1
|
Abstract
I was fortunate to be associated with the lab of Stephen Oroszlan at the US National Cancer Institute from ~1982 until his conversion to Emeritus status in 1995. His lab made groundbreaking discoveries on retroviral proteins during that time, including many features that could not have been inferred or anticipated from straightforward sequence information. Building on the Oroszlan lab results, my colleagues and I demonstrated that the zinc fingers in nucleocapsid proteins play a crucial role in genomic RNA encapsidation; that the N-terminal myristylation of the Gag proteins of many retroviruses is important for their association with the plasma membrane before particle assembly is completed; and that gammaretroviruses initially synthesize their Env protein as an inactive precursor and then truncate the cytoplasmic tail of the transmembrane protein, activating Env fusogenicity, during virus maturation. We also elucidated several aspects of the mechanism of translational suppression in pol gene expression in gammaretroviruses; amazingly, this is a fundamentally different mechanism of suppression from that in most other retroviral genera.
Collapse
Affiliation(s)
- Alan Rein
- HIV Dynamics and Replication Program, National Cancer Institute, Frederick, MD 21702, USA
| |
Collapse
|
2
|
Interaction Interface of Mason-Pfizer Monkey Virus Matrix and Envelope Proteins. J Virol 2020; 94:JVI.01146-20. [PMID: 32796061 DOI: 10.1128/jvi.01146-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 08/03/2020] [Indexed: 02/06/2023] Open
Abstract
Retroviral envelope glycoprotein (Env) is essential for the specific recognition of the host cell and the initial phase of infection. As reported for human immunodeficiency virus (HIV), the recruitment of Env into a retroviral membrane envelope is mediated through its interaction with a Gag polyprotein precursor of structural proteins. This interaction, occurring between the matrix domain (MA) of Gag and the cytoplasmic tail (CT) of the transmembrane domain of Env, takes place at the host cell plasma membrane. To determine whether the MA of Mason-Pfizer monkey virus (M-PMV) also interacts directly with the CT of Env, we mimicked the in vivo conditions in an in vitro experiment by using a CT in its physiological trimeric conformation mediated by the trimerization motif of the GCN4 yeast transcription factor. The MA protein was used at the concentration shifting the equilibrium to its trimeric form. The direct interaction between MA and CT was confirmed by a pulldown assay. Through the combination of nuclear magnetic resonance (NMR) spectroscopy and protein cross-linking followed by mass spectrometry analysis, the residues involved in mutual interactions were determined. NMR has shown that the C terminus of the CT is bound to the C-terminal part of MA. In addition, protein cross-linking confirmed the close proximity of the N-terminal part of CT and the N terminus of MA, which is enabled in vivo by their location at the membrane. These results are in agreement with the previously determined orientation of MA on the membrane and support the already observed mechanisms of M-PMV virus-like particle transport and budding.IMPORTANCE By a combination of nuclear magnetic resonance (NMR) and mass spectroscopy of cross-linked peptides, we show that in contrast to human immunodeficiency virus type 1 (HIV-1), the C-terminal residues of the unstructured cytoplasmic tail of Mason-Pfizer monkey virus (M-PMV) Env interact with the matrix domain (MA). Based on biochemical data and molecular modeling, we propose that individual cytoplasmic tail (CT) monomers of a trimeric complex bind MA molecules belonging to different neighboring trimers, which may stabilize the MA orientation at the membrane by the formation of a membrane-bound net of interlinked Gag and CT trimers. This also corresponds with the concept that the membrane-bound MA of Gag recruits Env through interaction with the full-length CT, while CT truncation during maturation attenuates the interaction to facilitate uncoating. We propose a model suggesting different arrangements of MA-CT complexes between a D-type and C-type retroviruses with short and long CTs, respectively.
Collapse
|
3
|
Abstract
Retroviruses infect a broad range of vertebrate hosts that includes amphibians, reptiles, fish, birds and mammals. In addition, a typical vertebrate genome contains thousands of loci composed of ancient retroviral sequences known as endogenous retroviruses (ERVs). ERVs are molecular remnants of ancient retroviruses and proof that the ongoing relationship between retroviruses and their vertebrate hosts began hundreds of millions of years ago. The long-term impact of retroviruses on vertebrate evolution is twofold: first, as with other viruses, retroviruses act as agents of selection, driving the evolution of host genes that block viral infection or that mitigate pathogenesis, and second, through the phenomenon of endogenization, retroviruses contribute an abundance of genetic novelty to host genomes, including unique protein-coding genes and cis-acting regulatory elements. This Review describes ERV origins, their diversity and their relationships to retroviruses and discusses the potential for ERVs to reveal virus-host interactions on evolutionary timescales. It also describes some of the many examples of cellular functions, including protein-coding genes and regulatory elements, that have evolved from ERVs.
Collapse
|
4
|
Walsh SR, de Jong JG, van Vloten JP, Gerpe MCR, Santry LA, Wootton SK. Truncation of the enzootic nasal tumor virus envelope protein cytoplasmic tail increases Env-mediated fusion and infectivity. J Gen Virol 2017; 98:108-120. [PMID: 27902399 DOI: 10.1099/jgv.0.000654] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Enzootic nasal tumor virus (ENTV) and Jaagsiekte sheep retrovirus (JSRV) are highly related ovine betaretroviruses that induce nasal and lung tumours in small ruminants, respectively. While the ENTV and JSRV envelope (Env) glycoproteins mediate virus entry using the same cellular receptor, the glycosylphosphatidylinositol-linked protein hyaluronoglucosaminidase, ENTV Env pseudovirions mediate entry into cells from a much more restricted range of species than do JSRV Env pseudovirions. Unlike JSRV Env, ENTV Env does not induce cell fusion at pH 5.0 or above, but rather requires a much lower pH (4.0-4.5) for fusion to occur. The cytoplasmic tail of retroviral envelope proteins is a key modulator of envelope-mediated fusion and pseudotype efficiency, especially in the context of virions composed of heterologous Gag proteins. Here we report that progressive truncation of the ENTV Env cytoplasmic tail improves transduction efficiency of pseudotyped retroviral vectors and that complete truncation of the ENTV Env cytoplasmic tail increases transduction efficiency to wild-type JSRV Env levels by increasing fusogenicity without affecting sensitivity to inhibition by lysosomotropic agents, subcellular localization or efficiency of inclusion into virions. Truncation of the cytoplasmic domain of ENTV Env resulted in a significant advantage in viral entry into all cell types tested, including foetal ovine lung and nasal cells. Taken together, we demonstrate that the cytoplasmic tail modulates the fusion activity of the ENTV Env protein and that truncation of this region enhances Eenv-mediated entry into target cells.
Collapse
Affiliation(s)
- Scott R Walsh
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Jondavid G de Jong
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Jacob P van Vloten
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | | | - Lisa A Santry
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Sarah K Wootton
- Present address: McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada.,Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
5
|
Konvalinka J, Kräusslich HG, Müller B. Retroviral proteases and their roles in virion maturation. Virology 2015; 479-480:403-17. [PMID: 25816761 DOI: 10.1016/j.virol.2015.03.021] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 02/12/2015] [Accepted: 03/05/2015] [Indexed: 10/23/2022]
Abstract
Proteolytic processing of viral polyproteins is essential for retrovirus infectivity. Retroviral proteases (PR) become activated during or after assembly of the immature, non-infectious virion. They cleave viral polyproteins at specific sites, inducing major structural rearrangements termed maturation. Maturation converts retroviral enzymes into their functional form, transforms the immature shell into a metastable state primed for early replication events, and enhances viral entry competence. Not only cleavage at all PR recognition sites, but also an ordered sequence of cleavages is crucial. Proteolysis is tightly regulated, but the triggering mechanisms and kinetics and pathway of morphological transitions remain enigmatic. Here, we outline PR structures and substrate specificities focusing on HIV PR as a therapeutic target. We discuss design and clinical success of HIV PR inhibitors, as well as resistance development towards these drugs. Finally, we summarize data elucidating the role of proteolysis in maturation and highlight unsolved questions regarding retroviral maturation.
Collapse
Affiliation(s)
- Jan Konvalinka
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead Sciences and IOCB Research Center, Flemingovo n. 2, 166 10 Prague 6, Czech Republic; Department of Biochemistry, Faculty of Science, Charles University in Prague, Hlavova 8, 128 43 Prague 2, Czech Republic
| | - Hans-Georg Kräusslich
- Department of Infectious Diseases, Virology, University Hospital Heidelberg, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany; Molecular Medicine Partnership Unit, Heidelberg, Germany.
| | - Barbara Müller
- Department of Infectious Diseases, Virology, University Hospital Heidelberg, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany; Molecular Medicine Partnership Unit, Heidelberg, Germany
| |
Collapse
|
6
|
Pfeiffer T, Ruppert T, Schaal H, Bosch V. Detection and initial characterization of protein entities consisting of the HIV glycoprotein cytoplasmic C-terminal domain alone. Virology 2013; 441:85-94. [DOI: 10.1016/j.virol.2013.03.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 02/26/2013] [Accepted: 03/13/2013] [Indexed: 11/29/2022]
|
7
|
Santos da Silva E, Mulinge M, Perez Bercoff D. The frantic play of the concealed HIV envelope cytoplasmic tail. Retrovirology 2013; 10:54. [PMID: 23705972 PMCID: PMC3686653 DOI: 10.1186/1742-4690-10-54] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 05/01/2013] [Indexed: 11/18/2022] Open
Abstract
Lentiviruses have unusually long envelope (Env) cytoplasmic tails, longer than those of other retroviruses. Whereas the Env ectodomain has received much attention, the gp41 cytoplasmic tail (gp41-CT) is one of the least studied parts of the virus. It displays relatively high conservation compared to the rest of Env. It has been long established that the gp41-CT interacts with the Gag precursor protein to ensure Env incorporation into the virion. The gp41-CT contains distinct motifs and domains that mediate both intensive Env intracellular trafficking and interactions with numerous cellular and viral proteins, optimizing viral infectivity. Although they are not fully understood, a multiplicity of interactions between the gp41-CT and cellular factors have been described over the last decade; these interactions illustrate how Env expression and incorporation into virions is a finely tuned process that has evolved to best exploit the host system with minimized genetic information. This review addresses the structure and topology of the gp41-CT of lentiviruses (mainly HIV and SIV), their domains and believed functions. It also considers the cellular and viral proteins that have been described to interact with the gp41-CT, with a particular focus on subtype-related polymorphisms.
Collapse
|
8
|
Retrovirus entry by endocytosis and cathepsin proteases. Adv Virol 2012; 2012:640894. [PMID: 23304142 PMCID: PMC3523128 DOI: 10.1155/2012/640894] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 10/14/2012] [Accepted: 11/06/2012] [Indexed: 12/04/2022] Open
Abstract
Retroviruses include infectious agents inducing severe diseases in humans and animals. In addition, retroviruses are widely used as tools to transfer genes of interest to target cells. Understanding the entry mechanism of retroviruses contributes to developments of novel therapeutic approaches against retrovirus-induced diseases and efficient exploitation of retroviral vectors. Entry of enveloped viruses into host cell cytoplasm is achieved by fusion between the viral envelope and host cell membranes at either the cell surface or intracellular vesicles. Many animal retroviruses enter host cells through endosomes and require endosome acidification. Ecotropic murine leukemia virus entry requires cathepsin proteases activated by the endosome acidification. CD4-dependent human immunodeficiency virus (HIV) infection is thought to occur via endosomes, but endosome acidification is not necessary for the entry whereas entry of CD4-independent HIVs, which are thought to be prototypes of CD4-dependent viruses, is low pH dependent. There are several controversial results on the retroviral entry pathways. Because endocytosis and endosome acidification are complicatedly controlled by cellular mechanisms, the retrovirus entry pathways may be different in different cell lines.
Collapse
|
9
|
Murine leukemia viruses: objects and organisms. Adv Virol 2011; 2011:403419. [PMID: 22312342 PMCID: PMC3265304 DOI: 10.1155/2011/403419] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Accepted: 07/25/2011] [Indexed: 01/12/2023] Open
Abstract
Murine leukemia viruses (MLVs) are among the simplest retroviruses. Prototypical gammaretroviruses encode only the three polyproteins that will be used in the assembly of progeny virus particles. These are the Gag polyprotein, which is the structural protein of a retrovirus particle, the Pol protein, comprising the three retroviral enzymes—protease, which catalyzes the maturation of the particle, reverse transcriptase, which copies the viral RNA into DNA upon infection of a new host cell, and integrase, which inserts the DNA into the chromosomal DNA of the host cell, and the Env polyprotein, which induces the fusion of the viral membrane with that of the new host cell, initiating infection. In general, a productive MLV infection has no obvious effect upon host cells. Although gammaretroviral structure and replication follow the same broad outlines as those of other retroviruses, we point out a number of significant differences between different retroviral genera.
Collapse
|
10
|
Popa A, Pager CT, Dutch RE. C-terminal tyrosine residues modulate the fusion activity of the Hendra virus fusion protein. Biochemistry 2011; 50:945-52. [PMID: 21175223 PMCID: PMC3035738 DOI: 10.1021/bi101597k] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The paramyxovirus family includes important human pathogens such as measles, mumps, respiratory syncytial virus, and the recently emerged, highly pathogenic Hendra and Nipah viruses. The viral fusion (F) protein plays critical roles in infection, promoting both the virus-cell membrane fusion events needed for viral entry as well as cell-cell fusion events leading to syncytia formation. We describe the surprising finding that addition of the short epitope HA tag to the cytoplasmic tail (CT) of the Hendra virus F protein leads to a significant increase in the extent of cell-cell membrane fusion. This increase was not due to alterations in surface expression, cleavage state, or association with lipid microdomains. Addition of a Myc tag of similar length did not alter Hendra F protein fusion activity, indicating that the observed stimulation was not solely a result of lengthening the CT. Three tyrosine residues within the HA tag were critical for the increase in the extent of fusion, suggesting C-terminal tyrosines may modulate Hendra fusion activity. The effects of addition of the HA tag varied with other fusion proteins, as parainfluenza virus 5 F-HA showed a decreased level of surface expression and no stimulation of fusion. These results indicate that additions to the C-terminal end of the F protein CT can modulate protein function in a sequence specific manner, reinforcing the need for careful analysis of epitope-tagged glycoproteins. In addition, our results implicate C-terminal tyrosine residues in the modulation of the membrane fusion reaction promoted by these viral glycoproteins.
Collapse
Affiliation(s)
- Andreea Popa
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington KY 40536
| | - Cara Teresia Pager
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington KY 40536
| | - Rebecca Ellis Dutch
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington KY 40536
| |
Collapse
|
11
|
Bhatia AK, Kaushik R, Campbell NA, Pontow SE, Ratner L. Mutation of critical serine residues in HIV-1 matrix result in an envelope incorporation defect which can be rescued by truncation of the gp41 cytoplasmic tail. Virology 2008; 384:233-41. [PMID: 19059618 DOI: 10.1016/j.virol.2008.10.047] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Revised: 10/14/2008] [Accepted: 10/30/2008] [Indexed: 12/21/2022]
Abstract
The human immunodeficiency virus type 1 (HIV-1) matrix (MA) domain is involved in both early and late events of the viral life cycle. Simultaneous mutation of critical serine residues in MA has been shown previously to dramatically reduce phosphorylation of MA. However, the role of phosphorylation in viral replication remains unclear. Viruses harboring serine to alanine substitutions at positions 9, 67, 72, and 77 are severely impaired in their ability to infect target cells. In addition, the serine mutant viruses are defective in their ability to fuse with target cell membranes. Interestingly, both the fusion defect and the infectivity defect can be rescued by truncation of the long cytoplasmic tail of gp41 envelope protein (gp41CT). Sucrose density gradient analysis also reveals that these mutant viruses have reduced levels of gp120 envelope protein incorporated into the virions as compared to wild type virus. Truncation of the gp41CT rescues the envelope incorporation defect. Here we propose a model in which mutation of specific serine residues prevents MA interaction with lipid rafts during HIV-1 assembly and thereby impairs recruitment of envelope to the sites of viral budding.
Collapse
Affiliation(s)
- Ajay K Bhatia
- Department of Medicine, Division of Molecular Oncology, Washington University School of Medicine, St Louis, MO, USA
| | | | | | | | | |
Collapse
|
12
|
Murakami T. Roles of the interactions between Env and Gag proteins in the HIV-1 replication cycle. Microbiol Immunol 2008; 52:287-95. [PMID: 18557900 DOI: 10.1111/j.1348-0421.2008.00008.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The Env and Gag proteins of HIV-1 are the two major structural proteins of this retrovirus. The interactions between Env and Gag proteins and their regulation in HIV-1 are required for several steps of the replication cycle, involving not only virus assembly, specifically Env incorporation, but also entry steps after virus maturation. A large number of host factors and certain membrane microdomains appear to engage both in transport/trafficking of Env and/or Gag proteins, and in the interactions of these two proteins. The present review briefly summarizes our current knowledge regarding the roles of the interactions between Env and Gag proteins in the virus replication cycle.
Collapse
|
13
|
Côté M, Zheng YM, Albritton LM, Liu SL. Fusogenicity of Jaagsiekte sheep retrovirus envelope protein is dependent on low pH and is enhanced by cytoplasmic tail truncations. J Virol 2008; 82:2543-54. [PMID: 18094165 PMCID: PMC2258932 DOI: 10.1128/jvi.01852-07] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2007] [Accepted: 12/13/2007] [Indexed: 01/05/2023] Open
Abstract
Jaagsiekte sheep retrovirus (JSRV) envelope (Env) is an active oncogene responsible for neoplastic transformation in animals and cultured cells. In this study, we used syncytium induction and fluorescence-based cell fusion assays to investigate JSRV Env fusion and its modulation by the cytoplasmic tail (CT). We found that JSRV Env induced syncytia in cells overexpressing the receptor for JSRV and that a low pH was required for this process to occur. Fusion kinetics studies revealed that cell-cell fusion by JSRV Env at neutral pH was poor, taking up to a day, in sharp contrast to fusion at low pH, which peaked within 2 min following a low-pH trigger. Deletion of the C-terminal 7 or 16 amino acids of the JSRV Env CT had no or little effect on fusion, yet additional truncation toward the membrane-spanning domain, resulting in mutants retaining as little as 1 amino acid of the CT, led to progressively increased syncytium formation at neutral pH that was further enhanced by low-pH treatment. Notably, the severely truncated mutants showed elevated levels of surface subunits in culture medium, suggesting that the CT truncations resulted in conformational changes in the ectodomain of Env that impaired surface subunit associations. Taken together, this study reveals for the first time that the fusion activity of the JSRV Env protein is dependent on a low pH and is modulated by the CT, whose truncation overcomes, at least partially, the low-pH requirement for fusion and enhances Env fusion activity and kinetics.
Collapse
Affiliation(s)
- Marceline Côté
- McGill University, Department of Microbiology and Immunology, 3775 University St., Montreal, QC H3A 2B4, Canada.
| | | | | | | |
Collapse
|
14
|
R-Peptide cleavage potentiates fusion-controlling isomerization of the intersubunit disulfide in Moloney murine leukemia virus Env. J Virol 2007; 82:2594-7. [PMID: 18094170 DOI: 10.1128/jvi.02039-07] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fusion of the membrane of the Moloney murine leukemia virus (Mo-MLV) Env protein is facilitated by cleavage of the R peptide from the cytoplasmic tail of its TM subunit, but the mechanism for this effect has remained obscure. The fusion is also controlled by the isomerization of the intersubunit disulfide of the Env SU-TM complex. In the present study, we used several R-peptide-cleavage-inhibited virus mutants to show that the R peptide suppresses the isomerization reaction in both in vitro and in vivo assays. Thus, the R peptide affects early steps in the activation pathway of murine leukemia virus Env.
Collapse
|
15
|
Rozenberg-Adler Y, Conner J, Aguilar-Carreno H, Chakraborti S, Dimitrov DS, Anderson WF. Membrane-proximal cytoplasmic domain of Moloney murine leukemia virus envelope tail facilitates fusion. Exp Mol Pathol 2007; 84:18-30. [PMID: 18222422 DOI: 10.1016/j.yexmp.2007.11.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2007] [Accepted: 11/14/2007] [Indexed: 01/10/2023]
Abstract
Removal of the R peptide (residues 617-632) from the Moloney murine leukemia virus (MoMuLV) envelope protein (Env) cytoplasmic tail potentiates fusion. We examined the role of the membrane-proximal cytoplasmic domain (598-616) of the MoMuLV Env in the Env-mediated membrane fusion and incorporation. The Env truncated at 616 exhibits maximum fusogenicity in cell-to-cell fusion assay. By comparison, full tail Env (632) and the Env truncated to residue 601 mediated fusion at 40%. The Envs truncated to residues 598 or 595 are not fusogenic. Progressive cytoplasmic tail truncation correlated with decreased Env incorporation into virions. Substitution of the domain 598-616 with an amphiphilic alpha-helix from melittin results in maximally fusogenic Envs that efficiently incorporated into transduction competent virions. However, substitution of the domain 598-616 with random or hydrophilic sequences caused loss of the Env fusogenicity and titer while retaining incorporation. Further, a secondary structure prediction analysis of 27 unrelated Env cytoplasmic tails indicates a common (23/27) propensity for an amphiphilic alpha-helical domain at immediate proximity to the viral membrane. These results support the suggestion that viral fusion is enhanced by a membrane-proximal cytoplasmic amphiphilic alpha-helix in Env tail. The model of its action is proposed.
Collapse
Affiliation(s)
- Yanina Rozenberg-Adler
- San Diego Cancer Research Institute, 1200 Garden View, Suite 200, Encinitas, CA 92024, USA.
| | | | | | | | | | | |
Collapse
|
16
|
Kubo Y, Tominaga C, Yoshii H, Kamiyama H, Mitani C, Amanuma H, Yamamoto N. Characterization of R peptide of murine leukemia virus envelope glycoproteins in syncytium formation and entry. Arch Virol 2007; 152:2169-82. [PMID: 17851730 DOI: 10.1007/s00705-007-1054-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2007] [Accepted: 08/06/2007] [Indexed: 10/22/2022]
Abstract
The C-terminal R peptide of ecotropic murine leukemia virus (MLV) envelope protein (Env) negatively controls membrane fusion activity. The R peptide cleavage during virion maturation activates its fusogenicity and is required for viral entry. We analyzed fusogenicity and transduction efficiency of mutant Env proteins of ecotropic, amphotropic, polytropic, and xenotropic MLVs. As the result, we found that the hydrophobic amino acid residues around the R peptide cleavage site are important for membrane fusion inhibition by the R peptide. In addition, we found that Env complexes with R peptide-truncated and -containing Env proteins have lower fusogenicity and transduction efficiency than those with the R-peptide-truncated Env alone, suggesting that efficient R peptide cleavage is required for efficient MLV vector transduction. The role of R peptide cleavage in amphotropic, polytropic, and xenotropic MLV infection has not been investigated. We found in this study that the R peptide cleavage is required for amphotropic, xenotropic, and polytropic MLV vector transduction, like with ecotropic MLV. The R-peptide-truncated Env proteins of the xenotropic and polytropic MLVs, however, had much lower fusogenicity than those of the ecotropic and amphotropic MLVs. These results provide valuable information for construction of efficient MLV vectors and for understanding the retroviral entry mechanism.
Collapse
Affiliation(s)
- Y Kubo
- Department of AIDS Research, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan.
| | | | | | | | | | | | | |
Collapse
|
17
|
Aguilar HC, Matreyek KA, Choi DY, Filone CM, Young S, Lee B. Polybasic KKR motif in the cytoplasmic tail of Nipah virus fusion protein modulates membrane fusion by inside-out signaling. J Virol 2007; 81:4520-32. [PMID: 17301148 PMCID: PMC1900187 DOI: 10.1128/jvi.02205-06] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The cytoplasmic tails of the envelope proteins from multiple viruses are known to contain determinants that affect their fusogenic capacities. Here we report that specific residues in the cytoplasmic tail of the Nipah virus fusion protein (NiV-F) modulate its fusogenic activity. Truncation of the cytoplasmic tail of NiV-F greatly inhibited cell-cell fusion. Deletion and alanine scan analysis identified a tribasic KKR motif in the membrane-adjacent region as important for modulating cell-cell fusion. The K1A mutation increased fusion 5.5-fold, while the K2A and R3A mutations decreased fusion 3- to 5-fold. These results were corroborated in a reverse-pseudotyped viral entry assay, where receptor-pseudotyped reporter virus was used to infect cells expressing wild-type or mutant NiV envelope glycoproteins. Differential monoclonal antibody binding data indicated that hyper- or hypofusogenic mutations in the KKR motif affected the ectodomain conformation of NiV-F, which in turn resulted in faster or slower six-helix bundle formation, respectively. However, we also present evidence that the hypofusogenic phenotypes of the K2A and R3A mutants were effected via distinct mechanisms. Interestingly, the K2A mutant was also markedly excluded from lipid rafts, where approximately 20% of wild-type F and the other mutants can be found. Finally, we found a strong negative correlation between the relative fusogenic capacities of these cytoplasmic-tail mutants and the avidities of NiV-F and NiV-G interactions (P = 0.007, r(2) = 0.82). In toto, our data suggest that inside-out signaling by specific residues in the cytoplasmic tail of NiV-F can modulate its fusogenicity by multiple distinct mechanisms.
Collapse
Affiliation(s)
- Hector C Aguilar
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California at Los Angeles, 609 Charles E. Young Drive East, Los Angeles, CA 90095, USA
| | | | | | | | | | | |
Collapse
|
18
|
Long G, Pan X, Westenberg M, Vlak JM. Functional role of the cytoplasmic tail domain of the major envelope fusion protein of group II baculoviruses. J Virol 2006; 80:11226-34. [PMID: 17071930 PMCID: PMC1642137 DOI: 10.1128/jvi.01178-06] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
F proteins from baculovirus nucleopolyhedrovirus (NPV) group II members are the major budded virus (BV) viral envelope fusion proteins. They undergo furin-like proteolysis processing in order to be functional. F proteins from different baculovirus species have a long cytoplasmic tail domain (CTD), ranging from 48 (Spodoptera litura multicapsid NPV [MNPV]) to 78 (Adoxophyes honmai NPV) amino acid (aa) residues, with a nonassigned function. This CTD is much longer than the CTD of GP64-like envelope fusion proteins (7 aa), which appear to be nonessential for BV infectivity. Here we have investigated the functional role of the CTD of Helicoverpa armigera single-capsid NPV (HearNPV), a group II NPV. We combined a newly constructed HearNPV f-null bacmid knockout-repair system and an Autographa californica MNPV (AcMNPV) gp64-null bacmid knockout-pseudotype system with mutation and rescue experiments to study the functional role of the baculovirus F protein CTD. We show that except for the 16 C-terminal aa, the HearNPV F CTD is essential for virus spread from cell to cell. In addition, the CTD of HearNPV F is involved in BV production in a length-dependent manner and is essential for BV infectivity. The tyrosine residue Y658, located 16 aa from the C terminus, seems to be critical. However, HearNPV F without a CTD still rescues the infectivity of gp64-null AcMNPV BV, indicating that the CTD is not involved in processing and fusogenicity. Altogether, our results indicate that the F protein is essential for baculovirus BV infectivity and that the CTD is important for F protein incorporation into BV.
Collapse
Affiliation(s)
- Gang Long
- Department of Virology, Wageningen University, Binnenhaven 11, 6709 PD Wageningen, The Netherlands
| | | | | | | |
Collapse
|
19
|
Andersen KB, Diep HA, Zedeler A. Murine leukemia virus transmembrane protein R-peptide is found in small virus core-like complexes in cells. J Gen Virol 2006; 87:1583-1588. [PMID: 16690922 DOI: 10.1099/vir.0.81527-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The core of the retrovirus Murine leukemia virus (MLV) consists of the Gag precursor protein and viral RNA. It assembles at the cytoplasmic face of the cell membrane where, by an unclear mechanism, it collects viral envelope proteins embedded in the cell membrane and buds off. The C-terminal half of the short cytoplasmic tail of the envelope transmembrane protein (TM) is cleaved off to yield R-peptide and fusion-active TM. In Moloney MLV particles, R-peptide was found to bind to core particles. In cells, R-peptide and low amounts of uncleaved TM were found to be associated with small core-like complexes, i.e. mild detergent-insoluble, Gag-containing complexes with a density of 1.23 g ml(-1) and a size of 150-200 S. Our results suggest that TM associates with the assembling core particle through the R-peptide before budding and that this is the mechanism by which the budding virus acquires the envelope proteins.
Collapse
Affiliation(s)
- Klaus Bahl Andersen
- Department of Pharmacology and Pharmacotherapy, The Danish University of Pharmaceutical Sciences, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Huong Ai Diep
- Department of Pharmacology and Pharmacotherapy, The Danish University of Pharmaceutical Sciences, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Anne Zedeler
- Department of Pharmacology and Pharmacotherapy, The Danish University of Pharmaceutical Sciences, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| |
Collapse
|
20
|
Wyss S, Dimitrov AS, Baribaud F, Edwards TG, Blumenthal R, Hoxie JA. Regulation of human immunodeficiency virus type 1 envelope glycoprotein fusion by a membrane-interactive domain in the gp41 cytoplasmic tail. J Virol 2005; 79:12231-41. [PMID: 16160149 PMCID: PMC1211532 DOI: 10.1128/jvi.79.19.12231-12241.2005] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Truncation of the human immunodeficiency virus (HIV) or simian immunodeficiency virus (SIV) gp41 cytoplasmic tail (CT) can modulate the fusogenicity of the envelope glycoprotein (Env) on infected cells and virions. However, the CT domains involved and the underlying mechanism responsible for this "inside-out" regulation of Env function are unknown. HIV and SIV CTs are remarkably long and contain amphipathic alpha-helical domains (LLP1, LLP2, and LLP3) that likely interact with cellular membranes. Using a cell-cell fusion assay and a panel of HIV Envs with stop codons at various positions in the CT, we show that truncations of gp41 proximal to the most N-terminal alpha helix, LLP2, increase fusion efficiency and expose CD4-induced epitopes in the Env ectodomain. These effects were not seen with a truncation distal to this domain and before LLP1. Using a dye transfer assay to quantitate fusion kinetics, we found that these truncations produced a two- to fourfold increase in the rate of fusion. These results were observed for X4-, R5-, and dual-tropic Envs on CXCR4- and CCR5-expressing target cells and could not be explained by differences in Env surface expression. These findings suggest that distal to the membrane-spanning domain, an interaction of the gp41 LLP2 domain with the cell membrane restricts Env fusogenicity during Env processing. As with murine leukemia viruses, where cleavage of a membrane-interactive R peptide at the C terminus is required for Env to become fusogenic, this restriction of Env function may serve to protect virus-producing cells from the membrane-disruptive effects of the Env ectodomain.
Collapse
Affiliation(s)
- Stéphanie Wyss
- Department of Medicine, Hematology-Oncology Division, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | | | | |
Collapse
|
21
|
Song C, Micoli K, Bauerova H, Pichova I, Hunter E. Amino acid residues in the cytoplasmic domain of the Mason-Pfizer monkey virus glycoprotein critical for its incorporation into virions. J Virol 2005; 79:11559-68. [PMID: 16140733 PMCID: PMC1212598 DOI: 10.1128/jvi.79.18.11559-11568.2005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Assembly of an infectious retrovirus requires the incorporation of the envelope glycoprotein complex during the process of particle budding. We have recently demonstrated that amino acid substitutions of a tyrosine residue in the cytoplasmic domain block glycoprotein incorporation into budding Mason-Pfizer monkey virus (M-PMV) particles and abrogate infectivity (C. Song, S. R. Dubay, and E. Hunter, J. Virol. 77:5192-5200, 2003). To investigate the contribution of other amino acids in the cytoplasmic domain to the process of glycoprotein incorporation, we introduced alanine-scanning mutations into this region of the transmembrane protein. The effects of the mutations on glycoprotein biosynthesis and function, as well as on virus infectivity, have been examined. Mutation of two cytoplasmic residues, valine 20 and histidine 21, inhibits viral protease-mediated cleavage of the cytoplasmic domain that is observed during virion maturation, but the mutant virions show only moderately reduced infectivity. We also demonstrate that the cytoplasmic domain of the M-PMV contains three amino acid residues that are absolutely essential for incorporation of glycoprotein into virions. In addition to the previously identified tyrosine at residue 22, an isoleucine at position 18 and a leucine at position 25 each mediate the process of incorporation and efficient release of virions. While isoleucine 18 may be involved in direct interactions with immature capsids, antibody uptake studies showed that leucine 25 and tyrosine 22 are part of an efficient internalization signal in the cytoplasmic domain of the M-PMV glycoprotein. These results demonstrate that the cytoplasmic domain of M-PMV Env, in part through its YXXL-mediated endocytosis and intracellular trafficking signals, plays a critical role in the incorporation of glycoprotein into virions.
Collapse
Affiliation(s)
- Chisu Song
- Department of Microbiology, University of Alabama at Birmingham, 35294, USA
| | | | | | | | | |
Collapse
|
22
|
Song C, Micoli K, Hunter E. Activity of the Mason-Pfizer monkey virus fusion protein is modulated by single amino acids in the cytoplasmic tail. J Virol 2005; 79:11569-79. [PMID: 16140734 PMCID: PMC1212599 DOI: 10.1128/jvi.79.18.11569-11579.2005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mason-Pfizer monkey virus (M-PMV) encodes a transmembrane glycoprotein with a 38-amino-acid-long cytoplasmic tail. After the release of the immature virus, a viral protease-mediated cleavage of the cytoplasmic tail (CT) results in the loss of 17 amino acids from the carboxy terminus and renders the envelope protein fusion competent. To investigate the role of individual amino acid residues in the CT in fusion, a series of mutations was introduced, and the effects of these mutations on glycoprotein biosynthesis and fusion were examined. Most of the alanine-scanning mutations in the CT had little effect on fusion activity. However, four amino acid substitutions (threonine 4, lysine 7, glutamine 9, and isoleucine 10) resulted in substantially increased fusogenicity, while six (leucine 2, phenylalanine 5, isoleucine 13, lysine 16, proline 17, and glycine 31) resulted in much-reduced fusion. Interestingly, the bulk of these mutations are located upstream of the CT cleavage site in a region that has the potential to form a coiled-coil in the Env trimer. Substitutions at glutamine 9 and isoleucine 10 with alanine had the most dramatic positive effect and resulted in the formation of large syncytia. Taken together, these data demonstrate that individual residues within the cytoplasmic domain of M-PMV Env can modulate, in both a positive and negative manner, biological functions that are associated with the extracellular domains of the glycoprotein complex.
Collapse
Affiliation(s)
- Chisu Song
- Department of Microbiology, University of Alabama at Birmingham, 35294, USA
| | | | | |
Collapse
|
23
|
Cheynet V, Ruggieri A, Oriol G, Blond JL, Boson B, Vachot L, Verrier B, Cosset FL, Mallet F. Synthesis, assembly, and processing of the Env ERVWE1/syncytin human endogenous retroviral envelope. J Virol 2005; 79:5585-93. [PMID: 15827173 PMCID: PMC1082723 DOI: 10.1128/jvi.79.9.5585-5593.2005] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Syncytin is a fusogenic protein involved in the formation of the placental syncytiotrophoblast layer. This protein is encoded by the envelope gene of the ERVWE1 proviral locus belonging to the human endogenous retrovirus W (HERV-W) family. The HERV-W infectious ancestor entered the primate lineage 25 to 40 million years ago. Although the syncytin fusion property has been clearly demonstrated, little is known about this cellular protein maturation process with respect to classical infectious retrovirus envelope proteins. Here we show that the cellular syncytin protein is synthesized as a glycosylated gPr73 precursor cleaved into two mature proteins, a gp50 surface subunit (SU) and a gp24 transmembrane subunit (TM). These SU and TM subunits are found associated as homotrimers. The intracytoplasmic tail is critical to the fusogenic phenotype, although its cleavage requirements seem to have diverged from those of classical retroviral maturation.
Collapse
Affiliation(s)
- V Cheynet
- Laboratoire de Vectorologie Rétrovirale et Thérapie Génique, INSERM U412, Ecole Normale Supérieure de Lyon, 69364 Lyon, France
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Merten CA, Stitz J, Braun G, Poeschla EM, Cichutek K, Buchholz CJ. Directed evolution of retrovirus envelope protein cytoplasmic tails guided by functional incorporation into lentivirus particles. J Virol 2005; 79:834-40. [PMID: 15613311 PMCID: PMC538528 DOI: 10.1128/jvi.79.2.834-840.2005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In contrast to most gammaretrovirus envelope proteins (Env), the Gibbon ape leukemia virus (GaLV) Env protein does not mediate the infectivity of human immunodeficiency virus type 1 (HIV-1) particles. We made use of this observation to set up a directed evolution system by creating a library of GaLV Env variants diversified at three critical amino acids, all located around the R-peptide cleavage site within the cytoplasmic tail. This library was screened for variants that were able to functionally pseudotype HIV-1 vector particles. All selected Env variants mediated the infectivity of HIV-1 vector particles and encoded novel cytoplasmic tail motifs. They were efficiently incorporated into HIV particles, and the R peptide was processed by the HIV protease. Interestingly, in some of the selected variants, the R-peptide cleavage site had shifted closer to the C terminus. These data demonstrate a valuable approach for the engineering of chimeric viruses and vector particles.
Collapse
Affiliation(s)
- Christoph A Merten
- Division of Medical Biotechnology, Paul-Ehrlich-Institut, Paul-Ehrlich-Str. 51-59, 63225 Langen, Germany
| | | | | | | | | | | |
Collapse
|
25
|
Russell CJ, Jardetzky TS, Lamb RA. Conserved glycine residues in the fusion peptide of the paramyxovirus fusion protein regulate activation of the native state. J Virol 2004; 78:13727-42. [PMID: 15564482 PMCID: PMC533953 DOI: 10.1128/jvi.78.24.13727-13742.2004] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hydrophobic fusion peptides (FPs) are the most highly conserved regions of class I viral fusion-mediating glycoproteins (vFGPs). FPs often contain conserved glycine residues thought to be critical for forming structures that destabilize target membranes. Unexpectedly, a mutation of glycine residues in the FP of the fusion (F) protein from the paramyxovirus simian parainfluenza virus 5 (SV5) resulted in mutant F proteins with hyperactive fusion phenotypes (C. M. Horvath and R. A. Lamb, J. Virol. 66:2443-2455, 1992). Here, we constructed G3A and G7A mutations into the F proteins of SV5 (W3A and WR isolates), Newcastle disease virus (NDV), and human parainfluenza virus type 3 (HPIV3). All of the mutant F proteins, except NDV G7A, caused increased cell-cell fusion despite having slight to moderate reductions in cell surface expression compared to those of wild-type F proteins. The G3A and G7A mutations cause SV5 WR F, but not NDV F or HPIV3 F, to be triggered to cause fusion in the absence of coexpression of its homotypic receptor-binding protein hemagglutinin-neuraminidase (HN), suggesting that NDV and HPIV3 F have stricter requirements for homotypic HN for fusion activation. Dye transfer assays show that the G3A and G7A mutations decrease the energy required to activate F at a step in the fusion cascade preceding prehairpin intermediate formation and hemifusion. Conserved glycine residues in the FP of paramyxovirus F appear to have a primary role in regulating the activation of the metastable native form of F. Glycine residues in the FPs of other class I vFGPs may also regulate fusion activation.
Collapse
Affiliation(s)
- Charles J Russell
- Howard Hughes Medical Institute, Northwestern University, 2205 Tech Dr., Evanston, IL 60208-3500, USA
| | | | | |
Collapse
|
26
|
Sandrin V, Muriaux D, Darlix JL, Cosset FL. Intracellular trafficking of Gag and Env proteins and their interactions modulate pseudotyping of retroviruses. J Virol 2004; 78:7153-64. [PMID: 15194792 PMCID: PMC421692 DOI: 10.1128/jvi.78.13.7153-7164.2004] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Glycoproteins derived from most retroviruses and from several families of enveloped viruses can form infectious pseudotypes with murine leukemia virus (MLV) and lentiviral core particles, like the MLV envelope glycoproteins (Env) that are incorporated on either virus type. However, coexpression of a given glycoprotein with heterologous core proteins does not always give rise to highly infectious viral particles, and restrictions on pseudotype formation have been reported. To understand the mechanisms that control the recruitment of viral surface glycoproteins on lentiviral and retroviral cores, we exploited the fact that the feline endogenous retrovirus RD114 glycoprotein does not efficiently pseudotype lentiviral cores derived from simian immunodeficiency virus, whereas it is readily incorporated onto MLV particles. Our results indicate that recruitment of glycoproteins by the MLV and lentiviral core proteins occurs in intracellular compartments and not at the cell surface. We found that Env and core protein colocalization in intracytoplasmic vesicles is required for pseudotype formation. By investigating MLV/RD114 Env chimeras, we show that signals in the cytoplasmic tail of either glycoprotein differentially influenced their intracellular localization; that of MLV allows endosomal localization and hence recruitment by both lentiviral and MLV cores. Furthermore, we found that upon membrane binding, MLV core proteins could relocalize Env glycoproteins in late endosomes and allow their incorporation on viral particles. Thus, intracellular colocalization, as well as interactions between Env and core proteins, may influence the recruitment of the glycoprotein onto viral particles and generate infectious pseudotyped viruses.
Collapse
Affiliation(s)
- Virginie Sandrin
- Laboratoire de Vectorologie Rétrovirale et Thérapie Génique, INSERM U412, IFR128 BioSciences Lyon-Gerland, Ecole Normal Supérieure de Lyon, France
| | | | | | | |
Collapse
|
27
|
Waning DL, Russell CJ, Jardetzky TS, Lamb RA. Activation of a paramyxovirus fusion protein is modulated by inside-out signaling from the cytoplasmic tail. Proc Natl Acad Sci U S A 2004; 101:9217-22. [PMID: 15197264 PMCID: PMC438956 DOI: 10.1073/pnas.0403339101] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Many viruses have evolved fusion-mediating glycoproteins that couple the energy released from irreversible protein refolding to the work of membrane fusion. The viral fusion proteins require a triggering event to undergo a cascade of tightly regulated conformational changes. Different isolates of the paramyxovirus SV5 fusion (F) protein have either a short (20-residue) or long (42-residue) cytoplasmic tail (CT), and a long CT suppresses fusion activity in a sequence-specific manner. Addition of a domain to the F protein CT, which has the propensity to form a three-helix bundle, stabilizes the F protein and increases the energy required for fusion activation. Quantitative cell-cell fusion assays and measurement of ectodomain conformation by monoclonal antibody reactivity indicate that this suppression of fusion by the long CT or addition of a three-helix bundle occurs at a step preceding initial membrane merger. The data suggest that F protein activation involves CT signaling to the ectodomain.
Collapse
Affiliation(s)
- David L Waning
- Department of Biochemistry, Molecular Biology, and Cell Biology, Northwestern University, Evanston, IL 60208-3500, USA
| | | | | | | |
Collapse
|
28
|
Wyma DJ, Jiang J, Shi J, Zhou J, Lineberger JE, Miller MD, Aiken C. Coupling of human immunodeficiency virus type 1 fusion to virion maturation: a novel role of the gp41 cytoplasmic tail. J Virol 2004; 78:3429-35. [PMID: 15016865 PMCID: PMC371074 DOI: 10.1128/jvi.78.7.3429-3435.2004] [Citation(s) in RCA: 177] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Retrovirus particles are not infectious until they undergo proteolytic maturation to form a functional core. Here we report a link between human immunodeficiency virus type 1 (HIV-1) core maturation and the ability of the virus to fuse with target cells. Using a recently developed reporter assay of HIV-1 virus-cell fusion, we show that immature HIV-1 particles are 5- to 10-fold less active for fusion with target cells than are mature virions. The fusion of mature and immature virions was rendered equivalent by truncating the gp41 cytoplasmic domain or by pseudotyping viruses with the glycoprotein of vesicular stomatitis virus. An analysis of a panel of mutants containing mutated cleavage sites indicated that HIV-1 fusion competence is activated by the cleavage of Gag at any site between the MA and NC segments and not as an indirect consequence of an altered core structure. These results suggest a mechanism by which binding of the gp41 cytoplasmic tail to Gag within immature HIV-1 particles inhibits Env conformational changes on the surface of the virion that are required for membrane fusion. This "inside-out" regulation of HIV-1 fusion could play an important role in the virus life cycle by preventing the entry of immature, noninfectious particles.
Collapse
Affiliation(s)
- Donald J Wyma
- Department of Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Murakami T, Ablan S, Freed EO, Tanaka Y. Regulation of human immunodeficiency virus type 1 Env-mediated membrane fusion by viral protease activity. J Virol 2004; 78:1026-31. [PMID: 14694135 PMCID: PMC368813 DOI: 10.1128/jvi.78.2.1026-1031.2004] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
We and others have presented evidence for a direct interaction between the matrix (MA) domain of the human immunodeficiency virus type 1 (HIV-1) Gag protein and the cytoplasmic tail of the transmembrane envelope (Env) glycoprotein gp41. In addition, it has been postulated that the MA domain of Gag undergoes a conformational change following Gag processing, and the cytoplasmic tail of gp41 has been shown to modulate Env-mediated membrane fusion activity. Together, these results raise the possibility that the interaction between the gp41 cytoplasmic tail and MA is regulated by protease (PR)-mediated Gag processing, perhaps affecting Env function. To examine whether Gag processing affects Env-mediated fusion, we compared the ability of wild-type (WT) HIV-1 Env and a mutant lacking the gp41 cytoplasmic tail to induce fusion in the context of an active (PR(+)) or inactive (PR(-)) viral PR. We observed that PR(-) virions bearing WT Env displayed defects in cell-cell fusion. Impaired fusion did not appear to be due to differences in the levels of virion-associated Env, in CD4-dependent binding to target cells, or in the formation of the CD4-induced gp41 six-helix bundle. Interestingly, truncation of the gp41 cytoplasmic tail reversed the fusion defect. These results suggest that interactions between unprocessed Gag and the gp41 cytoplasmic tail suppress fusion.
Collapse
Affiliation(s)
- Tsutomu Murakami
- Department of Immunology, Graduate School and Faculty of Medicine, University of the Ryukyus, Nishihara, Okinawa 903-0215, Japan.
| | | | | | | |
Collapse
|
30
|
Blaise S, Ruggieri A, Dewannieux M, Cosset FL, Heidmann T. Identification of an envelope protein from the FRD family of human endogenous retroviruses (HERV-FRD) conferring infectivity and functional conservation among simians. J Virol 2004; 78:1050-4. [PMID: 14694139 PMCID: PMC368808 DOI: 10.1128/jvi.78.2.1050-1054.2004] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A member of the HERV-W family of human endogenous retroviruses (HERV) had previously been demonstrated to encode a functional envelope which can form pseudotypes with human immunodeficiency virus type 1 virions and confer infectivity on the resulting retrovirus particles. Here we show that a second envelope protein sorted out by a systematic search for fusogenic proteins that we made among all the HERV coding envelope genes and belonging to the HERV-FRD family can also make pseudotypes and confer infectivity. We further show that the orthologous envelope genes that were isolated from simians-from New World monkeys to humans-are also functional in the infectivity assay, with one singular exception for the gibbon HERV-FRD gene, which is found to be fusogenic in a cell-cell fusion assay, as observed for the other simian envelopes, but which is not infectious. Sequence comparison of the FRD envelopes revealed a limited number of mutations among simians, and one point mutation-located in the TM subunit-was shown to be responsible for the loss of infectivity of the gibbon envelope. The functional characterization of the identified envelopes is strongly indicative of an ancestral retrovirus infection and endogenization, with some of the envelope functions subsequently retained in evolution.
Collapse
Affiliation(s)
- Sandra Blaise
- Unité des Rétrovirus Endogènes et Eléments Rétroïdes des Eucaryotes Supérieurs, UMR 8122 CNRS, Institut Gustave Roussy, 94805 Villejuif, France
| | | | | | | | | |
Collapse
|
31
|
Abstract
Retroviral vectors capable of efficient in vivo gene delivery to specific target cell types or to specific locations of disease pathology would greatly facilitate many gene therapy applications. The surface glycoproteins of membrane-enveloped viruses stand among the choice candidates to control the target cell receptor recognition and host range of retroviral vectors onto which they are incorporated. This can be achieved in many ways, such as the exchange of glycoprotein by pseudotyping, their biochemical modifications, their conjugation with virus-cell bridging agents or their structural modifications. Understanding the fundamental properties of the viral glycoproteins and the molecular mechanism of virus entry into cells has been instrumental in the functional alteration of their tropism. Here we briefly review the current state of our understanding of the structure and function of viral envelope glycoproteins and we discuss the emerging targeting strategies based on retroviral and lentiviral vector systems.
Collapse
Affiliation(s)
- V Sandrin
- Laboratoire de Vectorologie Rétrovirale et Thérapie Génique, Unité de Virologie Humaine, INSERM U412, Ecole Normale Supérieure de Lyon, 46 allée d'Italie, 69364 Lyon Cedex 07, France
| | | | | |
Collapse
|
32
|
Taylor GM, Sanders DA. Structural criteria for regulation of membrane fusion and virion incorporation by the murine leukemia virus TM cytoplasmic domain. Virology 2003; 312:295-305. [PMID: 12919735 DOI: 10.1016/s0042-6822(03)00297-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The cytoplasmic domains of viral glycoproteins influence the trafficking and subcellular localization of the glycoproteins and their incorporation into virions. They also promote correct virus morphology and viral budding. The cytoplasmic domains of murine-leukemia-virus envelope-protein TM subunits regulate membrane fusion. During virion maturation the carboxy-terminal 16 amino acid residues of the TM protein are removed by the retroviral protease. Deletion of these residues activates envelope-protein-mediated membrane fusion. Our quantitative analysis of the effects of Moloney murine leukemia virus TM mutations on envelope-protein function support the proposition that a trimeric coiled coil in the TM cytoplasmic domain inhibits fusion. The data demonstrate that cleavage of the TM cytoplasmic domain is not required for viral entry and provide evidence for a model in which fusogenic and nonfusogenic conformations of the envelope protein exists in an equilibrium that is regulated by the cytoplasmic domain. In addition, a conserved tyrosine residue in the TM cytoplasmic domain was shown to play an important role in envelope-protein incorporation into retroviral particles.
Collapse
Affiliation(s)
- Gwen M Taylor
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907-1392, USA
| | | |
Collapse
|
33
|
Kubo Y, Amanuma H. Mutational analysis of the R peptide cleavage site of Moloney murine leukaemia virus envelope protein. J Gen Virol 2003; 84:2253-2257. [PMID: 12867658 DOI: 10.1099/vir.0.19126-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Moloney murine leukaemia virus (MoMLV) enters host cells by membrane fusion between the viral envelope and the host cell membrane. The cytoplasmic tail (R peptide) of the MoMLV envelope protein (Env) is cleaved by the viral protease during virion maturation. R peptide-truncated Env induces syncytia in susceptible cells but R peptide-containing Env does not, indicating that the R peptide inhibits membrane fusion. To examine the function of amino acid residues at the R peptide cleavage site in virus entry, mutant Env expression plasmids containing amino acid substitutions at these cleavage site residues were constructed. Some of these mutants induced syncytia in NIH 3T3 cells, even though they expressed the R peptide, indicating the importance of these residues for membrane fusion inhibition by the R peptide. Some mutants in which R peptide cleavage was detected had comparable transduction efficiency to wild-type Env, but mutants in which R peptide cleavage was not detected had lower transduction efficiency than wild-type Env. This result strongly supports that R peptide cleavage is required for virus entry.
Collapse
Affiliation(s)
- Yoshinao Kubo
- Department of Preventive Medicine and AIDS Research, Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
- Molecular Cell Science Laboratory, RIKEN (The Institute of Physical and Chemical Research), Hirosawa 2-1, Wako, Saitama 351-0198, Japan
| | - Hiroshi Amanuma
- Molecular Cell Science Laboratory, RIKEN (The Institute of Physical and Chemical Research), Hirosawa 2-1, Wako, Saitama 351-0198, Japan
| |
Collapse
|
34
|
Song C, Hunter E. Variable sensitivity to substitutions in the N-terminal heptad repeat of Mason-Pfizer monkey virus transmembrane protein. J Virol 2003; 77:7779-85. [PMID: 12829817 PMCID: PMC161947 DOI: 10.1128/jvi.77.14.7779-7785.2003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The transmembrane protein of Mason-Pfizer monkey virus contains two heptad repeats that are predicted to form amphipathic alpha-helices that mediate the conformational change necessary for membrane fusion. To analyze the relative sensitivity of the predicted hydrophobic face of the N-terminal heptad repeat to the insertion of uncharged, polar, and charged substitutions, mutations that introduced alanine, serine, or glutamic acid into positions 436, 443, 450, and 457 of the envelope protein were examined. Novel systems using Tat protein and the GHOST cell line were developed to test and quantitate the effects of the mutations on Env-mediated fusion and infectivity of the virus. While no single amino acid change at any of the positions interfered significantly with the synthesis, processing, or transport to the plasma membrane of glycoprotein complexes, 9 of the 12 nonconservative mutations in these residues completely abolished fusion activity and virus infectivity. Mutations in the central positions (443 and 450) of the heptad repeat region were the most detrimental to Env function, and even single alanine substitutions in these positions dramatically altered the fusogenicity of the protein. These results demonstrate that this N-terminal heptad repeat plays a critical role in Env-mediated membrane fusion and highlight the key function of central hydrophobic residues in this process and the sensitivity of all positions to charge substitutions.
Collapse
Affiliation(s)
- Chisu Song
- Department of Microbiology and Center for AIDS Research, University of Alabama at Birmingham, 845 19th Street S., Birmingham, AL 35294, USA
| | | |
Collapse
|
35
|
Song C, Dubay SR, Hunter E. A tyrosine motif in the cytoplasmic domain of mason-pfizer monkey virus is essential for the incorporation of glycoprotein into virions. J Virol 2003; 77:5192-200. [PMID: 12692221 PMCID: PMC153939 DOI: 10.1128/jvi.77.9.5192-5200.2003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Mason-Pfizer monkey virus (M-PMV) encodes a transmembrane (TM) glycoprotein with a 38-amino-acid-long cytoplasmic domain. After the release of the immature virus, a viral protease-mediated cleavage occurs within the cytoplasmic domain, resulting in the loss of 17 amino acids from the carboxy terminus. This maturational cleavage occurs between a histidine at position 21 and a tyrosine at position 22 in the cytoplasmic domain of the TM protein. We have demonstrated previously that a truncated TM glycoprotein with a 21-amino-acid-long cytoplasmic tail showed enhanced fusogenicity but could not be incorporated into virions. These results suggest that postassembly cleavage of the cytoplasmic domain removes a necessary incorporation signal and activates fusion activity. To investigate the contribution of tyrosine residues to the function of the glycoprotein complex and virus replication, we have introduced amino acid substitutions into two tyrosine residues found in the cytoplasmic domain. The effects of these mutations on glycoprotein biosynthesis and function, as well as on virus infectivity, have been examined. Mutation of tyrosine 34 to alanine had little effect on glycoprotein function. In contrast, substitutions at tyrosine 22 modulated fusion activity in either a positive or negative manner, depending on the substituting amino acid. Moreover, any nonaromatic substitution at this position blocked glycoprotein incorporation into virions and abolished infectivity. These results demonstrate that M-PMV employs a tyrosine signal for the selective incorporation of glycoprotein into budding virions. Antibody uptake studies show that tyrosine 22 is part of an efficient internalization signal in the cytoplasmic domain of the M-PMV glycoprotein that can also be positively and negatively influenced by changes at this site.
Collapse
Affiliation(s)
- Chisu Song
- Department of Microbiology, University of Alabama at Birmingham, 35294, USA
| | | | | |
Collapse
|
36
|
Aguilar HC, Anderson WF, Cannon PM. Cytoplasmic tail of Moloney murine leukemia virus envelope protein influences the conformation of the extracellular domain: implications for mechanism of action of the R Peptide. J Virol 2003; 77:1281-91. [PMID: 12502845 PMCID: PMC140788 DOI: 10.1128/jvi.77.2.1281-1291.2003] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The envelope (Env) protein of Moloney murine leukemia virus (MoMuLV) is a homotrimeric complex whose monomers consist of linked surface (SU) and transmembrane (TM) proteins cleaved from a precursor protein by a cellular protease. In addition, a significant fraction of virion-associated TM is further processed by the viral protease to remove the C-terminal 16 amino acids of the cytoplasmic domain, the R peptide. This cleavage greatly enhances the fusogenicity of the protein and is necessary for the formation of a fully functional Env protein complex. We have previously proposed that R peptide cleavage enhances fusogenicity by altering the conformation of the ectodomain of the protein (Y. Zhao et al., J. Virol. 72:5392-5398, 1998). Using a series of truncation and point mutants of MoMuLV Env, we now provide direct biochemical and immunological evidence that the cytoplasmic tail and the membrane-spanning region of Env can influence the overall structure of the ectodomain of the protein and alter the strength of the SU-TM interaction. The R-peptide-truncated form of the protein, in particular, exhibits a markedly different conformation than the full-length protein.
Collapse
Affiliation(s)
- Hector C Aguilar
- Gene Therapy Laboratories, Keck School of Medicine, University of Southern California, Los Angeles 90033, USA
| | | | | |
Collapse
|
37
|
Kim FJ, Manel N, Boublik Y, Battini JL, Sitbon M. Human T-cell leukemia virus type 1 envelope-mediated syncytium formation can be activated in resistant Mammalian cell lines by a carboxy-terminal truncation of the envelope cytoplasmic domain. J Virol 2003; 77:963-9. [PMID: 12502812 PMCID: PMC140806 DOI: 10.1128/jvi.77.2.963-969.2003] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human T-cell leukemia virus (HTLV) envelope (Env) glycoproteins induce fusion, leading to rampant syncytium formation in a broad range of cell lines. Here, we identified murine, hamster, canine, and porcine cell lines that are resistant to HTLV-1 Env-induced syncytium formation. This resistance was not due to the absence of functional receptors for HTLV Env, as these cells were susceptible to infection with HTLV Env-pseudotyped virions. As murine leukemia virus (MLV) Env and HTLV Env present close structural homologies (F. J. Kim, I. Seiliez, C. Denesvre, D. Lavillette, F. L. Cosset, and M. Sitbon, J. Biol. Chem. 275:23417-23420, 2000), and because activation of syncytium formation by MLV Env generally requires cleavage of the R peptide in the cytoplasmic domain of the Env transmembrane (TM) component, we assessed whether truncation of the cytoplasmic domain of HTLV Env would alleviate this resistance. Indeed, in all resistant cell lines, truncation of the last 8 amino acids of the HTLV Env cytoplasmic domain (HdC8) was sufficient to overcome resistance to HTLV Env-induced syncytium formation. Furthermore, HdC8-mediated cell-to-cell infection titers varied according to the target cell lines and could be significantly higher than that observed with HTLV Env on HeLa cells. These data indicate that a determinant located within the 8 carboxy-terminal cytoplasmic amino acids of TM plays a distinct role in HTLV Env-mediated cell-to-cell infection and syncytium formation.
Collapse
Affiliation(s)
- Felix J Kim
- Institut de Génétique Moléculaire de Montpellier, CNRS-UMR 5535, IFR24, France
| | | | | | | | | |
Collapse
|
38
|
Lavillette D, Ruggieri A, Boson B, Maurice M, Cosset FL. Relationship between SU subdomains that regulate the receptor-mediated transition from the native (fusion-inhibited) to the fusion-active conformation of the murine leukemia virus glycoprotein. J Virol 2002; 76:9673-85. [PMID: 12208946 PMCID: PMC136517 DOI: 10.1128/jvi.76.19.9673-9685.2002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Envelope glycoproteins (Env) of retroviruses are trimers of SU (surface) and TM (transmembrane) heterodimers and are expressed on virions in fusion-competent forms that are likely to be metastable. Activation of the viral receptor-binding domain (RBD) via its interaction with a cell surface receptor is thought to initiate a cascade of events that lead to refolding of the Env glycoprotein into its stable fusion-active conformation. While the fusion-active conformation of the TM subunit has been described in detail for several retroviruses, little is known about the fusion-competent structure of the retroviral glycoproteins or the molecular events that mediate the transition between the two conformations. By characterizing Env chimeras between the ecotropic and amphotropic murine leukemia virus (MLV) SUs as well as a set of point mutants, we show that alterations of the conformation of the SU glycoprotein strongly elevate Env fusogenicity by disrupting the stability of the Env complex. Compensatory mutations that restored both Env stability and fusion control were also identified, allowing definition of interactions within the Env complex that maintain the stability of the native Env complex. We show that, in the receptor-unbound form, structural interactions between the N terminus of the viral RBD (NTR domain), the proline-rich region (PRR), and the distal part of the C-terminal domain of the SU subunit maintain a conformation of the glycoprotein that is fusion inhibitory. Additionally, we identified mutations that disrupt this fusion-inhibitory conformation and allow fusion activation in the absence of viral receptors, provided that receptor-activated RBD fragments are added in trans during infection. Other mutations were identified that allow fusion activation in the absence of receptors for both the viral glycoprotein and the trans-acting RBD. Finally, we found mutations of the SU that bypass in cis the requirement for the NTR domain in fusion activation. All these different mutations call for a critical role of the PRR in mediating conformational changes of the Env glycoprotein during fusion activation. Our results suggest a model of MLV Env fusion activation in which unlocking of the fusion-inhibitory conformation is initiated by receptor binding of the viral RBD, which, upon disruption of the PRR, allows the NTR domain to promote further events in Env fusion activation. This involves a second type of interaction, in cis or in trans, between the receptor-activated RBD and a median segment of the freed C-terminal domain.
Collapse
Affiliation(s)
- Dimitri Lavillette
- Laboratoire de Vectorologie Rétrovirale et Thérapie Génique, INSERM U412, IFR 74, Ecole Normale Supérieure de Lyon, Lyon, France
| | | | | | | | | |
Collapse
|
39
|
Sandrin V, Boson B, Salmon P, Gay W, Nègre D, Le Grand R, Trono D, Cosset FL. Lentiviral vectors pseudotyped with a modified RD114 envelope glycoprotein show increased stability in sera and augmented transduction of primary lymphocytes and CD34+ cells derived from human and nonhuman primates. Blood 2002; 100:823-32. [PMID: 12130492 DOI: 10.1182/blood-2001-11-0042] [Citation(s) in RCA: 231] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Generating lentiviral vectors pseudotyped with different viral glycoproteins (GPs) may modulate the physicochemical properties of the vectors, their interaction with the host immune system, and their host range. We have investigated the capacity of a panel of GPs of both retroviral (amphotropic murine leukemia virus [MLV-A]; gibbon ape leukemia virus [GALV]; RD114, feline endogenous virus) and nonretroviral (fowl plague virus [FPV]; Ebola virus [EboV]; vesicular stomatitis virus [VSV]; lymphocytic choriomeningitis virus [LCMV]) origins to pseudotype lentiviral vectors derived from simian immunodeficiency virus (SIVmac251). SIV vectors were efficiently pseudotyped with the FPV hemagglutinin, VSV-G, LCMV, and MLV-A GPs. In contrast, the GALV and RD114 GPs conferred much lower infectivity to the vectors. Capitalizing on the conservation of some structural features in the transmembrane domains and cytoplasmic tails of the incorporation-competent MLV-A GP and in RD114 and GALV GPs, we generated chimeric GPs encoding the extracellular and transmembrane domains of GALV or RD114 GPs fused to the cytoplasmic tail (designated TR) of MLV-A GP. Importantly, SIV-derived vectors pseudotyped with these GALV/TR and RD114/TR GP chimeras had significantly higher titers than vectors coated with the parental GPs. Additionally, RD114/TR-pseudotyped vectors were efficiently concentrated and were resistant to inactivation induced by the complement of both human and macaque sera, indicating that modified RD114 GP-pseudotyped lentiviral vectors may be of particular interest for in vivo gene transfer applications. Furthermore, as compared to vectors pseudotyped with other retroviral GPs or with VSV-G, RD114/TR-pseudotyped vectors showed augmented transduction of human and macaque primary blood lymphocytes and CD34+ cells.
Collapse
Affiliation(s)
- Virginie Sandrin
- Vectorologie Rétrovirale & Thérapie Génique, U412 INSERM, IFR 74, Ecole Normale Supérieure de Lyon, Lyon, France
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Rousso I, Mixon MB, Chen BK, Kim PS. Palmitoylation of the HIV-1 envelope glycoprotein is critical for viral infectivity. Proc Natl Acad Sci U S A 2000; 97:13523-5. [PMID: 11095714 PMCID: PMC17608 DOI: 10.1073/pnas.240459697] [Citation(s) in RCA: 147] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recent studies suggest that HIV-1 budding occurs selectively from detergent-insoluble membrane domains, referred to as lipid rafts. Palmitoylation is thought to be one of the factors responsible for targeting membrane proteins to lipid rafts. The cytoplasmic domain of the HIV-1 envelope glycoprotein (gp160) contains two palmitoylated cysteine residues. In this work, we studied the solubility of gp160 after detergent extraction. We show that wild-type gp160 is mostly insoluble after ice-cold Triton X-100 extraction, but that it becomes almost completely soluble at 37 degrees C. In contrast, we find that a mutant gp160, in which the two palmitoylated cysteine residues are replaced by serine, is Triton X-100 soluble even under ice-cold extraction. These findings are consistent with the properties of proteins that localize to lipid rafts and strongly suggest that gp160 is associated with lipid rafts. Further, removal of both palmitoylation sites results in the formation of virus with low levels of gp160 incorporation as well as a decrease in viral infectivity by 60-fold. Our results strongly support the suggestion that HIV-1 buds from lipid rafts and point to a role for rafts as a viral assembly hub.
Collapse
Affiliation(s)
- I Rousso
- Howard Hughes Medical Institute, Whitehead Institute for Biomedical Research, Department of Biology, Massachusetts Institute of Technology, Nine Cambridge Center, Cambridge, MA 02142, USA
| | | | | | | |
Collapse
|
41
|
Grange MP, Blot V, Delamarre L, Bouchaert I, Rocca A, Dautry-Varsat A, Dokhélar MC. Identification of two intracellular mechanisms leading to reduced expression of oncoretrovirus envelope glycoproteins at the cell surface. J Virol 2000; 74:11734-43. [PMID: 11090173 PMCID: PMC112456 DOI: 10.1128/jvi.74.24.11734-11743.2000] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
All retrovirus glycoproteins have a cytoplasmic domain that plays several roles in virus replication. We have determined whether and how the cytoplasmic domains of oncoretrovirus glycoproteins modulate their intracellular trafficking, by using chimeric proteins that combined the alpha-chain of the interleukin-2 receptor with the glycoprotein cytoplasmic domains of five oncoretroviruses: human T-cell leukemia virus type 1 (HTLV-1), Rous sarcoma virus (RSV), bovine leukemia virus (BLV), murine leukemia virus (MuLV), and Mason-Pfizer monkey virus (MPMV). All of these proteins were synthesized and matured in the same way as a control protein with no retrovirus cytoplasmic domain. However, the amounts of all chimeric proteins at the cell surface were smaller than that of the control protein. The protein appearing at and leaving the cell surface and endocytosis were measured in stable transfectants expressing the chimera. We identified two groups of proteins which followed distinct intracellular pathways. Group 1 included chimeric proteins that reached the cell surface normally but were rapidly endocytosed afterwards. This group included the chimeric proteins with HTLV-1, RSV, and BLV cytoplasmic domains. Group 2 included chimeric proteins that were not detected at the cell surface, despite normal intracellular concentrations, and were accumulated in the Golgi complex. This group included the chimeric proteins with MuLV and MPMV cytoplasmic domains. Finally, we verified that the MuLV envelope glycoproteins behaved in the same way as the corresponding chimeras. These results indicate that retroviruses have evolved two distinct mechanisms to ensure a similar biological feature: low concentrations of their glycoproteins at the cell surface.
Collapse
Affiliation(s)
- M P Grange
- INSERM U332, Institut Cochin de Génétique Moléculaire, 75014 Paris, France.
| | | | | | | | | | | | | |
Collapse
|
42
|
Yang C, Yang Q, Compans RW. Coreceptor-dependent inhibition of the cell fusion activity of simian immunodeficiency virus Env proteins. J Virol 2000; 74:6217-22. [PMID: 10846110 PMCID: PMC112125 DOI: 10.1128/jvi.74.13.6217-6222.2000] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cytoplasmic tail (R peptide) sequence is able to regulate the fusion activity of the murine leukemia virus (MuLV) envelope (Env) protein. We have previously shown that this sequence exerts a profound inhibitory effect on the fusion activity of simian immunodeficiency virus (SIV)-MuLV chimeric Env proteins which contain the extracellular and transmembrane domains of the SIV Env protein. Recent studies have shown that SIV can utilize several alternative cellular coreceptors for its fusion and entry into the cell. We have investigated the fusion activity of SIV and SIV-MuLV chimeric Env proteins using cells that express different coreceptors. HeLa cells were transfected with plasmid constructs that carry the SIV or SIV-MuLV chimeric Env protein genes and were overlaid with either CEMx174 cells or Ghost Gpr15 cells, which express the Gpr15 coreceptor for SIV, or Ghost CCR5 cells, which express CCR5, an alternate coreceptor for SIV. The R-peptide sequence in the SIV-MuLV chimeric proteins was found to inhibit the fusion with CEMx174 cells or Ghost Gpr15 cells. However, a significant level of fusion was still observed when HeLa cells expressing the chimeric Env proteins were cocultivated with Ghost CCR5 cells. These results show that the R-peptide sequence exerts differential effects on the fusion activity of SIV Env proteins using target cells that express alternative coreceptors.
Collapse
Affiliation(s)
- C Yang
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | |
Collapse
|
43
|
Pietschmann T, Zentgraf H, Rethwilm A, Lindemann D. An evolutionarily conserved positively charged amino acid in the putative membrane-spanning domain of the foamy virus envelope protein controls fusion activity. J Virol 2000; 74:4474-82. [PMID: 10775583 PMCID: PMC111968 DOI: 10.1128/jvi.74.10.4474-4482.2000] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Foamy viruses (FVs) are highly fusogenic, and their replication induces massive syncytium formation in infected cell cultures which is believed to be mediated by expression of the envelope (Env) protein. The FV Env is essential for virus particle egress. The unusually long putative membrane-spanning domain (MSD) of the transmembrane subunit carries dispersed charged amino acids and has an important function for particle envelopment. To better understand the capsid-envelope interaction and Env-mediated cell fusion, we generated a variety of FV MSD mutations. C-terminal deletions revealed the cytoplasmic domain to be dispensable but the full-length MSD to be required for fusogenic activity. The N-terminal 15 amino acids of the MSD were found to be sufficient for membrane anchorage and promotion of FV particle release. Expression of wild-type Env protein rarely induced syncytia due to intracellular retention. Coexpression with FV Gag-Pol resulted in particle export and a dramatic increase in fusion activity. A nonconservative mutation of K(959) in the middle of the putative MSD resulted in increased fusogenic activity of Env in the absence of Gag-Pol due to enhanced cell surface expression as well as structural changes in the mutant proteins. Coexpression with Gag-Pol resulted in a further increase in the fusion activity of mutant FV Env proteins. Our results suggest that an interaction between the viral capsid and Env is required for FV-induced giant-cell formation and that the positive charge in the MSD is an important determinant controlling intracellular transport and fusogenic activity of the FV Env protein.
Collapse
Affiliation(s)
- T Pietschmann
- Institut für Virologie und Immunbiologie, Universität Würzburg, Würzburg, Germany
| | | | | | | |
Collapse
|
44
|
Blond JL, Lavillette D, Cheynet V, Bouton O, Oriol G, Chapel-Fernandes S, Mandrand B, Mallet F, Cosset FL. An envelope glycoprotein of the human endogenous retrovirus HERV-W is expressed in the human placenta and fuses cells expressing the type D mammalian retrovirus receptor. J Virol 2000; 74:3321-9. [PMID: 10708449 PMCID: PMC111833 DOI: 10.1128/jvi.74.7.3321-3329.2000] [Citation(s) in RCA: 494] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
A new human endogenous retrovirus (HERV) family, termed HERV-W, was recently described (J.-L. Blond, F. Besème, L. Duret, O. Bouton, F. Bedin, H. Perron, B. Mandrand, and F. Mallet, J. Virol. 73:1175-1185, 1999). HERV-W mRNAs were found to be specifically expressed in placenta cells, and an env cDNA containing a complete open reading frame was recovered. In cell-cell fusion assays, we demonstrate here that the product of the HERV-W env gene is a highly fusogenic membrane glycoprotein. Transfection of an HERV-W Env expression vector in a panel of cell lines derived from different species resulted in formation of syncytia in primate and pig cells upon interaction with the type D mammalian retrovirus receptor. Moreover, envelope glycoproteins encoded by HERV-W were specifically detected in placenta cells, suggesting that they may play a physiological role during pregnancy and placenta formation.
Collapse
Affiliation(s)
- J L Blond
- Unité Mixte 103 CNRS-bioMérieux, INSERM U412, Ecole Normale Supérieure de Lyon, 69364 Lyon Cedex 07, France
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Chang KW, Sheng Y, Gombold JL. Coronavirus-induced membrane fusion requires the cysteine-rich domain in the spike protein. Virology 2000; 269:212-24. [PMID: 10725213 PMCID: PMC7131280 DOI: 10.1006/viro.2000.0219] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The spike glycoprotein of mouse hepatitis virus strain A59 mediates the early events leading to infection of cells, including fusion of the viral and cellular membranes. The spike is a type I membrane glycoprotein that possesses a conserved transmembrane anchor and an unusual cysteine-rich (cys) domain that bridges the putative junction of the anchor and the cytoplasmic tail. In this study, we examined the role of these carboxyl-terminal domains in spike-mediated membrane fusion. We show that the cytoplasmic tail is not required for fusion but has the capacity to enhance membrane fusion activity. Chimeric spike protein mutants containing substitutions of the entire transmembrane anchor and cys domain with the herpes simplex virus type 1 glycoprotein D (gD-1) anchor demonstrated that fusion activity requires the presence of the A59 membrane-spanning domain and the portion of the cys domain that lies upstream of the cytoplasmic tail. The cys domain is a required element since its deletion from the wild-type spike protein abrogates fusion activity. However, addition of the cys domain to fusion-defective chimeric proteins was unable to restore fusion activity. Thus, the cys domain is necessary but is not sufficient to complement the gD-1 anchor and allow for membrane fusion. Site-specific mutations of conserved cysteine residues in the cys domain markedly reduce membrane fusion, which further supports the conclusion that this region is crucial for spike function. The results indicate that the carboxyl-terminus of the spike transmembrane anchor contains at least two distinct domains, both of which are necessary for full membrane fusion.
Collapse
Affiliation(s)
- K W Chang
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | | | | |
Collapse
|
46
|
Zhao Y, Low W, Collins MK. Improved safety and titre of murine leukaemia virus (MLV)-based retroviral vectors. Gene Ther 2000; 7:300-5. [PMID: 10694810 DOI: 10.1038/sj.gt.3301081] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Many retroviral vectors based on murine leukaemia virus (MLV) contain the first 420 nucleotides of the gag gene, as this was reported to increase vector titre by increasing the efficiency of RNA packaging. In this study, deletion of this gag sequence from its original location did not decrease the titre of two retroviral vectors, pBabe puro and MFG-S-. The two vectors could be improved by replacing the gag sequence with a CTE from Mason-Pfizer monkey virus (MPMV). This substitution improved vector titre, while eliminating a region of homology between vector and packaging constructs. Gene Therapy (2000) 7, 300-305.
Collapse
Affiliation(s)
- Y Zhao
- Department of Immunology, Windeyer Building, 46 Cleveland St, London WIP 6DB, UK
| | | | | |
Collapse
|
47
|
Chung M, Kizhatil K, Albritton LM, Gaulton GN. Induction of syncytia by neuropathogenic murine leukemia viruses depends on receptor density, host cell determinants, and the intrinsic fusion potential of envelope protein. J Virol 1999; 73:9377-85. [PMID: 10516046 PMCID: PMC112972 DOI: 10.1128/jvi.73.11.9377-9385.1999] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Infection by the neuropathogenic murine leukemia virus (MLV) TR1.3 results in hemorrhagic disease that correlates directly to in vivo syncytium formation of brain capillary endothelial cells (BCEC). This phenotype maps to amino acid 102 in the envelope (Env) protein of TR1.3. Substitution of glycine (G) for tryptophan (W) at this position (W102G Env) in the nonpathogenic MLV FB29 induces both syncytium formation and neurologic disease in vivo. Using an in vitro gene reporter cell fusion assay, we showed that fusion either with murine NIH 3T3 cells or with nonmurine target cells that expressed receptors at or below endogenous murine levels mirrored that seen in BCEC in vivo. In these instances only TR1.3 and W102G Env induced cell fusion. In contrast, when receptor levels on nonmurine cells were raised above endogenous murine levels, FB29 Env was as fusogenic as the neuropathogenic TR1.3 and W102G Env. These results indicate that TR1.3 Env and W102G Env are intrinsically more fusogenic than FB29 Env, that the induction of fusion requires a threshold number of receptors that is greater for FB29 Env than for TR1.3 or W102G Env, and that receptor density on murine NIH 3T3 cells and BCEC is below the threshold for FB29-dependent fusion. Surprisingly, receptor density on NIH 3T3 cells could not be increased by stable expression of exogenous receptors, and FB29-dependent fusion was not observed in NIH 3T3 cells that transiently expressed elevated receptor numbers. These results suggest that an additional undefined host cell factor(s) may limit both receptor expression and fusion potential in murine cells.
Collapse
Affiliation(s)
- M Chung
- Department of Pathology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | |
Collapse
|
48
|
Delamarre L, Pique C, Rosenberg AR, Blot V, Grange MP, Le Blanc I, Dokhélar MC. The Y-S-L-I tyrosine-based motif in the cytoplasmic domain of the human T-cell leukemia virus type 1 envelope is essential for cell-to-cell transmission. J Virol 1999; 73:9659-63. [PMID: 10516080 PMCID: PMC113006 DOI: 10.1128/jvi.73.11.9659-9663.1999] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The human T-cell leukemia virus type 1 (HTLV-1) transmembrane glycoprotein has a 24-amino-acid cytoplasmic domain whose function in the viral life cycle is poorly understood. We introduced premature-stop mutations and 18 single-amino-acid substitutions into this domain and studied their effects on cell-to-cell transmission of the virus. The results show that the cytoplasmic domain is absolutely required for cell-to-cell transmission of HTLV-1, through amino acids which cluster in a Y-S-L-I tyrosine-based motif. The transmission defect in two motif mutants did not result from a defect in glycoprotein incorporation or fusion. It appears that the Y-S-L-I tyrosine-based motif of the HTLV-1 glycoprotein cytoplasmic domain has multiple functions, including involvement in virus transmission at a postfusion step.
Collapse
Affiliation(s)
- L Delamarre
- INSERM U332, Institut Cochin de Génétique Moléculaire, Paris, France
| | | | | | | | | | | | | |
Collapse
|
49
|
Tailor CS, Nouri A, Zhao Y, Takeuchi Y, Kabat D. A sodium-dependent neutral-amino-acid transporter mediates infections of feline and baboon endogenous retroviruses and simian type D retroviruses. J Virol 1999; 73:4470-4. [PMID: 10196349 PMCID: PMC104338 DOI: 10.1128/jvi.73.5.4470-4474.1999] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The type D simian retroviruses cause immunosuppression in macaques and have been reported as a presumptive opportunistic infection in a patient with AIDS. Previous evidence based on viral interference has strongly suggested that the type D simian viruses share a common but unknown cell surface receptor with three type C viruses: feline endogenous virus (RD114), baboon endogenous virus, and avian reticuloendotheliosis virus. Furthermore, the receptor gene for these viruses has been mapped to human chromosome 19q13.1-13.2. We now report the isolation and characterization of a cell surface receptor for this group of retroviruses by using a human T-lymphocyte cDNA library in a retroviral vector. Swiss mouse fibroblasts (NIH 3T3), which are naturally resistant to RD114, were transduced with the retroviral library and then challenged with an RD114-pseudotyped virus containing a dominant selectable gene for puromycin resistance. Puromycin selection yielded 12 cellular clones that were highly susceptible to a beta-galactosidase-encoding lacZ(RD114) pseudotype virus. Using PCR primers specific for vector sequences, we amplified a common 2.9-kb product from 10 positive clones. Expression of the 2.9-kb cDNA in Chinese hamster ovary cells conferred susceptibility to RD114, baboon endogenous virus, and the type D simian retroviruses. The 2.9-kb cDNA predicted a protein of 541 amino acids that had 98% identity with the previously cloned human Na+-dependent neutral-amino-acid transporter Bo. Accordingly, expression of the RD114 receptor in NIH 3T3 cells resulted in enhanced cellular uptake of L-[3H]alanine and L-[3H]glutamine. RNA blot (Northern) analysis suggested that the RD114 receptor is widely expressed in human tissues and cell lines, including hematopoietic cells. The human Bo transporter gene has been previously mapped to 19q13.3, which is closely linked to the gene locus of the RD114 receptor.
Collapse
Affiliation(s)
- C S Tailor
- Department of Biochemistry and Molecular Biology, Oregon Health Sciences University, Portland, Oregon 97201-3098, USA.
| | | | | | | | | |
Collapse
|
50
|
Inabe K, Nishizawa M, Tajima S, Ikuta K, Aida Y. The YXXL sequences of a transmembrane protein of bovine leukemia virus are required for viral entry and incorporation of viral envelope protein into virions. J Virol 1999; 73:1293-301. [PMID: 9882334 PMCID: PMC103953 DOI: 10.1128/jvi.73.2.1293-1301.1999] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/1998] [Accepted: 10/31/1998] [Indexed: 12/12/2022] Open
Abstract
The cytoplasmic domain of an envelope transmembrane glycoprotein (gp30) of bovine leukemia virus (BLV) has two overlapping copies of the (YXXL)2 motif. The N-terminal motif has been implicated in in vitro signal transduction pathways from the external to the intracellular compartment and is also involved in infection and maintenance of high viral loads in sheep that have been experimentally infected with BLV. To determine the role of YXXL sequences in the replication of BLV in vitro, we changed the tyrosine or leucine residues of the N-terminal motif in an infectious molecular clone of BLV, pBLV-IF, to alanine to produce mutated proviruses designated Y487A, L490A, Y498A, L501A, and Y487/498A. Transient transfection of African green monkey kidney COS-1 cells with proviral DNAs that encoded wild-type and mutant sequences revealed that all of the mutated proviral DNAs synthesized mature envelope proteins and released virus particles into the growth medium. However, serial passages of fetal lamb kidney (FLK) cells, which are sensitive to infection with BLV, after transient transfection revealed that mutation of a second tyrosine residue in the N-terminal motif completely prevented the propagation of the virus. Similarly, Y498A and Y487/498A mutant BLV that was produced by the stably transfected COS-1 cells exhibited significantly reduced levels of cell-free virion-mediated transmission. Analysis of the protein compositions of mutant viruses demonstrated that lower levels of envelope protein were incorporated by two of the mutant virions than by wild-type and other mutant virions. Furthermore, a mutation of a second tyrosine residue decreased the specific binding of BLV particles to FLK cells and the capacity for viral penetration. Our data indicate that the YXXL sequences play critical roles in both viral entry and the incorporation of viral envelope protein into the virion during the life cycle of BLV.
Collapse
Affiliation(s)
- K Inabe
- Tsukuba Life Science Center, The Institute of Physical and Chemical Research (RIKEN), Tsukuba, Ibaraki 305-0074, Japan
| | | | | | | | | |
Collapse
|