the second site is involved in the furin dependence of viral entry and syncytium formation. Mutations of the second site from furin-cleavable RRRR/S to non-furin-cleavable PRRRS and AAARS, respectively, abrogated the furin dependence of IBV entry. Instead, a yet-to-be-identified serine protease(s) was involved, as revealed by protease inhibitor studies. Furthermore, sequence analysis of CoV S proteins by multiple alignments showed conservation of an XXXR/S motif, cleavable by either furin or other trypsin-like proteases, at a position equivalent to the second IBV furin site. Taken together, these results suggest that proteolysis at a novel XXXR/S motif in the S2 subunit might be a common mechanism for the entry of CoV into cells.
Collapse
|
31
|
Abstract
Human coronavirus 229E, classified as a group I coronavirus, utilizes human aminopeptidase N (APN) as a receptor; however, its entry mechanism has not yet been fully elucidated. We found that HeLa cells infected with 229E via APN formed syncytia when treated with trypsin or other proteases but not in a low-pH environment, a finding consistent with syncytium formation by severe acute respiratory syndrome coronavirus (SARS-CoV). In addition, trypsin induced cleavage of the 229E S protein. By using infectious viruses and pseudotyped viruses bearing the 229E S protein, we found that its infection was profoundly blocked by lysosomotropic agents as well as by protease inhibitors that also prevented infection with SARS-CoV but not that caused by murine coronavirus mouse hepatitis virus strain JHMV, which enters cells directly from the cell surface. We found that cathepsin L (CPL) inhibitors blocked 229E infection the most remarkably among a variety of protease inhibitors tested. Furthermore, 229E infection was inhibited in CPL knockdown cells by small interfering RNA, compared with what was seen for a normal counterpart producing CPL. However, its inhibition was not so remarkable as that found with SARS-CoV infection, which seems to indicate that while CPL is involved in the fusogenic activation of 229E S protein in endosomal infection, not-yet-identified proteases could also play a part in that activity. We also found 229E virion S protein to be cleaved by CPL. Furthermore, as with SARS-CoV, 229E entered cells directly from the cell surface when cell-attached viruses were treated with trypsin. These findings suggest that 229E takes an endosomal pathway for cell entry and that proteases like CPL are involved in this mode of entry.
Collapse
|
32
|
Entry from the cell surface of severe acute respiratory syndrome coronavirus with cleaved S protein as revealed by pseudotype virus bearing cleaved S protein. J Virol 2008; 82:11985-91. [PMID: 18786990 DOI: 10.1128/jvi.01412-08] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Severe acute respiratory syndrome (SARS) coronavirus (SARS-CoV) is known to take an endosomal pathway for cell entry; however, it is thought to enter directly from the cell surface when a receptor-bound virion spike (S) protein is affected by trypsin, which induces cleavage of the S protein and activates its fusion potential. This suggests that SARS-CoV bearing a cleaved form of the S protein can enter cells directly from the cell surface without trypsin treatment. To explore this possibility, we introduced a furin-like cleavage sequence in the S protein at amino acids 798 to 801 and found that the mutated S protein was cleaved and induced cell fusion without trypsin treatment when expressed on the cell surface. Furthermore, a pseudotype virus bearing a cleaved S protein was revealed to infect cells in the presence of a lysosomotropic agent as well as a protease inhibitor, both of which are known to block SARS-CoV infection via an endosome, whereas the infection of pseudotypes with an uncleaved, wild-type S protein was blocked by these agents. A heptad repeat peptide, derived from a SARS-CoV S protein that is known to efficiently block infections from the cell surface, blocked the infection by a pseudotype with a cleaved S protein but not that with an uncleaved S protein. Those results indicate that SARS-CoV with a cleaved S protein is able to enter cells directly from the cell surface and agree with the previous observation of the protease-mediated cell surface entry of SARS-CoV.
Collapse
|
33
|
Mouse hepatitis virus type 2 enters cells through a clathrin-mediated endocytic pathway independent of Eps15. J Virol 2008; 82:8112-23. [PMID: 18550663 DOI: 10.1128/jvi.00837-08] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
It has recently been shown that cell entry of mouse hepatitis virus type 2 (MHV-2) is mediated through endocytosis (Z. Qiu et al., J. Virol. 80:5768-5776, 2006). However, the molecular mechanism underlying MHV-2 entry is not known. Here we employed multiple chemical and molecular approaches to determine the molecular pathways for MHV-2 entry. Our results showed that MHV-2 gene expression and infectivity were significantly inhibited when cells were treated with chemical and physiologic blockers of the clathrin-mediated pathway, such as chlorpromazine and hypertonic sucrose medium. Furthermore, viral gene expression was significantly inhibited when cells were transfected with a small interfering RNA specific to the clathrin heavy chain. However, these treatments did not affect the infectivity and gene expression of MHV-A59, demonstrating the specificity of the inhibitions. In addition, overexpression of a dominant-negative mutant of caveolin 1 did not have any effect on MHV-2 infection, while it significantly blocked the caveolin-dependent uptake of cholera toxin subunit B. These results demonstrate that MHV-2 utilizes the clathrin- but not caveolin-mediated endocytic pathway for entry. Interestingly, when the cells transiently overexpressed a dominant-negative form (DIII) of Eps15, which is thought to be an essential component of the clathrin pathway, viral gene expression and infectivity were unaffected, although DIII expression blocked transferrin uptake and vesicular stomatitis virus infection, which are dependent on clathrin-mediated endocytosis. Thus, MHV-2 entry is mediated through clathrin-dependent but Eps15-independent endocytosis.
Collapse
|
34
|
Differential role for low pH and cathepsin-mediated cleavage of the viral spike protein during entry of serotype II feline coronaviruses. Vet Microbiol 2008; 132:235-48. [PMID: 18606506 PMCID: PMC2588466 DOI: 10.1016/j.vetmic.2008.05.019] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2008] [Revised: 05/07/2008] [Accepted: 05/20/2008] [Indexed: 12/19/2022]
Abstract
Feline infectious peritonitis (FIP) is a terminal disease of cats caused by systemic infection with a feline coronavirus (FCoV). FCoV biotypes that cause FIP are designated feline infectious peritonitis virus (FIPV), and are distinguished by their ability to infect macrophages and monocytes. Antigenically similar to their virulent counterparts are FCoV biotypes designated feline enteric coronavirus (FECV), which usually cause only mild enteritis and are unable to efficiently infect macrophages and monocytes. The FCoV spike protein mediates viral entry into the host cell and has previously been shown to determine the distinct tropism exhibited by certain isolates of FIPV and FECV, however, the molecular mechanism underlying viral pathogenesis has yet to be determined. Here we show that the FECV strain WSU 79-1683 (FECV-1683) is highly dependent on host cell cathepsin B and cathepsin L activity for entry into the host cell, as well as on the low pH of endocytic compartments. In addition, both cathepsin B and cathepsin L are able to induce a specific cleavage event in the FECV-1683 spike protein. In contrast, host cell entry by the FIPV strains WSU 79-1146 (FIPV-1146) and FIPV-DF2 proceeds independently of cathepsin L activity and low pH, but is still highly dependent on cathepsin B activity. In the case of FIPV-1146 and FIPV-DF2, infection of primary feline monocytes was also dependent on host cell cathepsin B activity, indicating that host cell cathepsins may play a role in the distinct tropisms displayed by different feline coronavirus biotypes.
Collapse
|
35
|
Rolain JM, Colson P, Raoult D. Recycling of chloroquine and its hydroxyl analogue to face bacterial, fungal and viral infections in the 21st century. Int J Antimicrob Agents 2007; 30:297-308. [PMID: 17629679 PMCID: PMC7126847 DOI: 10.1016/j.ijantimicag.2007.05.015] [Citation(s) in RCA: 274] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2007] [Accepted: 05/09/2007] [Indexed: 12/17/2022]
Abstract
Chloroquine (CQ) and its hydroxyl analogue hydroxychloroquine (HCQ) are weak bases with a half-century long use as antimalarial agents. Apart from this antimalarial activity, CQ and HCQ have gained interest in the field of other infectious diseases. One of the most interesting mechanisms of action is that CQ leads to alkalinisation of acid vesicles that inhibit the growth of several intracellular bacteria and fungi. The proof of concept of this effect was first used to restore intracellular pH allowing antibiotic efficacy for Coxiella burnetii, the agent of Q fever, and doxycycline plus HCQ is now the reference treatment for chronic Q fever. There is also strong evidence of a similar effect in vitro against Tropheryma whipplei, the agent of Whipple's disease, and a clinical trial is in progress. Other bacteria and fungi multiply in an acidic environment and encouraging in vitro data suggest that this concept may be generalised for all intracellular organisms that multiply in an acidic environment. For viruses, CQ led to inhibition of uncoating and/or alteration of post-translational modifications of newly synthesised proteins, especially inhibition of glycosylation. These effects have been well described in vitro for many viruses, with human immunodeficiency virus (HIV) being the most studied. Preliminary in vivo clinical trials suggest that CQ alone or in combination with antiretroviral drugs might represent an interesting way to treat HIV infection. In conclusion, our review re-emphasises the paradigm that activities mediated by lysosomotropic agents may offer an interesting weapon to face present and future infectious diseases worldwide.
Collapse
Affiliation(s)
- Jean-Marc Rolain
- Unité des Rickettsies, CNRS UMR 6020, Université de la Méditerranée, Faculté de Médecine et de Pharmacie, 27 Boulevard Jean Moulin, 13385 Marseille Cedex 5, France.
| | | | | |
Collapse
|
36
|
Eifart P, Ludwig K, Böttcher C, de Haan CAM, Rottier PJM, Korte T, Herrmann A. Role of endocytosis and low pH in murine hepatitis virus strain A59 cell entry. J Virol 2007; 81:10758-68. [PMID: 17626088 PMCID: PMC2045462 DOI: 10.1128/jvi.00725-07] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Infection by the coronavirus mouse hepatitis virus strain A59 (MHV-A59) requires the release of the viral genome by fusion with the respective target membrane of the host cell. Fusion is mediated by the viral S protein. Here, the entry pathway of MHV-A59 into murine fibroblast cells was studied by independent approaches. Infection of cells assessed by plaque reduction assay was strongly inhibited by lysosomotropic compounds and substances that interfere with clathrin-dependent endocytosis, suggesting that MHV-A59 is taken up via endocytosis and delivered to acidic endosomal compartments. Infection was only slightly reduced in the presence of substances inhibiting proteases of endosomal compartments, precluding that the endocytic uptake is required to activate the fusion potential of the S protein by its cleavage. Fluorescence confocal microscopy of labeled MHV-A59 confirmed that virus is taken up via endocytosis. Bright labeling of intracellular compartments suggests their fusion with the viral envelope. No fusion with the plasma membrane was observed at neutral pH conditions. However, when virus was bound to cells and the pH was lowered to 5.0, we observed a strong labeling of the plasma membrane. Electron microscopy revealed low pH triggered conformational alterations of the S ectodomain. Very likely, these alterations are irreversible because low-pH treatment of viruses in the absence of target membranes caused an irreversible loss of the fusion activity. The results imply that endocytosis plays a major role in MHV-A59 infection and the acidic pH of the endosomal compartment triggers a conformational change of the S protein mediating fusion.
Collapse
Affiliation(s)
- Patricia Eifart
- Institut für Biologie/Biophysik, Humboldt-Universität zu Berlin, Invalidenstr. 42, D-10115 Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
37
|
Taguchi F. [Cell entry mechanism of coronaviruses: implication in their pathogenesis]. Uirusu 2007; 56:165-71. [PMID: 17446665 DOI: 10.2222/jsv.56.165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Coronaviruses infect many species of animals, including humans. Among them, murine coronavirus, mouse hepatitis virus (MHV) has been well studied as a model of human diseases, such as hepatitis and demyelinating disease. An agent causing severe acute respiratory disease (SARS), SARS coronavirus (SARS-CoV), is a newcomer in this genus, however, it is now one of the most studied coronaviruses due to its medical impact. The receptors of those two viruses have been identified and their cell entry mechanism has been actively investigated. Recently, SARS-CoV cell entry mechanism is shown to be different from that of other enveloped viruses, including MHV. In this review, cell entry mechanism of those two viruses is described, stressing on the difference and similarity found between those two viruses.
Collapse
Affiliation(s)
- Fumihiro Taguchi
- Division of Viral Respiratory Diseases and SARS, National Institute of Infectious Diseasses.
| |
Collapse
|
38
|
Huang YP, Wang CH. Sequence changes of infectious bronchitis virus isolates in the 3' 7.3 kb of the genome after attenuating passage in embryonated eggs. Avian Pathol 2007; 36:59-67. [PMID: 17364511 DOI: 10.1080/03079450601110015] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Attenuated infectious bronchitis virus (IBV) vaccines are available but the relationship between sequence and virulence is not clear. In this study, the sequences of the 3' 7.3 kb of the genome, amplified using reverse transcription-polymerase chain reaction before and after attenuation, were compared to study the relationship between virulence and the sequences of three IBV strains. After attenuation, two to six amino acid substitutions were found in the spike 1 subunit, and two or three amino acid substitutions were found in the spike 2 subunit. None or one amino acid substitution was found in the small membrane protein, and one or three amino acid substitutions were found in the membrane protein. However, no amino acid substitution was found in the nucleocapsid (N) protein, indicating that the N protein might not be related to this attenuation. The 3' untranslated region after the N gene of one strain was partially deleted after attenuation, and might be correlated with virulence. This study is the first demonstration for IBV comparing sequence changes in the 3' 7.3 kb genome after attenuation. The aforementioned information on amino acid changes might be useful in future virulence studies.
Collapse
Affiliation(s)
- Yuan-Pin Huang
- Department of Veterinary Medicine, National Taiwan University. No 1, Sec 4, Roosevelt Road, Taipei 10617, Taiwan
| | | |
Collapse
|
39
|
Saunders AA, Ting JPC, Meisner J, Neuman BW, Perez M, de la Torre JC, Buchmeier MJ. Mapping the landscape of the lymphocytic choriomeningitis virus stable signal peptide reveals novel functional domains. J Virol 2007; 81:5649-57. [PMID: 17376927 PMCID: PMC1900251 DOI: 10.1128/jvi.02759-06] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The stable signal peptide (SSP) of the lymphocytic choriomeningitis virus surface glycoprotein precursor has several unique characteristics. The SSP is unusually long, at 58 amino acids, and contains two hydrophobic domains, and its sequence is highly conserved among both Old and New World arenaviruses. To better understand the functions of the SSP, a panel of point and deletion mutants was created by in vitro mutagenesis to target the highly conserved elements within the SSP. We were also able to confirm critical residues required for separate SSP functions by trans-complementation. Using these approaches, it was possible to resolve functional domains of the SSP. In characterizing our SSP mutants, we discovered that the SSP is involved in several distinct functions within the viral life cycle, beyond translocation of the viral surface glycoprotein precursor into the endoplasmic reticulum lumen. The SSP is required for efficient glycoprotein expression, posttranslational maturation cleavage of GP1 and GP2 by SKI-1/S1P protease, glycoprotein transport to the cell surface plasma membrane, formation of infectious virus particles, and acid pH-dependent glycoprotein-mediated cell fusion.
Collapse
Affiliation(s)
- April A Saunders
- The Scripps Research Institute, Molecular and Integrative Neurosciences Department, Mailstop SP30-2020, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Liu Y, Zhang X. Murine coronavirus-induced oligodendrocyte apoptosis is mediated through the activation of the Fas signaling pathway. Virology 2006; 360:364-75. [PMID: 17156812 PMCID: PMC1851929 DOI: 10.1016/j.virol.2006.10.044] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2006] [Revised: 09/10/2006] [Accepted: 10/27/2006] [Indexed: 01/19/2023]
Abstract
We previously showed that infection of rat oligodendrocytes by ultraviolet light-inactivated mouse hepatitis virus (MHV) resulted in apoptosis, suggesting that the apoptosis is triggered during cell entry. To further characterize the earliest apoptotic signaling events, here we treated cells with an antibody specific to the MHV receptor prior to and during virus infection or with an antibody specific to MHV spike protein following virus binding. Both treatments blocked virus infection and apoptosis, indicating that virus–receptor binding is necessary but not sufficient for the apoptosis induction. Furthermore, virus infection significantly increased the formation of the “death–receptor complexes” consisting of Fas, Fas-associated death domain and procaspase-8, but did not induce the complexes involving the tumor necrosis factor receptor and its associated death domain, demonstrating the specific activation of the Fas signaling pathway. Moreover, virus infection did not alter the abundance of the individual proteins of the complexes, suggesting that the activation of the Fas signaling pathway was at the post-translational level. Treatment with a Fas/Fc chimera, which blocks Fas-Fas ligand-mediated apoptosis, inhibited the formation of the complexes and blocked the activation of caspase-8 and apoptosis in MHV-infected cells. It also inhibited the release of cytochrome c from mitochondria and the activation of caspase-9. These results demonstrate that oligodendrocyte apoptosis is triggered by MHV infection during cell entry through the activation of the Fas signaling pathway.
Collapse
|
41
|
Zheng Q, Deng Y, Liu J, van der Hoek L, Berkhout B, Lu M. Core structure of S2 from the human coronavirus NL63 spike glycoprotein. Biochemistry 2006; 45:15205-15. [PMID: 17176042 DOI: 10.1021/bi061686w] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Human coronavirus NL63 (HCoV-NL63) has recently been identified as a causative agent of acute respiratory tract illnesses in infants and young children. The HCoV-NL63 spike (S) protein mediates virion attachment to cells and subsequent fusion of the viral and cellular membranes. This viral entry process is a primary target for vaccine and drug development. HCoV-NL63 S is expressed as a single-chain glycoprotein and consists of an N-terminal receptor-binding domain (S1) and a C-terminal transmembrane fusion domain (S2). The latter contains two highly conserved heptad-repeat (HR) sequences that are each extended by 14 amino acids relative to those of the SARS coronavirus or the prototypic murine coronavirus, mouse hepatitis virus. Limited proteolysis studies of the HCoV-NL63 S2 fusion core identify an alpha-helical domain composed of a trimer of the HR segments N57 and C42. The crystal structure of this complex reveals three C42 helices entwined in an oblique and antiparallel manner around a central triple-stranded coiled coil formed by three N57 helices. The overall geometry comprises distinctive high-affinity conformations of interacting cross-sectional layers of the six helices. As a result, this structure is unusually stable, with an apparent melting temperature of 78 degrees C in the presence of the denaturant guanidine hydrochloride at 5 M concentration. The extended HR regions may therefore be required to prime the group 1 S glycoproteins for their fusion-activating conformational changes during viral entry. Our results provide an initial basis for understanding an intriguing interplay between the presence or absence of proteolytic maturation among the coronavirus groups and the membrane fusion activity of their S glycoproteins. This study also suggests a potential strategy for the development of improved HCoV-NL63 fusion inhibitors.
Collapse
Affiliation(s)
- Qi Zheng
- Department of Biochemistry, Weill Medical College of Cornell University, New York, New York 10021, USA
| | | | | | | | | | | |
Collapse
|
42
|
Cai Y, Liu Y, Zhang X. Suppression of coronavirus replication by inhibition of the MEK signaling pathway. J Virol 2006; 81:446-56. [PMID: 17079328 PMCID: PMC1797436 DOI: 10.1128/jvi.01705-06] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We previously demonstrated that infection of cultured cells with murine coronavirus mouse hepatitis virus (MHV) resulted in activation of the mitogen-activated protein kinase (Raf/MEK/ERK) signal transduction pathway (Y. Cai et al., Virology 355:152-163, 2006). Here we show that inhibition of the Raf/MEK/ERK signaling pathway by the MEK inhibitor UO126 significantly impaired MHV progeny production (a reduction of 95 to 99% in virus titer), which correlated with the phosphorylation status of ERK1/2. Moreover, knockdown of MEK1/2 and ERK1/2 by small interfering RNAs suppressed MHV replication. The inhibitory effect of UO126 on MHV production appeared to be a general phenomenon since the effect was consistently observed in all six different MHV strains and in three different cell types tested; it was likely exerted at the postentry steps of the virus life cycle because the virus titers were similarly inhibited from infected cells treated at 1 h prior to, during, or after infection. Furthermore, the treatment did not affect the virus entry, as revealed by the virus internalization assay. Metabolic labeling and reporter gene assays demonstrated that translation of cellular and viral mRNAs appeared unaffected by UO126 treatment. However, synthesis of viral genomic and subgenomic RNAs was severely suppressed by UO126 treatment, as demonstrated by a reduced incorporation of [3H]uridine and a decrease in chloramphenicol acetyltransferase (CAT) activity in a defective-interfering RNA-CAT reporter assay. These findings indicate that the Raf/MEK/ERK signaling pathway is involved in MHV RNA synthesis.
Collapse
Affiliation(s)
- Yingyun Cai
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, 4301 W. Markham Street, Slot 511, Little Rock, AR 72205, USA
| | | | | |
Collapse
|
43
|
Abstract
Coronaviruses are large, enveloped RNA viruses of both medical and veterinary importance. Interest in this viral family has intensified in the past few years as a result of the identification of a newly emerged coronavirus as the causative agent of severe acute respiratory syndrome (SARS). At the molecular level, coronaviruses employ a variety of unusual strategies to accomplish a complex program of gene expression. Coronavirus replication entails ribosome frameshifting during genome translation, the synthesis of both genomic and multiple subgenomic RNA species, and the assembly of progeny virions by a pathway that is unique among enveloped RNA viruses. Progress in the investigation of these processes has been enhanced by the development of reverse genetic systems, an advance that was heretofore obstructed by the enormous size of the coronavirus genome. This review summarizes both classical and contemporary discoveries in the study of the molecular biology of these infectious agents, with particular emphasis on the nature and recognition of viral receptors, viral RNA synthesis, and the molecular interactions governing virion assembly.
Collapse
Affiliation(s)
- Paul S Masters
- Wadsworth Center, New York State Department of Health, Albany, 12201, USA
| |
Collapse
|
44
|
Qiu Z, Hingley ST, Simmons G, Yu C, Das Sarma J, Bates P, Weiss SR. Endosomal proteolysis by cathepsins is necessary for murine coronavirus mouse hepatitis virus type 2 spike-mediated entry. J Virol 2006; 80:5768-76. [PMID: 16731916 PMCID: PMC1472567 DOI: 10.1128/jvi.00442-06] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Most strains of murine coronavirus mouse hepatitis virus (MHV) express a cleavable spike glycoprotein that mediates viral entry and pH-independent cell-cell fusion. The MHV type 2 (MHV-2) strain of murine coronavirus differs from other strains in that it expresses an uncleaved spike and cannot induce cell-cell fusion at neutral pH values. We show here that while infection of the prototype MHV-A59 strain is not sensitive to pretreatment with lysosomotropic agents, MHV-2 replication is significantly inhibited by these agents. By use of an A59/MHV-2 chimeric virus, the susceptibility to lysosomotropic agents is mapped to the MHV-2 spike, suggesting a requirement of acidification of endosomes for MHV-2 spike-mediated entry. However, acidification is likely not a direct trigger for MHV-2 spike-mediated membrane fusion, as low-pH treatment is unable to overcome ammonium chloride inhibition, and it also cannot induce cell-cell fusion between MHV-2-infected cells. In contrast, trypsin treatment can both overcome ammonium chloride inhibition and promote cell-cell fusion. Inhibitors of the endosomal cysteine proteases cathepsin B and cathepsin L greatly reduce MHV-2 spike-mediated entry, while they have little effect on A59 entry, suggesting that there is a proteolytic step in MHV-2 entry. Finally, a recombinant virus expressing a cleaved MHV-2 spike has the ability to induce cell-cell fusion at neutral pH values and does not require low pH and endosomal cathepsins during infection. These studies demonstrate that endosomal proteolysis by cathepsins is necessary for MHV-2 spike-mediated entry; this is similar to the entry pathway recently described for severe acute respiratory syndrome coronavirus and indicates that coronaviruses may use multiple pathways for entry.
Collapse
Affiliation(s)
- Zhaozhu Qiu
- Department of Microbiology, University of Pennsylvania, School of Medicine, Philadelphia, PA 19104-6076, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Zhou H, Perlman S. Preferential infection of mature dendritic cells by mouse hepatitis virus strain JHM. J Virol 2006; 80:2506-14. [PMID: 16474157 PMCID: PMC1395395 DOI: 10.1128/jvi.80.5.2506-2514.2006] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Mouse hepatitis virus strain JHM (MHV-JHM) causes acute encephalitis and acute and chronic demyelinating diseases in mice. Dendritic cells (DCs) are key cells in the initiation of innate and adaptive immune responses, and infection of these cells could potentially contribute to a dysregulated immune response; consistent with this, recent results suggest that DCs are readily infected by another strain of mouse hepatitis virus, the A59 strain (MHV-A59). Herein, we show that the JHM strain also productively infected DCs. Moreover, mature DCs were at least 10 times more susceptible than immature DCs to infection with MHV-JHM. DC function was impaired after MHV-JHM infection, resulting in decreased stimulation of CD8 T cells in vitro. Preferential infection of mature DCs was not due to differential expression of the MHV-JHM receptor CEACAM-1a on mature or immature cells or to differences in apoptosis. Although we could not detect infected DCs in vivo, both CD8(+) and CD11b(+) splenic DCs were susceptible to infection with MHV-JHM directly ex vivo. This preferential infection of mature DCs may inhibit the development of an efficient immune response to the virus.
Collapse
Affiliation(s)
- Haixia Zhou
- Department of Pediatrics, University of Iowa, Iowa City, 52242, USA
| | | |
Collapse
|
46
|
Weiss SR, Navas-Martin S. Coronavirus pathogenesis and the emerging pathogen severe acute respiratory syndrome coronavirus. Microbiol Mol Biol Rev 2006; 69:635-64. [PMID: 16339739 PMCID: PMC1306801 DOI: 10.1128/mmbr.69.4.635-664.2005] [Citation(s) in RCA: 752] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Coronaviruses are a family of enveloped, single-stranded, positive-strand RNA viruses classified within the Nidovirales order. This coronavirus family consists of pathogens of many animal species and of humans, including the recently isolated severe acute respiratory syndrome coronavirus (SARS-CoV). This review is divided into two main parts; the first concerns the animal coronaviruses and their pathogenesis, with an emphasis on the functions of individual viral genes, and the second discusses the newly described human emerging pathogen, SARS-CoV. The coronavirus part covers (i) a description of a group of coronaviruses and the diseases they cause, including the prototype coronavirus, murine hepatitis virus, which is one of the recognized animal models for multiple sclerosis, as well as viruses of veterinary importance that infect the pig, chicken, and cat and a summary of the human viruses; (ii) a short summary of the replication cycle of coronaviruses in cell culture; (iii) the development and application of reverse genetics systems; and (iv) the roles of individual coronavirus proteins in replication and pathogenesis. The SARS-CoV part covers the pathogenesis of SARS, the developing animal models for infection, and the progress in vaccine development and antiviral therapies. The data gathered on the animal coronaviruses continue to be helpful in understanding SARS-CoV.
Collapse
Affiliation(s)
- Susan R Weiss
- Department of Microbiology, University of Pennsylvania School of Medicine, 36th Street and Hamilton Walk, Philadelphia, Pennsylvania 19104-6076, USA.
| | | |
Collapse
|
47
|
Jin S, Zhang B, Weisz OA, Montelaro RC. Receptor-mediated entry by equine infectious anemia virus utilizes a pH-dependent endocytic pathway. J Virol 2006; 79:14489-97. [PMID: 16282448 PMCID: PMC1287590 DOI: 10.1128/jvi.79.23.14489-14497.2005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Previous studies of human and nonhuman primate lentiviral entry mechanisms indicate a predominant use of pH-independent pathways, although more recent studies of human immunodeficiency virus type 1 entry appear to reveal the use of a low-pH-dependent entry pathway in certain target cells. To expand the characterization of the specificity of lentiviral entry mechanisms, we have in the current study examined the entry pathway of equine infectious anemia virus (EIAV) during infection of its natural target, equine macrophages, permissive equine fibroblastic cell lines, and an engineered mouse cell line expressing the recently defined equine lentivirus receptor-1. The specificity of EIAV entry into these various cells was determined by assaying the effects of specific drug treatments on the level of virus entry as measured by quantitative real-time PCR assay of early reverse transcripts or by measurements of virion production. The results of these studies demonstrated that EIAV entry into all cell types was substantially inhibited in a dose-dependent manner by treatment with the vacuolar H+-ATPase inhibitors concanamycin A and bafilomycin A1 or the lysosomotropic weak base ammonium chloride. In contrast, treatments with sucrose to block clathrin-mediated endocytosis or with chloroquine to block organelle acidification failed to inhibit EIAV entry into the same target cells. The observed inhibition of EIAV entry was shown not to be related to cytotoxicity. Taken together, these experiments reveal for the first time that EIAV receptor-mediated entry into target cells is via a low-pH-dependent endocytic pathway.
Collapse
Affiliation(s)
- Sha Jin
- Department of Molecular Genetics and Biochemistry, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | | | | |
Collapse
|
48
|
Weiss SR, Navas-Martin S. Coronavirus pathogenesis and the emerging pathogen severe acute respiratory syndrome coronavirus. Microbiol Mol Biol Rev 2005. [PMID: 16339739 DOI: 10.1128/mmbr.69.4.635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023] Open
Abstract
Coronaviruses are a family of enveloped, single-stranded, positive-strand RNA viruses classified within the Nidovirales order. This coronavirus family consists of pathogens of many animal species and of humans, including the recently isolated severe acute respiratory syndrome coronavirus (SARS-CoV). This review is divided into two main parts; the first concerns the animal coronaviruses and their pathogenesis, with an emphasis on the functions of individual viral genes, and the second discusses the newly described human emerging pathogen, SARS-CoV. The coronavirus part covers (i) a description of a group of coronaviruses and the diseases they cause, including the prototype coronavirus, murine hepatitis virus, which is one of the recognized animal models for multiple sclerosis, as well as viruses of veterinary importance that infect the pig, chicken, and cat and a summary of the human viruses; (ii) a short summary of the replication cycle of coronaviruses in cell culture; (iii) the development and application of reverse genetics systems; and (iv) the roles of individual coronavirus proteins in replication and pathogenesis. The SARS-CoV part covers the pathogenesis of SARS, the developing animal models for infection, and the progress in vaccine development and antiviral therapies. The data gathered on the animal coronaviruses continue to be helpful in understanding SARS-CoV.
Collapse
Affiliation(s)
- Susan R Weiss
- Department of Microbiology, University of Pennsylvania School of Medicine, 36th Street and Hamilton Walk, Philadelphia, Pennsylvania 19104-6076, USA.
| | | |
Collapse
|
49
|
Matsuyama S, Ujike M, Morikawa S, Tashiro M, Taguchi F. Protease-mediated enhancement of severe acute respiratory syndrome coronavirus infection. Proc Natl Acad Sci U S A 2005; 102:12543-7. [PMID: 16116101 PMCID: PMC1194915 DOI: 10.1073/pnas.0503203102] [Citation(s) in RCA: 253] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2005] [Indexed: 12/28/2022] Open
Abstract
A unique coronavirus severe acute respiratory syndrome-coronavirus (SARS-CoV) was revealed to be a causative agent of a life-threatening SARS. Although this virus grows in a variety of tissues that express its receptor, the mechanism of the severe respiratory illness caused by this virus is not well understood. Here, we report a possible mechanism for the extensive damage seen in the major target organs for this disease. A recent study of the cell entry mechanism of SARS-CoV reveals that it takes an endosomal pathway. We found that proteases such as trypsin and thermolysin enabled SARS-CoV adsorbed onto the cell surface to enter cells directly from that site. This finding shows that SARS-CoV has the potential to take two distinct pathways for cell entry, depending on the presence of proteases in the environment. Moreover, the protease-mediated entry facilitated a 100- to 1,000-fold higher efficient infection than did the endosomal pathway used in the absence of proteases. These results suggest that the proteases produced in the lungs by inflammatory cells are responsible for high multiplication of SARS-CoV, which results in severe lung tissue damage. Likewise, elastase, a major protease produced in the lungs during inflammation, also enhanced SARS-CoV infection in cultured cells.
Collapse
Affiliation(s)
- Shutoku Matsuyama
- Division of Respiratory Viral Diseases and SARS, Department of Virology III, Special Pathogens Laboratory, National Institute of Infectious Diseases, Murayama Branch, Gakuen 4-7-1, Musashi-Murayama, Tokyo 208-0011, Japan
| | | | | | | | | |
Collapse
|
50
|
MacNamara KC, Chua MM, Phillips JJ, Weiss SR. Contributions of the viral genetic background and a single amino acid substitution in an immunodominant CD8+ T-cell epitope to murine coronavirus neurovirulence. J Virol 2005; 79:9108-18. [PMID: 15994805 PMCID: PMC1168726 DOI: 10.1128/jvi.79.14.9108-9118.2005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The immunodominant CD8+ T-cell epitope of a highly neurovirulent strain of mouse hepatitis virus (MHV), JHM, is thought to be essential for protection against virus persistence within the central nervous system. To test whether abrogation of this H-2Db-restricted epitope, located within the spike glycoprotein at residues S510 to 518 (S510), resulted in delayed virus clearance and/or virus persistence we selected isogenic recombinants which express either the wild-type JHM spike protein (RJHM) or spike containing the N514S mutation (RJHM(N514S)), which abrogates the response to S510. In contrast to observations in suckling mice in which viruses encoding inactivating mutations within the S510 epitope (epitope escape mutants) were associated with persistent virus and increased neurovirulence (Pewe et al., J Virol. 72:5912-5918, 1998), RJHM(N514S) was not more virulent than the parental, RJHM, in 4-week-old C57BL/6 (H-2b) mice after intracranial injection. Recombinant viruses expressing the JHM spike, wild type or encoding the N514S substitution, were also selected in which background genes were derived from the neuroattenuated A59 strain of MHV. Whereas recombinants expressing the wild-type JHM spike (SJHM/RA59) were highly neurovirulent, A59 recombinants containing the N514S mutation (SJHM(N514S)/RA59) were attenuated, replicated less efficiently, and exhibited reduced virus spread in the brain at 5 days postinfection (peak of infectious virus titers in the central nervous system) compared to parental virus encoding wild-type spike. Virulence assays in BALB/c mice (H-2d), which do not recognize the S510 epitope, revealed that attenuation of the epitope escape mutants was not due to the loss of a pathogenic immune response directed against the S510 epitope. Thus, an intact immunodominant S510 epitope is not essential for virus clearance from the CNS, the S510 inactivating mutation results in decreased virulence in weanling mice but not in suckling mice, suggesting that specific host conditions are required for epitope escape mutants to display increased virulence, and the N514S mutation causes increased attenuation in the context of A59 background genes, demonstrating that genes other than that for the spike are also important in determining neurovirulence.
Collapse
Affiliation(s)
- Katherine C MacNamara
- Department of Microbiology, University of Pennsylvania, School of Medicine, 36th Street and Hamilton Walk, Philadelphia, PA 19104-6076, USA
| | | | | | | |
Collapse
|