1
|
Membrane Sphingomyelin in Host Cells Is Essential for Nucleocapsid Penetration into the Cytoplasm after Hemifusion during Rubella Virus Entry. mBio 2022; 13:e0169822. [PMID: 36346228 PMCID: PMC9765692 DOI: 10.1128/mbio.01698-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The lipid composition of the host cell membrane is one of the key determinants of the entry of enveloped viruses into cells. To elucidate the detailed mechanisms behind the cell entry of rubella virus (RuV), one of the enveloped viruses, we searched for host factors involved in such entry by using CRISPR/Cas9 genome-wide knockout screening, and we found sphingomyelin synthase 1 (SMS1), encoded by the SGMS1 gene, as a candidate. RuV growth was strictly suppressed in SGMS1-knockout cells and was completely recovered by the overexpression of enzymatically active SMS1 and partially recovered by that of SMS2, another member of the SMS family, but not by that of enzymatically inactive SMS1. An entry assay using pseudotyped vesicular stomatitis virus possessing RuV envelope proteins revealed that sphingomyelin generated by SMSs is crucial for at least RuV entry. In SGMS1-knockout cells, lipid mixing between the RuV envelope membrane and the membrane of host cells occurred, but entry of the RuV genome from the viral particles into the cytoplasm was strongly inhibited. This indicates that sphingomyelin produced by SMSs is essential for the formation of membrane pores after hemifusion occurs during RuV entry. IMPORTANCE Infection with rubella virus during pregnancy causes congenital rubella syndrome in infants. Despite its importance in public health, the detailed mechanisms of rubella virus cell entry have only recently become somewhat clearer. The E1 protein of rubella virus is classified as a class II fusion protein based on its structural similarity, but it has the unique feature that its activity is dependent on calcium ion binding in the fusion loops. In this study, we found another unique feature, as cellular sphingomyelin plays a critical role in the penetration of the nucleocapsid into the cytoplasm after hemifusion by rubella virus. This provides important insight into the entry mechanism of rubella virus. This study also presents a model of hemifusion arrest during cell entry by an intact virus, providing a useful tool for analyzing membrane fusion, a biologically important phenomenon.
Collapse
|
2
|
Mangala Prasad V, Blijleven JS, Smit JM, Lee KK. Visualization of conformational changes and membrane remodeling leading to genome delivery by viral class-II fusion machinery. Nat Commun 2022; 13:4772. [PMID: 35970990 PMCID: PMC9378758 DOI: 10.1038/s41467-022-32431-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 07/31/2022] [Indexed: 11/09/2022] Open
Abstract
Chikungunya virus (CHIKV) is a human pathogen that delivers its genome to the host cell cytoplasm through endocytic low pH-activated membrane fusion mediated by class-II fusion proteins. Though structures of prefusion, icosahedral CHIKV are available, structural characterization of virion interaction with membranes has been limited. Here, we have used cryo-electron tomography to visualize CHIKV's complete membrane fusion pathway, identifying key intermediary glycoprotein conformations coupled to membrane remodeling events. Using sub-tomogram averaging, we elucidate features of the low pH-exposed virion, nucleocapsid and full-length E1-glycoprotein's post-fusion structure. Contrary to class-I fusion systems, CHIKV achieves membrane apposition by protrusion of extended E1-glycoprotein homotrimers into the target membrane. The fusion process also features a large hemifusion diaphragm that transitions to a wide pore for intact nucleocapsid delivery. Our analyses provide comprehensive ultrastructural insights into the class-II virus fusion system function and direct mechanistic characterization of the fundamental process of protein-mediated membrane fusion.
Collapse
Affiliation(s)
- Vidya Mangala Prasad
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, USA.,Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Jelle S Blijleven
- Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
| | - Jolanda M Smit
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Kelly K Lee
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, USA. .,Biological Physics, Structure and Design Graduate Program, University of Washington, Seattle, WA, USA. .,Department of Microbiology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
3
|
Dynamics of natural product Lupenone as a potential fusion inhibitor against the spike complex of novel Semliki Forest Virus. PLoS One 2022; 17:e0263853. [PMID: 35213606 PMCID: PMC8880844 DOI: 10.1371/journal.pone.0263853] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/27/2022] [Indexed: 11/25/2022] Open
Abstract
The Semliki Forest Virus (SFV) is an RNA virus with a positive-strand that belongs to the Togaviridae family’s Alphavirus genus. An epidemic was observed among French troops stationed in the Central African Republic, most likely caused by the SFV virus. The two transmembrane proteins El and E2 and the peripheral protein E3 make up the viral spike protein. The virus binds to the host cell and is internalized via endocytosis; endosome acidification causes the E1/E2 heterodimer to dissociate and the E1 subunits to trimerize. Lupenone was evaluated against the E1 spike protein of SFV in this study based on state-of-the-art cheminformatics approaches, including molecular docking, molecular dynamics simulation, and binding free energy calculation. The molecular docking study envisaged major interactions of Lupenone with binding cavity residues involved non-bonded van der Waal’s and Pi-alkyl interactions. Molecular dynamic simulation of a time scale 200 ns corroborated interaction pattern with molecular docking studies between Lupenone and E1 spike protein. Nevertheless, Lupenone intearcation with the E1 spike protein conforming into a stable complex substantiated by free energy landscape (FEL), PCA analysis. Free energy decomposition of the binding cavity resdiues of E1 spike protein also ensured the efficient non-bonded van der Waal’s interaction contributing most energy to interact with the Lupenone. Therefore, Lupenone interacted strongly at the active site conforming into higher structural stability throughout the dynamic evolution of the complex. Thus, this study perhaps comprehend the efficiency of Lupenone as lead molecule against SFV E1 spike protein for future therapeutic purpose.
Collapse
|
4
|
Cooperative Chikungunya Virus Membrane Fusion and Its Substoichiometric Inhibition by CHK-152 Antibody. Viruses 2022; 14:v14020270. [PMID: 35215863 PMCID: PMC8877538 DOI: 10.3390/v14020270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/18/2022] [Accepted: 01/25/2022] [Indexed: 11/17/2022] Open
Abstract
Chikungunya virus (CHIKV) presents a major burden on healthcare systems worldwide, but specific treatment remains unavailable. Attachment and fusion of CHIKV to the host cell membrane is mediated by the E1/E2 protein spikes. We used an in vitro single-particle fusion assay to study the effect of the potent, neutralizing antibody CHK-152 on CHIKV binding and fusion. We find that CHK-152 shields the virions, inhibiting interaction with the target membrane and inhibiting fusion. The analysis of the ratio of bound antibodies to epitopes implied that CHIKV fusion is a highly cooperative process. Further, dissociation of the antibody at lower pH results in a finely balanced kinetic competition between inhibition and fusion, suggesting a window of opportunity for the spike proteins to act and mediate fusion, even in the presence of the antibody.
Collapse
|
5
|
Elmasri Z, Nasal BL, Jose J. Alphavirus-Induced Membrane Rearrangements during Replication, Assembly, and Budding. Pathogens 2021; 10:984. [PMID: 34451448 PMCID: PMC8399458 DOI: 10.3390/pathogens10080984] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 01/01/2023] Open
Abstract
Alphaviruses are arthropod-borne viruses mainly transmitted by hematophagous insects that cause moderate to fatal disease in humans and other animals. Currently, there are no approved vaccines or antivirals to mitigate alphavirus infections. In this review, we summarize the current knowledge of alphavirus-induced structures and their functions in infected cells. Throughout their lifecycle, alphaviruses induce several structural modifications, including replication spherules, type I and type II cytopathic vacuoles, and filopodial extensions. Type I cytopathic vacuoles are replication-induced structures containing replication spherules that are sites of RNA replication on the endosomal and lysosomal limiting membrane. Type II cytopathic vacuoles are assembly induced structures that originate from the Golgi apparatus. Filopodial extensions are induced at the plasma membrane and are involved in budding and cell-to-cell transport of virions. This review provides an overview of the viral and host factors involved in the biogenesis and function of these virus-induced structures. Understanding virus-host interactions in infected cells will lead to the identification of new targets for antiviral discovery.
Collapse
Affiliation(s)
- Zeinab Elmasri
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA;
- Department of Biochemistry & Molecular Biology, Eberly College of Science, The Pennsylvania State University, University Park, PA 16802, USA;
| | - Benjamin L. Nasal
- Department of Biochemistry & Molecular Biology, Eberly College of Science, The Pennsylvania State University, University Park, PA 16802, USA;
| | - Joyce Jose
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA;
- Department of Biochemistry & Molecular Biology, Eberly College of Science, The Pennsylvania State University, University Park, PA 16802, USA;
| |
Collapse
|
6
|
Hasan SS, Dey D, Singh S, Martin M. The Structural Biology of Eastern Equine Encephalitis Virus, an Emerging Viral Threat. Pathogens 2021; 10:pathogens10080973. [PMID: 34451437 PMCID: PMC8400090 DOI: 10.3390/pathogens10080973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/21/2021] [Accepted: 07/28/2021] [Indexed: 11/16/2022] Open
Abstract
Alphaviruses are arboviruses that cause arthritis and encephalitis in humans. Eastern Equine Encephalitis Virus (EEEV) is a mosquito-transmitted alphavirus that is implicated in severe encephalitis in humans with high mortality. However, limited insights are available into the fundamental biology of EEEV and residue-level details of its interactions with host proteins. In recent years, outbreaks of EEEV have been reported mainly in the United States, raising concerns about public safety. This review article summarizes recent advances in the structural biology of EEEV based mainly on single-particle cryogenic electron microscopy (cryoEM) structures. Together with functional analyses of EEEV and related alphaviruses, these structural investigations provide clues to how EEEV interacts with host proteins, which may open avenues for the development of therapeutics.
Collapse
Affiliation(s)
- S. Saif Hasan
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 N. Greene Street, Baltimore, MD 21201, USA; (D.D.); (S.S.); (M.M.)
- Center for Biomolecular Therapeutics, University of Maryland School of Medicine, 9600 Gudelsky Drive, Rockville, MD 20850, USA
- University of Maryland Marlene and Stewart Greenebaum Cancer Center, University of Maryland Medical Center, 22. S. Greene St., Baltimore, MD 21201, USA
- Correspondence:
| | - Debajit Dey
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 N. Greene Street, Baltimore, MD 21201, USA; (D.D.); (S.S.); (M.M.)
| | - Suruchi Singh
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 N. Greene Street, Baltimore, MD 21201, USA; (D.D.); (S.S.); (M.M.)
| | - Matthew Martin
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 N. Greene Street, Baltimore, MD 21201, USA; (D.D.); (S.S.); (M.M.)
| |
Collapse
|
7
|
Varikkodan MM, Chen CC, Wu TY. Recombinant Baculovirus: A Flexible Drug Screening Platform for Chikungunya Virus. Int J Mol Sci 2021; 22:ijms22157891. [PMID: 34360656 PMCID: PMC8347121 DOI: 10.3390/ijms22157891] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/12/2021] [Accepted: 07/21/2021] [Indexed: 11/16/2022] Open
Abstract
Chikungunya virus (CHIKV) is a mosquito-transmitted infectious agent that causes an endemic or epidemic outbreak(s) of Chikungunya fever that is reported in almost all countries. This virus is an intense global threat, due to its high rate of contagion and the lack of effective remedies. In this study, we developed two baculovirus expression vector system (BEVS)-based approaches for the screening of anti-CHIKV drugs in Spodoptera frugiperda insect (Sf21) cells and U-2OS cells. First, structural protein of CHIKV was co-expressed through BEVS and thereby induced cell fusion in Sf21 cells. We used an internal ribosome entry site (IRES) to co-express the green fluorescent protein (EGFP) for identifying these fusion events. The EGFP-positive Sf21 cells fused with each other and with uninfected cells to form syncytia. We identified that ursolic acid has potential anti-CHIKV activity in vitro, by using this approach. Second, BacMam virus-based gene delivery has been successfully applied for the transient expression of non-structural proteins with a subgenomic promoter-EGFP (SP-EGFP) cassette in U-2OS cells to act as an in vitro CHIKV replicon system. Our BacMam-based screening system has identified that the potential effects of baicalin and baicalein phytocompounds can inhibit the replicon activity of CHIKV in U-2OS cells. In conclusion, our results suggested that BEVS can be a potential tool for screening drugs against CHIKV.
Collapse
Affiliation(s)
- Muhammed Muhsin Varikkodan
- Department of Chemistry, Chung Yuan Christian University, Chungli 320, Taiwan;
- Department of Bioscience Technology, Chung Yuan Christian University, Chungli 320, Taiwan;
| | - Chun-Chung Chen
- Department of Bioscience Technology, Chung Yuan Christian University, Chungli 320, Taiwan;
| | - Tzong-Yuan Wu
- Department of Chemistry, Chung Yuan Christian University, Chungli 320, Taiwan;
- Department of Bioscience Technology, Chung Yuan Christian University, Chungli 320, Taiwan;
- Correspondence: ; Tel.: +886-3-2653520
| |
Collapse
|
8
|
Cryo-EM Structures of Eastern Equine Encephalitis Virus Reveal Mechanisms of Virus Disassembly and Antibody Neutralization. Cell Rep 2019; 25:3136-3147.e5. [PMID: 30540945 PMCID: PMC6302666 DOI: 10.1016/j.celrep.2018.11.067] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/01/2018] [Accepted: 11/15/2018] [Indexed: 01/08/2023] Open
Abstract
Alphaviruses are enveloped pathogens that cause arthritis and encephalitis. Here, we report a 4.4-Å cryoelectron microscopy (cryo-EM) structure of eastern equine encephalitis virus (EEEV), an alphavirus that causes fatal encephalitis in humans. Our analysis provides insights into viral entry into host cells. The envelope protein E2 showed a binding site for the cellular attachment factor heparan sulfate. The presence of a cryptic E2 glycan suggests how EEEV escapes surveillance by lectin-expressing myeloid lineage cells, which are sentinels of the immune system. A mechanism for nucleocapsid core release and disassembly upon viral entry was inferred based on pH changes and capsid dissociation from envelope proteins. The EEEV capsid structure showed a viral RNA genome binding site adjacent to a ribosome binding site for viral genome translation following genome release. Using five Fab-EEEV complexes derived from neutralizing antibodies, our investigation provides insights into EEEV host cell interactions and protective epitopes relevant to vaccine design. EEEV cryo-EM structure shows the basis of receptor binding and pH-triggered disassembly Cryptic envelope protein glycosylation interferes with immune detection EEEV RNA genome binding site on capsid protein has an extended conformation Antibody inhibition of EEEV entry involves cross-linking of viral envelope proteins
Collapse
|
9
|
Glingston RS, Deb R, Kumar S, Nagotu S. Organelle dynamics and viral infections: at cross roads. Microbes Infect 2018; 21:20-32. [PMID: 29953921 PMCID: PMC7110583 DOI: 10.1016/j.micinf.2018.06.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/14/2018] [Accepted: 06/15/2018] [Indexed: 01/12/2023]
Abstract
Viruses are obligate intracellular parasites of the host cells. A commonly accepted view is the requirement of internal membranous structures for various aspects of viral life cycle. Organelles enable favourable intracellular environment for several viruses. However, studies reporting organelle dynamics upon viral infections are scant. In this review, we aim to summarize and highlight modulations caused to various organelles upon viral infection or expression of its proteins.
Collapse
Affiliation(s)
- R Sahaya Glingston
- Organelle Biology and Cellular Ageing Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Rachayeeta Deb
- Organelle Biology and Cellular Ageing Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Sachin Kumar
- Viral Immunology Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| | - Shirisha Nagotu
- Organelle Biology and Cellular Ageing Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| |
Collapse
|
10
|
Both Sphingomyelin and Cholesterol in the Host Cell Membrane Are Essential for Rubella Virus Entry. J Virol 2017; 92:JVI.01130-17. [PMID: 29070689 DOI: 10.1128/jvi.01130-17] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 10/17/2017] [Indexed: 11/20/2022] Open
Abstract
Rubella virus (RuV) causes a systemic infection, and transplacental fetal infection causes congenital rubella syndrome. In this study, we showed that treatment of cells with sphingomyelinase inhibited RuV infection. Assays using inhibitors of serine palmitoyl transferase and ceramide transport protein demonstrated the contribution of sphingomyelin (SM) to RuV infection. Compelling evidence for direct binding of RuV to lipid membranes at neutral pH was obtained using liposome coflotation assays. The absence of either SM or cholesterol (Chol) abrogated the RuV-liposome interaction. SM and Chol (SM/Chol) were also critical for RuV binding to erythrocytes and lymphoid cells. Removal of Ca2+ from the assay buffer or mutation of RuV envelope E1 protein Ca2+-binding sites abrogated RuV binding to liposomes, erythrocytes, and lymphoid cells. However, RuV bound to various nonlymphoid adherent cell lines independently of extracellular Ca2+ or SM/Chol. Even in these adherent cell lines, both the E1 protein Ca2+-binding sites and cellular SM/Chol were essential for the early stage of RuV infection, possibly affecting envelope-membrane fusion in acidic compartments. Myelin oligodendrocyte glycoprotein (MOG) has recently been identified as a cellular receptor for RuV. However, RuV bound to MOG-negative cells in a Ca2+-independent manner. Collectively, our data demonstrate that RuV has two distinct binding mechanisms: one is Ca2+ dependent and the other is Ca2+ independent. Ca2+-dependent binding observed in lymphoid cells occurs by the direct interaction between E1 protein fusion loops and SM/Chol-enriched membranes. Clarification of the mechanism of Ca2+-independent RuV binding is an important next step in understanding the pathology of RuV infection.IMPORTANCE Rubella has a significant impact on public health as infection during early pregnancy can result in babies being born with congenital rubella syndrome. Even though effective rubella vaccines are available, rubella outbreaks still occur in many countries. We studied the entry mechanism of rubella virus (RuV) and found that RuV binds directly to the host plasma membrane in the presence of Ca2+ at neutral pH. This Ca2+-dependent binding is specifically directed to membranes enriched in sphingomyelin and cholesterol and is critical for RuV infection. Importantly, RuV also binds to many cell lines in a Ca2+-independent manner. An unidentified RuV receptor(s) is involved in this Ca2+-independent binding. We believe that the data presented here may aid the development of the first anti-RuV drug.
Collapse
|
11
|
The Ancient Gamete Fusogen HAP2 Is a Eukaryotic Class II Fusion Protein. Cell 2017; 168:904-915.e10. [PMID: 28235200 PMCID: PMC5332557 DOI: 10.1016/j.cell.2017.01.024] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 01/03/2017] [Accepted: 01/19/2017] [Indexed: 02/01/2023]
Abstract
Sexual reproduction is almost universal in eukaryotic life and involves the fusion of male and female haploid gametes into a diploid cell. The sperm-restricted single-pass transmembrane protein HAP2-GCS1 has been postulated to function in membrane merger. Its presence in the major eukaryotic taxa—animals, plants, and protists (including important human pathogens like Plasmodium)—suggests that many eukaryotic organisms share a common gamete fusion mechanism. Here, we report combined bioinformatic, biochemical, mutational, and X-ray crystallographic studies on the unicellular alga Chlamydomonas reinhardtii HAP2 that reveal homology to class II viral membrane fusion proteins. We further show that targeting the segment corresponding to the fusion loop by mutagenesis or by antibodies blocks gamete fusion. These results demonstrate that HAP2 is the gamete fusogen and suggest a mechanism of action akin to viral fusion, indicating a way to block Plasmodium transmission and highlighting the impact of virus-cell genetic exchanges on the evolution of eukaryotic life. The primordial gamete fusogen HAP2 exhibits homology to class II viral fusion proteins HAP2 inserts into the target gamete membrane via a hydrophobic fusion loop HAP2 links virus entry into target cells and the origins of sexual reproduction HAP2 is a sex-specific target for blocking fertilization in multiple kingdoms
Collapse
|
12
|
van Duijl-Richter MKS, Blijleven JS, van Oijen AM, Smit JM. Chikungunya virus fusion properties elucidated by single-particle and bulk approaches. J Gen Virol 2015; 96:2122-2132. [DOI: 10.1099/vir.0.000144] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Mareike K. S. van Duijl-Richter
- Department of Medical Microbiology, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| | - Jelle S. Blijleven
- Centre for Synthetic Biology, Zernike Institute of Advanced Materials, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Antoine M. van Oijen
- Centre for Synthetic Biology, Zernike Institute of Advanced Materials, University of Groningen, 9747 AG Groningen, The Netherlands
- School of Chemistry, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Jolanda M. Smit
- Department of Medical Microbiology, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| |
Collapse
|
13
|
Abstract
Chikungunya virus (CHIKV) is a rapidly emerging mosquito-borne alphavirus causing millions of infections in the tropical and subtropical regions of the world. CHIKV infection often leads to an acute self-limited febrile illness with debilitating myalgia and arthralgia. A potential long-term complication of CHIKV infection is severe joint pain, which can last for months to years. There are no vaccines or specific therapeutics available to prevent or treat infection. This review describes the critical steps in CHIKV cell entry. We summarize the latest studies on the virus-cell tropism, virus-receptor binding, internalization, membrane fusion and review the molecules and compounds that have been described to interfere with virus cell entry. The aim of the review is to give the reader a state-of-the-art overview on CHIKV cell entry and to provide an outlook on potential new avenues in CHIKV research.
Collapse
|
14
|
A key interaction between the alphavirus envelope proteins responsible for initial dimer dissociation during fusion. J Virol 2013; 87:3774-81. [PMID: 23325694 DOI: 10.1128/jvi.03310-12] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Alphaviruses such as Semliki Forest virus (SFV) are enveloped viruses whose surface is covered by an organized lattice composed of trimers of E2-E1 heterodimers. The E1 envelope protein, a class II fusion protein, contains the hydrophobic fusion loop and refolds to drive virus fusion with the endosome membrane. The E2 protein is synthesized as a precursor p62, whose processing by furin primes the heterodimer for dissociation during virus entry. Dissociation of the E2-E1 heterodimer is an essential step during low-pH-triggered fusion, while the dissociation of the immature p62-E1 dimer is relatively pH resistant. Previous structural studies described an "acid-sensitive region" in E2 that becomes disordered at low pH. Within this region, the conserved E2 H170 is in position to form a hydrogen bond with the underlying E1 S57. Here we experimentally tested the role of this interaction in regulating dimer dissociation in mature and immature virus. Alanine substitutions of E1 S57 and E2 H170 destabilized the heterodimer and produced a higher pH threshold for exposure of the E1 fusion loop and for fusion of the immature virus. E1 S57K or S57D mutations were lethal and caused transport and assembly defects that were partially abrogated by neutralization of the exocytic pathway. The lethal phenotype of E1 S57K was rescued by second-site mutations at E2 H170/M171. Together, our results define a key role for the E1 S57-E2 H170 interaction in dimer stability and the pH dependence of fusion and provide evidence for stepwise dissociation of the E2-E1 dimer at low pH.
Collapse
|
15
|
Kuo SC, Chen YJ, Wang YM, Tsui PY, Kuo MD, Wu TY, Lo SJ. Cell-based analysis of Chikungunya virus E1 protein in membrane fusion. J Biomed Sci 2012; 19:44. [PMID: 22520648 PMCID: PMC3384457 DOI: 10.1186/1423-0127-19-44] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 04/21/2012] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Chikungunya fever is a pandemic disease caused by the mosquito-borne Chikungunya virus (CHIKV). E1 glycoprotein mediation of viral membrane fusion during CHIKV infection is a crucial step in the release of viral genome into the host cytoplasm for replication. How the E1 structure determines membrane fusion and whether other CHIKV structural proteins participate in E1 fusion activity remain largely unexplored. METHODS A bicistronic baculovirus expression system to produce recombinant baculoviruses for cell-based assay was used. Sf21 insect cells infected by recombinant baculoviruses bearing wild type or single-amino-acid substitution of CHIKV E1 and EGFP (enhanced green fluorescence protein) were employed to investigate the roles of four E1 amino acid residues (G91, V178, A226, and H230) in membrane fusion activity. RESULTS Western blot analysis revealed that the E1 expression level and surface features in wild type and mutant substituted cells were similar. However, cell fusion assay found that those cells infected by CHIKV E1-H230A mutant baculovirus showed little fusion activity, and those bearing CHIKV E1-G91D mutant completely lost the ability to induce cell-cell fusion. Cells infected by recombinant baculoviruses of CHIKV E1-A226V and E1-V178A mutants exhibited the same membrane fusion capability as wild type. Although the E1 expression level of cells bearing monomeric-E1-based constructs (expressing E1 only) was greater than that of cells bearing 26S-based constructs (expressing all structural proteins), the sizes of syncytial cells induced by infection of baculoviruses containing 26S-based constructs were larger than those from infections having monomeric-E1 constructs, suggesting that other viral structure proteins participate or regulate E1 fusion activity. Furthermore, membrane fusion in cells infected by baculovirus bearing the A226V mutation constructs exhibited increased cholesterol-dependences and lower pH thresholds. Cells bearing the V178A mutation exhibited a slight decrease in cholesterol-dependence and a higher-pH threshold for fusion. CONCLUSIONS Cells expressing amino acid substitutions of conserved protein E1 residues of E1-G91 and E1-H230 lost most of the CHIKV E1-mediated membrane fusion activity. Cells expressing mutations of less-conserved amino acids, E1-V178A and E1-A226V, retained membrane fusion activity to levels similar to those expressing wild type E1, but their fusion properties of pH threshold and cholesterol dependence were slightly altered.
Collapse
Affiliation(s)
- Szu-Cheng Kuo
- Division of Microbiology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, TaoYuan, Taiwan
| | | | | | | | | | | | | |
Collapse
|
16
|
Replication of alphaviruses: a review on the entry process of alphaviruses into cells. Adv Virol 2011; 2011:249640. [PMID: 22312336 PMCID: PMC3265296 DOI: 10.1155/2011/249640] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Accepted: 05/03/2011] [Indexed: 02/04/2023] Open
Abstract
Alphaviruses are small, enveloped viruses, ~70 nm in diameter, containing a single-stranded, positive-sense, RNA genome. Viruses belonging to this genus are predominantly arthropod-borne viruses, known to cause disease in humans. Their potential threat to human health was most recently exemplified by the 2005 Chikungunya virus outbreak in La Reunion, highlighting the necessity to understand events in the life-cycle of these medically important human pathogens. The replication and propagation of viruses is dependent on entry into permissive cells. Viral entry is initiated by attachment of virions to cells, leading to internalization, and uncoating to release genetic material for replication and propagation. Studies on alphaviruses have revealed entry via a receptor-mediated, endocytic pathway. In this paper, the different stages of alphavirus entry are examined, with examples from Semliki Forest virus, Sindbis virus, Chikungunya virus, and Venezuelan equine encephalitis virus described.
Collapse
|
17
|
Kuo SC, Chen YJ, Wang YM, Kuo MD, Jinn TR, Chen WS, Chang YC, Tung KL, Wu TY, Lo SJ. Cell-based analysis of Chikungunya virus membrane fusion using baculovirus-expression vectors. J Virol Methods 2011; 175:206-15. [PMID: 21619896 DOI: 10.1016/j.jviromet.2011.05.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2010] [Revised: 04/30/2011] [Accepted: 05/10/2011] [Indexed: 01/30/2023]
Abstract
Chikungunya virus infection has emerged in many countries over the past decade. There are no effective drugs for controlling the disease. To develop cell-based system for screening anti-virus drugs, a bi-cistronic baculovirus expression system was utilized to co-express viral structural proteins C (capsid), E2 and E1 and the enhanced green fluorescence protein (EGFP) in Spodoptera frugiperda insect cells (Sf21). The EGFP-positive Sf21 cells fused with each other and with uninfected cells to form a syncytium, allowing characterization of cholesterol and low pH requirements for syncytium formation. Western blot analysis showed three structural proteins were expressed in baculovirus infected cells. The structural proteins of Chikungunya virus that is required for cell fusion was determined with various recombinant baculoviruses bearing different lengths of the viral structural protein genes. Protein E1 was required for cell fusion and indicating that Chikungunya viral membrane fusion was a class II membrane fusion. It was also demonstrated that the heterologous expression of alphavirus monomeric E1 can induce insect cell fusions. Furthermore, this cell-based system provides a model for studying class II viral membrane fusion.
Collapse
Affiliation(s)
- Szu-Cheng Kuo
- Division of Microbiology, Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan 333, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
Alphaviruses are taken up into the endosome of the cell, where acidic conditions activate the spikes for membrane fusion. This involves dissociation of the three E2-E1 heterodimers of the spike and E1 interaction with the target membrane as a homotrimer. The biosynthesis of the heterodimer as a pH-resistant p62-E1 precursor appeared to solve the problem of premature activation in the late and acidic parts of the biosynthetic transport pathway in the cell. However, p62 cleavage into E2 and E3 by furin occurs before the spike has left the acidic compartments, accentuating the problem. In this work, we used a furin-resistant Semliki Forest virus (SFV) mutant, SFV(SQL), to study the role of E3 in spike activation. The cleavage was reconstituted with proteinase K in vitro using free virus or spikes on SFV(SQL)-infected cells. We found that E3 association with the spikes was pH dependent, requiring acidic conditions, and that the bound E3 suppressed spike activation. This was shown in an in vitro spike activation assay monitoring E1 trimer formation with liposomes and a fusion-from-within assay with infected cells. Furthermore, the wild type, SFV(wt), was found to bind significant amounts of E3, especially if produced in dense cultures, which lowered the pH of the culture medium. This E3 also suppressed spike activation. The results suggest that furin-cleaved E3 continues to protect the spike from premature activation in acidic compartments of the cell and that its release in the neutral extracellular space primes the spike for low-pH activation.
Collapse
|
19
|
Zaitseva E, Yang ST, Melikov K, Pourmal S, Chernomordik LV. Dengue virus ensures its fusion in late endosomes using compartment-specific lipids. PLoS Pathog 2010; 6:e1001131. [PMID: 20949067 PMCID: PMC2951369 DOI: 10.1371/journal.ppat.1001131] [Citation(s) in RCA: 206] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Accepted: 09/03/2010] [Indexed: 12/31/2022] Open
Abstract
Many enveloped viruses invade cells via endocytosis and use different environmental factors as triggers for virus-endosome fusion that delivers viral genome into cytosol. Intriguingly, dengue virus (DEN), the most prevalent mosquito-borne virus that infects up to 100 million people each year, fuses only in late endosomes, while activation of DEN protein fusogen glycoprotein E is triggered already at pH characteristic for early endosomes. Are there any cofactors that time DEN fusion to virion entry into late endosomes? Here we show that DEN utilizes bis(monoacylglycero)phosphate, a lipid specific to late endosomes, as a co-factor for its endosomal acidification-dependent fusion machinery. Effective virus fusion to plasma- and intracellular- membranes, as well as to protein-free liposomes, requires the target membrane to contain anionic lipids such as bis(monoacylglycero)phosphate and phosphatidylserine. Anionic lipids act downstream of low-pH-dependent fusion stages and promote the advance from the earliest hemifusion intermediates to the fusion pore opening. To reach anionic lipid-enriched late endosomes, DEN travels through acidified early endosomes, but we found that low pH-dependent loss of fusogenic properties of DEN is relatively slow in the presence of anionic lipid-free target membranes. We propose that anionic lipid-dependence of DEN fusion machinery protects it against premature irreversible restructuring and inactivation and ensures viral fusion in late endosomes, where the virus encounters anionic lipids for the first time during entry. Currently there are neither vaccines nor effective therapies for DEN, and the essential role of the newly identified DEN-bis(monoacylglycero)phosphate interactions in viral genome escape from the endosome suggests a novel target for drug design. Dengue virus infection is a growing public health problem with up to 100 million cases annually, and neither vaccines nor effective therapies are available. To search for the ways of preventing and treating dengue infections we need to better understand their molecular mechanisms. As with many other viruses, dengue virus enters cells by fusion between the viral membrane and the membrane of intracellular vesicles (endosomes). In this work we explored the fusion stage of dengue virus entry in different experimental systems ranging from virus fusion to artificial lipid membranes to fusion inside the cells. While earlier work on dengue virus entry has focused on viral protein that mediates fusion, we found that effective action of this protein requires specific lipid composition of the membrane the virus fuses to. In effect, this lipid dependence allows virus to control intracellular location of the fusion event and, thus, the place of its RNA release by exploiting cell-controlled differences between lipid compositions of different organelles the virus travels through. The essential role of the interactions between dengue virus and its lipid cofactors during viral entry suggests that these interactions may be targeted in drug design.
Collapse
Affiliation(s)
- Elena Zaitseva
- Section on Membrane Biology, Laboratory of Cellular and Molecular Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | | | | | | | | |
Collapse
|
20
|
Abstract
The study of enveloped animal viruses has greatly advanced our understanding of the general properties of membrane fusion and of the specific pathways that viruses use to infect the host cell. The membrane fusion proteins of the alphaviruses and flaviviruses have many similarities in structure and function. As reviewed here, alphaviruses use receptor-mediated endocytic uptake and low pH-triggered membrane fusion to deliver their RNA genomes into the cytoplasm. Recent advances in understanding the biochemistry and structure of the alphavirus membrane fusion protein provide a clearer picture of this fusion reaction, including the protein’s conformational changes during fusion and the identification of key domains. These insights into the alphavirus fusion mechanism suggest new areas for experimental investigation and potential inhibitor strategies for anti-viral therapy.
Collapse
Affiliation(s)
- Margaret Kielian
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-718-430-3638; Fax: +1-718-430-8574
| | | | | |
Collapse
|
21
|
Role of conserved histidine residues in the low-pH dependence of the Semliki Forest virus fusion protein. J Virol 2009; 83:4670-7. [PMID: 19244325 DOI: 10.1128/jvi.02646-08] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A wide variety of enveloped viruses infects cells by taking advantage of the low pH in the endocytic pathway to trigger virus-membrane fusion. For alphaviruses such as Semliki Forest virus (SFV), acidic pH initiates a series of conformational changes in the heterodimeric virus envelope proteins E1 and E2. Low pH dissociates the E2/E1 dimer, releasing the membrane fusion protein E1. E1 inserts into the target membrane and refolds to a trimeric hairpin conformation, thus driving the fusion reaction. The means by which E1 senses and responds to low pH is unclear, and protonation of conserved E1 histidine residues has been proposed as a possible mechanism. We tested the role of four conserved histidines by mutagenesis of the wild-type (wt) SFV infectious clone to create virus mutants with E1 H3A, H125A, H331A, and H331A/H333A mutations. The H125A, H331A, and H331A/H333A mutants had growth properties similar to those of wt SFV and showed modest change or no change in the pH dependence of virus-membrane fusion. By contrast, the E1 H3A mutation produced impaired virus growth and a markedly more acidic pH requirement for virus-membrane fusion. The dissociation of the H3A heterodimer and the membrane insertion of the mutant E1 protein were comparable to those of the wt in efficiency and pH dependence. However, the formation of the H3A homotrimer required a much lower pH and showed reduced efficiency. Together, these results and the location of H3 suggest that this residue acts to regulate the low-pH-dependent refolding of E1 during membrane fusion.
Collapse
|
22
|
A stable prefusion intermediate of the alphavirus fusion protein reveals critical features of class II membrane fusion. Cell Host Microbe 2009; 4:600-8. [PMID: 19064260 DOI: 10.1016/j.chom.2008.10.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Revised: 09/24/2008] [Accepted: 10/10/2008] [Indexed: 11/23/2022]
Abstract
Alphaviruses infect cells via a low-pH-triggered membrane fusion reaction mediated by the class II virus fusion protein E1, an elongated molecule with three extramembrane domains (DI-III). E1 drives fusion by inserting its fusion peptide loop into the target membrane and refolding to a hairpin-like trimer in which DIII moves toward the target membrane and packs against the central trimer. Three-dimensional structures provide static pictures of prefusion and postfusion E1 but do not explain this transition. Using truncated forms of E1, we reconstituted a low-pH-dependent intermediate composed of trimers of DI/II. Unexpectedly, DI/II trimers were stable in the absence of DIII. Once formed at a low pH, DI/II trimers efficiently and specifically bound recombinant DIII through a pH-independent reaction. Even in the absence of DIII, DI/II trimers interacted to form hexagonal lattices and to cause membrane deformation and tubulation. These studies identify a prefusion intermediate in class II membrane fusion.
Collapse
|
23
|
Differential cholesterol binding by class II fusion proteins determines membrane fusion properties. J Virol 2008; 82:9245-53. [PMID: 18632857 DOI: 10.1128/jvi.00975-08] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The class II fusion proteins of the alphaviruses and flaviviruses mediate virus infection by driving the fusion of the virus membrane with that of the cell. These fusion proteins are triggered by low pH, and their structures are strikingly similar in both the prefusion dimer and the postfusion homotrimer conformations. Here we have compared cholesterol interactions during membrane fusion by these two groups of viruses. Using cholesterol-depleted insect cells, we showed that fusion and infection by the alphaviruses Semliki Forest virus (SFV) and Sindbis virus were strongly promoted by cholesterol, with similar sterol dependence in laboratory and field isolates and in viruses passaged in tissue culture. The E1 fusion protein from SFV bound cholesterol, as detected by labeling with photocholesterol and by cholesterol extraction studies. In contrast, fusion and infection by numerous strains of the flavivirus dengue virus (DV) and by yellow fever virus 17D were cholesterol independent, and the DV fusion protein did not show significant cholesterol binding. SFV E1 is the first virus fusion protein demonstrated to directly bind cholesterol. Taken together, our results reveal important functional differences conferred by the cholesterol-binding properties of class II fusion proteins.
Collapse
|
24
|
Wu SR, Haag L, Sjöberg M, Garoff H, Hammar L. The dynamic envelope of a fusion class II virus. E3 domain of glycoprotein E2 precursor in Semliki Forest virus provides a unique contact with the fusion protein E1. J Biol Chem 2008; 283:26452-60. [PMID: 18596032 DOI: 10.1074/jbc.m801470200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In alphaviruses, here represented by Semliki Forest virus, infection requires an acid-responsive spike configuration to facilitate membrane fusion. The creation of this relies on the chaperone function of glycoprotein E2 precursor (p62) and its maturation cleavage into the small external E3 and the membrane-anchored E2 glycoproteins. To reveal how the E3 domain of p62 exerts its control of spike functions, we determine the structure of a p62 cleavage-impaired mutant virus particle (SQL) by electron cryomicroscopy. A comparison with the earlier solved wild type virus structure reveals that the E3 domain of p62(SQL) forms a bulky side protrusion in the spike head region. This establishes a gripper over part of domain II of the fusion protein, with a cotter-like connection downward to a hydrophobic cluster in its central beta-sheet. This finding reevaluates the role of the precursor from being only a provider of a shield over the fusion loop to a structural playmate in formation of the fusogenic architecture.
Collapse
Affiliation(s)
- Shang-Rung Wu
- Department of Biosciences and Nutrition, Karolinska Institutet, SE-14157 Huddinge, Sweden.
| | | | | | | | | |
Collapse
|
25
|
Teissier É, Pécheur EI. Lipids as modulators of membrane fusion mediated by viral fusion proteins. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2007; 36:887-99. [PMID: 17882414 PMCID: PMC7080115 DOI: 10.1007/s00249-007-0201-z] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2007] [Revised: 05/17/2007] [Accepted: 06/11/2007] [Indexed: 11/24/2022]
Abstract
Enveloped viruses infect host cells by fusion of viral and target membranes. This fusion event is triggered by specific glycoproteins in the viral envelope. Fusion glycoproteins belong to either class I, class II or the newly described third class, depending upon their arrangement at the surface of the virion, their tri-dimensional structure and the location within the protein of a short stretch of hydrophobic amino acids called the fusion peptide, which is able to induce the initial lipid destabilization at the onset of fusion. Viral fusion occurs either with the plasma membrane for pH-independent viruses, or with the endosomal membranes for pH-dependent viruses. Although, viral fusion proteins are parted in three classes and the subcellular localization of fusion might vary, these proteins have to act, in common, on lipid assemblies. Lipids contribute to fusion through their physical, mechanical and/or chemical properties. Lipids can thus play a role as chemically defined entities, or through their preferential partitioning into membrane microdomains called “rafts”, or by modulating the curvature of the membranes involved in the fusion process. The purpose of this review is to make a state of the art on recent findings on the contribution of cholesterol, sphingolipids and glycolipids in cell entry and membrane fusion of a number of viral families, whose members bear either class I or class II fusion proteins, or fusion proteins of the recently discovered third class.
Collapse
Affiliation(s)
- Élodie Teissier
- Structural NMR and Bioinformatics, UMR CNRS 5086, Institut de Biologie et Chimie des Protéines, IFR 128 BioSciences Lyon-Gerland, 7 passage du Vercors, 69367 Lyon, France
| | - Eve-Isabelle Pécheur
- Structural NMR and Bioinformatics, UMR CNRS 5086, Institut de Biologie et Chimie des Protéines, IFR 128 BioSciences Lyon-Gerland, 7 passage du Vercors, 69367 Lyon, France
| |
Collapse
|
26
|
Wu SR, Haag L, Hammar L, Wu B, Garoff H, Xing L, Murata K, Cheng RH. The dynamic envelope of a fusion class II virus. Prefusion stages of semliki forest virus revealed by electron cryomicroscopy. J Biol Chem 2006; 282:6752-62. [PMID: 17192272 DOI: 10.1074/jbc.m609125200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Semliki Forest virus is among the prototypes for Class II virus fusion and targets the endosomal membrane. Fusion protein E1 and its envelope companion E2 are both anchored in the viral membrane and form an external shell with protruding spikes. In acid environments, mimicking the early endosomal milieu, surface epitopes in the virus rearrange along with exposure of the fusion loop. To visualize this transformation into a fusogenic stage, we determined the structure of the virus at gradually lower pH values. The results show that while the fusion loop is available for external interaction and the shell and stalk domains of the spike begin to deteriorate, the E1 and E2 remain in close contact in the spike head. This unexpected observation points to E1 and E2 cooperation beyond the fusion loop exposure stage and implies a more prominent role for E2 in guiding membrane close encounter than has been earlier anticipated.
Collapse
Affiliation(s)
- Shang-Rung Wu
- Department of Biosciences and Nutrition, Karolinska Institutet, S-141 57 Huddinge, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Liao M, Kielian M. Site-directed antibodies against the stem region reveal low pH-induced conformational changes of the Semliki Forest virus fusion protein. J Virol 2006; 80:9599-607. [PMID: 16973563 PMCID: PMC1617250 DOI: 10.1128/jvi.01054-06] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The E1 envelope protein of the alphavirus Semliki Forest virus (SFV) is a class II fusion protein that mediates low pH-triggered membrane fusion during virus infection. Like other class I and class II fusion proteins, during fusion E1 inserts into the target membrane and rearranges to form a trimeric hairpin structure. The postfusion structures of the alphavirus and flavivirus fusion proteins suggest that the "stem" region connecting the fusion protein domain III to the transmembrane domain interacts along the trimer core during the low pH-induced conformational change. However, the location of the E1 stem in the SFV particle and its rearrangement and functional importance during fusion are not known. We developed site-directed polyclonal antibodies to the N- or C-terminal regions of the SFV E1 stem and used them to study the stem during fusion. The E1 stem was hidden on neutral pH virus but became accessible after low pH-triggered dissociation of the E2/E1 heterodimer. The stem packed onto the trimer core in the postfusion conformation and became inaccessible to antibody binding. Generation of the E1 homotrimer on fusion-incompetent membranes identified an intermediate conformation in which domain III had folded back but stem packing was incomplete. Our data suggest that E1 hairpin formation occurs by the sequential packing of domain III and the stem onto the trimer core and indicate a tight correlation between stem packing and membrane merger.
Collapse
Affiliation(s)
- Maofu Liao
- Department of Cell Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA
| | | |
Collapse
|
28
|
Abstract
Flavivirus membrane fusion is mediated by a class II viral fusion protein, the major envelope protein E, and the fusion process is extremely fast and efficient. Understanding of the underlying mechanisms has been advanced significantly by the determination of E protein structures in their pre- and post-fusion conformations and by the elucidation of the quarternary organization of E proteins in the viral envelope. In this review, these structural data are discussed in the context of functional and biochemical analyses of the flavivirus fusion mechanism and its characteristics are compared with those of other class II- and class I-driven fusion processes.
Collapse
Affiliation(s)
- Karin Stiasny
- Institute of Virology, Medical University of Vienna, Kinderspitalgasse 15, A1095 Vienna, Austria
| | - Franz X Heinz
- Institute of Virology, Medical University of Vienna, Kinderspitalgasse 15, A1095 Vienna, Austria
| |
Collapse
|
29
|
Chanel-Vos C, Kielian M. Second-site revertants of a Semliki Forest virus fusion-block mutation reveal the dynamics of a class II membrane fusion protein. J Virol 2006; 80:6115-22. [PMID: 16731950 PMCID: PMC1472568 DOI: 10.1128/jvi.00167-06] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2006] [Accepted: 03/29/2006] [Indexed: 11/20/2022] Open
Abstract
The alphavirus Semliki Forest virus (SFV) infects cells through low-pH-induced membrane fusion mediated by the E1 protein, a class II virus membrane fusion protein. During fusion, E1 inserts into target membranes via its hydrophobic fusion loop and refolds to form a stable E1 homotrimer. Mutation of a highly conserved histidine (the H230A mutation) within a loop adjacent to the fusion loop was previously shown to block SFV fusion and infection, although the mutant E1 protein still inserts into target membranes and forms a homotrimer. Here we report on second-site mutations in E1 that rescue the H230A mutant. These mutations were located in a cluster within the hinge region, at the membrane-interacting tip, and within the groove where the E1 stem is believed to pack. Together the revertants reveal specific and interconnected aspects of the fusion protein refolding reaction.
Collapse
Affiliation(s)
- Chantal Chanel-Vos
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | |
Collapse
|
30
|
Abstract
Enveloped animal viruses fuse their membrane with a host cell membrane, thus delivering the virus genetic material into the cytoplasm and initiating infection. This critical membrane fusion reaction is mediated by a virus transmembrane protein known as the fusion protein, which inserts its hydrophobic fusion peptide into the cell membrane and refolds to drive the fusion reaction. This review describes recent advances in our understanding of the structure and function of the class II fusion proteins of the alphaviruses and flaviviruses. Inhibition of the fusion protein refolding reaction confirms its importance in fusion and suggests new antiviral strategies for these medically important viruses.
Collapse
Affiliation(s)
- Margaret Kielian
- Department of Cell Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA.
| |
Collapse
|
31
|
Tscherne DM, Jones CT, Evans MJ, Lindenbach BD, McKeating JA, Rice CM. Time- and temperature-dependent activation of hepatitis C virus for low-pH-triggered entry. J Virol 2006; 80:1734-41. [PMID: 16439530 PMCID: PMC1367161 DOI: 10.1128/jvi.80.4.1734-1741.2006] [Citation(s) in RCA: 302] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Hepatitis C virus (HCV) is an important human pathogen associated with chronic liver disease. Recently, based on a genotype 2a isolate, tissue culture systems supporting complete replication and infectious virus production have been developed. In this study, we used cell culture-produced infectious HCV to analyze the viral entry pathway into Huh-7.5 cells. Bafilomycin A1 and concanamycin A, inhibitors of vacuolar ATPases, prevented HCV entry when they were present prior to infection and had minimal effect on downstream replication events. HCV entry therefore appears to be pH dependent, requiring an acidified intracellular compartment. For many other enveloped viruses, acidic pH triggers an irreversible conformational change, which promotes virion-endosomal membrane fusion. Such viruses are often inactivated by low pH. In the case of HCV, exposure of virions to acidic pH followed by return to neutral pH did not affect their infectivity. This parallels the observation made for the related pestivirus bovine viral diarrhea virus. Low pH could activate the entry of cell surface-bound HCV but only after prolonged incubation at 37 degrees C. This suggests that there are rate-limiting, postbinding events that are needed to render HCV competent for low-pH-triggered entry. Such events may involve interaction with a cellular coreceptor or other factors but do not require cathepsins B and L, late endosomal proteases that activate Ebola virus and reovirus for entry.
Collapse
Affiliation(s)
- Donna M Tscherne
- Laboratory of Virology and Infectious Diseases, Center for the Study of Hepatitis C, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | | | | | | | | | | |
Collapse
|
32
|
Abstract
Enveloped animal viruses deliver their genetic contents into host cells by a fusion reaction between the virus membrane, which is derived from the host-cell membrane during virus budding, and the host-cell membrane. Studying the molecular mechanisms of virus membrane-fusion reactions is important, as they are paradigms for cellular membrane-fusion reactions and potential targets for antiviral therapies. The fusion reactions are driven by virus membrane-fusion proteins, which undergo a major conformational change that is triggered by interactions with the target cell. Currently, two classes of virus membrane-fusion proteins are known — class I and class II. Class I proteins have been well characterized and refold to a hairpin conformation that drives membrane fusion. The class II membrane-fusion proteins are considered in detail, using the E1 protein of the alphavirus Semliki Forest virus (SFV) and the E protein of the flavivirus tick-borne encephalitis virus (TBE) as examples. In spite of the lack of any detectable amino-acid-sequence similarity, the ectodomains of the alphavirus (E1) and flavivirus (E) fusion proteins have remarkably similar secondary and tertiary structures. Both proteins fold co-translationally with a companion protein, p62 and prM, respectively. One important difference between the viruses is that different budding sites are used — new alphavirus virions bud from the plasma membrane, whereas flavivirus particles bud into the endoplasmic reticulum as immature virions, which are then transported via the exocytic pathway. The structure of the E1 and E proteins is considered in detail, as are the conformational changes that occur during target-membrane insertion and fusion. Unlike class I fusion proteins, which are already in trimeric form before fusion, class II proteins are dimers that must rearrange during fusion to form a stable membrane-inserted homotrimer. However, despite the fact that class I and class II proteins have very different structures, both classes refold during fusion to give a similar overall 'hairpin' conformation. Evidence suggests that class II trimers interact cooperatively during membrane insertion and fusion. A model for five-fold interactions at the fusion site, including the formation of a transient hemifusion intermediate, is proposed. It is likely that class I and II fusion proteins use the same overall mechanism, suggesting that there could be a universal mechanism of membrane fusion. The possibility that there could be further classes of membrane-fusion proteins in addition to class I and class II is discussed.
Despite markedly different structures, both class I and class II viral membrane-fusion proteins adopt a hairpin conformation, inducing fusion of viral and cellular membranes. This review focuses on the class II proteins, using Semliki Forest virus and tick-borne encephalitis virus fusion proteins as examples. Structure–function studies have defined two classes of viral membrane-fusion proteins that have radically different architectures but adopt a similar overall 'hairpin' conformation to induce fusion of the viral and cellular membranes and therefore initiate infection. In both classes, the hairpin conformation is achieved after a conformational change is triggered by interaction with the target cell. This review will focus in particular on the properties of the more recently described class II proteins.
Collapse
Affiliation(s)
- Margaret Kielian
- Department of Cell Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, 10461 New York USA
| | - Félix A. Rey
- Virologie Moleculaire et Structurale, Unité Mixte de Recherche 2472/1157, Centre National de la Recherche Scientifique — Institut National de la Recherche Agronomique, 1 Avenue de la Terrasse, Gif-sur-Yvette Cedex, F-91198 France
- Virology Department, Institut Pasteur, 25 Rue du Docteur Roux, Paris, F-75724 Cedex 15 France
| |
Collapse
|
33
|
Abstract
Enveloped viruses enter cells by fusing their lipid bilayer membrane with a cellular membrane. Most viral fusion proteins require priming by proteolytic processing, either of the fusion protein itself or of an accompanying protein. The priming step, which often occurs during transport of the fusion protein to the cell surface but may also occur extracellularly, then prepares the fusion protein for triggering by events that accompany attachment and uptake. Two classes of viral fusion proteins have been identified so far by structural studies. The fusion of two bilayers that these proteins catalyze is likely to proceed by the same pathway in both cases. That is, these proteins are like enzymes that have different structures but that still catalyze the same chemical reaction. It is found that bilayer fusion reaction is common to all the enveloped viral entry pathways. It is believed to pass through an intermediate known as a “hemifusion stalk.”
Collapse
Affiliation(s)
- Stephen C Harrison
- Children's Hospital, Harvard Medical School, and Howard Hughes Medical Institute, Boston, Massachusetts 02115, USA
| |
Collapse
|
34
|
Liao M, Kielian M. Domain III from class II fusion proteins functions as a dominant-negative inhibitor of virus membrane fusion. J Cell Biol 2005; 171:111-20. [PMID: 16216925 PMCID: PMC2171229 DOI: 10.1083/jcb.200507075] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2005] [Accepted: 09/02/2005] [Indexed: 11/22/2022] Open
Abstract
Alphaviruses and flaviviruses infect cells through low pH-dependent membrane fusion reactions mediated by their structurally similar viral fusion proteins. During fusion, these class II viral fusion proteins trimerize and refold to form hairpin-like structures, with the domain III and stem regions folded back toward the target membrane-inserted fusion peptides. We demonstrate that exogenous domain III can function as a dominant-negative inhibitor of alphavirus and flavivirus membrane fusion and infection. Domain III binds stably to the fusion protein, thus preventing the foldback reaction and blocking the lipid mixing step of fusion. Our data reveal the existence of a relatively long-lived core trimer intermediate with which domain III interacts to initiate membrane fusion. These novel inhibitors of the class II fusion proteins show cross-inhibition within the virus genus and suggest that the domain III-core trimer interaction can serve as a new target for the development of antiviral reagents.
Collapse
Affiliation(s)
- Maofu Liao
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | |
Collapse
|
35
|
Waarts BL, Smit JM, Aneke OJC, McInerney GM, Liljeström P, Bittman R, Wilschut J. Reversible acid-induced inactivation of the membrane fusion protein of Semliki Forest virus. J Virol 2005; 79:7942-8. [PMID: 15919953 PMCID: PMC1143635 DOI: 10.1128/jvi.79.12.7942-7948.2005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previously, it has been shown that the exposure of Semliki Forest virus (SFV) to a mildly acidic environment induces a rapid and complete loss of the ability of the virus to bind and fuse to target membranes added subsequently. In the present study, incubation of SFV at low pH followed by a specific reneutralization step resulted in a partial reversion of this loss of viral fusion capacity, as assessed in a liposomal model system. Also, the ability of the viral E1 fusion protein to undergo liposome-stimulated trimerization was restored. Furthermore, acid-treated and neutralized SFV largely retained infectivity. Exposure of SFV to low pH induced dissociation of the E1/E2 heterodimer, which was not reversed upon neutralization. It is concluded that the SFV E1 fusion protein, after acid-induced dissociation from E2, rapidly adopts an intermediate, nontrimeric conformation in which it is no longer able to interact with target membrane lipids. Neutralization restores the ability of E1 to interact with membranes. This interaction, however, remains strictly dependent on low pH.
Collapse
Affiliation(s)
- Barry-Lee Waarts
- Department of Medical Microbiology, Molecular Virology Section, University Medical Center Groningen, Ant. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
36
|
Liao M, Kielian M. The conserved glycine residues in the transmembrane domain of the Semliki Forest virus fusion protein are not required for assembly and fusion. Virology 2005; 332:430-7. [PMID: 15661173 DOI: 10.1016/j.virol.2004.11.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2004] [Revised: 11/17/2004] [Accepted: 11/29/2004] [Indexed: 11/30/2022]
Abstract
The alphavirus Semliki Forest virus (SFV) infects cells via a low pH-triggered fusion reaction mediated by the viral E1 protein. Both the E1 fusion peptide and transmembrane (TM) domain are essential for membrane fusion, but the functional requirements for the TM domain are poorly understood. Here we explored the role of the five TM domain glycine residues, including the highly conserved glycine pair at E1 residues 415/416. SFV mutants with alanine substitutions for individual or all five glycine residues (5G/A) showed growth kinetics and fusion pH dependence similar to those of wild-type SFV. Mutants with increasing substitution of glycine residues showed an increasingly more stringent requirement for cholesterol during fusion. The 5G/A mutant showed decreased fusion kinetics and extent in fluorescent lipid mixing assays. TM domain glycine residues thus are not required for efficient SFV fusion or assembly but can cause subtle effects on the properties of membrane fusion.
Collapse
Affiliation(s)
- Maofu Liao
- Department of Cell Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | |
Collapse
|
37
|
Krey T, Thiel HJ, Rümenapf T. Acid-resistant bovine pestivirus requires activation for pH-triggered fusion during entry. J Virol 2005; 79:4191-200. [PMID: 15767420 PMCID: PMC1061521 DOI: 10.1128/jvi.79.7.4191-4200.2005] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2004] [Accepted: 11/09/2004] [Indexed: 11/20/2022] Open
Abstract
The route of internalization of the pestivirus bovine viral diarrhea virus (BVDV) was studied by using different chemical and biophysical inhibitors of endocytosis. Expression of the dominant-negative mutant Dyn(K44A) of the GTPase dynamin in MDBK cells, as well as the treatment of the cells with chlorpromazine and beta-methyl-cyclodextrin inhibited BVDV entry. BVDV infection was also abolished by potassium (K+) depletion, hyperosmolarity, and different inhibitors of endosomal acidification. We conclude that BVDV likely enters the cell by clathrin-dependent endocytosis and that acidification initiates fusion with the endosomal membrane. Further studies revealed that BVDV was unable to undergo "fusion from without" at low pH. The finding that low pH is not sufficient to force adsorbed BVDV into fusion with the plasma membrane is compatible with the remarkable resistance of pestiviruses to inactivation by low pH. The importance of the abundant intra- and intermolecular disulfide bonds in BVDV glycoproteins for virus stability was studied by the use of reducing agents. The combination of dithiothreitol and acidic pH led to partial inactivation of BVDV and allowed fusion from without at low efficiency. Evidence is provided here that acid-resistant BVDV is destabilized during endocytosis to become fusogenic at an endosomal acidic pH. We suggest that destabilization of the virion occurs by breakage of disulfide bonds in the glycoproteins by an unknown mechanism.
Collapse
Affiliation(s)
- Thomas Krey
- Institut für Virologie, Fachbereich Veterinärmedizin, Justus-Liebig-Universität, Giessen, Germany
| | | | | |
Collapse
|
38
|
Chanel-Vos C, Kielian M. A conserved histidine in the ij loop of the Semliki Forest virus E1 protein plays an important role in membrane fusion. J Virol 2004; 78:13543-52. [PMID: 15564465 PMCID: PMC533937 DOI: 10.1128/jvi.78.24.13543-13552.2004] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The enveloped alphavirus Semliki Forest virus (SFV) infects cells via a low pH-triggered membrane fusion reaction mediated by the E1 protein. E1 is a class II fusion protein that contains the hydrophobic fusion peptide loop and converts to a stable homotrimer during the fusion reaction. Intriguingly, the fusion loop is closely associated with a loop connecting the i and j beta-strands. This ij loop plays a role in the cholesterol dependence of membrane fusion and is specifically susceptible to proteolysis in the protease-resistant E1 homotrimer. The SFV ij loop contains a histidine residue at position 230. Sequence comparisons revealed that an analogous histidine is completely conserved in all alphavirus and flavivirus fusion proteins. An E1 H230A mutant was constructed using the SFV infectious clone. Although cells infected with H230A RNA produced virus particles, these virions were completely noninfectious and were blocked in both cell-cell fusion and lipid mixing assays. The H230A virions efficiently bound to cell surface receptors and responded to low pH by undergoing acid-dependent conformational changes including dissociation of the E1/E2 dimer, exposure of the fusion loop, association with target liposomes, exposure of acid-conformation-specific epitopes, and formation of the stable E1 homotrimer. Studies with a soluble fragment of E1 showed that the mutant protein was defective in lipid-dependent conformational changes. Our results indicate that the E1 ij loop and the conserved H230 residue play a critical role in alphavirus-membrane fusion and suggest the presence of a previously undescribed late intermediate in the fusion reaction.
Collapse
Affiliation(s)
- Chantal Chanel-Vos
- Department of Cell Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA
| | | |
Collapse
|
39
|
Zhang X, Kielian M. Mutations that promote furin-independent growth of Semliki Forest virus affect p62-E1 interactions and membrane fusion. Virology 2004; 327:287-96. [PMID: 15351216 DOI: 10.1016/j.virol.2004.06.037] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2004] [Accepted: 06/24/2004] [Indexed: 11/17/2022]
Abstract
The enveloped alphavirus Semliki Forest virus (SFV) infects cells via a low pH-triggered membrane fusion reaction mediated by the E1 protein. E1's fusion activity is regulated by its heterodimeric interaction with a companion membrane protein E2. Mature E2 protein is generated by furin processing of the precursor p62. Processing destabilizes the heterodimer, allowing dissociation at acidic pH, E1 conformational changes, and membrane fusion. We used a furin-deficient cell line, FD11, to select for SFV mutants that show increased growth in the absence of p62 processing. We isolated and characterized 7 such pci mutants (p62 cleavage independent), which retained the parental furin cleavage site but showed significant increases in their ability to carry out membrane fusion in the p62 form. Sequence analysis of the pci mutants identified mutations primarily on the E2 protein, and suggested sites important in the interaction of p62 with E1 and the regulation of fusion.
Collapse
Affiliation(s)
- Xinyong Zhang
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | |
Collapse
|
40
|
McInerney GM, Smit JM, Liljeström P, Wilschut J. Semliki Forest virus produced in the absence of the 6K protein has an altered spike structure as revealed by decreased membrane fusion capacity. Virology 2004; 325:200-6. [PMID: 15246260 DOI: 10.1016/j.virol.2004.04.043] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2004] [Revised: 01/20/2004] [Accepted: 04/29/2004] [Indexed: 11/19/2022]
Abstract
We examined the kinetics of membrane fusion of wild type (wt) and Delta6K mutant Semliki Forest virus in a liposomal model system. The final extent of membrane fusion of the mutant (at pH 5.5) was approximately one third that of the wt virus, although the level of E1 (fusion protein) trimerization was, in fact, greater than that of the wt. Studies on the effect of exposure of the viruses to low pH revealed that the Delta6K mutant was inactivated much more rapidly than the wt virus. It is this instability of the mutant particles which probably accounts for the lower fusion levels. Moreover, fusion of the Delta6K mutant was significantly increased by the inclusion of lipid-conjugated heparin in the target liposomes. We conclude that the presence of the 6K protein either in the particle or during the assembly process is important for the correct assembly of the fully infectious SFV particle.
Collapse
Affiliation(s)
- Gerald M McInerney
- Microbiology and Tumour Biology Centre, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | |
Collapse
|
41
|
Stiasny K, Bressanelli S, Lepault J, Rey FA, Heinz FX. Characterization of a membrane-associated trimeric low-pH-induced Form of the class II viral fusion protein E from tick-borne encephalitis virus and its crystallization. J Virol 2004; 78:3178-83. [PMID: 14990739 PMCID: PMC353737 DOI: 10.1128/jvi.78.6.3178-3183.2004] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The interaction of a dimeric membrane anchor-free form of the envelope protein E (sE dimer) from tick-borne encephalitis virus with liposomes at acidic pH levels leads to its conversion into membrane-inserted sE trimers. Electron microscopy shows that these trimers have their long dimensions along the threefold molecular axis, which is oriented perpendicularly to the plane of the membrane, where the protein inserts via the internal fusion peptide. Liposomes containing sE at their surface display paracrystalline arrays of protein in a closely packing arrangement in which each trimer is surrounded by six others, suggesting cooperativity in the insertion process. sE trimers, solubilized with nonionic detergents, yielded three-dimensional crystals suitable for X-ray diffraction analysis.
Collapse
Affiliation(s)
- Karin Stiasny
- Institute of Virology, University of Vienna, A1095 Vienna, Austria.
| | | | | | | | | |
Collapse
|
42
|
Gibbons DL, Reilly B, Ahn A, Vaney MC, Vigouroux A, Rey FA, Kielian M. Purification and crystallization reveal two types of interactions of the fusion protein homotrimer of Semliki Forest virus. J Virol 2004; 78:3514-23. [PMID: 15016874 PMCID: PMC371082 DOI: 10.1128/jvi.78.7.3514-3523.2004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The fusion proteins of the alphaviruses and flaviviruses have a similar native structure and convert to a highly stable homotrimer conformation during the fusion of the viral and target membranes. The properties of the alpha- and flavivirus fusion proteins distinguish them from the class I viral fusion proteins, such as influenza virus hemagglutinin, and establish them as the first members of the class II fusion proteins. Understanding how this new class carries out membrane fusion will require analysis of the structural basis for both the interaction of the protein subunits within the homotrimer and their interaction with the viral and target membranes. To this end we report a purification method for the E1 ectodomain homotrimer from the alphavirus Semliki Forest virus. The purified protein is trimeric, detergent soluble, retains the characteristic stability of the starting homotrimer, and is free of lipid and other contaminants. In contrast to the postfusion structures that have been determined for the class I proteins, the E1 homotrimer contains the fusion peptide region responsible for interaction with target membranes. This E1 trimer preparation is an excellent candidate for structural studies of the class II viral fusion proteins, and we report conditions that generate three-dimensional crystals suitable for analysis by X-ray diffraction. Determination of the structure will provide our first high-resolution views of both the low-pH-induced trimeric conformation and the target membrane-interacting region of the alphavirus fusion protein.
Collapse
Affiliation(s)
- Don L Gibbons
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Gibbons DL, Ahn A, Liao M, Hammar L, Cheng RH, Kielian M. Multistep regulation of membrane insertion of the fusion peptide of Semliki Forest virus. J Virol 2004; 78:3312-8. [PMID: 15016852 PMCID: PMC371068 DOI: 10.1128/jvi.78.7.3312-3318.2004] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A prevailing model for virus membrane fusion proteins has been that the hydrophobic fusion peptide is hidden in the prefusion conformation, becomes exposed once the fusion reaction is triggered, and then either inserts into target membranes or is rapidly inactivated. This model is in general agreement with the structure and mechanism of class I fusion proteins, such as the influenza virus hemagglutinin. We here describe studies of the class II fusion protein E1 from the alphavirus Semliki Forest virus (SFV). SFV fusion is triggered by low pH, which releases E1 from its heterodimeric interaction with the E2 protein and induces the formation of a stable E1 homotrimer. The exposure and target membrane interaction of the E1 fusion peptide (residues 83 to 100) were followed using a monoclonal antibody (MAb E1f) mapping to E1 residues 85 to 95. In agreement with the known structure of SFV and other alphaviruses, the fusion peptide was shielded in native SFV particles and exposed when E1-E2 dimer dissociation was triggered by acidic pH. In contrast, the fusion peptide on purified E1 ectodomains (E1(*)) was fully accessible at neutral pH. Functional assays showed that MAb E1f binding at neutral pH prevented subsequent low-pH-triggered E1(*) interaction with target membranes and trimerization. E1(*) was not inactivated by low pH when treated either in the absence of target membranes or in the presence of fusion-inactive cholesterol-deficient liposomes. Thus, the membrane insertion of the E1 fusion peptide is regulated by additional low-pH-dependent steps after exposure, perhaps involving an E1-cholesterol interaction.
Collapse
Affiliation(s)
- Don L Gibbons
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | |
Collapse
|
44
|
Bressanelli S, Stiasny K, Allison SL, Stura EA, Duquerroy S, Lescar J, Heinz FX, Rey FA. Structure of a flavivirus envelope glycoprotein in its low-pH-induced membrane fusion conformation. EMBO J 2004; 23:728-38. [PMID: 14963486 PMCID: PMC380989 DOI: 10.1038/sj.emboj.7600064] [Citation(s) in RCA: 451] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2003] [Accepted: 12/04/2003] [Indexed: 01/07/2023] Open
Abstract
Enveloped viruses enter cells via a membrane fusion reaction driven by conformational changes of specific viral envelope proteins. We report here the structure of the ectodomain of the tick-borne encephalitis virus envelope glycoprotein, E, a prototypical class II fusion protein, in its trimeric low-pH-induced conformation. We show that, in the conformational transition, the three domains of the neutral-pH form are maintained but their relative orientation is altered. Similar to the postfusion class I proteins, the subunits rearrange such that the fusion peptide loops cluster at one end of an elongated molecule and the C-terminal segments, connecting to the viral transmembrane region, run along the sides of the trimer pointing toward the fusion peptide loops. Comparison with the low-pH-induced form of the alphavirus class II fusion protein reveals striking differences at the end of the molecule bearing the fusion peptides, suggesting an important conformational effect of the missing membrane connecting segment.
Collapse
Affiliation(s)
- Stéphane Bressanelli
- Virologie Moléculaire & Structurale, CNRS UMR 2472/INRA UMR 1157, IFR 115 Gif-sur-Yvette, France
- Institute of Virology, University of Vienna, Vienna, Austria
| | - Karin Stiasny
- Institute of Virology, University of Vienna, Vienna, Austria
| | | | - Enrico A Stura
- Departement d'Ingénierie et d'Etudes des Protéines, CEA Saclay, Gif-sur-Yvette, France
| | - Stéphane Duquerroy
- Virologie Moléculaire & Structurale, CNRS UMR 2472/INRA UMR 1157, IFR 115 Gif-sur-Yvette, France
| | - Julien Lescar
- Virologie Moléculaire & Structurale, CNRS UMR 2472/INRA UMR 1157, IFR 115 Gif-sur-Yvette, France
| | - Franz X Heinz
- Institute of Virology, University of Vienna, Vienna, Austria
- Institute of Virology, University of Vienna, Kinderspitalgasse 15, A1095, Vienna, Austria. Tel.: +43 1 40490 79510; Fax: +43 1 40490 9795; E-mail:
| | - Félix A Rey
- Virologie Moléculaire & Structurale, CNRS UMR 2472/INRA UMR 1157, IFR 115 Gif-sur-Yvette, France
- Virologie Moléculaire & Structurale, CNRS UMR 2472/INRA UMR 1157, Avenue de la Terrasse, Gif-sur-Yvette Cedex, France. Tel.: +33 1 6982 3844; Fax: +33 1 6982 4308; E-mail:
| |
Collapse
|
45
|
Gibbons DL, Vaney MC, Roussel A, Vigouroux A, Reilly B, Lepault J, Kielian M, Rey FA. Conformational change and protein-protein interactions of the fusion protein of Semliki Forest virus. Nature 2004; 427:320-5. [PMID: 14737160 DOI: 10.1038/nature02239] [Citation(s) in RCA: 292] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2003] [Accepted: 11/14/2003] [Indexed: 11/09/2022]
Abstract
Fusion of biological membranes is mediated by specific lipid-interacting proteins that induce the formation and expansion of an initial fusion pore. Here we report the crystal structure of the ectodomain of the Semliki Forest virus fusion glycoprotein E1 in its low-pH-induced trimeric form. E1 adopts a folded-back conformation that, in the final post-fusion form of the full-length protein, would bring the fusion peptide loop and the transmembrane anchor to the same end of a stable protein rod. The observed conformation of the fusion peptide loop is compatible with interactions only with the outer leaflet of the lipid bilayer. Crystal contacts between fusion peptide loops of adjacent E1 trimers, together with electron microscopy observations, suggest that in an early step of membrane fusion, an intermediate assembly of five trimers creates two opposing nipple-like deformations in the viral and target membranes, leading to formation of the fusion pore.
Collapse
Affiliation(s)
- Don L Gibbons
- Virologie Moléculaire & Structurale, UMR 2472/1157 CNRS-INRA, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
Infection by all enveloped viruses occurs via the fusion of viral and cellular membranes and delivery of the viral nucleocapsid into the cell cytoplasm, after association of the virus with cognate receptors at the cell surface. This process is mediated by viral fusion proteins anchored in the viral envelope and can be defined based on the requirement for low pH to trigger membrane fusion. In viruses that utilize a pH-dependent entry mechanism, such as influenza virus, viral fusion is triggered by the acidic environment of intracellular organelles after uptake of the virus from the cell surface and trafficking to a low-pH compartment. In contrast, in viruses that utilize a pH-independent entry mechanism, such as most retroviruses, membrane fusion is triggered solely by the interaction of the envelope glycoprotein with cognate receptors, often at the cell surface. However, recent work has indicated that the alpharetrovirus, avian sarcoma and leukosis virus (ASLV), utilizes a novel entry mechanism that combines aspects of both pH-independent and pH-dependent entry. In ASLV infection, the interaction of the envelope glycoprotein (Env) with cognate receptors at the cell surface causes an initial conformational change that primes (activates) Env and renders it sensitive to subsequent low-pH triggering from an intracellular compartment. Thus unlike other pH-dependent viruses, ASLV Env is only sensitive to low-pH triggering following interaction with its cognate receptor. In this manuscript we review current research on ASLV Env-receptor interactions and focus on the specific molecular requirements of both the viral fusion protein and cognate receptors for ASLV entry. In addition, we review data pertaining to the novel two-step entry mechanism of ASLV entry and propose a model by which ASLV Env elicits membrane fusion.
Collapse
Affiliation(s)
- R J O Barnard
- McArdle Laboratories for Cancer Research, Department of Oncology, University of Wisconsin Madison, 1400 University Ave, Madison, WI 53706, USA
| | | |
Collapse
|
47
|
Gibbons DL, Erk I, Reilly B, Navaza J, Kielian M, Rey FA, Lepault J. Visualization of the target-membrane-inserted fusion protein of Semliki Forest virus by combined electron microscopy and crystallography. Cell 2003; 114:573-83. [PMID: 13678581 DOI: 10.1016/s0092-8674(03)00683-4] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Semliki Forest virus enters cells by receptor-mediated endocytosis. The acidic environment of the endosome triggers a membrane fusion reaction that is mediated by the E1 glycoprotein. During fusion, E1 rearranges from an E1/E2 heterodimer to a highly stable, membrane-inserted E1 homotrimer (E1HT). In this study, we analyzed E1HT by a combination of electron cryomicroscopy, electron crystallography of negatively stained 2D crystals, and fitting of the available X-ray structure of the monomeric E1 ectodomain into the resulting 3D reconstruction. The visualized E1HT reveals that the ectodomain has reoriented vertically and inserted the distal tip of domain II into the lipid bilayer. Our data allow the visualization of a viral fusion protein inserted in its target membrane and demonstrate that insertion is a cooperative process, resulting in rings composed of five to six homotrimers.
Collapse
Affiliation(s)
- Don L Gibbons
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Stiasny K, Koessl C, Heinz FX. Involvement of lipids in different steps of the flavivirus fusion mechanism. J Virol 2003; 77:7856-62. [PMID: 12829825 PMCID: PMC161939 DOI: 10.1128/jvi.77.14.7856-7862.2003] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Flavivirus membrane fusion is triggered by acidic pH and mediated by the major envelope protein E. A structurally very similar fusion protein is found in alphaviruses, and these molecules are designated class II viral fusion proteins. In contrast to that of flaviviruses, however, alphavirus fusion has been shown to be absolutely dependent on the presence of cholesterol and sphingomyelin in the target membrane, suggesting significant differences in the fusion protein-membrane interactions that lead to fusion. With the flavivirus tick-borne encephalitis virus (TBEV), we have therefore conducted a study on the lipid requirements of viral fusion with liposomes and on the processes preceding fusion, specifically, the membrane-binding step and the fusion-associated oligomeric switch from E protein dimers to trimers. As with alphaviruses, cholesterol had a strong promoting effect on membrane binding and trimerization of the fusion protein, and-as shown by the use of cholesterol analogs-the underlying interactions involve the 3beta-hydroxyl group at C-3 in both viral systems. In contrast to alphaviruses, however, these effects are much less pronounced with respect to the overall fusion of TBEV and can only be demonstrated when fusion is slowed down by lowering the temperature. The data presented thus suggest the existence of structurally related interactions of the flavivirus and alphavirus fusion proteins with cholesterol in the molecular processes required for fusion but, at the same time, point to significant differences between the class II fusion machineries of these viruses.
Collapse
Affiliation(s)
- Karin Stiasny
- Institute of Virology, University of Vienna, Kinderspitalgasse 15, A-1095 Vienna, Austria.
| | | | | |
Collapse
|
49
|
Sjöberg M, Garoff H. Interactions between the transmembrane segments of the alphavirus E1 and E2 proteins play a role in virus budding and fusion. J Virol 2003; 77:3441-50. [PMID: 12610119 PMCID: PMC149539 DOI: 10.1128/jvi.77.6.3441-3450.2003] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The alphavirus envelope is built by heterodimers of the membrane proteins E1 and E2. The complex is formed as a p62E1 precursor in the endoplasmic reticulum. During transit to the plasma membrane (PM), it is cleaved into mature E1-E2 heterodimers, which are oligomerized into trimeric complexes, so-called spikes that bind both to each other and, at the PM, also to nucleocapsid (NC) structures under the membrane. These interactions drive the budding of new virus particles from the cell surface. The virus enters new cells by a low-pH-induced membrane fusion event where both inter- and intraheterodimer interactions are reorganized to establish a fusion-active membrane protein complex. There are no intact heterodimers left after fusion activation; instead, an E1 homotrimer remains in the cellular (or viral) membrane. We analyzed whether these transitions depend on interactions in the transmembrane (TM) region of the heterodimer. We observed a pattern of conserved glycines in the TM region of E1 and made two mutants where either the glycines only (SFV/E1(4L)) or the whole segment around the glycines (SFV/E1(11L)) was replaced by leucines. We found that both mutations decreased the stability of the heterodimer and increased the formation of the E1 homotrimer at a suboptimal fusion pH, while the fusion activity was decreased. This suggested that TM interactions play a role in virus assembly and entry and that anomalous or uncoordinated protein reorganizations take place in the mutants. In addition, the SFV/E1(11L) mutant was completely deficient in budding, which may reflect an inability to form multivalent NC interactions at the PM.
Collapse
Affiliation(s)
- Mathilda Sjöberg
- Department of Biosciences at Novum, Karolinska Institute, S-141 57 Huddinge, Sweden.
| | | |
Collapse
|
50
|
Sanz MA, Rejas MT, Carrasco L. Individual expression of sindbis virus glycoproteins. E1 alone promotes cell fusion. Virology 2003; 305:463-72. [PMID: 12573591 DOI: 10.1006/viro.2002.1771] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The envelope of alphavirus particles contains two major glycoproteins, E1 and E2, that participate in virus entry and assembly of new virus particles. Interactions between these glycoproteins determine their correct functioning. The expression of each glycoprotein in the absence of the other counterpart was achieved by means of electroporation of modified Sindbis virus (SV) genomes. In addition, in trans coexpression of both glycoproteins was also tested in BHK cells. Synthesis of the E1 glycoprotein alone gave rise to cell fusion after incubation in low-pH medium. In addition, expression of E1 in the absence of the E2 precursor, PE2 (E3+E2), induced the formation of cytoplasmic vacuoles in the transfected cells. The normal phenotype was recovered when PE2 was coexpressed in trans with E1. Moreover, this coexpression modified the processing of the PE2 glycoprotein. PE2 synthesized in the absence of E1 gave rise to a product, E2', whose migration was slower in SDS-polyacrylamide gel than that of genuine E2 from SV-infected cells. This alteration was corrected upon in trans coexpression of E1 and PE2. These results suggest that the two glycoproteins, E1 and PE2, interact after their expression from two separate SV genomes. Notably, BHK cells cotransfected with the two modified genomes produced SV particles. Our findings suggest that SV E1 and E2 synthesized in trans can interact with each other and participate together with capsid protein in the assembly of new virus particles.
Collapse
Affiliation(s)
- Miguel Angel Sanz
- Centro de Biología Molecular (CSIC-UAM), Universidad Autónoma, Cantoblanco, 28049 Madrid, Spain.
| | | | | |
Collapse
|