1
|
Abstract
Lassa virus (LASV) is a persistent global health threat that causes about half a million cases of Lassa fever each year in Western Africa. Although most cases are mild, the disease can cause significant morbidity and results in as many as 5,000 deaths per year. Since 2015, Nigeria has been experiencing a severe and extended outbreak of Lassa fever, raising concerns that it could spill over into other countries and reach a magnitude similar to the West African Ebola outbreak of 2013-2016. Despite the burden that Lassa fever places on public health, both in Africa and around the world, there are still no clinically-approved therapeutics or vaccines to treat or prevent it. Nevertheless, a number of promising candidate vaccines have been developed over the last several years, and there is a growing political and social determination to drive at least one of these candidates towards licensure. This paper describes a LASV vaccine candidate that is being developed at Canada's National Microbiology Laboratory. Based on the same live attenuated vesicular stomatitis virus (VSV) vaccine platform that was used to produce the successful Ebola virus vaccine, the VSV-based LASV vaccine has been shown to elicit a potent and protective immune response against LASV. The vaccine shows 100% protection in the "gold-standard" nonhuman primate model of Lassa fever, inducing both humoral and cellular immune responses. Moreover, studies have shown that a single vaccination may offer universal protection against numerous different strains of the virus, and additional studies have shown that immunization with the VSV platform appears to be unaffected by pre-existing immunity to VSV. The next step in the development of the VSV-based LASV vaccine is phase I human clinical trials to assess vaccine safety and dosage.
Collapse
|
2
|
Johansen P, Storni T, Rettig L, Qiu Z, Der-Sarkissian A, Smith KA, Manolova V, Lang KS, Senti G, Müllhaupt B, Gerlach T, Speck RF, Bot A, Kündig TM. Antigen kinetics determines immune reactivity. Proc Natl Acad Sci U S A 2008; 105:5189-94. [PMID: 18362362 PMCID: PMC2278203 DOI: 10.1073/pnas.0706296105] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2007] [Indexed: 01/01/2023] Open
Abstract
A current paradigm in immunology is that the strength of T cell responses is governed by antigen dose, localization, and costimulatory signals. This study investigates the influence of antigen kinetics on CD8 T cell responses in mice. A fixed cumulative antigen dose was administered by different schedules to produce distinct dose-kinetics. Antigenic stimulation increasing exponentially over days was a stronger stimulus for CD8 T cells and antiviral immunity than a single dose or multiple dosing with daily equal doses. The same was observed for dendritic cell vaccination, with regard to T cell and anti-tumor responses, and for T cells stimulated in vitro. In conclusion, stimulation kinetics per se was shown to be a separate parameter of immunogenicity. These findings warrant a revision of current immunization models and have implications for vaccine development and immunotherapy.
Collapse
Affiliation(s)
- Pål Johansen
- *Unit Experimental Immunotherapy, Department of Dermatology, University Hospital Zurich, Gloriastrasse 31, CH-8091 Zurich, Switzerland
| | - Tazio Storni
- *Unit Experimental Immunotherapy, Department of Dermatology, University Hospital Zurich, Gloriastrasse 31, CH-8091 Zurich, Switzerland
| | - Lorna Rettig
- *Unit Experimental Immunotherapy, Department of Dermatology, University Hospital Zurich, Gloriastrasse 31, CH-8091 Zurich, Switzerland
| | - Zhiyong Qiu
- MannKind Corporation, 28903 North Avenue Paine, Valencia, CA 91355
| | | | - Kent A. Smith
- MannKind Corporation, 28903 North Avenue Paine, Valencia, CA 91355
| | - Vania Manolova
- Cytos Biotechnology, Wagistrasse 25, CH-8952 Schlieren, Switzerland
| | - Karl S. Lang
- Institute of Experimental Immunology, University Hospital Zurich, Schmelzbergstrasse 12, CH-8091 Zurich, Switzerland
| | - Gabriela Senti
- *Unit Experimental Immunotherapy, Department of Dermatology, University Hospital Zurich, Gloriastrasse 31, CH-8091 Zurich, Switzerland
- Clinical Trials Center, University Hospital Zurich, Gloriastrasse 31, CH-8091 Zurich, Switzerland
| | - Beat Müllhaupt
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Raemistrasse 100, CH-8091 Zurich, Switzerland; and
| | - Tilman Gerlach
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Raemistrasse 100, CH-8091 Zurich, Switzerland; and
| | - Roberto F. Speck
- **Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Raemistrasse 100, CH-8091 Zurich, Switzerland
| | - Adrian Bot
- MannKind Corporation, 28903 North Avenue Paine, Valencia, CA 91355
| | - Thomas M. Kündig
- *Unit Experimental Immunotherapy, Department of Dermatology, University Hospital Zurich, Gloriastrasse 31, CH-8091 Zurich, Switzerland
| |
Collapse
|
3
|
Garbutt M, Liebscher R, Wahl-Jensen V, Jones S, Möller P, Wagner R, Volchkov V, Klenk HD, Feldmann H, Ströher U. Properties of replication-competent vesicular stomatitis virus vectors expressing glycoproteins of filoviruses and arenaviruses. J Virol 2004; 78:5458-65. [PMID: 15113924 PMCID: PMC400370 DOI: 10.1128/jvi.78.10.5458-5465.2004] [Citation(s) in RCA: 289] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Replication-competent recombinant vesicular stomatitis viruses (rVSVs) expressing the type I transmembrane glycoproteins and selected soluble glycoproteins of several viral hemorrhagic fever agents (Marburg virus, Ebola virus, and Lassa virus) were generated and characterized. All recombinant viruses exhibited rhabdovirus morphology and replicated cytolytically in tissue culture. Unlike the rVSVs with an additional transcription unit expressing the soluble glycoproteins, the viruses carrying the foreign transmembrane glycoproteins in replacement of the VSV glycoprotein were slightly attenuated in growth. Biosynthesis and processing of the foreign glycoproteins were authentic, and the cell tropism was defined by the transmembrane glycoprotein. None of the rVSVs displayed pathogenic potential in animals. The rVSV expressing the Zaire Ebola virus transmembrane glycoprotein mediated protection in mice against a lethal Zaire Ebola virus challenge. Our data suggest that the recombinant VSV can be used to study the role of the viral glycoproteins in virus replication, immune response, and pathogenesis.
Collapse
Affiliation(s)
- Michael Garbutt
- Special Pathogens Program, National Microbiology Laboratory, Health Canada, Winnipeg, Manitoba, Canada R3E 3R2
| | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Storni T, Ruedl C, Renner WA, Bachmann MF. Innate immunity together with duration of antigen persistence regulate effector T cell induction. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 171:795-801. [PMID: 12847247 DOI: 10.4049/jimmunol.171.2.795] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Proliferation of T cells is important for the expansion of specific T cell clones during immune responses. In addition, for the establishment of protective immunity against viruses, bacteria, and tumors, the expanded T cells must differentiate into effector T cells. Here we show that effector T cell generation is driven by activation of APCs and duration of antigenic stimulation. Adoptively transferred TCR-transgenic T cells extensively proliferated upon immunization. However, these T cells failed to differentiate into effector cells and died within 1 wk after immunization unless antigenic peptides persisted for >1 day or were presented by activated APCs. The induction of protective immunity in a nontransgenic system was more stringent, since activation of APCs or prolonged Ag persistence alone was not sufficient to drive immunity. In contrast, Ag had to be presented for several days by activated APCs to trigger protective T cell responses. Thus, activation of APCs and duration of Ag presentation together regulate the induction of protective T cell responses.
Collapse
MESH Headings
- Animals
- Antigen Presentation/genetics
- Antigen Presentation/immunology
- Antigens, CD/biosynthesis
- Antigens, Differentiation, T-Lymphocyte/biosynthesis
- Antigens, Viral/administration & dosage
- Antigens, Viral/immunology
- Antigens, Viral/metabolism
- Biomarkers/analysis
- Cell Division/genetics
- Cell Division/immunology
- Female
- Glycoproteins/administration & dosage
- Glycoproteins/immunology
- Glycoproteins/metabolism
- Hyaluronan Receptors/biosynthesis
- Immunity, Innate/genetics
- Lectins, C-Type
- Lymphocyte Activation/genetics
- Lymphocytic choriomeningitis virus/immunology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Peptide Fragments/administration & dosage
- Peptide Fragments/immunology
- Peptide Fragments/metabolism
- Receptors, Interleukin-2/biosynthesis
- T-Lymphocyte Subsets/cytology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- T-Lymphocyte Subsets/virology
- Time Factors
- Up-Regulation/genetics
- Up-Regulation/immunology
- Viral Proteins/administration & dosage
- Viral Proteins/immunology
- Viral Proteins/metabolism
- Viral Vaccines/administration & dosage
- Viral Vaccines/immunology
- Viral Vaccines/metabolism
- Virion/immunology
- Virion/metabolism
Collapse
Affiliation(s)
- Tazio Storni
- Cytos Biotechnology, Schlieren-Zurich, Switzerland
| | | | | | | |
Collapse
|
5
|
Flanagan EB, Schoeb TR, Wertz GW. Vesicular stomatitis viruses with rearranged genomes have altered invasiveness and neuropathogenesis in mice. J Virol 2003; 77:5740-8. [PMID: 12719567 PMCID: PMC154046 DOI: 10.1128/jvi.77.10.5740-5748.2003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2002] [Accepted: 02/20/2003] [Indexed: 12/17/2022] Open
Abstract
Transcription of vesicular stomatitis virus is controlled by the position of a gene relative to the single 3' genomic promoter: promoter-proximal genes are transcribed at higher levels than those in more 5' distal positions. In previous work, we generated viruses having rearranged gene orders. These viruses had the promoter-proximal gene that encodes the nucleocapsid protein, N, moved to the second or fourth position in the genome in combination with the glycoprotein gene, G, moved from its usual promoter-distal fourth position to the first or third position. This resulted in three new viruses identified by the positions of the N and G genes in the gene order: G3N4, G1N4, and G1N2. The viruses G3N4 and G1N4 were attenuated for lethality in mice. In the present study, we addressed the basis of this attenuation by measuring the ability of each of the rearranged viruses to travel to and replicate in the olfactory bulb and brain following intranasal inoculation. In addition, the neuropathogenicity, serum cytokine levels, and immunoglobulin G isotype profiles in infected mice were determined. All the viruses reached the olfactory bulb and brain, but the outcomes of these infections were dramatically different. Viruses N1G4(wt) and G1N2 caused lethal encephalitis in 100% of animals within 7 days postinoculation; however, viruses G3N4 and G1N4 were cleared from the brain by 7 days postinoculation and all animals survived without apparent distress. The viruses differed in the distribution and intensity of lesions produced and the type and levels of cytokines induced. Animals inoculated with N1G4(wt) or G1N2 displayed extensive encephalitis and meningitis and had elevated levels of serum gamma interferon compared to what was seen with G3N4- or G1N4-infected mice. In contrast to what occurred with intranasal inoculation, all four viruses caused lethal encephalitis when administered by direct inoculation to the brain, a route that circumvents the majority of the host immune response, demonstrating that G3N4 and G1N4 were not deficient in their abilities to cause disease in the brain. These findings indicate that gene rearrangement and its consequent alteration of gene expression can, without any other changes, alter the viral spread and cytokine response following intranasal infection.
Collapse
Affiliation(s)
- E Brian Flanagan
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | |
Collapse
|
6
|
Erdmann I, Scheidegger EP, Koch FK, Heinzerling L, Odermatt B, Burg G, Lowe JB, Kündig TM. Fucosyltransferase VII-deficient mice with defective E-, P-, and L-selectin ligands show impaired CD4+ and CD8+ T cell migration into the skin, but normal extravasation into visceral organs. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:2139-46. [PMID: 11859099 DOI: 10.4049/jimmunol.168.5.2139] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The first step of leukocyte extravasation, leukocyte rolling, is mediated by E-, P-, and L-selectins. Mice deficient for alpha-1,3-fucosyltransferase VII (FucTVII)(-/-) are characterized by deficiency of E-, P-, and L-selectin ligand activity. This model system was used to evaluate the role of the interactions of selectins with their ligands in T and B cell responses. In the present study, FucTVII(-/-) mice showed reduced CD4+ T cell-mediated contact hypersensitivity reactions of the ears to FITC as well as reduced CD8+ T cell-mediated delayed-type hypersensitivity reactions of the footpads against lymphocytic choriomeningitis virus infection. As Langerhans cell migration to local lymph nodes as well as CD4+ and CD8+ T cell induction were found to be normal, the afferent arm of these reactions was not impaired. The reduced inflammatory reactions of the skin were due to inefficient lymphocyte extravasation into the skin. In contrast, extravasation of CD4+ and CD8+ T cells into visceral organs, such as the ovaries or the brain, was not impaired in FucTVII(-/-) mice. Elimination of vaccinia virus and of lymphocytic choriomeningitis virus from ovaries and brain, as well as elimination of tumor cells from several visceral organs was normal. Thus, interactions of selectins with their ligands are important for lymphocyte homing into the skin, but not for lymphocyte extravasation into visceral organs.
Collapse
Affiliation(s)
- Iris Erdmann
- Department of Dermatology, University Hospital of Zürich, Gloriastrasse 31, 8091 Zürich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Flanagan EB, Ball LA, Wertz GW. Moving the glycoprotein gene of vesicular stomatitis virus to promoter-proximal positions accelerates and enhances the protective immune response. J Virol 2000; 74:7895-902. [PMID: 10933697 PMCID: PMC112320 DOI: 10.1128/jvi.74.17.7895-7902.2000] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2000] [Accepted: 06/08/2000] [Indexed: 11/20/2022] Open
Abstract
Vesicular stomatitis virus (VSV) is the prototype of the Rhabdoviridae and contains nonsegmented negative-sense RNA as its genome. The 11-kb genome encodes five genes in the order 3'-N-P-M-G-L-5', and transcription is obligatorily sequential from the single 3' promoter. As a result, genes at promoter-proximal positions are transcribed at higher levels than those at promoter-distal positions. Previous work demonstrated that moving the gene encoding the nucleocapsid protein N to successively more promoter-distal positions resulted in stepwise attenuation of replication and lethality for mice. In the present study we investigated whether moving the gene for the attachment glycoprotein G, which encodes the major neutralizing epitopes, from its fourth position up to first in the gene order would increase G protein expression in cells and alter the immune response in inoculated animals. In addition to moving the G gene alone, we also constructed viruses having both the G and N genes rearranged. This produced three variant viruses having the orders 3'-G-N-P-M-L-5' (G1N2), 3'-P-M-G-N-L-5' (G3N4), and 3'-G-P-M-N-L-5' (G1N4), respectively. These viruses differed from one another and from wild-type virus in their levels of gene expression and replication in cell culture. The viruses also differed in their pathogenesis, immunogenicity, and level of protection of mice against challenge with wild-type VSV. Translocation of the G gene altered the kinetics and level of the antibody response in mice, and simultaneous reduction of N protein expression reduced replication and lethality for animals. These studies demonstrate that gene rearrangement can be exploited to design nonsegmented negative-sense RNA viruses that have characteristics desirable in candidates for live attenuated vaccines.
Collapse
Affiliation(s)
- E B Flanagan
- Department of Microbiology, The Medical School, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | |
Collapse
|
8
|
Grigera PR, Marzocca MP, Capozzo AV, Buonocore L, Donis RO, Rose JK. Presence of bovine viral diarrhea virus (BVDV) E2 glycoprotein in VSV recombinant particles and induction of neutralizing BVDV antibodies in mice. Virus Res 2000; 69:3-15. [PMID: 10989181 DOI: 10.1016/s0168-1702(00)00164-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
We generated a recombinant vesicular stomatitis virus (VSV-E2) encoding the bovine viral diarrhea virus (BVDV) E2 glycoprotein with the VSV-G protein signal peptide. Infection of BHK21 cells with VSV-E2 induced the synthesis of a recombinant E2 (rE2) that comigrated with authentic BVDV-E2 in PAGE-SDS gels. Non-reducing immunoblots showed that rE2 is a disulfide bond-linked homodimer with at least 10-fold higher avidity for conformation-dependent anti-BVDV-E2 antibodies than its reduced monomeric counterpart. Immunofluorescence microscopy also showed that rE2 was transported to the plasma membrane of infected cells and analysis of purified particles demonstrated that dimeric rE2 was incorporated into VSV-E2 virions in approximately 1:10 ratio with respect to the G glycoprotein. BALB/c mice inoculated intranasally with VSV-E2 doses of up to 10(7) plaque forming units (pfu) showed no symptoms of viral-induced disease and developed a specific BVDV neutralizing response that lasted for at least 180 days post inoculation.
Collapse
Affiliation(s)
- P R Grigera
- Centro de Virologia Animal, Serrano 669, 1414 Capital Federal, Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
9
|
Maloy KJ, Burkhart C, Junt TM, Odermatt B, Oxenius A, Piali L, Zinkernagel RM, Hengartner H. CD4(+) T cell subsets during virus infection. Protective capacity depends on effector cytokine secretion and on migratory capability. J Exp Med 2000; 191:2159-70. [PMID: 10859340 PMCID: PMC2193195 DOI: 10.1084/jem.191.12.2159] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
To analyze the antiviral protective capacities of CD4(+) T helper (Th) cell subsets, we used transgenic T cells expressing an I-A(b)-restricted T cell receptor specific for an epitope of vesicular stomatitis virus glycoprotein (VSV-G). After polarization into Th1 or Th2 effectors and adoptive transfer into T cell-deficient recipients, protective capacities were assessed after infection with different types of viruses expressing the VSV-G. Both Th1 and Th2 CD4(+) T cells could transfer protection against systemic VSV infection, by stimulating the production of neutralizing immunoglobulin G antibodies. However, only Th1 CD4(+) T cells were able to mediate protection against infection with recombinant vaccinia virus expressing the VSV-G (Vacc-IND-G). Similarly, only Th1 CD4(+) T cells were able to rapidly eradicate Vacc-IND-G from peripheral organs, to mediate delayed-type hypersensitivity responses against VSV-G and to protect against lethal intranasal infection with VSV. Protective capacity correlated with the ability of Th1 CD4(+) T cells to rapidly migrate to peripheral inflammatory sites in vivo and to respond to inflammatory chemokines that were induced after virus infection of peripheral tissues. Therefore, the antiviral protective capacity of a given CD4(+) T cell is governed by the effector cytokines it produces and by its migratory capability.
Collapse
Affiliation(s)
- K J Maloy
- Department of Pathology, Institute of Experimental Immunology, CH-8091 Zürich, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Maloy KJ, Burkhart C, Freer G, Rülicke T, Pircher H, Kono DH, Theofilopoulos AN, Ludewig B, Hoffmann-Rohrer U, Zinkernagel RM, Hengartner H. Qualitative and Quantitative Requirements for CD4+ T Cell-Mediated Antiviral Protection. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.162.5.2867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
CD4+ Th cells deliver the cognate and cytokine signals that promote the production of protective virus-neutralizing IgG by specific B cells and are also able to mediate direct antiviral effector functions. To quantitatively and qualitatively analyze the antiviral functions of CD4+ Th cells, we generated transgenic mice (tg7) expressing an MHC class II (I-Ab)-restricted TCR specific for a peptide derived from the glycoprotein (G) of vesicular stomatitis virus (VSV). The elevated precursor frequency of naive VSV-specific Th cells in tg7 mice led to a markedly accelerated and enhanced class switching to virus-neutralizing IgG after immunization with inactivated VSV. Furthermore, in contrast to nontransgenic controls, tg7 mice rapidly cleared a recombinant vaccinia virus expressing the VSV-G (Vacc-IND-G) from peripheral organs. By adoptive transfer of naive tg7 CD4+ T cells into T cell-deficient recipients, we found that 105 transferred CD4+ T cells were sufficient to induce isotype switching after challenge with a suboptimal dose of inactivated VSV. In contrast, naive transgenic CD4+ T cells were unable to adoptively confer protection against peripheral infection with Vacc-IND-G. However, tg7 CD4+ T cells that had been primed in vitro with VSV-G peptide were able to adoptively transfer protection against Vacc-IND-G. These results demonstrate that the antiviral properties of CD4+ T cells are governed by the differentiation status of the CD4+ T cell and by the type of effector response required for virus elimination.
Collapse
Affiliation(s)
- Kevin J. Maloy
- *Department of Pathology, Institute of Experimental Immunology, Zurich, Switzerland; and
| | - Christoph Burkhart
- *Department of Pathology, Institute of Experimental Immunology, Zurich, Switzerland; and
| | - Giulia Freer
- *Department of Pathology, Institute of Experimental Immunology, Zurich, Switzerland; and
| | - Thomas Rülicke
- *Department of Pathology, Institute of Experimental Immunology, Zurich, Switzerland; and
| | - Hanspeter Pircher
- *Department of Pathology, Institute of Experimental Immunology, Zurich, Switzerland; and
| | | | | | - Burkhard Ludewig
- *Department of Pathology, Institute of Experimental Immunology, Zurich, Switzerland; and
| | - Urs Hoffmann-Rohrer
- *Department of Pathology, Institute of Experimental Immunology, Zurich, Switzerland; and
| | - Rolf M. Zinkernagel
- *Department of Pathology, Institute of Experimental Immunology, Zurich, Switzerland; and
| | - Hans Hengartner
- *Department of Pathology, Institute of Experimental Immunology, Zurich, Switzerland; and
| |
Collapse
|
11
|
Oxenius A, Karrer U, Zinkernagel RM, Hengartner H. IL-12 Is Not Required for Induction of Type 1 Cytokine Responses in Viral Infections. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.162.2.965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
To investigate the physiological role of IL-12 in viral infections in terms of T cell cytokine responses involved in virus-specific Ig isotype induction and in antiviral protection, immune responses elicited upon infection of IL-12-deficient mice with lymphocytic choriomeningitis virus (LCMV) or vesicular stomatitis virus (VSV) were studied. Infection of IL-12-deficient mice with LCMV induced a virus-specific type 1 cytokine response as determined by in vitro cytokine secretion patterns as well as by in vivo intracellular cytokine staining of LCMV-specific CD4+ TCR transgenic T cells that had clonally expanded in LCMV-infected IL-12-deficient recipient mice. In addition, LCMV- and VSV-specific IgG responses exhibited normal serum IgG2a/IgG1 ratios, demonstrating again virus-specific CD4+ T cell induction of type 1 phenotype in IL-12-deficient mice upon viral infection. LCMV and VSV immune mice were found to be protected against challenge immunization with recombinant vaccinia viruses expressing either the LCMV- or the VSV-derived glycoprotein, respectively. This protection is known to be mediated by T cell-secreted type 1 cytokines IFN-γ and TNF-α. In contrast, IL-12-deficient mice showed impaired abilities to control infection with the facultative intracellular bacterium Listeria monocytogenes at early time points after infection. However, at later time points of infection, IL-12-deficient mice were able to clear infection. These findings may indicate that viruses are able to induce type 1 T cell responses in the absence of IL-12 as opposed to some bacterial or parasitical infections that are crucially dependent on the presence of IL-12 for the induction of type 1 immune responses.
Collapse
Affiliation(s)
- Annette Oxenius
- Institute of Experimental Immunology, Department of Pathology, University of Zürich, Zürich, Switzerland
| | - Urs Karrer
- Institute of Experimental Immunology, Department of Pathology, University of Zürich, Zürich, Switzerland
| | - Rolf M. Zinkernagel
- Institute of Experimental Immunology, Department of Pathology, University of Zürich, Zürich, Switzerland
| | - Hans Hengartner
- Institute of Experimental Immunology, Department of Pathology, University of Zürich, Zürich, Switzerland
| |
Collapse
|
12
|
Oxenius A, Zinkernagel RM, Hengartner H. CD4+ T-cell induction and effector functions: a comparison of immunity against soluble antigens and viral infections. Adv Immunol 1998; 70:313-67. [PMID: 9755341 DOI: 10.1016/s0065-2776(08)60390-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- A Oxenius
- Department of Pathology, University of Zurich, Switzerland
| | | | | |
Collapse
|
13
|
Oxenius A, Zinkernagel RM, Hengartner H. Comparison of activation versus induction of unresponsiveness of virus-specific CD4+ and CD8+ T cells upon acute versus persistent viral infection. Immunity 1998; 9:449-57. [PMID: 9806631 DOI: 10.1016/s1074-7613(00)80628-7] [Citation(s) in RCA: 140] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The functional status of CD4+ T cells during establishment of persistent infection with the noncytopathic lymphocytic choriomeningitis virus was assessed and compared to that of cytotoxic CD8+ T cells. Functionality of virus-specific CD4+ T cells was measured by proliferative responses, cytokine secretion, cognate help, and IFNgamma-mediated protection against challenge infection with recombinant vaccinia virus. Functional CD4+ T cells were induced early after infection and remained measurable up to 6 weeks but then were rendered unresponsive. In contrast, CD8+ T cells were functionally inactivated within 10-15 days. Importantly, functional inactivation of virus-specific CD4+ T cells during persistent viral infection seemed to be critical for the survival of the host.
Collapse
Affiliation(s)
- A Oxenius
- Institute of Experimental Immunology, Department of Pathology, University of Zürich, Switzerland.
| | | | | |
Collapse
|
14
|
Oxenius A, Bachmann MF, Zinkernagel RM, Hengartner H. Virus-specific MHC-class II-restricted TCR-transgenic mice: effects on humoral and cellular immune responses after viral infection. Eur J Immunol 1998; 28:390-400. [PMID: 9485218 DOI: 10.1002/(sici)1521-4141(199801)28:01<390::aid-immu390>3.0.co;2-o] [Citation(s) in RCA: 322] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A transgenic mouse expressing MHC class II-restricted TCR with specificity for a lymphocytic choriomeningitis virus (LCMV) glycoprotein-derived T helper cell epitope was developed to study the role of LCMV-specific CD4+ T cells in virus infection in vivo. The majority of CD4+ T cells in TCR transgenic mice expressed the transgenic receptor, and LCMV glycoprotein-specific TCR transgenic CD4+ T cells efficiently mediated help for the production of LCMV glycoprotein-specific isotype-switched antibodies. In contrast, LCMV glycoprotein-specific TCR transgenic mice exhibited a drastically reduced ability to provide help for the generation of antibody responses specific for the virus-internal nucleoprotein, indicating that intramolecular/intrastructural help is limited to antigens that are accessible to B cells on the viral surface. Antiviral cellular immunity was studied with noncytopathic LCMV and recombinant cytopathic vaccinia virus expressing the LCMV glycoprotein. TCR transgenic mice failed to efficiently control LCMV infection, demonstrating that functional LCMV-specific CD4+ T cells--even if activated and present at extremely high frequencies--cannot directly mediate protective immunity against LCMV. Despite the fact that LCMV-primed CD4+ T cells from TCR transgenic mice as well as from control mice showed low MHC class II-restricted cytotoxic activity in vivo, this did not correlate with protection against LCMV replication in vivo. In contrast, CD4+ T cells from TCR-transgenic mice mediated efficient protection against infection with recombinant vaccinia virus. These results further support the need for different immune effector functions for protective immunity against different viral infections.
Collapse
Affiliation(s)
- A Oxenius
- Department of Pathology, University of Zürich, Switzerland
| | | | | | | |
Collapse
|
15
|
Bachmann MF, Kündig TM, Hengartner H, Zinkernagel RM. Protection against immunopathological consequences of a viral infection by activated but not resting cytotoxic T cells: T cell memory without "memory T cells"? Proc Natl Acad Sci U S A 1997; 94:640-5. [PMID: 9012837 PMCID: PMC19566 DOI: 10.1073/pnas.94.2.640] [Citation(s) in RCA: 108] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/1996] [Indexed: 02/03/2023] Open
Abstract
Immunological memory is a key characteristic of specific immune responses. Persistence of increased levels of precursor T cells is antigen-independent and is often used as an indicator of T cell memory. This study documents that, depending on the chosen readout, cytotoxic T lymphocyte (CTL) memory against lymphocytic choriomeningitis virus (LCMV) appears long- or short-lived in the absence of persisting antigen. To study T cell memory in the absence of persisting antigen, either short-lived antigens were used for immunization or adoptive transfer methods were used to eliminate possibly persisting antigen. These experiments revealed that increased specific precursor frequencies and CTL-mediated protection against an i.v. infection with LCMV were long-lived. In contrast, CTL-mediated protection against a peripheral infection of the skin with LCMV, or of the ovary with recombinant vaccinia virus, was short-lived. These results show that maintenance of increased specific CTL precursor frequencies and central T cell memory in lymphoid tissue (where preexisting neutralizing antibodies usually provide protection anyway) is long-lived and antigen-independent. In contrast, in protection against peripheral viral infections, where the relative kinetics of virus growth and virus elimination by T cells are of key importance, T cell memory is short-lived in the absence of antigen. This indicates that peripheral T cell memory in antibody-inaccessible tissues is mediated by antigen-activated effector T cells and apparently not by specialized memory T cells.
Collapse
Affiliation(s)
- M F Bachmann
- Department of Pathology, University of Zürich, Switzerland
| | | | | | | |
Collapse
|
16
|
Grigera PR, Garcia-Briones M, Periolo O, la Torre JL, Wagner RR. Immunogenicity of an aphthovirus chimera of the glycoprotein of vesicular stomatitis virus. J Virol 1996; 70:8492-501. [PMID: 8970972 PMCID: PMC190940 DOI: 10.1128/jvi.70.12.8492-8501.1996] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
An oligodeoxynucleotide coding for amino acids 139 through 149 of antigenic site A (ASA) of the VP1 capsid protein of the foot-and-mouth disease virus C3 serotype (FMDV C3) was inserted into three different in-frame sites of the vesicular stomatitis virus New Jersey serotype (VSV-NJ) glycoprotein (G) gene cDNA present in plasmid pKG97 under control of the bacteriophage T7 polymerase promoter. Transfection of these plasmids into CV1 cells coinfected with the T7 polymerase-expressing vaccinia virus recombinant vTF1-6,2 resulted in expression of chimeric proteins efficiently reactive with both anti-FMDV and anti-VSV G antibodies. However, in vitro translation of transcripts of these VSV-G/FMDV-ASA chimeric plasmids resulted in proteins that were recognized by anti-G serum but not by anti-FMDV serum, indicating a requirement for in vivo conformation to expose the ASA antigenic determinant. Insertion of DNA coding for a dimer of the ASA unidecapeptide between the VSV-NJ G gene region coding for amino acids 160 and 161 gave rise to a chimeric ASA-dimer protein designated GF2d, which reacted twice as strongly with anti-FMDV antibody as did chimeric proteins in which the ASA monomer was inserted in the same position or two other G-gene positions. For even greater expression of chimeric VSV-G/FMDV-ASA proteins, plasmid pGF2d and a deletion mutant p(delta)GF2d (G protein deleted of 324 C-terminal amino acids) were inserted into baculovirus vectors expressing chimeric proteins GF2d-bac and deltaGF2d-bac produced in Sf9 insect cells. Mice vaccinated with three booster injections of 30 microg each of partially purified GF2d-bac protein responded by enzyme-linked immunosorbent assay with FMDV antibody titers of 1,000 units, and those injected with equivalent amounts of deltaGF2d-bac protein showed serum titers of up to 10,000 units. Particularly impressive were FMDV neutralizing antibody titers in serum of mice vaccinated with deltaGF2d-bac protein, which approached those in the sera of mice vaccinated with three 1-microg doses of native FMDV virions. Despite excellent reactivity with native FMDV, the anti-deltaGF2d-bac antibody present in vaccinated mouse serum showed no capacity to bind to sodium dodecyl sulfate (SDS)-denatured FMDV virions and only minimal reactivity with VP1 protein by Western blotting (immunoblotting) after SDS-polyacrylamide gel electrophoresis. It was also shown in a competitive binding assay that a synthetic ASA unidecapeptide, up to concentrations of 200 microg/ml, was quite limited in its ability to inhibit binding of anti-deltaGF2-bac antibody to native FMDV virions. These results suggest that the chimeric VSV-G/FMDV-ASA proteins mimic the capacity of FMDV to raise and react with neutralizing antibodies to a restricted number of ASA conformations present on the surface of native FMDV particles.
Collapse
Affiliation(s)
- P R Grigera
- Centro de Virología Animal (CEVAN-CONICET), Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
17
|
Kägi D, Hengartner H. Different roles for cytotoxic T cells in the control of infections with cytopathic versus noncytopathic viruses. Curr Opin Immunol 1996; 8:472-7. [PMID: 8794015 DOI: 10.1016/s0952-7915(96)80033-1] [Citation(s) in RCA: 145] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The assessment of the role of T-cell-mediated cytotoxicity in immunity to viral infections has been difficult to address directly and therefore has been controversial. Recent experiments with perforin-deficient mice have shown that cytotoxicity is crucial for the resolution of infection with lymphocytic choriomeningitis virus but not for the resolution of infection with vaccinia, vesicular stomatitis, Semliki Forest or influenza virus. These findings may reflect the general pattern that T-cell-mediated cytotoxicity is crucial only for the resolution of infections with noncytopathic viruses, whereas infections with cytopathic viruses are mainly controlled by soluble mediators such as antibodies and interferons.
Collapse
Affiliation(s)
- D Kägi
- Ontario Cancer Institute, c/o Prof T Mak, 610 University Avenue, Toronto, Ontario M5G2M9, Canada.
| | | |
Collapse
|
18
|
Kündig TM, Shahinian A, Kawai K, Mittrücker HW, Sebzda E, Bachmann MF, Mak TW, Ohashi PS. Duration of TCR stimulation determines costimulatory requirement of T cells. Immunity 1996; 5:41-52. [PMID: 8758893 DOI: 10.1016/s1074-7613(00)80308-8] [Citation(s) in RCA: 303] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Current models suggest that T cells that receive only signal-1 through antigenic stimulation of the T cell receptor (TCR) become anergic, but will mount an immune response when a costimulatory signal-2 is provided. Using mice deficient for an important costimulatory molecule, CD28, we show that a transient signal-1 alone, either through infection with an abortively replicating virus, or through injection of viral peptide, anergizes CD8+ T cells, demonstrating the biological relevance of T cell anergy in vivo. However, in the absence of CD28, continued presence of signal-1 alone, either through prolonged viral replication or repeated injection of peptide, prevents the induction of anergy and generates a functional T cell response in vivo.
Collapse
MESH Headings
- Animals
- Antigens, Viral/administration & dosage
- Antigens, Viral/immunology
- CD28 Antigens/immunology
- CD28 Antigens/metabolism
- Clonal Deletion
- Cytotoxicity, Immunologic
- Dose-Response Relationship, Immunologic
- Immune Tolerance
- Lymphocyte Activation
- Lymphocytic choriomeningitis virus/immunology
- Lymphocytic choriomeningitis virus/physiology
- Mice
- Mice, Inbred C57BL
- Mice, Inbred CBA
- Mice, Mutant Strains
- Receptors, Antigen, T-Cell/immunology
- T-Lymphocytes, Cytotoxic/immunology
- Virus Replication/immunology
Collapse
Affiliation(s)
- T M Kündig
- Ontario Cancer Institute, Department of Biophysics, Toronto, Canada
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Oxenius A, Campbell KA, Maliszewski CR, Kishimoto T, Kikutani H, Hengartner H, Zinkernagel RM, Bachmann MF. CD40-CD40 ligand interactions are critical in T-B cooperation but not for other anti-viral CD4+ T cell functions. J Exp Med 1996; 183:2209-18. [PMID: 8642330 PMCID: PMC2192545 DOI: 10.1084/jem.183.5.2209] [Citation(s) in RCA: 123] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
CD40-CD40 ligand (CD40L) interaction is required for the generation of antibody responses to T-dependent antigens as well as for the development of germinal centers and memory B cells. The role of the CD40-CD40L interaction in the induction of antigen-specific. Th cells and in mediating Th cell effector functions other than cognate help for B cells is less well understood. Using CD40- and CD40L-deficient mice together with lymphocytic choriomeningitis virus and vesicular stomatitis virus as viral model antigens, this study corroborates earlier findings that no lg isotype switching of virus-specific antibodies was measurable upon infection of CD40- or CD40L-deficient mice. In contrast, in vivo induction of virus-specific CD4+ T cells measured by proliferation and cytokine secretion of primed virus-specific Th cells in vitro was not crucially dependent on the CD40-CD40L interaction. In addition, virus-specific Th cells primed in a CD40-deficient environment, adoptively transferred into CD40-competent recipients, were able to mediate lg isotype switch. Th-mediated effector functions distinct from and in addition to T-B collaboration were analyzed in CD40- and CD40L-deficient and normal mice: (a) local inflammatory reactions upon LCMV infection mediated by LCMV-specific Th cells were not dependent on a functional CD40-CD40L interaction, (b) cytokine-mediated protection by CD4+ T cells primed by vesicular stomatitis virus against a challenge infection with recombinant vaccinia virus expressing the glycoprotein of vesicular stomatitis virus was found to be equivalent in CD40L-deficient and normal mice. Thus, CD40-CD40L interaction plays a crucial role in T-B interactions for Th-dependent activation of B cells but not, or to a much lesser extent, in T cell activation, antigen-specific Th cell responses in vitro, and for interleukin-mediated Th cell effector functions in vivo.
Collapse
Affiliation(s)
- A Oxenius
- Department of Pathology, University of Zürich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Kündig TM, Bachmann MF, Ohashi PS, Pircher H, Hengartner H, Zinkernagel RM. On T cell memory: arguments for antigen dependence. Immunol Rev 1996; 150:63-90. [PMID: 8782702 DOI: 10.1111/j.1600-065x.1996.tb00696.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Memory is a hallmark of the immune system. Considerable progress has been made towards understanding B cell memory, but T cell memory remains poorly understood and its nature is controversial. There is good evidence that B cell memory is driven by antigen, but the antigen dependence of T cell memory is still being debated. For several years we have investigated the nature, duration and antigen dependence of different aspects of CD8+ T cell memory and this review will discuss our findings as well as how and why they differ from some other results. As others, we find that antigen, due to proliferation of antigen-specific T cell clones, induces a shift in the T cell repertoire which remains detectable for years as an elevated cytotoxic T cell precursor frequency (CTLp) in lymphoid organs. Also in the absence of antigen, in vitro assays for T cell memory which invariably isolate memory T cells from these lymphoid organs therefore remain positive. In contrast, immunity against reinfection with a pathogen requires more than just elevated numbers of CTLp in lymphoid organs. Since reinfection usually takes place via peripheral nonlymphoid tissue, these CTLp have to a) efficiently extravasate and patrol through such tissues, and b) be immediately able to exert effector function in case of reinfection. Both functions, require a certain level of activation which critically depends on T cell stimulation by persisting antigen.
Collapse
Affiliation(s)
- T M Kündig
- Institute for Experimental Immunology, Zürich
| | | | | | | | | | | |
Collapse
|
21
|
Amakawa R, Hakem A, Kundig TM, Matsuyama T, Simard JJ, Timms E, Wakeham A, Mittruecker HW, Griesser H, Takimoto H, Schmits R, Shahinian A, Ohashi P, Penninger JM, Mak TW. Impaired negative selection of T cells in Hodgkin's disease antigen CD30-deficient mice. Cell 1996; 84:551-62. [PMID: 8598042 DOI: 10.1016/s0092-8674(00)81031-4] [Citation(s) in RCA: 233] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
CD30 is found on Reed-Sternberg cells of Hodgkin's disease and on a variety of non-Hodgkin's lymphoma cells and is up-regulated on cells after Epstein-Barr virus, human T cell leukemia virus, and HIV infections. We report here that the thymus in CD30-deficient mice contains elevated numbers of thymocytes. Activation-induced death of thymocytes after CD3 cross-linking is impaired both in vitro and in vivo. Breeding the CD30 mutation separately into alpha beta TCR-or gamma delta TCR-transgenic mice revealed a gross defect in negative but not positive selection. Thus, like TNF-receptors and Fas/Apo-1, the CD30 receptor is involved in cell death signaling. It is also an important coreceptor that participates in thymic deletion.
Collapse
MESH Headings
- Animals
- B-Lymphocytes/cytology
- B-Lymphocytes/immunology
- Base Sequence
- Cell Death/immunology
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Cell Separation
- Gene Deletion
- Gene Expression/immunology
- Hodgkin Disease/immunology
- Ki-1 Antigen/genetics
- Ki-1 Antigen/immunology
- Lymph Nodes/cytology
- Male
- Mice
- Mice, Mutant Strains
- Molecular Sequence Data
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Signal Transduction/immunology
- Superantigens/immunology
- T-Lymphocytes/cytology
- T-Lymphocytes/immunology
- T-Lymphocytes/ultrastructure
- Thymus Gland/cytology
- Thymus Gland/pathology
Collapse
Affiliation(s)
- R Amakawa
- Amgen Institute, Department of Medical Biophysics, University of Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Kägi D, Seiler P, Pavlovic J, Ledermann B, Bürki K, Zinkernagel RM, Hengartner H. The roles of perforin- and Fas-dependent cytotoxicity in protection against cytopathic and noncytopathic viruses. Eur J Immunol 1995; 25:3256-62. [PMID: 8566009 DOI: 10.1002/eji.1830251209] [Citation(s) in RCA: 232] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In vitro, T cell-dependent cytotoxicity is mediated by two distinct mechanisms, one being perforin-, the other Fas-dependent. The contribution of both of these mechanisms to clearance of viral infections was investigated in mice for the non-cytopathic lymphocytic choriomeningitis virus (LCMV) and the cytopathic vaccinia, vesicular stomatitis (VSV) and Semliki forest (SFV) viruses. Clearance of an acute LCMV infection was mediated by the perforin-dependent mechanism without measurable involvement of the Fas-dependent pathway. For the resolution of vaccinia virus infection and for resistance against VSV and SFV, however, neither of the two pathways was required. These data suggest that perforin-dependent cytotoxicity mediated by T cells is crucial for protection against non-cytopathic viruses, whereas infections with cytopathic viruses are controlled by nonlytic T cell-dependent soluble mediators such as cytokines (IFN-gamma against vaccinia virus) and neutralizing antibodies (against VSV and SFV).
Collapse
Affiliation(s)
- D Kägi
- Department of Pathology, University of Zürich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
23
|
Steinhoff U, Müller U, Schertler A, Hengartner H, Aguet M, Zinkernagel RM. Antiviral protection by vesicular stomatitis virus-specific antibodies in alpha/beta interferon receptor-deficient mice. J Virol 1995; 69:2153-8. [PMID: 7884863 PMCID: PMC188883 DOI: 10.1128/jvi.69.4.2153-2158.1995] [Citation(s) in RCA: 109] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The role of innate, alpha/beta interferon (IFN-alpha/beta)-dependent protection versus specific antibody-mediated protection against vesicular stomatitis virus (VSV) was evaluated in IFN-alpha/beta receptor-deficient mice (IFN-alpha/beta R0/0 mice). VSV is a close relative to rabies virus that causes neurological disease in mice. In contrast to normal mice, IFN-alpha/beta R0/0 mice were highly susceptible to infection with VSV because of ubiquitous high viral replication. Adoptive transfer experiments showed that neutralizing antibodies against the glycoprotein of VSV (VSV-G) protected these mice efficiently against systemic infection and against peripheral subcutaneous infection but protected only to a limited degree against intranasal infection with VSV. In contrast, VSV-specific T cells or antibodies specific for the nucleoprotein of VSV (VSV-N) were unable to protect IFN-alpha/beta R0/0 mice against VSV. These results demonstrate that mice are extremely sensitive to VSV if IFN-alpha/beta is not functional and that under these conditions, neutralizing antibody responses mediate efficient protection, but apparently only against extraneuronal infection.
Collapse
Affiliation(s)
- U Steinhoff
- Department of Pathology, University of Zürich, Switzerland
| | | | | | | | | | | |
Collapse
|
24
|
Bachmann MF, Rohrer UH, Steinhoff U, Bürki K, Skuntz S, Arnheiter H, Hengartner H, Zinkernagel RM. T helper cell unresponsiveness: rapid induction in antigen-transgenic and reversion in non-transgenic mice. Eur J Immunol 1994; 24:2966-73. [PMID: 7805723 DOI: 10.1002/eji.1830241207] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
T cell tolerance is usually established by clonal deletion of self-specific T cells in the thymus, or some times, in the periphery. Alternatively, tolerance may also be achieved by induction of clonal T cell unresponsiveness by a poorly understood mechanism called "anergy". We found that transgenic mice expressing a soluble form of vesicular stomatitis virus (VSV) glycoprotein (G) predominantly in liver and kidney exhibited normal B cell responses. VSV-G-specific T help-independent neutralizing IgM responses were within normal ranges, but no T help-dependent neutralizing IgG antibodies were generated upon immunization with recombinant VSV-G protein and recombinant vaccinia virus expressing VSV-G. This demonstrated absence of B cell tolerance but presence of T helper cell unresponsiveness. After adoptive transfer of transgenic spleen cells into thymectomized immuno-incompetent hosts, the unresponsive T helper cells regained function and switched the neutralizing IgM response to IgG, comparably to control T helper cells, within 7 days. Conversely, when naive non-transgenic spleen cells were transferred into transgenic mice, VSV-G-specific T helper cells became unresponsive within 3-4 days. These results suggest that VSV-G-specific T helper cells are rendered unresponsive within a few days in the VSV-G transgenic host also outside of the thymus and that this unresponsiveness was reversed by transfer into antigen-free recipients.
Collapse
Affiliation(s)
- M F Bachmann
- Department of Pathology, Institute of Immunology, Zürich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Bachmann MF, Hengartner H, Zinkernagel RM. Immunization with recombinant protein: conditions for cytotoxic T cell and/or antibody induction. Med Microbiol Immunol 1994; 183:315-24. [PMID: 7596314 DOI: 10.1007/bf00196682] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Safe vaccines should optimally induce both cell-mediated and humoral immunity. Recently, it has been shown that protective cytotoxic T cells (CTLs) can be induced not only with live vaccines, but also with recombinant viral proteins. This report shows in C57BL/6 (H-2b) mice that the recombinant nucleoprotein (N) of vesicular stomatitis virus (VSV) induced protective CTLs but no neutralizing antibodies in mice, whereas the recombinant glycoprotein (G) of VSV alone induced neutralizing antibodies but no CTLs. If the N and G of VSV were coinjected, both CTLs and a long-lasting neutralizing IgG response was measurable, demonstrating that mixed vaccines can be used to induce protective CTLs and antibodies with an efficiency comparable to live virus. In an attempt to define optimal conditions for CTL priming, the intravenous, intraperitoneal and subcutaneous route of injection were compared. Intravenous injection of recombinant VSV-N induced up to 30 times higher responses than the latter two routes. Finally, we tried to define conditions inducing only CTLs and no antibodies binding to the native protein form, or vice versa, only antibodies and no CTLs. Intravenous injection of boiled VSV-N induced a CTL response but no antibodies specific for the native VSV-N, whereas VSV-N injected subcutaneously in incomplete Freund's adjuvant induced high amounts of anti-VSV-N antibodies but virtually no CTLs. The conditions defined here permit vaccines to be designed which would function along selected and defined immunological effector pathways.
Collapse
Affiliation(s)
- M F Bachmann
- Department of Pathology, University of Zürich, Switzerland
| | | | | |
Collapse
|
26
|
Bachmann MF, Kündig TM, Freer G, Li Y, Kang CY, Bishop DH, Hengartner H, Zinkernagel RM. Induction of protective cytotoxic T cells with viral proteins. Eur J Immunol 1994; 24:2228-36. [PMID: 8088338 DOI: 10.1002/eji.1830240944] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Induction of CD8+, class I-restricted T cells by non-infectious, exogenous antigens has been documented for model protein antigens such as ovalbumin and for major histocompatibility complex restricted short peptides in viral and tumor systems. However, the protective capacity of cytotoxic T cells induced by conventional proteins has not been tested in vivo so far. We, therefore, evaluated the induction of protective cytotoxic T cells against three different full-length recombinant viral proteins derived from a baculovirus expression system, i.e. the glycoprotein and nucleoprotein of lymphocytic choriomeningitis virus (LCMV) and the nucleoprotein of vesicular stomatitis virus (VSV). These viral proteins induced cytotoxic T cells in a T helper cell-independent fashion which lysed infected target cells in vitro and protected mice from viral replication, immunopathological disease and growth of a tumor expressing the same antigen as a tumor antigen. These results are surprising, since it had been shown earlier for completely inactivated nonreplicating viral vaccines and again here for beta-propiolactone-inactivated VSV or UV-light inactivated LCMV that nonreplicating viral vaccines were incapable of inducing protective cytotoxic T cells. Our data show that immunization of mice with as little as 10 micrograms of non-infectious viral proteins triggered long-lasting CD8+ T cell-mediated antiviral immunity. It was found that the protein alone was only weakly able to induce cytotoxic T cells, and that association with cellular debris functioned as an adjuvant. These findings may be relevant for our understanding of the phenomenon of cross-priming and have obvious implications for vaccine strategies.
Collapse
Affiliation(s)
- M F Bachmann
- Department of Pathology, University of Zürich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Reisst CS, Aoki C. Vesicular stomatitis virus: Immune recognition, responsiveness, and pathogenesis of infection in mice. Rev Med Virol 1994. [DOI: 10.1002/rmv.1980040207] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
28
|
Bachmann MF, Kündig TM. In vivo versus in vitro assays for assessment of T- and B- cell function. Curr Opin Immunol 1994; 6:320-6. [PMID: 8011216 DOI: 10.1016/0952-7915(94)90108-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
As mice deficient in a particular gene provide an increasing number of novel in vivo models, in vivo assays that examine immune function are becoming a central issue. We found that the sensitivities of in vivo and in vitro assays are strikingly different. These differences have important implications for the interpretation and biological relevance of results.
Collapse
Affiliation(s)
- M F Bachmann
- Institute for Experimental Immunology, University of Zurich, Switzerland
| | | |
Collapse
|
29
|
Burkhart C, Freer G, Castro R, Adorini L, Wiesmüller KH, Zinkernagel RM, Hengartner H. Characterization of T-helper epitopes of the glycoprotein of vesicular stomatitis virus. J Virol 1994; 68:1573-80. [PMID: 7508998 PMCID: PMC236614 DOI: 10.1128/jvi.68.3.1573-1580.1994] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The T-helper (Th) cell epitopes in the glycoprotein (GP) of vesicular stomatitis virus serotype Indiana (VSV-IND) were analyzed with a complete panel of overlapping synthetic peptides. Three Th-cell epitopes in C57BL/6 (H-2b) mice and two epitopes in BALB/c (H-2d) mice were defined by their ability to stimulate in vitro proliferation of virus-primed, CD8+ T-cell-depleted spleen cells in a class II-restricted manner. A series of CD4+, I-Ab-restricted T-cell hybridomas from VSV-primed C57BL/6 mice were characterized by their production of interleukin-2 and interleukin-3 upon stimulation with VSV-IND or purified VSV GP in vitro. Of nine hybridomas derived from three independent fusions, five were specific for amino acids (aa) 415 to 433 (p8) of VSV-IND GP, three recognized aa 52 to 71 (p41), and one reacted against aa 316 to 335 (p17). Fluorocytometric analysis of Th hybridomas or VSV-stimulated T-cell lines with monoclonal antibodies specific for the T-cell receptor V beta chain did not reveal obvious correlations between the T-cell receptor V beta gene segment used and the epitope recognized. All three peptides recognized by H-2b mice and both epitopes recognized by H-2d mice which were characterized in primed T-cell populations were capable of activating specific Th cells in vivo as measured by the induction of antibody class switch from immunoglobulin M (IgM) to IgG. Thus, the epitopes are relevant for VSV GP-specific Th response in vivo and are able to provide functional help for the production of anti-VSV-specific neutralizing IgG antibodies.
Collapse
Affiliation(s)
- C Burkhart
- Department of Pathology, Institute for Experimental Immunology, Zürich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
30
|
Bachmann MF, Rohrer UH, Kündig TM, Bürki K, Hengartner H, Zinkernagel RM. The influence of antigen organization on B cell responsiveness. Science 1993; 262:1448-51. [PMID: 8248784 DOI: 10.1126/science.8248784] [Citation(s) in RCA: 546] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The influence of antigen epitope density and order on B cell induction and antibody production was assessed with the glycoprotein of vesicular stomatitis virus serotype Indiana [VSV-G (IND)]. VSV-G (IND) can be found in a highly repetitive form the envelope of VSV-IND and in a poorly organized form on the surface of infected cells. In VSV-G (IND) transgenic mice, B cells were unresponsive to the poorly organized VSV-G (IND) present as self antigen but responded promptly to the same antigen presented in the highly organized form. Thus, antigen organization influences B cell tolerance.
Collapse
Affiliation(s)
- M F Bachmann
- Department of Pathology, University of Zürich, Switzerland
| | | | | | | | | | | |
Collapse
|
31
|
Bachmann MF, Kündig TM, Kalberer CP, Hengartner H, Zinkernagel RM. Formalin inactivation of vesicular stomatitis virus impairs T-cell- but not T-help-independent B-cell responses. J Virol 1993; 67:3917-22. [PMID: 8389912 PMCID: PMC237758 DOI: 10.1128/jvi.67.7.3917-3922.1993] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The effects of formalin on the infectivity and immunogenicity of vesicular stomatitis virus (VSV) serotype Indiana were investigated. We found that formalin inactivation of VSV prevents infection of Vero cells in a concentration- and time-dependent manner, as shown by fluorometric cell analysis and inhibition of plaque formation. Inactivated VSV failed to induce significant cytotoxic T-lymphocyte responses in vivo or after restimulation in vitro. In contrast, the early immunoglobulin M (IgM) response, which is T help independent in the VSV system, was unaltered, suggesting normal antigenicity for and induction of B cells. However, no switch to IgG occurred, demonstrating failure of induction of T help. If cross-reactive T help was provided by previous infection with a second serotype of VSV (New Jersey), the IgG response was almost completely restored, confirming that the absence of IgG was due to lack of T help. A formalin-treated preparation of glycoprotein of VSV led to a delayed but otherwise normal IgG response, whereas treatment of VSV with UV light or beta-propiolactone reduced IgG titers to the same extent as did formalin. These results suggest that loss of infectivity and the ensuing lack of amplification of viral antigens of formaldehyde-inactivated VSV is the major factor impairing induction of specific T-helper cell responses.
Collapse
Affiliation(s)
- M F Bachmann
- Department of Pathology, University of Zürich, Switzerland
| | | | | | | | | |
Collapse
|