1
|
Xi J, Wang J, Yu Y, Zhang X, Mao Y, Hou Q, Liu W. Genetic characterization of the complete genome of an Aleutian mink disease virus isolated in north China. Virus Genes 2016; 52:463-73. [PMID: 27007772 DOI: 10.1007/s11262-016-1320-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 03/12/2016] [Indexed: 12/16/2022]
Abstract
The genome of a highly pathogenic strain of Aleutian disease mink virus (AMDV-BJ) isolated from a domestic farm in North China has been determined and compared with other strains. Alignment analysis of the major structural protein VP2 revealed that AMDV-BJ is unique among 17 other AMDV strains. Compared with the nonpathogenic strain ADV-G, the 3' end Y-shaped hairpin was highly conserved, while a 4-base deletion in the 5' U-shaped terminal palindrome resulted in a different unpaired "bubble" group near the NS1-binding region of the 5' end hairpin which may affect replication efficiency in vivo. We also performed a protein analysis of the NS1, NS2, and new-confirmed NS3 of AMDV-BJ with some related AMDV DNA sequence published, providing information on evolution of AMDV genes. This study shows a useful method to obtain the full-length genome of AMDV and some other parvoviruses.
Collapse
Affiliation(s)
- Ji Xi
- State Key Laboratory of Agrobiotechnology, Department of Biochemistry and Molecular Biology, College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Jigui Wang
- State Key Laboratory of Agrobiotechnology, Department of Biochemistry and Molecular Biology, College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Yongle Yu
- State Key Laboratory of Agrobiotechnology, Department of Biochemistry and Molecular Biology, College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Xiaomei Zhang
- State Key Laboratory of Agrobiotechnology, Department of Biochemistry and Molecular Biology, College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Yaping Mao
- State Key Laboratory of Agrobiotechnology, Department of Biochemistry and Molecular Biology, College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Qiang Hou
- State Key Laboratory of Agrobiotechnology, Department of Biochemistry and Molecular Biology, College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Weiquan Liu
- State Key Laboratory of Agrobiotechnology, Department of Biochemistry and Molecular Biology, College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China.
| |
Collapse
|
2
|
Gil-Ranedo J, Hernando E, Riolobos L, Domínguez C, Kann M, Almendral JM. The Mammalian Cell Cycle Regulates Parvovirus Nuclear Capsid Assembly. PLoS Pathog 2015; 11:e1004920. [PMID: 26067441 PMCID: PMC4466232 DOI: 10.1371/journal.ppat.1004920] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 04/28/2015] [Indexed: 12/02/2022] Open
Abstract
It is unknown whether the mammalian cell cycle could impact the assembly of viruses maturing in the nucleus. We addressed this question using MVM, a reference member of the icosahedral ssDNA nuclear parvoviruses, which requires cell proliferation to infect by mechanisms partly understood. Constitutively expressed MVM capsid subunits (VPs) accumulated in the cytoplasm of mouse and human fibroblasts synchronized at G0, G1, and G1/S transition. Upon arrest release, VPs translocated to the nucleus as cells entered S phase, at efficiencies relying on cell origin and arrest method, and immediately assembled into capsids. In synchronously infected cells, the consecutive virus life cycle steps (gene expression, proteins nuclear translocation, capsid assembly, genome replication and encapsidation) proceeded tightly coupled to cell cycle progression from G0/G1 through S into G2 phase. However, a DNA synthesis stress caused by thymidine irreversibly disrupted virus life cycle, as VPs became increasingly retained in the cytoplasm hours post-stress, forming empty capsids in mouse fibroblasts, thereby impairing encapsidation of the nuclear viral DNA replicative intermediates. Synchronously infected cells subjected to density-arrest signals while traversing early S phase also blocked VPs transport, resulting in a similar misplaced cytoplasmic capsid assembly in mouse fibroblasts. In contrast, thymidine and density arrest signals deregulating virus assembly neither perturbed nuclear translocation of the NS1 protein nor viral genome replication occurring under S/G2 cycle arrest. An underlying mechanism of cell cycle control was identified in the nuclear translocation of phosphorylated VPs trimeric assembly intermediates, which accessed a non-conserved route distinct from the importin α2/β1 and transportin pathways. The exquisite cell cycle-dependence of parvovirus nuclear capsid assembly conforms a novel paradigm of time and functional coupling between cellular and virus life cycles. This junction may determine the characteristic parvovirus tropism for proliferative and cancer cells, and its disturbance could critically contribute to persistence in host tissues. Cellular and viral life cycles are connected through multiple, though poorly understood, mechanisms. Parvoviruses infect humans and a broad spectrum of animals, causing a variety of diseases, but they are also used in experimental cancer therapy and serve as vectors for gene therapy. Parvoviruses can only multiply in proliferating cells providing essential replicative and transcriptional functions. However, it is unknown whether the cell cycle regulatory machinery may also control parvovirus assembly. We found that the nuclear translocation of parvovirus MVM capsid subunits (VPs) was highly dependent on physiological cell cycle regulations in mammalian fibroblasts, including: quiescence, progression through G1/S boundary, DNA synthesis, and cell to cell contacts. VPs nuclear translocation was significantly more sensitive to cell cycle controls than viral genome replication and gene expression. The results support nuclear capsid assembly as the major driving process of parvoviruses biological hallmarks, such as pathogenesis in proliferative tissues and tropism for cancer cells. In addition, disturbing the tight coupling of parvovirus assembly with the cell cycle may determine viral persistence in quiescent and post-mitotic host tissues. These findings may contribute to understand cellular regulations on the assembly of other nuclear eukaryotic viruses, and to develop cell cycle-based avenues for antiviral therapy.
Collapse
Affiliation(s)
- Jon Gil-Ranedo
- Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Cantoblanco, Madrid, Spain
| | - Eva Hernando
- Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Cantoblanco, Madrid, Spain
| | - Laura Riolobos
- Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Cantoblanco, Madrid, Spain
| | - Carlos Domínguez
- Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Cantoblanco, Madrid, Spain
| | - Michael Kann
- University of Bordeaux, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
- CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
- Centre Hospitalier Universitaire de Bordeaux, Service de Virologie, Bordeaux, France
| | - José M. Almendral
- Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Cantoblanco, Madrid, Spain
- * E-mail:
| |
Collapse
|
3
|
Persson S, Jensen TH, Blomström AL, Appelberg MT, Magnusson U. Aleutian mink disease virus in free-ranging mink from Sweden. PLoS One 2015; 10:e0122194. [PMID: 25822750 PMCID: PMC4379071 DOI: 10.1371/journal.pone.0122194] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 02/16/2015] [Indexed: 11/18/2022] Open
Abstract
Aleutian mink disease (AMD) is a chronic viral disease in farmed mink and the virus (AMDV) has been found in many free-ranging mink (Neovison vison) populations in Europe and North America. In this study, AMDV DNA and AMDV antibodies were analysed in 144 free-ranging mink hunted in Sweden. Associations between being AMDV infected (defined as positive for both viral DNA and antibodies) and the weight of the spleen, liver, kidneys, adrenal glands and body condition were calculated and the sequences of ten AMDV isolates were analysed in order to characterize the genetic relationships. In total, 46.1% of the mink were positive for AMDV antibodies and 57.6% were positive for AMDV DNA. Twenty-two percent of the mink tested on both tests (n = 133) had dissimilar results. The risk of having AMDV antibodies or being positive for AMDV DNA clearly increased with age and the majority of the mink that were two years or older were infected. Few macroscopic changes were found upon necropsy. However, the relative weight of the spleen was sexually dimorphic and was found to be slightly, but significantly (p = 0.006), heavier in AMDV infected male mink than uninfected. No association between AMDV infection and body condition, weight of the kidneys, liver or adrenal glands were found. Several different strains of AMDV were found across the country. Two of the AMDV sequences from the very north of Sweden did not group with any of the previously described groups of strains. In summary, AMDV seems to be prevalent in wild mink in Sweden and may subtly influence the weight of the spleen.
Collapse
Affiliation(s)
- Sara Persson
- Division of Reproduction, Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
- * E-mail:
| | - Trine H. Jensen
- National Veterinary Institute, Technical University of Denmark, Aarhus, Denmark
| | - Anne-Lie Blomström
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Mia Tjernström Appelberg
- Division of Reproduction, Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Ulf Magnusson
- Division of Reproduction, Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
4
|
Molecular epidemiology of Aleutian mink disease virus in China. Virus Res 2014; 184:14-9. [DOI: 10.1016/j.virusres.2014.02.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Revised: 02/08/2014] [Accepted: 02/12/2014] [Indexed: 11/20/2022]
|
5
|
Phylogenetic analysis of the VP2 gene of Aleutian mink disease parvoviruses isolated from 2009 to 2011 in China. Virus Genes 2012; 45:31-7. [PMID: 22415542 DOI: 10.1007/s11262-012-0734-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 02/28/2012] [Indexed: 10/28/2022]
Abstract
Aleutian mink disease parvovirus (AMDV) is a non-enveloped virus with a single-stranded DNA genome that causes a fatal, usually persistent immune complex disease in minks. In this study, a total of 18,654 serum samples were collected from minks that were farmed in China from 2009 to 2011. After testing by counter-current immunoelectrophoresis (CIE), the seroprevalence of AMDV was found to be 68.67 %. The results show that there is a serious epidemic among Chinese minks used for breeding. To gain detailed information regarding the molecular epidemiology of AMDV in China, nine strains of AMDV were isolated from mink samples that were collected from four of the primary mink farming areas in China. The full-length capsid protein VP2 gene from each strain was sequenced after PCR amplification, and a phylogenetic analysis was performed on the VP2 gene sequence, including the VP2 genes from the other 10 AMDV strains available in the GenBank database, which were submitted from the 1970s to 2009. The phylogenetic analysis showed that the AMDV isolates were divided into five independent clades. The Chinese AMDV strains were distributed among all five groups and showed a high level of genetic diversity. Over 50 % of the Chinese AMDV strains were classified into two clades that consisted only of isolates from China and that were distinct from AMDV strains found in other countries. This finding indicated that both local and imported ADMV species are prevalent in the Chinese mink farming population.
Collapse
|
6
|
Ju H, Wei N, Wang Q, Wang C, Jing Z, Guo L, Liu D, Gao M, Ma B, Wang J. Goose parvovirus structural proteins expressed by recombinant baculoviruses self-assemble into virus-like particles with strong immunogenicity in goose. Biochem Biophys Res Commun 2011; 409:131-6. [PMID: 21554858 DOI: 10.1016/j.bbrc.2011.04.129] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Accepted: 04/27/2011] [Indexed: 10/18/2022]
Abstract
Goose parvovirus (GPV), a small non-enveloped ssDNA virus, can cause Derzsy's disease, and three capsid proteins of VP1, VP2, and VP3 are encoded by an overlapping nucleotide sequence. However, little is known on whether recombinant viral proteins (VPs) could spontaneously assemble into virus-like particles (VLPs) in insect cells and whether these VLPs could retain their immunoreactivity and immunogenicity in susceptible geese. To address these issues, genes for these GPV VPs were amplified by PCR, and the recombinant VPs proteins were expressed in insect cells using a baculovirus expression system for the characterization of their structures, immunoreactivity, and immunogenicity. The rVP1, rVP2, and rVP3 expressed in Sf9 cells were detected by anti-GPV sera, anti-VP3 sera, and anti-His antibodies, respectively. Electron microscopy revealed that these rVPs spontaneously assembled into VLPs in insect cells, similar to that of the purified wild-type GPV virions. In addition, vaccination with individual types of VLPs, particularly with the rVP2-VLPs, induced higher titers of antibodies and neutralized different strains of GPVs in primary goose and duck embryo fibroblast cells in vitro. These data indicated that these VLPs retained immunoreactivity and had strong immunogenicity in susceptible geese. Therefore, our findings may provide a framework for development of new vaccines for the prevention of Derzsy's disease and vehicles for the delivery of drugs.
Collapse
Affiliation(s)
- Huanyu Ju
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Svendsen WE, Jørgensen M, Andresen L, Andersen K, Larsen M, Skov S, Dimaki M. Silicon Nanowire as Virus Sensor in a Total Analysis System. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/j.proeng.2011.12.071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
8
|
Implementation and validation of a sensitive PCR detection method in the eradication campaign against Aleutian mink disease virus. J Virol Methods 2010; 171:81-5. [PMID: 20951744 DOI: 10.1016/j.jviromet.2010.10.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Revised: 10/03/2010] [Accepted: 10/07/2010] [Indexed: 11/23/2022]
Abstract
Aleutian mink disease virus (AMDV) is a severe progressive disease causing multiple different clinical syndromes in mink. In Denmark, the disease is notifiable and under official control. The control programme, based on serological screening, has confined successfully AMDV to the northern part of Denmark. However, re-infections and new introductions of virus into farms require a confirmatory virological test to verify the positive test results of single animals and ultimately to investigate disease transmission. A one step PCR amplifying a 374-base fragment of the NS1 gene of AMDV was compared to the counter-current immune electrophoresis (CIE) routinely used in the serological screening programme. Mink organs (n=299) obtained from 55 recently infected farms and 8 non-infected farms from 2008 to 2010 were tested by PCR, and the results were found to have a high correlation with the serological status of the mink. The relative diagnostic sensitivity of the PCR was 94.7%, and the relative diagnostic specificity was 97.9% when read in parallel with the CIE. PCR positive samples were sequenced and phylogenetic analysis revealed high similarity within the analysed AMDV strains and to AMDV strains described previously.
Collapse
|
9
|
Development and evaluation of an enzyme-linked immunosorbent assay based on recombinant VP2 capsids for the detection of antibodies to Aleutian mink disease virus. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2009; 16:1360-5. [PMID: 19641102 DOI: 10.1128/cvi.00148-09] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Aleutian disease (AD), a common infectious disease in farmed minks worldwide, is caused by Aleutian mink disease virus (AMDV). Serodiagnosis of AD in minks has been based on detection of AMDV antibodies by counterimmunoelectrophoresis (CIE) since the 1980s. The aim of this study was to develop and evaluate an enzyme-linked immunosorbent assay (ELISA) based on recombinant virus-like particles (VLPs) for identifying AMDV antibodies from mink sera. AMDV capsid protein (VP2) of a Finnish wild-type strain was expressed by the baculovirus system in Spodoptera frugiperda 9 insect cells and was shown to self-assemble to VLPs (with an ultrastructure similar to that of the actual virion). A direct immunoglobulin G ELISA was established using purified recombinant AMDV VP2 VLPs as an antigen. Sera from farmed minks were collected to evaluate the AMDV VP2 ELISA (n = 316) and CIE (n = 209) based on AMDV VP2 recombinant antigen in parallel with CIE performed using a commercially available traditional antigen. CIE performed with the recombinant antigen had a sensitivity and specificity of 100% and ELISA a sensitivity of 99% and a specificity of 97%, with reference to CIE performed with the commercial antigen. The results show that the recombinant AMDV VP2 VLPs are antigenic and that AMDV VP2 ELISA is sensitive and specific and encourage further development of the method for high-throughput diagnostics, involving hundreds of thousands of samples in Finland annually.
Collapse
|
10
|
Boosani CS, Sudhakar A. Cloning, purification, and characterization of a non-collagenous anti-angiogenic protein domain from human alpha1 type IV collagen expressed in Sf9 cells. Protein Expr Purif 2006; 49:211-8. [PMID: 16631378 DOI: 10.1016/j.pep.2006.03.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2006] [Revised: 03/06/2006] [Accepted: 03/07/2006] [Indexed: 01/24/2023]
Abstract
alpha1(IV)NC1, a cleavage fragment of the carboxy terminal non-collagenous human alpha1 chain of type IV collagen, is derived from the extracellular matrix specifically by MMP-2. Recently we determined the in vitro and in vivo anti-angiogenic activity of alpha1(IV)NC1 and presently, its role in cancer therapy is under evaluation. To characterize alpha1(IV)NC1 as a potential candidate for drug development and to test its efficacy in animal models, an effective method to produce a purified active form of alpha1(IV)NC1 is needed. In the present study, expression of alpha1(IV)NC1 in Sf9 cells using baculovirus expression system was discussed, this method was found to be effective in the production of a functionally active soluble form of the recombinant protein. The purified protein showed its characteristic activities such as inhibiting cell proliferation, migration, and tube formation in endothelial cells.
Collapse
Affiliation(s)
- Chandra Shekhar Boosani
- Cell Signaling and Angiogenesis Laboratory, Department of Genetics, Boys Town National Research Hospital, Omaha, NE, USA
| | | |
Collapse
|
11
|
Qiu J, Cheng F, Burger LR, Pintel D. The transcription profile of Aleutian mink disease virus in CRFK cells is generated by alternative processing of pre-mRNAs produced from a single promoter. J Virol 2006; 80:654-62. [PMID: 16378968 PMCID: PMC1346859 DOI: 10.1128/jvi.80.2.654-662.2006] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A reevaluation of the transcription profile of Aleutian mink disease parvovirus (AMDV)-infected CRFK cells at either 32 degrees C or 37 degrees C has determined that strain AMDV-G encodes six species of mRNAs produced by alternative splicing and alternative polyadenylation of a pre-mRNA generated by a single promoter at the left end of the genome. Three different splicing patterns are used, and each type is found polyadenylated at either the 3' end of the genome (the distal site) or at a site in the center of the genome (the proximal site). All spliced species accumulate similarly over the course of infection, with the R2 RNA predominant throughout. The R2 RNA, which contains and can express the NS2 coding region, encodes the viral capsid proteins VP1 and VP2.
Collapse
Affiliation(s)
- Jianming Qiu
- Department of Molecular Microbiology and Immunology, University of Missouri-Columbia, School of Medicine, Life Sciences Center, 1201 E. Rollins Rd., Columbia, MO 65211-7310, USA.
| | | | | | | |
Collapse
|
12
|
Fischhaber PL, McDaniel LD, Friedberg EC. DNA Polymerases for Translesion DNA Synthesis: Enzyme Purification and Mouse Models for Studying Their Function. Methods Enzymol 2006; 408:355-78. [PMID: 16793380 DOI: 10.1016/s0076-6879(06)08022-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
This chapter discusses experimental methods and protocols for the purification and preliminary characterization of DNA polymerases that are specialized for the replicative bypass (translesion DNA synthesis) of base or other types of DNA damage that typically arrest high-fidelity DNA synthesis, with particular emphasis on DNA polymerase kappa (Polkappa from mouse cells). It also describes some of the methods employed in the evaluation of mouse strains defective in genes that encode these enzymes.
Collapse
Affiliation(s)
- Paula L Fischhaber
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, USA
| | | | | |
Collapse
|
13
|
Best SM, Shelton JF, Pompey JM, Wolfinbarger JB, Bloom ME. Caspase cleavage of the nonstructural protein NS1 mediates replication of Aleutian mink disease parvovirus. J Virol 2003; 77:5305-12. [PMID: 12692232 PMCID: PMC153974 DOI: 10.1128/jvi.77.9.5305-5312.2003] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Virus-induced apoptosis of infected cells can limit both the time and the cellular machinery available for virus replication. Hence, many viruses have evolved strategies to specifically inhibit apoptosis. However, Aleutian mink disease parvovirus (ADV) is the first example of a DNA virus that not only induces apoptosis but also utilizes caspase activity to facilitate virus replication. To determine the function of caspase activity during ADV replication, virus-infected cell lysates or purified ADV proteins were incubated with various purified caspases. Caspases cleaved the major nonstructural protein of ADV (NS1) at two caspase recognition sequences, whereas ADV structural proteins could not be cleaved. Importantly, the NS1 products could be identified in ADV-infected cells but were not present in infected cells pretreated with caspase inhibitors. By mutating putative caspase cleavage sites (D to E), we mapped the two cleavage sites to amino acid residues NS1:227 (INTD downward arrow S) and NS1:285 (DQTD downward arrow S). Replication of ADV containing either of these mutations was reduced 10(3)- to 10(4)-fold compared to that of wild-type virus, and a construct containing both mutations was replication defective. Immunofluorescent studies revealed that cleavage was required for nuclear localization of NS1. The requirement for caspase activity during permissive replication suggests that limitation of caspase activation and apoptosis in vivo may be a novel approach to restricting virus replication.
Collapse
Affiliation(s)
- Sonja M Best
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, Montana 59840, USA
| | | | | | | | | |
Collapse
|
14
|
Livingston RS, Besselsen DG, Steffen EK, Besch-Williford CL, Franklin CL, Riley LK. Serodiagnosis of mice minute virus and mouse parvovirus infections in mice by enzyme-linked immunosorbent assay with baculovirus-expressed recombinant VP2 proteins. CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY 2002; 9:1025-31. [PMID: 12204954 PMCID: PMC120062 DOI: 10.1128/cdli.9.5.1025-1031.2002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mice minute virus (MMV) and mouse parvovirus (MPV) type 1 are the two parvoviruses known to naturally infect laboratory mice and are among the most prevalent infectious agents found in contemporary laboratory mouse colonies. Serologic assays are commonly used to diagnose MMV and MPV infections in laboratory mice; however, highly accurate, high-throughput serologic assays for the detection of MMV- and MPV-infected mice are needed. To this end, the major capsid viral protein (VP2) genes of MMV and MPV were cloned and MMV recombinant VP2 (rVP2) and MPV rVP2 proteins were expressed by using a baculovirus system. MMV rVP2 and MPV rVP2 spontaneously formed virus-like particles that were morphologically similar to empty parvovirus capsids. These proteins were used as antigens in enzyme-linked immunosorbent assays (ELISAs) to detect anti-MMV or anti-MPV antibodies in the sera of infected mice. Sera from mice experimentally infected with MMV (n = 43) or MPV (n = 35) and sera from uninfected mice (n = 30) were used to evaluate the ELISAs. The MMV ELISA was 100% sensitive and 100% specific in detecting MMV-infected mice, and the MPV ELISA was 100% sensitive and 98.6% specific in detecting MPV-infected mice. Both assays outperformed a parvovirus ELISA that uses a recombinant nonstructural protein (NS1) of MMV as antigen. The MMV rVP2 and MPV rVP2 proteins provide a ready source of easily produced antigen, and the ELISAs developed provide highly accurate, high-throughput assays for the serodiagnosis of MMV and MPV infections in laboratory mice.
Collapse
Affiliation(s)
- Robert S Livingston
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri 65211, USA.
| | | | | | | | | | | |
Collapse
|
15
|
Bloom ME, Best SM, Hayes SF, Wells RD, Wolfinbarger JB, McKenna R, Agbandje-McKenna M. Identification of aleutian mink disease parvovirus capsid sequences mediating antibody-dependent enhancement of infection, virus neutralization, and immune complex formation. J Virol 2001; 75:11116-27. [PMID: 11602751 PMCID: PMC114691 DOI: 10.1128/jvi.75.22.11116-11127.2001] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2001] [Accepted: 07/30/2001] [Indexed: 11/20/2022] Open
Abstract
Aleutian mink disease parvovirus (ADV) causes a persistent infection associated with circulating immune complexes, immune complex disease, hypergammaglobulinemia, and high levels of antiviral antibody. Although antibody can neutralize ADV infectivity in Crandell feline kidney cells in vitro, virus is not cleared in vivo, and capsid-based vaccines have proven uniformly ineffective. Antiviral antibody also enables ADV to infect macrophages, the target cells for persistent infection, by Fc-receptor-mediated antibody-dependent enhancement (ADE). The antibodies involved in these unique aspects of ADV pathogenesis may have specific targets on the ADV capsid. Prominent differences exist between the structure of ADV and other, more-typical parvoviruses, which can be accounted for by short peptide sequences in the flexible loop regions of the capsid proteins. In order to determine whether these short sequences are targets for antibodies involved in ADV pathogenesis, we studied heterologous antibodies against several peptides present in the major capsid protein, VP2. Of these antibodies, a polyclonal rabbit antibody to peptide VP2:428-446 was the most interesting. The anti-VP2:428-446 antibody aggregated virus particles into immune complexes, mediated ADE, and neutralized virus infectivity in vitro. Thus, antibody against this short peptide can be implicated in key facets of ADV pathogenesis. Structural modeling suggested that surface-exposed residues of VP2:428-446 are readily accessible for antibody binding. The observation that antibodies against a single target peptide in the ADV capsid can mediate both neutralization and ADE may explain the failure of capsid-based vaccines.
Collapse
Affiliation(s)
- M E Bloom
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, Montana 59840, USA.
| | | | | | | | | | | | | |
Collapse
|
16
|
Christensen J, Cotmore SF, Tattersall P. Minute virus of mice initiator protein NS1 and a host KDWK family transcription factor must form a precise ternary complex with origin DNA for nicking to occur. J Virol 2001; 75:7009-17. [PMID: 11435581 PMCID: PMC114429 DOI: 10.1128/jvi.75.15.7009-7017.2001] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Parvoviral rolling hairpin replication generates palindromic genomic concatemers whose junctions are resolved to give unit-length genomes by a process involving DNA replication initiated at origins derived from each viral telomere. The left-end origin of minute virus of mice (MVM), oriL, contains binding sites for the viral initiator nickase, NS1, and parvovirus initiation factor (PIF), a member of the emerging KDWK family of transcription factors. oriL is generated as an active form, oriL(TC), and as an inactive form, oriL(GAA), which contains a single additional nucleotide inserted between the NS1 and PIF sites. Here we examined the interactions on oriL(TC) which lead to activation of NS1 by PIF. The two subunits of PIF, p79 and p96, cooperatively bind two ACGT half-sites, which can be flexibly spaced. When coexpressed from recombinant baculoviruses, the PIF subunits preferentially form heterodimers which, in the presence of ATP, show cooperative binding with NS1 on oriL, but this interaction is preferentially enhanced on oriL(TC) compared to oriL(GAA). Without ATP, NS1 is unable to bind stably to its cognate site, but PIF facilitates this interaction, rendering the NS1 binding site, but not the nick site, resistant to DNase I. Varying the spacing of the PIF half-sites shows that the distance between the NS1 binding site and the NS1-proximal half-site is critical for nickase activation, whereas the position of the distal half-site is unimportant. When expressed separately, both PIF subunits form homodimers that bind site specifically to oriL, but only complexes containing p79 activate the NS1 nickase function.
Collapse
Affiliation(s)
- J Christensen
- Institute of Medical Microbiology and Immunology, University of Copenhagen, Panum Institute, Copenhagen 2200 N, Denmark
| | | | | |
Collapse
|
17
|
Abstract
We examined the assembly processes of the capsid proteins of canine parvovirus (CPV) in mammalian and insect cells. In CPV-infected cells empty capsids assembled within 15 min, and then continued to form over the following 1 h, while full (DNA-containing) capsids were detected only after 60 min, and those accumulated slowly over several hours. In cells expressing VP1 and VP2 or only VP2, empty capsid formation was also efficient, but was slightly slower than that in infected cells. Small amounts of trimer forms of VP2 were detected in cells expressing wild type capsid proteins, but were not seen for mutants containing changes that prevented capsid assembly. CPV capsids accumulated in the cell nucleus, but mutant VP1 and VP2 proteins that did not assemble became distributed throughout the nucleus and the cytoplasm, irrespective of whether they were expressed as VP1 and VP2, or as VP2 only. Urea or pH treatment of empty capsids released dimer, trimer, or pentamer capsid protein combinations, while treatment of full capsids consistently released trimer and, in some cases, pentamer forms. When wild type or assembly-defective VP2 genes were expressed from recombinant baculoviruses in insect cells, most of the protein was recovered as noncapsid aggregates, and only a small proportion assembled into capsids. Both the assembled capsids and the noncapsid aggregates were seen primarily in the cytoplasm of the insect cells. The VP2 expressed in insect cells that was recovered in aggregates had an isoelectric point of about pH 6.3, while that recovered from assembled capsids had a pI of about 5.2, similar to that seen for the VP2 of capsids recovered from mammalian cells.
Collapse
Affiliation(s)
- W Yuan
- College of Veterinary Medicine, James A Baker Institute for Animal Health, Cornell University, Ithaca, New York 14853, USA
| | | |
Collapse
|
18
|
Nawagitgul P, Morozov I, Bolin SR, Harms PA, Sorden SD, Paul PS. Open reading frame 2 of porcine circovirus type 2 encodes a major capsid protein. J Gen Virol 2000; 81:2281-2287. [PMID: 10950986 DOI: 10.1099/0022-1317-81-9-2281] [Citation(s) in RCA: 389] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Porcine circovirus 2 (PCV2), a single-stranded DNA virus associated with post-weaning multisystemic wasting syndrome of swine, has two potential open reading frames, ORF1 and ORF2, greater than 600 nucleotides in length. ORF1 is predicted to encode a replication-associated protein (Rep) essential for replication of viral DNA, while ORF2 contains a conserved basic amino acid sequence at the N terminus resembling that of the major structural protein of chicken anaemia virus. Thus far, the structural protein(s) of PCV2 have not been identified. In this study, a viral structural protein of 30 kDa was identified in purified PCV2 particles. ORF2 of PCV2 was cloned into a baculovirus expression vector and the gene product was expressed in insect cells. The expressed ORF2 gene product had a molecular mass of 30 kDa, similar to that detected in purified virus particles. The recombinant ORF2 protein self-assembled to form capsid-like particles when viewed by electron microscopy. Antibodies against the ORF2 protein were detected in samples of sera obtained from pigs as early as 3 weeks after experimental infection with PCV2. These results show that the major structural protein of PCV2 is encoded by ORF2 and has a molecular mass of 30 kDa.
Collapse
Affiliation(s)
- Porntippa Nawagitgul
- Department of Veterinary Microbiology and Preventive Medicine1, Department of Veterinary Diagnostic and Production Animal Medicine2, and Veterinary Medical Research Institute (VMRI)3, Iowa State University, 1802 Elwood Drive, Bldg 6, Ames, IA 50011-1240, USA
| | - Igor Morozov
- Department of Veterinary Microbiology and Preventive Medicine1, Department of Veterinary Diagnostic and Production Animal Medicine2, and Veterinary Medical Research Institute (VMRI)3, Iowa State University, 1802 Elwood Drive, Bldg 6, Ames, IA 50011-1240, USA
| | - Steven R Bolin
- Viral and Prion Diseases of Livestock Research Unit, National Animal Disease Center, ARS, USDA, Ames, Iowa, USA4
| | - Perry A Harms
- Department of Veterinary Microbiology and Preventive Medicine1, Department of Veterinary Diagnostic and Production Animal Medicine2, and Veterinary Medical Research Institute (VMRI)3, Iowa State University, 1802 Elwood Drive, Bldg 6, Ames, IA 50011-1240, USA
| | - Steven D Sorden
- Department of Veterinary Microbiology and Preventive Medicine1, Department of Veterinary Diagnostic and Production Animal Medicine2, and Veterinary Medical Research Institute (VMRI)3, Iowa State University, 1802 Elwood Drive, Bldg 6, Ames, IA 50011-1240, USA
| | - Prem S Paul
- Department of Veterinary Microbiology and Preventive Medicine1, Department of Veterinary Diagnostic and Production Animal Medicine2, and Veterinary Medical Research Institute (VMRI)3, Iowa State University, 1802 Elwood Drive, Bldg 6, Ames, IA 50011-1240, USA
| |
Collapse
|
19
|
Bolt G, Pedersen LO, Birkeslund HH. Cleavage of the respiratory syncytial virus fusion protein is required for its surface expression: role of furin. Virus Res 2000; 68:25-33. [PMID: 10930660 DOI: 10.1016/s0168-1702(00)00149-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The fusion (F) glycoprotein of respiratory syncytial virus (RSV) is synthesized as a nonfusogenic precursor protein (F(0)), which during its migration to the cell surface is activated by cleavage into the disulfide-linked F(1) and F(2) subunits. In the present study, soluble secreted human furin produced by a recombinant baculovirus cleaved RSV F(0) into proteins the size of F(1) and F(2). Furthermore, cleavage of F(0) was partially inhibited in the furin defective LoVo cell line, in calcium depleted HEp-2 cells, and in HEp-2 cells treated with the furin inhibitor decanoyl-R-V-K-R-chloromethylketon. These findings strongly suggest an important role for furin in activation of the RSV F protein. The F(0) protein could not be detected on the surface of cells, in which F protein activation was inhibited, and RSV particles did not appear to be released from these cells. It thus seems that in contrast to the F proteins of most other paramyxoviruses, the RSV F(0) protein is very inefficient in reaching the cell surface or is unable to reach the cell surface and therefore cannot be incorporated into virus particles.
Collapse
Affiliation(s)
- G Bolt
- Department of Medical Microbiology and Immunology, Panum Institute, University of Copenhagen, Blegdamsvej 3, 2200 N, Copenhagen, Denmark.
| | | | | |
Collapse
|
20
|
Hernando E, Llamas-Saiz AL, Foces-Foces C, McKenna R, Portman I, Agbandje-McKenna M, Almendral JM. Biochemical and physical characterization of parvovirus minute virus of mice virus-like particles. Virology 2000; 267:299-309. [PMID: 10662625 DOI: 10.1006/viro.1999.0123] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The VP-2 major capsid protein of the prototype strain of the parvovirus minute virus of mice (MVMp) was expressed, using a baculovirus vector, in Sf9 insect cells. Immunogold electron microscopy of infected Sf9 cells showed VP-2 localized in the nucleus and cytoplasm as is observed in mammalian cells during natural infections. The VP-2 subunits self-assembled into empty parvovirus-like particles (VLPs), which appeared morphologically similar to and immunogenically indistinguishable from native empty MVMp particles, which also contain the minor capsid protein, VP1. Incubations under different pH and temperature conditions showed that the MVMp VLPs and native empty MVMp capsids share comparable stability. Once heated the particles can be similarly and specifically cleaved by trypsin at the VP-2 N-terminal domain. This process mimics the further maturation of the "rat-like" parvovirus virions, following viral DNA encapsidation, indicating that biologically relevant features of the MVMp capsid are maintained in the VLPs. Crystals have been obtained for the MVMp VLPs which were isomorphous to those used for the high-resolution structure determination of virions and native empty particles of the immunosuppressive strain of MVM (MVMi). The VLP crystals diffracted X rays to beyond 3-A resolution and are in space group C2 (a = 448.7, b = 416.6, c = 306.1 A, and beta = 95.9 degrees ). This is the first report of crystals from parvoviral particles produced in a heterologous system diffracting X rays to high resolution, indicating that VP-2 of some parvovirus capsids can self-assemble into ordered T = 1 icosahedral capsids in the absence of other viral and host cell functions.
Collapse
Affiliation(s)
- E Hernando
- Centro de Biologia Molecular "Severo Ochoa" (UAM-CSIC), Universidad Autónoma de Madrid, Cantoblanco, Madrid, 28049, Spain
| | | | | | | | | | | | | |
Collapse
|
21
|
Jensen KT, Wolfinbarger JB, Aasted B, Bloom ME. Replication of Aleutian mink disease parvovirus in mink lymph node histocultures. J Gen Virol 2000; 81:335-43. [PMID: 10644831 DOI: 10.1099/0022-1317-81-2-335] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Aleutian mink disease parvovirus (ADV), causes an immune disorder with a persistent infection of lymphoid organs in adult mink. We studied replication of ADV in gel-supported histocultures prepared from adult mink mesenteric lymph node (MLN). Evidence of virus replication in the histocultures was first observed by indirect immunofluorescence 72 h after incubation with virus. Cells resembling lymphocytes and macrophages contained both ADV capsid (VP2) and nonstructural (NS1 and NS2) proteins, and were present in a distribution suggestive of infected cells within germinal centres. ADV replicative form and encapsidated virion DNA were also detected in infected histocultures at time-points after 72 h. In addition, we were able to passage ADV-Utah to a new round of histocultures. These results suggested that the infected cells were actual target cells for ADV replication and that productive ADV-Utah replication, complete with the generation of virus, was occurring in the histocultures. The mink MLN histocultures provide a system to study the replication and molecular pathogenesis of ADV in target tissues.
Collapse
Affiliation(s)
- K T Jensen
- Laboratory of Persistent Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT 59840, USA
| | | | | | | |
Collapse
|
22
|
McKenna R, Olson NH, Chipman PR, Baker TS, Booth TF, Christensen J, Aasted B, Fox JM, Bloom ME, Wolfinbarger JB, Agbandje-McKenna M. Three-dimensional structure of Aleutian mink disease parvovirus: implications for disease pathogenicity. J Virol 1999; 73:6882-91. [PMID: 10400786 PMCID: PMC112773 DOI: 10.1128/jvi.73.8.6882-6891.1999] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1998] [Accepted: 04/15/1999] [Indexed: 11/20/2022] Open
Abstract
The three-dimensional structure of expressed VP2 capsids of Aleutian mink disease parvovirus strain G (ADVG-VP2) has been determined to 22 A resolution by cryo-electron microscopy and image reconstruction techniques. A structure-based sequence alignment of the VP2 capsid protein of canine parvovirus (CPV) provided a means to construct an atomic model of the ADVG-VP2 capsid. The ADVG-VP2 reconstruction reveals a capsid structure with a mean external radius of 128 A and several surface features similar to those found in human parvovirus B19 (B19), CPV, feline panleukopenia virus (FPV), and minute virus of mice (MVM). Dimple-like depressions occur at the icosahedral twofold axes, canyon-like regions encircle the fivefold axes, and spike-like protrusions decorate the threefold axes. These spikes are not present in B19, and they are more prominent in ADV compared to the other parvoviruses owing to the presence of loop insertions which create mounds near the threefold axes. Cylindrical channels along the fivefold axes of CPV, FPV, and MVM, which are surrounded by five symmetry-related beta-ribbons, are closed in ADVG-VP2 and B19. Immunoreactive peptides made from segments of the ADVG-VP2 capsid protein map to residues in the mound structures. In vitro tissue tropism and in vivo pathogenic properties of ADV map to residues at the threefold axes and to the wall of the dimples.
Collapse
Affiliation(s)
- R McKenna
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Fox JM, Bloom ME. Identification of a cell surface protein from Crandell feline kidney cells that specifically binds Aleutian mink disease parvovirus. J Virol 1999; 73:3835-42. [PMID: 10196278 PMCID: PMC104161 DOI: 10.1128/jvi.73.5.3835-3842.1999] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/1998] [Accepted: 01/19/1999] [Indexed: 11/20/2022] Open
Abstract
Aleutian mink disease parvovirus (ADV) is the etiological agent of Aleutian disease of mink. The acute disease caused by ADV consists of permissive infection of alveolar type II cells that results in interstitial pneumonitis. The permissive infection is experimentally modeled in vitro by infecting Crandell feline kidney (CrFK) cells with a tissue culture-adapted isolate of ADV, ADV-G. ADV-G VP2 empty virions expressed in a recombinant baculovirus system were analyzed for the ability to bind to the surface of CrFK cells. Radiolabeled VP2 virions bound CrFK cells specifically, while they did not bind either Mus dunni or Spodoptera frugiperda cells, cells which are resistant to ADV infection. The binding to CrFK cells was competitively inhibited by VP2 virions but not by virions of cowpea chlorotic mottle virus (CCMV), another unenveloped virus similar in size to ADV. Furthermore, preincubation of CrFK cells with the VP2 virions blocked infection by ADV-G. The VP2 virions were used in a virus overlay protein binding assay to identify a single protein of approximately 67 kDa, named ABP (for ADV binding protein), that demonstrates specific binding of VP2 virions. Exogenously added VP2 virions were able to competitively inhibit the binding of labeled VP2 virions to ABP, while CCMV virions had no effect. Polyclonal antibodies raised against ABP reacted with ABP on the outer surface of CrFK cells and blocked infection of CrFK cells by ADV-G. In addition, VP2 virion attachment to CrFK cells was blocked when the VP2 virions were preincubated with partially purified ABP. Taken together, these results indicate that ABP is a cellular receptor for ADV.
Collapse
Affiliation(s)
- J M Fox
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana 59840, USA.
| | | |
Collapse
|
24
|
Costello F, Steenfos N, Jensen KT, Christensen J, Gottschalck E, Holm A, Aasted B. Epitope mapping of Aleutian mink disease parvovirus virion protein VP1 and 2. Scand J Immunol 1999; 49:347-54. [PMID: 10219758 DOI: 10.1046/j.1365-3083.1999.00499.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Six overlapping fragments of the Aleutian Mink Disease parvoVirus (AMDV) virion protein VP1 and 2 (VP1/2) gene were inserted into the expression vector pMAL-c2. Four of the clones carried large overlapping fragments covering the entire VP1/2 gene. The remaining two clones covered specifically chosen regions within the VP1/2 gene. Using a Western blotting detection system, sera from AMDV-infected mink were tested against the recombinant polypeptides. These studies showed reactions primarily directed against the two AMDV polypeptides ranging from amino acids 297 to 518. Weaker reactions against other regions of the VP1/2 were also observed. The small fusion protein designed to cover the presumed AMDV VP1/2 loop 4 was purified by affinity chromatography and used to develop solid-phase immunoassays. Twelve small synthetic peptides were constructed and used as inhibitors. A peptide covering amino acids S428 to T448 was shown to block the reactivity of a pool of positive mink sera, indicating the presence of one dominant linear epitope.
Collapse
Affiliation(s)
- F Costello
- Department of Veterinary Microbiology, The Royal Veterinary and Agricultural University, Frederiksberg, Denmark
| | | | | | | | | | | | | |
Collapse
|
25
|
Bolt G, Pedersen IR. The role of subtilisin-like proprotein convertases for cleavage of the measles virus fusion glycoprotein in different cell types. Virology 1998; 252:387-98. [PMID: 9878618 DOI: 10.1006/viro.1998.9464] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The fusion (F) glycoprotein gene of measles virus (MV) encodes a nonfusogenic precursor protein (F0) that is activated by cleavage into the F1 and F2 subunits during transport to the cell surface. The F protein of both the Edmonston strain and a wild-type MV was found to be cleaved in the trans-Golgi cisternae and/or the trans-Golgi network (TGN). In HEp-2 cells, B lymphoblastoid cells, and PBMC, the cleavage process required calcium, and calcium deprivation prevented syncytium formation. The calcium dependence indicated the involvement of the pro-protein convertase (PC) endoprotease family. The expression of the presently recognized members of the PC family in human cell types known to be infected during measles was examined by RT-PCR. Among the PCs residing in the TGN, only furin was expressed in all cells. Soluble secreted human furin produced by a recombinant baculovirus cleaved MV F0 into proteins the exact size of F1 and F2 and increased the titer of MV particles released from calcium-deprived or endoprotease defective infected cells. These results strongly indicate that furin is the most important and maybe the only endoprotease involved in activation of the MV F protein.
Collapse
Affiliation(s)
- G Bolt
- Panum Institute, University of Copenhagen, Blegdamsvej 3, Copenhagen N, 2200, Denmark.
| | | |
Collapse
|
26
|
Bloom ME, Fox JM, Berry BD, Oie KL, Wolfinbarger JB. Construction of pathogenic molecular clones of Aleutian mink disease parvovirus that replicate both in vivo and in vitro. Virology 1998; 251:288-96. [PMID: 9837793 DOI: 10.1006/viro.1998.9426] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The ADV-G isolate of Aleutian mink disease parvovirus (ADV) replicates permissively in Crandell feline kidney (CRFK) cells but is nonpathogenic for mink, whereas the highly pathogenic ADV-Utah isolate is nonviable in CRFK cells. To assign control of host range in CRFK cells and pathogenicity to specific regions of the ADV genome, we constructed a full-length molecular clone chimeric between ADV-G and ADV-Utah. If either the map unit (MU) 54-65 (clone G/U-5) or MU 65-88 (clone G/U-7) sections were ADV-Utah, viability in CRFK cells was abolished, thus indicating that in vitro host range was controlled by two independent determinants: A in the MU 54-65 segment and B in the MU 65-88 segment. Determinant B could be divided into two subregions, B1 (MU 65-69) and B2 (MU 73-88), neither of which alone could inhibit replication in CRFK cells, an observation suggesting that expression of the B determinant required interaction between noncontiguous sequences. Adult mink of Aleutian genotype inoculated with G/U-8 or G/U-10 developed viremia, antiviral antibody, and histopathological changes characteristic of progressive Aleutian disease. The capsid sequences of G/U-8 and G/U-10 differed from ADV-G at five and four amino acid residues, respectively. Our results suggested that the host range and pathogenicity of ADV are regulated by sequences in the capsid protein gene.
Collapse
Affiliation(s)
- M E Bloom
- Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, Montana, 59840, USA.
| | | | | | | | | |
Collapse
|
27
|
Aasted B, Alexandersen S, Christensen J. Vaccination with Aleutian mink disease parvovirus (AMDV) capsid proteins enhances disease, while vaccination with the major non-structural AMDV protein causes partial protection from disease. Vaccine 1998; 16:1158-65. [PMID: 9682374 DOI: 10.1016/s0264-410x(98)80114-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Vaccination studies were performed with partially purified recombinant AMDV VP1/2 capsids as well as with the major AMDV non-structural protein (NS1). All vaccine constructs induced an antibody response, but did not prevent infection upon challenge with AMDV. The severity of Aleutian disease (AD) was judged by the serum gammaglobulin level, the quantity of peripheral blood CD8 lymphocytes, antibody titers to VP1/2 and NS1 proteins and mink death rates. The VP1/2 vaccine constructs enhanced the disease process with drastic death rates for the vaccinated mink. On the contrary, the NS1 vaccine constructs resulted in milder AD than seen in the non-vaccinated mink.
Collapse
Affiliation(s)
- B Aasted
- Department of Veterinary Microbiology, Royal Veterinary and Agricultural University, Copenhagen, Denmark.
| | | | | |
Collapse
|
28
|
Oleksiewicz MB, Wolfinbarger JB, Bloom ME. A comparison between permissive and restricted infections with Aleutian mink disease parvovirus (ADV): characterization of the viral protein composition at nuclear sites of virus replication. Virus Res 1998; 56:41-51. [PMID: 9784064 DOI: 10.1016/s0168-1702(98)00053-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We used three-color fluorescent labeling and confocal microscopy to compare the permissive and the antibody-mediated, restricted replication of Aleutian mink disease parvovirus (ADV). In both permissive (CRFK cells) and restricted (K562 cells) situations, both ADV non-structural proteins (NS1 and NS2) concentrated at focal sites in the nucleus, which also contained viral DNA. Bromodeoxyuridine labeling demonstrated that these sites also supported active ADV single-strand DNA synthesis, indicating that they were replication compartments. ADV capsid proteins were located in intranuclear shells surrounding the replication compartments. At later time points, NS2 was readily detected in the cytoplasm of permissively infected CRFK cells, whereas the cytoplasmic presence of NS2 was much less pronounced in the K562 cells. These results showed that both permissive and restricted ADV replication are associated with a tight nuclear subcompartmentalization of viral products. Furthermore, differences between the permissive and restricted virus-cell interactions were noted, suggesting that there may be a morphological basis for examining the outcome of ADV infection.
Collapse
Affiliation(s)
- M B Oleksiewicz
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, MT, USA
| | | | | |
Collapse
|
29
|
Christensen J, Cotmore SF, Tattersall P. A novel cellular site-specific DNA-binding protein cooperates with the viral NS1 polypeptide to initiate parvovirus DNA replication. J Virol 1997; 71:1405-16. [PMID: 8995666 PMCID: PMC191197 DOI: 10.1128/jvi.71.2.1405-1416.1997] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Replication of linear single-stranded parvovirus DNA proceeds by a rolling-hairpin mechanism which generates long, palindromic, duplex concatamers. Processing to monomer length requires initiation from origins of DNA replication located at the 3' and 5' ends of each embedded monomer, reactions which can be recapitulated in vitro for minute virus of mice (MVM). To determine which cellular proteins were essential for replication from these origins, S100 extracts from 293S cells were fractionated on phosphocellulose. When recombined, these fractions were able to support replication in vitro, dependent on the viral initiator protein NS1, using plasmid forms of the 5' origin or the minimal 3' origin as templates. Fraction P-cell 1 contains two factors, replication protein A (RPA) and proliferating-cell nuclear antigen (PCNA), known to be essential for simian virus 40 replication in vitro. When P-cell 1 was replaced with purified recombinant RPA and PCNA, NS1-mediated MVM replication initiated from the 5' origin but not from the 3' origin. The 3' origin is a 50-bp sequence containing three distinct recognition elements, an NS1 binding site, a site at which NS1 nicks the DNA to generate the priming 3' OH, and a region containing a consensus activated transcription factor (ATF) binding site. To identify the missing factor(s) for 3' origin replication, P-cell 1 was fractionated by further chromatography and active fractions were identified by their ability to complement RPA, PCNA, and P-cell 2 for NS1-mediated, origin-specific replication. Gel shift and UV cross-linking analysis of the replication-competent fractions revealed a novel 110-kDa sequence-specific DNA binding protein which recognized the consensus ATF binding site region of the origin and which we have termed parvovirus initiation factor, or PIF. Binding of PIF appears to activate the endonuclease function of NS1, allowing efficient and specific nicking of the 3' minimal origin under stringent conditions in vitro.
Collapse
Affiliation(s)
- J Christensen
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | | | |
Collapse
|
30
|
Oleksiewicz MB, Alexandersen S. S-phase-dependent cell cycle disturbances caused by Aleutian mink disease parvovirus. J Virol 1997; 71:1386-96. [PMID: 8995664 PMCID: PMC191195 DOI: 10.1128/jvi.71.2.1386-1396.1997] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We examined replication of the autonomous parvovirus Aleutian mink disease parvovirus (ADV) in relation to cell cycle progression of permissive Crandell feline kidney (CRFK) cells. Flow cytometric analysis showed that ADV caused a composite, binary pattern of cell cycle arrest. ADV-induced cell cycle arrest occurred exclusively in cells containing de novo-synthesized viral nonstructural (NS) proteins. Production of ADV NS proteins, indicative of ADV replication, was triggered during S-phase traverse. The NS+ cells that were generated during later parts of S phase did not undergo cytokinesis and formed a distinct population, termed population A. Formation of population A was not prevented by VM-26, indicating that these cells were arrested in late S or G2 phase. Cells in population A continued to support high-level ADV DNA replication and production of infectious virus after the normal S phase had ceased. A second, postmitotic, NS+ population (termed population B) arose in G0/G1, downstream of population A. Population B cells were unable to traverse S phase but did exhibit low-level DNA synthesis. Since the nature of this DNA synthesis was not examined, we cannot at present differentiate between G1 and early S arrest in population B. Cells that became NS+ during S phase entered population A, whereas population B cells apparently remained NS- during S phase and expressed high NS levels postmitosis in G0/G1. This suggested that population B resulted from leakage of cells with subthreshold levels of ADV products through the late S/G2 block and, consequently, that the binary pattern of ADV-induced cell cycle arrest may be governed merely by viral replication levels within a single S phase. Flow cytometric analysis of propidium iodide fluorescence and bromodeoxyuridine uptake showed that population A cells sustained significantly higher levels of DNA replication than population B cells during the ADV-induced cell cycle arrest. Therefore, the type of ADV-induced cell cycle arrest was not trivial and could have implications for subsequent viral replication in the target cell.
Collapse
Affiliation(s)
- M B Oleksiewicz
- Department of Pharmacology and Pathobiology, Royal Veterinary and Agricultural University, Frederiksberg, Denmark
| | | |
Collapse
|
31
|
Bloom ME, Martin DA, Oie KL, Huhtanen ME, Costello F, Wolfinbarger JB, Hayes SF, Agbandje-McKenna M. Expression of Aleutian mink disease parvovirus capsid proteins in defined segments: localization of immunoreactive sites and neutralizing epitopes to specific regions. J Virol 1997; 71:705-14. [PMID: 8985402 PMCID: PMC191103 DOI: 10.1128/jvi.71.1.705-714.1997] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The capsid proteins of the ADV-G isolate of Aleutian mink disease parvovirus (ADV) were expressed in 10 nonoverlapping segments as fusions with maltose-binding protein in pMAL-C2 (pVP1, pVP2a through pVP2i). The constructs were designed to capture the VP1 unique sequence and the portions analogous to the four variable surface loops of canine parvovirus (CPV) in individual fragments (pVP2b, pVP2d, pVP2e, and pVP2g, respectively). The panel of fusion proteins was immunoblotted with sera from mink infected with ADV. Seropositive mink infected with either ADV-TR, ADV-Utah, or ADV-Pullman reacted preferentially against certain segments, regardless of mink genotype or virus inoculum. The most consistently immunoreactive regions were pVP2g, pVP2e, and pVP2f, the segments that encompassed the analogs of CPV surface loops 3 and 4. The VP1 unique region was also consistently immunoreactive. These findings indicated that infected mink recognize linear epitopes that localized to certain regions of the capsid protein sequence. The segment containing the hypervariable region (pVP2d), corresponding to CPV loop 2, was also expressed from ADV-Utah. An anti-ADV-G monoclonal antibody and a rabbit anti-ADV-G capsid antibody reacted exclusively with the ADV-G pVP2d segment but not with the corresponding segment from ADV-Utah. Mink infected with ADV-TR or ADV-Utah also preferentially reacted with the pVP2d sequence characteristic of that virus. These results suggested that the loop 2 region may contain a type-specific linear epitope and that the epitope may also be specifically recognized by infected mink. Heterologous antisera were prepared against the VP1 unique region and the four segments capturing the variable surface loops of CPV. The antisera against the proteins containing loop 3 or loop 4, as well as the anticapsid antibody, neutralized ADV-G infectivity in vitro and bound to capsids in immune electron microscopy. These results suggested that regions of the ADV capsid proteins corresponding to surface loops 3 and 4 of CPV contain linear epitopes that are located on the external surface of the ADV capsid. Furthermore, these linear epitopes contain neutralizing determinants. Computer comparisons with the CPV crystal structure suggest that these sequences may be adjacent to the threefold axis of symmetry of the viral particle.
Collapse
Affiliation(s)
- M E Bloom
- Laboratory of Persistent Viral Diseases, National Institute of Allergy and Infectious Disease, Hamilton, Montana 59840, USA.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Oleksiewicz MB, Costello F, Huhtanen M, Wolfinbarger JB, Alexandersen S, Bloom ME. Subcellular localization of Aleutian mink disease parvovirus proteins and DNA during permissive infection of Crandell feline kidney cells. J Virol 1996; 70:3242-7. [PMID: 8627805 PMCID: PMC190188 DOI: 10.1128/jvi.70.5.3242-3247.1996] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Confocal microscopy allowed us to localize viral nonstructural (NS) and capsid (VP) proteins and DNA simultaneously in cells permissively infected with Aleutian mink disease parvovirus (ADV). Early after infection, NS proteins colocalized with viral DNA to form intranuclear inclusions, whereas VP proteins formed hollow intranuclear shells around the inclusions. Later, nuclei had irregular outlines and were virtually free of ADV products. In these cells, inclusions of viral DNA with or without associated NS protein were embedded in cytoplasmic VP protein. These findings implied that ADV replication within an infected cell is regulated spatially as well as temporally.
Collapse
Affiliation(s)
- M B Oleksiewicz
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Insitute of Allergy and Infectious Diseases, Hamilton, Montana 59840, USA
| | | | | | | | | | | |
Collapse
|
33
|
Casal JI. Parvovirus diagnostics and vaccine production in insect cells. Cytotechnology 1996; 20:261-70. [DOI: 10.1007/bf00350405] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
34
|
Christensen J, Pedersen M, Aasted B, Alexandersen S. Purification and characterization of the major nonstructural protein (NS-1) of Aleutian mink disease parvovirus. J Virol 1995; 69:1802-9. [PMID: 7853520 PMCID: PMC188788 DOI: 10.1128/jvi.69.3.1802-1809.1995] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We have previously described the expression of the major nonstructural protein (NS-1) of Aleutian mink disease parvovirus (ADV) in insect cells by using a baculovirus vector (J. Christensen, T. Storgaard, B. Bloch, S. Alexandersen, and B. Aasted, J. Virol. 67:229-238, 1993). To study its biochemical properties, ADV NS-1 was expressed in Sf9 insect cells and purified to apparent homogeneity with a combination of nuclear extraction, Zn2+ ion chromatography, and immunoaffinity chromatography on monoclonal antibodies. The purified protein showed ATP binding and ATPase- and ATP- or dATP-dependent helicase activity requiring either Mg2+ or Mn2+ as a cofactor. The ATPase activity of NS-1 was efficiently stimulated by single-stranded DNA and, to a lesser extent, double-stranded DNA. We also describe the expression, purification, and characterization of a mutant NS-1 protein, in which a lysine in the putative nucleotide binding consensus sequence of the molecule was replaced with serine. The mutated NS-1 was expressed at 10-fold higher levels than wild-type NS-1, but it exhibited no ATP binding. ATPase, or helicase activity. The availability of large amounts of purified functional NS-1 protein will facilitate studies of the biochemistry of ADV replication and gene regulation leading to disease in mink.
Collapse
Affiliation(s)
- J Christensen
- Department of Veterinary Microbiology, Royal Veterinary and Agricultural University of Copenhagen, Denmark
| | | | | | | |
Collapse
|
35
|
Gottschalck E, Alexandersen S, Storgaard T, Bloom ME, Aasted B. Sequence comparison of the non-structural genes of four different types of Aleutian mink disease parvovirus indicates an unusual degree of variability. Arch Virol 1994; 138:213-31. [PMID: 7998830 DOI: 10.1007/bf01379127] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The present work shows that at least four different sequence types of Aleutian mink disease parvovirus (ADV) are present in ADV isolates from mink. We here report the nucleotide sequences of these four types of ADV from nucleotide 123 to 2208 (map unit 3 to 46). This part of the genome encodes three non-structural (NS) proteins of ADV. Comparison of the deduced amino acid sequences of these NS proteins showed that the ADV proteins are much less conserved than the NS proteins from other members of the autonomous group of parvoviruses. In general, we found that the middle region of the ADV NS-1 protein was relatively well conserved among the types, while both the amino- and carboxy-terminal ends of the protein had higher amino acid variability. Interestingly, the putative NS-3 protein from type 3 ADV is truncated in the carboxy-terminal end. The molecular evolutionary relationship among the four types of ADV was examined. This analysis, taken together with the unusually high degree of variability of the ADV types, indicates that the ADV infection in mink is likely to be an old infection compared to the other parvovirus infections or, alternatively, that ADV accumulates sequence changes much faster than other parvoviruses.
Collapse
Affiliation(s)
- E Gottschalck
- Department of Veterinary Microbiology, Royal Veterinary and Agricultural University, Frederiksberg, Denmark
| | | | | | | | | |
Collapse
|
36
|
Wu WH, Bloom ME, Berry BD, McGinley MJ, Platt KB. Expression of Aleutian mink disease parvovirus capsid proteins in a baculovirus expression system for potential diagnostic use. J Vet Diagn Invest 1994; 6:23-9. [PMID: 8011776 DOI: 10.1177/104063879400600105] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
A 2.3-kb cDNA clone encoding Aleutian mink disease parvovirus (ADV) structural proteins VP1 and VP2 was inserted into the polyhedron gene of Autographa californica nuclear polyhedrosis virus (AcNPV) and expressed by the recombinant virus, AcADV-1, in Spodoptera frugiperda-9 cells. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and western immunoblot analysis (WIA) indicated that synthesis of both VP1 and VP2 was being directed by AcADV-1. Fluorescence microscopic examination of AcADV-1-infected S. frugiperda-9 cells indicated that the recombinant protein was present within the nucleus of the cells, and electron microscopic examination of these cells revealed the presence of small particles 23-25 nm in diameter. Structures resembling empty ADV capsids could be purified on CsCl density gradients, thus indicating that the ADV proteins were self-assembling. The antigenicity of recombinant VP1 and VP2 was evaluated by WIA. Sera collected from 16 mink prior to infection with ADV did not react with VP1 and VP2. Ten sera collected from mink with counter current immunoelectrophoresis (CIE) titers greater than 4 (log2) reacted with VP1 and VP2 in WIA. Two of 6 sera with CIE titers of 4 and 1 of 14 sera with CIE titers < 4 reacted with the recombinant proteins. These results suggest that baculovirus recombinant ADV capsid proteins may be useful as diagnostic antigens.
Collapse
Affiliation(s)
- W H Wu
- Department of Microbiology, Immunology and Preventive Medicine, Iowa State University, Ames 50011
| | | | | | | | | |
Collapse
|
37
|
Maeda S, Kamita SG, Kondo A. Host range expansion of Autographa californica nuclear polyhedrosis virus (NPV) following recombination of a 0.6-kilobase-pair DNA fragment originating from Bombyx mori NPV. J Virol 1993; 67:6234-8. [PMID: 8396678 PMCID: PMC238045 DOI: 10.1128/jvi.67.10.6234-6238.1993] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
We have isolated hybrid baculoviruses of Bombyx mori nuclear polyhedrosis virus (BmNPV) and Autographa californica NPV (AcNPV) capable of replicating in both BmN (not susceptible to AcNPV) and SF-21 (not susceptible to BmNPV) cells (A. Kondo and S. Maeda, J. Virol. 65:3625-3632, 1991). Repeated backcross infection of one of these recombinant isolates with AcNPV generated eh-AcNPV, a virus with restriction endonuclease patterns of genomic DNA nearly identical to those of AcNPV but capable of replicating in both BmN and SF-21 cells, i.e., host range expanded. Expanded host range viruses were also isolated following cotransfection of AcNPV DNA with eh-AcNPV DNA cleaved with either HindIII or PstI. Subsequent cotransfection of AcNPV DNA with plasmids from an eh-AcNPV DNA fragment library identified an 11-kbp HindIII fragment that could expand the host range of AcNPV. Subcloning and cotransfection analyses localized a 572-bp SacI-HindIII fragment within this 11-kbp fragment which could alone expand the host range of AcNPV. Mapping and nucleotide sequencing analysis revealed that this fragment was identical to the corresponding 572-bp fragment (BmScH) of BmNPV. Furthermore, this fragment originated from the coding region of the putative DNA helicase gene. Cotransfection of AcNPV DNA with BmScH also generated a host range-expanded virus, eh2-AcNPV. These results indicated that the expanded host range characteristics of eh2-AcNPV were solely the result of recombination within the coding region of the putative DNA helicase gene.
Collapse
Affiliation(s)
- S Maeda
- Department of Entomology, University of California, Davis 95616-8584
| | | | | |
Collapse
|
38
|
Abstract
The use of recombinant baculoviruses as high level expression systems is becoming more and more popular. This review aims to provide a summary of the impact of this expression system in biochemistry and biotechnology, highlighting important advances that have been made utilizing the system. The potential of newly developed multiple baculovirus expression systems to enable the reconstruction of complex biological molecules and processes is also reviewed.
Collapse
Affiliation(s)
- I M Kidd
- Division of Communicable Diseases, Royal Free Hospital School of Medicine, Hampstead, London
| | | |
Collapse
|
39
|
Christensen J, Storgaard T, Viuff B, Aasted B, Alexandersen S. Comparison of promoter activity in Aleutian mink disease parvovirus, minute virus of mice, and canine parvovirus: possible role of weak promoters in the pathogenesis of Aleutian mink disease parvovirus infection. J Virol 1993; 67:1877-86. [PMID: 8383215 PMCID: PMC240255 DOI: 10.1128/jvi.67.4.1877-1886.1993] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Aleutian mink disease parvovirus (ADV) infection causes both acute and chronic disease in mink, and we have previously shown that it is the level of viral gene expression that determines the disease pattern. To study the gene regulation of ADV, we have cloned the P3 ADV and P36 ADV promoters in front of a reporter gene, the chloramphenicol acetyltransferase (CAT) gene, and analyzed these constructs by transient transfection in a feline kidney cell line and mouse NIH 3T3 cells. The genes for ADV structural proteins (VP1 and VP2) and the nonstructural proteins (NS-1, NS-2, and NS-3) were cloned into a eukaryotic expression vector, and their functions in regulation of the P3 ADV and P36 ADV promoters were examined in cotransfection experiments. The ADV NS-1 protein was able to transactivate the P36 ADV promoter and, to a lesser degree, the P3 ADV promoter. Constitutive activities of the P3 ADV and P36 ADV promoters were weaker than those of the corresponding promoters from the prototypic parvovirus minute virus of mice (MVM) and canine parvovirus (CPV). Also, the level of transactivation of the P36 ADV promoter was much lower than those of the corresponding P38 MVM and P38 CPV promoters transactivated with MVM NS-1. Moreover, the ADV NS-1 gene product could transactivate the P38 MVM promoter to higher levels than it could transactivate the P36 ADV promoter, while the P36 ADV promoter could be transactivated by MVM NS-1 and ADV NS-1 to similar levels. Taken together, these data indicated that cis-acting sequences in the P36 ADV promoter play a major role in determining the low level of transactivation observed. The P3 ADV and P4 MVM promoters could be transactivated to some degree by their respective NS-1 gene products. However, in contrast to the situation for the late promoters, switching NS-1 proteins between the two viruses was not possible. This finding may indicate a different mechanism of transactivation of the early promoters (P3 ADV and P4 MVM) compared with the late (P36 ADV and P38 MVM) promoters. In summary, the constitutive levels of expression from the ADV promoters are weaker than the levels from the corresponding promoters of MVM and CPV. Moreover, the level of NS-1-mediated transactivation of the late ADV promoter is impaired compared with the level of transactivation of the late promoters of MVM and CPV.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- J Christensen
- Department of Veterinary Microbiology, Royal Veterinary and Agricultural University of Copenhagen, Frederiksberg, Denmark
| | | | | | | | | |
Collapse
|
40
|
Storgaard T, Christensen J, Aasted B, Alexandersen S. cis-acting sequences in the Aleutian mink disease parvovirus late promoter important for transcription: comparison to the canine parvovirus and minute virus of mice. J Virol 1993; 67:1887-95. [PMID: 8383216 PMCID: PMC240256 DOI: 10.1128/jvi.67.4.1887-1895.1993] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
We are currently investigating the regulation of transcription of the Aleutian mink disease parvovirus (ADV). ADV causes a chronic immune complex-mediated condition known as classical Aleutian disease, characterized by slow viral replication. This slow replication is an intrinsic property of ADV and distinguishes it from the more prototypic parvoviruses such as minute virus of mice (MVM) and canine parvovirus (CPV). We have previously suggested a role for the weak ADV promoters in the slow replication and thereby the absence of acute cytopathology and instead establishment of persistent ADV infection with progressive immune complex-mediated chronic lesions. In this study, we have mapped the cis-acting sequences around the ADV P36 promoter responsible for both constitutive transcription and transactivation mediated by the nonstructural protein 1. The mapping was performed by using endpoint deletions of the ADV P36 promoter and by making chimeras between the ADV P36 and MVM P38 promoters. We found the weak constitutive activity of the ADV P36 promoter to be caused by suboptimal promoter proximal sequences, while the low level of transactivation was caused mainly by an upstream region including sequences with homology to the transactivation responsive element (tar) of the H-1 parvovirus (M.-L. Gu, F.-X. Chen, and S. L. Rhode, Virology 187:10-17, 1992). We also found the corresponding regions in the MVM and CPV P38 promoters to be important for transactivation of these promoters by making 5' deletions of the promoter region. In addition, it was found that MVM tar-like and upstream sequences could transfer high nonstructural protein 1 responsiveness to the ADV promoter even though the distance between the tar-like element and the TATA box was significantly changed. On the basis of comparative data for ADV, MVM, CPV, and H-1, a new clustered motif (TTGGTT) is proposed to be the responsive cis-acting element for transactivation. Homology comparison of the specific transcriptional elements of the ADV P36, MVM P38, and CPV P38 promoters suggests that few, but crucial, changes in the ADV P36 promoter and upstream region are responsible for the weak constitutive activity and low level of transactivation of the ADV P36 promoter.
Collapse
Affiliation(s)
- T Storgaard
- Department of Pharmacology and Pathobiology, University of Copenhagen, Frederiksberg, Denmark
| | | | | | | |
Collapse
|