1
|
Raut P, Weller SR, Obeng B, Soos BL, West BE, Potts CM, Sangroula S, Kinney MS, Burnell JE, King BL, Gosse JA, Hess ST. Cetylpyridinium chloride (CPC) reduces zebrafish mortality from influenza infection: Super-resolution microscopy reveals CPC interference with multiple protein interactions with phosphatidylinositol 4,5-bisphosphate in immune function. Toxicol Appl Pharmacol 2022; 440:115913. [PMID: 35149080 PMCID: PMC8824711 DOI: 10.1016/j.taap.2022.115913] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/04/2022] [Accepted: 02/04/2022] [Indexed: 01/12/2023]
Abstract
The COVID-19 pandemic raises significance for a potential influenza therapeutic compound, cetylpyridinium chloride (CPC), which has been extensively used in personal care products as a positively-charged quaternary ammonium antibacterial agent. CPC is currently in clinical trials to assess its effects on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) morbidity. Two published studies have provided mouse and human data indicating that CPC may alleviate influenza infection, and here we show that CPC (0.1 μM, 1 h) reduces zebrafish mortality and viral load following influenza infection. However, CPC mechanisms of action upon viral-host cell interaction are currently unknown. We have utilized super-resolution fluorescence photoactivation localization microscopy to probe the mode of CPC action. Reduction in density of influenza viral protein hemagglutinin (HA) clusters is known to reduce influenza infectivity: here, we show that CPC (at non-cytotoxic doses, 5-10 μM) reduces HA density and number of HA molecules per cluster within the plasma membrane of NIH-3T3 mouse fibroblasts. HA is known to colocalize with the negatively-charged mammalian lipid phosphatidylinositol 4,5-bisphosphate (PIP2); here, we show that nanoscale co-localization of HA with the PIP2-binding Pleckstrin homology (PH) reporter in the plasma membrane is diminished by CPC. CPC also dramatically displaces the PIP2-binding protein myristoylated alanine-rich C-kinase substrate (MARCKS) from the plasma membrane of rat RBL-2H3 mast cells; this disruption of PIP2 is correlated with inhibition of mast cell degranulation. Together, these findings offer a PIP2-focused mechanism underlying CPC disruption of influenza and suggest potential pharmacological use of this drug as an influenza therapeutic to reduce global deaths from viral disease.
Collapse
Affiliation(s)
- Prakash Raut
- Department of Physics and Astronomy, University of Maine, Orono, ME, USA
| | - Sasha R Weller
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME, USA
| | - Bright Obeng
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME, USA
| | - Brandy L Soos
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME, USA
| | - Bailey E West
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME, USA
| | - Christian M Potts
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME, USA
| | - Suraj Sangroula
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME, USA
| | - Marissa S Kinney
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME, USA
| | - John E Burnell
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME, USA
| | - Benjamin L King
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME, USA
| | - Julie A Gosse
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME, USA.
| | - Samuel T Hess
- Department of Physics and Astronomy, University of Maine, Orono, ME, USA.
| |
Collapse
|
2
|
Pohl MO, Lanz C, Stertz S. Late stages of the influenza A virus replication cycle-a tight interplay between virus and host. J Gen Virol 2016; 97:2058-2072. [PMID: 27449792 DOI: 10.1099/jgv.0.000562] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
After successful infection and replication of its genome in the nucleus of the host cell, influenza A virus faces several challenges before newly assembled viral particles can bud off from the plasma membrane, giving rise to a new infectious virus. The viral ribonucleoprotein (vRNP) complexes need to exit from the nucleus and be transported to the virus assembly sites at the plasma membrane. Moreover, they need to be bundled to ensure the incorporation of precisely one of each of the eight viral genome segments into newly formed viral particles. Similarly, viral envelope glycoproteins and other viral structural proteins need to be targeted to virus assembly sites for viral particles to form and bud off from the plasma membrane. During all these steps influenza A virus heavily relies on a tight interplay with its host, exploiting host-cell proteins for its own purposes. In this review, we summarize current knowledge on late stages of the influenza virus replication cycle, focusing on the role of host-cell proteins involved in this process.
Collapse
Affiliation(s)
- Marie O Pohl
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
| | - Caroline Lanz
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
| | - Silke Stertz
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
3
|
Ferreira HL, Vangeluwe D, Van Borm S, Poncin O, Dumont N, Ozhelvaci O, Munir M, van den Berg T, Lambrecht B. Differential Viral Fitness Between H1N1 and H3N8 Avian Influenza Viruses Isolated from Mallards (Anas platyrhynchos). Avian Dis 2016; 59:498-507. [PMID: 26629623 DOI: 10.1637/11074-033015-reg] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Homosubtypic and heterosubtypic immunity in mallards (Anas platyrhynchos) play an important role in the avian influenza virus (AIV) diversity. The mechanisms of AIV replication among wild birds and the role of immunity in AIV diversity have thus not been completely clarified. During the monitoring of AI circulation among wild waterfowl in 2007-2008, two viruses (H3N8 and H1N1) were isolated from ducks caught in a funnel trap located in La Hulpe wetland in Belgium. H3N8 viruses were revealed to be more prevalent in the mallard population than was H1N1, which might suggest a better adaptation to this species. In order to investigate this hypothesis, we characterized both isolated viruses biologically by experimental inoculation. Virus excretion and humoral response induced by both isolated viruses were evaluated in mallards after a first infection followed by a homo- or heterosubtypic reinfection under controlled experimental conditions. The H1N1 virus had a delayed peak of excretion of 4 days compared to the H3N8, but the virus shedding was more limited, earlier, and shorter after each reinfection. Moreover, the H3N8 virus could spread to all ducks after homo- or heterosubtypic reinfections and during a longer period. Although the humoral response induced by both viruses after infection and reinfection could be detected efficiently by competitive ELISA, only a minimal H1 antibody response and almost no H3-specific antibodies could be detected by the HI test. Our results suggest that the H3N8 isolate replicates better in mallards under experimental controlled conditions.
Collapse
Affiliation(s)
- Helena Lage Ferreira
- A FZEA-USP, Av. Duque de Caxias Norte, 225, Pirassununga - Sao Paulo 13635-900, Brazil
| | - Didier Vangeluwe
- B Royal Belgian Institute of Natural Sciences Belgian Ringing Centre, Vautier Street 29, 1000 Brussels, Belgium
| | - Steven Van Borm
- C CODA-CERVA-VAR, Groeselenberg 99, B-1180 Brussels, Belgium
| | - Olivier Poncin
- B Royal Belgian Institute of Natural Sciences Belgian Ringing Centre, Vautier Street 29, 1000 Brussels, Belgium
| | - Nathalie Dumont
- C CODA-CERVA-VAR, Groeselenberg 99, B-1180 Brussels, Belgium
| | - Orkun Ozhelvaci
- C CODA-CERVA-VAR, Groeselenberg 99, B-1180 Brussels, Belgium
| | - Muhammad Munir
- D The Pirbright Institute, Ash Road, Pirbright, Woking, GU24 0NF, United Kingdom
| | | | | |
Collapse
|
4
|
Influenza A virus hemagglutinin and neuraminidase mutually accelerate their apical targeting through clustering of lipid rafts. J Virol 2014; 88:10039-55. [PMID: 24965459 DOI: 10.1128/jvi.00586-14] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED In polarized epithelial cells, influenza A virus hemagglutinin (HA) and neuraminidase (NA) are intrinsically associated with lipid rafts and target the apical plasma membrane for viral assembly and budding. Previous studies have indicated that the transmembrane domain (TMD) and cytoplasmic tail (CT) of HA and NA are required for association with lipid rafts, but the raft dependencies of their apical targeting are controversial. Here, we show that coexpression of HA with NA accelerated their apical targeting through accumulation in lipid rafts. HA was targeted to the apical plasma membrane even when expressed alone, but the kinetics was much slower than that of HA in infected cells. Coexpression experiments revealed that apical targeting of HA and NA was accelerated by their coexpression. The apical targeting of HA was also accelerated by coexpression with M1 but not M2. The mutations in the outer leaflet of the TMD and the deletion of the CT in HA and NA that reduced their association with lipid rafts abolished the acceleration of their apical transport, indicating that the lipid raft association is essential for efficient apical trafficking of HA and NA. An in situ proximity ligation assay (PLA) revealed that HA and NA were accumulated and clustered in the cytoplasmic compartments only when both were associated with lipid rafts. Analysis with mutant viruses containing nonraft HA/NA confirmed these findings. We further analyzed lipid raft markers by in situ PLA and suggest a possible mechanism of the accelerated apical transport of HA and NA via clustering of lipid rafts. IMPORTANCE Lipid rafts serve as sites for viral entry, particle assembly, and budding, leading to efficient viral replication. The influenza A virus utilizes lipid rafts for apical plasma membrane targeting and particle budding. The hemagglutinin (HA) and neuraminidase (NA) of influenza virus, key players for particle assembly, contain determinants for apical sorting and lipid raft association. However, it remains to be elucidated how lipid rafts contribute to the apical trafficking and budding. We investigated the relation of lipid raft association of HA and NA to the efficiency of apical trafficking. We show that coexpression of HA and NA induces their accumulation in lipid rafts and accelerates their apical targeting, and we suggest that the accelerated apical transport likely occurs by clustering of lipid rafts at the TGN. This finding provides the first evidence that two different raft-associated viral proteins induce lipid raft clustering, thereby accelerating apical trafficking of the viral proteins.
Collapse
|
5
|
Demers A, Ran Z, Deng Q, Wang D, Edman B, Lu W, Li F. Palmitoylation is required for intracellular trafficking of influenza B virus NB protein and efficient influenza B virus growth in vitro. J Gen Virol 2014; 95:1211-1220. [PMID: 24671751 DOI: 10.1099/vir.0.063511-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
All influenza viruses bud and egress from lipid rafts within the apical plasma membrane of infected epithelial cells. As a result, all components of progeny virions must be transported to these lipid rafts for assembly and budding. Although the mechanism of transport for other influenza proteins has been elucidated, influenza B virus (IBV) glycoprotein NB subcellular localization and transport are not understood completely. To address the aforementioned properties of NB, a series of trafficking experiments were conducted. Here, we showed that NB co-localized with markers specific for the endoplasmic reticulum (ER) and Golgi region. The data from chemical treatment of NB-expressing cells by Brefeldin A, a fungal antibiotic and a known chemical inhibitor of the protein secretory pathway, further confirmed that NB is transported through the ER-Golgi pathway as it restricted NB localization to the perinuclear region. Using NB deletion mutants, the hydrophobic transmembrane domain was identified as being required for NB transport to the plasma membrane. Furthermore, palmitoylation was also required for transport of NB to the plasma membrane. Systematic mutation of cysteines to serines in NB demonstrated that cysteine 49, likely in a palmitoylated form, is also required for transport to the plasma membrane. Surprisingly, further analysis demonstrated that in vitro replication of NBC49S mutant virus was delayed relative to the parental IBV. The results demonstrated that NB is the third influenza virus protein to have been shown to be palmitoylated and together these findings may aid in future studies aimed at elucidating the function of NB.
Collapse
Affiliation(s)
- Andrew Demers
- Center for Infectious Disease Research and Vaccinology, South Dakota State University, Brookings, SD 57007, USA.,Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD 57007, USA.,Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA
| | - Zhiguang Ran
- Center for Infectious Disease Research and Vaccinology, South Dakota State University, Brookings, SD 57007, USA.,Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD 57007, USA
| | - Qiji Deng
- Center for Infectious Disease Research and Vaccinology, South Dakota State University, Brookings, SD 57007, USA.,Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD 57007, USA
| | - Dan Wang
- Center for Infectious Disease Research and Vaccinology, South Dakota State University, Brookings, SD 57007, USA.,Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA
| | - Brody Edman
- Center for Infectious Disease Research and Vaccinology, South Dakota State University, Brookings, SD 57007, USA.,Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA
| | - Wuxun Lu
- Center for Infectious Disease Research and Vaccinology, South Dakota State University, Brookings, SD 57007, USA.,Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA
| | - Feng Li
- Center for Infectious Disease Research and Vaccinology, South Dakota State University, Brookings, SD 57007, USA.,Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD 57007, USA.,Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA
| |
Collapse
|
6
|
Abstract
The influenza virus (IV) is still of great importance as it poses an immanent threat to humans and animals. Among the three IV-types (A, B, and C) influenza A viruses are clinically the most important being responsible for severe epidemics in humans and domestic animals. Aerosol droplets transmit the virus that causes a respiratory disease in humans that can lead to severe pneumonia and ultimately death. The high mutation rate combined with the high replication rate allows the virus to rapidly adapt to changes in the environment. Thereby, IV escape the existing immunity and become resistant to drugs targeting the virus. This causes annual epidemics and demands for new compositions of the yearly vaccines. Furthermore, due to the nature of their segmented genome, IV can recombine segments. This can eventually lead to the generation of a virus with the ability to replicate in humans and with novel antigenic properties that can be the cause of a pandemic outbreak. For its propagation the virus binds to the target cells and enters the cell to replicate its genome. Newly produced viral proteins and genomes are packaged at the cell membrane where progeny virions are released. As all viruses IV depends on cellular functions and factors for their own propagation, and therefore intensively interact with the cells. This dependency opens new possibilities for anti-viral strategies.
Collapse
|
7
|
Gotoh M, Kotani N, Takahashi M, Okada T, Ogawa Y. Enlargement of Influenza Virus Hemagglutinin Cytoplasmic Tail by Tagging with an Enhanced Green Fluorescent Protein Interferes with Hemagglutinin-mediated Membrane Fusion Prior to the Lipid-mixing Step. CYTOLOGIA 2010. [DOI: 10.1508/cytologia.75.435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Mari Gotoh
- Division of Biology, Faculty of Science, Ochanomizu University
| | | | | | - Tomoko Okada
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
| | - Yoshikatsu Ogawa
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
| |
Collapse
|
8
|
Ujike M, Nakajima K, Nobusawa E. A point mutation at the C terminus of the cytoplasmic domain of influenza B virus haemagglutinin inhibits syncytium formation. J Gen Virol 2006; 87:1669-1676. [PMID: 16690932 DOI: 10.1099/vir.0.81528-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The C-terminal sequence of the cytoplasmic tail (CT) of influenza B haemagglutinin (BHA) consists of strictly conserved, hydrophobic amino acids, and the endmost C-terminal amino acid of the CT is Leu. To elucidate the role of this amino acid in the fusion activity of BHA (B/Kanagawa/73), site-specific mutant HAs were created by replacing Leu at this position with Arg, Lys, Ser, Try, Val or Ile or by the deletion of Leu altogether. All mutants were expressed at the cell surface, bound to red blood cells, were cleaved properly into two subunits and could be acylated like the wild-type (wt) HA. The membrane-fusion ability of these mutants was examined with a lipid (R18) and aqueous (calcein) dye-transfer assay and quantified with a syncytium-formation assay. All mutant HAs showed no measurable effect on lipid mixing or fusion-pore formation. However, mutant HAs with a hydrophobic value of the C-terminal amino acid lower than that of Leu had a reduced ability to form syncytia, whereas mutants with a more hydrophobic amino acid (Val or Ile) promoted fusion to the extent of the wt HA. On the other hand, the mutant HA with the deletion of Leu supported full fusion. These results demonstrate that Leu at the endmost portion of the C terminus of the BHA-CT is not essential for BHA-mediated fusion, but that the hydrophobicity of the single amino acid at this position plays an important role in syncytium formation.
Collapse
Affiliation(s)
- Makoto Ujike
- Department of Microbiology and Infection, Nagoya City University Graduate School of Medical Science, Kawasumi 1, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | - Katsuhisa Nakajima
- Department of Microbiology and Infection, Nagoya City University Graduate School of Medical Science, Kawasumi 1, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | - Eri Nobusawa
- Department of Microbiology and Infection, Nagoya City University Graduate School of Medical Science, Kawasumi 1, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| |
Collapse
|
9
|
Chen BJ, Takeda M, Lamb RA. Influenza virus hemagglutinin (H3 subtype) requires palmitoylation of its cytoplasmic tail for assembly: M1 proteins of two subtypes differ in their ability to support assembly. J Virol 2005; 79:13673-84. [PMID: 16227287 PMCID: PMC1262586 DOI: 10.1128/jvi.79.21.13673-13684.2005] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The influenza A virus hemagglutinin (HA) transmembrane domain boundary region and the cytoplasmic tail contain three cysteines (residues 555, 562, and 565 for the H3 HA subtype) that are highly conserved among the 16 HA subtypes and which are each modified by the covalent addition of palmitic acid. Previous analysis of the role of these conserved cysteine residues led to differing data, suggesting either no role for HA palmitoylation or an important role for HA palmitoylation. To reexamine the role of these residues in the influenza virus life cycle, a series of cysteine-to-serine mutations were introduced into the HA gene of influenza virus A/Udorn/72 (Ud) (H3N2) by using a highly efficient reverse genetics system. Mutant viruses containing HA-C562S and HA-C565S mutations had reduced growth and failed to form plaques in MDCK cells but formed wild-type-like plaques in an MDCK cell line expressing wild-type HA. In cell-cell fusion assays, nonpalmitoylated H3 HA, in both cDNA-transfected and virus-infected cells, was fully competent for HA-mediated membrane fusion. When the HA cytoplasmic tail cysteine mutants were examined for lipid raft association, using as the criterion Triton X-100 insolubility, loss of raft association did not show a direct correlation with a reduction in virus replication. However, mutant virus assembly was reduced in parallel with reduced virus replication. Additionally, a reassortant of strain A/WSN/33 (WSN), containing the Ud HA gene with mutations C555S, C562S, and C565S, produced virus that could form plaques on regular MDCK cells and had only moderately decreased replication, suggesting differences in the interactions between Ud and WSN HA and internal viral proteins. Analysis of M1 mutants containing substitutions in the six residues that differ between the Ud and WSN M1 proteins indicated that a constellation of residues are responsible for the difference between the M1 proteins in their ability to support virus assembly with nonpalmitoylated H3 HA.
Collapse
Affiliation(s)
- Benjamin J Chen
- Department of Biochemistry, Northwestern University, 2205 Tech Dr., Evanston, IL 60208-3500, USA
| | | | | |
Collapse
|
10
|
Wagner R, Herwig A, Azzouz N, Klenk HD. Acylation-mediated membrane anchoring of avian influenza virus hemagglutinin is essential for fusion pore formation and virus infectivity. J Virol 2005; 79:6449-58. [PMID: 15858028 PMCID: PMC1091681 DOI: 10.1128/jvi.79.10.6449-6458.2005] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Attachment of palmitic acid to cysteine residues is a common modification of viral glycoproteins. The influenza virus hemagglutinin (HA) has three conserved cysteine residues at its C terminus serving as acylation sites. To analyze the structural and functional roles of acylation, we have generated by reverse genetics a series of mutants (Ac1, Ac2, and Ac3) of fowl plague virus (FPV) containing HA in which the acylation sites at positions 551, 559, and 562, respectively, have been abolished. When virus growth in CV1 and MDCK cells was analyzed, similar amounts of virus particles were observed with the mutants and the wild type. Protein patterns and lipid compositions, characterized by high cholesterol and glycolipid contents, were also indistinguishable. However, compared to wild-type virus, Ac2 and Ac3 virions were 10 and almost 1,000 times less infectious, respectively. Fluorescence transfer experiments revealed that loss of acyl chains impeded formation of fusion pores, whereas hemifusion was not affected. When the affinity to detergent-insoluble glycolipid (DIG) domains was analyzed by Triton X-100 treatment of infected cells and virions, solubilization of Ac2 and Ac3 HAs was markedly facilitated. These observations show that acylation of the cytoplasmic tail, while not necessary for targeting to DIG domains, promotes the firm anchoring and retention of FPV HA in these domains. They also indicate that tight DIG association of FPV HA is essential for formation of fusion pores and thus probably for infectivity.
Collapse
Affiliation(s)
- Ralf Wagner
- Institut für Virologie, Philipps-Universität Marburg, Postfach 2360, 35011 Marburg, Germany
| | | | | | | |
Collapse
|
11
|
Ujike M, Nakajima K, Nobusawa E. Influence of acylation sites of influenza B virus hemagglutinin on fusion pore formation and dilation. J Virol 2004; 78:11536-43. [PMID: 15479794 PMCID: PMC523265 DOI: 10.1128/jvi.78.21.11536-11543.2004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The cytoplasmic tail (CT) of hemagglutinin (HA) of influenza B virus (BHA) contains at positions 578 and 581 two highly conserved cysteine residues (Cys578 and Cys581) that are modified with palmitic acid (PA) through a thioester linkage. To investigate the role of PA in the fusion activity of BHA, site-specific mutagenesis was performed with influenza B virus B/Kanagawa/73 HA cDNA. All of the HA mutants were expressed on Cos cells by an expression vector. The membrane fusion ability of the HA mutants at a low pH was quantitatively examined with lipid (octadecyl rhodamine B chloride) and aqueous (calcein) dye transfer assays and with the syncytium formation assay. Two deacylation mutants lacking a CT or carrying serine residues substituting for Cys578 and Cys581 promoted full fusion. However, one of the single-acylation-site mutants, C6, in which Cys581 is replaced with serine, promoted hemifusion but not pore formation. In contrast, four other single-acylation-site mutants that have a sole cysteine residue in the CT at position 575, 577, 579, or 581 promoted full fusion. The impaired pore-forming ability of C6 was improved by amino acid substitution between residues 578 and 582 or by deletion of the carboxy-terminal leucine at position 582. Syncytium-forming ability, however, was not adequately restored by these mutations. These facts indicated that the acylation was not significant in membrane fusion by BHA but that pore formation and pore dilation were appreciably affected by the particular amino acid sequence of the CT and the existence of a single acylation site in CT residue 578.
Collapse
Affiliation(s)
- Makoto Ujike
- Department of Microbiology and Infection, Graduate School of Medical Science, Nagoya City University, Kawasumi 1, Mizuho-cho, Mizuho-ku, Nagoya City 467-8601, Japan
| | | | | |
Collapse
|
12
|
Moll M, Klenk HD, Maisner A. Importance of the cytoplasmic tails of the measles virus glycoproteins for fusogenic activity and the generation of recombinant measles viruses. J Virol 2002; 76:7174-86. [PMID: 12072517 PMCID: PMC136339 DOI: 10.1128/jvi.76.14.7174-7186.2002] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The generation of replication-competent measles virus (MV) depends on the incorporation of biologically active, fusogenic glycoprotein complexes, which are required for attachment and penetration into susceptible host cells and for direct virus spread by cell-to-cell fusion. Whereas multiple studies have analyzed the importance of the ectodomains of the MV glycoproteins hemagglutinin (H) and fusion protein (F), we have investigated the role of the cytoplasmic tails of the F and H proteins for the formation of fusogenic complexes. Deletions in the cytoplasmic tails of transiently expressed MV glycoproteins were found to have varying effects on receptor binding, fusion, or fusion promotion activity. F tail truncation to only three amino acids did not affect fusion capacity. In contrast, truncation of the H cytoplasmic tail was limited. H protein mutants with cytoplasmic tails of <14 residues no longer supported F-mediated cell fusion, predominantly due to a decrease in surface expression and receptor binding. This indicates that a minimal length of the H protein tail of 14 amino acids is required to ensure a threshold local density to have sufficient accumulation of fusogenic H-F complexes. By using reverse genetics, a recombinant MV with an F tail of three amino acids (rMV-FcDelta30), as well as an MV with an H tail of 14 residues (rMV-HcDelta20), could be rescued, whereas generation of viruses with shorter H tails failed. Thus, glycoprotein truncation does not interfere with the successful generation of recombinant MV if fusion competence is maintained.
Collapse
Affiliation(s)
- Markus Moll
- Institute of Virology, Philipps University of Marburg, Marburg, Germany
| | | | | |
Collapse
|
13
|
Sakai T, Ohuchi R, Ohuchi M. Fatty acids on the A/USSR/77 influenza virus hemagglutinin facilitate the transition from hemifusion to fusion pore formation. J Virol 2002; 76:4603-11. [PMID: 11932425 PMCID: PMC155084 DOI: 10.1128/jvi.76.9.4603-4611.2002] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Influenza virus hemagglutinin (HA) has three highly conserved acylation sites close to the carboxyl terminus of the HA2 subunit, one in the transmembrane domain and two in the cytoplasmic domain. Each site is modified by palmitic acid through a thioester linkage to cysteine. To elucidate the biological significance of HA acylation, the acylation sites of HA of influenza virus strain A/USSR/77 (H1N1) were changed by site-directed mutagenesis, and the membrane fusion activity of mutant HAs lacking the acylation site(s) was examined quantitatively using transfer assays of lipid (R18) and aqueous (calcein) dyes. Lipid mixing, so-called hemifusion, activity was not affected by deacylation, whereas transfer of aqueous dye, so-called fusion pore formation, was dramatically restricted. When the fusion reaction was induced by a lower pH than the optimal one, calcein transfer with the mutant HAs was improved, but simultaneously a considerable calcein leakage into the medium was observed. From these results, we conclude that the palmitic acids on the H1 subtype HA facilitate the transition from hemifusion to fusion pore formation.
Collapse
Affiliation(s)
- Tatsuya Sakai
- Department of Microbiology, Kawasaki Medical School, Kurashiki, Okayama 701-0192, Japan
| | | | | |
Collapse
|
14
|
Chen FS, Markosyan RM, Melikyan GB. The process of membrane fusion: Nipples, hemifusion, pores, and pore growth. PEPTIDE-LIPID INTERACTIONS 2002. [DOI: 10.1016/s1063-5823(02)52020-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
15
|
Smit JM, Bittman R, Wilschut J. Deacylation of the transmembrane domains of Sindbis virus envelope glycoproteins E1 and E2 does not affect low-pH-induced viral membrane fusion activity. FEBS Lett 2001; 498:57-61. [PMID: 11389898 DOI: 10.1016/s0014-5793(01)02495-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The envelope glycoproteins E1 and E2 of Sindbis virus are palmitoylated at cysteine residues within their transmembrane domains (E1 at position 430, and E2 at positions 388 and 390). Here, we investigated the in vitro membrane fusion activity of Sindbis virus variants (derived from the Toto 1101 infectious clone), in which the E1 C430 and/or E2 C388/390 residues had been substituted for alanines. Both the E1 and E2 mutant viruses, as well as a triple mutant virus, fused with liposomes in a strictly low-pH-dependent manner, the fusion characteristics being indistinguishable from those of the parent Toto 1101 virus. These results demonstrate that acylation of the transmembrane domain of Sindbis virus E1 and E2 is not required for expression of viral membrane fusion activity.
Collapse
Affiliation(s)
- J M Smit
- Department of Medical Microbiology, University of Groningen, The Netherlands
| | | | | |
Collapse
|
16
|
Kozerski C, Ponimaskin E, Schroth-Diez B, Schmidt MF, Herrmann A. Modification of the cytoplasmic domain of influenza virus hemagglutinin affects enlargement of the fusion pore. J Virol 2000; 74:7529-37. [PMID: 10906206 PMCID: PMC112273 DOI: 10.1128/jvi.74.16.7529-7537.2000] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The fusion activity of chimeras of influenza virus hemagglutinin (HA) (from A/fpv/Rostock/34; subtype H7) with the transmembrane domain (TM) and/or cytoplasmic tail (CT) either from the nonviral, nonfusogenic T-cell surface protein CD4 or from the fusogenic Sendai virus F-protein was studied. Wild-type or chimeric HA was expressed in CV-1 cells by the transient T7-RNA-polymerase vaccinia virus expression system. Subsequently, the fusion activity of the expression products was monitored with red blood cells or ghosts as target cells. To assess the different steps of fusion, target cells were labeled with the fluorescent membrane label octadecyl rhodamine B-chloride (R18) (membrane fusion) and with the cytoplasmic fluorophores calcein (molecular weight [MW], 623; formation of small aqueous fusion pore) and tetramethylrhodamine-dextran (MW, 10,000; enlargement of fusion pore). All chimeric HA/F-proteins, as well as the chimera with the TM of CD4 and the CT of HA, were able to mediate the different steps of fusion very similarly to wild-type HA. Quite differently, chimeric proteins with the CT of CD4 were strongly impaired in mediating pore enlargement. However, membrane fusion and formation of small pores were similar to those of wild-type HA, indicating that the conformational change of the ectodomain and earlier fusion steps were not inhibited. Various properties of the CT which may affect pore enlargement are considered. We surmise that the hydrophobicity of the sequence adjacent to the transmembrane domain is important for pore dilation.
Collapse
Affiliation(s)
- C Kozerski
- Institut für Biologie/Biophysik, Mathematisch-Naturwissenschaftliche Fakultät I, Humboldt-Universität zu Berlin, D-10115 Berlin, Germany
| | | | | | | | | |
Collapse
|
17
|
Paterson RG, Russell CJ, Lamb RA. Fusion protein of the paramyxovirus SV5: destabilizing and stabilizing mutants of fusion activation. Virology 2000; 270:17-30. [PMID: 10772976 DOI: 10.1006/viro.2000.0267] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The fusion (F) protein of the paramyxovirus SV5 strain W3A causes syncytium formation without coexpression of the SV5 hemagglutinin-neuraminidase (HN) glycoprotein, whereas the F protein of the SV5 strain WR requires coexpression of HN for fusion activity. SV5 strains W3A and WR differ by three amino acid residues at positions 22, 443, and 516. The W3A F protein residues P22, S443, and V516 were changed to amino acids found in the WR F protein (L22, P443, and A516, respectively). Three single-mutants, three double-mutants, and the triple-mutant were constructed, expressed, and assayed for fusion using three different assays. Mutant P22L did not cause fusion under physiological conditions, but fusion was activated at elevated temperatures. Compared with the W3A F protein, mutant S443P enhanced the fusion kinetics with a faster rate and greater extent, and had a lower activation temperature. Mutant V516A had little effect on F protein-mediated fusion. The double-mutant P22L,S443P was capable of causing fusion, suggesting that the two mutations have opposing effects on fusion activation. The WR F protein requires coexpression of HN to cause fusion at 37 degrees C, and does not cause fusion at 37 degrees C when coexpressed with influenza virus hemagglutinin (HA); however, at elevated temperatures coexpression of WR F protein with HA resulted in fusion activation. In the crystal structure of the core trimer of the SV5 F protein (Baker, K. A., Dutch, R. E., Lamb, R.A., and Jardetzky, T. S. (1999). Mol. Cell 3, 309-319), S443 is the last residue (with interpretable electron density) in an extended chain region and the temperature factor for S443 is high, suggesting conformational flexibility at this point. Thus, the presence of prolines at residues 22 and 443 may destabilize the F protein and thereby decrease the energy required to trigger the presumptive conformational change to the fusion-active state.
Collapse
Affiliation(s)
- R G Paterson
- Department of Biochemistry, Molecular Biology, and Cell Biology, Evanston, IL 60208-3500, USA
| | | | | |
Collapse
|
18
|
Ludwig S, Pleschka S, Wolff T. A fatal relationship--influenza virus interactions with the host cell. Viral Immunol 1999; 12:175-96. [PMID: 10532647 DOI: 10.1089/vim.1999.12.175] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Influenza A viruses are important worldwide pathogens for humans and different animal species. The infectious agent is the prototype of the orthomyxoviridae which are characterized by a segmented negative strand RNA genome that is replicated in the nucleus of the infected cell. The genome has a combined coding capacity of about 13 kb and contains the genetic information for ten viral proteins. Despite this relatively small coding capacity--large DNA viruses like herpes or poxviruses express about 150-200 gene products--influenza A viruses are able to successfully infect and multiply in a wide range of mammalian and avian species. It is therefore not surprising that influenza A viruses extensively use and manipulate host cell functions. This includes multiple interactions of viral proteins with cellular proteins. In recent years an increasing amount of information about the identity of the cellular factors that are involved in viral transcription and replication, intracellular trafficking of viral components and assembly of the virus particle has accumulated. This article aims to review recent developments in this field with a focus on cellular factors and processes which are activated by the virus to either support viral replication or to counteract host-cell defense mechanisms.
Collapse
Affiliation(s)
- S Ludwig
- Institut für Medizinische Strahlenkunde und Zellforschung, Julius-Maximilians Universität, Würzburg, Germany.
| | | | | |
Collapse
|
19
|
Inabe K, Nishizawa M, Tajima S, Ikuta K, Aida Y. The YXXL sequences of a transmembrane protein of bovine leukemia virus are required for viral entry and incorporation of viral envelope protein into virions. J Virol 1999; 73:1293-301. [PMID: 9882334 PMCID: PMC103953 DOI: 10.1128/jvi.73.2.1293-1301.1999] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/1998] [Accepted: 10/31/1998] [Indexed: 12/12/2022] Open
Abstract
The cytoplasmic domain of an envelope transmembrane glycoprotein (gp30) of bovine leukemia virus (BLV) has two overlapping copies of the (YXXL)2 motif. The N-terminal motif has been implicated in in vitro signal transduction pathways from the external to the intracellular compartment and is also involved in infection and maintenance of high viral loads in sheep that have been experimentally infected with BLV. To determine the role of YXXL sequences in the replication of BLV in vitro, we changed the tyrosine or leucine residues of the N-terminal motif in an infectious molecular clone of BLV, pBLV-IF, to alanine to produce mutated proviruses designated Y487A, L490A, Y498A, L501A, and Y487/498A. Transient transfection of African green monkey kidney COS-1 cells with proviral DNAs that encoded wild-type and mutant sequences revealed that all of the mutated proviral DNAs synthesized mature envelope proteins and released virus particles into the growth medium. However, serial passages of fetal lamb kidney (FLK) cells, which are sensitive to infection with BLV, after transient transfection revealed that mutation of a second tyrosine residue in the N-terminal motif completely prevented the propagation of the virus. Similarly, Y498A and Y487/498A mutant BLV that was produced by the stably transfected COS-1 cells exhibited significantly reduced levels of cell-free virion-mediated transmission. Analysis of the protein compositions of mutant viruses demonstrated that lower levels of envelope protein were incorporated by two of the mutant virions than by wild-type and other mutant virions. Furthermore, a mutation of a second tyrosine residue decreased the specific binding of BLV particles to FLK cells and the capacity for viral penetration. Our data indicate that the YXXL sequences play critical roles in both viral entry and the incorporation of viral envelope protein into the virion during the life cycle of BLV.
Collapse
Affiliation(s)
- K Inabe
- Tsukuba Life Science Center, The Institute of Physical and Chemical Research (RIKEN), Tsukuba, Ibaraki 305-0074, Japan
| | | | | | | | | |
Collapse
|
20
|
Dutch RE, Joshi SB, Lamb RA. Membrane fusion promoted by increasing surface densities of the paramyxovirus F and HN proteins: comparison of fusion reactions mediated by simian virus 5 F, human parainfluenza virus type 3 F, and influenza virus HA. J Virol 1998; 72:7745-53. [PMID: 9733810 PMCID: PMC110082 DOI: 10.1128/jvi.72.10.7745-7753.1998] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The membrane fusion reaction promoted by the paramyxovirus simian virus 5 (SV5) and human parainfluenza virus type 3 (HPIV-3) fusion (F) proteins and hemagglutinin-neuraminidase (HN) proteins was characterized when the surface densities of F and HN were varied. Using a quantitative content mixing assay, it was found that the extent of SV5 F-mediated fusion was dependent on the surface density of the SV5 F protein but independent of the density of SV5 HN protein, indicating that HN serves only a binding function in the reaction. However, the extent of HPIV-3 F protein promoted fusion reaction was found to be dependent on surface density of HPIV-3 HN protein, suggesting that the HPIV-3 HN protein is a direct participant in the fusion reaction. Analysis of the kinetics of lipid mixing demonstrated that both initial rates and final extents of fusion increased with rising SV5 F protein surface densities, suggesting that multiple fusion pores can be active during SV5 F protein-promoted membrane fusion. Initial rates and extent of lipid mixing were also found to increase with increasing influenza virus hemagglutinin protein surface density, suggesting parallels between the mechanism of fusion promoted by these two viral fusion proteins.
Collapse
Affiliation(s)
- R E Dutch
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, Illinois 60208-3500, USA
| | | | | |
Collapse
|
21
|
Fischer C, Schroth-Diez B, Herrmann A, Garten W, Klenk HD. Acylation of the influenza hemagglutinin modulates fusion activity. Virology 1998; 248:284-94. [PMID: 9721237 DOI: 10.1006/viro.1998.9286] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The influenza virus hemagglutinin (HA) contains three highly conserved cysteine residues at positions 551, 559, and 562 close to the carboxyl-terminus of the HA2 subunit which serve as palmitylation sites. Wild-type HA of influenza virus A/FPV/Rostock/34 (H7N1) and HA permutated by exchange of the acylated cysteine to serine residues were expressed in CV-1 cells by a SV40 vector system. Since density of immunostained HA on the cell surface measured by flow cytometric analysis did not differ between wild-type and acylation mutants, it was possible to compare acylation mutants and wild-type HA for their capacity to induce membrane fusion at low pH. The following observations were made: (1) lateral diffusion of a lipid-like fluorophore (R-18) from the erythrocyte membrane to the plasma membrane of cells expressing HA on the surface occurred equally well with mutants and wild type. (2) Diffusion of a low-molecular-weight fluorescent water-soluble probe (calcein) from erythrocytes into the cytoplasm of HA-expressing cells was not altered either. (3) However, depending on the position and the number of the deleted acylation sites, the mutants showed a reduced ability to induce syncytia. The data indicate that deacylation of the cytoplasmic tail has no measurable effect on the capacity of HA to induce membrane fusion and pore formation but that it suppresses syncytia formation.
Collapse
Affiliation(s)
- C Fischer
- Institut für Virologie, Philipps-Universität Marburg, Marburg, 35011, Germany
| | | | | | | | | |
Collapse
|
22
|
de Haan CA, Kuo L, Masters PS, Vennema H, Rottier PJ. Coronavirus particle assembly: primary structure requirements of the membrane protein. J Virol 1998; 72:6838-50. [PMID: 9658133 PMCID: PMC109893 DOI: 10.1128/jvi.72.8.6838-6850.1998] [Citation(s) in RCA: 196] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Coronavirus-like particles morphologically similar to normal virions are assembled when genes encoding the viral membrane proteins M and E are coexpressed in eukaryotic cells. Using this envelope assembly assay, we have studied the primary sequence requirements for particle formation of the mouse hepatitis virus (MHV) M protein, the major protein of the coronavirion membrane. Our results show that each of the different domains of the protein is important. Mutations (deletions, insertions, point mutations) in the luminal domain, the transmembrane domains, the amphiphilic domain, or the carboxy-terminal domain had effects on the assembly of M into enveloped particles. Strikingly, the extreme carboxy-terminal residue is crucial. Deletion of this single residue abolished particle assembly almost completely; most substitutions were strongly inhibitory. Site-directed mutations in the carboxy terminus of M were also incorporated into the MHV genome by targeted recombination. The results supported a critical role for this domain of M in viral assembly, although the M carboxy terminus was more tolerant of alteration in the complete virion than in virus-like particles, likely because of the stabilization of virions by additional intermolecular interactions. Interestingly, glycosylation of M appeared not essential for assembly. Mutations in the luminal domain that abolished the normal O glycosylation of the protein or created an N-glycosylated form had no effect. Mutant M proteins unable to form virus-like particles were found to inhibit the budding of assembly-competent M in a concentration-dependent manner. However, assembly-competent M was able to rescue assembly-incompetent M when the latter was present in low amounts. These observations support the existence of interactions between M molecules that are thought to be the driving force in coronavirus envelope assembly.
Collapse
Affiliation(s)
- C A de Haan
- Institute of Virology, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, and Institute of Biomembranes, Utrecht University, 3584 CL Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
23
|
Ohuchi M, Fischer C, Ohuchi R, Herwig A, Klenk HD. Elongation of the cytoplasmic tail interferes with the fusion activity of influenza virus hemagglutinin. J Virol 1998; 72:3554-9. [PMID: 9557635 PMCID: PMC109575 DOI: 10.1128/jvi.72.5.3554-3559.1998] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The hemagglutinin (HA) of fowl plague virus was lengthened and shortened by site-specific mutagenesis at the cytoplasmic tail, and the effects of these modifications on HA functions were analyzed after expression from a simian virus 40 vector. Elongation of the tail by the addition of one to six histidine (His) residues did not interfere with intracellular transport, glycosylation, proteolytic cleavage, acylation, cell surface expression, and hemadsorption. However, the ability to induce syncytia at a low pH decreased dramatically depending on the number of His residues added. Partial fusion (hemifusion), assayed by fluorescence transfer from octadecylrhodamine-labeled erythrocyte membranes, was also reduced, but even with the mutant carrying six His residues, significant transfer was observed. However, when the formation of fusion pores was examined with hydrophilic fluorescent calcein, transfer from erythrocytes to HA-expressing cells was not observed with the mutant carrying six histidine residues. The addition of different amino acids to the cytoplasmic tail of HA caused an inhibitory effect similar to that caused by the addition of His. On the other hand, a mutant lacking the cytoplasmic tail was still able to fuse at a reduced level. These results demonstrate that elongation of the cytoplasmic tail interferes with the formation and enlargement of fusion pores. Thus, the length of the cytoplasmic tail plays a critical role in the fusion process.
Collapse
Affiliation(s)
- M Ohuchi
- Institut für Virologie, Philipps-Universität Marburg, Germany
| | | | | | | | | |
Collapse
|
24
|
Schroth-Diez B, Ponimaskin E, Reverey H, Schmidt MF, Herrmann A. Fusion activity of transmembrane and cytoplasmic domain chimeras of the influenza virus glycoprotein hemagglutinin. J Virol 1998; 72:133-41. [PMID: 9420208 PMCID: PMC109357 DOI: 10.1128/jvi.72.1.133-141.1998] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The role of the sequence of transmembrane and cytoplasmic/intraviral domains of influenza virus hemagglutinin (HA, subtype H7) for HA-mediated membrane fusion was explored. To analyze the influence of the two domains on the fusogenic properties of HA, we designed HA-chimeras in which the cytoplasmic tail and/or transmembrane domain of HA was replaced with the corresponding domains of the fusogenic glycoprotein F of Sendai virus. These chimeras, as well as constructs of HA in which the cytoplasmic tail was replaced by peptides of human neurofibromin type 1 (NF1) or c-Raf-1, NF78 (residues 1441 to 1518), and Raf81 (residues 51 to 131), respectively, were expressed in CV-1 cells by using the vaccinia virus-T7 polymerase transient-expression system. Wild-type and chimeric HA were cleaved properly into two subunits and expressed as trimers. Membrane fusion between CV-1 cells and bound human erythrocytes (RBCs) mediated by parental or chimeric HA proteins was studied by a lipid-mixing assay with the lipid-like fluorophore octadecyl rhodamine B chloride (R18). No profound differences in either extent or kinetics could be observed. After the pH was lowered, the above proteins also induced a flow of the aqueous fluorophore calcein from preloaded RBCs into the cytoplasm of the protein-expressing CV-1 cells, indicating that membrane fusion involves both leaflets of the lipid bilayers and leads to formation of an aqueous fusion pore. We conclude that neither HA-specific sequences in the transmembrane and cytoplasmic domains nor their length is crucial for HA-induced membrane fusion activity.
Collapse
Affiliation(s)
- B Schroth-Diez
- Institut für Biologie/Biophysik, Mathematisch-Naturwissenschaftliche Fakultät I, Humboldt-Universität zu Berlin, Germany
| | | | | | | | | |
Collapse
|
25
|
Bagai S, Lamb RA. A glycine to alanine substitution in the paramyxovirus SV5 fusion peptide increases the initial rate of fusion. Virology 1997; 238:283-90. [PMID: 9400601 DOI: 10.1006/viro.1997.8858] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Simian virus 5 fusion (F) protein mutant F-G3A, which contains a glycine-to-alanine substitution at position 3 in the conserved hydrophobic fusion peptide at the N-terminus of the F1 subunit, has been shown previously to cause increased syncytium formation compared to wild-type (wt) F protein, when expressed using an SV40 recombinant virus vector system (C. M. Horvath and R. A. Lamb (1992) J. Virol. 66, 2443-2455). The wt F and the F-G3A proteins were expressed in eukaryotic cells using the vaccinia virus-bacteriophage T7 RNA polymerase (vac-T7) expression system, and they showed similar cell surface expression levels as determined by flow cytometry. The final extent of fusion when the vac-T7 expression system was used was not found to be greatly different when examined with a reporter gene activation assay. However, the initial rate of fusion was found to be five- to sixfold higher for the F-G3A mutant protein than the wt F protein, when examined using a quantitative assay for lipid mixing based on relief of self-quenching of fluorescence of the lipid probe octadecyl rhodamine (R18). A microscopic fluorescent dye transfer assay also showed a much earlier spread of dye from R18-labeled red blood cells to the cells expressing the mutant F-G3A protein than the wt F protein. Thus, these data indicate that a single gly-to-ala mutation in the fusion peptide domain, although not affecting the final extent of fusion, significantly increased the rate of fusion. Possible mechanisms for the increased rate of fusion are discussed.
Collapse
Affiliation(s)
- S Bagai
- Howard Hughes Medical Institute, Northwestern University, Evanston, Illinois 60208-3500, USA
| | | |
Collapse
|
26
|
Melikyan GB, Jin H, Lamb RA, Cohen FS. The role of the cytoplasmic tail region of influenza virus hemagglutinin in formation and growth of fusion pores. Virology 1997; 235:118-28. [PMID: 9300043 DOI: 10.1006/viro.1997.8686] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The effect of the cytoplasmic tail of influenza hemagglutinin (HA) (H3 subtype) on fusion kinetics and pore growth was examined An SV40 recombinant virus was used to express wild-type (WT) HA and HA mutants containing changes in the HA cytoplasmic tail. HA and its mutants were expressed in CV-1 cells and the ability of these cells to fuse to either red blood cells (RBCs) or planar bilayer membranes was determined quantitatively. The percentage of cells expressing HA and the levels of expression were the same for WT HA or HA lacking its cytoplasmic tail (CT-), and for a mutant, MAY, in which the three HA C-terminal cysteine residues were replaced to block the addition of palmitate. When RBCs were colabeled with large and small aqueous dyes and fused to CV-1 cells expressing WT HA, transfer of the large dye was significantly slower and extent of transfer was lower than that of the small dye, indicating that pores did not expand quickly to large diameters. An absence of the HA cytoplasmic tail did not alter the time course of spread for either dye. When CV-1 cells expressing WT HA were fused to planar membranes, small pores tended to open and close repetitively ("flicker") before a pore would continue to either grow irreversibly to large conductances or grow to intermediate sizes and then contract. For HA mutants CT- and MAY, flickering was less likely to occur, but these pores did evolve in a manner identical to WT HA postflicker pores. We conclude that palmitate covalently linked to cysteine residues of the HA cytoplasmic tail is required for pore flickering, but that the tail does not play an important role in subsequent pore enlargement.
Collapse
Affiliation(s)
- G B Melikyan
- Department of Molecular Biophysics and Physiology, Rush Medical College, Chicago, Illinois 60612, USA
| | | | | | | |
Collapse
|
27
|
Nur-E-Kamal MS, Reverey H, Ponimaskin E, Schroth-Diez B, Herrmann A, Schmidt MF. Targeted delivery of human neurofibromin and c-Raf-1 mutants to the cytoplasmic membrane by use of the influenza virus hemagglutinin. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1338:233-43. [PMID: 9128141 DOI: 10.1016/s0167-4838(96)00206-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Mutants of human neurofibromin and c-Raf-1 genes were fused to the 3' end of the hemagglutinin (HA) gene of influenza A virus by oligonucleotide-directed polymerase chain reaction (PCR). The two resulting chimeric genes, HA (1-534)/NF1 (1441-1518) and HA (1-534)/Raf-1 (51-132) which we designated HN and HR, respectively, were cloned in a vaccinia virus expression vector (pTMI) under the control of a T7 RNA polymerase promoter. The clones were expressed in a monkey cell line (CV-1) and the resulting chimeric proteins analysed. We found that expression levels of the chimeric proteins were similar to that of wild-type HA protein. Comparative endoglycosidase treatment revealed that the expressed chimeric proteins HN and HR were processed as wild-type HA, and FACS-analysis showed that both chimeric expression products localised in the cell membrane as the wild-type control. HN and HR expressing cells showed similar fusogenic activity as CV-1 cells transfected with wild-type HA indicating the correct topology of the fusion inducing portion (HA) of these chimera in the membrane. These findings show that the influenza virus hemagglutinin (HA) is a suitable vehicle to target foreign proteins with therapeutical potential into the cell membrane. In this respect HN and HR could potentially be used to block the abnormal signals generated by particular proteins in the cell membrane that lead to cell transformation.
Collapse
Affiliation(s)
- M S Nur-E-Kamal
- Institut für Immunologie und Molekularbiologie, Fachbereich Veterinämedizin der Freien Universität Berlin, Germany
| | | | | | | | | | | |
Collapse
|
28
|
Jin H, Leser GP, Zhang J, Lamb RA. Influenza virus hemagglutinin and neuraminidase cytoplasmic tails control particle shape. EMBO J 1997; 16:1236-47. [PMID: 9135140 PMCID: PMC1169722 DOI: 10.1093/emboj/16.6.1236] [Citation(s) in RCA: 213] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The cytoplasmic tails of the influenza virus glycoproteins hemagglutinin (HA) and neuraminidase (NA) are highly conserved in sequence for all virus subtypes and it is believed that assembly of this enveloped virus depends on interactions of these domains with cytoplasmic viral components. However, it is possible to rescue altered influenza viruses lacking either the HA or NA cytoplasmic tails. We have obtained an influenza virus that lacks both the cytoplasmic tail of HA and NA. Particle production is reduced approximately 10-fold but these particles, although having a fairly normal protein composition, are greatly elongated and of extended irregular shape. We propose a model in which the interactions of the cytoplasmic tails of HA and NA with an internal viral component are so important for spherical virion shape that there is dual redundancy in the interactions.
Collapse
Affiliation(s)
- H Jin
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, IL 60208-3500, USA
| | | | | | | |
Collapse
|
29
|
Bagai S, Lamb RA. Truncation of the COOH-terminal region of the paramyxovirus SV5 fusion protein leads to hemifusion but not complete fusion. J Cell Biol 1996; 135:73-84. [PMID: 8858164 PMCID: PMC2121019 DOI: 10.1083/jcb.135.1.73] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The role of the simian virus 5 (SV5) fusion (F) protein 20 residue COOH-terminal region, thought to represent the cytoplasmic tail, in fusion activity was examined by constructing a series of COOH-terminal truncation mutants. When the altered F proteins were expressed in eukaryotic cells, by using the vaccinia virus-T7 transient expression system, all the F proteins exhibited similar intracellular transport properties and all were expressed abundantly on the cell surface. Quantitative and qualitative cell fusion assays indicated that all of the F protein COOH-terminal truncation mutants mediated lipid mixing with similar kinetics and efficiency as that of wild-type F protein. However, the cytoplasmic content mixing activity decreased in parallel with the extent of the deletion in the F protein COOH-terminal truncation mutants. These data indicate that it is possible to separate the presumptive early step in the fusion reaction, hemifusion, and the final stage of fusion, content mixing, and that the presence of the F protein COOH-terminal region is important for the final steps of fusion.
Collapse
Affiliation(s)
- S Bagai
- Howard Hughes Medical Institute, Northwestern University, Evanston, Illinois 60208-3500, USA
| | | |
Collapse
|
30
|
Enami M, Enami K. Influenza virus hemagglutinin and neuraminidase glycoproteins stimulate the membrane association of the matrix protein. J Virol 1996; 70:6653-7. [PMID: 8794300 PMCID: PMC190706 DOI: 10.1128/jvi.70.10.6653-6657.1996] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We have analyzed the mechanism by which the matrix (M1) protein associates with cellular membranes during influenza A virus assembly. Interaction of the M1 protein with the viral hemagglutinin (HA) or neuraminidase (NA) glycoprotein was extensively analyzed by using wild-type and transfectant influenza viruses as well as recombinant vaccinia viruses expressing the M1 protein, HA, or NA. Membrane binding of the M1 protein was significantly stimulated at the late stage of virus infection. Using recombinant vaccinia viruses, we found that a relatively small fraction (20 to 40%) of the cytoplasmic M1 protein associated with cellular membranes in the absence of other viral proteins, while coexpression of the HA and the NA stimulated membrane binding of the M1 protein. The stimulatory effect of the NA (>90%) was significant and higher than that of the HA (>60%). Introduction of mutations into the cytoplasmic tail of the NA interfered with its stimulatory effect. Meanwhile, the HA may complement the defective NA and facilitate virus assembly in cells infected with the NA/TAIL(-) transfectant. In conclusion, the highly conserved cytoplasmic tails of the HA and NA play an important role in virus assembly.
Collapse
Affiliation(s)
- M Enami
- Department of Biochemistry, Kanazawa University School of Medicine, Ishikawa, Japan
| | | |
Collapse
|
31
|
Sakaguchi T, Leser GP, Lamb RA. The ion channel activity of the influenza virus M2 protein affects transport through the Golgi apparatus. J Cell Biol 1996; 133:733-47. [PMID: 8666660 PMCID: PMC2120830 DOI: 10.1083/jcb.133.4.733] [Citation(s) in RCA: 164] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
High level expression of the M2 ion channel protein of influenza virus inhibits the rate of intracellular transport of the influenza virus hemagglutinin (HA) and that of other integral membrane glycoproteins. HA coexpressed with M2 is properly folded, is not associated with GRP78-BiP, and trimerizes with the same kinetics as when HA is expressed alone. Analysis of the rate of transport of HA from the ER to the cis and medial golgi compartments and the TGN indicated that transport through the Golgi apparatus is delayed. Uncleaved HA0 was not expressed at the cell surface, and accumulation HA at the plasma membrane was reduced to 75-80% of control cells. The delay in intracellular transport of HA on coexpression of M2 was not observed in the presence of the M2-specific ion channel blocker, amantadine, indicating that the Golgi transport delay is due to the M2 protein ion channel activity equilibrating pH between the Golgi lumen and the cytoplasm, and not due to saturation of the intracellular transport machinery. The Na+/H+ ionophore, monensin, which also equilibrates pH between the Golgi lumen and the cytoplasm, caused a similar inhibition of intracellular transport as M2 protein expression did for HA and other integral membrane glycoproteins. EM data showed a dilation of Golgi cisternae in cells expressing the M2 ion channel protein. Taken together, the data suggest a similarity of effects of M2 ion channel activity and monensin on intracellular transport through the Golgi apparatus.
Collapse
Affiliation(s)
- T Sakaguchi
- Department of Biochemistry, Molecular Biology, and Cell Biology, Northwestern University, Evanston, Illinois 60208-3500, USA
| | | | | |
Collapse
|
32
|
Jin H, Subbarao K, Bagai S, Leser GP, Murphy BR, Lamb RA. Palmitylation of the influenza virus hemagglutinin (H3) is not essential for virus assembly or infectivity. J Virol 1996; 70:1406-14. [PMID: 8627657 PMCID: PMC189960 DOI: 10.1128/jvi.70.3.1406-1414.1996] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The C terminus of the influenza virus hemagglutinin (HA) contains three cysteine residues that are highly conserved among HA subtypes, two in the cytoplasmic tail and one in the transmembrane domain. All of these C-terminal cysteine residues are modified by the covalent addition of palmitic acid through a thio-ether linkage. To investigate the role of HA palmitylation in virus assembly, we used reverse genetics technique to introduce substitutions and deletions that affected the three conserved cysteine residues into the H3 subtype HA. The rescued viruses contained the HA of subtype H3 (A/Udorn/72) in a subtype H1 helper virus (A/WSN/33) background. Rescued viruses which do not contain a site for palmitylation (by residue substitution or substitution combined with deletion of the cytoplasmic tail) were obtained. Rescued virions had a normal polypeptide composition. Analysis of the kinetics of HA low-pH-induced fusion of the mutants showed no major change from that of virus with wild-type (wt) HA. The PFU/HA ratio of the rescued viruses grown in eggs ranged from that of virus with wt HA to 16-fold lower levels, whereas the PFU/HA ratio of the rescued viruses grown in MDCK cells varied only 2-fold from that of virus with wt HA. However, except for one rescued mutant virus (CAC), the mutant viruses were attenuated in mice, as indicated by a > or = 400-fold increase in the 50% lethal dose. Interestingly, except for one mutant virus (CAC), all of the rescued mutant viruses were restricted for replication in the upper respiratory tract but much less restricted in the lungs. Thus, the HA cytoplasmic tail may play a very important role in the generation of virus that can replicate in multiple cell types.
Collapse
Affiliation(s)
- H Jin
- Howard Hughes Medical Institute, Northwestern University, Evanston, Illinois 60208-3500, USA
| | | | | | | | | | | |
Collapse
|
33
|
Freed EO, Martin MA. Domains of the human immunodeficiency virus type 1 matrix and gp41 cytoplasmic tail required for envelope incorporation into virions. J Virol 1996; 70:341-51. [PMID: 8523546 PMCID: PMC189823 DOI: 10.1128/jvi.70.1.341-351.1996] [Citation(s) in RCA: 293] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
We recently demonstrated that a single amino acid substitution in matrix residue 12 (12LE) or 30 (30LE) blocks the incorporation of human immunodeficiency virus type 1 (HIV-1) envelope glycoproteins into virions and that this block can be reversed by pseudotyping with heterologous retroviral envelope glycoproteins with short cytoplasmic tails or by truncating the cytoplasmic tail of HIV-1 transmembrane glycoprotein gp41 by 104 or 144 amino acids. In this study, we mapped the domain of the gp41 cytoplasmic tail responsible for the block to incorporation into virions by introducing a series of eight truncation mutations that eliminated 23 to 93 amino acids from the C terminus of gp41. We found that incorporation into virions of a HIV-1 envelope glycoprotein with a deletion of 23, 30, 51, or 56 residues from the C terminus of gp41 is specifically blocked by the 12LE matrix mutation, whereas truncations of greater than 93 amino acids reverse this defect. To elucidate the role of matrix residue 12 in this process, we introduced a number of additional single amino acid substitutions at matrix positions 12 and 13. Charged substitutions at residue 12 blocked envelope incorporation and virus infectivity, whereas more subtle amino acid substitutions resulted in a spectrum of envelope incorporation defects. To characterize further the role of matrix in envelope incorporation into virions, we obtained and analyzed second-site revertants to two different matrix residue 12 mutations. A Val-->Ile substition at matrix amino acid 34 compensated for the effects of both amino acid 12 mutations, suggesting that matrix residues 12 and 34 interact during the incorporation of HIV-1 envelope glycoproteins into nascent virions.
Collapse
Affiliation(s)
- E O Freed
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland 20892-0460, USA
| | | |
Collapse
|
34
|
Bagai S, Lamb RA. Quantitative measurement of paramyxovirus fusion: differences in requirements of glycoproteins between simian virus 5 and human parainfluenza virus 3 or Newcastle disease virus. J Virol 1995; 69:6712-9. [PMID: 7474081 PMCID: PMC189581 DOI: 10.1128/jvi.69.11.6712-6719.1995] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
To compare the requirements for paramyxovirus-mediated cell fusion, the fusion (F) and hemagglutinin-neuraminidase (HN) glycoproteins of simian virus 5 (SV5), human parainfluenza virus 3 (HPIV-3), and Newcastle disease virus (NDV) were expressed individually or coexpressed in either homologous or heterologous combinations in CV-1 or HeLa-T4 cells, using the vaccinia virus-T7 polymerase transient expression system. The contribution of individual glycoproteins in virus-induced membrane fusion was examined by using a quantitative assay for lipid mixing based on the relief of self-quenching (dequenching) of fluorescence of the lipid probe octadecyl rhodamine (R18) and a quantitative assay for content mixing based on the cytoplasmic activation of a reporter gene, beta-galactosidase. In these assays, expression of the individual F glycoproteins did not induce significant levels of cell fusion and no cell fusion was observed in experiments when cells individually expressing homologous F or HN proteins were mixed. However, coexpression of homologous F and HN glycoproteins resulted in extensive cell fusion. The kinetics of fusion were found to be very similar for all three paramyxoviruses studied. With NDV and HPIV-3, no cell fusion was detected when F proteins were coexpressed with heterologous HN proteins or influenza virus hemagglutinin (HA). In contrast, SV5 F protein exhibited a considerable degree of fusion activity when coexpressed with either NDV or HPIV-3 HN or with influenza virus HA, although the kinetics of fusion were two- to threefold higher when the homologous SV5 F and HN proteins were coexpressed. Thus, these data indicate that among the paramyxoviruses tested, SV5 has different requirements for cell fusion.
Collapse
Affiliation(s)
- S Bagai
- Howard Hughes Medical Institute, Northwestern University, Evanston, Illinois 60208-3500, USA
| | | |
Collapse
|
35
|
Yao Q, Compans RW. Differences in the role of the cytoplasmic domain of human parainfluenza virus fusion proteins. J Virol 1995; 69:7045-53. [PMID: 7474124 PMCID: PMC189624 DOI: 10.1128/jvi.69.11.7045-7053.1995] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
We have investigated the roles of the cytoplasmic domains of the human parainfluenza virus type 2 (PI2) and type 3 (PI3) fusion (F) proteins in protein transport and cell fusion activity. By using the vaccinia virus-T7 transient expression system, a series of F protein cytoplasmic tail truncation mutants was studied with respect to intracellular and surface expression and the ability to induce cell fusion when coexpressed with the corresponding hemagglutinin-neuraminidase (HN) proteins. All of the cytoplasmic tail truncation mutants of PI2F were expressed at high levels intracellularly or on cell surfaces as measured by immunoprecipitation and cell surface biotinylation assays. In addition, when coexpressed with PI2HN, these truncation mutants of PI2F were all found to be essentially unimpaired in the ability to induce cell fusion as measured by a quantitative cell fusion assay. In contrast, surface expression and cell fusion activity were found to be eliminated by a mutant of PI3F in which the entire cytoplasmic tail was deleted, and the mutant protein appeared to be unable to assemble into a high-molecular-weight oligomeric structure. To further investigate whether there is a specific sequence requirement in the cytoplasmic tail of PI3F, a chimeric protein consisting of the PI3F extracellular and transmembrane domains and the PI2F cytoplasmic tail was constructed. This chimeric protein was detected on the surface, and it was capable of inducing cell fusion when expressed together with PI3HN, although the fusogenic activity was reduced compared with that of wild-type PI3F. These results demonstrate that although PI2 and PI3 viruses belong to the same parainfluenza virus genus, these viruses show marked differences with respect to functional requirements for the cytoplasmic tail of the F glycoprotein.
Collapse
Affiliation(s)
- Q Yao
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | |
Collapse
|
36
|
Melikyan GB, White JM, Cohen FS. GPI-anchored influenza hemagglutinin induces hemifusion to both red blood cell and planar bilayer membranes. J Cell Biol 1995; 131:679-91. [PMID: 7593189 PMCID: PMC2120621 DOI: 10.1083/jcb.131.3.679] [Citation(s) in RCA: 204] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Under fusogenic conditions, fluorescent dye redistributed from the outer monolayer leaflet of red blood cells (RBCs) to cells expressing glycophosphatidylinositol-anchored influenza virus hemagglutinin (GPI-HA) without transfer of aqueous dye. This suggests that hemifusion, but not full fusion, occurred (Kemble, G. W., T. Danieli, and J. M. White. 1994. Cell. 76:383-391). We extended the evidence for hemifusion by labeling the inner monolayer leaflets of RBCs with FM4-64 and observing that these inner leaflets did not become continuous with GPI-HA-expressing cells. The region of hemifusion-separated aqueous contents, the hemifusion diaphragm, appeared to be extended and was long-lived. But when RBCs hemifused to GPI-HA-expressing cells were osmotically swollen, some diaphragms were disrupted, and spread of both inner leaflet and aqueous dyes was observed. This was characteristic of full fusion: inner leaflet and aqueous probes spread to cells expressing wild-type HA (wt-HA). By simultaneous video fluorescence microscopy and time-resolved electrical admittance measurements, we rigorously demonstrated that GPI-HA-expressing cells hemifuse to planar bilayer membranes: lipid continuity was established without formation of fusion pores. The hemifusion area became large. In contrast, for cells expressing wt-HA, before lipid dye spread, fusion pores were always observed, establishing that full fusion occurred. We present an elastic coupling model in which the ectodomain of wt-HA induces hemifusion and the transmembrane domain, absent in the GPI-HA-expressing cells, mediates full fusion.
Collapse
Affiliation(s)
- G B Melikyan
- Department of Molecular Biophysics and Physiology, Rush Medical College, Chicago, Illinois 60612, USA
| | | | | |
Collapse
|
37
|
LaBranche CC, Sauter MM, Haggarty BS, Vance PJ, Romano J, Hart TK, Bugelski PJ, Marsh M, Hoxie JA. A single amino acid change in the cytoplasmic domain of the simian immunodeficiency virus transmembrane molecule increases envelope glycoprotein expression on infected cells. J Virol 1995; 69:5217-27. [PMID: 7636963 PMCID: PMC189351 DOI: 10.1128/jvi.69.9.5217-5227.1995] [Citation(s) in RCA: 131] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We have described a virus termed CP-MAC, derived from the BK28 molecular clone of simian immunodeficiency virus, that was remarkable for its ability to infect Sup-T1 cells with rapid kinetics, cell fusion, and CD4 down-modulation (C. C. LaBranche, M. M. Sauter, B. S. Haggarty, P. J. Vance, J. Romano, T. K. Hart, P. J. Bugelski, and J. A. Hoxie, J. Virol. 68:5509-5522, 1994 [Erratum 68:7665-7667]). Compared with BK28, CP-MAC exhibited a number of changes in its envelope glycoproteins, including a highly stable association between the external (SU) and transmembrane (TM) molecules, a more rapid electrophoretic mobility of TM, and, of particular interest, a marked increase in the level of envelope protein expression on the surface of infected cells. These changes were shown to be associated with 11 coding mutations in the env gene (5 in SU and 6 in TM). In this report, we demonstrate that a single amino acid mutation of a Tyr to a Cys at position 723 (Y723C) in the TM cytoplasmic domain of CP-MAC is the principal determinant for the increased expression of envelope glycoproteins on the cell surface. When introduced into the env gene of BK28, the Y723C mutation produced up to a 25-fold increase in the levels of SU and TM on chronically infected cells, as determined by fluorescence-activated cell sorter analysis with monoclonal and polyclonal antibodies. A similar effect was observed when a Tyr-to-Cys change was introduced at the analogous position (amino acid 721) in the SIVmac239 molecular clone, which, unlike BK28 does not contain a premature stop codon in its TM cytoplasmic tail. Substituting other amino acids, including Ala, Ile, and Ser, at this position produced increases in surface envelope glycoproteins that were similar to that observed for the Cys substitution, while a Tyr-to-Phe mutation produced a smaller increase. These results could not be accounted for by differences in the kinetics or efficiency of envelope glycoprotein processing or by shedding of SU from infected cells. However, immunoelectron microscopy demonstrated that the Y723C mutation in BK28 produced a striking redistribution of cell surface envelope molecules from localized patches to a diffuse pattern that covered the entire plasma membrane. This finding suggests that mutation of a Tyr residue in the simian immunodeficiency virus TM cytoplasmic domain may disrupt a structural element that can modulate envelope glycoprotein expression on the surface of infected cells.
Collapse
Affiliation(s)
- C C LaBranche
- Hematology-Oncology Division, Hospital of the University of Pennsylvania, Philadelphia 19104, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
García-Sastre A, Palese P. The cytoplasmic tail of the neuraminidase protein of influenza A virus does not play an important role in the packaging of this protein into viral envelopes. Virus Res 1995; 37:37-47. [PMID: 7483820 DOI: 10.1016/0168-1702(95)00017-k] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We have rescued a transfectant influenza virus, NA/TAIL(-), whose neuraminidase (NA) protein lacks the predicted cytoplasmic tail. The virus was attenuated (one log10 reduction) both in tissue culture and in mouse lungs. Attenuation correlated with a 50% reduction of the level of NA in infected cells and levels of incorporation of the tail-less NA protein into viral particles paralleled that in infected cells. This result indicates that the signal for packaging of the NA protein into the viral envelope is not located in its cytoplasmic domain.
Collapse
Affiliation(s)
- A García-Sastre
- Department of Microbiology, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | |
Collapse
|
39
|
[21] Systems to express recombinant RNA molecules by the influenza A virus polymerase in vivo. ACTA ACUST UNITED AC 1995. [DOI: 10.1016/s1067-2389(06)80053-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
40
|
Brody BA, Rhee SS, Hunter E. Postassembly cleavage of a retroviral glycoprotein cytoplasmic domain removes a necessary incorporation signal and activates fusion activity. J Virol 1994; 68:4620-7. [PMID: 8207836 PMCID: PMC236389 DOI: 10.1128/jvi.68.7.4620-4627.1994] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Viral protease-mediated cleavage within the cytoplasmic domain of the transmembrane (TM) glycoprotein of the type D retrovirus, Mason-Pfizer monkey virus, removes approximately 16 amino acids from the carboxy terminus of the protein. To determine the functional significance of this cleavage in the virus life cycle, we introduced premature stop codons into the TM coding domain, resulting in the production of truncated glycoproteins. Progressive truncated of the cytoplasmic domain identified the carboxy-terminal third as being required for efficient incorporation of the glycoprotein complex into budding virions and profoundly increased the fusogenic capability of the TM glycoprotein. These results, together with the ability of matrix protein mutations to suppress TM cleavage, imply that this portion of the glycoprotein interacts specifically with the capsid proteins during budding, suppressing glycoprotein fusion function until virus maturation has occurred.
Collapse
Affiliation(s)
- B A Brody
- Department of Microbiology, University of Alabama at Birmingham 35294
| | | | | |
Collapse
|
41
|
Wentworth DE, Thompson BL, Xu X, Regnery HL, Cooley AJ, McGregor MW, Cox NJ, Hinshaw VS. An influenza A (H1N1) virus, closely related to swine influenza virus, responsible for a fatal case of human influenza. J Virol 1994; 68:2051-8. [PMID: 8138990 PMCID: PMC236678 DOI: 10.1128/jvi.68.4.2051-2058.1994] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
In July 1991, an influenza A virus, designated A/Maryland/12/91 (A/MD), was isolated from the bronchial secretions of a 27-year-old animal caretaker. He had been admitted to the hospital with bilateral pneumonia and died of acute respiratory distress syndrome 13 days later. Antigenic analyses with postinfection ferret antisera and monoclonal antibodies to recent H1 swine hemagglutinins indicated that the hemagglutinin of this virus was antigenically related to, but distinguishable from, those of other influenza A (H1N1) viruses currently circulating in swine. Oligonucleotide mapping of total viral RNAs revealed differences between A/MD and other contemporary swine viruses. However, partial sequencing of each RNA segment of A/MD demonstrated that all segments were related to those of currently circulating swine viruses. Sequence analysis of the entire hemagglutinin, nucleoprotein, and matrix genes of A/MD revealed a high level of identity with other contemporary swine viruses. Our studies on A/MD emphasize that H1N1 viruses in pigs obviously continue to cross species barriers and infect humans.
Collapse
MESH Headings
- Acute Disease
- Adult
- Animals
- Base Sequence
- Bronchi/microbiology
- Cross Reactions
- Genes, Viral/genetics
- Genome, Viral
- Humans
- Infant, Newborn
- Influenza A Virus, H1N1 Subtype
- Influenza A virus/genetics
- Influenza A virus/immunology
- Influenza A virus/pathogenicity
- Influenza, Human/epidemiology
- Influenza, Human/microbiology
- Influenza, Human/mortality
- Male
- Maryland/epidemiology
- Molecular Sequence Data
- Nucleotide Mapping
- Pneumonia, Viral/epidemiology
- Pneumonia, Viral/microbiology
- Pneumonia, Viral/mortality
- Respiratory Distress Syndrome, Newborn
- Sequence Homology, Amino Acid
- Sequence Homology, Nucleic Acid
- Swine
Collapse
Affiliation(s)
- D E Wentworth
- Department of Pathobiological Sciences and Veterinary Sciences, University of Wisconsin-Madison 53706
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Takeuchi K, Lamb RA. Influenza virus M2 protein ion channel activity stabilizes the native form of fowl plague virus hemagglutinin during intracellular transport. J Virol 1994; 68:911-9. [PMID: 7507186 PMCID: PMC236528 DOI: 10.1128/jvi.68.2.911-919.1994] [Citation(s) in RCA: 112] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The influenza A/fowl plague virus/Rostock/34 hemagglutinin (HA), which is cleaved intracellularly and has a high pH threshold (pH 5.9) for undergoing its conformational change to the low-pH form, was expressed from cDNA in CV-1 and HeLa T4 cells in the absence of other influenza virus proteins. It was found, by biochemical assays, that the majority of the HA molecules were in a form indistinguishable from the low-pH form of HA. The acidotropic agent, ammonium chloride, stabilized the accumulation of HA in its native form. Coexpression of HA and the homotypic influenza virus M2 protein, which has ion channel activity, stabilized the accumulation of HA in its pH neutral (native) form, and the M2 protein ion channel blocker, amantadine, prevented the rescue of HA in its native form. These data provide direct evidence that the influenza virus M2 protein ion channel activity can affect the status of the conformational form of cleaved HA during intracellular transport.
Collapse
Affiliation(s)
- K Takeuchi
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, Illinois 60208-3500
| | | |
Collapse
|
43
|
Abstract
It has been proposed that membrane fusion events such as virus-cell fusion proceed through a hemifusion intermediate, a state where lipids but not contents of the fusing compartments mix. We engineered the influenza hemagglutinin (HA) such that it would be anchored in membranes via a glycosylphosphatidylinositol (GPI) tail. GPI-anchored HA forms a trimer that can bind red blood cells (RBCs) and change conformation under fusion-inducing conditions. Using RBCs labeled with fluorescent lipid or fluorescent soluble content probes, we found that GPI-anchored HA mediated lipid mixing with similar time course and efficiency as wt-HA, yet did not mediate transfer of soluble contents. Hence, GPI-anchored HA appears to initiate, but not complete, a fusion reaction. We interpret our results as evidence for uncoupling a physiological fusion reaction, for trapping a hemifusion intermediate, and for assigning a role to a transmembrane domain in a fusion event.
Collapse
Affiliation(s)
- G W Kemble
- Department of Pharmacology, University of California, San Francisco 94143-0450
| | | | | |
Collapse
|
44
|
Abstract
This chapter focuses on the contributions that studies with viruses have made to current concepts in cell biology. Among the important advantages that viruses provide in such studies is their structural and genetic simplicity. The chapter describes the methods for growth, assay, and purification of viruses and infection of cells by several viruses that have been widely utilized for studies of cellular processes. Most investigations of virus replication at the cellular level are carried out using animal cells in culture. For the events in individual cells to occur with a high level of synchrony, single cycle growth conditions are used. Cells are infected using a high multiplicity of infectious virus particles in a low volume of medium to enhance the efficiency of virus adsorption to cell surfaces. After the adsorption period, the residual inoculum is removed and replaced with an appropriate culture medium. During further incubation, each individual cell in the culture is at a similar temporal stage in the viral replication process. Therefore, experimental procedures carried out on the entire culture reflect the replicative events occurring within an individual cell. The length of a single cycle of virus growth can range from a few hours to several days, depending on the virus type.
Collapse
Affiliation(s)
- R W Compans
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia 30322
| | | |
Collapse
|
45
|
Bilsel P, Castrucci MR, Kawaoka Y. Mutations in the cytoplasmic tail of influenza A virus neuraminidase affect incorporation into virions. J Virol 1993; 67:6762-7. [PMID: 8411379 PMCID: PMC238117 DOI: 10.1128/jvi.67.11.6762-6767.1993] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The significance of the conserved cytoplasmic tail sequence of influenza A virus neuraminidase (NA) was analyzed by the recently developed reverse genetics technique (W. Luytjes, M. Krystal, M. Enami, J. D. Parvin, and P. Palese, Cell 59:1107-1113, 1989). A chimeric influenza virus A/WSN/33 NA containing the influenza B virus cytoplasmic tail rescued influenza A virus infectivity. The transfectant virus had less NA incorporated into virions than A/WSN/33, indicating that the cytoplasmic tail of influenza virus NA plays a role in incorporation of NA into virions. However, these results also suggest that the influenza A virus and influenza B virus cytoplasmic tail sequences share common features that lead to the production of infectious virus. Transfectant virus was obtained with all cytoplasmic tail mutants generated by site-directed mutagenesis of the influenza A virus tail, except for the mutant resulting from substitution of the conserved proline residue, presumably because of its contribution to the secondary structure of the tail. No virus was rescued when the cytoplasmic tail was deleted, indicating that the cytoplasmic tail is essential for production of the virus. The virulence of the transfectant viruses in mice was directly proportional to the amount of NA incorporated. The importance of the NA cytoplasmic tail in virus assembly and virulence has implications for use in developing antiviral strategies.
Collapse
Affiliation(s)
- P Bilsel
- Department of Virology and Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38101-0318
| | | | | |
Collapse
|
46
|
Schärer CG, Naim HY, Koblet H. Palmitoylation of Semliki Forest virus glycoproteins in insect cells (C6/36) occurs in an early compartment and is coupled to the cleavage of the precursor p62. Arch Virol 1993; 132:237-54. [PMID: 8379849 DOI: 10.1007/bf01309536] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The acylation of the envelope proteins of Semliki Forest virus by palmitic acid in infected mosquito (C6/36) cells was investigated. It is shown that in these cells palmitic acid was incorporated post-translationally via hydroxylamine-labile linkages onto cysteines in the inner domains of the viral envelope proteins. The kinetics of incorporation, however, differed considerably as compared to higher eukaryotic cells. (i) The precursor of the envelope proteins E2 and E3, p62, was weakly and incompletely palmitoylated irrespective of the duration of labeling. (ii) Under all conditions tested complete acylation of E2 was delayed as compared to E1. (iii) Heavy protein complexes were formed consisting of unacylated p62 and partially unacylated E1. From this data, we conclude that during the maturation of SFV glycoproteins in mosquito cells differently acylated intermediates of p62/E2 exist. Furthermore, acylation of p62/E2 and cleavage of p62 are coupled events, occurring in an early compartment and allowing the release of the envelope oligomers for transport.
Collapse
Affiliation(s)
- C G Schärer
- Institute of Medical Microbiology, University of Berne, Switzerland
| | | | | |
Collapse
|
47
|
Abstract
The ability of mutant or chimeric A/Japan hemagglutinins (HAs) to compete for space in the envelope of A/WSN influenza viruses was investigated with monkey kidney fibroblasts that were infected with recombinant simian virus 40 vectors expressing the Japan proteins and superinfected with A/WSN influenza virus. Wild-type Japan HA assembled into virions as well as WSN HA did. Japan HA lacking its cytoplasmic sequences, HAtail-, was incorporated into influenza virions at half the efficiency of wild-type Japan HA. Chimeric HAs containing the 11 cytoplasmic amino acids of the herpes simplex virus type 1gC glycoprotein or the 29 cytoplasmic amino acids of the vesicular stomatitis virus G protein were incorporated into virions at less than 1% the efficiency of HAtail-. Thus, the cytoplasmic domain of HA was not required for the selection process; however, foreign cytoplasmic sequences, even short ones, were excluded. A chimeric HA having the gC transmembrane domain and the HA cytoplasmic domain (HgCH) was incorporated at 4% the efficiency of HAtail-. When expressed from simian virus 40 recombinants in this system, vesicular stomatitis virus G protein with or without (Gtail-) its cytoplasmic domain was essentially excluded from influenza virions. Taken together, these data indicate that the HA transmembrane domain is required for incorporation of HA into influenza virions. The slightly more efficient incorporation of HgCH than G or Gtail- could indicate that the region important for assembling HA into virions extends into part of the cytoplasmic domain.
Collapse
Affiliation(s)
- H Y Naim
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas 75235-9038
| | | |
Collapse
|
48
|
Naim HY, Amarneh B, Ktistakis NT, Roth MG. Effects of altering palmitylation sites on biosynthesis and function of the influenza virus hemagglutinin. J Virol 1992; 66:7585-8. [PMID: 1433532 PMCID: PMC240475 DOI: 10.1128/jvi.66.12.7585-7588.1992] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Mutagenesis studies indicated that the three cytoplasmic cysteines of the influenza virus A/Japan/305/57 hemagglutinin (HA) are all palmitylated, but to an unequal extent. Replacement of all three cysteines abolished palmitylation, but affected neither HA biosynthesis nor function. Palmitate was not required for HA to be incorporated into virions.
Collapse
Affiliation(s)
- H Y Naim
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas 75235-9038
| | | | | | | |
Collapse
|
49
|
Dubay JW, Roberts SJ, Hahn BH, Hunter E. Truncation of the human immunodeficiency virus type 1 transmembrane glycoprotein cytoplasmic domain blocks virus infectivity. J Virol 1992; 66:6616-25. [PMID: 1357190 PMCID: PMC240157 DOI: 10.1128/jvi.66.11.6616-6625.1992] [Citation(s) in RCA: 197] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Human immunodeficiency virus type 1 contains a transmembrane glycoprotein with an unusually long cytoplasmic domain. To determine the role of this domain in virus replication, a series of single nucleotide changes that result in the insertion of premature termination codons throughout the cytoplasmic domain has been constructed. These mutations delete from 6 to 192 amino acids from the carboxy terminus of gp41 and do not affect the amino acid sequence of the regulatory proteins encoded by rev and tat. The effects of these mutations on glycoprotein biosynthesis and function as well as on virus infectivity have been examined in the context of a glycoprotein expression vector and the viral genome. All of the mutant glycoproteins were synthesized, processed, and transported to the cell surface in a manner similar to that of the wild-type glycoprotein. With the exception of mutants that remove the membrane anchor domain, all of the mutant glycoproteins retained the ability to cause fusion of CD4-bearing cells. However, deletion of more than 19 amino acids from the C terminus of gp41 blocked the ability of mutant virions to infect cells. This defect in virus infectivity appeared to be due at least in part to a failure of the virus to efficiently incorporate the truncated glycoprotein. Similar data were obtained for mutations in two different env genes and two different target cell lines. These results indicate that the cytoplasmic domain of gp41 plays a critical role during virus assembly and entry in the life cycle of human immunodeficiency virus type 1.
Collapse
Affiliation(s)
- J W Dubay
- Department of Microbiology, University of Alabama, Birmingham 35294
| | | | | | | |
Collapse
|