1
|
Construction and characterisation of glycoprotein E and glycoprotein I deficient mutants of Australian strains of infectious laryngotracheitis virus using traditional and CRISPR/Cas9-assisted homologous recombination techniques. Virus Genes 2022; 58:540-549. [PMID: 36127475 PMCID: PMC9636094 DOI: 10.1007/s11262-022-01933-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 08/30/2022] [Indexed: 12/02/2022]
Abstract
In alphaherpesviruses, glycoproteins E and I (gE and gI, respectively) form a heterodimer that facilitates cell-to-cell spread of virus. Using traditional homologous recombination techniques, as well as CRISPR/Cas9-assisted homologous recombination, we separately deleted gE and gI coding sequences from an Australian field strain (CSW-1) and a vaccine strain (A20) of infectious laryngotracheitis virus (ILTV) and replaced each coding sequence with sequence encoding green fluorescent protein (GFP). Virus mutants in which gE and gI gene sequences had been replaced with GFP were identified by fluorescence microscopy but were unable to be propagated separately from the wildtype virus in either primary chicken cells or the LMH continuous chicken cell line. These findings build on findings from a previous study of CSW-1 ILTV in which a double deletion mutant of gE and gI could not be propagated separately from wildtype virus and produced an in vivo phenotype of single-infected cells with no cell-to-cell spread observed. Taken together these studies suggest that both the gE and gI genes have a significant role in cell-to-cell spread in both CSW-1 and A20 strains of ILTV. The CRISPR/Cas9-assisted deletion of genes from the ILTV genome described in this study adds this virus to a growing list of viruses to which this approach has been used to study viral gene function.
Collapse
|
2
|
The Attenuated Pseudorabies Virus Vaccine Strain Bartha Hyperactivates Plasmacytoid Dendritic Cells by Generating Large Amounts of Cell-Free Virus in Infected Epithelial Cells. J Virol 2022; 96:e0219921. [PMID: 35604216 DOI: 10.1128/jvi.02199-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudorabies virus (PRV) is a porcine alphaherpesvirus and the causative agent of Aujeszky's disease. Successful eradication campaigns against PRV have largely relied on the use of potent PRV vaccines. The live attenuated Bartha strain, which was produced by serial passaging in cell culture, represents one of the hallmark PRV vaccines. Despite the robust protection elicited by Bartha vaccination, very little is known about the immunogenicity of the Bartha strain. Previously, we showed that Bartha-infected epithelial cells trigger plasmacytoid dendritic cells (pDC) to produce much higher levels of type I interferons than cells infected with wild-type PRV. Here, we show that this Bartha-induced pDC hyperactivation extends to other important cytokines, including interleukin-12/23 (IL-12/23) and tumor necrosis factor alpha (TNF-α) but not IL-6. Moreover, Bartha-induced pDC hyperactivation was found to be due to the strongly increased production of extracellular infectious virus (heavy particles [H-particles]) early in infection of epithelial cells, which correlated with a reduced production of noninfectious light particles (L-particles). The Bartha genome is marked by a large deletion in the US region affecting the genes encoding US7 (gI), US8 (gE), US9, and US2. The deletion of the US2 and gE/gI genes was found to be responsible for the observed increase in extracellular virus production by infected epithelial cells and the resulting increased pDC activation. The deletion of gE/gI also suppressed L-particle production. In conclusion, the deletion of US2 and gE/gI in the genome of the PRV vaccine strain Bartha results in the enhanced production of extracellular infectious virus in infected epithelial cells and concomitantly leads to the hyperactivation of pDC. IMPORTANCE The pseudorabies virus (PRV) vaccine strain Bartha has been and still is critical in the eradication of PRV in numerous countries. However, little is known about how this vaccine strain interacts with host cells and the host immune system. Here, we report the surprising observation that Bartha-infected epithelial porcine cells rapidly produce increased amounts of extracellular infectious virus compared to wild-type PRV-infected cells, which in turn potently stimulate porcine plasmacytoid dendritic cells (pDC). We found that this phenotype depends on the deletion of the genes encoding US2 and gE/gI. We also found that Bartha-infected cells secrete fewer pDC-inhibiting light particles (L-particles), which appears to be caused mainly by the deletion of the genes encoding gE/gI. These data generate novel insights into the interaction of the successful Bartha vaccine with epithelial cells and pDC and may therefore contribute to the development of vaccines against other (alphaherpes)viruses.
Collapse
|
3
|
Viruses in connectomics: Viral transneuronal tracers and genetically modified recombinants as neuroscience research tools. J Neurosci Methods 2020; 346:108917. [PMID: 32835704 DOI: 10.1016/j.jneumeth.2020.108917] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 08/12/2020] [Accepted: 08/14/2020] [Indexed: 12/25/2022]
Abstract
Connectomic studies have become 'viral', as viral pathogens have been turned into irreplaceable neuroscience research tools. Highly sensitive viral transneuronal tracing technologies are available, based on the use of alpha-herpesviruses and a rhabdovirus (rabies virus), which function as self-amplifying markers by replicating in recipient neurons. These viruses highly differ with regard to host range, cellular receptors, peripheral uptake, replication, transport direction and specificity. Their characteristics, that make them useful for different purposes, will be highlighted and contrasted. Only transneuronal tracing with rabies virus is entirely specific. The neuroscientist toolbox currently include wild-type alpha-herpesviruses and rabies virus strains enabling polysynaptic tracing of neuronal networks across multiple synapses, as well as genetically modified viral tracers for dual transneuronal tracing, and complementary viral tools including defective and chimeric recombinants that function as single step or monosynaptically restricted tracers, or serve for monitoring and manipulating neuronal activity and gene expression. Methodological issues that are crucial for appropriate use of these technologies will be summarized. Among wild-type and genetically engineered viral tools, rabies virus and chimeric recombinants based on rabies virus as virus backbone are the most powerful, because of the ability of rabies virus to propagate exclusively among connected neurons unidirectionally (retrogradely), without affecting neuronal function. Understanding in depth viral properties is essential for neuroscientists who intend to exploit alpha-herpesviruses, rhabdoviruses or derived recombinants as research tools. Key knowledge will be summarized regarding their cellular receptors, intracellular trafficking and strategies to contrast host defense that explain their different pathophysiology and properties as research tools.
Collapse
|
4
|
Lin J, Li Z, Feng Z, Fang Z, Chen J, Chen W, Liang W, Chen Q. Pseudorabies virus (PRV) strain with defects in gE, gC, and TK genes protects piglets against an emerging PRV variant. J Vet Med Sci 2020; 82:846-855. [PMID: 32336701 PMCID: PMC7324833 DOI: 10.1292/jvms.20-0176] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The prevalence of an emerging variant of the pseudorabies virus (PRV) has been causing
serious losses to farmers in China. Moreover, the commercially available PRV vaccine often
fails to provide thorough protection. Therefore, in this study, we generated a
PRV-∆gC\gE∆TK strain with defects in gC, gE, and TK of PRV. Compared to the parental PRV
strain and the single gene deletion strains (PRV-∆gC, PRV-∆gE, and PRV-∆TK), PRV-∆gC\gE∆TK
grew slowly, and exhibited fewer and smaller plaques on swine testis (ST) cells.
Furthermore, animal experiment results showed that mice that were immunized
intramuscularly with PRV-∆gC\gE∆TK, survived throughout the experiment with no observed
clinical symptoms, and were completely protected against PRV challenge. Additionally,
deletion of the gC, gE, and TK genes significantly alleviated viral damage in the brain.
Furthermore, one-day-old weaned piglets immunized intramuscularly with PRV-∆gC\gE∆TK
elicited higher levels of gB antibodies against both the emerging PRV variant and the
parental PRV, exhibited full protection against challenge with both variants, and showed
neutralization capacity against PRV. These data suggest that PRV-∆gC\gE∆TK is a promising
vaccine candidate for the control of pseudorabies.
Collapse
Affiliation(s)
- Jinxin Lin
- Fujian Key Laboratory of Innate Immune Biology, Fujian Normal University Qishan Campus, 8 Xuefu South Road, Shangjie Town, Minhou County, Fuzhou, Fujian Province, China, 350117.,Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, 100 Pudang Road, Xindian Town, Jin'an District, Fuzhou, Fujian Province, China, 350013
| | - Zhaolong Li
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, 100 Pudang Road, Xindian Town, Jin'an District, Fuzhou, Fujian Province, China, 350013
| | - Zhihua Feng
- Fujian Key Laboratory of Innate Immune Biology, Fujian Normal University Qishan Campus, 8 Xuefu South Road, Shangjie Town, Minhou County, Fuzhou, Fujian Province, China, 350117
| | - Zhou Fang
- Fujian Key Laboratory of Innate Immune Biology, Fujian Normal University Qishan Campus, 8 Xuefu South Road, Shangjie Town, Minhou County, Fuzhou, Fujian Province, China, 350117
| | - Jianghua Chen
- Fujian Key Laboratory of Innate Immune Biology, Fujian Normal University Qishan Campus, 8 Xuefu South Road, Shangjie Town, Minhou County, Fuzhou, Fujian Province, China, 350117
| | - Wengzhi Chen
- Fujian Key Laboratory of Innate Immune Biology, Fujian Normal University Qishan Campus, 8 Xuefu South Road, Shangjie Town, Minhou County, Fuzhou, Fujian Province, China, 350117
| | - Wangwang Liang
- Fujian Key Laboratory of Innate Immune Biology, Fujian Normal University Qishan Campus, 8 Xuefu South Road, Shangjie Town, Minhou County, Fuzhou, Fujian Province, China, 350117
| | - Qi Chen
- Fujian Key Laboratory of Innate Immune Biology, Fujian Normal University Qishan Campus, 8 Xuefu South Road, Shangjie Town, Minhou County, Fuzhou, Fujian Province, China, 350117
| |
Collapse
|
5
|
Scherer J, Hogue IB, Yaffe ZA, Tanneti NS, Winer BY, Vershinin M, Enquist LW. A kinesin-3 recruitment complex facilitates axonal sorting of enveloped alpha herpesvirus capsids. PLoS Pathog 2020; 16:e1007985. [PMID: 31995633 PMCID: PMC7010296 DOI: 10.1371/journal.ppat.1007985] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 02/10/2020] [Accepted: 12/15/2019] [Indexed: 12/13/2022] Open
Abstract
Axonal sorting, the controlled passage of specific cargoes from the cell soma into the axon compartment, is critical for establishing and maintaining the polarity of mature neurons. To delineate axonal sorting events, we took advantage of two neuroinvasive alpha-herpesviruses. Human herpes simplex virus 1 (HSV-1) and pseudorabies virus of swine (PRV; suid herpesvirus 1) have evolved as robust cargo of axonal sorting and transport mechanisms. For efficient axonal sorting and subsequent egress from axons and presynaptic termini, progeny capsids depend on three viral membrane proteins (Us7 (gI), Us8 (gE), and Us9), which engage axon-directed kinesin motors. We present evidence that Us7-9 of the veterinary pathogen pseudorabies virus (PRV) form a tripartite complex to recruit Kif1a, a kinesin-3 motor. Based on multi-channel super-resolution and live TIRF microscopy, complex formation and motor recruitment occurs at the trans-Golgi network. Subsequently, progeny virus particles enter axons as enveloped capsids in a transport vesicle. Artificial recruitment of Kif1a using a drug-inducible heterodimerization system was sufficient to rescue axonal sorting and anterograde spread of PRV mutants devoid of Us7-9. Importantly, biophysical evidence suggests that Us9 is able to increase the velocity of Kif1a, a previously undescribed phenomenon. In addition to elucidating mechanisms governing axonal sorting, our results provide further insight into the composition of neuronal transport systems used by alpha-herpesviruses, which will be critical for both inhibiting the spread of infection and the safety of herpesvirus-based oncolytic therapies. Alpha-herpesviruses represent a group of large, enveloped DNA viruses that are capable to establish a quiescent (also called latent) but reactivatable form of infection in the peripheral nervous system of their hosts. Following reactivation of latent genomes, virus progeny is formed in the soma of neuronal cells and depend on sorting into the axon for anterograde spread of infection to mucosal sites and potentially new host. We studied two alpha-herpesviruses (the veterinary pathogen pseudorabies virus (PRV) and human herpes simplex virus 1 (HSV-1)) and found viral membrane proteins Us7, Us8, and Us9 form a complex, which is able to recruit kinsin-3 motors. Motor recruitment facilitates axonal sorting and subsequent transport to distal egress sites. Complex formation occurs at the trans-Golgi network and mediates efficiency of axonal sorting and motility characteristics of egressing capsids. We also used an artificial kinesin-3 recruitment system, which allows controlled induction of axonal sorting and transport of virus mutants lacking Us7, Us8, and Us9. Overall, these data contribute to our understanding of anterograde alpha-herpesvirus spread and kinesin-mediated sorting of vesicular axonal cargoes.
Collapse
Affiliation(s)
- Julian Scherer
- Department of Molecular Biology and Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey, United States of America
| | - Ian B. Hogue
- Center for Immunotherapy, Vaccines, and Virotherapy, Biodesign Institute & School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - Zachary A. Yaffe
- University of Washington, Seattle, Washington, United States of America
| | - Nikhila S. Tanneti
- Department of Molecular Biology and Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey, United States of America
| | - Benjamin Y. Winer
- Department of Molecular Biology and Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey, United States of America
| | - Michael Vershinin
- Department of Physics and Astronomy, University of Utah, Salt Lake City, Utah, United States of America
| | - Lynn W. Enquist
- Department of Molecular Biology and Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
6
|
Xu JJ, Wu JQ, Cheng XF, Tong W, Zheng H, Zhu HJ, Liu YT, Jiang YF, Gao F, Yu H, Shan TL, Li GX, Tong GZ. Identification of two novel epitopes targeting glycoprotein E of pseudorabies virus using monoclonal antibodies. Biochem Biophys Res Commun 2019; 519:330-336. [PMID: 31514997 DOI: 10.1016/j.bbrc.2019.08.168] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 08/31/2019] [Indexed: 11/26/2022]
Abstract
Pseudorabies virus (PRV), the agent of pseudorabies, has raised considerable attention since 2011 due to the outbreak of emerging PRV variants in China. In the present study, we obtained two monoclonal antibodies (mAbs) known as 2E5 and 5C3 against the glycoprotein E (gE) of a PRV variant (JS-2012 strain). The two mAbs reacted with wild PRV but not the vaccine strain (gE-deleted virus). The 2E5 was located in 161RLRRE165, which was conserved in almost of all PRV strains, while 5C3 in 148EMGIGDY154 was different from almost of all genotype I PRV, in which the 149th amino acid is methionine (M) instead of arginine (R). The two epitopes peptides located in the hydrophilic region and reacted with positive sera against genotype II PRV (JS-2012), which suggests they were likely dominant B-cell epitopes. Furthermore, the mutant peptide 148ERGIGDY154 (genotype I) did not react with the mAb 5C3 or positive sera against genotype II PRV (JS-2012). In conclusion, both mAb 2E5 and 5C3 could be used to identify wild PRV strains from vaccine strains, and mAb 5C3 and the epitope peptide of 5C3 might be used for epidemiological investigation to distinguish genotype II from genotype I PRV.
Collapse
Affiliation(s)
- Jing-Jing Xu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Ji-Qiang Wu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Xue-Fei Cheng
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Wu Tong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Hao Zheng
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Hao-Jie Zhu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Yu-Ting Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Yi-Feng Jiang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Fei Gao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Hai Yu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Tong-Ling Shan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Guo-Xin Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, 225009, China.
| | - Guang-Zhi Tong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
7
|
Hu S, Liu Q, Zang S, Zhang Z, Wang J, Cai X, He X. Microglia Are Derived from Peripheral Blood Mononuclear Cells After Pseudorabies Infection in Mice. Viral Immunol 2018; 31:596-604. [PMID: 30339053 DOI: 10.1089/vim.2018.0064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Pseudorabies virus (PRV) can spread along the peripheral nerves near the site of infection in the animals, and gradually migrates into the central nervous system, where it leads to the development of brain lesions. The aim of this study was to investigate the dynamics of microglia after PRV inoculation. A mouse model inoculated with PRV was established to study the interactions between PRV and microglia, microglial recruitment, and polarization effects. The mice were subcutaneously inoculated with different doses of PRV-Bartha K61 vaccine strain. The obtained results showed that mouse mortality rates increased with the applied doses of virus, and brain lesions, located in the brain tail and brain stem, were observed in each investigated group. Inflammatory cells were shown to infiltrate through the vasculature into perivascular cuff, and the number of microglia was increased as well. Mouse group treated with a medium infection dose demonstrated a high survival rate while developing serious brain lesions, and therefore, this dose was selected for further experiments. Immunohistochemistry, flow cytometry, and confocal laser scanning microscopy were used to analyze PRV-microglia interactions. After PRV inoculation, proliferating cell nuclear antigen (Pcna) and Iba1 double-positive cells were observed in the brain lesions, together with the activated microglia, suggesting that PRV can induce microglial proliferation and activation. Furthermore, 5-bromo-deoxy-uridine (BrdU) labeling demonstrated that microglial cells did not proliferate in situ and the proliferating cells originated from peripheral blood monocytes, mainly from the inflammatory monocytes (Ly6Chigh). In addition, microglia polarized into both M1 and M2 phenotypes by PRV infection. The results obtained in this study may help understand the development of pseudorabies infection and help improve the treatment, by recruiting and enhancing immune response.
Collapse
Affiliation(s)
- Shouping Hu
- National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute , Chinese Academy of Agricultural Sciences, Harbin, China
| | - Qiang Liu
- National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute , Chinese Academy of Agricultural Sciences, Harbin, China
| | - Sufang Zang
- National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute , Chinese Academy of Agricultural Sciences, Harbin, China
| | - Zhuo Zhang
- National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute , Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jingfei Wang
- National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute , Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xuehui Cai
- National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute , Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xijun He
- National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute , Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
8
|
Hogue IB, Card JP, Rinaman L, Staniszewska Goraczniak H, Enquist LW. Characterization of the neuroinvasive profile of a pseudorabies virus recombinant expressing the mTurquoise2 reporter in single and multiple injection experiments. J Neurosci Methods 2018; 308:228-239. [PMID: 30098326 PMCID: PMC6294127 DOI: 10.1016/j.jneumeth.2018.08.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 07/29/2018] [Accepted: 08/02/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND Viral transneuronal tracing has become a well established technology used to define the synaptic architecture of polysynaptic neural networks. NEW METHOD In this report we define the neuroinvasive profile and reporter expression of a new recombinant of the Bartha strain of pseudorabies virus (PRV). The new recombinant, PRV-290, expresses the mTurquoise2 fluorophor and is designed to complement other isogenic recombinants of Bartha that express different reporters of infection. Results & Comparison with Existing Methods: PRV-290 was injected either alone or in combination with isogenic recombinants of PRV that express enhanced green fluorescent protein (EGFP; PRV-152) or monomeric red fluorescent protein (mRFP; PRV-614). Circuits previously defined using PRV-152 and PRV-614 were used for the analysis. The data demonstrate that PRV-290 is a retrograde transneuronal tracer with temporal kinetics similar to those of its isogenic recombinants. Stable expression of the diffusible mTurquoise2 reporter filled infected neurons, with the extent and intensity of labeling increasing with advancing post inoculation survival. In multiple injection experiments, PRV-290 established productive infections in neurons also replicating PRV-152 and/or PRV-614. This novel demonstration of three recombinants infecting individual neurons represents an important advance in the technology. CONCLUSION Collectively, these data demonstrate that PRV-290 is a valuable addition to the viral tracer toolbox for transneuronal tracing of neural circuitry.
Collapse
Affiliation(s)
- Ian B Hogue
- Department of Molecular Biology, Neuroscience Institute, Princeton University, Princeton, NJ, 08544, United States.
| | - J Patrick Card
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, 15260, United States; Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL, 32306, United States.
| | - Linda Rinaman
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL, 32306, United States
| | | | - Lynn W Enquist
- Department of Molecular Biology, Neuroscience Institute, Princeton University, Princeton, NJ, 08544, United States
| |
Collapse
|
9
|
The Pseudorabies Virus Glycoprotein gE/gI Complex Suppresses Type I Interferon Production by Plasmacytoid Dendritic Cells. J Virol 2017; 91:JVI.02276-16. [PMID: 28122975 DOI: 10.1128/jvi.02276-16] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 01/13/2017] [Indexed: 12/12/2022] Open
Abstract
Plasmacytoid dendritic cells (pDC) play a central role in the antiviral immune response, both in the innate response and in shaping the adaptive response, mainly because of their ability to produce massive amounts of type I interferon (TI-IFN). Here, we report that cells infected with the live attenuated Bartha vaccine strain of porcine alphaherpesvirus pseudorabies virus (PRV) trigger a dramatically increased TI-IFN response by porcine primary pDC compared to cells infected with wild-type PRV strains (Becker and Kaplan). Since Bartha is one of the relatively few examples of a highly successful alphaherpesvirus vaccine, identification of factors that may contribute to its efficacy may provide insights for the rational design of other alphaherpesvirus vaccines. The Bartha vaccine genome displays several mutations compared to the genome of wild-type PRV strains, including a large deletion in the unique short (US) region, encompassing the glycoprotein E (gE), gI, US9, and US2 genes. Using recombinant PRV Becker strains harboring the entire Bartha US deletion or single mutations in the four affected US genes, we demonstrate that the absence of the viral gE/gI complex contributes to the observed increased IFN-α response. Furthermore, we show that the absence of gE leads to an enhanced extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation in pDC, which correlates with a higher TI-IFN production by pDC. In conclusion, the PRV Bartha vaccine strain triggers strongly increased TI-IFN production by porcine pDC. Our data further indicate that the gE/gI glycoprotein complex suppresses TI-IFN production by pDC, which represents the first alphaherpesvirus factor that suppresses pDC activity.IMPORTANCE Several alphaherpesviruses, including herpes simpex virus, still lack effective vaccines. However, the highly successful Bartha vaccine has contributed substantially to eradication of the porcine alphaherpesvirus pseudorabies virus (PRV) in several countries. The impact of Bartha on the immune response is still poorly understood. Type I interferon (TI-IFN)-producing plasmacytoid dendritic cells (pDC) may play an important role in vaccine development. Here, we show that Bartha elicits a dramatically increased type I interferon (TI-IFN) response in primary porcine pDC compared to wild-type strains. In addition, we found that the gE/gI complex, which is absent in Bartha, inhibits the pDC TI-IFN response. This is the first description of an immune cell type that is differentially affected by Bartha versus wild-type PRV and is the first report describing an alphaherpesvirus protein that inhibits the TI-IFN response by pDC. These data may therefore contribute to the rational design of other alphaherpesvirus vaccines.
Collapse
|
10
|
Molecular association of herpes simplex virus type 1 glycoprotein E with membrane protein Us9. Arch Virol 2016; 161:3203-13. [PMID: 27568015 DOI: 10.1007/s00705-016-3028-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Accepted: 08/22/2016] [Indexed: 01/20/2023]
Abstract
Herpes simplex virus type 1 (HSV-1) glycoprotein E (gE), glycoprotein I (gI), and Us9 promote efficient anterograde axonal transport of virus from the neuron cytoplasm to the axon terminus. HSV-1 and PRV gE and gI form a heterodimer that is required for anterograde transport, but an association that includes Us9 has not been demonstrated. NS-gE380 is an HSV-1 mutant that has five amino acids inserted after gE residue 380, rendering it defective in anterograde axonal transport. We demonstrated that gE, gI and Us9 form a trimolecular complex in Vero cells infected with NS-gE380 virus in which gE binds to both Us9 and gI. We detected the complex using immunoprecipitation with anti-gE or anti-gI monoclonal antibodies in the presence of ionic detergents. Under these conditions, Us9 did not associate with gE in cells infected with wild-type HSV-1; however, using a nonionic detergent, TritonX-100, an association between Us9 and gE was detected in immunoprecipitates of both wild-type and NS-gE380-infected cells. The results suggest that the interaction between Us9 and gE is weak and disrupted by ionic detergents in wild-type infected cells. We postulate that the tight interaction between Us9 and gE leads to the anterograde spread defect in the NS-gE380 virus.
Collapse
|
11
|
Pontes MS, Van Waesberghe C, Nauwynck H, Verhasselt B, Favoreel HW. Pseudorabies virus glycoprotein gE triggers ERK1/2 phosphorylation and degradation of the pro-apoptotic protein Bim in epithelial cells. Virus Res 2015; 213:214-218. [PMID: 26721325 DOI: 10.1016/j.virusres.2015.12.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 12/16/2015] [Accepted: 12/16/2015] [Indexed: 11/28/2022]
Abstract
ERK1/2 (Extracellular signal Regulated Kinase 1/2) signaling is a key cellular signaling axis controlling many cellular events, including cell survival. Activation of ERK 1/2 may trigger an anti-apoptotic response, and different viruses have been shown to benefit from this process. We have described recently that the viral glycoprotein gE mediates pseudorabies virus (PRV)-induced activation of ERK 1/2 in T lymphocytes. In the present study, we report that PRV gE-mediated ERK 1/2 phosphorylation also occurs in epithelial cells and that in these cells, gE-mediated ERK 1/2 signaling is associated with degradation of the pro-apoptotic protein Bim. Our results for the first time link the viral glycoprotein gE, an important alphaherpesvirus virulence factor, with the apoptotic signaling pathway.
Collapse
Affiliation(s)
- Maria S Pontes
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Belgium
| | - Cliff Van Waesberghe
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Belgium
| | - Hans Nauwynck
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Belgium
| | - Bruno Verhasselt
- Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, Belgium
| | - Herman W Favoreel
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Belgium.
| |
Collapse
|
12
|
Pseudorabies virus triggers glycoprotein gE-mediated ERK1/2 activation and ERK1/2-dependent migratory behavior in T cells. J Virol 2014; 89:2149-56. [PMID: 25473050 DOI: 10.1128/jvi.02549-14] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
UNLABELLED The interaction between viruses and immune cells of the host may lead to modulation of intracellular signaling pathways and to subsequent changes in cellular behavior that are of benefit for either virus or host. ERK1/2 (extracellular signal regulated kinase 1/2) signaling represents one of the key cellular signaling axes. Here, using wild-type and gE null virus, recombinant gE, and gE-transfected cells, we show that the gE glycoprotein of the porcine Varicellovirus pseudorabies virus (PRV) triggers ERK1/2 phosphorylation in Jurkat T cells and primary porcine T lymphocytes. PRV-induced ERK1/2 signaling resulted in homotypic T cell aggregation and increased motility of T lymphocytes. Our study reveals a new function of the gE glycoprotein of PRV and suggests that PRV, through activation of ERK1/2 signaling, has a substantial impact on T cell behavior. IMPORTANCE Herpesviruses are known to be highly successful in evading the immune system of their hosts, subverting signaling pathways of the host to their own advantage. The ERK1/2 signaling pathway, being involved in many cellular processes, represents a particularly attractive target for viral manipulation. Glycoprotein E (gE) is an important virulence factor of alphaherpesviruses, involved in viral spread. In this study, we show that gE has the previously uncharacterized ability to trigger ERK1/2 phosphorylation in T lymphocytes. We also show that virus-induced ERK1/2 signaling leads to increased migratory behavior of T cells and that migratory T cells can spread the infection to susceptible cells. In conclusion, our results point to a novel function for gE and suggest that virus-induced ERK1/2 activation may trigger PRV-carrying T lymphocytes to migrate and infect other cells susceptible to PRV replication.
Collapse
|
13
|
Herpes simplex virus gE/gI extracellular domains promote axonal transport and spread from neurons to epithelial cells. J Virol 2014; 88:11178-86. [PMID: 25031334 DOI: 10.1128/jvi.01627-14] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
UNLABELLED Following reactivation from latency, there are two distinct steps in the spread of herpes simplex virus (HSV) from infected neurons to epithelial cells: (i) anterograde axonal transport of virus particles from neuron bodies to axon tips and (ii) exocytosis and spread of extracellular virions across cell junctions into adjacent epithelial cells. The HSV heterodimeric glycoprotein gE/gI is important for anterograde axonal transport, and gE/gI cytoplasmic domains play important roles in sorting of virus particles into axons. However, the roles of the large (∼400-residue) gE/gI extracellular (ET) domains in both axonal transport and neuron-to-epithelial cell spread have not been characterized. Two gE mutants, gE-277 and gE-348, contain small insertions in the gE ET domain, fold normally, form gE/gI heterodimers, and are incorporated into virions. Both gE-277 and gE-348 did not function in anterograde axonal transport; there were markedly reduced numbers of viral capsids and glycoproteins compared with wild-type HSV. The defects in axonal transport were manifest in neuronal cell bodies, involving missorting of HSV capsids before entry into proximal axons. Although there were diminished numbers of mutant gE-348 capsids and glycoproteins in distal axons, there was efficient spread to adjacent epithelial cells, similar to wild-type HSV. In contrast, virus particles produced by HSV gE-277 spread poorly to epithelial cells, despite numbers of virus particles similar to those for HSV gE-348. These results genetically separate the two steps in HSV spread from neurons to epithelial cells and demonstrate that the gE/gI ET domains function in both processes. IMPORTANCE An essential phase of the life cycle of herpes simplex virus (HSV) and other alphaherpesviruses is the capacity to reactivate from latency and then spread from infected neurons to epithelial tissues. This spread involves at least two steps: (i) anterograde transport to axon tips followed by (ii) exocytosis and extracellular spread from axons to epithelial cells. HSV gE/gI is a glycoprotein that facilitates this virus spread, although by poorly understood mechanisms. Here, we show that the extracellular (ET) domains of gE/gI promote the sorting of viral structural proteins into proximal axons to begin axonal transport. However, the gE/gI ET domains also participate in the extracellular spread from axon tips across cell junctions to epithelial cells. Understanding the molecular mechanisms involved in gE/gI-mediated sorting of virus particles into axons and extracellular spread to adjacent cells is fundamentally important for identifying novel targets to reduce alphaherpesvirus disease.
Collapse
|
14
|
In vivo imaging of alphaherpesvirus infection reveals synchronized activity dependent on axonal sorting of viral proteins. Proc Natl Acad Sci U S A 2013; 110:E3516-25. [PMID: 23980169 DOI: 10.1073/pnas.1311062110] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
A clinical hallmark of human alphaherpesvirus infections is peripheral pain or itching. Pseudorabies virus (PRV), a broad host range alphaherpesvirus, causes violent pruritus in many different animals, but the mechanism is unknown. Previous in vitro studies have shown that infected, cultured peripheral nervous system (PNS) neurons exhibited aberrant electrical activity after PRV infection due to the action of viral membrane fusion proteins, yet it is unclear if such activity occurs in infected PNS ganglia in living animals and if it correlates with disease symptoms. Using two-photon microscopy, we imaged autonomic ganglia in living mice infected with PRV strains expressing GCaMP3, a genetically encoded calcium indicator, and used the changes in calcium flux to monitor the activity of many neurons simultaneously with single-cell resolution. Infection with virulent PRV caused these PNS neurons to fire synchronously and cyclically in highly correlated patterns among infected neurons. This activity persisted even when we severed the presynaptic axons, showing that infection-induced firing is independent of input from presynaptic brainstem neurons. This activity was not observed after infections with an attenuated PRV recombinant used for circuit tracing or with PRV mutants lacking either viral glycoprotein B, required for membrane fusion, or viral membrane protein Us9, required for sorting virions and viral glycoproteins into axons. We propose that the viral fusion proteins produced by virulent PRV infection induce electrical coupling in unmyelinated axons in vivo. This action would then give rise to the synchronous and cyclical activity in the ganglia and contribute to the characteristic peripheral neuropathy.
Collapse
|
15
|
Pavlova S, Veits J, Mettenleiter TC, Fuchs W. Identification and functional analysis of membrane proteins gD, gE, gI, and pUS9 of Infectious laryngotracheitis virus. Avian Dis 2013; 57:416-26. [PMID: 23901755 DOI: 10.1637/10332-082612-reg.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Herpesvirus envelope proteins are of particular interest for development of attenuated live, marker, and subunit vaccines, as well as development of diagnostic tools. The unique short genome region of the chicken pathogen infectious laryngotracheitis virus (ILTV, Gallid herpesvirus 1) contains a cluster of six conserved alphaherpesvirus genes encoding membrane proteins, of which up to now only glycoproteins gG and gJ have been analyzed in detail. We have now prepared monospecific rabbit antisera against ILTV gD, gE, and gI, and the ILTV type II membrane protein pUS9, each of which showed specific immunofluorescence reactions, and detected proteins of approximately 65 and 70 kDa (gD), 62 kDa (gI), 75 kDa (gE), or 37 kDa (pUS9) in western blot analyses of infected chicken cells. The proteins gD, gI, and gE, but not pUS9, were identified as abundant virion proteins, and gE and gI were shown to be N-glycosylated. We also isolated gE-, gI-, and pUS9-deleted ILTV recombinants, whereas it was not possible to purify gD-negative ILTV to homogeneity, indicating that gD, like in other alphaherpesviruses, is essential for receptor binding and virus entry. The pUS9-deleted ILTV exhibited almost wild-type-like replication properties in cell culture. The gE- and gI-negative viruses showed significantly reduced plaque sizes, whereas virus titers were barely affected. Since homologous gene-deletion mutants of other alphaherpesviruses are in use as live vaccines, the generated ILTV recombinants might be also suitable for this application.
Collapse
Affiliation(s)
- Sophia Pavlova
- Institute of Molecular Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany
| | | | | | | |
Collapse
|
16
|
Glycoproteins gE and gI are required for efficient KIF1A-dependent anterograde axonal transport of alphaherpesvirus particles in neurons. J Virol 2013; 87:9431-40. [PMID: 23804637 DOI: 10.1128/jvi.01317-13] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Alphaherpesviruses, including pseudorabies virus (PRV), spread directionally within the nervous systems of their mammalian hosts. Three viral membrane proteins are required for efficient anterograde-directed spread of infection in neurons, including Us9 and a heterodimer composed of the glycoproteins gE and gI. We previously demonstrated that the kinesin-3 motor KIF1A mediates anterograde-directed transport of viral particles in axons of cultured peripheral nervous system (PNS) neurons. The PRV Us9 protein copurifies with KIF1A, recruiting the motor to transport vesicles, but at least one unidentified additional viral protein is necessary for this interaction. Here we show that gE/gI are required for efficient anterograde transport of viral particles in axons by mediating the interaction between Us9 and KIF1A. In the absence of gE/gI, viral particles containing green fluorescent protein (GFP)-tagged Us9 are assembled in the cell body but are not sorted efficiently into axons. Importantly, we found that gE/gI are necessary for efficient copurification of KIF1A with Us9, especially at early times after infection. We also constructed a PRV recombinant that expresses a functional gE-GFP fusion protein and used affinity purification coupled with mass spectrometry to identify gE-interacting proteins. Several viral and host proteins were found to associate with gE-GFP. Importantly, both gI and Us9, but not KIF1A, copurified with gE-GFP. We propose that gE/gI are required for efficient KIF1A-mediated anterograde transport of viral particles because they indirectly facilitate or stabilize the interaction between Us9 and KIF1A.
Collapse
|
17
|
Directional spread of alphaherpesviruses in the nervous system. Viruses 2013; 5:678-707. [PMID: 23435239 PMCID: PMC3640521 DOI: 10.3390/v5020678] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 02/04/2013] [Accepted: 02/05/2013] [Indexed: 12/30/2022] Open
Abstract
Alphaherpesviruses are pathogens that invade the nervous systems of their mammalian hosts. Directional spread of infection in the nervous system is a key component of the viral lifecycle and is critical for the onset of alphaherpesvirus-related diseases. Many alphaherpesvirus infections originate at peripheral sites, such as epithelial tissues, and then enter neurons of the peripheral nervous system (PNS), where lifelong latency is established. Following reactivation from latency and assembly of new viral particles, the infection typically spreads back out towards the periphery. These spread events result in the characteristic lesions (cold sores) commonly associated with herpes simplex virus (HSV) and herpes zoster (shingles) associated with varicella zoster virus (VZV). Occasionally, the infection spreads transsynaptically from the PNS into higher order neurons of the central nervous system (CNS). Spread of infection into the CNS, while rarer in natural hosts, often results in severe consequences, including death. In this review, we discuss the viral and cellular mechanisms that govern directional spread of infection in the nervous system. We focus on the molecular events that mediate long distance directional transport of viral particles in neurons during entry and egress.
Collapse
|
18
|
Abstract
Herpes simplex virus, varicella zoster virus, and pseudorabies virus are neurotropic pathogens of the Alphaherpesvirinae subfamily of the Herpesviridae. These viruses efficiently invade the peripheral nervous system and establish lifelong latency in neurons resident in peripheral ganglia. Primary and recurrent infections cycle virus particles between neurons and the peripheral tissues they innervate. This remarkable cycle of infection is the topic of this review. In addition, some of the distinguishing hallmarks of the infections caused by these viruses are evaluated in terms of their underlying similarities.
Collapse
Affiliation(s)
- Gregory Smith
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA.
| |
Collapse
|
19
|
Abstract
Pseudorabies virus (PRV), a member of the Alphaherpesvirinae, has a complex multilayered extracellular virion that is structurally conserved among other herpesviruses. PRV virions contain a double-stranded DNA genome within a proteinaceous capsid surrounded by the tegument, a layer of viral and cellular proteins. The envelope layer, which encloses the capsid and tegument, contains viral transmembrane proteins anchored in a phospholipid bilayer. The viral and host proteins contained within virions execute important functions during viral spread and pathogenesis, but a detailed understanding of the composition of PRV virions has been lacking. In this report, we present the first comprehensive proteomic characterization of purified PRV virions by mass spectrometry using two complementary approaches. To exclude proteins present in the extracellular medium that may nonspecifically associate with virions, we also analyzed virions treated with proteinase K and samples prepared from mock-infected cells. Overall, we identified 47 viral proteins associated with PRV virions, 40 of which were previously localized to the capsid, tegument, and envelope layers using traditional biochemical approaches. Additionally, we identified seven viral proteins that were previously undetected in virions, including pUL8, pUL20, pUL32, pUL40 (RR2), pUL42, pUL50 (dUTPase), and Rsp40/ICP22. Furthermore, although we did not enrich for posttranslational modifications, we detected phosphorylation of four virion proteins: pUL26, pUL36, pUL46, and pUL48. Finally, we identified 48 host proteins associated with PRV virions, many of which have known functions in important cellular pathways such as intracellular signaling, mRNA translation and processing, cytoskeletal dynamics, and membrane organization. This analysis extends previous work aimed at determining the composition of herpesvirus virions and provides novel insights critical for understanding the mechanisms underlying PRV entry, assembly, egress, spread, and pathogenesis.
Collapse
|
20
|
Ugolini G. Advances in viral transneuronal tracing. J Neurosci Methods 2010; 194:2-20. [DOI: 10.1016/j.jneumeth.2009.12.001] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Revised: 11/28/2009] [Accepted: 12/03/2009] [Indexed: 10/20/2022]
|
21
|
Wang F, Zumbrun EE, Huang J, Si H, Makaroun L, Friedman HM. Herpes simplex virus type 2 glycoprotein E is required for efficient virus spread from epithelial cells to neurons and for targeting viral proteins from the neuron cell body into axons. Virology 2010; 405:269-79. [PMID: 20598729 DOI: 10.1016/j.virol.2010.06.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2009] [Revised: 05/16/2010] [Accepted: 06/02/2010] [Indexed: 12/17/2022]
Abstract
The HSV-2 lifecycle involves virus spread in a circuit from the inoculation site to dorsal root ganglia and return. We evaluated the role of gE-2 in the virus lifecycle by deleting amino acids 124-495 (gE2-del virus). In the mouse retina infection model, gE2-del virus does not spread to nuclei in the brain, indicating a defect in anterograde (pre-synaptic to post-synaptic neurons) and retrograde (post-synaptic to pre-synaptic neurons) spread. Infection of neuronal cells in vitro demonstrates that gE-2 is required for targeting viral proteins from neuron cell bodies into axons, and for efficient virus spread from epithelial cells to axons. The mouse flank model confirms that gE2-del virus is defective in spread from epithelial cells to neurons. Therefore, we defined two steps in the virus lifecycle that involve gE-2, including efficient spread from epithelial cells to axons and targeting viral components from neuron cell bodies into axons.
Collapse
Affiliation(s)
- Fushan Wang
- Division of Infectious Diseases, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6073, USA.
| | | | | | | | | | | |
Collapse
|
22
|
Anterograde spread of herpes simplex virus type 1 requires glycoprotein E and glycoprotein I but not Us9. J Virol 2009; 83:8315-26. [PMID: 19570876 DOI: 10.1128/jvi.00633-09] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Anterograde neuronal spread (i.e., spread from the neuron cell body toward the axon terminus) is a critical component of the alphaherpesvirus life cycle. Three viral proteins, gE, gI, and Us9, have been implicated in alphaherpesvirus anterograde spread in several animal models and neuron culture systems. We sought to better define the roles of gE, gI, and Us9 in herpes simplex virus type 1 (HSV-1) anterograde spread using a compartmentalized primary neuron culture system. We found that no anterograde spread occurred in the absence of gE or gI, indicating that these proteins are essential for HSV-1 anterograde spread. However, we did detect anterograde spread in the absence of Us9 using two independent Us9-deleted viruses. We confirmed the Us9 finding in different murine models of neuronal spread. We examined viral transport into the optic nerve and spread to the brain after retinal infection; the production of zosteriform disease after flank inoculation; and viral spread to the spinal cord after flank inoculation. In all models, anterograde spread occurred in the absence of Us9, although in some cases at reduced levels. This finding contrasts with gE- and gI-deleted viruses, which displayed no anterograde spread in any animal model. Thus, gE and gI are essential for HSV-1 anterograde spread, while Us9 is dispensable.
Collapse
|
23
|
Comparison of the pseudorabies virus Us9 protein with homologs from other veterinary and human alphaherpesviruses. J Virol 2009; 83:6978-86. [PMID: 19420087 DOI: 10.1128/jvi.00598-09] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Pseudorabies virus (PRV) Us9 is a small, tail-anchored (TA) membrane protein that is essential for axonal sorting of viral structural proteins and is highly conserved among other members of the alphaherpesvirus subfamily. We cloned the Us9 homologs from two human pathogens, varicella-zoster virus (VZV) and herpes simplex virus type 1 (HSV-1), as well as two veterinary pathogens, equine herpesvirus type 1 (EHV-1) and bovine herpesvirus type 1 (BHV-1), and fused them to enhanced green fluorescent protein to examine their subcellular localization and membrane topology. Akin to PRV Us9, all of the Us9 homologs localized to the trans-Golgi network and had a type II membrane topology (typical of TA proteins). Furthermore, we examined whether any of the Us9 homologs could compensate for the loss of PRV Us9 in anterograde, neuron-to-cell spread of infection in a compartmented chamber system. EHV-1 and BHV-1 Us9 were able to fully compensate for the loss of PRV Us9, whereas VZV and HSV-1 Us9 proteins were unable to functionally replace PRV Us9 when they were expressed in a PRV background.
Collapse
|
24
|
Lee JI, Sollars PJ, Baver SB, Pickard GE, Leelawong M, Smith GA. A herpesvirus encoded deubiquitinase is a novel neuroinvasive determinant. PLoS Pathog 2009; 5:e1000387. [PMID: 19381253 PMCID: PMC2663050 DOI: 10.1371/journal.ppat.1000387] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2008] [Accepted: 03/19/2009] [Indexed: 01/08/2023] Open
Abstract
The neuroinvasive property of several alpha-herpesviruses underlies an uncommon infectious process that includes the establishment of life-long latent infections in sensory neurons of the peripheral nervous system. Several herpesvirus proteins are required for replication and dissemination within the nervous system, indicating that exploiting the nervous system as a niche for productive infection requires a specialized set of functions encoded by the virus. Whether initial entry into the nervous system from peripheral tissues also requires specialized viral functions is not known. Here we show that a conserved deubiquitinase domain embedded within a pseudorabies virus structural protein, pUL36, is essential for initial neural invasion, but is subsequently dispensable for transmission within and between neurons of the mammalian nervous system. These findings indicate that the deubiquitinase contributes to neurovirulence by participating in a previously unrecognized initial step in neuroinvasion. Subsets of herpesviruses, such as herpes simplex virus and pseudorabies virus, are neuroinvasive pathogens. Upon infection, these viruses efficiently target peripheral nervous system tissue and establish a life-long infection for which there is no cure. Very few pathogens are known that invade the nervous system proficiently, and the mechanism by which herpesviruses achieve neuroinvasion is largely unknown. In this study, we demonstrate that a viral protease plays a critical and specific role allowing the virus to cross the threshold of the nervous system, but is dispensable for subsequent replication and encephalitic spread within the brain.
Collapse
Affiliation(s)
- Joy I. Lee
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Patricia J. Sollars
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Scott B. Baver
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Gary E. Pickard
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Mindy Leelawong
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Gregory A. Smith
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
25
|
Deletion of the first cysteine-rich region of the varicella-zoster virus glycoprotein E ectodomain abolishes the gE and gI interaction and differentially affects cell-cell spread and viral entry. J Virol 2008; 83:228-40. [PMID: 18945783 DOI: 10.1128/jvi.00913-08] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Varicella-zoster virus (VZV) glycoprotein E (gE) is the most abundant glycoprotein in infected cells and, in contrast to those of other alphaherpesviruses, is essential for viral replication. The gE ectodomain contains a unique N-terminal region required for viral replication, cell-cell spread, and secondary envelopment; this region also binds to the insulin-degrading enzyme (IDE), a proposed VZV receptor. To identify new functional domains of the gE ectodomain, the effect of mutagenesis of the first cysteine-rich region of the gE ectodomain (amino acids 208 to 236) was assessed using VZV cosmids. Deletion of this region was compatible with VZV replication in vitro, but cell-cell spread of the rOka-DeltaCys mutant was reduced significantly. Deletion of the cysteine-rich region abolished the binding of the mutant gE to gI but not to IDE. Preventing gE binding to gI altered the pattern of gE expression at the plasma membrane of infected cells and the posttranslational maturation of gI and its incorporation into viral particles. In contrast, deletion of the first cysteine-rich region did not affect viral entry into human tonsil T cells in vitro or into melanoma cells infected with cell-free VZV. These experiments demonstrate that gE/gI heterodimer formation is essential for efficient cell-cell spread and incorporation of gI into viral particles but that it is dispensable for infectious varicella-zoster virion formation and entry into target cells. Blocking gE binding to gI resulted in severe impairment of VZV infection of human skin xenografts in SCIDhu mice in vivo, documenting the importance of cell fusion mediated by this complex for VZV virulence in skin.
Collapse
|
26
|
Fusion of enhanced green fluorescent protein to the pseudorabies virus axonal sorting protein Us9 blocks anterograde spread of infection in mammalian neurons. J Virol 2008; 82:10308-11. [PMID: 18684822 DOI: 10.1128/jvi.01204-08] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Pseudorabies virus encodes a membrane protein (Us9) that is essential for the axonal sorting of virus particles within neurons and anterograde spread in the mammalian nervous system. Enhanced green fluorescent protein (GFP)-tagged Us9 mimicked the trafficking properties of the wild-type protein in nonneuronal cells. We constructed a pseudorabies virus strain that expressed Us9-GFP and tested its spread capabilities in the rat visual system and in primary neuronal cultures. We report that Us9-EGFP does not promote anterograde spread of infection and may disrupt packing of viral membrane proteins in lipid rafts, an essential step for Us9-mediated axonal sorting.
Collapse
|
27
|
Lyman MG, Curanovic D, Enquist LW. Targeting of pseudorabies virus structural proteins to axons requires association of the viral Us9 protein with lipid rafts. PLoS Pathog 2008; 4:e1000065. [PMID: 18483549 PMCID: PMC2361720 DOI: 10.1371/journal.ppat.1000065] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Accepted: 04/10/2008] [Indexed: 12/15/2022] Open
Abstract
The pseudorabies virus (PRV) Us9 protein plays a central role in targeting viral capsids and glycoproteins to axons of dissociated sympathetic neurons. As a result, Us9 null mutants are defective in anterograde transmission of infection in vivo. However, it is unclear how Us9 promotes axonal sorting of so many viral proteins. It is known that the glycoproteins gB, gC, gD and gE are associated with lipid raft microdomains on the surface of infected swine kidney cells and monocytes, and are directed into the axon in a Us9-dependent manner. In this report, we determined that Us9 is associated with lipid rafts, and that this association is critical to Us9-mediated sorting of viral structural proteins. We used infected non-polarized and polarized PC12 cells, a rat pheochromocytoma cell line that acquires many of the characteristics of sympathetic neurons in the presence of nerve growth factor (NGF). In these cells, Us9 is highly enriched in detergent-resistant membranes (DRMs). Moreover, reducing the affinity of Us9 for lipid rafts inhibited anterograde transmission of infection from sympathetic neurons to epithelial cells in vitro. We conclude that association of Us9 with lipid rafts is key for efficient targeting of structural proteins to axons and, as a consequence, for directional spread of PRV from pre-synaptic to post-synaptic neurons and cells of the mammalian nervous system.
Collapse
Affiliation(s)
- Mathew G. Lyman
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Dusica Curanovic
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Lynn W. Enquist
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| |
Collapse
|
28
|
Zelnik V. Marek's disease virus research in the post-sequencing era: new tools for the study of gene functions and virus-host interactions. Avian Pathol 2007; 32:323-33. [PMID: 17585455 DOI: 10.1080/0307945031000121068] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Despite the fact that the causative agent of Marek's disease was described more than 30 years ago, and that subsequently many classical biological studies have been carried out on the Marek's disease virus (MDV), detailed analysis of its gene functions has been hampered by lack of suitable research tools. Information on the primary structure of MDV-1 and its serologically related viruses, MDV-2 and herpesvirus of turkeys, is now available. This review focuses on the introduction of the modern and highly efficient technology of bacterial artificial chromosome (BAC) cloning and mutagenesis for rapid manipulation of the MDV genome, with the aim of studying the functions of its genes and non-coding regions. Constructed MDV BACs carry the complete genome of MDV that can be multiplied in Escherichia coli and manipulated using the tools provided by bacterial genetics. The novel approach of MDV DNA mutagenesis using BAC technology will be explained by examples, and we will discuss gene functions in comparison with their counterparts in other herpesviruses. In addition, we have shown that MDV BAC DNA can be used as a polynucleotide vaccine to protect against Marek's disease, thus opening a new chapter in strategies for control of this disease.
Collapse
Affiliation(s)
- Vladimír Zelnik
- Institute of Virology, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 842 45, Slovakia.
| |
Collapse
|
29
|
Lyman MG, Feierbach B, Curanovic D, Bisher M, Enquist LW. Pseudorabies virus Us9 directs axonal sorting of viral capsids. J Virol 2007; 81:11363-71. [PMID: 17686845 PMCID: PMC2045549 DOI: 10.1128/jvi.01281-07] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Pseudorabies virus (PRV) mutants lacking the Us9 gene cannot spread from presynaptic to postsynaptic neurons in the rat visual system, although retrograde spread remains unaffected. We sought to recapitulate these findings in vitro using the isolator chamber system developed in our lab for analysis of the transneuronal spread of infection. The wild-type PRV Becker strain spreads efficiently to postsynaptic neurons in vitro, whereas the Us9-null strain does not. As determined by indirect immunofluorescence, the axons of Us9-null infected neurons do not contain the glycoproteins gB and gE, suggesting that their axonal sorting is dependent on Us9. Importantly, we failed to detect viral capsids in the axons of Us9-null infected neurons. We confirmed this observation by using three different techniques: by direct fluorescence of green fluorescent protein-tagged capsids; by transmission electron microscopy; and by live-cell imaging in cultured, sympathetic neurons. This finding has broad impact on two competing models for how virus particles are trafficked inside axons during anterograde transport and redefines a role for Us9 in viral sorting and transport.
Collapse
Affiliation(s)
- M G Lyman
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | | | | | | | | |
Collapse
|
30
|
Al-Mubarak A, Simon J, Coats C, Okemba JD, Burton MD, Chowdhury SI. Glycoprotein E (gE) specified by bovine herpesvirus type 5 (BHV-5) enables trans-neuronal virus spread and neurovirulence without being a structural component of enveloped virions. Virology 2007; 365:398-409. [PMID: 17477950 DOI: 10.1016/j.virol.2007.03.040] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2007] [Revised: 02/26/2007] [Accepted: 03/21/2007] [Indexed: 11/29/2022]
Abstract
Bovine herpesvirus 5 (BHV-5) is a neurovirulent alpha-herpesvirus that causes fatal encephalitis in calves. We previously demonstrated that deletion of a glycine-rich epitope in the gE ectodomain dramatically reduced BHV-5 neurovirulence. To investigate the role of gE cytoplasmic tail sequences in the neuropathogenesis of BHV-5 in rabbits, we constructed a BHV-5gE recombinant virus with a short residual cytoplasmic domain lacking the YXXL motifs and the acidic (BHV-5gEAm480). In vitro, BHV-5gEAm480 produced on the average smaller plaques, compared with wild-type BHV-5, but it produced on the average substantially larger plaques than the gE ORF-deleted BHV-5. The truncated gE was not phosphorylated, and was not endocytosed from the cell surface. Importantly, the truncated gE was not incorporated into enveloped infectious virions, but its glycosylation and interaction with gI were not affected. In a rabbit model of infection, the BHV-5gEAm480 remained highly virulent, while the gE-null virus was avirulent. The gEAm480 mutant virus invaded most of the central nervous system (CNS) structures that are invaded by the wild-type BHV-5. The number of neurons infected by BHV-5gEAm480 was very similar to the number infected by BHV-5 wild-type and gEAm480-rescued viruses. Collectively, the results suggest that gE functions in transsynaptic transmission of BHV-5 and neurovirulence without being a structural component of the virion particle.
Collapse
Affiliation(s)
- A Al-Mubarak
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | | | | | | | | | | |
Collapse
|
31
|
Desplanques AS, Nauwynck HJ, Tilleman K, Deforce D, Favoreel HW. Tyrosine phosphorylation and lipid raft association of pseudorabies virus glycoprotein E during antibody-mediated capping. Virology 2007; 362:60-6. [PMID: 17240415 DOI: 10.1016/j.virol.2006.12.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2006] [Revised: 10/04/2006] [Accepted: 12/12/2006] [Indexed: 10/23/2022]
Abstract
In specific cell types infected with the alphaherpesviruses herpes simplex virus and pseudorabies virus (PRV), addition of virus-specific antibodies results in redistribution of cell-surface-anchored viral proteins. This redistribution is triggered by the viral protein gE and consists of the directional movement of the antibody-antigen complexes to one pole of the cell. This viral capping process has been associated with increased antibody-resistant virus spread and strongly resembles immunoreceptor capping, a process that is crucial in activation of different immune cells (e.g. capping of Fcgamma-receptors, B and T cell receptors). Here, we report that the PRV gE-mediated viral capping process results in increased Src kinase-mediated tyrosine phosphorylation of the cytoplasmic domain of gE and that a fraction of gE associates with lipid rafts, all very reminiscent of immunoreceptor capping. These results provide evidence that gE-mediated capping is a viral mimicry of immunoreceptor capping.
Collapse
Affiliation(s)
- Ann S Desplanques
- Department of Virology, Parasitology and Immunology, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium.
| | | | | | | | | |
Collapse
|
32
|
Feierbach B, Bisher M, Goodhouse J, Enquist LW. In vitro analysis of transneuronal spread of an alphaherpesvirus infection in peripheral nervous system neurons. J Virol 2007; 81:6846-57. [PMID: 17459934 PMCID: PMC1933274 DOI: 10.1128/jvi.00069-07] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The neurotropic alphaherpesviruses invade and spread in the nervous system in a directional manner between synaptically connected neurons. Until now, this property has been studied only in living animals and has not been accessible to in vitro analysis. In this study, we describe an in vitro system in which cultured peripheral nervous system neurons are separated from their neuron targets by an isolator chamber ring. Using pseudorabies virus (PRV), an alphaherpesvirus capable of transneuronal spread in neural circuits of many animals, we have recapitulated in vitro all known genetic requirements for retrograde and anterograde transneuronal spread as determined previously in vivo. We show that in vitro transneuronal spread requires intact axons and the presence of the viral proteins gE, gI, and Us9. We also show that transneuronal spread is dependent on the viral glycoprotein gB, which is required for membrane fusion, but not on gD, which is required for extracellular spread. We demonstrate ultrastructural differences between anterograde- and retrograde-traveling virions. Finally, we show live imaging of dynamic fluorescent virion components in axons and postsynaptic target neurons.
Collapse
Affiliation(s)
- B Feierbach
- 301 Schultz Building, Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| | | | | | | |
Collapse
|
33
|
Olsen LM, Ch'ng TH, Card JP, Enquist LW. Role of pseudorabies virus Us3 protein kinase during neuronal infection. J Virol 2006; 80:6387-98. [PMID: 16775327 PMCID: PMC1488934 DOI: 10.1128/jvi.00352-06] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The pseudorabies virus (PRV) Us3 gene is conserved among the alphaherpesviruses and encodes a serine/threonine protein kinase that is not required for growth in standard cell lines. In this report, we used a compartmented culture system to investigate the role of PRV Us3 in viral replication in neurons, in spread from neurons to PK15 cells, and in axon-mediated spread of infection. We also examined the role of Us3 in neuroinvasion and virulence in rodents. Us3 null mutants produce about 10-fold less infectious virus from neurons than wild-type virus and have no discernible phenotypes for axonal targeting of viral components in cultured peripheral nervous system neurons. After eye infection in rodents, Us3 null mutants were slightly attenuated for virulence, with a delayed onset of symptoms compared to the wild type or a Us3 null revertant. While initially delayed, the symptoms increased in severity until they approximated those of the wild-type virus. Us3 null mutants were neuroinvasive, spreading in both efferent and afferent circuits innervating eye tissues.
Collapse
Affiliation(s)
- L M Olsen
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | | | | | | |
Collapse
|
34
|
Farnsworth A, Johnson DC. Herpes simplex virus gE/gI must accumulate in the trans-Golgi network at early times and then redistribute to cell junctions to promote cell-cell spread. J Virol 2006; 80:3167-79. [PMID: 16537585 PMCID: PMC1440378 DOI: 10.1128/jvi.80.7.3167-3179.2006] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Herpes simplex virus (HSV) glycoprotein heterodimer gE/gI is necessary for virus spread in epithelial and neuronal tissues. Deletion of the relatively large gE cytoplasmic (CT) domain abrogates the ability of gE/gI to mediate HSV spread. The gE CT domain is required for the sorting of gE/gI to the trans-Golgi network (TGN) in early stages of virus infection, and there are several recognizable TGN sorting motifs grouped near the center of this domain. Late in HSV infection, gE/gI, other viral glycoproteins, and enveloped virions redistribute from the TGN to epithelial cell junctions, and the gE CT domain is also required for this process. Without the gE CT domain, newly enveloped virions are directed to apical surfaces instead of to cell junctions. We hypothesized that the gE CT domain promotes virus envelopment into TGN subdomains from which nascent enveloped virions are sorted to cell junctions, a process that enhances cell-to-cell spread. To characterize elements of the gE CT domain involved in intracellular trafficking and cell-to-cell spread, we constructed a panel of truncation mutants. Specifically, these mutants were used to address whether sorting to the TGN and redistribution to cell junctions are necessary, and sufficient, for gE/gI to promote cell-to-cell spread. gE-519, lacking 32 C-terminal residues, localized normally to the TGN early in infection and then trafficked to cell junctions at late times and mediated virus spread. By contrast, mutants gE-495 (lacking 56 C-terminal residues) and gE-470 (lacking 81 residues) accumulated in the TGN but did not traffic to cell junctions and did not mediate cell-to-cell spread. A fourth mutant, gE-448 (lacking most of the CT domain), did not localize to cell junctions and did not mediate virus spread. Therefore, the capacity of gE/gI to promote cell-cell spread requires early localization to the TGN, but this is not sufficient for virus spread. Additionally, gE CT sequences between residues 495 and 519, which contain no obvious cell sorting motifs, are required to promote gE/gI traffic to cell junctions and cell-to-cell spread.
Collapse
Affiliation(s)
- Aaron Farnsworth
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, 3181 SW Sam Jackson Park Rd., Portland, OR 97239, USA
| | | |
Collapse
|
35
|
Paulus C, Sollars PJ, Pickard GE, Enquist LW. Transcriptome signature of virulent and attenuated pseudorabies virus-infected rodent brain. J Virol 2006; 80:1773-86. [PMID: 16439534 PMCID: PMC1367157 DOI: 10.1128/jvi.80.4.1773-1786.2006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Mammalian alphaherpesviruses normally establish latent infections in ganglia of the peripheral nervous system in their natural hosts. Occasionally, however, these viruses spread to the central nervous system (CNS), where they cause damaging, often fatal, infections. Attenuated alphaherpesvirus derivatives have been used extensively as neuronal circuit tracers in a variety of animal models. Their circuit-specific spread provides a unique paradigm to study the local and global CNS response to infection. Thus, we systematically analyzed the host gene expression profile after acute pseudorabies virus (PRV) infection of the CNS using Affymetrix GeneChip technology. Rats were injected intraocularly with one of three selected virulent and attenuated PRV strains. Relative levels of cellular transcripts were quantified from hypothalamic and cerebellar tissues at various times postinfection. The number of cellular genes responding to infection correlated with the extent of virus dissemination and relative virulence of the PRV strains. A total of 245 out of 8,799 probe sets, corresponding to 182 unique cellular genes, displayed increased expression ranging from 2- to more than 100-fold higher than in uninfected tissue. Over 60% thereof were categorized as immune, proinflammatory, and other cellular defense genes. Additionally, a large fraction of infection-induced transcripts represented cellular stress responses, including glucocorticoid- and redox-related pathways. This is the first comprehensive in vivo analysis of the global transcriptional response of the mammalian CNS to acute alphaherpesvirus infection. The differentially regulated genes reported here are likely to include potential diagnostic and therapeutic targets for viral encephalitides and other neurodegenerative or neuroinflammatory diseases.
Collapse
Affiliation(s)
- Christina Paulus
- Department of Molecular Biology, Princeton University, Princeton, NJ08544-1014, USA
| | | | | | | |
Collapse
|
36
|
Ch'ng TH, Enquist LW. An in vitro system to study trans-neuronal spread of pseudorabies virus infection. Vet Microbiol 2005; 113:193-7. [PMID: 16326047 DOI: 10.1016/j.vetmic.2005.11.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The neuronal spread of infection of alpha herpesviruses is controlled by unknown mechanisms. In the natural host, primary infection always leads to invasion of the peripheral nervous system, but rarely results in extensive invasion of the central nervous system. After reactivation of latent infection in the peripheral nervous system, virions are produced and shed from epithelial surfaces, but rarely invade the central nervous system. We have been studying two aspects of the general problem. First, using GFP and mRFP fusion proteins, we have used video confocal microscopy to assess mechanisms that influence spread of pseudorabies (PRV) virion components within axons. Second, and the subject of this report, is the development of a new in vitro cell culture system that enables the study of trans-neuronal spread of infection from neurons to non-neuronal cells similar to what happens after reactivation and spread to epithelial surfaces. We have developed a tissue culture system involving tri-chamber Teflon rings that enables facile analysis of trans-neuronal spread. The system duplicates all the known in vivo correlates of trans-neuronal spread and provides the opportunity to do both quantitative and qualitative assessment of spread of PRV infection from infected neurons to non-neuronal cells.
Collapse
Affiliation(s)
- T H Ch'ng
- Department of Molecular Biology, Princeton University, 314 Schultz Laboratory, Princeton, NJ 08544, USA
| | | |
Collapse
|
37
|
Pomeranz LE, Reynolds AE, Hengartner CJ. Molecular biology of pseudorabies virus: impact on neurovirology and veterinary medicine. Microbiol Mol Biol Rev 2005; 69:462-500. [PMID: 16148307 PMCID: PMC1197806 DOI: 10.1128/mmbr.69.3.462-500.2005] [Citation(s) in RCA: 599] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Pseudorabies virus (PRV) is a herpesvirus of swine, a member of the Alphaherpesvirinae subfamily, and the etiological agent of Aujeszky's disease. This review describes the contributions of PRV research to herpesvirus biology, neurobiology, and viral pathogenesis by focusing on (i) the molecular biology of PRV, (ii) model systems to study PRV pathogenesis and neurovirulence, (iii) PRV transsynaptic tracing of neuronal circuits, and (iv) veterinary aspects of pseudorabies disease. The structure of the enveloped infectious particle, the content of the viral DNA genome, and a step-by-step overview of the viral replication cycle are presented. PRV infection is initiated by binding to cellular receptors to allow penetration into the cell. After reaching the nucleus, the viral genome directs a regulated gene expression cascade that culminates with viral DNA replication and production of new virion constituents. Finally, progeny virions self-assemble and exit the host cells. Animal models and neuronal culture systems developed for the study of PRV pathogenesis and neurovirulence are discussed. PRV serves asa self-perpetuating transsynaptic tracer of neuronal circuitry, and we detail the original studies of PRV circuitry mapping, the biology underlying this application, and the development of the next generation of tracer viruses. The basic veterinary aspects of pseudorabies management and disease in swine are discussed. PRV infection progresses from acute infection of the respiratory epithelium to latent infection in the peripheral nervous system. Sporadic reactivation from latency can transmit PRV to new hosts. The successful management of PRV disease has relied on vaccination, prevention, and testing.
Collapse
Affiliation(s)
- Lisa E Pomeranz
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08540, USA.
| | | | | |
Collapse
|
38
|
Wang F, Tang W, McGraw HM, Bennett J, Enquist LW, Friedman HM. Herpes simplex virus type 1 glycoprotein e is required for axonal localization of capsid, tegument, and membrane glycoproteins. J Virol 2005; 79:13362-72. [PMID: 16227258 PMCID: PMC1262596 DOI: 10.1128/jvi.79.21.13362-13372.2005] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Herpes simplex virus type 1 (HSV-1) glycoprotein E (gE) promotes cell-to-cell spread at basolateral surfaces of epithelial cells, but its activity in neurons is less clear. We used the mouse retina infection model and neuronal cell cultures to define the spread phenotype of gE mutant viruses. Wild-type (WT) and gE-null (NS-gEnull) viruses both infected retina ganglion cell neurons; however, NS-gEnull viral antigens failed to reach the optic nerve, which indicates a defect in axonal localization. We evaluated two Fc receptor-negative gE mutant viruses containing four amino acid inserts in the gE ectodomain. One mutant virus failed to spread from the retina into the optic nerve, while the other spread normally. Therefore, the gE ectodomain is involved in axonal localization, and the Fc receptor and neuronal spread are mediated by overlapping but distinct gE domains. In the retina infection model, virus can travel to the brain via the optic nerve from presynaptic to postsynaptic neurons (anterograde direction) or via nerves that innervate the iris and ciliary body from postsynaptic to presynaptic neurons (retrograde direction). WT virus infected the brain by anterograde and retrograde routes, whereas NS-gEnull virus failed to travel by either pathway. The site of the defect in retrograde spread remains to be determined; however, infection of rat superior cervical ganglia neurons in vitro indicates that gE is required to target virion components to the axon initial segment. The requirement for gE in axonal targeting and retrograde spread highlights intriguing similarities and differences between HSV-1 and pseudorabies virus gE.
Collapse
Affiliation(s)
- Fushan Wang
- Department of Medicine, Division of Infectious Diseases, 502 Johnson Pavilion, University of Pennsylvania, Philadelphia, PA 19104-6073, USA
| | | | | | | | | | | |
Collapse
|
39
|
Abstract
Alphaherpesviruses are parasites of the peripheral nervous system in their natural hosts. After the initial infection of peripheral tissues such as mucosal cells, these neurotropic viruses will invade the peripheral nervous system that innervates the site of infection via long-distance axonal transport of the viral genome. In natural hosts, a latent and a nonproductive infection is usually established in the neuronal cell bodies. Upon reactivation, the newly replicated genome will be assembled into capsids and transported back to the site of entry, where a localized infection of the epithelial or mucosal cells will produce infectious virions that can infect naïve hosts. In this paper, we describe an in vitro method for studying neuron-to-cell spread of alphaherpesviruses using a compartmented culture system. Using pseudorabies virus as a model, we infected neuron cell bodies grown in Teflon chambers and observed spread of infection to nonneuronal cells plated in a different compartment. The cells are in contact with the neurons via axons that penetrate the Teflon barrier. We demonstrate that wild-type neuron-to-cell spread requires intact axons and the presence of gE, gI, and Us9 proteins, but does not require gD. We also provide ultrastructural evidence showing that capsids enclosed within vesicles can be found along the entire length of the axon during viral egress.
Collapse
Affiliation(s)
- T H Ch'ng
- Department of Molecular Biology, Princeton University, NJ 08544, USA
| | | |
Collapse
|
40
|
Ch'ng TH, Enquist LW. Efficient axonal localization of alphaherpesvirus structural proteins in cultured sympathetic neurons requires viral glycoprotein E. J Virol 2005; 79:8835-46. [PMID: 15994777 PMCID: PMC1168755 DOI: 10.1128/jvi.79.14.8835-8846.2005] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudorabies virus (PRV) glycoprotein E (gE) is a type I viral membrane protein that facilitates the anterograde spread of viral infection from the peripheral nervous system to the brain. In animal models, a gE-null mutant infection spreads inefficiently from presynaptic neurons to postsynaptic neurons (anterograde spread of infection). However, the retrograde spread of infection from post- to presynaptic neurons remains unaffected. Here we show that gE is required for wild-type localization of viral structural proteins in axons of infected neurons. During a gE-null PRV infection, a subset of viral glycoproteins, capsids, and tegument proteins enter and localize to the axon inefficiently. This defect is most obvious in the distal axon and growth cones. However, axonal entry and localization of other viral membrane proteins and endogenous cellular proteins remains unaffected. Neurons infected with gE-null mutants produce wild-type levels of viral structural proteins and infectious virions in the cell body. Our results indicate that reduced axonal targeting of viral structural proteins is a compelling explanation for the lack of anterograde spread in neural circuits following infection by a gE-null mutant.
Collapse
Affiliation(s)
- T H Ch'ng
- Dept. of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | | |
Collapse
|
41
|
Al-Mubarak A, Chowdhury SI. In the absence of glycoprotein I (gI), gE determines bovine herpesvirus type 5 neuroinvasiveness and neurovirulence. J Neurovirol 2005; 10:233-43. [PMID: 15371153 DOI: 10.1080/13550280490463514] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Bovine herpesvirus type 5 (BHV-5) is an alphaherpesvirus that causes fatal encephalitis in calves. Envelope glycoproteins E (gE) and gI of alphaherpesviruses are important for the pathogenesis in vivo. Previously the authors determined that BHV-5 gE is important for BHV-5 neurovirulence. To determine the role of gI in BHV-5 neurovirulence, the authors have constructed gI-deleted and gI-revertant BHV-5 and analyzed their neuropathogenic properties in a rabbit seizure model. Following intranasal infection, 40% of the rabbits infected with the gI-deleted virus showed severe neurological signs. gI-deleted BHV-5 invaded all the central nervous system (CNS) structures invaded by the gI-revertant BHV-5; however, the number of neurons infected by the gI-deleted virus was similar or slightly reduced (two to four fold). Thus, the gI-deleted virus retained significant neurovirulence and/or neuroinvasive properties when compared with the gE-deleted BHV-5. Pulse-chase analysis revealed that the gE of gI-deleted virus was processed to a larger and a diffused 94- to 100-kDa protein (instead of 94 kDa). The 94- to 100-kDa protein was processed in the Golgi with delayed kinetics but it was endoglycosidase H (EndoH) resistant. In cells infected with gI-deleted virus, there was a reduction in cell-surface gE expression compared to wild-type, which correlated to reduced amount of gE processed in the Golgi. The authors believe that in the absence of gI, BHV-5 gE is sufficient for BHV-5 neurovirulence.
Collapse
Affiliation(s)
- A Al-Mubarak
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan 66506, USA
| | | |
Collapse
|
42
|
Brittle EE, Reynolds AE, Enquist LW. Two modes of pseudorabies virus neuroinvasion and lethality in mice. J Virol 2004; 78:12951-63. [PMID: 15542647 PMCID: PMC525033 DOI: 10.1128/jvi.78.23.12951-12963.2004] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2004] [Accepted: 08/06/2004] [Indexed: 11/20/2022] Open
Abstract
We describe two distinct modes of neuroinvasion and lethality after murine flank inoculation with virulent and attenuated strains of pseudorabies virus (PRV). Mice infected with virulent (e.g., PRV-Becker, PRV-Kaplan, or PRV-NIA3) strains self-mutilate their flank skin in response to virally induced pruritus, die rapidly with no identifiable symptoms of central nervous system (CNS) infection such as behavioral abnormalities, and have little infectious virus or viral antigen in the brain. In distinct contrast, animals infected with an attenuated PRV vaccine strain (PRV-Bartha) survive approximately three times longer than wild-type PRV-infected animals, exhibit severe CNS abnormalities, and have an abundance of infectious virus in the brain at the time of death. Interestingly, these animals have no skin lesions and do not appear pruritic at any time during infection. The severe pruritus and relatively earlier time until death induced by wild-type PRV infection may reflect the peripheral nervous system (PNS) and immune responses to infection rather than a fatal, virally induced CNS pathology. Based on previously characterized afferent (sensory) and efferent (motor) neuronal pathways that innervate the skin, we deduced that wild-type virulent strains transit through the PNS via both afferent and efferent routes, whereas PRV-Bartha travels by only efferent routes in the PNS en route to the brain.
Collapse
Affiliation(s)
- Elizabeth E Brittle
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | | | | |
Collapse
|
43
|
Frampton AR, Smith PM, Zhang Y, Grafton WD, Matsumura T, Osterrieder N, O'Callaghan DJ. Meningoencephalitis in mice infected with an equine herpesvirus 1 strain KyA recombinant expressing glycoprotein I and glycoprotein E. Virus Genes 2004; 29:9-17. [PMID: 15215680 DOI: 10.1023/b:viru.0000032785.19420.14] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
One of the consequences of equine herpesvirus 1 (EHV-1) infection in the natural host is a neurological disease that can lead to paralysis. The pathology associated with EHV-1-induced neurological disease includes vasculitis of the small blood vessels within the central nervous system and subsequent damage to the surrounding neural tissue. In a previous study, an EHV-1 recombinant KyA virus (KgI/gE/75) was generated in which the sequences encoding glycoprotein I (gI) and glycoprotein E (gE) were repaired [Frampton et al. 2002 (Virus Research 90: 287-301)] using genes of the pathogenic EHV-1 strain 89c25. In contrast to the parental KyA virus that lacks gI and gE, the recombinant KgI/gE/75 was able to spread to the brains of CBA mice after intranasal infection. Infection resulted in a meningoencephalitis characterized by lymphocytic cuffing of small blood vessels within the brain, consistent with that observed in EHV-1-infected horses exhibiting neurological signs. KgI/gE/75 was able to elicit cytopathology in the lung prior to spread to the brain. However, like the attenuated KyA strain, KgI/gE/75 did not persist in the lung and was completely cleared from lung tissue by day 5 postinfection. We propose that gI and gE are neurovirulence factors for EHV-1, and that the CBA mouse model can be extended to study neurologic sequelae resulting after EHV-1 infection.
Collapse
Affiliation(s)
- Arthur R Frampton
- Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center, Shreveport 71130, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Boldogköi Z, Sík A, Dénes A, Reichart A, Toldi J, Gerendai I, Kovács KJ, Palkovits M. Novel tracing paradigms--genetically engineered herpesviruses as tools for mapping functional circuits within the CNS: present status and future prospects. Prog Neurobiol 2004; 72:417-45. [PMID: 15177785 DOI: 10.1016/j.pneurobio.2004.03.010] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2003] [Accepted: 03/29/2004] [Indexed: 11/17/2022]
Abstract
The mammalian CNS is composed of an extremely complex meshwork of highly ordered interconnections among billions of neurons. To understand the diverse functions of this neuronal network we need to differentiate between functionally related and nonrelated elements. A powerful labeling method for defining intricate neural circuits is based on the utilization of neurotropic herpesviruses, including pseudorabies virus and herpes simplex virus type 1. The recent development of genetically engineered tracing viruses can open the way toward the conception of novel tract-tracing paradigms. These new-generation tracing viruses may facilitate the clarification of problems, which were inaccessible to earlier approaches. This article first presents a concise review of the general aspects of neuroanatomical tracing protocols. Subsequently, it discusses the molecular biology of alpha-herpesviruses, and the genetic manipulation and gene expression techniques that are utilized for the construction of virus-based tracers. Finally, it describes the current utilization of genetically modified herpesviruses for circuit analysis, and the future directions in their potential applications.
Collapse
Affiliation(s)
- Zsolt Boldogköi
- Laboratory of Neuromorphology, Department of Anatomy, Faculty of Medicine, Semmelweis University and Hungarian Academy of Sciences, Budapest, Hungary.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Al-Mubarak A, Zhou Y, Chowdhury SI. A glycine-rich bovine herpesvirus 5 (BHV-5) gE-specific epitope within the ectodomain is important for BHV-5 neurovirulence. J Virol 2004; 78:4806-16. [PMID: 15078962 PMCID: PMC387723 DOI: 10.1128/jvi.78.9.4806-4816.2004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The bovine herpesvirus 5 (BHV-5) gE ectodomain contains a glycine-rich epitope coding region (gE5 epitope), residues 204 to 218, that is significantly different from the corresponding gE region of BHV-1. Deletion of the gE epitope significantly reduced the neurovirulence of BHV-5 in rabbits. Pulse-chase analyses revealed that the epitope-deleted and wild-type gE were synthesized as N-glycosylated endoglycosidase H-sensitive precursors with approximate molecular masses of 85 kDa and 86 kDa, respectively. Like the wild-type gE, epitope-deleted gE complexed with gI and was readily transported from the endoplasmic reticulum. Concomitantly, the epitope-deleted and wild-type gE acquired posttranslational modifications in the Golgi leading to an increased apparent molecular mass of 93-kDa (epitope-deleted gE) and 94-kDa (wild-type gE). The kinetics of mutant and wild-type gE processing were similar, and both mature proteins were resistant to endoglycosidase H but sensitive to glycopeptidase F. The gE epitope-deleted BHV-5 formed wild-type-sized plaques in MDBK cells, and the epitope-deleted gE was expressed on the cell surface. However, rabbits infected intranasally with gE epitope-deleted BHV-5 did not develop seizures, and only 20% of the infected rabbits showed mild neurological signs. The epitope-deleted virus replicated efficiently in the olfactory epithelium. However, within the brains of these rabbits there was a 10- to 20-fold reduction in infected neurons compared with the number of infected neurons within the brains of rabbits infected with the gE5 epitope-reverted and wild-type BHV-5. In comparison, 70 to 80% of the rabbits exhibited severe neurological signs when infected with the gE5 epitope-reverted and wild-type BHV-5. These results indicated that anterograde transport of the gE epitope-deleted virus from the olfactory receptor neurons to the olfactory bulb is defective and that, within the central nervous system, the gE5 epitope-coding region was required for expression of the full virulence potential of BHV-5.
Collapse
Affiliation(s)
- A Al-Mubarak
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas 66506, USA
| | | | | |
Collapse
|
46
|
Smeraski CA, Sollars PJ, Ogilvie MD, Enquist LW, Pickard GE. Suprachiasmatic nucleus input to autonomic circuits identified by retrograde transsynaptic transport of pseudorabies virus from the eye. J Comp Neurol 2004; 471:298-313. [PMID: 14991563 DOI: 10.1002/cne.20030] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Intraocular injection of the Bartha strain of pseudorabies virus (PRV Bartha) results in transsynaptic infection of the hypothalamic suprachiasmatic nucleus (SCN), a retinorecipient circadian oscillator. PRV Bartha infection of a limited number of retinorecipient structures, including the SCN, was initially interpreted as the differential infection of a subpopulation of rat retinal ganglion cells, followed by replication and anterograde transport via the optic nerve. A recent report that used a recombinant strain of PRV Bartha (PRV152) expressing enhanced green fluorescent protein demonstrated that SCN infection actually results from retrograde transneuronal transport of the virus via the autonomic innervation of the eye in the golden hamster. In the present study using the rat, the pattern of infection after intravitreal inoculation with PRV152 was examined to determine if infection of the rat SCN is also restricted to retrograde transsynaptic transport. It was observed that infection in preganglionic autonomic nuclei (i.e., Edinger-Westphal nucleus, superior salivatory nucleus, and intermediolateral nucleus) precedes infection in the SCN. Sympathetic superior cervical ganglionectomy did not abolish label in the SCN after intraocular infection, nor did lesions of parasympathetic preganglionic neurons in the Edinger-Westphal nucleus. However, combined Edinger-Westphal nucleus ablation and superior cervical ganglionectomy eliminated infection of the SCN. This observation allowed a detailed examination of the SCN contribution to descending autonomic circuits afferent to the eye. The results indicate that in the rat, as in the hamster, SCN infection after intraocular PRV152 inoculation is by retrograde transsynaptic transport via autonomic pathways to the eye.
Collapse
Affiliation(s)
- Cynthia A Smeraski
- Department of Biomedical Sciences, Section of Anatomy and Neurobiology, Colorado State University, Fort Collins, Colorado 80523, USA
| | | | | | | | | |
Collapse
|
47
|
Clase AC, Lyman MG, del Rio T, Randall JA, Calton CM, Enquist LW, Banfield BW. The pseudorabies virus Us2 protein, a virion tegument component, is prenylated in infected cells. J Virol 2003; 77:12285-98. [PMID: 14581565 PMCID: PMC254261 DOI: 10.1128/jvi.77.22.12285-12298.2003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The Us2 gene is conserved among alphaherpesviruses, but its function is not known. We demonstrate here that the pseudorabies virus (PRV) Us2 protein is synthesized early after infection and localizes to cytoplasmic vesicles and to the plasma membrane, despite the lack of a recognizable signal sequence or membrane-spanning domain. Us2 protein is also packaged as part of the tegument of mature virions. The Us2 carboxy-terminal four amino acids comprise a CAAX motif, a well-characterized signal for protein prenylation. Treatment of infected cells with lovastatin, a drug that disrupts protein prenylation, changed the relative electrophoretic mobility of Us2 in sodium dodecyl sulfate-polyacrylamide gels. In addition, lovastatin treatment caused a dramatic relocalization of Us2 to cytoplasmic punctate structures associated with microtubules, which appeared to concentrate over the microtubule organizing center. When the CAAX motif was changed to GAAX and the mutant protein was synthesized from an expression plasmid, it concentrated in punctate cytoplasmic structures reminiscent of Us2 localization in infected cells treated with lovastatin. We suggest that prenylation of PRV Us2 protein is required for proper membrane association. Curiously, the Us2 protein isolated from purified virions does not appear to be prenylated. This is the first report to describe the prenylation of an alphaherpesvirus protein.
Collapse
Affiliation(s)
- Amanda C Clase
- Department of Microbiology, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Horváth M, Ribári O, Répássy G, Tóth IE, Boldogkõi Z, Palkovits M. Intracochlear injection of pseudorabies virus labels descending auditory and monoaminerg projections to olivocochlear cells in guinea pig. Eur J Neurosci 2003; 18:1439-47. [PMID: 14511324 DOI: 10.1046/j.1460-9568.2003.02870.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Pseudorabies virus was used to label transneuronally descending auditory projections following intracochlear injections. At different time points after injection, virus-infected cells were detected immunohistochemically in the central nervous system. Initially (25 h), virus was transported retrogradely to olivocochlear cells in the pons. At 32-72 h after injection, labelling occurred in higher order auditory brainstem nuclei as well as in the locus coeruleus and pontine dorsal raphe. At 90-108 h, virus-infected neurons were found bilaterally in the medial geniculate body and in layer V of the auditory cortex. Viral transneuronal labelling in the auditory cortex after intracochlear application confirms the existence of a continuous descending chain of neurons from the auditory cortex to the cochlea, via the medial and lateral olivocochlear systems. The transneuronal labelling of the locus coeruleus and pontine dorsal raphe suggests that noradrenergic and serotonergic inputs may substantially influence the activity of olivocochlear cells, and thus the cochlea.
Collapse
Affiliation(s)
- Miklós Horváth
- Department of Otolaryngology, Head and Neck Surgery, Semmelweis University, Szigony u. 36., 1083 Budapest, Hungary.
| | | | | | | | | | | |
Collapse
|
49
|
Farnsworth A, Goldsmith K, Johnson DC. Herpes simplex virus glycoproteins gD and gE/gI serve essential but redundant functions during acquisition of the virion envelope in the cytoplasm. J Virol 2003; 77:8481-94. [PMID: 12857917 PMCID: PMC165244 DOI: 10.1128/jvi.77.15.8481-8494.2003] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2003] [Accepted: 05/02/2003] [Indexed: 11/20/2022] Open
Abstract
The late stages of assembly of herpes simplex virus (HSV) and other herpesviruses are not well understood. Acquisition of the final virion envelope apparently involves interactions between viral nucleocapsids coated with tegument proteins and the cytoplasmic domains of membrane glycoproteins. This promotes budding of virus particles into cytoplasmic vesicles derived from the trans-Golgi network or endosomes. The identities of viral membrane glycoproteins and tegument proteins involved in these processes are not well known. Here, we report that HSV mutants lacking two viral glycoproteins, gD and gE, accumulated large numbers of unenveloped nucleocapsids in the cytoplasm. These aggregated capsids were immersed in an electron-dense layer that appeared to be tegument. Few or no enveloped virions were observed. More subtle defects were observed with an HSV unable to express gD and gI. A triple mutant lacking gD, gE, and gI exhibited more severe defects in envelopment. We concluded that HSV gD and the gE/gI heterodimeric complex act in a redundant fashion to anchor the virion envelope onto tegument-coated capsids. In the absence of either one of these HSV glycoproteins, envelopment proceeds; however, without both gD and gE, or gE/gI, there is profound inhibition of cytoplasmic envelopment.
Collapse
Affiliation(s)
- Aaron Farnsworth
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon 97239, USA
| | | | | |
Collapse
|
50
|
Mettenleiter TC. Pathogenesis of neurotropic herpesviruses: role of viral glycoproteins in neuroinvasion and transneuronal spread. Virus Res 2003; 92:197-206. [PMID: 12686430 DOI: 10.1016/s0168-1702(02)00352-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Neuroinvasion by herpesviruses requires entry into nerve endings in the periphery, transport to the cell body, replication in the cell body, axonal transport to the synapse and transneuronal viral spread. Entry occurs after receptor binding by fusion of virion envelope and cellular plasma membrane followed by microtubuli-assisted transport of capsids to the nuclear pore. By transneuronal spread, the virus gains access to synaptically linked neuronal circuits. A common set of herpesvirus glycoproteins is involved in entry and direct viral cell-cell spread. However, both processes can be distinguished by involvement of additional viral components. Interestingly, transneuronal spread appears to be functionally linked to intracytoplasmic formation of mature virions. This review will focus on the importance of herpesvirus envelope glycoproteins for infection of neurons and transneuronal spread, and their influence on viral pathogenesis.
Collapse
Affiliation(s)
- Thomas C Mettenleiter
- Institute of Molecular Biology, Friedrich-Loeffler-Institutes, Federal Research Centre for Virus Diseases of Animals, D-17498 Insel Riems, Germany.
| |
Collapse
|