1
|
G 1/S Cell Cycle Induction by Epstein-Barr Virus BORF2 Is Mediated by P53 and APOBEC3B. J Virol 2022; 96:e0066022. [PMID: 36069545 PMCID: PMC9517719 DOI: 10.1128/jvi.00660-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Herpesvirus lytic infection causes cells to arrest at the G1/S phase of the cell cycle by poorly defined mechanisms. In a prior study using fluorescent ubiquitination-based cell cycle indicator (FUCCI) cells that express fluorescently tagged proteins marking different stages of the cell cycle, we showed that the Epstein-Barr virus (EBV) protein BORF2 induces the accumulation of G1/S cells, and that BORF2 affects p53 levels without affecting the p53 target protein p21. We also found that BORF2 specifically interacted with APOBEC3B (A3B) and forms perinuclear bodies with A3B that prevent A3B from mutating replicating EBV genomes. We now show that BORF2 also interacts with p53 and that A3B interferes with the BORF2-p53 interaction, although A3B and p53 engage distinct surfaces on BORF2. Cell cycle analysis showed that G1/S induction by BORF2 is abrogated when either p53 or A3B is silenced or when an A3B-binding mutant of BORF2 is used. Furthermore, silencing A3B in EBV lytic infection increased cell proliferation, supporting a role for A3B in G1/S arrest. These data suggest that the p53 induced by BORF2 is inactive when it binds BORF2, but is released and induces G1/S arrest when A3B is present and sequesters BORF2 in perinuclear bodies. Interestingly, this mechanism is conserved in the BORF2 homologue in HSV-1, which also re-localizes A3B, induces and binds p53, and induces G1/S dependent on A3B and p53. In summary, we have identified a new mechanism by which G1/S arrest can be induced in herpesvirus lytic infection. IMPORTANCE In lytic infection, herpesviruses cause cells to arrest at the G1/S phase of the cell cycle in order to provide an optimal environment for viral replication; however, the mechanisms involved are not well understood. We have shown that the Epstein-Barr virus BORF2 protein and its homologue in herpes simplex virus 1 both induce G1/S, and do this by similar mechanisms which involve binding p53 and APOBEC3B and induction of p53. Our study identifies a new mechanism by which G1/S arrest can be induced in herpesvirus lytic infection and a new role of APOBEC3B in herpesvirus lytic infection.
Collapse
|
2
|
Haidar Ahmad S, Pasquereau S, El Baba R, Nehme Z, Lewandowski C, Herbein G. Distinct Oncogenic Transcriptomes in Human Mammary Epithelial Cells Infected With Cytomegalovirus. Front Immunol 2022; 12:772160. [PMID: 35003089 PMCID: PMC8727587 DOI: 10.3389/fimmu.2021.772160] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/24/2021] [Indexed: 12/13/2022] Open
Abstract
Human cytomegalovirus is being recognized as a potential oncovirus beside its oncomodulation role. We previously isolated two clinical isolates, HCMV-DB (KT959235) and HCMV-BL (MW980585), which in primary human mammary epithelial cells promoted oncogenic molecular pathways, established anchorage-independent growth in vitro, and produced tumorigenicity in mice models, therefore named high-risk oncogenic strains. In contrast, other clinical HCMV strains such as HCMV-FS, KM, and SC did not trigger such traits, therefore named low-risk oncogenic strains. In this study, we compared high-risk oncogenic HCMV-DB and BL strains (high-risk) with low-risk oncogenic strains HCMV-FS, KM, and SC (low-risk) additionally to the prototypic HCMV-TB40/E, knowing that all strains infect HMECs in vitro. Numerous pro-oncogenic features including enhanced expression of oncogenes, cell survival, proliferation, and epithelial-mesenchymal transition genes were observed with HCMV-BL. In vitro, mammosphere formation was observed only in high-risk strains. HCMV-TB40/E showed an intermediate transcriptome landscape with limited mammosphere formation. Since we observed that Ki67 gene expression allows us to discriminate between high and low-risk HCMV strains in vitro, we further tested its expression in vivo. Among HCMV-positive breast cancer biopsies, we only detected high expression of the Ki67 gene in basal tumors which may correspond to the presence of high-risk HCMV strains within tumors. Altogether, the transcriptome of HMECs infected with HCMV clinical isolates displays an “oncogenic gradient” where high-risk strains specifically induce a prooncogenic environment which might participate in breast cancer development.
Collapse
Affiliation(s)
- Sandy Haidar Ahmad
- Pathogens & Inflammation/EPILAB Laboratory, EA4266, Université de Franche-Comté, Université Bourgogne Franche-Comté (UBFC), Besançon, France
| | - Sébastien Pasquereau
- Pathogens & Inflammation/EPILAB Laboratory, EA4266, Université de Franche-Comté, Université Bourgogne Franche-Comté (UBFC), Besançon, France
| | - Ranim El Baba
- Pathogens & Inflammation/EPILAB Laboratory, EA4266, Université de Franche-Comté, Université Bourgogne Franche-Comté (UBFC), Besançon, France
| | - Zeina Nehme
- Pathogens & Inflammation/EPILAB Laboratory, EA4266, Université de Franche-Comté, Université Bourgogne Franche-Comté (UBFC), Besançon, France
| | - Clara Lewandowski
- Pathogens & Inflammation/EPILAB Laboratory, EA4266, Université de Franche-Comté, Université Bourgogne Franche-Comté (UBFC), Besançon, France
| | - Georges Herbein
- Pathogens & Inflammation/EPILAB Laboratory, EA4266, Université de Franche-Comté, Université Bourgogne Franche-Comté (UBFC), Besançon, France.,Department of Virology, Centre Hospitalier Universitaire (CHU) Besançon, Besançon, France
| |
Collapse
|
3
|
Cheng S, Zhao F, Wen L, Yang B, Wang XZ, Huang SN, Jiang X, Zeng WB, Sun JY, Zhang FK, Shen HJ, Fortunato E, Luo MH, Cheng H. iTRAQ-Based Proteomics Analysis of Human Cytomegalovirus Latency and Reactivation in T98G Cells. J Virol 2022; 96:e0147621. [PMID: 34730396 PMCID: PMC8791298 DOI: 10.1128/jvi.01476-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/27/2021] [Indexed: 11/20/2022] Open
Abstract
Human cytomegalovirus (HCMV) establishes a persistent/latent infection after primary infection, and the host factor(s) plays a key role in regulating HCMV infection status. The spread of reactivated HCMV via the hematogenous or neural route usually results in severe diseases in newborns and immunocompromised individuals. As the primary reservoirs in vivo, cells of myeloid lineage have been utilized extensively to study HCMV infection. However, the molecular mechanism of HCMV latency/reactivation in neural cells is still poorly understood. We previously showed that HCMV-infected T98G cells maintain a large number of viral genomes and support HCMV reactivation from latency upon cAMP/IBMX treatment. Here, we employed an isobaric tag for relative and absolute quantitation (iTRAQ)-based proteomics to characterize cellular protein changes during HCMV latency and reactivation in T98G cells. A total of 168 differentially expressed proteins (DEPs) were identified, including 89 proteins in latency and 85 proteins in reactivation. Bioinformatics analysis showed that a few biological pathways were associated with HCMV latency or reactivation. Moreover, we validated 16 DEPs by both mRNA and protein expression profiles and further evaluated the effects of ApoE and the phosphatidylinositol 3-kinase (PI3K) pathway on HCMV infection. ApoE knockdown reduced HCMV loads and virus release, whereas overexpressing ApoE hampered HCMV latent infection, indicating a role in HCMV latency establishment/maintenance. Blocking the PI3K pathway by LY294002, a PI3K inhibitor, induced HCMV reactivation from latency in T98G cells. Overall, this comparative proteomics analysis delineates the cellular protein changes during HCMV latency and reactivation and provides a road map to advance our understanding of the mechanism(s) in the context of neural cells. IMPORTANCE Human cytomegalovirus (HCMV) is a highly transmissible betaherpesvirus that has a prevalence of 60% to 90% worldwide. This opportunist pathogen poses a significant threat to newborns and immunosuppressed individuals. One major obstacle for developing effective therapeutics is a poor understanding of HCMV latency/reactivation mechanisms. This study presents, for the first time, a systemic analysis of host cell protein expression changes during HCMV latency establishment and reactivation processes in neural cells. We showed that ApoE was downregulated by HCMV to facilitate latent infection. Also, the proteomics analysis has associated a few PI3K pathway-related proteins with HCMV reactivation. Altogether, this study highlights multiple host proteins and signaling pathways that can be further investigated as potential druggable targets for HCMV-related diseases, especially brain disorders.
Collapse
Affiliation(s)
- Shuang Cheng
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Fei Zhao
- School of Basic Medical Sciences, Capital Medical University, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
| | - Le Wen
- The Joint Center of Translational Precision Medicine, Guangzhou Institute of Pediatrics, Guangzhou Women and Children Medical Center, Guangzhou, China
- The Joint Center of Translational Precision Medicine, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Bo Yang
- The Joint Center of Translational Precision Medicine, Guangzhou Institute of Pediatrics, Guangzhou Women and Children Medical Center, Guangzhou, China
- The Joint Center of Translational Precision Medicine, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Xian-Zhang Wang
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Sheng-Nan Huang
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xuan Jiang
- The Joint Center of Translational Precision Medicine, Guangzhou Institute of Pediatrics, Guangzhou Women and Children Medical Center, Guangzhou, China
- The Joint Center of Translational Precision Medicine, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Wen-Bo Zeng
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Jin-Yan Sun
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Fu-Kun Zhang
- Changchun Keygen Biological Products Co., Ltd., Changchun, China
| | - Hong-Jie Shen
- Changchun Keygen Biological Products Co., Ltd., Changchun, China
| | - Elizabeth Fortunato
- Department of Biological Sciences and Center for Reproductive Biology, University of Idaho, Moscow, Idaho, USA
| | - Min-Hua Luo
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Han Cheng
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| |
Collapse
|
4
|
Kutle I, Szymańska-de Wijs KM, Bogdanow B, Cuvalo B, Steinbrück L, Jonjić S, Wagner K, Niedenthal R, Selbach M, Wiebusch L, Dezeljin M, Messerle M. Murine Cytomegalovirus M25 Proteins Sequester the Tumor Suppressor Protein p53 in Nuclear Accumulations. J Virol 2020; 94:e00574-20. [PMID: 32727874 PMCID: PMC7527045 DOI: 10.1128/jvi.00574-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 07/22/2020] [Indexed: 02/06/2023] Open
Abstract
To ensure productive infection, herpesviruses utilize tegument proteins and nonstructural regulatory proteins to counteract cellular defense mechanisms and to reprogram cellular pathways. The M25 proteins of mouse cytomegalovirus (MCMV) belong to the betaherpesvirus UL25 gene family that encodes viral proteins implicated with regulatory functions. Through affinity purification and mass spectrometric analysis, we discovered the tumor suppressor protein p53 as a host factor interacting with the M25 proteins. M25-p53 interaction in infected and transfected cells was confirmed by coimmunoprecipitation. Moreover, the proteins colocalized in nuclear dot-like structures upon both infection and inducible expression of the two M25 isoforms. p53 accumulated in wild-type MCMV-infected cells, while this did not occur upon infection with a mutant lacking the M25 gene. Both M25 proteins were able to mediate the effect, identifying them as the first CMV proteins responsible for p53 accumulation during infection. Interaction with M25 proteins led to substantial prolongation of the half-life of p53. In contrast to the higher abundance of the p53 protein in wild-type MCMV-infected cells, the transcript levels of the prominent p53 target genes Cdkn1a and Mdm2 were diminished compared to cells infected with the ΔM25 mutant, and this was associated with reduced binding of p53 to responsive elements within the respective promoters. Notably, the productivity of the M25 deletion mutant was partially rescued on p53-negative fibroblasts. We propose that the MCMV M25 proteins sequester p53 molecules in the nucleus of infected cells, reducing their availability for activating a subset of p53-regulated genes, thereby dampening the antiviral role of p53.IMPORTANCE Host cells use a number of factors to defend against viral infection. Viruses are, however, in an arms race with their host cells to overcome these defense mechanisms. The tumor suppressor protein p53 is an important sensor of cell stress induced by oncogenic insults or viral infections, which upon activation induces various pathways to ensure the integrity of cells. Viruses have to counteract many functions of p53, but complex DNA viruses such as cytomegaloviruses may also utilize some p53 functions for their own benefit. In this study, we discovered that the M25 proteins of mouse cytomegalovirus interact with p53 and mediate its accumulation during infection. Interaction with the M25 proteins sequesters p53 molecules in nuclear dot-like structures, limiting their availability for activation of a subset of p53-regulated target genes. Understanding the interaction between viral proteins and p53 may allow to develop new therapeutic strategies against cytomegalovirus and other viruses.
Collapse
Affiliation(s)
- Ivana Kutle
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | | | - Boris Bogdanow
- Proteome Dynamics lab, Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Department of Chemical Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - Berislav Cuvalo
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Lars Steinbrück
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Stipan Jonjić
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Karen Wagner
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Rainer Niedenthal
- Institute of Cell Biochemistry, Hannover Medical School, Hannover, Germany
| | - Matthias Selbach
- Proteome Dynamics lab, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Lüder Wiebusch
- Laboratory of Pediatric Molecular Biology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Martina Dezeljin
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Martin Messerle
- Institute of Virology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
5
|
Chen Z, Boor PJ, Finnerty CC, Herndon DN, Albrecht T. Calpain-mediated cleavage of p53 in human cytomegalovirus-infected lung fibroblasts. FASEB Bioadv 2019; 1:151-166. [PMID: 32123827 PMCID: PMC6996331 DOI: 10.1096/fba.1028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/23/2018] [Accepted: 10/26/2018] [Indexed: 12/14/2022] Open
Abstract
Endogenous fragments of p53 protein were identified in human cytomegalovirus (HCMV)-infected human lung fibroblasts, particularly a 44-kDa N-terminal fragment [hereafter referred to as p53(ΔCp44)], generated via calpain cleavage. The fragment abundance increased in a biphasic manner, peaking at 6-9 hours and 48 hours post infection. Treatment of LU cells with calpain inhibitors eliminated most detectable p53 fragments. In cell-free experiments, exogenous m-calpain cleavage generated p53(ΔCp44). Attempts to preserve p53 proteins by treating cells with the calpain inhibitor E64d for 6 hours before harvesting increased the sensitivity of p53 to calpain cleavage. p53 in mock-infected cell lysates was much more sensitive to cleavage and degradation by exogenous calpain than that in HCMV-infected cells. The proteasome inhibitor MG132 stabilized p53(ΔCp44), particularly in mock-infected cells. p53(ΔCp44) appeared to be tightly associated with a chromatin-rich fraction. The abundance of p53β was unchanged over a 96-h time course and very similar in mock- and HCMV-infected cells, making it unlikely that p53(ΔCp44) was p53β. The biological activities of this and other fragments lacking C-terminal sequences are unknown, but deserve further investigation, given the association of p53(ΔCp44) with the chromatin-rich (or buffer C insoluble) fraction in HCMV-infected cells.
Collapse
Affiliation(s)
- Zhenping Chen
- Department of Microbiology and ImmunologyUniversity of Texas Medical BranchGalvestonTexas
- Department of PathologyUniversity of Texas Medical BranchGalvestonTexas
- Department of SurgeryUniversity of Texas Medical BranchGalvestonTexas
| | - Paul J. Boor
- Department of PathologyUniversity of Texas Medical BranchGalvestonTexas
- Shriners Hospitals for Children—GalvestonGalvestonTexas
| | - Celeste C. Finnerty
- Department of SurgeryUniversity of Texas Medical BranchGalvestonTexas
- Shriners Hospitals for Children—GalvestonGalvestonTexas
| | - David N. Herndon
- Department of SurgeryUniversity of Texas Medical BranchGalvestonTexas
- Shriners Hospitals for Children—GalvestonGalvestonTexas
| | - Thomas Albrecht
- Department of Microbiology and ImmunologyUniversity of Texas Medical BranchGalvestonTexas
- Infectious Disease and Toxicology Optical Imaging CoreUniversity of Texas Medical BranchGalvestonTexas
| |
Collapse
|
6
|
The Human Cytomegalovirus, from Oncomodulation to Oncogenesis. Viruses 2018; 10:v10080408. [PMID: 30081496 PMCID: PMC6115842 DOI: 10.3390/v10080408] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 07/30/2018] [Accepted: 08/01/2018] [Indexed: 12/13/2022] Open
Abstract
Besides its well-described impact in immunosuppressed patients, the role of human cytomegalovirus (HCMV) in the pathogenesis of cancer has been more recently investigated. In cancer, HCMV could favor the progression and the spread of the tumor, a paradigm named oncomodulation. Although oncomodulation could account for part of the protumoral effect of HCMV, it might not explain the whole impact of HCMV infection on the tumor and the tumoral microenvironment. On the contrary cases have been reported where HCMV infection slows down the progression and the spread of the tumor. In addition, HCMV proteins have oncogenic properties per se, HCMV activates pro-oncogenic pathways in infected cells, and recently the direct transformation of cells following HCMV infection has been described, which gave rise to tumors when injected in mice. Thus, beyond the oncomodulation model, this review will assess the direct transforming role of HMCV-infected cells and the potential classification of HCMV as an oncovirus.
Collapse
|
7
|
Kuan MI, O'Dowd JM, Chughtai K, Hayman I, Brown CJ, Fortunato EA. Human Cytomegalovirus nuclear egress and secondary envelopment are negatively affected in the absence of cellular p53. Virology 2016; 497:279-293. [PMID: 27498410 DOI: 10.1016/j.virol.2016.07.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 07/10/2016] [Accepted: 07/19/2016] [Indexed: 01/10/2023]
Abstract
Human Cytomegalovirus (HCMV) infection is compromised in cells lacking p53, a transcription factor that mediates cellular stress responses. In this study we have investigated compromised functional virion production in cells with p53 knocked out (p53KOs). Infectious center assays found most p53KOs released functional virions. Analysis of electron micrographs revealed modestly decreased capsid production in infected p53KOs compared to wt. Substantially fewer p53KOs displayed HCMV-induced infoldings of the inner nuclear membrane (IINMs). In p53KOs, fewer capsids were found in IINMs and in the cytoplasm. The deficit in virus-induced membrane remodeling within the nucleus of p53KOs was mirrored in the cytoplasm, with a disproportionately smaller number of capsids re-enveloped. Reintroduction of p53 substantially recovered these deficits. Overall, the absence of p53 contributed to inhibition of the formation and function of IINMs and re-envelopment of the reduced number of capsids able to reach the cytoplasm.
Collapse
Affiliation(s)
- Man I Kuan
- Department of Biological Sciences and Center for Reproductive Biology, University of Idaho, Moscow, ID, USA
| | - John M O'Dowd
- Department of Biological Sciences and Center for Reproductive Biology, University of Idaho, Moscow, ID, USA
| | - Kamila Chughtai
- Department of Biological Sciences and Center for Reproductive Biology, University of Idaho, Moscow, ID, USA
| | - Ian Hayman
- Department of Biological Sciences and Center for Reproductive Biology, University of Idaho, Moscow, ID, USA
| | - Celeste J Brown
- Department of Biological Sciences and Center for Reproductive Biology, University of Idaho, Moscow, ID, USA
| | - Elizabeth A Fortunato
- Department of Biological Sciences and Center for Reproductive Biology, University of Idaho, Moscow, ID, USA.
| |
Collapse
|
8
|
Deficiencies in Cellular Processes Modulated by the Retinoblastoma Protein Do Not Account for Reduced Human Cytomegalovirus Replication in Its Absence. J Virol 2015; 89:11965-74. [PMID: 26378180 DOI: 10.1128/jvi.01718-15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Accepted: 09/10/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Despite encoding multiple viral proteins that modulate the retinoblastoma (Rb) protein in a manner classically defined as inactivation, human cytomegalovirus (HCMV) requires the presence of the Rb protein to replicate efficiently. In uninfected cells, Rb controls numerous pathways that the virus also commandeers during infection. These include cell cycle progression, senescence, mitochondrial biogenesis, apoptosis, and glutaminolysis. We investigated whether a potential inability of HCMV to regulate these Rb-controlled pathways in the absence of the Rb protein was the reason for reduced viral productive replication in Rb knockdown cells. We found that HCMV was equally able to modulate these pathways in the parental Rb-expressing and Rb-depleted cells. Our results suggest that Rb may be required to enhance a specific viral process during HCMV productive replication. IMPORTANCE The retinoblastoma (Rb) tumor suppressor is well established as a repressor of E2F-dependent transcription. Rb hyperphosphorylation, degradation, and binding by viral oncoproteins are also codified. Recent reports indicate Rb can be monophosphorylated, repress the transcription of antiviral genes in association with adenovirus E1A, modulate cellular responses to polycomb-mediated epigenetic methylations in human papillomavirus type 16 E7 expressing cells, and increase the efficiency of human cytomegalovirus (HCMV) productive replication. Since Rb function also now extends to regulation of mitochondrial function (apoptosis, metabolism), it is clear that our current understanding of this protein is insufficient to explain its roles in virus-infected cells and tumors. Work here reinforces this concept, showing the known roles of Rb are insufficient to explain its positive impact on HCMV replication. Therefore, HCMV, along with other viral systems, provide valuable tools to probe functions of Rb that might be modulated with therapeutics for cancers with viral or nonviral etiologies.
Collapse
|
9
|
Spector DH. Human cytomegalovirus riding the cell cycle. Med Microbiol Immunol 2015; 204:409-19. [PMID: 25776080 DOI: 10.1007/s00430-015-0396-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 02/19/2015] [Indexed: 12/25/2022]
Abstract
Human cytomegalovirus (HCMV) infection modulates the host cell cycle to create an environment that is optimal for viral gene expression, DNA replication, and production of infectious virus. The virus mostly infects quiescent cells and thus must push the cell into G1 phase of the cell cycle to co-opt the cellular mechanisms that could be used for DNA synthesis. However, at the same time, cellular functions must be subverted such that synthesis of viral DNA is favored over that of the host. The molecular mechanisms by which this is accomplished include altered RNA transcription, changes in the levels and activity of cyclin-dependent kinases, and other proteins involved in cell cycle control, posttranslational modifications of proteins, modulation of protein stability through targeted effects on the ubiquitin-proteasome degradation pathway, and movement of proteins to different cellular locations. When the cell is in the optimal G0/G1 phase, multiple signaling pathways are altered to allow rapid induction of viral gene expression once negative factors have been eliminated. For the most part, the cell cycle will stop prior to initiation of host cell DNA synthesis (S phase), although many cell cycle proteins characteristic of the S/G2/M phase accumulate. The environment of a cell progressing through the cell cycle and dividing is not favorable for viral replication, and HCMV has evolved ways to sense whether cells are in S/G2 phase, and if so, to prevent initiation of viral gene expression until the cells cycle back to G1. A major target of HCMV is the anaphase-promoting complex E3 ubiquitin ligase, which is responsible for the ubiquitination and subsequent degradation of cyclins A and B and other cell cycle proteins at specific phases in the cell cycle. This review will discuss the effects of HCMV infection on cell cycle regulatory pathways, with the focus on selected viral proteins that are responsible for these effects.
Collapse
Affiliation(s)
- Deborah H Spector
- Department of Cellular and Molecular Medicine, The Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, 92093-0712, USA,
| |
Collapse
|
10
|
Abstract
UNLABELLED Lytic infection by herpesviruses induces cell cycle arrest at the G1/S transition. This appears to be a function of multiple herpesvirus proteins, but only a minority of herpesvirus proteins have been examined for cell cycle effects. To gain a more comprehensive understanding of the viral proteins that contribute to G1/S arrest, we screened a library of over 200 proteins from herpes simplex virus type 1, human cytomegalovirus, and Epstein-Barr virus (EBV) for effects on the G1/S interface, using HeLa fluorescent, ubiquitination-based cell cycle indicator (Fucci) cells in which G1/S can be detected colorimetrically. Proteins from each virus were identified that induce accumulation of G1/S cells, predominantly tegument, early, and capsid proteins. The identification of several capsid proteins in this screen suggests that incoming viral capsids may function to modulate cellular processes. The cell cycle effects of selected EBV proteins were further verified and examined for effects on p53 and p21 as regulators of the G1/S transition. Two EBV replication proteins (BORF2 and BMRF1) were found to induce p53 but not p21, while a previously uncharacterized tegument protein (BGLF2) was found to induce p21 protein levels in a p53-independent manner. Proteomic analyses of BGLF2-interacting proteins identified interactions with the NIMA-related protein kinase (NEK9) and GEM-interacting protein (GMIP). Silencing of either NEK9 or GMIP induced p21 without affecting p53 and abrogated the ability of BGLF2 to further induce p21. Collectively, these results suggest multiple viral proteins contribute to G1/S arrest, including BGLF2, which induces p21 levels likely by interfering with the functions of NEK9 and GMIP. IMPORTANCE Most people are infected with multiple herpesviruses, whose proteins alter the infected cells in several ways. During lytic infection, the viral proteins block cell proliferation just before the cellular DNA replicates. We used a novel screening method to identify proteins from three different herpesviruses that contribute to this block. Several of the proteins we identified had previously unknown functions or were structural components of the virion. Subsets of these proteins from Epstein-Barr virus were studied for their effects on the cell cycle regulatory proteins p53 and p21, thereby identifying two proteins that induce p53 and one that induces p21 (BGLF2). We identified interactions of BGLF2 with two human proteins, both of which regulate p21, suggesting that BGLF2 induces p21 by interfering with the functions of these two host proteins. Our study indicates that multiple herpesvirus proteins contribute to the cell proliferation block, including components of the incoming virions.
Collapse
|
11
|
Abstract
Viruses employ a variety of strategies to usurp and control cellular activities through the orchestrated recruitment of macromolecules to specific cytoplasmic or nuclear compartments. Formation of such specialized virus-induced cellular microenvironments, which have been termed viroplasms, virus factories, or virus replication centers, complexes, or compartments, depends on molecular interactions between viral and cellular factors that participate in viral genome expression and replication and are in some cases associated with sites of virion assembly. These virus-induced compartments function not only to recruit and concentrate factors required for essential steps of the viral replication cycle but also to control the cellular mechanisms of antiviral defense. In this review, we summarize characteristic features of viral replication compartments from different virus families and discuss similarities in the viral and cellular activities that are associated with their assembly and the functions they facilitate for viral replication.
Collapse
|
12
|
Lepiller Q, Abbas W, Kumar A, Tripathy MK, Herbein G. HCMV activates the IL-6-JAK-STAT3 axis in HepG2 cells and primary human hepatocytes. PLoS One 2013; 8:e59591. [PMID: 23555719 PMCID: PMC3608661 DOI: 10.1371/journal.pone.0059591] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 02/15/2013] [Indexed: 12/14/2022] Open
Abstract
Objectives There has been increased interest in the possible role of human cytomegalovirus (HCMV) in carcinogenesis during the last decade. HCMV seroprevalence was enhanced in patients with hepatocellular carcinoma (HCC) but a possible relationship between HCC and HCMV infection remained to be assessed. The aim of this work was to investigate the pro-tumor influence of HCMV on primary human hepatocytes (PHH) and HepG2 cells. Methods Following infection of PHH and HepG2 cells by two different strains of HCMV, we measured the production of IL-6 in culture supernatants by ELISA and the protein levels of STAT3, pSTAT3, JAK, cyclin D1, survivin, p53, p21, and Mdm2 by western Blotting in infected and uninfected cells. Cell proliferation and transformation were investigated using Ki67Ag expression measurement and soft-agar colony formation assay respectively. Results Infection of HepG2 cells and PHH by HCMV resulted in the production of IL-6 and the subsequent activation of the IL-6R-JAK-STAT3 pathway. HCMV increased the expression of cyclin D1 and survivin. Cell proliferation was enhanced in HepG2 and PHH infected with HCMV, despite a paradoxical overexpression of p53 and p21. More importantly, we observed the formation of colonies in soft agar seeded with PHH infected with HCMV and when we challenged the HepG2 cultures to form tumorspheres, we found that the HCMV-infected cultures formed 2.5-fold more tumorspheres than uninfected cultures. Conclusion HCMV activated the IL-6-JAK-STAT3 pathway in PHH and HepG2 cells, favored cellular proliferation, induced PHH transformation and enhanced HepG2 tumorsphere formation. Our observations raise the possibility that HCMV infection might be involved in the genesis of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Quentin Lepiller
- Department of Virology, University of Franche-Comté, EA 4266 “Pathogens & Inflammation”, SFR FED4234, CHU Besançon, Besançon, France
| | - Wasim Abbas
- Department of Virology, University of Franche-Comté, EA 4266 “Pathogens & Inflammation”, SFR FED4234, CHU Besançon, Besançon, France
| | - Amit Kumar
- Department of Virology, University of Franche-Comté, EA 4266 “Pathogens & Inflammation”, SFR FED4234, CHU Besançon, Besançon, France
| | - Manoj K. Tripathy
- Department of Virology, University of Franche-Comté, EA 4266 “Pathogens & Inflammation”, SFR FED4234, CHU Besançon, Besançon, France
| | - Georges Herbein
- Department of Virology, University of Franche-Comté, EA 4266 “Pathogens & Inflammation”, SFR FED4234, CHU Besançon, Besançon, France
- * E-mail:
| |
Collapse
|
13
|
Miteva YV, Budayeva HG, Cristea IM. Proteomics-based methods for discovery, quantification, and validation of protein-protein interactions. Anal Chem 2013; 85:749-68. [PMID: 23157382 PMCID: PMC3666915 DOI: 10.1021/ac3033257] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | - Ileana M. Cristea
- Corresponding author: Ileana M. Cristea 210 Lewis Thomas Laboratory Department of Molecular Biology Princeton University Princeton, NJ 08544 Tel: 6092589417 Fax: 6092584575
| |
Collapse
|
14
|
Human cytomegalovirus pUL29/28 and pUL38 repression of p53-regulated p21CIP1 and caspase 1 promoters during infection. J Virol 2012; 87:2463-74. [PMID: 23236067 DOI: 10.1128/jvi.01926-12] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
During infection by human cytomegalovirus (HCMV), the tumor suppressor protein p53, which promotes efficient viral gene expression, is stabilized. However, the expression of numerous p53-responsive cellular genes is not upregulated. The molecular mechanism used to manipulate the transcriptional activity of p53 during infection remains unclear. The HCMV proteins IE1, IE2, pUL44, and pUL84 likely contribute to the regulation of p53. In this study, we used a discovery-based approach to identify the protein targets of the HCMV protein pUL29/28 during infection. Previous studies have demonstrated that pUL29/28 regulates viral gene expression by interacting with the chromatin remodeling complex NuRD. Here, we observed that pUL29/28 also associates with p53, an additional deacetylase complex, and several HCMV proteins, including pUL38. We confirmed the interaction between p53 and pUL29/28 in both the presence and absence of infection. HCMV pUL29/28 with pUL38 altered the activity of the 53-regulatable p21CIP1 promoter. During infection, pUL29/28 and pUL38 contributed to the inhibition of p21CIP1 as well as caspase 1 expression. The expression of several other p53-regulating genes was not altered. Infection using a UL29-deficient virus resulted in increased p53 binding and histone H3 acetylation at the responsive promoters. Furthermore, expression of pUL29/28 and its interacting partner pUL38 contributed to an increase in the steady-state protein levels of p53. This study identified two additional HCMV proteins, pUL29/28 and pUL38, which participate in the complex regulation of p53 transcriptional activity during infection.
Collapse
|
15
|
Kwon Y, Kim MN, Young Choi E, Heon Kim J, Hwang ES, Cha CY. Inhibition of p53 transcriptional activity by human cytomegalovirus UL44. Microbiol Immunol 2012; 56:324-31. [PMID: 22376288 DOI: 10.1111/j.1348-0421.2012.00446.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Human cytomegalovirus (HCMV) stimulates cellular synthesis of DNA and proteins and induces transition of the cell cycle from G(1) to S and G(2) /M phase, in spite of increased amounts of p53 in the infected cells. The immediate early protein IE2-86 kDa (IE86) tethers a transcriptional repression domain to p53; however, its repression of p53 function is not enough to abrogate the G(1) checkpoint function of p53. Other HCMV proteins that suppress the activity of p53 were investigated in this study. Of the HCMV proteins that bind to p53 when assessed by immunoprecipitation and immunoblot analysis, HCMV UL44 was chosen as a candidate protein. It was found that reporter gene containing p53 consensus sequence was activated by transfection with wild type p53, but when plasmids of p53 with IE86 or UL44 were co-transfected, p53 transcriptional activity was decreased to 3-7% of the p53 control in a dose-dependent manner. When the deletion mutant of UL44 was co-transected with p53, the carboxyl one-third portion of UL44 had little effect on inhibition of p53 transcriptional activity. The amount of mRNA p21 was measured in H1299 by real time PCR after transfection of the combination of p53 and UL44 vectors and it was found that p21 transcription by p53 was inhibited dose-dependently by UL44. Increased G0/G1 and decreased S phases in p53 wild type-transfected H1299 cells were recovered to the level of p53 mutant type-transfected ones by the additional transfection of UL44 in a dose-dependent manner. In conclusion, the transcriptional activity of p53 is suppressed by UL44 as well as by IE86.
Collapse
Affiliation(s)
- Yejin Kwon
- Department of Microbiology and Immunology, Seoul National University Medical Research Center, Seoul 110-799, Korea
| | | | | | | | | | | |
Collapse
|
16
|
RNA interference-mediated targeting of human cytomegalovirus immediate-early or early gene products inhibits viral replication with differential effects on cellular functions. J Virol 2012; 86:5660-73. [PMID: 22438545 DOI: 10.1128/jvi.06338-11] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Viral drug toxicity, resistance, and an increasing immunosuppressed population warrant continued research into new avenues for limiting diseases associated with human cytomegalovirus (HCMV). In this study, a small interfering RNA (siRNA), siX3, was designed to target coding sequences within shared exon 3 of UL123 and UL122 transcripts encoding IE1 and IE2 immediate-early proteins of HCMV. Pretreatment of cells with siX3 reduced the levels of viral protein expression, DNA replication, and progeny virus production compared to control siRNA. Two siRNAs against UL54 and overlapping transcripts (UL55-57) were compared to siX3 in HCMV infection and were also found to be effective at inhibiting HCMV replication. Further investigation into the effects of the siRNAs on viral replication showed that pretreatment with each of the siRNAs resulted in an inhibition in the formation of mature replication compartments. The ability of these siRNAs to prevent or reduce certain cytopathic effects associated with HCMV infection was also examined. Infected cells pretreated with siX3, but not siUL54, retained promyelocytic leukemia (PML) protein in cellular PML bodies, an essential component of this host intrinsic antiviral defense. DNA damage response proteins, which are localized in nuclear viral replication compartments, were reduced in the siX3- and siUL54-treated cells. siX3, but not siUL54, prevented DNA damage response signaling early after infection. Therapeutic efficacy was demonstrated by treating cells with siRNAs after HCMV replication had commenced. Together, these findings suggest that siRNAs targeting exon 3 of the major IE genes or the UL54-57 transcripts be further studied for their potential development into anti-HCMV therapeutics.
Collapse
|
17
|
Mutation of glutamine to arginine at position 548 of IE2 86 in human cytomegalovirus leads to decreased expression of IE2 40, IE2 60, UL83, and UL84 and increased transcription of US8-9 and US29-32. J Virol 2011; 85:11098-110. [PMID: 21865379 DOI: 10.1128/jvi.05315-11] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The IE2 86 protein of human cytomegalovirus (HCMV) is essential for productive infection. The mutation of glutamine to arginine at position 548 of IE2 86 causes the virus to grow both slowly and to very low titers, making it difficult to study this mutant via infection. In this study, Q548R IE2 86 HCMV was produced on the complementing cell line 86F/40HA, which allowed faster and higher-titer production of mutant virus. The main defects observed in this mutant were greatly decreased expression of IE2 40, IE2 60, UL83, and UL84. Genome replication and the induction of cell cycle arrest were found to proceed at or near wild-type levels, and there was no defect in transitioning to early or late protein expression. Q548R IE2 86 was still able to interact with UL84. Furthermore, Q548R IE2 40 maintained the ability to enhance UL84 expression in a cotransfection assay. Microarray analysis of Q548R IE2 HCMV revealed that the US8, US9, and US29-32 transcripts were all significantly upregulated. These results further confirm the importance of IE2 in UL83 and UL84 expression as well as pointing to several previously unknown regions of the HCMV genome that may be regulated by IE2.
Collapse
|
18
|
Inactivation and disassembly of the anaphase-promoting complex during human cytomegalovirus infection is associated with degradation of the APC5 and APC4 subunits and does not require UL97-mediated phosphorylation of Cdh1. J Virol 2010; 84:10832-43. [PMID: 20686030 DOI: 10.1128/jvi.01260-10] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Infection of quiescent cells by human cytomegalovirus (HCMV) elicits severe cell cycle deregulation, resulting in a G(1)/S arrest, which can be partly attributed to the inactivation of the anaphase-promoting complex (APC). As we previously reported, the premature phosphorylation of its coactivator Cdh1 and/or the dissociation of the core complex can account for the inactivation. We have expanded on these results and further delineated the key components required for disabling the APC during HCMV infection. The viral protein kinase UL97 was hypothesized to phosphorylate Cdh1, and consistent with this, phosphatase assays utilizing a virus with a UL97 deletion mutation (ΔUL97 virus) indicated that Cdh1 is hypophosphorylated at early times in the infection. Mass spectrometry analysis demonstrated that UL97 can phosphorylate Cdh1 in vitro, and the majority of the sites identified correlated with previously characterized cyclin-dependent kinase (Cdk) consensus sites. Analysis of the APC core complex during ΔUL97 virus infection showed APC dissociation occurring at the same time as during infection with wild-type virus, suggesting that the UL97-mediated phosphorylation of Cdh1 is not required for this to occur. Further investigation of the APC subunits showed a proteasome-dependent loss of the APC5 and APC4 subunits that was temporally associated with the disassembly of the APC. Immediate early viral gene expression was not sufficient for the degradation of APC4 and APC5, indicating that a viral early gene product(s), possibly in association with a de novo-synthesized cellular protein(s), is involved.
Collapse
|
19
|
Lou PJ, Chiu MY, Chou CC, Liao BW, Young TH. The effect of poly (ethylene-co-vinyl alcohol) on senescence-associated alterations of human dermal fibroblasts. Biomaterials 2010; 31:1568-77. [DOI: 10.1016/j.biomaterials.2009.11.048] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Accepted: 11/17/2009] [Indexed: 11/16/2022]
|
20
|
Abstract
Globally, testicular cancer incidence is highest among men of northern European ancestry and lowest among men of Asian and African descent. Incidence rates have been increasing around the world for at least 50 years, but mortality rates, at least in developed countries, have been declining. While reasons for the decreases in mortality are related to improvements in therapeutic regimens introduced in the late 1970s, reasons for the increase in incidence are less well understood. However, an accumulating body of evidence suggests that testicular cancer arises in fetal life. Perinatal factors, including exposure to endocrine-disrupting chemicals, have been suggested to be related to risk.
Collapse
Affiliation(s)
- Katherine A McGlynn
- Hormonal and Reproductive Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Rockville, MD 20852-7234, USA.
| | | |
Collapse
|
21
|
Human cytomegalovirus IE1-72 protein interacts with p53 and inhibits p53-dependent transactivation by a mechanism different from that of IE2-86 protein. J Virol 2009; 83:12388-98. [PMID: 19776115 DOI: 10.1128/jvi.00304-09] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Infection of host cells with human cytomegalovirus (HCMV) induces cell cycle dysregulation. Two HCMV immediate-early (IE) proteins, IE1-72 and IE2-86, are promiscuous transactivators that have been implicated in the dysregulatory events. Cellular p53 protein is accumulated to high levels in HCMV-infected cells, but the indicative marker of p53 transcriptional activity, p21, is markedly decreased. Both IE1-72 and IE2-86 were able to transactivate the p53 promoter and interact with p53 protein in DNA-transfected or HCMV-infected cells. HCMV UL84, a multiregulatory protein expressed in early periods of HCMV infection, also interacted with p53. HCMV IE1-72 prevented or disrupted p53 binding to p53-specific DNA sequences, while IE2-86 and/or UL84 enhanced p53 binding and induced supershift of this DNA-protein complex. Both HCMV IE1-72 and IE2-86 were able to inhibit p53-dependent transcriptional activation in plasmid-transfected cells. IE1-72, rather than IE2-86, was found to be responsible for p21 downregulation in HCMV-infected HEL cells. DNA transfection analysis using IE1-72 mutants revealed that exon 2/3 and the zinc finger region of IE1-72 are essential for IE1-72's effect on the repression of p53-dependent transcriptional activation. These data suggest that HCMV IE1-72 and/or IE2-86 transactivates the p53 promoter and induces p53 accumulation, but HCMV IE1-72 represses the p53 transactivation activity by a unique binding hindrance mechanism different from that of IE2-86. Thus, various modes of viral IE proteins and p53 interactions might result in multiple outcomes, such as stimulation of cellular DNA synthesis, cell cycle progression and cell cycle arrest, and prevention of program cell death.
Collapse
|
22
|
The presence of p53 influences the expression of multiple human cytomegalovirus genes at early times postinfection. J Virol 2009; 83:4316-25. [PMID: 19224996 DOI: 10.1128/jvi.02075-08] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Human cytomegalovirus (HCMV) is a common cause of morbidity and mortality in immunocompromised and immunosuppressed individuals. During infection, HCMV is known to employ host transcription factors to facilitate viral gene expression. To further understand the previously observed delay in viral replication and protein expression in p53 knockout cells, we conducted microarray analyses of p53(+/+) and p53(-/-) immortalized fibroblast cell lines. At a multiplicity of infection (MOI) of 1 at 24 h postinfection (p.i.), the expression of 22 viral genes was affected by the absence of p53. Eleven of these 22 genes (group 1) were examined by real-time reverse transcriptase, or quantitative, PCR (q-PCR). Additionally, five genes previously determined to have p53 bound to their nearest p53-responsive elements (group 2) and three control genes without p53 binding sites in their upstream sequences (group 3) were also examined. At an MOI of 1, >3-fold regulation was found for five group 1 genes. The expression of group 2 and 3 genes was not changed. At an MOI of 5, all genes from group 1 and four of five genes from group 2 were found to be regulated. The expression of control genes from group 3 remained unchanged. A q-PCR time course of four genes revealed that p53 influences viral gene expression most at immediate-early and early times p.i., suggesting a mechanism for the reduced and delayed production of virions in p53(-/-) cells.
Collapse
|
23
|
Neuropathogenesis of congenital cytomegalovirus infection: disease mechanisms and prospects for intervention. Clin Microbiol Rev 2009; 22:99-126, Table of Contents. [PMID: 19136436 DOI: 10.1128/cmr.00023-08] [Citation(s) in RCA: 324] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Congenital cytomegalovirus (CMV) infection is the leading infectious cause of mental retardation and hearing loss in the developed world. In recent years, there has been an improved understanding of the epidemiology, pathogenesis, and long-term disabilities associated with CMV infection. In this review, current concepts regarding the pathogenesis of neurological injury caused by CMV infections acquired by the developing fetus are summarized. The pathogenesis of CMV-induced disabilities is considered in the context of the epidemiology of CMV infection in pregnant women and newborn infants, and the clinical manifestations of brain injury are reviewed. The prospects for intervention, including antiviral therapies and vaccines, are summarized. Priorities for future research are suggested to improve the understanding of this common and disabling illness of infancy.
Collapse
|
24
|
Abstract
Human cytomegalovirus (HCMV) has evolved numerous strategies to commandeer the host cell for producing viral progeny. The virus manipulates host cell cycle pathways from the early stages of infection to stimulate viral DNA replication at the expense of cellular DNA synthesis. At the same time, cell cycle checkpoints are by-passed, preventing apoptosis and allowing sufficient time for the assembly of infectious virus.
Collapse
Affiliation(s)
- V Sanchez
- Deaprtment of Microbial and Molecular Pathogenesis, Texas A&M Health Science Center, College Station, TX 77843-1266, USA
| | | |
Collapse
|
25
|
Abstract
Hbo1 is a histone acetyltransferase (HAT) that is required for global histone H4 acetylation, steroid-dependent transcription, and chromatin loading of MCM2-7 during DNA replication licensing. It is the catalytic subunit of protein complexes that include ING and JADE proteins, growth regulatory factors and candidate tumor suppressors. These complexes are thought to act via tumor suppressor p53, but the molecular mechanisms and links between stress signaling and chromatin, are currently unknown. Here, we show that p53 physically interacts with Hbo1 and negatively regulates its HAT activity in vitro and in cells. Two physiological stresses that stabilize p53, hyperosmotic shock and DNA replication fork arrest, also inhibit Hbo1 HAT activity in a p53-dependent manner. Hyperosmotic stress during G(1) phase specifically inhibits the loading of the MCM2-7 complex, providing an example of the chromatin output of this pathway. These results reveal a direct regulatory connection between p53-responsive stress signaling and Hbo1-dependent chromatin pathways.
Collapse
|
26
|
Accumulation of substrates of the anaphase-promoting complex (APC) during human cytomegalovirus infection is associated with the phosphorylation of Cdh1 and the dissociation and relocalization of APC subunits. J Virol 2007; 82:529-37. [PMID: 17942546 DOI: 10.1128/jvi.02010-07] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cell cycle dysregulation upon human cytomegalovirus (HCMV) infection of human fibroblasts is associated with the inactivation of the anaphase-promoting complex (APC), a multisubunit E3 ubiquitin ligase, and accumulation of its substrates. Here, we have further elucidated the mechanism(s) by which HCMV-induced inactivation of the APC occurs. Our results show that Cdh1 accumulates in a phosphorylated form that may prevent its association with and activation of the APC. The accumulation of Cdh1, but not its phosphorylation, appears to be cyclin-dependent kinase dependent. The lack of an association of exogenously added Cdh1 with the APC from infected cells indicates that the core APC also may be impaired. This is further supported by an examination of the localization and composition of the APC. Coimmunoprecipitation studies show that both Cdh1 and the subunit APC1 become dissociated from the complex. In addition, immunofluorescence analysis demonstrates that as the infection progresses, several subunits redistribute to the cytoplasm, while APC1 remains nuclear. Dissociation of the core complex itself would account for not only the observed inactivity but also its inability to bind to Cdh1. Taken together, these results illustrate that HCMV has adopted multiple mechanisms to inactivate the APC, which underscores its importance for a productive infection.
Collapse
|
27
|
Øster B, Kaspersen MD, Kofod-Olsen E, Bundgaard B, Höllsberg P. Human herpesvirus 6B inhibits cell proliferation by a p53-independent pathway. J Clin Virol 2007; 37 Suppl 1:S63-8. [PMID: 17276372 DOI: 10.1016/s1386-6532(06)70014-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
BACKGROUND Various forms of cellular stress can activate the tumour suppressor protein p53, an important regulator of cell cycle arrest, apoptosis, and cellular senescence. Cells infected by human herpesvirus 6B (HHV-6B) accumulate aberrant amounts of p53. OBJECTIVES The aim of this study was to investigate the role of p53 accumulation in the HHV-6B-induced cell cycle arrest. STUDY DESIGN The role of p53 was studied using the p53 inhibitor pifithrin-a, and cells genetically deficient in functional p53 by homologous recombination. RESULTS In response to HHV-6B infection, epithelial cells were arrested in the G1/S phase of the cell cycle concomitant with an aberrant accumulation of p53. However, the known p53-induced mediator of cell cycle arrest, p21, was not upregulated. Approximately 90% of the cells expressed HHV-6B p41, indicative of viral infection. The presence of pifithrin-a, a p53 inhibitor, did not reverse the HHV-6B-induced cell cycle block. In support of this, HHV-6B infection of p53(-/-) cells induced a cell cycle block before S-phase with kinetics similar to or faster than that observed by infection in wt cells. CONCLUSIONS HHV-6B infection inhibited host cell proliferation concomitantly with p53 accumulation, but importantly the block in cell cycle occurred by a pathway independent of p53.
Collapse
Affiliation(s)
- Bodil Øster
- Institute of Medical Microbiology and Immunology, University of Aarhus, Aarhus, Denmark
| | | | | | | | | |
Collapse
|
28
|
Chen Z, Knutson E, Wang S, Martinez LA, Albrecht T. Stabilization of p53 in human cytomegalovirus-initiated cells is associated with sequestration of HDM2 and decreased p53 ubiquitination. J Biol Chem 2007; 282:29284-95. [PMID: 17698841 DOI: 10.1074/jbc.m705349200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Human cytomegalovirus (HCMV) induces serum- or density-arrested human lung (LU) cells to traverse the cell cycle, providing it with a strategy to replicate in post-mitotic cells that are its cellular substrate in vivo. HCMV infection also induces high cellular levels of p53, seemingly in contradiction to the observed cell cycle progression. This study was undertaken to examine the mechanism(s) of the increased p53 abundance. HCMV infection caused a 4-fold increase in p53 that preceded a substantial increase in p53 transcripts by more than 24 h. p53 was stabilized in HCMV-infected cells (from a half-life of less than 30 min to about 8 h) and was less sensitive to proteasome-mediated degradation. Ubiquitination of p53 in mock-infected LU cells was sensitive to inhibition by trans-4-iodo, 4'-boranyl-chalcone, consistent with HDM2-catalyzing ubiquitination of p53. In HCMV-infected cells, ubiquitination of p53 was essentially undetectable. Although HDM2 had a nuclear distribution in mock-infected LU cells, in HCMV-infected cells HDM2 was translocated to the cytoplasm beginning at 12 h and demonstrated decreased cellular abundance thereafter. HDM2 was stabilized in the HCMV-infected cells by MG132, indicating a shift from p53 to HDM2 ubiquitination. p53 demonstrated a predominantly nuclear distribution in HCMV-infected cells through 48 h, resulting in p53 and HDM2 in distinct subcellular compartments. The principal mechanism responsible for increased p53 stabilization was nuclear export and degradation of HDM2. Thus, HCMV uses a shift from p53 to HDM2 ubiquitination and destabilization to obtain protracted high levels of p53, while promoting cell cycle traverse.
Collapse
Affiliation(s)
- Zhenping Chen
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas 77555-1019, USA
| | | | | | | | | |
Collapse
|
29
|
Liu J, Zhu Y, Chen I, Lau J, He F, Lau A, Wang Z, Karuppannan AK, Kwang J. The ORF3 protein of porcine circovirus type 2 interacts with porcine ubiquitin E3 ligase Pirh2 and facilitates p53 expression in viral infection. J Virol 2007; 81:9560-7. [PMID: 17581998 PMCID: PMC1951394 DOI: 10.1128/jvi.00681-07] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Porcine circovirus type 2 (PCV2) is the primary causative agent of an emerging swine disease, postweaning multisystemic wasting syndrome. We previously showed that a newly identified protein, ORF3, plays a major role in virus-induced apoptosis and is involved in viral pathogenesis in vitro and in vivo. To characterize the role of the ORF3 protein in modulation of cellular function, a yeast two-hybrid system was used to screen a porcine cDNA library to find its interacting partner. We have isolated and characterized pPirh2 (for "porcine p53-induced RING-H2"), an E3 ubiquitin ligase, which specifically interacts with the ORF3 protein of PCV2. This interaction was further confirmed when the ORF3 protein coimmunoprecipitated with and colocalized to pPirh2 in PK15 cells. The ORF3 protein has been found to interact with the p53 binding domain of pPirh2 in yeast cells. Expression of the protein results in less pPirh2 expression in PCV2-infected cells. Furthermore, increases in p53 expression were observed in PCV2-infected and ORF3 (alone)-transfected cells. Phosphorylation of p53 at Ser-46, which is related to p53-induced apoptosis, was also time-dependently activated in PCV-infected and ORF3-transfected cells. Taken together, our results show that the PCV2 ORF3 protein specifically interacts with pPirh2 and inhibits its stabilization; this may lead to increasing p53 expression, resulting in apoptosis.
Collapse
Affiliation(s)
- Jue Liu
- Animal Health Biotechnology Group, Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Luo MH, Rosenke K, Czornak K, Fortunato EA. Human cytomegalovirus disrupts both ataxia telangiectasia mutated protein (ATM)- and ATM-Rad3-related kinase-mediated DNA damage responses during lytic infection. J Virol 2006; 81:1934-50. [PMID: 17151099 PMCID: PMC1797560 DOI: 10.1128/jvi.01670-06] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Many viruses (herpes simplex virus type 1, polyomavirus, and human immunodeficiency virus type 1) require the activation of ataxia telangiectasia mutated protein (ATM) and/or Mre11 for a fully permissive infection. However, the longer life cycle of human cytomegalovirus (HCMV) may require more specific interactions with the DNA repair machinery to maximize viral replication. A prototypical damage response to the double-stranded ends of the incoming linear viral DNA was not observed in fibroblasts at early times postinfection (p.i.). Apparently, a constant low level of phosphorylated ATM was enough to phosphorylate its downstream targets, p53 and Nbs1. p53 was the only cellular protein observed to relocate at early times, forming foci in infected cell nuclei between 3.5 and 5.5 h p.i. Approximately half of these foci localized with input viral DNA, and all localized with viral UL112/113 prereplication site foci. No other DNA repair proteins localized with the virus or prereplication foci in the first 24 h p.i. When viral replication began in earnest, between 24 and 48 h p.i., there were large increases in steady-state levels and phosphorylation of many proteins involved in the damage response, presumably triggered by ATM-Rad3-related kinase activation. However, a sieving process occurred in which only certain proteins were specifically sequestered into viral replication centers and others were particularly excluded. In contrast to other viruses, activation of a damage response is neither necessary nor detrimental to infection, as neither ATM nor Mre11 was required for full virus replication and production. Thus, by preventing simultaneous relocalization of all the necessary repair components to the replication centers, HCMV subverts full activation and completion of both double-stranded break and S-phase checkpoints that should arrest all replication within the cell and likely lead to apoptosis.
Collapse
Affiliation(s)
- Min Hua Luo
- Department of Microbiology, Molecular Biology and Biochemistry and the Center for Reproductive Biology, University of Idaho, Moscow, ID 83844-3052, USA
| | | | | | | |
Collapse
|
31
|
Shlapobersky M, Sanders R, Clark C, Spector DH. Repression of HMGA2 gene expression by human cytomegalovirus involves the IE2 86-kilodalton protein and is necessary for efficient viral replication and inhibition of cyclin A transcription. J Virol 2006; 80:9951-61. [PMID: 17005673 PMCID: PMC1617307 DOI: 10.1128/jvi.01300-06] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Human cytomegalovirus (HCMV) infection results in dysregulation of several cell cycle genes, including inhibition of cyclin A transcription. In this work, we examine the effect of the HCMV infection on expression of the high-mobility group A2 (HMGA2) gene, which encodes an architectural transcription factor that is involved in cyclin A promoter activation. We find that expression of HMGA2 RNA is repressed in infected cells. To determine whether repression of HMGA2 is directly related to the inhibition of cyclin A expression and impacts on the progression of the infection, we constructed an HCMV recombinant that expressed HMGA2. In cells infected with the recombinant virus, cyclin A mRNA and protein are induced, and there is a significant delay in viral early gene expression and DNA replication. To determine the mechanism of HMGA2 repression, we used recombinant viruses that expressed either no IE1 72-kDa protein (CR208) or greatly reduced levels of IE2 86-kDa (IE2 86) protein (IE2 86DeltaSX-EGFP). At a high multiplicity of infection, the IE1 deletion mutant is comparable to the wild type with respect to inhibition of HMGA2. In contrast, the IE2 86DeltaSX-EGFP mutant does not significantly repress HMGA2 expression, suggesting that IE2 86 is involved in the regulation of this gene. Cyclin A expression is also induced in cells infected with this mutant virus. Since HMGA2 is important for cell proliferation and differentiation, particularly during embryogenesis, it is possible that the repression of HMGA2 expression during fetal development could contribute to the specific birth defects in HCMV-infected neonates.
Collapse
Affiliation(s)
- Mark Shlapobersky
- Cellular and Molecular Medicine East, Room 2059, 9500 Gilman Drive, University of California-San Diego, La Jolla, CA 92093-0712, USA
| | | | | | | |
Collapse
|
32
|
Casavant NC, Luo MH, Rosenke K, Winegardner T, Zurawska A, Fortunato EA. Potential role for p53 in the permissive life cycle of human cytomegalovirus. J Virol 2006; 80:8390-401. [PMID: 16912290 PMCID: PMC1563868 DOI: 10.1128/jvi.00505-06] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Infection of primary fibroblasts with human cytomegalovirus (HCMV) causes a rapid stabilization of the cellular protein p53. p53 is a major effector of the cellular damage response, and activation of this transcription factor can lead either to cell cycle arrest or to apoptosis. Viruses employ many tactics to avoid p53-mediated effects. One method HCMV uses to counteract p53 is sequestration into its viral replication centers. In order to determine whether or not HCMV benefits from this sequestration, we infected a p53(-/-) fibroblast line. We find that although these cells are permissive for viral infection, several parameters are substantially altered compared to wild-type (wt) fibroblasts. p53(-/-) cells show delayed and decreased accumulation of infectious viral particles compared to control fibroblasts, with the largest difference of 100-fold at 72 h post infection (p.i.) and peak titers decreased by approximately 10- to 20-fold at 144 h p.i. Viral DNA accumulation is also delayed and somewhat decreased in p53(-/-) cells; however, on average, levels of DNA are not more than fivefold lower than wt at any time p.i. and thus cannot account entirely for the observed differences in titers. In addition, there are delays in the expression of several key viral proteins, including the early replication protein UL44 and some of the late structural proteins, pp28 (UL99) and MCP (UL86). UL44 localization also indicates delayed formation and maturation of the replication centers throughout the course of infection. Localization of the major tegument protein pp65 (UL83) is also altered in these p53(-/-) cells. Partial reconstitution of the p53(-/-) cells with a wt copy of p53 returns all parameters toward wt, while reconstitution with mutant p53 does not. Taken together, our data suggest that wt p53 enhances the ability of HCMV to replicate and produce high concentrations of infectious virions in permissive cells.
Collapse
Affiliation(s)
- N C Casavant
- Department of Microbiology, Molecular Biology and Biochemistry and The Center for Reproductive Biology, University of Idaho, Moscow, 83844-3052, USA
| | | | | | | | | | | |
Collapse
|
33
|
Zhang Z, Evers DL, McCarville JF, Dantonel JC, Huong SM, Huang ES. Evidence that the human cytomegalovirus IE2-86 protein binds mdm2 and facilitates mdm2 degradation. J Virol 2006; 80:3833-43. [PMID: 16571800 PMCID: PMC1440454 DOI: 10.1128/jvi.80.8.3833-3843.2006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Levels of the p53 tumor suppressor protein are increased in human cytomegalovirus (HCMV)-infected cells and may be important for HCMV pathogenesis. In normal cells p53 levels are kept low due to an autoregulatory feedback loop where p53 activates the transcription of mdm2 and mdm2 binds and ubiquitinates p53, targeting p53 for proteasomal degradation. Here we report that, in contrast to uninfected cells, mdm2 was undetectable upon treatment of infected fibroblasts with the proteasome inhibitor MG132. Cellular depletion of mdm2 was reproducible in p53-null cells transfected with the HCMV IE2-86 protein, but not with IE172, independently of the endogenous mdm2 promoter. IE2-86 also prevented the emergence of presumably ubiquitinated species of p53. The regions of IE2-86 important for mdm2 depletion were those containing the sequences corresponding to the putative zinc finger and C-terminal acidic motifs. mdm2 and IE2-86 coimmunoprecipitated in transfected and infected cell lysates and in a cell-free system. IE2-86 blocked mdm2's p53-independent transactivation of the cyclin A promoter in transient-transfection experiments. Pulse-chase experiments revealed that IE2-86 but not IE1-72 or several loss-of-function IE2-86 mutants increased the half-life of p53 and reduced the half-life of mdm2. Short interfering RNA-mediated depletion of IE2-86 restored the ability of HCMV-infected cells to accumulate mdm2 in response to proteasome inhibition. Taken together, the data suggest that specific interactions between IE2-86 and mdm2 cause proteasome-independent degradation of mdm2 and that this may be important for the accumulation of p53 in HCMV-infected cells.
Collapse
Affiliation(s)
- Zhigang Zhang
- CB #7295, Lineberger Comprehensive Cancer Center, Rm. 32-026, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7295, USA
| | | | | | | | | | | |
Collapse
|
34
|
Nie X, Fang F, Li H, Dong Y, Zhou Y, Zhen H, Liu Z, Li G. Effects of human cytomegalovirus infection on apoptosis and expression of apoptosis-regulating factors. JOURNAL OF HUAZHONG UNIVERSITY OF SCIENCE AND TECHNOLOGY. MEDICAL SCIENCES = HUA ZHONG KE JI DA XUE XUE BAO. YI XUE YING DE WEN BAN = HUAZHONG KEJI DAXUE XUEBAO. YIXUE YINGDEWEN BAN 2006; 25:480-3. [PMID: 16463650 DOI: 10.1007/bf02895993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The present study aimed to find out dynamic changes of apoptosis in human cytomegalovirus (HCMV) infected cells and the influence of HCMV infection on activation of caspase-3 and the expression of apoptosis-regulating genes, bcl-2 and fas mRNA. The sequential changes of apoptotic cell rate in high and low MOI (MOI = 2.5 and 0.25 respectively) of HCMV infected human embryonic lung fibroblasts (HELFs) at 1 h, 12 h, 24 h, 36 h, 48 h, 72 h and 96 h post-infection were measured by flow cytometry. The expression levels of caspase-3 protein and bcl-2 and fas mRNA in HCMV infected cells (MOI = 0.25) at 72 h post-infection were detected by Western blot and in situ hybridization methods, respectively. It was found that the ratio of apoptotic cells in normal controls was consistently lower, but the rates in low and high MOI infected cells were gradually increased with time prolonged, reached peak at 96 h (8.85%) and 72 h (25.63%), respectively. By Western blot analysis, only a narrow band of 32 kD (1 kD = 0.992 1 ku) procaspase-3 was found in normal cells, but a wider procaspase-3 band and a much wider band of 17 kD proteins (p17) appeared in the infected cells. Meanwhile, the expression of bcl-2 mRNA was higher and that of fas mRNA was lower in the normal HELF cells, whereas there were significantly lower bcl-2 mRNA and higher fas mRNA expression levels in HCMV infected cells. It was concluded that HCMV was a stronger inducer of apoptosis in HELF cells. Caspase-3, as the marker of undergoing apoptosis, was expressed increasingly and activated in the infected cells, indicating its action in HCMV-inducing apoptosis. Down-regulating bcl-2 mRNA expression and up-regulating fas mRNA expression were also involved in the mechanism of HCMV-induced apoptosis.
Collapse
Affiliation(s)
- Xingcao Nie
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Rosenke K, Samuel MA, McDowell ET, Toerne MA, Fortunato EA. An intact sequence-specific DNA-binding domain is required for human cytomegalovirus-mediated sequestration of p53 and may promote in vivo binding to the viral genome during infection. Virology 2006; 348:19-34. [PMID: 16455125 DOI: 10.1016/j.virol.2005.12.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2005] [Revised: 08/12/2005] [Accepted: 12/12/2005] [Indexed: 11/23/2022]
Abstract
The p53 protein is stabilized during infection of primary human fibroblasts with human cytomegalovirus (HCMV). However, the p53 in HCMV-infected cells is unable to activate its downstream targets. HCMV accomplishes this inactivation, at least in part, by sequestering p53 into viral replication centers within the cell's nucleus soon after they are established. In order to better understand the interplay between HCMV and p53 and the mechanism of sequestration, we constructed a panel of mutant p53-GFP fusion constructs for use in transfection/infection experiments. These mutants affected several post-translational modification sites and several sites within the central sequence-specific DNA-binding domain of the protein. Two categories of p53 sequestration were observed when the mutant constructs were transfected into primary fibroblasts and then infected at either high or low multiplicity. The first category, including all of the post-translational modification mutants, showed sequestration comparable to a wild-type (wt) control, while the second category, mutants affecting the DNA-binding core, were not specifically sequestered above control GFP levels. This suggested that the DNA-binding ability of the protein was required for sequestration. When the HCMV genome was analyzed for p53 consensus binding sites, 21 matches were found, which localized either to the promoters or the coding regions of viral proteins involved in DNA replication and processing as well as structural proteins. An analysis of in vivo binding to these identified sites via chromatin immunoprecipitation assays revealed differential binding to several of the sites over the course of infection.
Collapse
Affiliation(s)
- Kyle Rosenke
- University of Idaho, Department of Microbiology, Molecular Biology and Biochemistry and Center for Reproductive Biology, Moscow, ID 83844-3052, USA
| | | | | | | | | |
Collapse
|
36
|
Andoniou CE, Degli-Esposti MA. Insights into the mechanisms of CMV‐mediated interference with cellular apoptosis. Immunol Cell Biol 2006; 84:99-106. [PMID: 16405657 DOI: 10.1111/j.1440-1711.2005.01412.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Apoptosis has the potential to function as a defence mechanism during viral infection. Identification of CMV mutants that cause the apoptotic death of infected cells confirmed that viral infection activates apoptotic pathways and that this process is counteracted by CMV to ensure efficient viral replication. The recent identification of CMV-encoded proteins that suppress cell death has greatly enhanced our understanding of the mechanisms used by this family of viruses to prevent apoptosis. CMV do not encode homologues of known death-suppressing proteins, suggesting that the CMV family has evolved novel, more sophisticated strategies for the inhibition of apoptosis. The identification and characterization of the human CMV (HCMV)-encoded antiapoptotic proteins UL36 (viral inhibitor of caspase-8 activation [vICA]) and UL37 (viral mitochondria-localized inhibitor of apoptosis [vMIA]) have confirmed that CMV target unique apoptotic control points. For example, vMIA inhibits apoptosis by binding Bax and sequestering it at the mitochondrial membrane as an inactive oligomer. This knowledge not only provides a more complete understanding of the CMV replication process but also allows the identification of previously unrecognized apoptotic checkpoints. Because HCMV is an important cause of birth defects and an increasingly important opportunistic pathogen, a firm grasp of the mechanisms by which it affects cellular apoptosis may provide avenues for the design of improved therapeutic strategies. Here, we review the recent progress made in understanding the role of CMV-encoded proteins in the inhibition of apoptosis.
Collapse
Affiliation(s)
- Christopher E Andoniou
- Immunology and Virology Program, Centre for Ophthalmology and Visual Science, University of Western Australia, Perth, Western Australia, Australia
| | | |
Collapse
|
37
|
Takemoto M, Koike M, Mori Y, Yonemoto S, Sasamoto Y, Kondo K, Uchiyama Y, Yamanishi K. Human herpesvirus 6 open reading frame U14 protein and cellular p53 interact with each other and are contained in the virion. J Virol 2005; 79:13037-46. [PMID: 16189006 PMCID: PMC1235810 DOI: 10.1128/jvi.79.20.13037-13046.2005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2005] [Accepted: 06/23/2005] [Indexed: 02/02/2023] Open
Abstract
A mass spectroscopic analysis of proteins from human herpesvirus 6 (HHV-6)-infected cells showed that the HHV-6 U14 protein coimmunoprecipitated with the tumor suppressor p53. The binding of U14 to p53 was verified by coimmunoprecipitation experiments in both Molt-3 cells infected with HHV-6 and 293 cells cotransfected with U14 and p53 expression vectors. Indirect immunofluorescence assays (IFAs) showed that by 18 h postinfection (hpi) U14 localized to the dot-like structures observed in both the nucleus and cytoplasm where p53 was partly accumulated. Despite Northern blotting evidence that U14 follows late kinetics, the U14 protein was detected immediately after infection (at 3 hpi) by IFA. In addition, by Western blotting, U14 was detected at 0 hpi or in the presence of cycloheximide which completely abolished the expression of IE1 protein. In addition to U14, p53 was detected at 0 hpi although it was not detected in mock-infected cells. Furthermore, both U14 and p53 were clearly detected in the viral particles by Western blotting and immunoelectron microscopy, supporting the idea that U14 and p53 are incorporated into virions. Our study provides the first evidence of the incorporation of cellular p53 into viral particles and suggests that p53 may play an important role in viral infection.
Collapse
Affiliation(s)
- Masaya Takemoto
- Department of Microbiology, Osaka University Graduate School of Medicine C1, Japan
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Castillo JP, Frame FM, Rogoff HA, Pickering MT, Yurochko AD, Kowalik TF. Human cytomegalovirus IE1-72 activates ataxia telangiectasia mutated kinase and a p53/p21-mediated growth arrest response. J Virol 2005; 79:11467-75. [PMID: 16103197 PMCID: PMC1193638 DOI: 10.1128/jvi.79.17.11467-11475.2005] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Human cytomegalovirus (HCMV) encodes several proteins that can modulate components of the cell cycle machinery. The UL123 gene product, IE1-72, binds the Rb-related, p107 protein and relieves its repression of E2F-responsive promoters; however, it is unable to induce quiescent cells to enter S phase in wild-type (p53(+/+)) cells. IE1-72 also induces p53 accumulation through an unknown mechanism. We present here evidence suggesting that IE1-72 may activate the p53 pathway by increasing the levels of p19(Arf) and by inducing the phosphorylation of p53 at Ser15. Phosphorylation of this residue by IE1-72 expression alone or HCMV infection is found to be dependent on the ataxia-telangiectasia mutated kinase. IE2-86 expression leads to p53 phosphorylation and may contribute to this phenotype in HCMV-infected cells. We also found that IE1-72 promotes p53 nuclear accumulation by abrogating p53 nuclear shuttling. These events result in the stimulation of p53 activity, leading to a p53- and p21-dependent inhibition of cell cycle progression from G(1) to S phase in cells transiently expressing IE1-72. Thus, like many of the small DNA tumor viruses, the first protein expressed upon HCMV infection activates a p53 response by the host cell.
Collapse
Affiliation(s)
- Jonathan P Castillo
- Program in Immunology and Virology, University of Massachusetts Medical School, Worcester, 01655, USA
| | | | | | | | | | | |
Collapse
|
39
|
Evers DL, Chao CF, Wang X, Zhang Z, Huong SM, Huang ES. Human cytomegalovirus-inhibitory flavonoids: studies on antiviral activity and mechanism of action. Antiviral Res 2005; 68:124-34. [PMID: 16188329 PMCID: PMC7114262 DOI: 10.1016/j.antiviral.2005.08.002] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2005] [Revised: 08/02/2005] [Accepted: 08/03/2005] [Indexed: 11/06/2022]
Abstract
We report antiviral activity against human cytomegalovirus for certain dietary flavonoids and their likely biochemical mechanisms of action. Nine out of ten evaluated flavonoids blocked HCMV replication at concentrations that were significantly lower than those producing cytotoxicity against growing or stationary phase host cells. Baicalein was the most potent inhibitor in this series (IC50 = 0.4–1.2 μM), including positive control ganciclovir. Baicalein and genistein were chosen as model compounds to study the antiviral mechanism(s) of action for this series. Both flavonoids significantly reduced the levels of HCMV early and late proteins, as well as viral DNA synthesis. Baicalein reduced the levels of HCMV immediate-early proteins to nearly background levels while genistein did not. The antiviral effects of genistein, but not baicalein, were fully reversible in cell culture. Pre-incubation of concentrated virus stocks with either flavonoid did not inhibit HCMV replication, suggesting that baicalein did not directly inactivate virus particles. Baicalein functionally blocked epidermal growth factor receptor tyrosine kinase activity and HCMV nuclear translocation, while genistein did not. At 24 h post infection HCMV-infected cells treated with genistein continued to express immediate-early proteins and efficiently phosphorylate IE1-72. However, HCMV induction of NF-κB and increases in the levels of cell cycle regulatory proteins—events that are associated with immediate-early protein functioning – were absent. The data suggested that the primary mechanism of action for baicalein may be to block HCMV infection at entry while the primary mechanism of action for genistein may be to block HCMV immediate-early protein functioning.
Collapse
Affiliation(s)
- David L. Evers
- Lineberger Comprehensive Cancer Center, Rm. 32-026, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7295, USA
| | - Chih-Fang Chao
- Lineberger Comprehensive Cancer Center, Rm. 32-026, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7295, USA
| | - Xin Wang
- Lineberger Comprehensive Cancer Center, Rm. 32-026, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7295, USA
| | - Zhigang Zhang
- Lineberger Comprehensive Cancer Center, Rm. 32-026, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7295, USA
| | - Shu-Mei Huong
- Lineberger Comprehensive Cancer Center, Rm. 32-026, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7295, USA
| | - Eng-Shang Huang
- Lineberger Comprehensive Cancer Center, Rm. 32-026, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7295, USA
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7295, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7295, USA
- Corresponding author. Tel.: +1 919 966 4323; fax: +1 919 966 4303.
| |
Collapse
|
40
|
Song YJ, Stinski MF. Inhibition of cell division by the human cytomegalovirus IE86 protein: role of the p53 pathway or cyclin-dependent kinase 1/cyclin B1. J Virol 2005; 79:2597-603. [PMID: 15681459 PMCID: PMC546562 DOI: 10.1128/jvi.79.4.2597-2603.2005] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human cytomegalovirus (HCMV) IE86 protein induces the human fibroblast cell cycle from G(0)/G(1) to G(1)/S, where cell cycle progression stops. Cells with a wild-type, mutated, or null p53 or cells with null p21 protein were transduced with replication-deficient adenoviruses expressing HCMV IE86 protein or cellular p53 or p21. Even though S-phase genes were activated in a p53 wild-type cell, IE86 protein also induced phospho-Ser(15) p53 and p21 independent of p14ARF but dependent on ATM kinase. These cells did not enter the S phase. In human p53 mutant, p53 null, or p21 null cells, IE86 protein did not up-regulate p21, cellular DNA synthesis was not inhibited, but cell division was inhibited. Cells accumulated in the G(2)/M phase, and there was increased cyclin-dependent kinase 1/cyclin B1 activity. Although the HCMV IE86 protein increases cellular E2F activity, it also blocks cell division in both p53(+/+) and p53(-/-) cells.
Collapse
Affiliation(s)
- Yoon-Jae Song
- Department of Microbiology, Carver College of Medicine, The University of Iowa, Iowa City, IA 52242, USA
| | | |
Collapse
|
41
|
Abstract
Cytomegaloviruses (CMVs), a subset of betaherpesviruses, employ multiple strategies to suppress apoptosis in infected cells and thus to delay their death. Human cytomegalovirus (HCMV) encodes at least two proteins that directly interfere with the apoptotic signaling pathways, viral inhibitor of caspase-8-induced apoptosis vICA (pUL36), and mitochondria-localized inhibitor of apoptosis vMIA (pUL37 x 1). vICA associates with pro-caspase-8 and appears to block its recruitment to the death-inducing signaling complex (DISC), a step preceding caspase-8 activation. vMIA binds and sequesters Bax at mitochondria, and interferes with BH3-only-death-factor/Bax-complex-mediated permeabilization of mitochondria. vMIA does not seem to either interact with Bak, a close structural and functional homologue of Bax, or to suppress Bak-mediated permeabilization of mitochondria and Bak-mediated apoptosis. All sequenced betaherpesviruses, including CMVs, encode close homologues of vICA, and those vICA homologues that have been tested, were found to be functional cell death suppressors. Overt sequence homologues of vMIA were found only in the genomes of primate CMVs, but recent observations made with murine CMV (MCMV) indicate that non-primate CMVs may also encode a cell death suppressor functionally resembling vMIA. The exact physiological roles and relative contributions of vMIA and vICA in suppressing death of CMV-infected cells in vivo have not been elucidated. There is strong evidence that the cell death suppressing function of vMIA is indispensable, and that vICA is dispensable for replication of HCMV. In addition to suppressed caspase-8 activation and sequestered Bax, CMV-infected cells display several other phenomena, less well characterized, that may diminish, directly or indirectly the extent of cell death.
Collapse
Affiliation(s)
- V S Goldmacher
- ImmunoGen, Inc., 128 Sidney St., Cambridge, MA 02139, USA.
| |
Collapse
|
42
|
Evers DL, Wang X, Huang ES. Cellular stress and signal transduction responses to human cytomegalovirus infection. Microbes Infect 2004; 6:1084-93. [PMID: 15380778 DOI: 10.1016/j.micinf.2004.05.026] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Human cytomegalovirus (HCMV) receptor-ligand interactions and viral entry excite cellular responses such as receptor tyrosine kinase and mitogen-activated protein kinase signaling, cytoskeletal rearrangement, and the induction of transcription factors, prostaglandins, and cytokines. Bi-phasic stimulation of these pathways, excepting interferon, facilitates productive viral infection and likely contributes to viral pathogenesis.
Collapse
Affiliation(s)
- David L Evers
- Lineberger Comprehensive Cancer Center, CB No. 7295, Room 32-026, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7295, USA
| | | | | |
Collapse
|
43
|
Sanchez V, McElroy AK, Yen J, Tamrakar S, Clark CL, Schwartz RA, Spector DH. Cyclin-dependent kinase activity is required at early times for accurate processing and accumulation of the human cytomegalovirus UL122-123 and UL37 immediate-early transcripts and at later times for virus production. J Virol 2004; 78:11219-32. [PMID: 15452241 PMCID: PMC521808 DOI: 10.1128/jvi.78.20.11219-11232.2004] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Human cytomegalovirus (HCMV) infection leads to dysregulation of multiple cell cycle-regulatory proteins. In this study, we examined the effects of inhibition of cyclin-dependent kinase (cdk) activity on viral replication. With the drug Roscovitine, a specific inhibitor of cyclin-dependent kinases 1, 2, 5, 7, and 9, we have shown that during the first 6 h of infection, cyclin-dependent kinase-dependent events occurred that included the regulated processing and accumulation of the immediate-early (IE) UL122-123 transcripts and UL36-37 transcripts. Altered processing of UL122-123 led to a loss of IE1-72 and an increase in IE2-86. The ratio of spliced to unspliced UL37 transcripts also changed. These effects did not require de novo protein synthesis or degradation of proteins by the proteasome. Addition of Roscovitine at the beginning of the infection was also associated with inhibition of expression of selected viral early gene products, viral DNA replication, and late viral gene expression. When Roscovitine was added after the first 6 h of infection, the effects on IE gene expression were no longer observed and viral replication proceeded through the late phase, but viral titers were reduced. The reduction in viral titer was observed even when Roscovitine was first added at 48 h postinfection, indicating that cyclin-dependent kinase activity is required at both IE and late times. Flavopiridol, another specific inhibitor of cyclin-dependent kinases, had similar effects on IE and early gene expression. These results underscore the importance of accurate RNA processing and reiterate the significant role of cell cycle-regulatory factors in HCMV infection.
Collapse
Affiliation(s)
- Veronica Sanchez
- Molecular Biology Section, Mail Code 0366, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0366, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Chen CJ, Sugiyama K, Kubo H, Huang C, Makino S. Murine coronavirus nonstructural protein p28 arrests cell cycle in G0/G1 phase. J Virol 2004; 78:10410-9. [PMID: 15367607 PMCID: PMC516409 DOI: 10.1128/jvi.78.19.10410-10419.2004] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Murine coronavirus mouse hepatitis virus (MHV) gene 1 encodes several nonstructural proteins. The functions are unknown for most of these nonstructural proteins, including p28, which is encoded at the 5' end of the MHV genome. Transient expression of cloned p28 in several different cultured cells inhibited cell growth, indicating that p28 expression suppressed cell proliferation. Expressed p28 was exclusively localized in the cytoplasm. Cell cycle analysis by flow cytometry demonstrated that p28 expression induced G(0)/G(1) cell cycle arrest. Characterization of various cellular proteins that are involved in regulating cell cycle progression demonstrated that p28 expression resulted in an accumulation of hypophosphorylated retinoblastoma protein (pRb), tumor suppressor p53, and cyclin-dependent kinase (Cdk) inhibitor p21(Cip1). Expression of p28 did not alter the amount of p53 transcripts yet increased the amount of p21(Cip1) transcripts, suggesting that p28 expression increased p53 stability and that p21(Cip1) was transcriptionally activated in a p53-dependent manner. Our present data suggest the following model of p28-induced G(0)/G(1) cell cycle arrest. Expressed cytoplasmic p28 induces the stabilization of p53, and accumulated p53 causes transcriptional upregulation of p21(Cip1). The increased amount of p21(Cip1) suppresses cyclin E/Cdk2 activity, resulting in the inhibition of pRb hyperphosphorylation. Accumulation of hypophosphorylated pRb thus prevents cell cycle progression from G(0)/G(1) to S phase.
Collapse
Affiliation(s)
- Chun-Jen Chen
- Department of Microbiology and Immunology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555-1019, USA
| | | | | | | | | |
Collapse
|
45
|
Goldmacher VS. Cell death suppressors encoded by cytomegalovirus. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2004; 36:1-18. [PMID: 15171604 DOI: 10.1007/978-3-540-74264-7_1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
46
|
Takemoto M, Mori Y, Ueda K, Kondo K, Yamanishi K. Productive human herpesvirus 6 infection causes aberrant accumulation of p53 and prevents apoptosis. J Gen Virol 2004; 85:869-879. [PMID: 15039530 DOI: 10.1099/vir.0.19626-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
p53 plays an important role in tumour suppression in cells exposed to some genotoxic stresses. We found that the p53 protein level was increased in a variety of cell lines infected with human herpesvirus 6 (HHV-6). Because the elevation in p53 began very soon after infection (4 h) and did not occur with UV-inactivated virus infection, it appeared to require the expression of one or more viral immediate-early (IE) genes. To elucidate the mechanism of p53 induction, we investigated its regulation at the protein level. Pulse-chase analysis showed that the stability of p53 increased in HHV-6-infected cells. In addition, the ubiquitination of p53 decreased after infection, indicating that the stability of p53 was increased through deubiquitination. We showed by confocal microscopy that the additional p53 mainly localized to the cytoplasm and that p53 was retained in the cytoplasm even after UV irradiation, but that it translocated into the nucleus in mock-infected cells. Furthermore, DNA fragmentation analysis, a terminal deoxynucleotidyl transferase-mediated dUTP nick end-labelling (TUNEL) assay and annexin V staining showed that infected cells were resistant to UV-induced apoptosis. These results lead us to propose that HHV-6 has a mechanism for retaining p53 within the cytoplasm and protects the infected cells from apoptosis.
Collapse
Affiliation(s)
- Masaya Takemoto
- Department of Microbiology, Osaka University Medical School C1, 2-2 Yamada-Oka Suita, Osaka 565-0871, Japan
| | - Yasuko Mori
- Department of Microbiology, Osaka University Medical School C1, 2-2 Yamada-Oka Suita, Osaka 565-0871, Japan
| | - Keiji Ueda
- Department of Microbiology, Osaka University Medical School C1, 2-2 Yamada-Oka Suita, Osaka 565-0871, Japan
| | - Kazuhiro Kondo
- Department of Microbiology, Osaka University Medical School C1, 2-2 Yamada-Oka Suita, Osaka 565-0871, Japan
| | - Koichi Yamanishi
- Department of Microbiology, Osaka University Medical School C1, 2-2 Yamada-Oka Suita, Osaka 565-0871, Japan
| |
Collapse
|
47
|
Yadavilli S, Muganda PM. Diepoxybutane induces caspase and p53-mediated apoptosis in human lymphoblasts. Toxicol Appl Pharmacol 2004; 195:154-65. [PMID: 14998682 DOI: 10.1016/j.taap.2003.11.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2003] [Accepted: 11/03/2003] [Indexed: 11/22/2022]
Abstract
Diepoxybutane (DEB) is the most potent metabolite of the environmental chemical 1,3-butadiene (BD), which is prevalent in petrochemical industrial areas. BD is a known mutagen and human carcinogen, and possesses multiorgan systems toxicity that includes bone marrow depletion, spleen, and thymus atrophy. Toxic effects of BD are mediated through its epoxy metabolites. In working towards elucidating the cellular and molecular mechanisms of BD toxicity, we investigated the ability of DEB to induce apoptosis in human lymphoblasts. DEB induced a concentration and exposure time-dependent apoptosis, which accounted for the DEB-induced loss of cell viability observed in TK6 lymphoblasts. The DEB-induced apoptosis was inhibited by inhibitors of caspases 3 and 9. The role of p53 in mediating the DEB-induced apoptosis was also investigated. DEB induced elevated p53 levels in direct correlation to the extent of DEB-induced apoptosis, as the concentration of DEB increased up to 5 microM. The extent of DEB-induced apoptosis was dramatically higher in TK6 lymphoblasts as compared to the genetically paired p53-deficient NH32 lymphoblasts under the same experimental conditions. Our results confirm and extend observations on the occurrence of apoptosis in DEB exposed cells, and demonstrate for the first time the elevation of p53 levels in human lymphoblasts in response to DEB exposure. In addition, our results demonstrate for the first time that DEB-induced apoptosis is mediated by caspases 3 and 9, as well as the p53 protein. It is possible that DEB-induced apoptosis may explain BD-induced bone marrow depletion, spleen and thymus atrophy in BD-exposed animals.
Collapse
Affiliation(s)
- Sridevi Yadavilli
- Environmental Toxicology Ph.D. Program, Southern University, Baton Rouge, LA 70813, USA
| | | |
Collapse
|
48
|
De Bolle L, Hatse S, Verbeken E, De Clercq E, Naesens L. Human herpesvirus 6 infection arrests cord blood mononuclear cells in G(2) phase of the cell cycle. FEBS Lett 2004; 560:25-9. [PMID: 14987992 DOI: 10.1016/s0014-5793(04)00035-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2003] [Revised: 01/05/2004] [Accepted: 01/12/2004] [Indexed: 01/05/2023]
Abstract
We here report that after infection with human herpesvirus 6A, human cord blood mononuclear cells accumulate in G(2)/M phase of the cell cycle. Experiments with foscarnet or ultraviolet (UV)-irradiated virus stocks pointed at an (immediate-)early, newly formed viral protein to be responsible for the arrest. At the molecular level, p53, cyclin B(1), cyclin A and tyrosine(15)-phosphorylated cdk1 accumulated after HHV-6A infection, indicating an arrest in G(2). However, no change was observed in the levels of downstream effectors of p53 in establishing a G(2) arrest, i.e. p21 and 14-3-3sigma. We thus conclude that the HHV-6A-induced G(2) arrest occurs independently of p53 accumulation.
Collapse
Affiliation(s)
- Leen De Bolle
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium.
| | | | | | | | | |
Collapse
|
49
|
Noris E, Zannetti C, Demurtas A, Sinclair J, De Andrea M, Gariglio M, Landolfo S. Cell cycle arrest by human cytomegalovirus 86-kDa IE2 protein resembles premature senescence. J Virol 2002; 76:12135-48. [PMID: 12414954 PMCID: PMC136868 DOI: 10.1128/jvi.76.23.12135-12148.2002] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Primary human embryo lung fibroblasts and adult diploid fibroblasts infected by the human cytomegalovirus (HCMV) display beta-galactosidase (beta-Gal) activity at neutral pH (senescence-associated beta-Gal [SA-beta-Gal] activity) and overexpression of the plasminogen activator inhibitor type 1 (PAI-1) gene, two widely recognized markers of the process designated premature cell senescence. This activity is higher when cells are serum starved for 48 h before infection, a process that speeds and facilitates HCMV infection but that is insufficient by itself to induce senescence. Fibroblasts infected by HCMV do not incorporate bromodeoxyuridine, a prerequisite for the formal definition of senescence. At the molecular level, cells infected by HCMV, beside the accumulation of large amounts of the cell cycle regulators p53 and pRb, the latter in its hyperphosphorylated form, display a strong induction of the cyclin-dependent kinase inhibitor (cdki) p16(INK4a), a direct effector of the senescence phenotype in fibroblasts, and a decrease of the cdki p21(CIP1/WAF). Finally, a replicative senescence state in the early phases of infection significantly increased the number of cells permissive to virus infection and enhanced HCMV replication. HCMV infection assays carried out in the presence of phosphonoformic acid, which inhibits the virus DNA polymerase and the expression of downstream genes, indicated that immediate-early and/or early (alpha) genes are sufficient for the induction of SA-beta-Gal activity. When baculovirus vectors expressing HCMV IE1-72 or IE2-86 proteins were inoculated into fibroblasts, the increase of p16(INK4a) (observed predominantly with IE2-86) was similar to that observed with the whole virus, as was the induction of SA-beta-Gal activity, suggesting that the viral IE2 gene leads infected cells into senescence. Altogether our results demonstrate for the first time that HCMV, after arresting the cell cycle and inhibiting apoptosis, triggers the cellular senescence program, probably through the p16(INK4a) and p53 pathways.
Collapse
Affiliation(s)
- Emanuela Noris
- Department of Public Health and Microbiology, University of Turin, Italy
| | | | | | | | | | | | | |
Collapse
|
50
|
Chan G, Hemmings DG, Yurochko AD, Guilbert LJ. Human cytomegalovirus-caused damage to placental trophoblasts mediated by immediate-early gene-induced tumor necrosis factor-alpha. THE AMERICAN JOURNAL OF PATHOLOGY 2002; 161:1371-81. [PMID: 12368210 PMCID: PMC1867293 DOI: 10.1016/s0002-9440(10)64413-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Infection of the fetal epithelium (trophoblast) lining the villous placenta by human cytomegalovirus (HCMV) accompanies placental inflammations and fetal intrauterine growth restriction. However, the consequences of infection on the villous trophoblast have not been explored. We show that HCMV infection of primary immature (cytotrophoblast-like) or mature (syncytiotrophoblast-like) cultures results in loss of half of the cells within 24 hours of virus challenge. Two-color immunofluorescence of HCMV immediate early (IE) gene expression and apoptosis (terminal dUTP nick-end labeling) revealed apoptosis only in uninfected cells. Antibody to tumor necrosis factor (TNF)-alpha completely inhibited infection-induced trophoblast apoptosis and cell loss, as did co-incubation with epidermal growth factor, known to inhibit trophoblast apoptosis. Transfection with HCMV immediate early- (IE)1-72 and IE2-86, but not IE2-55, expression plasmids induced paracrine trophoblast apoptosis inhibitable by epidermal growth factor or antibody to TNF-alpha. These results show that HCMV infection of villous trophoblasts leads to rapid loss of neighboring cells mediated by viral IE protein-induced TNF-alpha secretion. We propose that HCMV infection damages the placental trophoblast barrier by accelerating trophoblast turnover and decreasing its capacity for renewal.
Collapse
Affiliation(s)
- Gary Chan
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | |
Collapse
|