1
|
Yang J. In Vivo Production of dsRNA Using Bacteriophage ϕ6 in Pseudomonas syringae Cit7 Cells. Methods Mol Biol 2024; 2771:65-72. [PMID: 38285392 DOI: 10.1007/978-1-0716-3702-9_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
RNA interference (RNAi), also known as post-transcriptional gene silencing (PTGS), is one of the emerging genetic engineering techniques to effectively silence or inhibit the expression of target genes. This chapter describes a method for in vivo production of dsRNA in non-pathogenic Pseudomonas syringae strains using phage ϕ6 RNA-dependent RNA polymerase, extraction and purification of dsRNA from bacterial solution, and the use of dsRNA to induce silencing of green fluorescent protein (GFP) in transgenic Nicotiana benthamiana.
Collapse
Affiliation(s)
- Jinguang Yang
- Key Laboratory of Tobacco Pest Monitoring, Controlling & Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China.
| |
Collapse
|
2
|
Gottlieb P, Alimova A. Heterologous RNA Recombination in the Cystoviruses φ6 and φ8: A Mechanism of Viral Variation and Genome Repair. Viruses 2022; 14:v14112589. [PMID: 36423198 PMCID: PMC9697746 DOI: 10.3390/v14112589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
Recombination and mutation of viral genomes represent major mechanisms for viral evolution and, in many cases, moderate pathogenicity. Segmented genome viruses frequently undergo reassortment of the genome via multiple infection of host organisms, with influenza and reoviruses being well-known examples. Specifically, major genomic shifts mediated by reassortment are responsible for radical changes in the influenza antigenic determinants that can result in pandemics requiring rapid preventative responses by vaccine modifications. In contrast, smaller mutational changes brought about by the error-prone viral RNA polymerases that, for the most part, lack a replication base mispairing editing function produce small mutational changes in the RNA genome during replication. Referring again to the influenza example, the accumulated mutations-known as drift-require yearly vaccine updating and rapid worldwide distribution of each new formulation. Coronaviruses with a large positive-sense RNA genome have long been known to undergo intramolecular recombination likely mediated by copy choice of the RNA template by the viral RNA polymerase in addition to the polymerase-based mutations. The current SARS-CoV-2 origin debate underscores the importance of understanding the plasticity of viral genomes, particularly the mechanisms responsible for intramolecular recombination. This review describes the use of the cystovirus bacteriophage as an experimental model for recombination studies in a controlled manner, resulting in the development of a model for intramolecular RNA genome alterations. The review relates the sequence of experimental studies from the laboratory of Leonard Mindich, PhD at the Public Health Research Institute-then in New York City-and covers a period of approximately 12 years. Hence, this is a historical scientific review of research that has the greatest relevance to current studies of emerging RNA virus pathogens.
Collapse
|
3
|
Analysis and purification of ssRNA and dsRNA molecules using asymmetrical flow field flow fractionation. J Chromatogr A 2022; 1683:463525. [DOI: 10.1016/j.chroma.2022.463525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/30/2022] [Accepted: 09/18/2022] [Indexed: 11/20/2022]
|
4
|
Levanova AA, Lampi M, Kalke K, Hukkanen V, Poranen MM, Eskelin K. Native RNA Purification Method for Small RNA Molecules Based on Asymmetrical Flow Field-Flow Fractionation. Pharmaceuticals (Basel) 2022; 15:261. [PMID: 35215370 PMCID: PMC8876226 DOI: 10.3390/ph15020261] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/18/2022] [Accepted: 02/18/2022] [Indexed: 02/01/2023] Open
Abstract
RNA molecules provide promising new possibilities for the prevention and treatment of viral infections and diseases. The rapid development of RNA biology and medicine requires advanced methods for the purification of RNA molecules, which allow fast and efficient RNA processing, preferably under non-denaturing conditions. Asymmetrical flow field-flow fractionation (AF4) enables gentle separation and purification of macromolecules based on their diffusion coefficients. The aim of the study was to develop an AF4 method for efficient purification of enzymatically produced antiviral small interfering (si)RNA molecules and to evaluate the overall potential of AF4 in the separation of short single-stranded (ss) and double-stranded (ds) RNA molecules. We show that AF4 separates monomeric ssRNA from dsRNA molecules of the same size and monomeric ssRNA from multimeric forms of the same ssRNA. The developed AF4 method enabled the separation of enzymatically produced 27-nt siRNAs from partially digested substrate dsRNA, which is potentially toxic for mammalian cells. The recovery of AF4-purified enzymatically produced siRNA molecules was about 70%, which is about 20% higher than obtained using anion-exchange chromatography. The AF4-purified siRNAs were not toxic for mammalian cells and fully retained their biological activity as confirmed by efficient inhibition of herpes simplex virus 1 replication in cell culture. Our work is the first to develop AF4 methods for the separation of short RNA molecules.
Collapse
Affiliation(s)
- Alesia A. Levanova
- Molecular and Integrative Biosciences Research Programme, Biological and Environmental Sciences, University of Helsinki, Viikinkaari 9, FI-00014 Helsinki, Finland; (A.A.L.); (M.L.)
| | - Mirka Lampi
- Molecular and Integrative Biosciences Research Programme, Biological and Environmental Sciences, University of Helsinki, Viikinkaari 9, FI-00014 Helsinki, Finland; (A.A.L.); (M.L.)
| | - Kiira Kalke
- Institute of Biomedicine, University of Turku, FI-20014 Turku, Finland; (K.K.); (V.H.)
| | - Veijo Hukkanen
- Institute of Biomedicine, University of Turku, FI-20014 Turku, Finland; (K.K.); (V.H.)
| | - Minna M. Poranen
- Molecular and Integrative Biosciences Research Programme, Biological and Environmental Sciences, University of Helsinki, Viikinkaari 9, FI-00014 Helsinki, Finland; (A.A.L.); (M.L.)
| | - Katri Eskelin
- Molecular and Integrative Biosciences Research Programme, Biological and Environmental Sciences, University of Helsinki, Viikinkaari 9, FI-00014 Helsinki, Finland; (A.A.L.); (M.L.)
| |
Collapse
|
5
|
Levanova AA, Vainio EJ, Hantula J, Poranen MM. RNA-Dependent RNA Polymerase from Heterobasidion RNA Virus 6 Is an Active Replicase In Vitro. Viruses 2021; 13:v13091738. [PMID: 34578320 PMCID: PMC8473416 DOI: 10.3390/v13091738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/24/2021] [Accepted: 08/27/2021] [Indexed: 11/16/2022] Open
Abstract
Heterobasidion RNA virus 6 (HetRV6) is a double-stranded (ds)RNA mycovirus and a member of the recently established genus Orthocurvulavirus within the family Orthocurvulaviridae. The purpose of the study was to determine the biochemical requirements for RNA synthesis catalyzed by HetRV6 RNA-dependent RNA polymerase (RdRp). HetRV6 RdRp was expressed in Escherichia coli and isolated to near homogeneity using liquid chromatography. The enzyme activities were studied in vitro using radiolabeled UTP. The HetRV6 RdRp was able to initiate RNA synthesis in a primer-independent manner using both virus-related and heterologous single-stranded (ss)RNA templates, with a polymerization rate of about 46 nt/min under optimal NTP concentration and temperature. NTPs with 2'-fluoro modifications were also accepted as substrates in the HetRV6 RdRp-catalyzed RNA polymerization reaction. HetRV6 RdRp transcribed viral RNA genome via semi-conservative mechanism. Furthermore, the enzyme demonstrated terminal nucleotidyl transferase (TNTase) activity. Presence of Mn2+ was required for the HetRV6 RdRp catalyzed enzymatic activities. In summary, our study shows that HetRV6 RdRp is an active replicase in vitro that can be potentially used in biotechnological applications, molecular biology, and biomedicine.
Collapse
Affiliation(s)
- Alesia A. Levanova
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, 00790 Helsinki, Finland
- Correspondence: (A.A.L.); (M.M.P.)
| | - Eeva J. Vainio
- Natural Resources Institute Finland, 00790 Helsinki, Finland; (E.J.V.); (J.H.)
| | - Jarkko Hantula
- Natural Resources Institute Finland, 00790 Helsinki, Finland; (E.J.V.); (J.H.)
| | - Minna M. Poranen
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, 00790 Helsinki, Finland
- Correspondence: (A.A.L.); (M.M.P.)
| |
Collapse
|
6
|
Lyytinen OL, Starkova D, Poranen MM. Microbial production of lipid-protein vesicles using enveloped bacteriophage phi6. Microb Cell Fact 2019; 18:29. [PMID: 30732607 PMCID: PMC6366064 DOI: 10.1186/s12934-019-1079-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 01/30/2019] [Indexed: 11/10/2022] Open
Abstract
Background Cystoviruses have a phospholipid envelope around their nucleocapsid. Such a feature is unique among bacterial viruses (i.e., bacteriophages) and the mechanisms of virion envelopment within a bacterial host are largely unknown. The cystovirus Pseudomonas phage phi6 has an envelope that harbors five viral membrane proteins and phospholipids derived from the cytoplasmic membrane of its Gram-negative host. The phi6 major envelope protein P9 and the non-structural protein P12 are essential for the envelopment of its virions. Co-expression of P9 and P12 in a Pseudomonas host results in the formation of intracellular vesicles that are potential intermediates in the phi6 virion assembly pathway. This study evaluated the minimum requirements for the formation of phi6-specific vesicles and the possibility to localize P9-tagged heterologous proteins into such structures in Escherichia coli. Results Using transmission electron microscopy, we detected membranous structures in the cytoplasm of E. coli cells expressing P9. The density of the P9-specific membrane fraction was lower (approximately 1.13 g/cm3 in sucrose) than the densities of the bacterial cytoplasmic and outer membrane fractions. A P9-GFP fusion protein was used to study the targeting of heterologous proteins into P9 vesicles. Production of the GFP-tagged P9 vesicles required P12, which protected the fusion protein against proteolytic cleavage. Isolated vesicles contained predominantly P9-GFP, suggesting selective incorporation of P9-tagged fusion proteins into the vesicles. Conclusions Our results demonstrate that the phi6 major envelope protein P9 can trigger formation of cytoplasmic membrane structures in E. coli in the absence of any other viral protein. Intracellular membrane structures are rare in bacteria, thus making them ideal chasses for cell-based vesicle production. The possibility to locate heterologous proteins into the P9-lipid vesicles facilitates the production of vesicular structures with novel properties. Such products have potential use in biotechnology and biomedicine. Electronic supplementary material The online version of this article (10.1186/s12934-019-1079-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Outi L Lyytinen
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, 00014, Helsinki, Finland
| | - Daria Starkova
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, 00014, Helsinki, Finland.,Laboratory of Molecular Epidemiology and Evolutionary Genetics, St. Petersburg Pasteur Institute, Mira St. 14, St. Petersburg, 197101, Russia
| | - Minna M Poranen
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, 00014, Helsinki, Finland.
| |
Collapse
|
7
|
Efficient Inhibition of Avian and Seasonal Influenza A Viruses by a Virus-Specific Dicer-Substrate Small Interfering RNA Swarm in Human Monocyte-Derived Macrophages and Dendritic Cells. J Virol 2019; 93:JVI.01916-18. [PMID: 30463970 DOI: 10.1128/jvi.01916-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 11/09/2018] [Indexed: 11/20/2022] Open
Abstract
Influenza A viruses (IAVs) are viral pathogens that cause epidemics and occasional pandemics of significant mortality. The generation of efficacious vaccines and antiviral drugs remains a challenge due to the rapid appearance of new influenza virus types and antigenic variants. Consequently, novel strategies for the prevention and treatment of IAV infections are needed, given the limitations of the presently available antivirals. Here, we used enzymatically produced IAV-specific double-stranded RNA (dsRNA) molecules and Giardia intestinalis Dicer for the generation of a swarm of small interfering RNA (siRNA) molecules. The siRNAs target multiple conserved genomic regions of the IAVs. In mammalian cells, the produced 25- to 27-nucleotide-long siRNA molecules are processed by endogenous Dicer into 21-nucleotide siRNAs and are thus designated Dicer-substrate siRNAs (DsiRNAs). We evaluated the efficacy of the above DsiRNA swarm at preventing IAV infections in human primary monocyte-derived macrophages and dendritic cells. The replication of different IAV strains, including avian influenza H5N1 and H7N9 viruses, was significantly inhibited by pretransfection of the cells with the IAV-specific DsiRNA swarm. Up to 7 orders of magnitude inhibition of viral RNA expression was observed, which led to a dramatic inhibition of IAV protein synthesis and virus production. The IAV-specific DsiRNA swarm inhibited virus replication directly through the RNA interference pathway although a weak induction of innate interferon responses was detected. Our results provide direct evidence for the feasibility of the siRNA strategy and the potency of DsiRNA swarms in the prevention and treatment of influenza, including the highly pathogenic avian influenza viruses.IMPORTANCE In spite of the enormous amount of research, influenza virus is still one of the major challenges for medical virology due to its capacity to generate new variants, which potentially lead to severe epidemics and pandemics. We demonstrated here that a swarm of small interfering RNA (siRNA) molecules, including more than 100 different antiviral RNA molecules targeting the most conserved regions of the influenza A virus genome, could efficiently inhibit the replication of all tested avian and seasonal influenza A variants in human primary monocyte-derived macrophages and dendritic cells. The wide antiviral spectrum makes the virus-specific siRNA swarm a potentially efficient treatment modality against both avian and seasonal influenza viruses.
Collapse
|
8
|
Controlled Disassembly and Purification of Functional Viral Subassemblies Using Asymmetrical Flow Field-Flow Fractionation (AF4). Viruses 2018; 10:v10110579. [PMID: 30360510 PMCID: PMC6265779 DOI: 10.3390/v10110579] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 10/17/2018] [Accepted: 10/19/2018] [Indexed: 02/07/2023] Open
Abstract
Viruses protect their genomes by enclosing them into protein capsids that sometimes contain lipid bilayers that either reside above or below the protein layer. Controlled dissociation of virions provides important information on virion composition, interactions, and stoichiometry of virion components, as well as their possible role in virus life cycles. Dissociation of viruses can be achieved by using various chemicals, enzymatic treatments, and incubation conditions. Asymmetrical flow field-flow fractionation (AF4) is a gentle method where the separation is based on size. Here, we applied AF4 for controlled dissociation of enveloped bacteriophage φ6. Our results indicate that AF4 can be used to assay the efficiency of the dissociation process and to purify functional subviral particles.
Collapse
|
9
|
Abstract
Double-stranded RNA viruses infect a wide spectrum of hosts, including animals, plants, fungi, and bacteria. Yet genome replication mechanisms of these viruses are conserved. During the infection cycle, a proteinaceous capsid, the polymerase complex, is formed. An essential component of this capsid is the viral RNA polymerase that replicates and transcribes the enclosed viral genome. The polymerase complex structure is well characterized for many double-stranded RNA viruses. However, much less is known about the hierarchical molecular interactions that take place in building up such complexes. Using the bacteriophage Φ6 self-assembly system, we obtained novel insights into the processes that mediate polymerase subunit incorporation into the polymerase complex for generation of functional structures. The results presented pave the way for the exploitation and engineering of viral self-assembly processes for biomedical and synthetic biology applications. An understanding of viral assembly processes at the molecular level may also facilitate the development of antivirals that target viral capsid assembly. Double-stranded RNA (dsRNA) viruses package several RNA-dependent RNA polymerases (RdRp) together with their dsRNA genome into an icosahedral protein capsid known as the polymerase complex. This structure is highly conserved among dsRNA viruses but is not found in any other virus group. RdRp subunits typically interact directly with the main capsid proteins, close to the 5-fold symmetric axes, and perform viral genome replication and transcription within the icosahedral protein shell. In this study, we utilized Pseudomonas phage Φ6, a well-established virus self-assembly model, to probe the potential roles of the RdRp in dsRNA virus assembly. We demonstrated that Φ6 RdRp accelerates the polymerase complex self-assembly process and contributes to its conformational stability and integrity. We highlight the role of specific amino acid residues on the surface of the RdRp in its incorporation during the self-assembly reaction. Substitutions of these residues reduce RdRp incorporation into the polymerase complex during the self-assembly reaction. Furthermore, we determined that the overall transcription efficiency of the Φ6 polymerase complex increased when the number of RdRp subunits exceeded the number of genome segments. These results suggest a mechanism for RdRp recruitment in the polymerase complex and highlight its novel role in virion assembly, in addition to the canonical RNA transcription and replication functions.
Collapse
|
10
|
Application of steric exclusion chromatography on monoliths for separation and purification of RNA molecules. J Chromatogr A 2018; 1574:50-59. [PMID: 30195858 DOI: 10.1016/j.chroma.2018.08.063] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/22/2018] [Accepted: 08/31/2018] [Indexed: 11/23/2022]
Abstract
Steric exclusion chromatography (SXC) is a method for separation of large target solutes based on their association with a hydrophilic stationary phase through mutual steric exclusion of polyethylene glycol (PEG). Selectivity in SXC is determined by the size or shape (or both) of the solutes alongside the size and concentration of PEG molecules. Elution is achieved by decreasing the PEG concentration. In this study, SXC applicability for the separation and purification of single-stranded (ss) and double-stranded (ds) RNA molecules was evaluated for the first time. The retention of ssRNA and dsRNA molecules of different lengths on convective interaction media (CIM) monolithic columns was systematically studied under variable PEG-6000 and NaCl concentrations. We determined that over 90% of long ssRNAs (700-6374 nucleotides) and long dsRNAs (500-6374 base pairs) are retained on the stationary phase in 15% PEG-6000 and ≥0.4 M NaCl. dsDNA and dsRNA molecules of the same length were partially separated by SXC. Separation of RNA molecules below 100 nucleotides from longer RNA species is easily achieved by SXC. Furthermore, SXC has the potential to separate dsRNAs from ssRNAs of the same length. We also demonstrated that SXC is suitable for the enrichment of ssRNA (PRR1 bacteriophage) and dsRNA (Phi6 bacteriophage) viral genomes from contaminating cellular RNA species. In summary, SXC on CIM monolithic columns is an appropriate tool for rapid RNA separation and concentration.
Collapse
|
11
|
Singhal S, Leon Guerrero CM, Whang SG, McClure EM, Busch HG, Kerr B. Adaptations of an RNA virus to increasing thermal stress. PLoS One 2017; 12:e0189602. [PMID: 29267297 PMCID: PMC5739421 DOI: 10.1371/journal.pone.0189602] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 11/28/2017] [Indexed: 11/18/2022] Open
Abstract
Environments can change in incremental fashions, where a shift from one state to another occurs over multiple organismal generations. The rate of the environmental change is expected to influence how and how well populations adapt to the final environmental state. We used a model system, the lytic RNA bacteriophage Φ6, to investigate this question empirically. We evolved viruses for thermostability by exposing them to heat shocks that increased to a maximum temperature at different rates. We observed increases in the ability of many heat-shocked populations to survive high temperature heat shocks. On their first exposure to the highest temperature, populations that experienced a gradual increase in temperature had higher average survival than populations that experienced a rapid temperature increase. However, at the end of the experiment, neither the survival of populations at the highest temperature nor the number of mutations per population varied significantly according to the rate of thermal change. We also evaluated mutations from the endpoint populations for their effects on viral thermostability and growth. As expected, some mutations did increase viral thermostability. However, other mutations decreased thermostability but increased growth rate, suggesting that benefits of an increased replication rate may have sometimes outweighed the benefits of enhanced thermostability. Our study highlights the importance of considering the effects of multiple selective pressures, even in environments where a single factor changes.
Collapse
Affiliation(s)
- Sonia Singhal
- Department of Biology, University of Washington, Seattle, WA, United States of America
| | | | - Stella G Whang
- Department of Biology, University of Washington, Seattle, WA, United States of America
| | - Erin M McClure
- Department of Biology, University of Washington, Seattle, WA, United States of America
| | - Hannah G Busch
- Department of Biology, University of Washington, Seattle, WA, United States of America
| | - Benjamin Kerr
- Department of Biology, University of Washington, Seattle, WA, United States of America
| |
Collapse
|
12
|
Hanhijärvi KJ, Ziedaite G, Bamford DH, Hæggström E, Poranen MM. Single-molecule measurements of viral ssRNA packaging. RNA (NEW YORK, N.Y.) 2017; 23:119-129. [PMID: 27803153 PMCID: PMC5159644 DOI: 10.1261/rna.057471.116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 10/27/2016] [Indexed: 06/06/2023]
Abstract
Genome packaging of double-stranded RNA (dsRNA) phages has been widely studied using biochemical and molecular biology methods. We adapted the existing in vitro packaging system of one such phage for single-molecule experimentation. To our knowledge, this is the first attempt to study the details of viral RNA packaging using optical tweezers. Pseudomonas phage φ6 is a dsRNA virus with a tripartite genome. Positive-sense (+) single-stranded RNA (ssRNA) genome precursors are packaged into a preformed procapsid (PC), where negative strands are synthesized. We present single-molecule measurements of the viral ssRNA packaging by the φ6 PC. Our data show that packaging proceeds intermittently in slow and fast phases, which likely reflects differences in the unfolding of the RNA secondary structures of the ssRNA being packaged. Although the mean packaging velocity was relatively low (0.07-0.54 nm/sec), packaging could reach 4.62 nm/sec during the fast packaging phase.
Collapse
Affiliation(s)
| | - Gabija Ziedaite
- Department of Biosciences, University of Helsinki, Helsinki 00014, Finland
| | - Dennis H Bamford
- Department of Biosciences, University of Helsinki, Helsinki 00014, Finland
- Institute of Biotechnology, University of Helsinki, Helsinki 00014, Finland
| | - Edward Hæggström
- Department of Physics, University of Helsinki, Helsinki 00014, Finland
| | - Minna M Poranen
- Department of Biosciences, University of Helsinki, Helsinki 00014, Finland
| |
Collapse
|
13
|
Qian X, Hamid FM, El Sahili A, Darwis DA, Wong YH, Bhushan S, Makeyev EV, Lescar J. Functional Evolution in Orthologous Cell-encoded RNA-dependent RNA Polymerases. J Biol Chem 2016; 291:9295-309. [PMID: 26907693 PMCID: PMC4861493 DOI: 10.1074/jbc.m115.685933] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Indexed: 12/15/2022] Open
Abstract
Many eukaryotic organisms encode more than one RNA-dependent RNA polymerase (RdRP) that probably emerged as a result of gene duplication. Such RdRP paralogs often participate in distinct RNA silencing pathways and show characteristic repertoires of enzymatic activities in vitro However, to what extent members of individual paralogous groups can undergo functional changes during speciation remains an open question. We show that orthologs of QDE-1, an RdRP component of the quelling pathway in Neurospora crassa, have rapidly diverged in evolution at the amino acid sequence level. Analyses of purified QDE-1 polymerases from N. crassa (QDE-1(Ncr)) and related fungi, Thielavia terrestris (QDE-1(Tte)) and Myceliophthora thermophila (QDE-1(Mth)), show that all three enzymes can synthesize RNA, but the precise modes of their action differ considerably. Unlike their QDE-1(Ncr) counterpart favoring processive RNA synthesis, QDE-1(Tte) and QDE-1(Mth) produce predominantly short RNA copies via primer-independent initiation. Surprisingly, a 3.19 Å resolution crystal structure of QDE-1(Tte) reveals a quasisymmetric dimer similar to QDE-1(Ncr) Further electron microscopy analyses confirm that QDE-1(Tte) occurs as a dimer in solution and retains this status upon interaction with a template. We conclude that divergence of orthologous RdRPs can result in functional innovation while retaining overall protein fold and quaternary structure.
Collapse
Affiliation(s)
- Xinlei Qian
- From the Division of Structural Biology and Biochemistry, School of Biological Sciences, Nanyang Technological University, 138673 Singapore, Singapore
| | - Fursham M Hamid
- From the Division of Structural Biology and Biochemistry, School of Biological Sciences, Nanyang Technological University, 138673 Singapore, Singapore
| | - Abbas El Sahili
- From the Division of Structural Biology and Biochemistry, School of Biological Sciences, Nanyang Technological University, 138673 Singapore, Singapore
| | - Dina Amallia Darwis
- From the Division of Structural Biology and Biochemistry, School of Biological Sciences, Nanyang Technological University, 138673 Singapore, Singapore
| | - Yee Hwa Wong
- From the Division of Structural Biology and Biochemistry, School of Biological Sciences, Nanyang Technological University, 138673 Singapore, Singapore
| | - Shashi Bhushan
- From the Division of Structural Biology and Biochemistry, School of Biological Sciences, Nanyang Technological University, 138673 Singapore, Singapore
| | - Eugene V Makeyev
- From the Division of Structural Biology and Biochemistry, School of Biological Sciences, Nanyang Technological University, 138673 Singapore, Singapore, the Medical Research Council Centre for Developmental Neurobiology, King's College, London SE1 1UL, United Kingdom, and
| | - Julien Lescar
- From the Division of Structural Biology and Biochemistry, School of Biological Sciences, Nanyang Technological University, 138673 Singapore, Singapore, UPMC UMRS CR7-CNRS ERL 8255-INSERM U1135 Centre d' Immunologie et des Maladies Infectieuses, Faculté de Médecine Pierre et Marie Curie, Centre Hospitalier Universitaire Pitié-Salpêtrière, 75031 Paris, France
| |
Collapse
|
14
|
Revisiting the genome packaging in viruses with lessons from the "Giants". Virology 2014; 466-467:15-26. [PMID: 24998349 DOI: 10.1016/j.virol.2014.06.022] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 06/16/2014] [Accepted: 06/17/2014] [Indexed: 11/23/2022]
Abstract
Genome encapsidation is an essential step in the life cycle of viruses. Viruses either use some of the most powerful ATP-dependent motors to compel the genetic material into the preformed capsid or make use of the positively charged proteins to bind and condense the negatively charged genome in an energy-independent manner. While the former is a hallmark of large DNA viruses, the latter is commonly seen in small DNA and RNA viruses. Discoveries of many complex giant viruses such as mimivirus, megavirus, pandoravirus, etc., belonging to the nucleo-cytoplasmic large DNA virus (NCLDV) superfamily have changed the perception of genome packaging in viruses. From what little we have understood so far, it seems that the genome packaging mechanism in NCLDVs has nothing in common with other well-characterized viral packaging systems such as the portal-terminase system or the energy-independent system. Recent findings suggest that in giant viruses, the genome segregation and packaging processes are more intricately coupled than those of other viral systems. Interestingly, giant viral packaging systems also seem to possess features that are analogous to bacterial and archaeal chromosome segregation. Although there is a lot of diversity in terms of host range, type of genome, and genome size among viruses, they all seem to use three major types of independent innovations to accomplish genome encapsidation. Here, we have made an attempt to comprehensively review all the known viral genome packaging systems, including the one that is operative in giant viruses, by proposing a simple and expanded classification system that divides the viral packaging systems into three large groups (types I-III) on the basis of the mechanism employed and the relatedness of the major packaging proteins. Known variants within each group have been further classified into subgroups to reflect their unique adaptations.
Collapse
|
15
|
Sun X, Pirttimaa MJ, Bamford DH, Poranen MM. Rescue of maturation off-pathway products in the assembly of Pseudomonas phage φ 6. J Virol 2013; 87:13279-86. [PMID: 24089550 PMCID: PMC3838280 DOI: 10.1128/jvi.02285-13] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 09/23/2013] [Indexed: 12/30/2022] Open
Abstract
Many complex viruses use an assembly pathway in which their genome is packaged into an empty procapsid which subsequently matures into its final expanded form. We utilized Pseudomonas phage 6, a well-established virus assembly model, to probe the plasticity of the procapsid maturation pathway. The 6 packaging nucleoside triphosphatase (NTPase), which powers sequential translocation of the three viral genomic single-stranded RNA molecules to the procapsid during capsid maturation, is part of the mature 6 virion but may spontaneously be dissociated from the procapsid shell. We demonstrate that the dissociation of NTPase subunits results in premature capsid expansion, which is detected as a change in the sedimentation velocity and as defects in RNA packaging and transcription activity. However, this dead-end conformation of the procapsids was rescued by the addition of purified NTPase hexamers, which efficiently associated on the NTPase-deficient particles and subsequently drove their contraction to the compact naive conformation. The resulting particles regained their biological and enzymatic activities, directing them into a productive maturation pathway. These observations imply that the maturation pathways of complex viruses may contain reversible steps that allow the rescue of the off-pathway conformation in an overall unidirectional virion assembly pathway. Furthermore, we provide direct experimental evidence that particles which have different physical properties (distinct sedimentation velocities and conformations) display different stages of the genome packaging program and show that the transcriptional activity of the 6 procapsids correlates with the number of associated NTPase subunits.
Collapse
Affiliation(s)
- Xiaoyu Sun
- Department of Biosciences
- Institute of Biotechnology, University of Helsinki, Viikki Biocenter, Helsinki, Finland
| | - Markus J. Pirttimaa
- Department of Biosciences
- Institute of Biotechnology, University of Helsinki, Viikki Biocenter, Helsinki, Finland
| | - Dennis H. Bamford
- Department of Biosciences
- Institute of Biotechnology, University of Helsinki, Viikki Biocenter, Helsinki, Finland
| | | |
Collapse
|
16
|
El Omari K, Meier C, Kainov D, Sutton G, Grimes JM, Poranen MM, Bamford DH, Tuma R, Stuart DI, Mancini EJ. Tracking in atomic detail the functional specializations in viral RecA helicases that occur during evolution. Nucleic Acids Res 2013; 41:9396-410. [PMID: 23939620 PMCID: PMC3814363 DOI: 10.1093/nar/gkt713] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Many complex viruses package their genomes into empty protein shells and bacteriophages of the Cystoviridae family provide some of the simplest models for this. The cystoviral hexameric NTPase, P4, uses chemical energy to translocate single-stranded RNA genomic precursors into the procapsid. We previously dissected the mechanism of RNA translocation for one such phage, ɸ12, and have now investigated three further highly divergent, cystoviral P4 NTPases (from ɸ6, ɸ8 and ɸ13). High-resolution crystal structures of the set of P4s allow a structure-based phylogenetic analysis, which reveals that these proteins form a distinct subfamily of the RecA-type ATPases. Although the proteins share a common catalytic core, they have different specificities and control mechanisms, which we map onto divergent N- and C-terminal domains. Thus, the RNA loading and tight coupling of NTPase activity with RNA translocation in ɸ8 P4 is due to a remarkable C-terminal structure, which wraps right around the outside of the molecule to insert into the central hole where RNA binds to coupled L1 and L2 loops, whereas in ɸ12 P4, a C-terminal residue, serine 282, forms a specific hydrogen bond to the N7 of purines ring to confer purine specificity for the ɸ12 enzyme.
Collapse
Affiliation(s)
- Kamel El Omari
- Division of Structural Biology, The Wellcome Trust Centre for Human Genetics, University of Oxford, Headington, Oxford OX3 7BN, UK, Institute for Molecular Medicine Finland (FIMM), University of Helsinki, 00290 Helsinki, Finland, Department of Environmental Research, Siauliai University, Vilniaus gatvė 88, 76285 Siauliai, Lithuania, Diamond Light Source Limited, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK, Department of Biosciences, University of Helsinki, Biocenter 2, PO Box 56, 00014 Helsinki, Finland, Institute of Biotechnology, University of Helsinki, Biocenter 2, PO Box 56, 00014 Helsinki, Finland and Astbury Centre for Structural Molecular Biology and School of Cellular and Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
El Omari K, Sutton G, Ravantti J, Zhang H, Walter T, Grimes J, Bamford D, Stuart D, Mancini E. Plate tectonics of virus shell assembly and reorganization in phage φ8, a distant relative of mammalian reoviruses. Structure 2013; 21:1384-95. [PMID: 23891291 PMCID: PMC3737474 DOI: 10.1016/j.str.2013.06.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Revised: 06/26/2013] [Accepted: 06/27/2013] [Indexed: 01/07/2023]
Abstract
The hallmark of a virus is its capsid, which harbors the viral genome and is formed from protein subunits, which assemble following precise geometric rules. dsRNA viruses use an unusual protein multiplicity (120 copies) to form their closed capsids. We have determined the atomic structure of the capsid protein (P1) from the dsRNA cystovirus Φ8. In the crystal P1 forms pentamers, very similar in shape to facets of empty procapsids, suggesting an unexpected assembly pathway that proceeds via a pentameric intermediate. Unlike the elongated proteins used by dsRNA mammalian reoviruses, P1 has a compact trapezoid-like shape and a distinct arrangement in the shell, with two near-identical conformers in nonequivalent structural environments. Nevertheless, structural similarity with the analogous protein from the mammalian viruses suggests a common ancestor. The unusual shape of the molecule may facilitate dramatic capsid expansion during phage maturation, allowing P1 to switch interaction interfaces to provide capsid plasticity.
Collapse
Affiliation(s)
- Kamel El Omari
- Division of Structural Biology, The Wellcome Trust Centre for Human Genetics, University of Oxford, Headington, Oxford OX3 7BN, UK
| | - Geoff Sutton
- Division of Structural Biology, The Wellcome Trust Centre for Human Genetics, University of Oxford, Headington, Oxford OX3 7BN, UK
| | - Janne J. Ravantti
- Institute of Biotechnology and Department of Biosciences, University of Helsinki, Biocenter 2, P.O. Box 56, 00014 Helsinki, Finland
| | - Hanwen Zhang
- Division of Structural Biology, The Wellcome Trust Centre for Human Genetics, University of Oxford, Headington, Oxford OX3 7BN, UK
| | - Thomas S. Walter
- Division of Structural Biology, The Wellcome Trust Centre for Human Genetics, University of Oxford, Headington, Oxford OX3 7BN, UK
| | - Jonathan M. Grimes
- Division of Structural Biology, The Wellcome Trust Centre for Human Genetics, University of Oxford, Headington, Oxford OX3 7BN, UK
- Diamond Light Source Limited, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
| | - Dennis H. Bamford
- Institute of Biotechnology and Department of Biosciences, University of Helsinki, Biocenter 2, P.O. Box 56, 00014 Helsinki, Finland
| | - David I. Stuart
- Division of Structural Biology, The Wellcome Trust Centre for Human Genetics, University of Oxford, Headington, Oxford OX3 7BN, UK
- Diamond Light Source Limited, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
| | - Erika J. Mancini
- Division of Structural Biology, The Wellcome Trust Centre for Human Genetics, University of Oxford, Headington, Oxford OX3 7BN, UK
- Corresponding author
| |
Collapse
|
18
|
Romanovskaya A, Sarin LP, Bamford DH, Poranen MM. High-throughput purification of double-stranded RNA molecules using convective interaction media monolithic anion exchange columns. J Chromatogr A 2012; 1278:54-60. [PMID: 23332782 DOI: 10.1016/j.chroma.2012.12.050] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 12/20/2012] [Accepted: 12/20/2012] [Indexed: 11/15/2022]
Abstract
Recent advances in the field of RNA interference and new cost-effective approaches for large-scale double-stranded RNA (dsRNA) synthesis have fuelled the demand for robust high-performance purification techniques suitable for dsRNA molecules of various lengths. To address this issue, we developed an improved dsRNA purification method based on anion exchange chromatography utilizing convective interaction media (CIM) monolithic columns. To evaluate column performance we synthesized a selection of dsRNA molecules (58-1810 bp) in a one-step enzymatic reaction involving bacteriophage T7 DNA-dependent RNA polymerase and phi6 RNA-dependent RNA polymerase. In addition, small interfering RNAs (siRNAs) of 25-27 bp were generated by Dicer digestion of the genomic dsRNA of bacteriophage phi6. We demonstrated that linearly scalable CIM monolithic quaternary amine (QA) columns can be used as a fast and superior alternative to standard purification methods (e.g. LiCl precipitation) to obtain highly pure dsRNA preparations. The impurities following Dicer treatment were quickly and efficiently removed with the QA CIM monolithic column, yielding siRNA molecules of high purity suitable for potential therapeutic applications. Moreover, baseline separation of dsRNA molecules up to 1 kb in non-denaturing conditions was achieved.
Collapse
Affiliation(s)
- Alesia Romanovskaya
- Department of Biosciences, University of Helsinki, Biocenter 2, P.O. Box 56, 00014 University of Helsinki, Finland
| | | | | | | |
Collapse
|
19
|
Romanovskaya A, Paavilainen H, Nygårdas M, Bamford DH, Hukkanen V, Poranen MM. Enzymatically produced pools of canonical and Dicer-substrate siRNA molecules display comparable gene silencing and antiviral activities against herpes simplex virus. PLoS One 2012; 7:e51019. [PMID: 23226452 PMCID: PMC3511422 DOI: 10.1371/journal.pone.0051019] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 10/29/2012] [Indexed: 11/19/2022] Open
Abstract
RNA interference (RNAi)-based sequence-specific gene silencing is applied to identify gene function and also possesses great potential for inhibiting virus replication both in animals and plants. Small interfering RNA (siRNA) molecules are the inducers of gene silencing in the RNAi pathway but may also display immunostimulatory activities and promote apoptosis. Canonical siRNAs are 21 nucleotides (nt) in length and are loaded to the RNA Induced Silencing Complex when introduced into the cells, while longer siRNA molecules are first processed by endogenous Dicer and thus termed Dicer-substrate siRNA (DsiRNA). We have applied RNA polymerases from bacteriophages T7 and phi6 to make high-quality double-stranded RNA molecules that are specific for the UL29 gene of herpes simplex virus (HSV). The 653 nt long double-stranded RNA molecules were converted to siRNA and DsiRNA pools using Dicer enzymes originating from human or Giardia intestinalis, producing siRNAs of approximately 21 and 27 nt in length, respectively. Chemically synthesised 21 and 27 nt single-site siRNA targeting the UL29 were used as references. The impact of these siRNAs on cell viability, inflammatory responses, gene silencing, and anti-HSV activity were assayed in cells derived from human nervous system and skin. Both pools and the canonical single-site siRNAs displayed substantial antiviral activity resulting in four orders of magnitude reduction in virus titer. Notably, the pool of DsiRNAs caused lower immunostimulation than the pool of canonical siRNAs, whereas the immunostimulation effect was in relation to the length with the single-site siRNAs. Our results also propose differences in the processivity of the two Dicers.
Collapse
Affiliation(s)
| | | | | | - Dennis H. Bamford
- Department of Biosciences, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Veijo Hukkanen
- Department of Virology, University of Turku, Turku, Finland
| | - Minna M. Poranen
- Department of Biosciences, University of Helsinki, Helsinki, Finland
- * E-mail:
| |
Collapse
|
20
|
Sarin LP, Wright S, Chen Q, Degerth LH, Stuart DI, Grimes JM, Bamford DH, Poranen MM. The C-terminal priming domain is strongly associated with the main body of bacteriophage ϕ6 RNA-dependent RNA polymerase. Virology 2012; 432:184-93. [DOI: 10.1016/j.virol.2012.05.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 03/06/2012] [Accepted: 05/21/2012] [Indexed: 12/17/2022]
|
21
|
Bacteriophage ϕ6 nucleocapsid surface protein 8 interacts with virus-specific membrane vesicles containing major envelope protein 9. J Virol 2012; 86:5376-9. [PMID: 22379079 DOI: 10.1128/jvi.00172-12] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enveloped double-stranded RNA (dsRNA) bacterial virus Pseudomonas phage ϕ6 has been developed into an advanced assembly system where purified virion proteins and genome segments self-assemble into infectious viral particles, inferring the assembly pathway. The most intriguing step is the membrane assembly occurring inside the bacterial cell. Here, we demonstrate that the middle virion shell, made of protein 8, associates with the expanded viral core particle and the virus-specific membrane vesicle.
Collapse
|
22
|
Assembly of Large Icosahedral Double-Stranded RNA Viruses. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 726:379-402. [DOI: 10.1007/978-1-4614-0980-9_17] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
23
|
Abstract
P4 proteins are hexameric RNA packaging ATPases of dsRNA bacteriophages of the Cystoviridae family. P4 hexamers are integral part of the inner polymerase core and play several essential roles in the virus replication cycle. P4 proteins are structurally related to the hexameric helicases and translocases of superfamily 4 (SF4) and other RecA-like ATPases. Recombinant P4 proteins retain their 5' to 3' helicase and translocase activity in vitro and thus serve as a model system for studying the mechanism of action of hexameric ring helicases and RNA translocation. This review summarizes the different roles that P4 proteins play during virus assembly, genome packaging, and transcription. Structural and mechanistic details of P4 action are laid out to and subsequently compared with those of the related hexameric helicases and other packaging motors.
Collapse
Affiliation(s)
- Erika J Mancini
- Wellcome Trust Centre for Human Genetics, Oxford University, Oxford, OX3 7BN, UK.
| | | |
Collapse
|
24
|
Katz A, Alimova A, Futerman E, Katz G, Wei H, Gottlieb P. Bacteriophage φ6--structure investigated by fluorescence Stokes shift spectroscopy. Photochem Photobiol 2011; 88:304-10. [PMID: 22181691 DOI: 10.1111/j.1751-1097.2011.01051.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Stokes shift of tryptophan (Trp) fluorescence from layers of the lipid-containing bacteriophage φ6 is compared to determine the relative effect of the layers on virus hydrophobicity. In the inner most layer, the empty procapsid (PC) which contains 80-90% of the virion Trp residues, λ(max) = 339.8 nm. The PC emission is substantially more redshifted than the other φ6 layers and nearer to that of the Pseudomonad host cell than the other φ6 layers. The Trp emission from the nucleocapsid (NC) with λ(max) = 337.4 nm, is blueshifted by 2.4 nm relative to the PC although the number of Trp in the NC is identical to the PC. This shift represents an increase in Trp hydrophobicity, likely a requirement for the maintenance of A-form doubled-stranded RNA. Fluorescence from the completely assembled virion indicates it is in a considerably more hydrophobic environment with λ(max) = 330.9 nm. Density measurements show that the water content in the NC does not change during envelope assembly, therefore the blueshifted φ6 emission suggests that the envelope changes the PC environment, probably via the P8 layer. This change in hydrophobicity likely arises from charge redistribution or envelope-induced structural changes in the PC proteins.
Collapse
Affiliation(s)
- Alvin Katz
- Physics Department, The City College of New York, New York, NY, USA.
| | | | | | | | | | | |
Collapse
|
25
|
Jiang M, Osterlund P, Sarin LP, Poranen MM, Bamford DH, Guo D, Julkunen I. Innate immune responses in human monocyte-derived dendritic cells are highly dependent on the size and the 5' phosphorylation of RNA molecules. THE JOURNAL OF IMMUNOLOGY 2011; 187:1713-21. [PMID: 21742966 DOI: 10.4049/jimmunol.1100361] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Recognition of viral genetic material takes place via several different receptor systems, such as retinoic acid-inducible gene I-like receptors and TLRs 3, 7, 8, and 9. At present, systematic comparison of the ability of different types of RNAs to induce innate immune responses in human immune cells has been limited. In this study, we generated bacteriophage 6 and influenza A virus-specific ssRNA and dsRNA molecules ranging from 58 to 2956 nt. In human monocyte-derived dendritic cells (moDCs), short dsRNAs efficiently upregulated the expression of IFN (IFN-α, IFN-β, and IFN-λ1) and proinflammatory (TNF-α, IL-6, IL-12, and CXCL10) cytokine genes. These genes were also induced by ssRNA molecules, but size-specific differences were not as pronounced as with dsRNA molecules. Dephosphorylation of short ssRNA and dsRNA molecules led to a dramatic reduction in their ability to stimulate innate immune responses. Such a difference was not detected for long ssRNAs. RNA-induced cytokine responses correlated well with IFN regulatory factor 3 phosphorylation, suggesting that IFN regulatory factor 3 plays a major role in both ssRNA- and dsRNA-activated responses in human moDCs. We also found that IFN gene expression was efficiently stimulated following recognition of short dsRNAs by retinoic acid-inducible gene I and TLR3 in human embryonic kidney 293 cells, whereas ssRNA-induced responses were less dependent on the size of the RNA molecule. Our data suggest that human moDCs are extremely sensitive in recognizing foreign RNA, and the responses depend on RNA size, form (ssRNA versus dsRNA), and the level of 5' phosphorylation.
Collapse
Affiliation(s)
- Miao Jiang
- National Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | | | | | | | | | | | | |
Collapse
|
26
|
Lee HC, Aalto AP, Yang Q, Chang SS, Huang G, Fisher D, Cha J, Poranen MM, Bamford DH, Liu Y. The DNA/RNA-dependent RNA polymerase QDE-1 generates aberrant RNA and dsRNA for RNAi in a process requiring replication protein A and a DNA helicase. PLoS Biol 2010; 8. [PMID: 20957187 PMCID: PMC2950127 DOI: 10.1371/journal.pbio.1000496] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Accepted: 08/16/2010] [Indexed: 12/27/2022] Open
Abstract
The Neurospora RNA-dependent RNA polymerase QDE-1 is an RNA polymerase that can use both RNA and DNA as templates, suggesting a new mechanism for small RNA production. The production of aberrant RNA (aRNA) is the initial step in several RNAi pathways. How aRNA is produced and specifically recognized by RNA-dependent RNA polymerases (RdRPs) to generate double-stranded RNA (dsRNA) is not clear. We previously showed that in the filamentous fungus Neurospora, the RdRP QDE-1 is required for rDNA-specific aRNA production, suggesting that QDE-1 may be important in aRNA synthesis. Here we show that a recombinant QDE-1 is both an RdRP and a DNA-dependent RNA polymerase (DdRP). Its DdRP activity is much more robust than the RdRP activity and occurs on ssDNA but not dsDNA templates. We further show that Replication Protein A (RPA), a single-stranded DNA-binding complex that interacts with QDE-1, is essential for aRNA production and gene silencing. In vitro reconstitution assays demonstrate that QDE-1 can produce dsRNA from ssDNA, a process that is strongly promoted by RPA. Furthermore, the interaction between QDE-1 and RPA requires the RecQ DNA helicase QDE-3, a homolog of the human Werner/Bloom Syndrome proteins. Together, these results suggest a novel small RNA biogenesis pathway in Neurospora and a new mechanism for the production of aRNA and dsRNA in RNAi pathways. Small RNA molecules (20–30 nucleotides) play important roles in many cellular processes in eukaryotic organisms by silencing gene expression. To generate the many forms of small RNAs, DNA is first transcribed to produce single-stranded RNA (ssRNA), which then is converted to double-stranded RNA (dsRNA) by an RNA-dependent RNA polymerase (RdRP). However, it is not clear how the ssRNA templates are synthesized from DNA and specifically recognized by RdRPs amidst a sea of single-stranded, cellular RNAs. We previously showed that in the filamentous fungus Neurospora the production of one type of small RNA called qiRNA, which is specifically induced after DNA damage, requires the RdRP QDE-1. Here, we investigated the precise contributions of QDE-1 to the synthesis of ssRNA and dsRNA. We show that QDE-1 is surprisingly promiscuous in its template choice in that it is able to synthesize RNA from both ssRNA and single-stranded DNA (ssDNA). These results suggest that QDE-1 first generates ssRNA from a DNA template and then converts the ssRNA into dsRNA; this combination of activities in one protein ensures the specific action by RdRP on aberrant RNA in lieu of other single-stranded cellular RNA. In addition, we identified Replication Protein A, a ssDNA-binding protein that interacts with QDE-1, as an essential factor for small RNA production. Furthermore, we were able to reconstitute synthesis of dsRNA from ssDNA in a test tube using purified QDE-1 and RPA proteins, demonstrating the ability of this relatively simple biosynthetic system to generate the nucleic acid trigger for gene regulation. Together, these results uncover the details of a new and important small RNA production mechanism in cells.
Collapse
Affiliation(s)
- Heng-Chi Lee
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Aalto AP, Poranen MM, Grimes JM, Stuart DI, Bamford DH. In vitro activities of the multifunctional RNA silencing polymerase QDE-1 of Neurospora crassa. J Biol Chem 2010; 285:29367-74. [PMID: 20647305 PMCID: PMC2937969 DOI: 10.1074/jbc.m110.139121] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Revised: 07/13/2010] [Indexed: 01/10/2023] Open
Abstract
QDE-1 is an RNA- and DNA-dependent RNA polymerase that has functions in the RNA silencing and DNA repair pathways of the filamentous fungus Neurospora crassa. The crystal structure of the dimeric enzyme has been solved, and the fold of its catalytic core is related closely to that of eukaryotic DNA-dependent RNA polymerases. However, the specific activities of this multifunctional enzyme are still largely unknown. In this study, we characterized the in vitro activities of the N-terminally truncated QDE-1ΔN utilizing structure-based mutagenesis. Our results indicate that QDE-1 displays five distinct catalytic activities, which can be dissected by mutating critical amino acids or by altering reaction conditions. Our data also suggest that the RNA- and DNA-dependent activities have different modes for the initiation of RNA synthesis, which may reflect the mechanism that enables the polymerase to discriminate between template nucleic acids. Moreover, we show that QDE-1 is a highly potent terminal nucleotidyltransferase. Our results suggest that QDE-1 is able to regulate its activity mode depending on the template nucleic acid. This work extends our understanding of the biochemical properties of the QDE-1 enzyme and related RNA polymerases.
Collapse
Affiliation(s)
- Antti P. Aalto
- From the Institute of Biotechnology and Department of Biosciences, Biocenter 2, P.O. Box 56, University of Helsinki, FIN-00014 Helsinki, Finland and
| | - Minna M. Poranen
- From the Institute of Biotechnology and Department of Biosciences, Biocenter 2, P.O. Box 56, University of Helsinki, FIN-00014 Helsinki, Finland and
| | - Jonathan M. Grimes
- the Division of Structural Biology, The Henry Wellcome Building for Genomic Medicine, Oxford University, Oxford OX3 7BN, United Kingdom
| | - David I. Stuart
- the Division of Structural Biology, The Henry Wellcome Building for Genomic Medicine, Oxford University, Oxford OX3 7BN, United Kingdom
| | - Dennis H. Bamford
- From the Institute of Biotechnology and Department of Biosciences, Biocenter 2, P.O. Box 56, University of Helsinki, FIN-00014 Helsinki, Finland and
| |
Collapse
|
28
|
Sarin LP, Poranen MM, Lehti NM, Ravantti JJ, Koivunen MRL, Aalto AP, van Dijk AA, Stuart DI, Grimes JM, Bamford DH. Insights into the pre-initiation events of bacteriophage phi 6 RNA-dependent RNA polymerase: towards the assembly of a productive binary complex. Nucleic Acids Res 2009; 37:1182-92. [PMID: 19129226 PMCID: PMC2651803 DOI: 10.1093/nar/gkn1035] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2008] [Revised: 12/09/2008] [Accepted: 12/11/2008] [Indexed: 12/18/2022] Open
Abstract
The RNA-dependent RNA polymerase (RdRP) of double-stranded RNA (dsRNA) viruses performs both RNA replication and transcription. In order to initiate RNA polymerization, viral RdRPs must be able to interact with the incoming 3' terminus of the template and position it, so that a productive binary complex is formed. Structural studies have revealed that RdRPs of dsRNA viruses that lack helicases have electrostatically charged areas on the polymerase surface, which might facilitate such interactions. In this study, structure-based mutagenesis, enzymatic assays and molecular mapping of bacteriophage phi 6 RdRP and its RNA were used to elucidate the roles of the negatively charged plough area on the polymerase surface, of the rim of the template tunnel and of the template specificity pocket that is key in the formation of the productive RNA-polymerase binary complex. The positively charged rim of the template tunnel has a significant role in the engagement of highly structured ssRNA molecules, whereas specific interactions further down in the template tunnel promote ssRNA entry to the catalytic site. Hence, we show that by aiding the formation of a stable binary complex with optimized RNA templates, the overall polymerization activity of the phi 6 RdRP can be greatly enhanced.
Collapse
Affiliation(s)
- L. Peter Sarin
- Institute of Biotechnology and Department of Biological and Environmental Sciences, University of Helsinki, Biocenter 2, 00014 University of Helsinki, Finland and Division of Structural Biology, The Henry Wellcome Building for Genomic Medicine, Oxford University, Oxford OX3 7BN, UK
| | - Minna M. Poranen
- Institute of Biotechnology and Department of Biological and Environmental Sciences, University of Helsinki, Biocenter 2, 00014 University of Helsinki, Finland and Division of Structural Biology, The Henry Wellcome Building for Genomic Medicine, Oxford University, Oxford OX3 7BN, UK
| | - N. Marika Lehti
- Institute of Biotechnology and Department of Biological and Environmental Sciences, University of Helsinki, Biocenter 2, 00014 University of Helsinki, Finland and Division of Structural Biology, The Henry Wellcome Building for Genomic Medicine, Oxford University, Oxford OX3 7BN, UK
| | - Janne J. Ravantti
- Institute of Biotechnology and Department of Biological and Environmental Sciences, University of Helsinki, Biocenter 2, 00014 University of Helsinki, Finland and Division of Structural Biology, The Henry Wellcome Building for Genomic Medicine, Oxford University, Oxford OX3 7BN, UK
| | - Minni R. L. Koivunen
- Institute of Biotechnology and Department of Biological and Environmental Sciences, University of Helsinki, Biocenter 2, 00014 University of Helsinki, Finland and Division of Structural Biology, The Henry Wellcome Building for Genomic Medicine, Oxford University, Oxford OX3 7BN, UK
| | - Antti P. Aalto
- Institute of Biotechnology and Department of Biological and Environmental Sciences, University of Helsinki, Biocenter 2, 00014 University of Helsinki, Finland and Division of Structural Biology, The Henry Wellcome Building for Genomic Medicine, Oxford University, Oxford OX3 7BN, UK
| | - Alberdina A. van Dijk
- Institute of Biotechnology and Department of Biological and Environmental Sciences, University of Helsinki, Biocenter 2, 00014 University of Helsinki, Finland and Division of Structural Biology, The Henry Wellcome Building for Genomic Medicine, Oxford University, Oxford OX3 7BN, UK
| | - David I. Stuart
- Institute of Biotechnology and Department of Biological and Environmental Sciences, University of Helsinki, Biocenter 2, 00014 University of Helsinki, Finland and Division of Structural Biology, The Henry Wellcome Building for Genomic Medicine, Oxford University, Oxford OX3 7BN, UK
| | - Jonathan M. Grimes
- Institute of Biotechnology and Department of Biological and Environmental Sciences, University of Helsinki, Biocenter 2, 00014 University of Helsinki, Finland and Division of Structural Biology, The Henry Wellcome Building for Genomic Medicine, Oxford University, Oxford OX3 7BN, UK
| | - Dennis H. Bamford
- Institute of Biotechnology and Department of Biological and Environmental Sciences, University of Helsinki, Biocenter 2, 00014 University of Helsinki, Finland and Division of Structural Biology, The Henry Wellcome Building for Genomic Medicine, Oxford University, Oxford OX3 7BN, UK
| |
Collapse
|
29
|
Joseph SB, Hanley KA, Chao L, Burch CL. Coinfection rates in Φ6 bacteriophage are enhanced by virus-induced changes in host cells. Evol Appl 2009; 2:24-31. [PMID: 25567844 PMCID: PMC3352419 DOI: 10.1111/j.1752-4571.2008.00055.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Accepted: 11/26/2008] [Indexed: 11/28/2022] Open
Abstract
Two or more viruses infecting the same host cell can interact in ways that profoundly affect disease dynamics and control, yet the factors determining coinfection rates are incompletely understood. Previous studies have focused on the mechanisms that viruses use to suppress coinfection, but recently the phenomenon of enhanced coinfection has also been documented. In the experiments described here, we explore the hypothesis that enhanced coinfection rates in the bacteriophage Φ6 are achieved by virus-induced upregulation of the Φ6 receptor, which is the bacterial pilus. First, we confirmed that coinfection enhancement in Φ6 is virus-mediated by showing that Φ6 attaches significantly faster to infected cells than to uninfected cells. Second, we explored the hypothesis that coinfection enhancement in Φ6 depends upon changes in the expression of an inducible receptor. Consistent with this hypothesis, the closely related phage, Φ12, that uses constitutively expressed lipopolysaccharide as its receptor, attaches to infected and uninfected cells at the same rate. Our results, along with the previous finding that coinfection in Φ6 is limited to two virions, suggest that viruses may closely regulate rates of coinfection through mechanisms for both coinfection enhancement and exclusion.
Collapse
Affiliation(s)
- Sarah B Joseph
- Department of Biology, University of North Carolina Chapel Hill, NC, USA
| | - Kathryn A Hanley
- Department of Biology, New Mexico State University Las Cruces, NM, USA
| | - Lin Chao
- Division of Biological Sciences, University of California San Diego, CA, USA
| | - Christina L Burch
- Department of Biology, University of North Carolina Chapel Hill, NC, USA
| |
Collapse
|
30
|
Roles of the minor capsid protein P7 in the assembly and replication of double-stranded RNA bacteriophage phi6. J Mol Biol 2008; 383:529-38. [PMID: 18793644 DOI: 10.1016/j.jmb.2008.08.082] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2008] [Revised: 08/20/2008] [Accepted: 08/25/2008] [Indexed: 11/23/2022]
Abstract
The polymerase complexes of double-stranded RNA (dsRNA) viruses are multifunctional RNA processing machineries that carry out viral genome packaging, replication, and transcription. The polymerase complex forms the innermost virion shell and is structurally related in dsRNA viruses infecting a diversity of host organisms. In this study, we analyzed the properties and functions of the minor polymerase complex protein P7 of dsRNA bacteriophage phi6 using terminally truncated P7 polypeptides and an in vitro self-assembly system established for the phi6 polymerase complex. The N-terminally truncated P7 failed to dimerize, whereas C-terminally truncated P7 polypeptides formed functional dimers that were incorporated into the polymerase complex. Nevertheless, the polymerase complex assembly kinetics and stability were altered by the incorporation of the C-terminally truncated P7. Using the in vitro assembly system for phi6 nucleocapsids and subsequent infectivity assays, we confirmed that full-length P7 is necessary for the formation of infectious viral particles. Contrary to previous results, we found that P7 must be incorporated into polymerase complexes during shell assembly.
Collapse
|
31
|
Nontemplated terminal nucleotidyltransferase activity of double-stranded RNA bacteriophage phi6 RNA-dependent RNA polymerase. J Virol 2008; 82:9254-64. [PMID: 18614640 DOI: 10.1128/jvi.01044-08] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The replication and transcription of double-stranded RNA (dsRNA) viruses occur within a polymerase complex particle in which the viral genome is enclosed throughout the entire life cycle of the virus. A single protein subunit in the polymerase complex is responsible for the template-dependent RNA polymerization activity. The isolated polymerase subunit of the dsRNA bacteriophage phi6 was previously shown to replicate and transcribe given RNA molecules. In this study, we show that this enzyme also catalyzes nontemplated nucleotide additions to single-stranded and double-stranded nucleic acid molecules. This terminal nucleotidyltransferase activity not only is a property of the isolated enzyme but also is detected to take place within the viral nucleocapsid. This is the first time terminal nucleotidyltransferase activity has been reported for a dsRNA virus as well as for a viral particle. The results obtained together with previous high-resolution structural data on the phi6 RNA-dependent RNA polymerase suggest a mechanism for terminal nucleotidyl addition. We propose that the activity is involved in the termination of the template-dependent RNA polymerization reaction on the linear phi6 genome.
Collapse
|
32
|
Alimova A, Katz A, Podder R, Minko G, Wei H, Berriman J, Alfano RR, Gottlieb P. Virus Particles and Receptor Interaction Monitored by Fluorescence Spectroscopy¶. Photochem Photobiol 2007. [DOI: 10.1111/j.1751-1097.2005.tb01457.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
33
|
Aalto AP, Sarin LP, van Dijk AA, Saarma M, Poranen MM, Arumäe U, Bamford DH. Large-scale production of dsRNA and siRNA pools for RNA interference utilizing bacteriophage phi6 RNA-dependent RNA polymerase. RNA (NEW YORK, N.Y.) 2007; 13:422-9. [PMID: 17237359 PMCID: PMC1800515 DOI: 10.1261/rna.348307] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The discovery of RNA interference (RNAi) has revolutionized biological research and has a huge potential for therapy. Since small double-stranded RNAs (dsRNAs) are required for various RNAi applications, there is a need for cost-effective methods for producing large quantities of high-quality dsRNA. We present two novel, flexible virus-based systems for the efficient production of dsRNA: (1) an in vitro system utilizing the combination of T7 RNA polymerase and RNA-dependent RNA polymerase (RdRP) of bacteriophage 6 to generate dsRNA molecules of practically unlimited length, and (2) an in vivo RNA replication system based on carrier state bacterial cells containing the 6 polymerase complex to produce virtually unlimited amounts of dsRNA of up to 4.0 kb. We show that pools of small interfering RNAs (siRNAs) derived from dsRNA produced by these systems significantly decreased the expression of a transgene (eGFP) in HeLa cells and blocked endogenous pro-apoptotic BAX expression and subsequent cell death in cultured sympathetic neurons.
Collapse
Affiliation(s)
- Antti P Aalto
- Institute of Biotechnology and Department of Biological and Environmental Sciences, University of Helsinki, Finland
| | | | | | | | | | | | | |
Collapse
|
34
|
Komoto S, Taniguchi K. Reverse genetics systems of segmented double-stranded RNA viruses including rotavirus. Future Virol 2006. [DOI: 10.2217/17460794.1.6.833] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The rotavirus genome is composed of 11 segments of double-stranded (ds)RNA. Recent studies have elucidated the precise mechanisms in transcription and replication of rotavirus RNA mainly by in vitro experiments. However, the ideal methodology for the molecular study of rotavirus replication is reverse genetics, which enables the viral genome to be artifically manipulated. Since the development of the first reverse genetics system for RNA virus in bacteriophage QB in 1978, the methodology has been developed for a variety of RNA viruses with plus-strand, minus-strand or dsRNA as a genome. However, there have been no reports on the reverse genetics of the viruses in the family Reoviridae with a genome of 10–12 segmented dsRNA, except for reovirus. This review describes the replication cycle of rotavirus with the aim of providing a general background to the development of rotavirus reverse genetics, and summarizes the reverse genetics system for dsRNA viruses, including rotavirus.
Collapse
Affiliation(s)
- Satoshi Komoto
- Fujita Health University, School of Medicine, Department of Virology & Parasitology, Toyoake, Aichi 470-1192, Japan
| | - Koki Taniguchi
- Fujita Health University, School of Medicine, Department of Virology & Parasitology, Toyoake, Aichi 470-1192, Japan
| |
Collapse
|
35
|
Affiliation(s)
- Minna M Poranen
- Department of Biological and Environmental Sciences and Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| | | | | |
Collapse
|
36
|
Laurila MRL, Salgado PS, Makeyev EV, Nettelship J, Stuart DI, Grimes JM, Bamford DH. Gene silencing pathway RNA-dependent RNA polymerase of Neurospora crassa: yeast expression and crystallization of selenomethionated QDE-1 protein. J Struct Biol 2005; 149:111-5. [PMID: 15629662 DOI: 10.1016/j.jsb.2004.10.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2004] [Revised: 10/01/2004] [Indexed: 11/18/2022]
Abstract
The RNA-dependent RNA polymerase, QDE-1, is a component of the RNA silencing pathway in Neurospora crassa. The enzymatically active carboxy-terminal fragment QDE-1 DeltaN has been expressed in Saccharomyces cerevisiae in the presence and absence of selenomethionine (SeMet). The level of SeMet incorporation was estimated by mass spectrometry to be approximately 98%. Both native and SeMet proteins were crystallized in space group P2(1) with unit cell parameters a=101.2, b=122.5, c=114.4A, beta=108.9 degrees , and 2 molecules per asymmetric unit. The native and SeMet crystals diffract to 2.3 and 3.2A, respectively, the latter are suitable for MAD structure determination.
Collapse
Affiliation(s)
- Minni R L Laurila
- Institute of Biotechnology, Faculty of Biosciences, Viikki Biocenter, University of Helsinki, P.O. Box 56, Viikinkaari 5, 00014 Helsinki, Finland
| | | | | | | | | | | | | |
Collapse
|
37
|
Alimova A, Katz A, Podder R, Minko G, Wei H, Berriman J, Alfano RR, Gottlieb P. Virus Particles and Receptor Interaction Monitored by Fluorescence Spectroscopy¶. Photochem Photobiol 2005. [DOI: 10.1562/2005-01-14-ra-416r1.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
38
|
Sun Y, Qiao X, Mindich L. Construction of carrier state viruses with partial genomes of the segmented dsRNA bacteriophages. Virology 2004; 319:274-9. [PMID: 14980487 DOI: 10.1016/j.virol.2003.10.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2003] [Revised: 10/16/2003] [Accepted: 10/16/2003] [Indexed: 10/26/2022]
Abstract
The cystoviridae are bacteriophages with genomes of three segments of dsRNA enclosed within a polyhedral capsid. Two members of this family, Phi6 and Phi8, have been shown to form carrier states in which the virus replicates as a stable episome in the host bacterium while expressing reporter genes such as kanamycin resistance or lacalpha. The carrier state does not require the activity of all the genes necessary for phage production. It is possible to generate carrier states by infecting cells with virus or by electroporating nonreplicating plasmids containing cDNA copies of the viral genomes into the host cells. We have found that carrier states in both Phi6 and Phi8 can be formed at high frequency with all three genomic segments or with only the large and small segments. The large genomic segment codes for the proteins that constitute the inner core of the virus, which is the structure responsible for the packaging and replication of the genome. In Phi6, a carrier state can be formed with the large and middle segment if mutations occur in the gene for the major structural protein of the inner core. In Phi8, carrier state formation requires the activity of genes 8 and 12 of segment S.
Collapse
Affiliation(s)
- Yang Sun
- Department of Microbiology, The Public Health Research Institute, Newark, NJ 07103, USA
| | | | | |
Collapse
|
39
|
Kainov DE, Pirttimaa M, Tuma R, Butcher SJ, Thomas GJ, Bamford DH, Makeyev EV. RNA packaging device of double-stranded RNA bacteriophages, possibly as simple as hexamer of P4 protein. J Biol Chem 2003; 278:48084-91. [PMID: 12966097 DOI: 10.1074/jbc.m306928200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Genomes of complex viruses have been demonstrated, in many cases, to be packaged into preformed empty capsids (procapsids). This reaction is performed by molecular motors translocating nucleic acid against the concentration gradient at the expense of NTP hydrolysis. At present, the molecular mechanisms of packaging remain elusive due to the complex nature of packaging motors. In the case of the double-stranded RNA bacteriophage phi 6 from the Cystoviridae family, packaging of single-stranded genomic precursors requires a hexameric NTPase, P4. In the present study, the purified P4 proteins from two other cystoviruses, phi 8 and phi 13, were characterized and compared with phi 6 P4. All three proteins are hexameric, single-stranded RNA-stimulated NTPases with alpha/beta folds. Using a direct motor assay, we found that phi 8 and phi 13 P4 hexamers translocate 5' to 3' along ssRNA, whereas the analogous activity of phi 6 P4 requires association with the procapsid. This difference is explained by the intrinsically high affinity of phi 8 and phi 13 P4s for nucleic acids. The unidirectional translocation results in RNA helicase activity. Thus, P4 proteins of Cystoviridae exhibit extensive similarity to hexameric helicases and are simple models for studying viral packaging motor mechanisms.
Collapse
Affiliation(s)
- Denis E Kainov
- Department of Biosciences and Institute of Biotechnology, FIN-00014, University of Helsinki, Finland
| | | | | | | | | | | | | |
Collapse
|
40
|
Yang H, Gottlieb P, Wei H, Bamford DH, Makeyev EV. Temperature requirements for initiation of RNA-dependent RNA polymerization. Virology 2003; 314:706-15. [PMID: 14554097 DOI: 10.1016/s0042-6822(03)00460-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To continue the molecular characterization of RNA-dependent RNA polymerases of dsRNA bacteriophages (Cystoviridae), we purified and biochemically characterized the wild-type (wt) and a temperature-sensitive (ts) point mutant of the polymerase subunit (Pol) from bacteriophage phi12. Interestingly, initiation by both wt and the ts phi12 Pol was notably more sensitive to increased temperatures than the elongation step, the absolute value of the nonpermissive temperature being lower for the ts enzyme. Experiments with the Pol subunit of related cystovirus phi6 revealed a similar differential sensitivity of the initiation and elongation steps. This is consistent with the previous result showing that de novo initiation by RdRp from dengue virus is inhibited at elevated temperatures, whereas the elongation phase is relatively thermostable. Overall, these data suggest that de novo RNA-dependent RNA synthesis in many viral systems includes a specialized thermolabile state of the RdRp initiation complex.
Collapse
Affiliation(s)
- Hongyan Yang
- Department of Biosciences, P.O. Box 56, Viikinkaari 5, FIN-00014, University of Helsinki, Helsinki, Finland
| | | | | | | | | |
Collapse
|
41
|
Kainov DE, Butcher SJ, Bamford DH, Tuma R. Conserved intermediates on the assembly pathway of double-stranded RNA bacteriophages. J Mol Biol 2003; 328:791-804. [PMID: 12729755 DOI: 10.1016/s0022-2836(03)00322-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Double-stranded RNA (dsRNA) viruses are complex RNA processing machines that sequentially perform packaging, replication and transcription of their genomes. In order to characterize the assembly intermediates of such a machine we have developed an efficient in vitro assembly system for the procapsid of bacteriophage phi8. The major structural protein P1 is a stable and soluble tetramer. Three tetramers associate with a P2 monomer (RNA-dependent RNA polymerase) to form the nucleation complex. This complex is further stabilized by a P4 hexamer (packaging motor). Further assembly proceeds via rapid addition of individual building blocks. The incorporation of the packaging and replication machinery is under kinetic control. The in vitro assembled procapsids perform packaging, replication and transcription of viral RNA. Comparison with another dsRNA phage, phi6, indicates conservation of key assembly intermediates in the absence of sequence homology and suggests that a general assembly mechanism for the dsRNA virus lineage may exist.
Collapse
Affiliation(s)
- Denis E Kainov
- Department of Biosciences, Institute of Biotechnology, University of Helsinki, Finland
| | | | | | | |
Collapse
|
42
|
Makeyev EV, Bamford DH. Cellular RNA-dependent RNA polymerase involved in posttranscriptional gene silencing has two distinct activity modes. Mol Cell 2002; 10:1417-27. [PMID: 12504016 DOI: 10.1016/s1097-2765(02)00780-3] [Citation(s) in RCA: 135] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Recent genetic data suggest that proteins homologous to a plant RNA-dependent RNA polymerase (RdRP) play a central role in posttranscriptional gene silencing (PTGS) in many organisms. We show here that purified recombinant protein QDE-1, a genetic component of PTGS ("quelling") in the fungus Neurospora crassa, possesses RNA polymerase activity in vitro. The full-length enzyme and its enzymatically active C-terminal fragment perform two different reactions on single-stranded RNA templates, synthesizing either extensive RNA chains that form template-length duplexes or approximately 9-21-mer complementary RNA oligonucleotides scattered along the entire template. QDE-1 supports both de novo and primer-dependent initiation mechanisms. These results suggest that several distinct activities of cell-encoded RdRPs can be employed for efficient PTGS in vivo.
Collapse
Affiliation(s)
- Eugene V Makeyev
- Department of Biosciences and Institute of Biotechnology, University of Helsinki, P.O. Box 56, 5, FIN-00014, Viikinkaari, Finland
| | | |
Collapse
|
43
|
Laurila MRL, Makeyev EV, Bamford DH. Bacteriophage phi 6 RNA-dependent RNA polymerase: molecular details of initiating nucleic acid synthesis without primer. J Biol Chem 2002; 277:17117-24. [PMID: 11877396 DOI: 10.1074/jbc.m111220200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Like most RNA polymerases, the polymerase of double-strand RNA bacteriophage phi6 (phi6pol) is capable of primer-independent initiation. Based on the recently solved phi6pol initiation complex structure, a four-amino acid-long loop (amino acids 630-633) has been suggested to stabilize the first two incoming NTPs through stacking interactions with tyrosine, Tyr(630). A similar loop is also present in the hepatitis C virus polymerase, another enzyme capable of de novo initiation. Here, we use a series of phi6pol mutants to address the role of this element. As predicted, mutants at the Tyr(630) position are inefficient in initiation de novo. Unexpectedly, when the loop is disordered by changing Tyr(630)-Lys(631)-Trp(632) to GSG, phi6pol becomes a primer-dependent enzyme, either extending complementary oligonucleotide or, when the template 3' terminus can adopt a hairpin-like conformation, utilizing a "copy-back" initiation mechanism. In contrast to the wild-type phi6pol, the GSG mutant does not require high GTP concentration for its optimal activity. These findings suggest a general model for the initiation of de novo RNA synthesis.
Collapse
Affiliation(s)
- Minni R L Laurila
- Department of Biosciences and Institute of Biotechnology, P. O. Box 56, Viikinkaari 5, University of Helsinki, FIN-00014 Helsinki, Finland
| | | | | |
Collapse
|
44
|
Makeyev EV, Bamford DH. Primer-independent RNA sequencing with bacteriophage phi6 RNA polymerase and chain terminators. RNA (NEW YORK, N.Y.) 2001; 7:774-81. [PMID: 11350041 PMCID: PMC1370129 DOI: 10.1017/s1355838201002060] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Here we propose a new general method for directly determining RNA sequence based on the use of the RNA-dependent RNA polymerase from bacteriophage phi6 and the chain terminators (RdRP sequencing). The following properties of the polymerase render it appropriate for this application: (1) the phi6 polymerase can replicate a number of single-stranded RNA templates in vitro. (2) In contrast to the primer-dependent DNA polymerases utilized in the sequencing procedure by Sanger et al. (Proc Natl Acad Sci USA, 1977, 74:5463-5467), it initiates nascent strand synthesis without a primer, starting the polymerization on the very 3'-terminus of the template. (3) The polymerase can incorporate chain-terminating nucleotide analogs into the nascent RNA chain to produce a set of base-specific termination products. Consequently, 3' proximal or even complete sequence of many target RNA molecules can be rapidly deduced without prior sequence information. The new technique proved useful for sequencing several synthetic ssRNA templates. Furthermore, using genomic segments of the bluetongue virus we show that RdRP sequencing can also be applied to naturally occurring dsRNA templates. This suggests possible uses of the method in the RNA virus research and diagnostics.
Collapse
Affiliation(s)
- E V Makeyev
- Department of Biosciences and Institute of Biotechnology, University of Helsinki, Finland
| | | |
Collapse
|
45
|
Makeyev EV, Bamford DH. The polymerase subunit of a dsRNA virus plays a central role in the regulation of viral RNA metabolism. EMBO J 2000; 19:6275-84. [PMID: 11080173 PMCID: PMC305833 DOI: 10.1093/emboj/19.22.6275] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Bacteriophage φ6 has a three-segmented double-stranded (ds) RNA genome, which resides inside a polymerase complex particle throughout the entire life cycle of the virus. The polymerase subunit P2, a minor constituent of the polymerase complex, has previously been reported to replicate both φ6-specific and heterologous single-stranded (ss) RNAs, giving rise to dsRNA products. In this study, we show that the enzyme is also able to use dsRNA templates to perform semi-conservative RNA transcription in vitro without the assistance of other proteins. The polymerase synthesizes predominantly plus-sense copies of φ6 dsRNA, medium and small segments being more efficient templates than the large one. This distribution of the test-tube reaction products faithfully mimics viral transcription in vivo. Experiments with chimeric ssRNAs and dsRNAs show that short terminal nucleotide sequences can account for the difference in efficiency of RNA synthesis. Taken together, these results suggest a model explaining important aspects of viral RNA metabolism regulation in terms of enzymatic properties of the polymerase subunit.
Collapse
Affiliation(s)
- E V Makeyev
- Institute of Biotechnology and Department of Biosciences, PO Box 56, Viikinkaari 5, FIN-00014, University of Helsinki, Finland
| | | |
Collapse
|
46
|
Pirttimaa MJ, Bamford DH. RNA secondary structures of the bacteriophage phi6 packaging regions. RNA (NEW YORK, N.Y.) 2000; 6:880-889. [PMID: 10864045 PMCID: PMC1369964 DOI: 10.1017/s1355838200992598] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Bacteriophage phi6 genome consists of three segments of double-stranded RNA. During maturation, single-stranded copies of these segments are packaged into preformed polymerase complex particles. Only phi6 RNA is packaged, and each particle contains only one copy of each segment. An in vitro packaging and replication assay has been developed for phi6, and the packaging signals (pac sites) have been mapped to the 5' ends of the RNA segments. In this study, we propose secondary structure models for the pac sites of phi6 single-stranded RNA segments. Our models accommodate data from structure-specific chemical modifications, free energy minimizations, and phylogenetic comparisons. Previously reported pac site deletion studies are also discussed. Each pac site possesses a unique architecture, that, however, contains common structural elements.
Collapse
Affiliation(s)
- M J Pirttimaa
- Institute of Biotechnology and Department of Biosciences, University of Helsinki, Finland
| | | |
Collapse
|
47
|
Poranen MM, Bamford DH. Packaging and replication regulation revealed by chimeric genome segments of double-stranded RNA bacteriophage phi6. RNA (NEW YORK, N.Y.) 1999; 5:446-454. [PMID: 10094312 PMCID: PMC1369772 DOI: 10.1017/s1355838299981876] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Bacteriophage phi6 has a double-stranded RNA genome composed of three linear segments, L, M, and S. The innermost particle in the virion of phi6, like in the other dsRNA viruses, is an RNA-dependent RNA polymerase complex, which carries out all the functions needed for the replication of the viral genome. Empty polymerase complexes can package the single-stranded copies of the viral genome segments, replicate the packaged segments into double-stranded form (minus strand synthesis), and then produce new plus strands (transcripts) from the double-stranded RNA templates. The three viral genomic segments contain unique packaging signals at their 5' ends, and minus strand synthesis initiation is dependent on the sequence at the 3' end. Here we have constructed chimeric segments that have the packaging signal from one segment and the minus strand synthesis initiation signal from another segment. Using purified recombinant polymerase complexes and single-stranded/chimeric and original RNA segments, we have analyzed the packaging and replication regulation operating in in vitro conditions. We show that the 5' end of the L genome segment in single-stranded form is needed to switch from the packaging to the minus strand synthesis and the same sequence is required in double-stranded form to switch on plus strand synthesis. In addition we have constructed deletions to the M segment to analyze the possible regulatory role of the internal noncoding area of this segment.
Collapse
Affiliation(s)
- M M Poranen
- Institute of Biotechnology and Department of Biosciences, University of Helsinki, Finland
| | | |
Collapse
|
48
|
Mindich L. Precise packaging of the three genomic segments of the double-stranded-RNA bacteriophage phi6. Microbiol Mol Biol Rev 1999; 63:149-60. [PMID: 10066834 PMCID: PMC98960 DOI: 10.1128/mmbr.63.1.149-160.1999] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacteriophage phi6 has a genome of three segments of double-stranded RNA. Each virus particle contains one each of the three segments. Packaging is effected by the acquisition, in a serially dependent manner, of the plus strands of the genomic segments into empty procapsids. The empty procapsids are compressed in shape and expand during packaging. The packaging program involves discrete steps that are determined by the amount of RNA inside the procapsid. The steps involve the exposure and concealment of binding sites on the outer surface of the procapsid for the plus strands of the three genomic segments. The plus strand of segment S can be packaged alone, while packaging of the plus strand of segment M depends upon prior packaging of S. Packaging of the plus strand of L depends upon the prior packaging of M. Minus-strand synthesis begins when the particle has a full complement of plus strands. Plus-strand synthesis commences upon the completion of minus-strand synthesis. All of the reactions of packaging, minus-strand synthesis, and plus-strand synthesis can be accomplished in vitro with isolated procapsids. Live-virus constructions that are in accord with the model have been prepared. Mutant virus with changes in the packaging program have been isolated and analyzed.
Collapse
Affiliation(s)
- L Mindich
- Department of Microbiology, The Public Health Research Institute New York, New York 10016, USA.
| |
Collapse
|
49
|
Onodera S, Qiao X, Qiao J, Mindich L. Isolation of a mutant that changes genomic packaging specificity in phi6. Virology 1998; 252:438-42. [PMID: 9878623 DOI: 10.1006/viro.1998.9479] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bacteriophage phi6 has a genome of three segments of double-stranded RNA enclosed in a polyhedral procapsid. Plus strand transcripts of the segments are packaged in a serially dependent fashion in which S can package alone, M depends on S, and L depends on S and M. We have isolated a mutant form of the virus in the carrier state that has lost segment S. This finding presented an apparent anomaly with respect to the packaging program. Sequencing of gene 1 of segment L in this virus showed a translational change of arginine to glycine at the 14th position. Procapsids prepared from cDNA containing this mutation show behavior in in vitro packaging that is consistent with the phenotype of the mutant virus. The procapsids are able to package segment S alone, but this RNA is present in reduced amounts when the other segments are present. Segments M and L package without dependence on segment S. The mutant virus appears to produce procapsids that are at the second stage of the packaging program.
Collapse
Affiliation(s)
- S Onodera
- Department of Microbiology, The Public Health Research Institute, 455 First Avenue, New York, New York, 10016, USA
| | | | | | | |
Collapse
|
50
|
Juuti JT, Bamford DH, Tuma R, Thomas GJ. Structure and NTPase activity of the RNA-translocating protein (P4) of bacteriophage phi 6. J Mol Biol 1998; 279:347-59. [PMID: 9642042 DOI: 10.1006/jmbi.1998.1772] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The RNA polymerase complex of bacteriophage phi 6 comprises four proteins, P1, P2, P4 and P7, and forms the core of the virion. Protein P4 is a non-specific NTPase that provides the energy required for RNA translocation (packaging). Characterization of purified recombinant P4 shows that the protein assembles into stable hexamers in the presence of ADP and divalent cations. Image averaging of electron micrographs reveals this hexamer as a slightly skewed ring with outer and inner diameters of 12 and 2 nm, respectively. NTPase activity of P4 is associated only with the hexameric form. Ca2+ and Zn2+ and non-specific single-stranded RNA stimulate the NTPase activity, while Mg2+ acts as a non-competitive inhibitor, presumably via a separate Mg2+ binding site. Binding affinities of different nucleotide mono-, di- and triphosphates and non-hydrolyzable analogs indicate that the beta-phosphate moiety is required for substrate binding. A slight preference for binding of purine nucleotides is also observed. Analysis of P4 by CD and Raman spectroscopy indicates an alpha/beta subunit fold that is altered only slightly by hexamer assembly. Raman markers of P4 secondary and tertiary structures are also largely invariant to nucleotide exchange and hydrolysis, suggesting that the mechanisms of RNA translocation involves movement of subunits relative to one another rather than large scale changes in the alpha/beta subunit fold. The stoichiometry of P4 in the mature phi 6 virion is estimated as 120 copies. Because the recombinant P4 hexamers exhibit hydrodynamic and enzymatic properties that are identical to those of P4 oligomers released from native phi 6, we propose that P4 occurs as hexamers in the native viral core particle.
Collapse
Affiliation(s)
- J T Juuti
- Department of Biosciences, University of Helsinki, Finland
| | | | | | | |
Collapse
|