1
|
Menezes KMF, Dábilla N, Souza M, Damasceno AD, Torres BBJ. Identification of a new polymorphism on the wild-type canine distemper virus genome: could this contribute to vaccine failures? Braz J Microbiol 2023; 54:665-678. [PMID: 37140816 PMCID: PMC10235312 DOI: 10.1007/s42770-023-00971-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/07/2023] [Indexed: 05/05/2023] Open
Abstract
The canine distemper virus (CDV) is responsible for a multisystem infectious disease with high prevalence in dogs and wild carnivores and has vaccination as the main control measure. However, recent studies show an increase in cases including vaccinated dogs in different parts of the world. There are several reasons for vaccine failures, including differences between vaccine strains and wild-type strains. In this study, a phylogenetic analysis of CDV strains from samples of naturally infected, vaccinated, and symptomatic dogs in Goiânia, Goiás, Brazil was performed with partial sequencing of the hemagglutinin (H) gene of CDV. Different sites of amino acid substitutions were found, and one strain had the Y549H mutation, typically present in samples from wild animals. Substitutions in epitopes (residues 367, 376, 379, 381, 386, and 388) that may interfere with the vaccine's ability to provide adequate protection against infection for CDV were observed. The identified strains were grouped in the South America 1/Europe lineage, with a significant difference from other lineages and vaccine strains. Twelve subgenotypes were characterized, considering a nucleotide identity of at least 98% among the strains. These findings highlight the relevance of canine distemper infection and support the need better monitoring of the circulating strains that contribute to elucidate if there is a need for vaccine update.
Collapse
Affiliation(s)
| | - Nathânia Dábilla
- Instituto de Patologia Tropical E Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Menira Souza
- Instituto de Patologia Tropical E Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Adilson Donizeti Damasceno
- Escola de Veterinária E Zootecnia, Universidade Federal de Goiás - UFG, Campus II CEP 74690900, Goiânia, GO, Brazil
| | - Bruno Benetti Junta Torres
- Escola de Veterinária E Zootecnia, Universidade Federal de Goiás - UFG, Campus II CEP 74690900, Goiânia, GO, Brazil
| |
Collapse
|
2
|
GENETIC CHARACTERISTICS OF CANINE DISTEMPER VIRUSES CIRCULATING IN WILDLIFE IN THE UNITED STATES. J Zoo Wildl Med 2020; 50:790-797. [PMID: 31926508 DOI: 10.1638/2019-0052] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2019] [Indexed: 11/21/2022] Open
Abstract
Canine distemper virus (CDV) is a highly contagious disease of wild and domestic mammals. Maintenance of CDV among wildlife plays an important role in the disease epidemiology. Wild animals, including raccoons (Procyon lotor) and gray foxes (Urocyon cinereoargenteus), serve as reservoirs of CDV and hamper the control of the disease. Recently, we discovered that at least three different CDV lineages (America-3 [Edomex], America-4, and America-5] that are genetically different from the available vaccine strains are circulating in domestic dogs in the United States. Because wildlife serve as a reservoir for the virus, it is important to determine if wildlife play a role in the maintenance and spread of these lineages. To determine the genetic characteristics of circulating strains of CDV in wildlife in various geographic regions in the United States, we studied the nucleotide sequences of the hemagglutinin (H) gene of 25 CDV strains detected in nondomestic species. The species included were free-ranging wildlife: three fishers (Martes pennanti), six foxes, one skunk (Mephitis mephitis), 10 raccoons, two wolves (Canis lupus), and one mink (Neovison vison). Strains from two species in managed care, one sloth (Choloepus didactylus) and one red panda (Ailurus fulgens), were also evaluated. Phylogenetic analysis of the H genes indicated that in addition to America-3, America-4, and America-5 lineages, there are at least two other lineages circulating in US wildlife. One of these includes CDV nucleotide sequences that grouped with that of a single CDV isolate previously detected in a raccoon from Rhode Island in 2012. The other lineage is independent and genetically distinct from other CDV strains included in the analysis. Additional genetically variable strains were detected, mainly in raccoons, suggesting that this species may be the host responsible for the genetic variability of newly detected strains in the domestic dog population.
Collapse
|
3
|
Anis E, Newell TK, Dyer N, Wilkes RP. Phylogenetic analysis of the wild-type strains of canine distemper virus circulating in the United States. Virol J 2018; 15:118. [PMID: 30068352 PMCID: PMC6090796 DOI: 10.1186/s12985-018-1027-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 07/17/2018] [Indexed: 12/14/2022] Open
Abstract
Background Canine distemper (CD) is a highly contagious, systemic, viral disease of dogs seen worldwide. Despite intensive vaccination in developed countries, recent reports suggest both the re-emergence and increased activity of Canine distemper virus (CDV) worldwide, including the United States. CDV is an RNA virus of the genus Morbillivirus within the family Paramyxoviridae. Viral genomic RNA encodes six structural proteins. Of the six structural proteins, the hemagglutinin (H) gene has the greatest genetic variation and is therefore a suitable target for molecular epidemiological studies. The majority of neutralizing epitopes are found on the H protein, making this gene also important for evaluation of changes over time that may result in antigenic differences among strains. The aim of this study was to determine the phylogenetic relationship of CDV strains circulating in the US. Methods Fifty-nine positive canine distemper virus samples collected from dogs from different regions and states from 2014 to 2017 were sequenced with a targeted next-generation sequencing (NGS) method. The sequences of the H, F, and P genes and the matrix-fusion (M-F) intergenic region of the amplified CDVs were analyzed individually. Results Sequence analysis of the H gene revealed that there are at least 3 different lineages of CDV currently circulating in the US. These lineages include America-3 (Edomex), America-4, and a clade that was previously reported in association with an outbreak in Wyoming, which was linked to a domestic dog-breeding facility in Kansas in 2010. These lineages differ from the historically identified lineages in the US, including America-1, which contains the majority of the vaccine strains. Genetic differences may result in significant changes to the neutralizing epitopes that consequently may lead to vaccine failure. Phylogenetic analyses of the nucleotide sequences obtained in this study of the F and P genes and the M-F intergenic region with sequences from the GenBank database produced similar findings to the H gene analysis. Conclusions The CDV lineages currently circulating in the US differ from the historically identified lineages America-1. Continuous surveillance is required for monitoring circulating CDV strains in the US, to prevent potential vaccine breakthrough events. Electronic supplementary material The online version of this article (10.1186/s12985-018-1027-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Eman Anis
- Tifton Veterinary Diagnostic and Investigational Laboratory, College of Veterinary Medicine, University of Georgia, PO Box 1389, 43 Brighton Rd, Tifton, GA, 31793, USA.,The Department of Virology, Faculty of Veterinary Medicine, University of Sadat, Sadat City, Egypt
| | - Teresa K Newell
- Veterinary Diagnostic Services Department, North Dakota State University, Dept. 7691, P.O. Box 6050, Fargo, North, Dakota, 58105, USA
| | - Neil Dyer
- Veterinary Diagnostic Services Department, North Dakota State University, Dept. 7691, P.O. Box 6050, Fargo, North, Dakota, 58105, USA
| | - Rebecca P Wilkes
- Tifton Veterinary Diagnostic and Investigational Laboratory, College of Veterinary Medicine, University of Georgia, PO Box 1389, 43 Brighton Rd, Tifton, GA, 31793, USA.
| |
Collapse
|
4
|
Measles Virus Hemagglutinin Protein Epitopes: The Basis of Antigenic Stability. Viruses 2016; 8:v8080216. [PMID: 27490564 PMCID: PMC4997578 DOI: 10.3390/v8080216] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 07/19/2016] [Accepted: 07/20/2016] [Indexed: 02/07/2023] Open
Abstract
Globally eliminating measles using available vaccines is biologically feasible because the measles virus (MV) hemagglutinin (H) protein is antigenically stable. The H protein is responsible for receptor binding, and is the main target of neutralizing antibodies. The immunodominant epitope, known as the hemagglutinating and noose epitope, is located near the receptor-binding site (RBS). The RBS also contains an immunodominant epitope. Loss of receptor binding correlates with an escape from the neutralization by antibodies that target the epitope at RBS. Another neutralizing epitope is located near RBS and is shielded by an N-linked sugar in certain genotype strains. However, human sera from vaccinees and measles patients neutralized all MV strains with similar efficiencies, regardless of the N-linked sugar modification or mutations at these epitopes. Two other major epitopes exist at a distance from RBS. One has an unstructured flexible domain with a linear neutralizing epitope. When MV-H forms a tetramer (dimer of dimers), these epitopes may form the dimer-dimer interface, and one of the two epitopes may also interact with the F protein. The neutralization mechanisms of antibodies that recognize these epitopes may involve inhibiting the H-F interaction or blocking the fusion cascade after MV-H binds to its receptors.
Collapse
|
5
|
Beaty SM, Lee B. Constraints on the Genetic and Antigenic Variability of Measles Virus. Viruses 2016; 8:109. [PMID: 27110809 PMCID: PMC4848602 DOI: 10.3390/v8040109] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 04/06/2016] [Accepted: 04/14/2016] [Indexed: 01/04/2023] Open
Abstract
Antigenic drift and genetic variation are significantly constrained in measles virus (MeV). Genetic stability of MeV is exceptionally high, both in the lab and in the field, and few regions of the genome allow for rapid genetic change. The regions of the genome that are more tolerant of mutations (i.e., the untranslated regions and certain domains within the N, C, V, P, and M proteins) indicate genetic plasticity or structural flexibility in the encoded proteins. Our analysis reveals that strong constraints in the envelope proteins (F and H) allow for a single serotype despite known antigenic differences among its 24 genotypes. This review describes some of the many variables that limit the evolutionary rate of MeV. The high genomic stability of MeV appears to be a shared property of the Paramyxovirinae, suggesting a common mechanism that biologically restricts the rate of mutation.
Collapse
Affiliation(s)
- Shannon M Beaty
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Benhur Lee
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
6
|
Kimura H, Saitoh M, Kobayashi M, Ishii H, Saraya T, Kurai D, Tsukagoshi H, Shirabe K, Nishina A, Kozawa K, Kuroda M, Takeuchi F, Sekizuka T, Minakami H, Ryo A, Takeda M. Molecular evolution of haemagglutinin (H) gene in measles virus. Sci Rep 2015; 5:11648. [PMID: 26130388 PMCID: PMC4486977 DOI: 10.1038/srep11648] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 05/27/2015] [Indexed: 11/30/2022] Open
Abstract
We studied the molecular evolution of the haemagglutinin (H) gene (full length) in all genotypes (24 genotypes, 297 strains) of measles virus (MeV). The gene’s evolutionary timescale was estimated by the Bayesian Markov chain Monte Carlo (MCMC) method. We also analysed positive selection sites. The MCMC tree indicated that the MeV H gene diverged from the rinderpest virus (same genus) about 250 years ago and that 24 MeV genotypes formed 3 lineages dating back to a 1915 ancestor (95% highest posterior density [HPD] 1882–1941) with relatively rapid evolution (mean rate: 9.02 × 10−4 substitutions/site/year). The 3 lineages diverged in 1915 (lineage 1, 95% HPD 1882–1941), 1954 (lineage 2, 95% HPD 1937–1969), and 1940 (lineage 3, 95% HPD 1927–1952). These 24 genotypes may have diverged and emerged between the 1940s and 1990s. Selective pressure analysis identified many negative selection sites on the H protein but only a few positive selection sites, suggesting strongly operated structural and/or functional constraint of changes on the H protein. Based on the molecular evolution of H gene, an ancestor MeV of the 24 genotypes emerged about 100 years ago and the structure of H protein has been well conserved.
Collapse
Affiliation(s)
- Hirokazu Kimura
- Infectious Disease Surveillance Center, National Institute of Infectious Diseases, Musashimurayama-shi, Tokyo 208-0011, Japan.,Department of Molecular Biodefence Research, Yokohama City University Graduate School of Medicine, Yokohama-shi, Kanagawa 236-0004, Japan
| | - Mika Saitoh
- Gunma Prefectural Institute of Public Health and Environmental Sciences, Maebashi-shi, Gunma 371-0052, Japan
| | - Miho Kobayashi
- Gunma Prefectural Institute of Public Health and Environmental Sciences, Maebashi-shi, Gunma 371-0052, Japan
| | - Haruyuki Ishii
- Department of Respiratory Medicine, Kyorin University, School of Medicine, Mitaka-shi, Tokyo 181-0004, Japan
| | - Takeshi Saraya
- Department of Respiratory Medicine, Kyorin University, School of Medicine, Mitaka-shi, Tokyo 181-0004, Japan
| | - Daisuke Kurai
- Department of Respiratory Medicine, Kyorin University, School of Medicine, Mitaka-shi, Tokyo 181-0004, Japan
| | - Hiroyuki Tsukagoshi
- Gunma Prefectural Institute of Public Health and Environmental Sciences, Maebashi-shi, Gunma 371-0052, Japan
| | - Komei Shirabe
- Yamaguchi Prefectural Institute of Public Health and Environment, Yamaguchi-shi, Yamaguchi 753-0821, Japan
| | - Atsuyoshi Nishina
- College of Science and Technology, Nihon University, Chiyoda-ku, Tokyo 101-8308, Japan
| | - Kunihisa Kozawa
- Gunma Prefectural Institute of Public Health and Environmental Sciences, Maebashi-shi, Gunma 371-0052, Japan
| | - Makoto Kuroda
- Pathogen Genomics Center, National Institute of Infectious Diseases, Musashimurayama-shi, Tokyo 208-0011, Japan
| | - Fumihiko Takeuchi
- Pathogen Genomics Center, National Institute of Infectious Diseases, Musashimurayama-shi, Tokyo 208-0011, Japan
| | - Tsuyoshi Sekizuka
- Pathogen Genomics Center, National Institute of Infectious Diseases, Musashimurayama-shi, Tokyo 208-0011, Japan
| | - Hisanori Minakami
- Department of Obstetrics, Hokkaido University Graduate School of Medicine, Sapporo-shi, Hokkaido 060-8638, Japan
| | - Akihide Ryo
- Department of Molecular Biodefence Research, Yokohama City University Graduate School of Medicine, Yokohama-shi, Kanagawa 236-0004, Japan
| | - Makoto Takeda
- Department of Virology III, National Institute of Infectious Diseases, Musashimurayama-shi, Tokyo 208-0011, Japan
| |
Collapse
|
7
|
Friedel T, Hanisch LJ, Muth A, Honegger A, Abken H, Plückthun A, Buchholz CJ, Schneider IC. Receptor-targeted lentiviral vectors are exceptionally sensitive toward the biophysical properties of the displayed single-chain Fv. Protein Eng Des Sel 2015; 28:93-106. [PMID: 25715658 DOI: 10.1093/protein/gzv005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
An increasing number of applications require the expression of single-chain variable fragments (scFv) fusion proteins in mammalian cells at the cell surface membrane. Here we assessed the CD30-specific scFv HRS3, which is used in immunotherapy, for its ability to retarget lentiviral vectors (LVs) to CD30 and to mediate selective gene transfer into CD30-positive cells. Fused to the C-terminus of the type-II transmembrane protein hemagglutinin (H) of measles virus and expressed in LV packaging cells, gene transfer mediated by the released LV particles was inefficient. A series of point mutations in the scFv framework regions addressing its biophysical properties, which substantially improved production and increased the melting temperature without impairing its kinetic binding behavior to CD30, also improved the performance of LV particles. Gene transfer into CD30-positive cells increased ∼100-fold due to improved transport of the H-scFv protein to the plasma membrane. Concomitantly, LV particle aggregation and syncytia formation in packaging cells were substantially reduced. The data suggest that syncytia formation can be triggered by trans-cellular dimerization of H-scFv proteins displayed on adjacent cells. Taken together, we show that the biophysical properties of the targeting ligand have a decisive role for the gene transfer efficiency of receptor-targeted LVs.
Collapse
Affiliation(s)
- Thorsten Friedel
- Section of Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut, Paul-Ehrlich-Str. 51-59, Langen 63225, Germany
| | - Lydia J Hanisch
- Roche Pharmaceutical Research and Early Development, Protein Engineering Group, Roche Innovation Center Zürich, Schlieren 8952, Switzerland
| | - Anke Muth
- Section of Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut, Paul-Ehrlich-Str. 51-59, Langen 63225, Germany
| | - Annemarie Honegger
- Department of Biochemistry, University of Zürich, Zürich 8057, Switzerland
| | - Hinrich Abken
- Center for Molecular Medicine Cologne, University of Cologne, Cologne 50931, Germany Department I of Internal Medicine, University Hospital Cologne, Cologne 50931, Germany
| | - Andreas Plückthun
- Department of Biochemistry, University of Zürich, Zürich 8057, Switzerland
| | - Christian J Buchholz
- Section of Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut, Paul-Ehrlich-Str. 51-59, Langen 63225, Germany
| | - Irene C Schneider
- Section of Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut, Paul-Ehrlich-Str. 51-59, Langen 63225, Germany
| |
Collapse
|
8
|
The receptor attachment function of measles virus hemagglutinin can be replaced with an autonomous protein that binds Her2/neu while maintaining its fusion-helper function. J Virol 2013; 87:6246-56. [PMID: 23536664 DOI: 10.1128/jvi.03298-12] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cell entry of enveloped viruses is initiated by attachment to the virus receptor followed by fusion between the virus and host cell membranes. Measles virus (MV) attachment to its receptor is mediated by the hemagglutinin (H), which is thought to produce conformational changes in the membrane fusion protein (F) that trigger insertion of its fusion peptide into the target cell membrane. Here, we uncoupled receptor attachment and the fusion-helper function of H by introducing Y481A, R533A, S548L, and F549S mutations into the viral attachment protein that made it blind to its normal receptors. An artificial receptor attachment protein specific for Her2/neu was incorporated into the membranes of pseudotyped lentivirus particles as a separate transmembrane protein along with the F protein. Surprisingly, these particles entered efficiently into Her2/neu-positive SK-OV-3 as well as CHO-Her2 cells. Cell entry was independent of endocytosis but strictly dependent on the presence of H. H-specific monoclonal antibodies, as well as a mutation in H interfering with H/F cooperation, blocked cell entry. The particles mediated stable and specific transfer of reporter genes into Her2/neu-positive human tumor cells also in vivo, while exhibiting improved infectivity and higher titers than Her2/neu-targeted vectors displaying the targeting domain on H. Extending the current model of MV cell entry, the data suggest that receptor binding of H is not required for its fusion-helper function but that particle-cell contact in general may be sufficient to induce the conformational changes in the H/F complex and activate membrane fusion.
Collapse
|
9
|
Functional and structural characterization of neutralizing epitopes of measles virus hemagglutinin protein. J Virol 2012; 87:666-75. [PMID: 23115278 DOI: 10.1128/jvi.02033-12] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Effective vaccination programs have dramatically reduced the number of measles-related deaths globally. Although all the available data suggest that measles eradication is biologically feasible, a structural and biochemical basis for the single serotype nature of measles virus (MV) remains to be provided. The hemagglutinin (H) protein, which binds to two discrete proteinaceous receptors, is the major neutralizing target. Monoclonal antibodies (MAbs) recognizing distinct epitopes on the H protein were characterized using recombinant MVs encoding the H gene from different MV genotypes. The effects of various mutations on neutralization by MAbs and virus fitness were also analyzed, identifying the location of five epitopes on the H protein structure. Our data in the present study demonstrated that the H protein of MV possesses at least two conserved effective neutralizing epitopes. One, which is a previously recognized epitope, is located near the receptor-binding site (RBS), and thus MAbs that recognize this epitope blocked the receptor binding of the H protein, whereas the other epitope is located at the position distant from the RBS. Thus, a MAb that recognizes this epitope did not inhibit the receptor binding of the H protein, rather interfered with the hemagglutinin-fusion (H-F) interaction. This epitope was suggested to play a key role for formation of a higher order of an H-F protein oligomeric structure. Our data also identified one nonconserved effective neutralizing epitope. The epitope has been masked by an N-linked sugar modification in some genotype MV strains. These data would contribute to our understanding of the antigenicity of MV and support the global elimination program of measles.
Collapse
|
10
|
Kneissl S, Abel T, Rasbach A, Brynza J, Schneider-Schaulies J, Buchholz CJ. Measles virus glycoprotein-based lentiviral targeting vectors that avoid neutralizing antibodies. PLoS One 2012; 7:e46667. [PMID: 23071609 PMCID: PMC3468630 DOI: 10.1371/journal.pone.0046667] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 09/01/2012] [Indexed: 12/19/2022] Open
Abstract
Lentiviral vectors (LVs) are potent gene transfer vehicles frequently applied in research and recently also in clinical trials. Retargeting LV entry to cell types of interest is a key issue to improve gene transfer safety and efficacy. Recently, we have developed a targeting method for LVs by incorporating engineered measles virus (MV) glycoproteins, the hemagglutinin (H), responsible for receptor recognition, and the fusion protein into their envelope. The H protein displays a single-chain antibody (scFv) specific for the target receptor and is ablated for recognition of the MV receptors CD46 and SLAM by point mutations in its ectodomain. A potential hindrance to systemic administration in humans is pre-existing MV-specific immunity due to vaccination or natural infection. We compared transduction of targeting vectors and non-targeting vectors pseudotyped with MV glycoproteins unmodified in their ectodomains (MV-LV) in presence of α-MV antibody-positive human plasma. At plasma dilution 1:160 MV-LV was almost completely neutralized, whereas targeting vectors showed relative transduction efficiencies from 60% to 90%. Furthermore, at plasma dilution 1:80 an at least 4-times higher multiplicity of infection (MOI) of MV-LV had to be applied to obtain similar transduction efficiencies as with targeting vectors. Also when the vectors were normalized to their p24 values, targeting vectors showed partial protection against α-MV antibodies in human plasma. Furthermore, the monoclonal neutralizing antibody K71 with a putative epitope close to the receptor binding sites of H, did not neutralize the targeting vectors, but did neutralize MV-LV. The observed escape from neutralization may be due to the point mutations in the H ectodomain that might have destroyed antibody binding sites. Furthermore, scFv mediated cell entry via the target receptor may proceed in presence of α-MV antibodies interfering with entry via the natural MV receptors. These results are promising for in vivo applications of targeting vectors in humans.
Collapse
Affiliation(s)
- Sabrina Kneissl
- Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut, Langen, Germany
- * E-mail: (SK); (CJB)
| | - Tobias Abel
- Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut, Langen, Germany
| | - Anke Rasbach
- Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut, Langen, Germany
| | - Julia Brynza
- Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut, Langen, Germany
| | | | - Christian J. Buchholz
- Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut, Langen, Germany
- * E-mail: (SK); (CJB)
| |
Collapse
|
11
|
Günther C, Laube M, Liebert UG, Kraft R. Differential regulation of voltage-gated Ca2+ currents and metabotropic glutamate receptor activity by measles virus infection in rat cortical neurons. Neurosci Lett 2012; 506:17-21. [PMID: 22037503 DOI: 10.1016/j.neulet.2011.10.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Revised: 09/22/2011] [Accepted: 10/15/2011] [Indexed: 10/16/2022]
Abstract
Measles virus (MV) infection may lead to severe chronic CNS disease processes, including MV-induced encephalitis. Because the intracellular Ca(2+) concentration ([Ca(2+)](i)) is a major determinant of the (patho-)physiological state in all cells we asked whether important Ca(2+) conducting pathways are affected by MV infection in cultured cortical rat neurons. Patch-clamp measurements revealed a decrease in voltage-gated Ca(2+) currents during MV-infection, while voltage-gated K(+) currents and NMDA-evoked currents were unaffected. Calcium-imaging experiments using 50mM extracellular KCl showed reduced [Ca(2+)](i) increases in MV-infected neurons, confirming a decreased activity of voltage-gated Ca(2+) channels. In contrast, the group-I metabotropic glutamate receptor (mGluR) agonist DHPG evoked changes in [Ca(2+)](i) that were increased in MV-infected cells. Our results show that MV infection conversely regulates Ca(2+) signals induced by group-I mGluRs and by voltage-gated Ca(2+) channels, suggesting that these physiological impairments may contribute to an altered function of cortical neurons during MV-induced encephalitis.
Collapse
Affiliation(s)
- Christine Günther
- Institute of Virology, University Leipzig, Johannisallee 30, 04103 Leipzig, Germany
| | | | | | | |
Collapse
|
12
|
Isolation and complete nucleotide sequence of the measles virus IMB-1 strain in China. Virol Sin 2010; 25:381-9. [PMID: 21221916 DOI: 10.1007/s12250-010-3158-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Accepted: 09/27/2010] [Indexed: 10/18/2022] Open
Abstract
The complete nucleotide sequence of the measles virus strain IMB-1, which was isolated in China, was determined. As in other measles viruses, its genome is 15,894 nucleotides in length and encodes six proteins. The full-length nucleotide sequence of the IMB-1 isolate differed from vaccine strains (including wild-type Edmonston strain) by 4%-5% at the nucleotide sequence level. This isolate has amino acid variations over the full genome, including in the hemagglutinin and fusion genes. This report is the first to describe the full-length genome of a genotype H1 strain and provide an overview of the diversity of genetic characteristics of a circulating measles virus.
Collapse
|
13
|
Santiago C, Celma ML, Stehle T, Casasnovas JM. Structure of the measles virus hemagglutinin bound to the CD46 receptor. Nat Struct Mol Biol 2009; 17:124-9. [DOI: 10.1038/nsmb.1726] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Accepted: 09/29/2009] [Indexed: 12/25/2022]
|
14
|
Funke S, Schneider IC, Glaser S, Mühlebach MD, Moritz T, Cattaneo R, Cichutek K, Buchholz CJ. Pseudotyping lentiviral vectors with the wild-type measles virus glycoproteins improves titer and selectivity. Gene Ther 2009; 16:700-5. [PMID: 19212424 DOI: 10.1038/gt.2009.11] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We pseudotyped HIV-1 vectors with cytoplasmic tail-truncated envelope glycoproteins of a wild-type (WT) measles virus (MV). The particles entered the lymphatic cells exclusively through the signaling lymphocyte activation molecule (SLAM, CD150), whereas particles pseudotyped with the MV vaccine strain glycoproteins also recognized the ubiquitous membrane cofactor protein (CD46) as receptor and had less specific cell entry. MV(WT)-HIV vectors reached titers of 10(8) t.u. ml(-1), which were up to 10-fold higher than those of MV(Vac)-HIV vectors, and discriminated between SLAM-positive and SLAM-negative cells, also in mixed cell cultures. As these vectors transduce primary human cells more efficiently than vesicular stomatitis virus-G pseudotyped vectors do, they are promising candidates for gene transfer to human lymphocytes and certain epithelial cells.
Collapse
Affiliation(s)
- S Funke
- Division of Medical Biotechnology, Paul-Ehrlich-Institut, Langen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
Isolation of measles virus in tissue culture by Enders and colleagues in the 1960s led to the development of the first measles vaccines. An inactivated vaccine provided only short-term protection and induced poor T cell responses and antibody that did not undergo affinity maturation. The response to this vaccine primed for atypical measles, a more severe form of measles, and was withdrawn. A live attenuated virus vaccine has been highly successful in protection from measles and in elimination of endemic measles virus transmission with the use of two doses. This vaccine is administered by injection between 9 and 15 months of age. Measles control would be facilitated if infants could be immunized at a younger age, if the vaccine were thermostable, and if delivery did not require a needle and syringe. To these ends, new vaccines are under development using macaques as an animal model and various combinations of the H, F, and N viral proteins. Promising studies have been reported using DNA vaccines, subunit vaccines, and virus-vectored vaccines.
Collapse
Affiliation(s)
- D E Griffin
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe St. Rm E5132 Baltimore, MD 21205, USA.
| | | |
Collapse
|
16
|
Moeller-Ehrlich K, Ludlow M, Beschorner R, Meyermann R, Rima BK, Duprex WP, Niewiesk S, Schneider-Schaulies J. Two functionally linked amino acids in the stem 2 region of measles virus haemagglutinin determine infectivity and virulence in the rodent central nervous system. J Gen Virol 2007; 88:3112-3120. [PMID: 17947537 DOI: 10.1099/vir.0.83235-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Rodent brain-adapted measles virus (MV) strains, such as CAM/RB and recombinant MVs based on the Edmonston strain containing the haemagglutinin (H) of CAM/RB, cause acute encephalitis after intracerebral infection of newborn rodents. We have demonstrated that rodent neurovirulence is modulated by two mutations at amino acid positions 195 and 200 in the H protein, one of these positions (200) being a potential glycosylation site. In order to analyse the effects of specific amino acids at these positions, we introduced a range of individual and combined mutations into the open reading frame of the H gene to generate a number of eukaryotic expression plasmids. The functionality of the mutant H proteins was assessed in transfected cells and by generating recombinant viruses. Interestingly, viruses caused acute encephalitis only if the amino acid Ser at position 200 was coupled with Gly at position 195, whereas viruses with single or combined mutations at these positions, including glycosylation at position 200, were attenuated. Neurovirulence was associated with virus spread and induction of neuronal apoptosis, whereas attenuated viruses failed to infect brain cells. Similar results were obtained by using primary brain-cell cultures. Our findings indicate that a structural alteration in the stem 2 region of the H protein at position 195 or 200 interferes with infectivity of rodent neurons, and suggest that the interaction of the viral attachment protein with cellular receptors on neurons is affected.
Collapse
Affiliation(s)
- K Moeller-Ehrlich
- Institut für Virologie und Immunbiologie, University of Würzburg, D-97078 Würzburg, Germany
| | - M Ludlow
- School of Biomedical Sciences, Centre for Cancer Research and Cell Biology, The Queen's University of Belfast, Belfast BT9 7BL, UK
| | - R Beschorner
- Institut für Hirnforschung, University of Tübingen, D-72076 Tübingen, Germany
| | - R Meyermann
- Institut für Hirnforschung, University of Tübingen, D-72076 Tübingen, Germany
| | - B K Rima
- School of Biomedical Sciences, Centre for Cancer Research and Cell Biology, The Queen's University of Belfast, Belfast BT9 7BL, UK
| | - W P Duprex
- School of Biomedical Sciences, Centre for Cancer Research and Cell Biology, The Queen's University of Belfast, Belfast BT9 7BL, UK
| | - S Niewiesk
- College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210-1093, USA
| | - J Schneider-Schaulies
- Institut für Virologie und Immunbiologie, University of Würzburg, D-97078 Würzburg, Germany
| |
Collapse
|
17
|
Bonami F, Rudd PA, von Messling V. Disease duration determines canine distemper virus neurovirulence. J Virol 2007; 81:12066-70. [PMID: 17699577 PMCID: PMC2168775 DOI: 10.1128/jvi.00818-07] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The Morbillivirus hemagglutinin (H) protein mediates attachment to the target cell. To evaluate its contribution to canine distemper virus neurovirulence, we exchanged the H proteins of the wild-type strains 5804P and A75 and assessed the pathogenesis of the chimeric viruses in ferrets. Both strains are lethal to ferrets; however, 5804P causes a 2-week disease without neurological signs, whereas A75 is associated with a longer disease course and neurological involvement. We observed that both H proteins supported neuroinvasion and the subsequent development of clinical neurological signs if given enough time, demonstrating that disease duration is the main neurovirulence determinant.
Collapse
Affiliation(s)
- François Bonami
- INRS-Institut Armand-Frappier, University of Quebec, 531 boulevard des Prairies, Laval, Quebec, Canada
| | | | | |
Collapse
|
18
|
Carsillo T, Traylor Z, Choi C, Niewiesk S, Oglesbee M. hsp72, a host determinant of measles virus neurovirulence. J Virol 2006; 80:11031-9. [PMID: 16971451 PMCID: PMC1642166 DOI: 10.1128/jvi.01438-06] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transient hyperthermia such as that experienced during febrile episodes increases expression of the major inducible 70-kDa heat shock protein (hsp72). Despite the relevance of febrile episodes to viral pathogenesis and the multiple in vitro roles of heat shock proteins in viral replication and gene expression, the in vivo significance of virus-heat shock protein interactions is unknown. The present work determined the in vivo relationship between hsp72 levels and neurovirulence of an hsp72-responsive virus using the mouse model of measles virus (MV) encephalitis. Transgenic C57BL/6 mice were created to constitutively overexpress hsp72 in neurons, and these mice were inoculated intracranially with Edmonston MV (Ed MV) at 42 h of age. The mean viral RNA burden in brain was approximately 2 orders of magnitude higher in transgenic animals than in nontransgenic animals 2 to 4 weeks postinfection, and this increased burden was associated with a fivefold increase in mortality. Mice were also challenged with an Ed MV variant exhibiting an attenuated in vitro response to hsp72-dependent stimulation of viral transcription (Ed N-522D). This virus exhibited an attenuated neuropathogenicity in transgenic mice, where mortality and viral RNA burdens were not significantly different from nontransgenic mice infected with either Ed N-522D or parent Ed MV. Collectively, these results indicate that hsp72 levels can serve as a host determinant of viral neurovirulence in C57BL/6 mice, reflecting the direct influence of hsp72 on viral gene expression.
Collapse
Affiliation(s)
- Thomas Carsillo
- Department of Veterinary Biosciences, The Ohio State University, 1925 Coffey Road, Columbus, OH 43210, USA
| | | | | | | | | |
Collapse
|
19
|
Singethan K, Topfstedt E, Schubert S, Duprex WP, Rima BK, Schneider-Schaulies J. CD9-dependent regulation of Canine distemper virus-induced cell-cell fusion segregates with the extracellular domain of the haemagglutinin. J Gen Virol 2006; 87:1635-1642. [PMID: 16690928 DOI: 10.1099/vir.0.81629-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Antibodies to CD9, a member of the tetraspan transmembrane-protein family, selectively inhibit Canine distemper virus (CDV)-induced cell-cell fusion. Neither CDV-induced virus-cell fusion nor cell-cell fusion induced by the closely related morbillivirus Measles virus (MV) is affected by anti-CD9 antibodies. As CDV does not bind CD9, an unknown, indirect mechanism is responsible for the observed inhibition of cell-cell fusion. It was investigated whether this effect was restricted to only one viral glycoprotein, either the haemagglutinin (H) or the fusion (F) protein, which form a fusion complex on the surface of virions and infected cells, or whether it is dependent on both in transient co-transfection assays. The susceptibility to CD9 antibodies segregates with the H protein of CDV. By exchanging portions of the H proteins of CDV and MV, it was determined that the complete extracellular domain, including the predicted stem structure (stem 1, barrel strand 1 and stem 2) and globular head domain, of the CDV-H protein mediates the effect. This suggests that interaction of the CDV-H protein with an unknown cellular receptor(s) is regulated by CD9, rather than F protein-mediated membrane fusion.
Collapse
Affiliation(s)
- K Singethan
- Institut für Virologie und Immunbiologie, Versbacher Straße 7, D-97078 Würzburg, Germany
| | - E Topfstedt
- Institut für Virologie und Immunbiologie, Versbacher Straße 7, D-97078 Würzburg, Germany
| | - S Schubert
- Institut für Virologie und Immunbiologie, Versbacher Straße 7, D-97078 Würzburg, Germany
| | - W P Duprex
- School of Biomedical Sciences, The Queen's University of Belfast, Belfast BT9 7BL, UK
| | - B K Rima
- School of Biomedical Sciences, The Queen's University of Belfast, Belfast BT9 7BL, UK
| | | |
Collapse
|
20
|
Pohl-Koppe A, Kaiser R, Meulen VT, Liebert UG. Antibody reactivity to individual structural proteins of measles virus in the CSF of SSPE and MS patients. ACTA ACUST UNITED AC 2005; 4:135-47. [PMID: 15566835 DOI: 10.1016/0928-0197(95)00006-t] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/1994] [Accepted: 02/07/1995] [Indexed: 11/21/2022]
Abstract
BACKGROUND Chronic progressive disorders of the central nervous system (CNS) impose diagnostic problems, particularly in younger patients. The demonstration of antibodies against measles virus (MV) in the cerebrospinal fluid (CSF) plays a major role in the laboratory diagnosis of subacute sclerosing panencephalitis (SSPE) as well as multiple sclerosis (MS). OBJECTIVES Because intrathecally synthesized antibodies against MV can be found in both diseases, it is necessary to establish easy and reliable methods to improve the differential diagnosis. STUDY DESIGN Seventy-one paired serum/CSF samples obtained from patients with the diagnosis of SSPE (n = 23), MS (n = 14), or acute postinfectious measles encephalitis (APME, n = 8) have been examined. The reactivity of intrathecally synthesized immunoglobulin to individual recombinant MV structural proteins was assessed using Western blot analysis, ELISA as well as isoelectric focusing (IEF). RESULTS All CSF samples obtained from patients suffering from SSPE showed a strong antibody response to MV-nucleocapsid (N) and phosphoprotein (P). Sera from 15 of the 23 SSPE patients were reactive to MV-fusion protein (F). Faint reactivity was obtained against MV-matrix (M) or hemagglutinin protein (H) in the minority of samples (40 and 20%, respectively). CSF samples of MS patients only revealed a clear response to N, and in two cases to F. The other proteins were not recognized in the CSF samples of MS patients. In contrast to SSPE, the IEF of CSF from MS patients revealed only few MV-specific oligoclonal bands. In the CSF samples from APME patients, intrathecal MV antibodies were not detected. CONCLUSIONS This study shows that discrimination between SSPE and MS can be achieved in doubtful cases by IEF using MV-N, P and F proteins.
Collapse
Affiliation(s)
- A Pohl-Koppe
- Institut für Virologie und Immunbiologie, Universität Würzburg, Versbacher Strasse 7, 97078 Würzburg, Germany
| | | | | | | |
Collapse
|
21
|
Santibanez S, Niewiesk S, Heider A, Schneider-Schaulies J, Berbers GAM, Zimmermann A, Halenius A, Wolbert A, Deitemeier I, Tischer A, Hengel H. Probing neutralizing-antibody responses against emerging measles viruses (MVs): immune selection of MV by H protein-specific antibodies? J Gen Virol 2005; 86:365-374. [PMID: 15659756 DOI: 10.1099/vir.0.80467-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Measles virus (MV) infection and vaccination induce long-lasting immunity and neutralizing-antibody responses that are directed against the MV haemagglutinin (H) and the fusion (F) protein. A new MV genotype, D7, emerged recently in western Germany and rapidly replaced the long-term endemically circulating genotypes C2 and D6. Analysis of the H gene of C2, D6, D7 and vaccine viruses revealed uniform sequences for each genotype. Interestingly, a consistent exchange of seven distinct amino acids in the D7 H was observed when compared with residues shared between C2, D6 and vaccine viruses, and one exchange (D416→N) in the D7 H was associated with an additionalN-linked glycosylation. In contrast, the F gene is highly conserved between MVs of these genotypes. To test whether the D7 H protein escapes from antibody responses that were raised against earlier circulating or vaccine viruses, the neutralizing capacity of mAbs recognizing seven distinct domains on the H of an Edmonston-related MV was compared. The mAbs revealed a selective and complete loss of two neutralizing epitopes on the D7 H when compared with C2, D6 and vaccine viruses. To assess whether these alterations of the D7 H affect the neutralizing capacity of polyclonal B-cell responses, genotype-specific antisera were produced in cotton rats. However, no significant genotype-dependent difference was found. Likewise, human sera obtained from vaccinees (n=7) and convalescents (n=6) did not distinguish between the MV genotypes. Although the hypothesis of selection of D7 viruses by pre-existing neutralizing antibodies is compatible with the differing pattern of neutralizing epitopes on the H protein, it was not confirmed by the results of MV neutralization with polyclonal sera.
Collapse
Affiliation(s)
- Sabine Santibanez
- WHO Measles/Rubella European RRL and NRC Measles, Mumps, Rubella, Robert Koch-Institut, Nordufer 20, D-13353 Berlin, Germany
| | - Stefan Niewiesk
- Institut für Virologie und Immunbiologie, University of Würzburg, Würzburg, Germany
| | - Alla Heider
- WHO Measles/Rubella European RRL and NRC Measles, Mumps, Rubella, Robert Koch-Institut, Nordufer 20, D-13353 Berlin, Germany
| | | | - Guy A M Berbers
- Rijksinstituut voor Volksgezondheid en Milieu, Bilthoven, The Netherlands
| | - Albert Zimmermann
- WHO Measles/Rubella European RRL and NRC Measles, Mumps, Rubella, Robert Koch-Institut, Nordufer 20, D-13353 Berlin, Germany
| | - Anne Halenius
- WHO Measles/Rubella European RRL and NRC Measles, Mumps, Rubella, Robert Koch-Institut, Nordufer 20, D-13353 Berlin, Germany
| | - Anne Wolbert
- WHO Measles/Rubella European RRL and NRC Measles, Mumps, Rubella, Robert Koch-Institut, Nordufer 20, D-13353 Berlin, Germany
| | - Ingrid Deitemeier
- WHO Measles/Rubella European RRL and NRC Measles, Mumps, Rubella, Robert Koch-Institut, Nordufer 20, D-13353 Berlin, Germany
| | - Annedore Tischer
- WHO Measles/Rubella European RRL and NRC Measles, Mumps, Rubella, Robert Koch-Institut, Nordufer 20, D-13353 Berlin, Germany
| | - Hartmut Hengel
- WHO Measles/Rubella European RRL and NRC Measles, Mumps, Rubella, Robert Koch-Institut, Nordufer 20, D-13353 Berlin, Germany
| |
Collapse
|
22
|
Mosquera MM, Ory FD, Echevarría JE. Measles virus genotype circulation in Spain after implementation of the national measles elimination plan 2001-2003. J Med Virol 2004; 75:137-46. [PMID: 15543577 DOI: 10.1002/jmv.20248] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Molecular characterization of measles virus is important for disease surveillance and for monitoring elimination of the virus throughout the world. Furthermore, knowledge of genotype distribution in as many countries as possible, is useful for tracing the origin of a strain, especially in countries without endemic measles disease, where most cases are imported. Data on genotypes circulating in Spain from 1970 to 1997 showed the prevalence of genotypes C1, C2, and D6, with subsequent replacement of each other. After the establishment of the Spanish Measles Elimination Plan, genotyping with a new retrotranscriptase polymerase chain reaction (RT-PCR) was undertaken directly on 92 specimens, corresponding to 90 patients, which were positive for measles by a different diagnostic RT-PCR. Genotypes B3, D4, D8, A, C2, H1, and D7 were found in different autonomous communities (Madrid, Balearic Islands, Valencia Community, Extremadura, Andalusia, Canary Islands and Murcia) between 2001 and 2003 with none of these genotypes being prevalent. After the introduction of the vaccine in 1978, the incidence of the disease decreased from 150,000 cases in 1977 to 64 in 2002. This could be the reason for the change observed in the pattern of measles genotype circulation, since this pattern was reported in countries at an advanced stage of eradication of measles. This report considers that Spain is on the way to eradicating measles.
Collapse
Affiliation(s)
- María Mar Mosquera
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Carretera de Majadahonda-Pozuelo s/n, 28220 Majadahonda, Madrid, Spain.
| | | | | |
Collapse
|
23
|
Barrero PR, Grippo J, Viegas M, Mistchenko AS. Wild-type measles virus in brain tissue of children with subacute sclerosing panencephalitis, Argentina. Emerg Infect Dis 2004; 9:1333-6. [PMID: 14609476 PMCID: PMC3033091 DOI: 10.3201/eid0910.030180] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
We studied eight children who had measles at 6 to 10 months of age during the 1998 Argentine measles outbreak and in whom subacute sclerosing panencephalitis developed 4 years later. We report the genetic characterization of brain tissue–associated measles virus samples from three patients. Phylogenetic relationships clustered these viruses with the wild-type D6 genotype isolated during the 1998 outbreak. The children received measles vaccine; however, vaccinal strains were not found.
Collapse
Affiliation(s)
- Paola Roxana Barrero
- Laboratorio de Virología, Hospital de Niños Dr. Ricardo Gutiérrez, Gallo 1330 (1425), Buenos Aires, Argentina
| | | | | | | |
Collapse
|
24
|
Abstract
Co-evolving mechanisms of immune clearance and of immune suppression are among the hallmarks of measles. B cells are major targets cells of measles virus (MV) infection. Virus interactions with B cells result both in immune suppression and a vigorous antibody response. Although antibodies fully protect against (re)infection, their importance during the disease and in the presence of a potent cellular response is less well understood. Specific serum IgM appears with onset of rash and confirms clinical diagnosis. After isotype switching, IgG1 develops and confers life-long protection. The most abundant antibodies are specific for the nucleoprotein, but neutralizing and protective antibodies are solely directed against the two surface glycoproteins, the hemagglutinin and the fusion protein. Major neutralizing epitopes have been mapped mainly on the hemagglutinin protein with monoclonal antibodies, producing an increasingly comprehensive map of functional domains.
Collapse
Affiliation(s)
- Fabienne B Bouche
- Department of Immunology and WHO Collaborating Center for Measles, Laboratoire National de Santé, Luxembourg, Luxembourg
| | | | | |
Collapse
|
25
|
Pütz MM, Hoebeke J, Ammerlaan W, Schneider S, Muller CP. Functional fine-mapping and molecular modeling of a conserved loop epitope of the measles virus hemagglutinin protein. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:1515-27. [PMID: 12654007 DOI: 10.1046/j.1432-1033.2003.03517.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Neutralizing and protective monoclonal antibodies (mAbs) were used to fine-map the highly conserved hemagglutinin noose epitope (H379-410, HNE) of the measles virus. Short peptides mimicking this epitope were previously shown to induce virus-neutralizing antibodies [El Kasmi et al. (2000) J. Gen. Virol.81, 729-735]. The epitope contains three cysteine residues, two of which (Cys386 and Cys394) form a disulfide bridge critical for antibody binding. Substitution and truncation analogues revealed four residues critical for binding (Lys387, Gly388, Gln391 and Glu395) and suggested the binding motif X7C[KR]GX[AINQ]QX2CEX5 for three distinct protective mAbs. This motif was found in more than 90% of the wild-type viruses. An independent molecular model of the core epitope predicted an amphiphilic loop displaying a remarkably stable and rigid loop conformation. The three hydrophilic contact residues Lys387, Gln391 and Glu395 pointed on the virus towards the solvent-exposed side of the planar loop and the permissive hydrophobic residues Ile390, Ala392 and Leu393 towards the solvent-hidden side of the loop, precluding antibody binding. The high affinity (Kd = 7.60 nm) of the mAb BH216 for the peptide suggests a high structural resemblance of the peptide with the natural epitope and indicates that most interactions with the protein are also contributed by the peptide. Improved peptides designed on the basis of these findings induced sera that crossreacted with the native measles virus hemagglutinin protein, providing important information about a lead structure for the design of more stable antigens of a synthetic or recombinant subunit vaccine.
Collapse
Affiliation(s)
- Mike M Pütz
- Department of Immunology, Laboratoire National de Santé, Luxembourg; Fakultät für Chemie und Pharmazie, Universität Tübingen, Germany
| | | | | | | | | |
Collapse
|
26
|
Sugiyama M, Ito N, Minamoto N, Tanaka S. Identification of immunodominant neutralizing epitopes on the hemagglutinin protein of rinderpest virus. J Virol 2002; 76:1691-6. [PMID: 11799164 PMCID: PMC135923 DOI: 10.1128/jvi.76.4.1691-1696.2002] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The immunodominant epitopes on the hemagglutinin protein of rinderpest virus (RPV-H) were determined by analyzing selected monoclonal antibody (MAb)-resistant mutants and estimating the level of antibody against each epitope in five RPV-infected rabbits with the competitive enzyme-linked immunosorbent assay (c-ELISA). Six neutralizing epitopes were identified, at residues 474 (epitope A), 243 (B), 548 to 551 (D), 587 to 592 (E), 310 to 313 (G), and 383 to 387 (H), from the data on the amino acid substitutions of hemagglutinin protein of MAb-resistant mutants and the reactivities of MAbs against RPV-H to the other morbilliviruses. The epitopes identified in this study are all positioned on the loop of the propeller-like structure in a hypothetical three-dimensional model of RPV-H (J. P. M. Langedijk et al., J. Virol. 71:6155-6167, 1997). Polyclonal sera obtained from five rabbits infected experimentally with RPV were examined by c-ELISA using a biotinylated MAb against each epitope as a competitor. Although these rabbit sera hardly blocked binding of each MAb to epitopes A and B, they moderately blocked binding of each MAb to epitopes G and D and strongly blocked binding of each MAb to epitopes E and H. These results suggest that epitopes at residues 383 to 387 and 587 to 592 may be immunodominant in humoral immunity to RPV infection.
Collapse
Affiliation(s)
- Makoto Sugiyama
- Department of Veterinary Public Health, Faculty of Agriculture, Gifu University, Gifu 501-1193, Japan.
| | | | | | | |
Collapse
|
27
|
Na BK, Lee JS, Shin GC, Shin JM, Lee JY, Chung JK, Ha DR, Lee JK, Ma SH, Cho HW, Kang C, Kim WJ. Sequence analysis of hemagglutinin and nucleoprotein genes of measles viruses isolated in Korea during the 2000 epidemic. Virus Res 2001; 81:143-9. [PMID: 11682133 DOI: 10.1016/s0168-1702(01)00346-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To characterize the genetic properties of currently circulating measles viruses in Korea, the complete nucleotide sequences of hemagglutinin (H) protein and nucleoprotein (N) genes of Korean viruses were analyzed. The entire genes of H and N were directly amplified by RT-PCR from each clinical specimen and sequenced. Sequence analyses of H and N genes indicated that all Korean viruses had a high degree of homology (>99.8%) when compared with each other. The Korean viruses differed from other wild-type viruses by as much as 6.8% in the H gene and 6.5% in the N gene at the nucleotide level. The deduced amino acid variability was up to 6.4% for the H protein and up to 6.5% for the N protein. Phylogenetic analyses of nucleotide sequences and deduced amino acid sequences of the H and N genes revealed that all Korean viruses were grouped into the clade H1.
Collapse
Affiliation(s)
- B K Na
- Department of Virology, National Institute of Health, 122-701, Seoul, South Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Moeller K, Duffy I, Duprex P, Rima B, Beschorner R, Fauser S, Meyermann R, Niewiesk S, ter Meulen V, Schneider-Schaulies J. Recombinant measles viruses expressing altered hemagglutinin (H) genes: functional separation of mutations determining H antibody escape from neurovirulence. J Virol 2001; 75:7612-20. [PMID: 11462033 PMCID: PMC114996 DOI: 10.1128/jvi.75.16.7612-7620.2001] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Measles virus (MV) strain CAM/RB, which was adapted to growth in the brain of newborn rodents, is highly neurovirulent. It has been reported earlier that experimentally selected virus variants escaping from the monoclonal antibodies (MAbs) Nc32 and L77 to hemagglutinin (H) preserved their neurovirulence, whereas mutants escaping MAbs K71 and K29 were found to be strongly attenuated (U. G. Liebert et al., J. Virol. 68:1486-1493, 1994). To investigate the molecular basis of these findings, we have generated a panel of recombinant MVs expressing the H protein from CAM/RB and introduced the amino acid substitutions thought to be responsible for antibody escape and/or neurovirulence. Using these recombinant viruses, we identified the amino acid changes conferring escape from the MAbs L77 (377R-->Q and 378M-->K), Nc32 (388G-->S), K71 (492E-->K and 550S-->P), and K29 (535E-->G). When the corresponding recombinant viruses were tested in brains of newborn rodents, we found that the mutations mediating antibody escape did not confer differential neurovirulence. In contrast, however, replacement of two different amino acids, at positions 195G-->R and 200S-->N, which had been described for the escape mutant set, caused the change in neurovirulence. Thus, antibody escape and neurovirulence appear not to be associated with the same structural alterations of the MV H protein.
Collapse
Affiliation(s)
- K Moeller
- Institut für Virologie und Immunbiologie, University of Würzburg, D-97078 Würzburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Liebert UG. Slow and persistent virus infections of neurones--a compromise for neuronal survival. Curr Top Microbiol Immunol 2001; 253:35-60. [PMID: 11417139 DOI: 10.1007/978-3-662-10356-2_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Affiliation(s)
- U G Liebert
- Institute of Virology, University of Leipzig, Johannisallee 30, 04103 Leipzig, Germany
| |
Collapse
|
30
|
Erlenhoefer C, Wurzer WJ, Löffler S, Schneider-Schaulies S, ter Meulen V, Schneider-Schaulies J. CD150 (SLAM) is a receptor for measles virus but is not involved in viral contact-mediated proliferation inhibition. J Virol 2001; 75:4499-505. [PMID: 11312320 PMCID: PMC114203 DOI: 10.1128/jvi.75.10.4499-4505.2001] [Citation(s) in RCA: 153] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2000] [Accepted: 02/05/2001] [Indexed: 01/15/2023] Open
Abstract
Measles virus (MV) interacts with cellular receptors on the surface of peripheral blood lymphocytes (PBL) which mediate virus binding and uptake. Simultaneously, the direct contact of the viral glycoproteins with the cell surface induces a negative signal blocking progression to the S phase of the cell cycle, resulting in a pronounced proliferation inhibition. We selected a monoclonal antibody (MAb 5C6) directed to the surface of highly MV-susceptible B cells (B95a), which inhibits binding to and infection of cells with MV wild-type and vaccine strains. By screening a retroviral cDNA library from human splenocytes (ViraPort; Stratagene) with this antibody, we cloned and identified the recognized molecule as signaling lymphocytic activation molecule (SLAM; CD150), which is identical to the MV receptor recently found by H. Tatsuo et al. (Nature 406:893-897, 2000). After infection of cells, and after surface contact with MV envelope proteins, SLAM is downregulated from the cell surface of activated PBL and cell lines. Although anti-SLAM and/or anti-CD46 antibodies block virus binding, they do not interfere with the contact-mediated proliferation inhibition. In addition, the cell-type-specific expression of SLAM does not correlate with the sensitivity of cells for proliferation inhibition. The data indicate that proliferation inhibition induced by MV contact is independent of the presence or absence of the virus-binding receptors SLAM and CD46.
Collapse
Affiliation(s)
- C Erlenhoefer
- Institut für Virologie und Immunbiologie, D-97078 Würzburg, Germany
| | | | | | | | | | | |
Collapse
|
31
|
Affiliation(s)
- J Schneider-Schaulies
- Institut für Virologie und Immunbiologie, Universität Würzburg, Verbacher Str. 7, 97078 Würzburg, Germany.
| |
Collapse
|
32
|
Lawrence DM, Patterson CE, Gales TL, D'Orazio JL, Vaughn MM, Rall GF. Measles virus spread between neurons requires cell contact but not CD46 expression, syncytium formation, or extracellular virus production. J Virol 2000; 74:1908-18. [PMID: 10644364 PMCID: PMC111669 DOI: 10.1128/jvi.74.4.1908-1918.2000] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In patients with subacute sclerosing panencephalitis (SSPE), which is associated with persistent measles virus (MV) infection in the brain, little infectious virus can be recovered despite the presence of viral RNA and protein. Based on studies of brain tissue from SSPE patients and our work with MV-infected NSE-CD46(+) mice, which express the measles receptor CD46 on neurons, several lines of evidence suggest that the mechanism of viral spread in the central nervous system differs from that in nonneuronal cells. To examine this alternate mechanism of viral spread, as well as the basis for the loss of normal transmission mechanisms, infection and spread of MV Edmonston was evaluated in primary CD46(+) neurons from transgenic mice and differentiated human NT2 neurons. As expected, unlike that between fibroblasts, viral spread between neurons occurred in the absence of syncytium formation and with minimal extracellular virus. Electron microscopy analysis showed that viral budding did not occur from the neuronal surface, although nucleocapsids were present in the cytoplasm and aligned at the cell membrane. We observed many examples of nucleocapsids present in the neuronal processes and aligned at presynaptic neuronal membranes. Cocultures of CD46(+) and CD46(-) neurons showed that cell contact but not CD46 expression is required for MV spread between neurons. Collectively, these results suggest that the neuronal environment prevents the normal mechanisms of MV spread between neurons at the level of viral assembly but allows an alternate, CD46-independent mechanism of viral transmission, possibly through the synapse.
Collapse
Affiliation(s)
- D M Lawrence
- The Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | | | | | | | | | | |
Collapse
|
33
|
Duprex WP, Duffy I, McQuaid S, Hamill L, Cosby SL, Billeter MA, Schneider-Schaulies J, ter Meulen V, Rima BK. The H gene of rodent brain-adapted measles virus confers neurovirulence to the Edmonston vaccine strain. J Virol 1999; 73:6916-22. [PMID: 10400789 PMCID: PMC112776 DOI: 10.1128/jvi.73.8.6916-6922.1999] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/1999] [Accepted: 05/03/1999] [Indexed: 12/31/2022] Open
Abstract
Molecular determinants of neuropathogenesis have been shown to be present in the hemagglutinin (H) protein of measles virus (MV). An H gene insertion vector has been generated from the Edmonston B vaccine full-length infectious clone of MV. Using this vector, it is possible to insert complete H open reading frames into the parental (Edtag) background. The H gene from a rodent brain-adapted MV strain (CAM/RB) was inserted into this vector, and a recombinant virus (EdtagCAMH) was rescued by using a modified vaccinia virus which expresses T7 RNA polymerase (MVA-T7). The recombinant virus grew at an equivalent rate and to similar titers as the CAM/RB and Edtag parental viruses. Neurovirulence was assayed in a mouse model for MV encephalitis. Viruses were injected intracerebrally into the right cortex of C57/BL/6 suckling mice. After infection mice inoculated with the CAM/RB strain developed hind limb paralysis and ataxia. Clinical symptoms were never observed with an equivalent dose of Edtag virus or in sham infections. Immunohistochemistry (IHC) was used to detect viral antigen in formalin-fixed brain sections. Measles antigen was observed in neurons and neuronal processes of the hippocampus, frontal, temporal, and olfactory cortices and neostriatum on both sides of symmetrical structures. Viral antigen was not detected in mice infected with Edtag virus. Mice infected with the recombinant virus, EdtagCAMH, became clinically ill, and virus was detected by IHC in regions of the brain similar to those in which it was detected in animals infected with CAM/RB. The EdtagCAMH infection had, however, progressed much less than the CAM/RB virus at 4 days postinfection. It therefore appears that additional determinants are encoded in other regions of the MV genome which are required for full neurovirulence equivalent to CAM/RB. Nevertheless, replacement of the H gene alone is sufficient to cause neuropathology.
Collapse
Affiliation(s)
- W P Duprex
- School of Biology and Biochemistry, The Queen's University of Belfast, Belfast BT9 7BL, Northern Ireland, United Kingdom.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Manchester M, Eto DS, Oldstone MB. Characterization of the inflammatory response during acute measles encephalitis in NSE-CD46 transgenic mice. J Neuroimmunol 1999; 96:207-17. [PMID: 10337919 DOI: 10.1016/s0165-5728(99)00036-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Expression of the human measles virus receptor, CD46, in the murine central nervous system allows infection and replication by wild-type human measles virus (MV) strains (Rall, G.F., Manchester, M., Daniels L.R., Callahan, E., Belman, A., Oldstone, M.B.A., 1997. A transgenic mouse model for measles virus infection of the brain. Proc. Natl. Acad. Sci. U.S.A. 94, 2243-2248). MV replicates in neurons in focal lesions of the cortex, hippocampus and thalamus, leading to death of the animals. In MV-infected CD46 transgenic mice, infiltration of CD4+ and CD8+ T-lymphocytes, B-lymphocytes and macrophages was seen. Upregulation of MHC class I and class II molecules was observed, along with reactive astrocytosis and microgliosis. Increased chemokine mRNAs, especially RANTES and IP-10, and cytokine RNAs IL-6, TNF-alpha, and IL1-beta were observed. Apoptosis of neurons also was increased. No MV replication or inflammation was seen in similarly inoculated nontransgenic littermates. These results further characterize the MV-induced encephalitis in CD46 transgenic mice and highlight similarities to MV infection of the human CNS.
Collapse
Affiliation(s)
- M Manchester
- Department of Neuropharmacology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | | | |
Collapse
|
35
|
Lawrence DM, Vaughn MM, Belman AR, Cole JS, Rall GF. Immune response-mediated protection of adult but not neonatal mice from neuron-restricted measles virus infection and central nervous system disease. J Virol 1999; 73:1795-801. [PMID: 9971756 PMCID: PMC104418 DOI: 10.1128/jvi.73.3.1795-1801.1999] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/1998] [Accepted: 11/11/1998] [Indexed: 12/20/2022] Open
Abstract
In many cases of neurological disease associated with viral infection, such as measles virus (MV)-induced subacute sclerosing panencephalitis in children, it is unclear whether the virus or the antiviral immune response within the brain is the cause of disease. MV inoculation of transgenic mice expressing the human MV receptor, CD46, exclusively in neurons resulted in neuronal infection and fatal encephalitis within 2 weeks in neonates, while mice older than 3 weeks of age were resistant to both infection and disease. At all ages, T lymphocytes infiltrated the brain in response to inoculation. To determine the role of lymphocytes in disease progression, CD46(+) mice were back-crossed to T- and B-cell-deficient RAG-2 knockout mice. The lymphocyte deficiency did not affect the outcome of disease in neonates, but adult CD46(+) RAG-2(-) mice were much more susceptible to both neuronal infection and central nervous system disease than their immunocompetent littermates. These results indicate that CD46-dependent MV infection of neurons, rather than the antiviral immune response in the brain, produces neurological disease in this model system and that immunocompetent adult mice, but not immunologically compromised or immature mice, are protected from infection.
Collapse
Affiliation(s)
- D M Lawrence
- The Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | | | | | | | | |
Collapse
|
36
|
Rubin SA, Pletnikov M, Carbone KM. Comparison of the neurovirulence of a vaccine and a wild-type mumps virus strain in the developing rat brain. J Virol 1998; 72:8037-42. [PMID: 9733843 PMCID: PMC110140 DOI: 10.1128/jvi.72.10.8037-8042.1998] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Prior to the adoption of widespread vaccination programs, mumps virus was the leading cause of virus-induced central nervous system (CNS) disease. Mumps virus-associated CNS complications in vaccinees continue to be reported; outside the United States, some of these complications have been attributed to vaccination with insufficiently attenuated neurovirulent vaccine strains. The development of potentially neurovirulent, live, attenuated mumps virus vaccines stems largely from the lack of an animal model that can reliably predict the neurovirulence of mumps virus vaccine candidates in humans. The lack of an effective safety test with which to measure mumps virus neurovirulence has also hindered analysis of the neuropathogenesis of mumps virus infection and the identification of molecular determinants of neurovirulence. In this report we show, for the first time, that mumps virus infection of the neonatal rat leads to developmental abnormalities in the cerebellum due to cerebellar granule cell migration defects. The incidence of the cerebellar abnormalities and other neuropathological and clinical outcomes of mumps virus infection of the neonatal rat brain demonstrated the ability of this model to distinguish neurovirulent (Kilham) from nonneurovirulent (Jeryl Lynn) mumps virus strains. Thus, this neonatal rat model may prove useful in evaluating the neurovirulence potential of new live, attenuated vaccine strains and may also be of value in elucidating the molecular basis of mumps virus neurovirulence.
Collapse
Affiliation(s)
- S A Rubin
- DVP/OVRR, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
37
|
Mrkic B, Pavlovic J, Rülicke T, Volpe P, Buchholz CJ, Hourcade D, Atkinson JP, Aguzzi A, Cattaneo R. Measles virus spread and pathogenesis in genetically modified mice. J Virol 1998; 72:7420-7. [PMID: 9696838 PMCID: PMC109970 DOI: 10.1128/jvi.72.9.7420-7427.1998] [Citation(s) in RCA: 241] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/1998] [Accepted: 06/08/1998] [Indexed: 12/11/2022] Open
Abstract
Attenuated Edmonston measles virus (MV-Edm) is not pathogenic in standard mice. We show here that MV-Edm inoculated via the natural respiratory route has a limited propagation in the lungs of mice with a targeted mutation inactivating the alpha/beta interferon receptor. A high dose of MV-Edm administered intracerebrally is lethal for about half of these mice. To study the consequences of the availability of a high-affinity receptor for MV propagation, we generated alpha/beta interferon-defective mice expressing human CD46 with human-like tissue specificity. Intranasal infection of these mice with MV-Edm resulted in enhanced spread to the lungs and more prominent inflammatory response. Virus replication was also detected in peripheral blood mononuclear cells, the spleen, and the liver. Moreover, intracerebral inoculation of adult animals with low MV-Edm doses caused encephalitis with almost inevitably lethal outcome. We conclude that in mice alpha/beta interferon controls MV infection and that a high-affinity receptor facilitates, but is not strictly required for, MV spread and pathogenesis.
Collapse
Affiliation(s)
- B Mrkic
- Institut für Molekularbiologie Abt. I, Universität Zürich, Zürich, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Hsu EC, Sarangi F, Iorio C, Sidhu MS, Udem SA, Dillehay DL, Xu W, Rota PA, Bellini WJ, Richardson CD. A single amino acid change in the hemagglutinin protein of measles virus determines its ability to bind CD46 and reveals another receptor on marmoset B cells. J Virol 1998; 72:2905-16. [PMID: 9525611 PMCID: PMC109736 DOI: 10.1128/jvi.72.4.2905-2916.1998] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/1997] [Accepted: 12/08/1997] [Indexed: 02/06/2023] Open
Abstract
This paper provides evidence for a measles virus receptor other than CD46 on transformed marmoset and human B cells. We first showed that most tissues of marmosets are missing the SCR1 domain of CD46, which is essential for the binding of Edmonston measles virus, a laboratory strain that has been propagated in Vero monkey kidney cells. In spite of this deletion, the common marmoset was shown to be susceptible to infections by wild-type isolates of measles virus, although they did not support Edmonston measles virus production. As one would expect from these results, measles virus could not be propagated in owl monkey or marmoset kidney cell lines, but surprisingly, both a wild-type isolate (Montefiore 89) and the Edmonston laboratory strain of measles virus grew efficiently in B95-8 marmoset B cells. In addition, antibodies directed against CD46 had no effect on wild-type infections of marmoset B cells and only partially inhibited the replication of the Edmonston laboratory strain in the same cells. A direct binding assay with insect cells expressing the hemagglutinin (H) proteins of either the Edmonston or Montefiore 89 measles virus strains was used to probe the receptors on these B cells. Insect cells expressing Edmonston H but not the wild-type H bound to rodent cells with CD46 on their surface. On the other hand, both the Montefiore 89 H and Edmonston H proteins adhered to marmoset and human B cells. Most wild-type H proteins have asparagine residues at position 481 and can be converted to a CD46-binding phenotype by replacement of the residue with tyrosine. Similarly, the Edmonston H protein did not bind CD46 when its Tyr481 was converted to asparagine. However, this mutation did not affect the ability of Edmonston H to bind marmoset and human B cells. The preceding results provide evidence, through the use of a direct binding assay, that a second receptor for measles virus is present on primate B cells.
Collapse
Affiliation(s)
- E C Hsu
- Department of Medical Biophysics, University of Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Dropulic LK, Hardwick JM, Griffin DE. A single amino acid change in the E2 glycoprotein of Sindbis virus confers neurovirulence by altering an early step of virus replication. J Virol 1997; 71:6100-5. [PMID: 9223504 PMCID: PMC191870 DOI: 10.1128/jvi.71.8.6100-6105.1997] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Amino acid changes in the envelope glycoproteins of Sindbis virus have been linked to neurovirulence; however, the molecular mechanisms by which these amino acid changes alter neurovirulence are not known. Recombinant-virus studies have mapped an important determinant of neurovirulence in adult mice to a single amino acid change, glutamine to histidine, at position 55 of the E2 glycoprotein (P. C. Tucker, E. G. Strauss, R. J. Kuhn, J. H. Strauss, and D. E. Griffin, J. Virol. 67:4605-4610, 1993). To investigate how histidine confers neurovirulence, we examined the various stages of the virus life cycle in neural (N18) and nonneural (BHK) cells. In BHK cells, recombinant viruses 633 (E255Q) and TE (E255H) replicated similarly. In contrast, in N18 neuroblastoma cells, TE established infection more efficiently, replicated faster, and achieved higher rates of virus release than did 633. Viral structural protein synthesis was similar in 633- and TE-infected BHK cells, while in N18 cells, structural protein synthesis was detected only in TE-infected cells at 6 h and remained higher for at least 16 h postinfection. Viral RNA synthesis was initiated more rapidly and was up to fivefold greater in TE- versus 633-infected N18 cells. Taken together with other data demonstrating minimal effects on virus binding and entry (P. C. Tucker, S. H. Lee, N. Bui, D. Martinie, and D. E. Griffin, J. Virol. 71:6106-6112, 1997), these data suggest that E2 position 55 plays an important role at early stages of infection of neural cells, thereby facilitating neurovirulence.
Collapse
Affiliation(s)
- L K Dropulic
- The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | |
Collapse
|
40
|
Langedijk JP, Daus FJ, van Oirschot JT. Sequence and structure alignment of Paramyxoviridae attachment proteins and discovery of enzymatic activity for a morbillivirus hemagglutinin. J Virol 1997; 71:6155-67. [PMID: 9223510 PMCID: PMC191876 DOI: 10.1128/jvi.71.8.6155-6167.1997] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
On the basis of the conservation of neuraminidase (N) active-site residues in influenza virus N and paramyxovirus hemagglutinin-neuraminidase (HN), it has been suggested that the three-dimensional (3D) structures of the globular heads of the two proteins are broadly similar. In this study, details of this structural similarity are worked out. Detailed multiple sequence alignment of paramyxovirus HN proteins and influenza virus N proteins was based on the schematic representation of the previously proposed structural similarity. This multiple sequence alignment of paramyxovirus HN proteins was used as an intermediate to align the morbillivirus hemagglutinin (H) proteins with neuraminidase. Hypothetical 3D structures were built for paramyxovirus HN and morbillivirus H, based on homology modelling. The locations of insertions and deletions, glycosylation sites, active-site residues, and disulfide bridges agree with the proposed 3D structure of HN and H of the Paramyxoviridae. Moreover, details of the modelled H protein predict previously undescribed enzymatic activity. This prediction was confirmed for rinderpest virus and peste des petits ruminants virus. The enzymatic activity was highly substrate specific, because sialic acid was released only from crude mucins isolated from bovine submaxillary glands. The enzymatic activity may indicate a general infection mechanism for respiratory viruses, and the active site may prove to be a new target for antiviral compounds.
Collapse
Affiliation(s)
- J P Langedijk
- Department of Mammalian Virology, The Institute for Animal Science and Health (ID-DLO), Lelystad, The Netherlands.
| | | | | |
Collapse
|
41
|
Maisner A, Alvarez J, Liszewski MK, Atkinson DJ, Atkinson JP, Herrler G. The N-glycan of the SCR 2 region is essential for membrane cofactor protein (CD46) to function as a measles virus receptor. J Virol 1996; 70:4973-7. [PMID: 8764003 PMCID: PMC190450 DOI: 10.1128/jvi.70.8.4973-4977.1996] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Membrane cofactor protein (MCP) (CD46), a complement-regulatory protein, serves as a cellular receptor for measles virus. Its amino-terminal portion is composed of four short consensus repeats (SCR), three of which (SCR1, SCR2, and SCR4) carry an N-linked oligosaccharide. In order to determine the importance of the three N-glycans for the function of MCP as a measles virus receptor, we established Chinese hamster ovary (CHO) cell lines that stably express mutant MCPs lacking one of the three motifs for N glycosylation (NQ1, NQ2, and NQ4). In an additional mutant (NQ1-2), two glycosylation motifs were altered, allowing the addition of an N-linked oligosaccharide only in SCR4. The abilities of the mutant MCPs to function as measles virus receptors were analyzed with three different assays: (i) binding of measles virus hemagglutinin to MCP immobilized on nitrocellulose; (ii) binding of measles virus to CHO cells expressing wild-type or mutant MCP; and (iii) infection of the transfected CHO cells by measles virus. In all three assays, the abilities of the NQ2 and NQ1-2 mutants to serve as measles virus receptors were drastically impaired. The NQ1 and NQ4 mutants were recognized by measles virus almost as efficiently as the wild-type protein. These results indicate that the N-glycan attached to SCR2 is essential for MCP to serve as a measles virus receptor, while the oligosaccharides attached to SCR1 and SCR4 are of only minor importance.
Collapse
Affiliation(s)
- A Maisner
- Institut für Virologie, Philipps-Universität Marburg, Germany
| | | | | | | | | | | |
Collapse
|
42
|
Outlaw MC, Pringle CR. Sequence variation within an outbreak of measles virus in the Coventry area during spring/summer 1993. Virus Res 1995; 39:3-11. [PMID: 8607281 DOI: 10.1016/s0168-1702(95)00060-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Measles virus (MV) was isolated from throat swab samples collected during the spring/summer 1993 in the Coventry area. Viral RNA was reverse transcribed and cDNA prepared using oligo- T primer. Using MV-specific primers the area encoding the external region of the haemagglutinin glycoprotein was amplified using nested PCR and cycle sequenced. Comparisons were made with the Edmonston strain and current MMR vaccine strain. It was found that a high degree of homology existed between all strains examined, but that a majority of clinical samples shared a premature termination signal that potentially shortened the haemagglutinin protein by 35 amino acids. The single clinical sample that lacked this early termination signal appeared to be closely related to the MMR strain and may result form a vaccine-related illness. Truncation of the haemagglutinin protein may have allowed MV to escape the immune response induced by vaccination with the current MMR vaccine.
Collapse
Affiliation(s)
- M C Outlaw
- Department of Biological Sciences, University of Warwick, Coventry, UK
| | | |
Collapse
|
43
|
Schneider-Schaulies J, Schnorr JJ, Brinckmann U, Dunster LM, Baczko K, Liebert UG, Schneider-Schaulies S, ter Meulen V. Receptor usage and differential downregulation of CD46 by measles virus wild-type and vaccine strains. Proc Natl Acad Sci U S A 1995; 92:3943-7. [PMID: 7732009 PMCID: PMC42078 DOI: 10.1073/pnas.92.9.3943] [Citation(s) in RCA: 105] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Recently, two cell surface molecules, CD46 and moesin, have been found to be functionally associated with measles virus (MV) infectivity of cells. We investigated the receptor usage of MV wild-type, subacute sclerosing panencephalitis, and vaccine strains and their effect on the down-regulation of CD46 after infection. We found that the infection of human cell lines with all 19 MV strains tested was inhibitable with antibodies against CD46. In contrast, not all strains of MV led to the downregulation of CD46 following infection. The group of CD46 non-downregulating strains comprised four lymphotropic wild-type isolates designated AB, DF, DL, and WTF. Since the downregulation of CD46 is caused by interaction with newly synthesized MV hemagglutinin (MV-H), we tested the capability of recombinant MV-H proteins to downregulate CD46. Recombinant MV-H proteins of MV strains Edmonston, Halle, and CM led to the down-regulation of CD46, whereas those of DL and WTF did not. This observed differential downregulation by different MV strains has profound consequences, since lack of CD46 on the cell surface leads to susceptibility of cells to complement lysis. These results suggest that lymphotropic wild-type strains of MV which do not downregulate CD46 may have an advantage for replication in vivo. The relatively weak immune response against attenuated vaccine strains of MV compared with wild-type strains might be related to this phenomenon.
Collapse
|
44
|
Affiliation(s)
- B K Rima
- School of Biology and Biochemistry, Queen's University of Belfast, Northern Ireland, UK
| | | | | | | | | |
Collapse
|
45
|
Affiliation(s)
- U G Liebert
- Institut for Virology and Immunobiology, University of Würzburg, Germany
| | | |
Collapse
|
46
|
Maisner A, Schneider-Schaulies J, Liszewski MK, Atkinson JP, Herrler G. Binding of measles virus to membrane cofactor protein (CD46): importance of disulfide bonds and N-glycans for the receptor function. J Virol 1994; 68:6299-304. [PMID: 8083969 PMCID: PMC237050 DOI: 10.1128/jvi.68.10.6299-6304.1994] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Two cellular proteins, membrane cofactor protein (MCP) and moesin, were reported recently to be functionally associated with the initiation of a measles virus infection. We have analyzed the interaction of measles virus with cell surface proteins, using an overlay binding assay with cellular proteins immobilized on nitrocellulose. Among surface-biotinylated proteins from a human rectal tumor cell line (HRT), measles virus was able to bind only to a 67-kDa protein that was identified as MCP. The virus recognized different isoforms of MCP expressed from human (HRT and HeLa) and simian (Vero) cell lines. The binding of measles virus to MCP was abolished after cleavage of the disulfide bonds by reducing agents as well as after enzymatic release of N-linked oligosaccharides. By contrast, removal of sialic acid or O-linked oligosaccharides did not affect the recognition of MCP measles virus. These data indicate that the receptor determinant of MCP is dependent on a conformation of the protein that is maintained by disulfide bonds and N-glycans present in the complement binding domains. Our results are consistent with a role of MCP as primary attachment site for measles virus in the initial stage of an infection. The functional relationship between MCP and moesin in a measles virus infection is discussed.
Collapse
Affiliation(s)
- A Maisner
- Institut für Virologie, Philipps-Universität Marburg, Germany
| | | | | | | | | |
Collapse
|