1
|
Chan B, Nuismer SL, Alqirbi H, Nichols J, Remien CH, Davison AJ, Jarvis MA, Redwood AJ. Fine-tuning the evolutionary stability of recombinant herpesviral transmissible vaccines. Proc Biol Sci 2024; 291:20241827. [PMID: 39532136 PMCID: PMC11557244 DOI: 10.1098/rspb.2024.1827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/20/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024] Open
Abstract
Spillover of infectious diseases from wild animal populations constitutes a long-standing threat to human health for which few globally viable solutions have been developed. The use of oral baits laden with conventional vaccines distributed en masse represents one success story but is costly and practicable primarily for rabies risk reduction in North American and European carnivores. Efforts to expand vaccination to control pathogens within less accessible wildlife populations have raised interest in a new kind of vaccine capable of spreading pathogen-specific immunity through autonomous spread. However, such 'transmissible' vaccines raise concerns about the irrevocable release of genetically modified viruses into the environment. Herein, we explore the feasibility of an intrinsic strategy for transgene control within these vaccines based on the genetic destabilizing effect of cis-acting sequences flanking the heterologous transgene of interest. While suitable for the control of transgene stability within all types of DNA-viral vectored vaccines, this strategy has particular applicability to transmissible vaccines. Using a combination of experiments, mathematical modelling and whole-genome sequencing, we show that the rate of transgene loss can be controlled by varying the lengths of the direct repeat sequences. This opens a way for fine-tuning the lifespan of a transmissible vaccine in the wild.
Collapse
Affiliation(s)
- Baca Chan
- Institute for Respiratory Health, University of Western Australia, Nedlands, WA6009, Australia
- School of Biomedical Science, University of Western Australia, Nedlands, WA6009, Australia
| | - Scott L. Nuismer
- Department of Biological Sciences, University of Idaho, Moscow, ID83844, USA
| | - Hujaz Alqirbi
- School of Biomedical Sciences, University of Plymouth, PlymouthPL4 8AA, UK
| | - Jenna Nichols
- MRC-University of Glasgow Centre for Virus Research, GlasgowG61 1QH, UK
| | - Christopher H. Remien
- Department of Mathematics and Statistical Science, University of Idaho, Moscow, ID83844, USA
| | - Andrew J. Davison
- MRC-University of Glasgow Centre for Virus Research, GlasgowG61 1QH, UK
| | - Michael A. Jarvis
- School of Biomedical Sciences, University of Plymouth, PlymouthPL4 8AA, UK
- The Vaccine Group, Plymouth, DevonPL6 6BU, UK
| | - Alec J. Redwood
- Institute for Respiratory Health, University of Western Australia, Nedlands, WA6009, Australia
- School of Biomedical Science, University of Western Australia, Nedlands, WA6009, Australia
| |
Collapse
|
2
|
Landmarks of endosomal remodeling in the early phase of cytomegalovirus infection. Virology 2017; 515:108-122. [PMID: 29277005 DOI: 10.1016/j.virol.2017.12.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 11/29/2017] [Accepted: 12/04/2017] [Indexed: 12/25/2022]
Abstract
Cytomegaloviruses (CMVs) extensively rearrange the cellular membrane system to develop assembly compartment (AC), but the earliest events in this process are poorly characterized. Here, we demonstrate that murine CMV (MCMV) infection restrains endosomal trafficking of cargo molecules that travel along the recycling (TfR and MHC-I) and the late endosomal (EGFR, M6PR, Lamp1) circuit. Internalized cargo accumulates in Arf6-, Rab5-, Rab22A-, and Rab11-positive and Rab35-, Rab8-, and Rab10-negative juxtanuclear endosomes, suggesting the disruption of Arf/Rab regulatory cascade at the stage of sorting endosomes and the endosomal recycling compartment. Rearrangement of the endosomal system is initiated by an MCMV-encoded function very early in the infection. Our study, thus, establishes a set of landmarks of endosomal remodeling in the early phase of MCMV-infection which coincide with the Golgi rearrangement, suggesting that these perturbations are the earliest membrane reorganizations that may represent an initial step in the biogenesis of the AC.
Collapse
|
3
|
The p36 isoform of murine cytomegalovirus m152 protein suffices for mediating innate and adaptive immune evasion. Viruses 2013; 5:3171-91. [PMID: 24351798 PMCID: PMC3967166 DOI: 10.3390/v5123171] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 12/06/2013] [Accepted: 12/10/2013] [Indexed: 12/12/2022] Open
Abstract
The MHC-class I (MHC-I)-like viral (MHC-Iv) m152 gene product of murine cytomegalovirus (mCMV) was the first immune evasion molecule described for a member of the β-subfamily of herpesviruses as a paradigm for analogous functions of human cytomegalovirus proteins. Notably, by interacting with classical MHC-I molecules and with MHC-I-like RAE1 family ligands of the activatory natural killer (NK) cell receptor NKG2D, it inhibits presentation of antigenic peptides to CD8 T cells and the NKG2D-dependent activation of NK cells, respectively, thus simultaneously interfering with adaptive and innate immune recognition of infected cells. Although the m152 gene product exists in differentially glycosylated isoforms whose individual contributions to immune evasion are unknown, it has entered the scientific literature as m152/gp40, based on the quantitatively most prominent isoform but with no functional justification. By construction of a recombinant mCMV in which all three N-glycosylation sites are mutated (N61Q, N208Q, and N241Q), we show here that N-linked glycosylation is not essential for functional interaction of the m152 immune evasion protein with either MHC-I or RAE1. These data add an important functional detail to recent structural analysis of the m152/RAE1γ complex that has revealed N-glycosylations at positions Asn61 and Asn208 of m152 distant from the m152/RAE1γ interface.
Collapse
|
4
|
Murine cytomegalovirus immune evasion proteins operative in the MHC class I pathway of antigen processing and presentation: state of knowledge, revisions, and questions. Med Microbiol Immunol 2012; 201:497-512. [PMID: 22961127 DOI: 10.1007/s00430-012-0257-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 08/22/2012] [Indexed: 12/15/2022]
Abstract
Medical interest in cytomegalovirus (CMV) is based on lifelong neurological sequelae, such as sensorineural hearing loss and mental retardation, resulting from congenital infection of the fetus in utero, as well as on CMV disease with multiple organ manifestations and graft loss in recipients of hematopoietic cell transplantation or solid organ transplantation. CMV infection of transplantation recipients occurs consequent to reactivation of virus harbored in a latent state in the transplanted donor cells and tissues, or in the tissues of the transplantation recipient herself or himself. Hence, CMV infection is a paradigm for a viral infection that causes disease primarily in the immunocompromised host, while infection of the immunocompetent host is associated with only mild and nonspecific symptoms so that it usually goes unnoticed. Thus, CMV is kept under strict immune surveillance. These medical facts are in apparent conflict with the notion that CMVs in general, human CMV as well as animal CMVs, are masters of 'immune evasion', which during virus-host co-speciation have convergently evolved sophisticated mechanisms to avoid their recognition by innate and adaptive immunity of their respective host species, with viral genes apparently dedicated to serve just this purpose (Reddehase in Nat Rev Immunol 2:831-844, 2002). With focus on viral interference with antigen presentation to CD8 T cells in the preclinical model of murine CMV infection, we try here to shed some more light on the in vivo balance between host immune surveillance of CMV infection and viral 'immune evasion' strategies.
Collapse
|
5
|
Lacaze P, Forster T, Ross A, Kerr LE, Salvo-Chirnside E, Lisnic VJ, López-Campos GH, García-Ramírez JJ, Messerle M, Trgovcich J, Angulo A, Ghazal P. Temporal profiling of the coding and noncoding murine cytomegalovirus transcriptomes. J Virol 2011; 85:6065-76. [PMID: 21471238 PMCID: PMC3126304 DOI: 10.1128/jvi.02341-10] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Accepted: 03/28/2011] [Indexed: 12/20/2022] Open
Abstract
The global transcriptional program of murine cytomegalovirus (MCMV), involving coding, noncoding, and antisense transcription, remains unknown. Here we report an oligonucleotide custom microarray platform capable of measuring both coding and noncoding transcription on a genome-wide scale. By profiling MCMV wild-type and immediate-early mutant strains in fibroblasts, we found rapid activation of the transcriptome by 6.5 h postinfection, with absolute dependency on ie3, but not ie1 or ie2, for genomic programming of viral gene expression. Evidence is also presented to show, for the first time, genome-wide noncoding and bidirectional transcription at late stages of MCMV infection.
Collapse
Affiliation(s)
- Paul Lacaze
- Division of Pathway Medicine, The University of Edinburgh, The Chancellor's Building, College of Medicine, 49 Little France Crescent, Edinburgh, United Kingdom
| | - Thorsten Forster
- Division of Pathway Medicine, The University of Edinburgh, The Chancellor's Building, College of Medicine, 49 Little France Crescent, Edinburgh, United Kingdom
| | - Alan Ross
- Division of Pathway Medicine, The University of Edinburgh, The Chancellor's Building, College of Medicine, 49 Little France Crescent, Edinburgh, United Kingdom
| | - Lorraine E. Kerr
- Centre for Systems Biology at Edinburgh, The University of Edinburgh, Darwin Building, King's Buildings Campus, Mayfield Road, Edinburgh, United Kingdom
| | - Eliane Salvo-Chirnside
- Centre for Systems Biology at Edinburgh, The University of Edinburgh, Darwin Building, King's Buildings Campus, Mayfield Road, Edinburgh, United Kingdom
| | - Vanda Juranic Lisnic
- Department of Histology and Embryology, Faculty of Medicine, Rijeka University, Croatia
| | | | - José J. García-Ramírez
- Department of Inorganic and Organic Chemistry and Biochemistry, Medical School, Regional Center for Biomedical Research, University of Castilla—La Mancha, Avenida de Almansa 14, 02006 Albacete, Spain
| | - Martin Messerle
- Department of Virology, Hannover Medical School, Hannover, Germany
| | - Joanne Trgovcich
- Department of Pathology, The Ohio State University, Columbus, Ohio 43210
| | - Ana Angulo
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Peter Ghazal
- Division of Pathway Medicine, The University of Edinburgh, The Chancellor's Building, College of Medicine, 49 Little France Crescent, Edinburgh, United Kingdom
- Centre for Systems Biology at Edinburgh, The University of Edinburgh, Darwin Building, King's Buildings Campus, Mayfield Road, Edinburgh, United Kingdom
| |
Collapse
|
6
|
Murine cytomegalovirus perturbs endosomal trafficking of major histocompatibility complex class I molecules in the early phase of infection. J Virol 2010; 84:11101-12. [PMID: 20719942 DOI: 10.1128/jvi.00988-10] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Murine cytomegalovirus (MCMV) functions interfere with protein trafficking in the secretory pathway. In this report we used Δm138-MCMV, a recombinant virus with a deleted viral Fc receptor, to demonstrate that MCMV also perturbs endosomal trafficking in the early phase of infection. This perturbation had a striking impact on cell surface-resident major histocompatibility complex class I (MHC-I) molecules due to the complementary effect of MCMV immunoevasins, which block their egress from the secretory pathway. In infected cells, constitutively endocytosed cell surface-resident MHC-I molecules were arrested and retained in early endosomal antigen 1 (EEA1)-positive and lysobisphosphatidic acid (LBPA)-negative perinuclear endosomes together with clathrin-dependent cargo (transferrin receptor, Lamp1, and epidermal growth factor receptor). Their progression from these endosomes into recycling and degradative routes was inhibited. This arrest was associated with a reduction of the intracellular content of Rab7 and Rab11, small GTPases that are essential for the maturation of recycling and endolysosomal domains of early endosomes. The reduced recycling of MHC-I in Δm138-MCMV-infected cells was accompanied by their accelerated loss from the cell surface. The MCMV function that affects cell surface-resident MHC-I was activated in later stages of the early phase of viral replication, after the expression of known immunoevasins. MCMV without the three immunoevasins (the m04, m06, and m152 proteins) encoded a function that affects endosomal trafficking. This function, however, was not sufficient to reduce the cell surface expression of MHC-I in the absence of the transport block in the secretory pathway.
Collapse
|
7
|
The efficacy of antigen processing is critical for protection against cytomegalovirus disease in the presence of viral immune evasion proteins. J Virol 2009; 83:9611-5. [PMID: 19553308 DOI: 10.1128/jvi.00936-09] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Cytomegaloviruses (CMVs) code for immunoevasins, glycoproteins that are specifically dedicated to interfere with the presentation of antigenic peptides to CD8 T cells. Nonetheless, the biological outcome is not an immune evasion of the virus, since CD8 T cells can control CMV infection even when immunoevasins are expressed. Here, we compare the processing of a protective and a nonprotective epitope derived from the same viral protein, the antiapoptotic protein M45 in the murine model. The data provide evidence to conclude that protection against CMVs critically depends on antigenic peptides generated in an amount sufficient to exhaust the inhibitory capacity of immunoevasins.
Collapse
|
8
|
Mans J, Zhi L, Revilleza MJR, Smith L, Redwood A, Natarajan K, Margulies DH. Structure and function of murine cytomegalovirus MHC-I-like molecules: how the virus turned the host defense to its advantage. Immunol Res 2009; 43:264-79. [PMID: 19011767 DOI: 10.1007/s12026-008-8081-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The mouse cytomegalovirus (CMV), a beta-herpesvirus, exploits its large (~230 kb) double-stranded DNA genome for both essential and non-essential functions. Among the non-essential functions are those that offer the virus a selective advantage in eluding both the innate and adaptive immune responses of the host. Several non-essential genes of MCMV are thought to encode MHC-I-like genes and to function as immunoevasins. To understand further the evolution and function of these viral MHC-I (MHC-Iv) molecules, X-ray structures of several of them have been determined, not only confirming the overall MHC-I-like structure, but also elucidating features unique to this family. Future efforts promise to clarify the nature of the molecular ligands of these molecules, their evolution in the context of the adapting immune response of the murine host, and by analogy the evolution of the host response to human CMV as well.
Collapse
Affiliation(s)
- Janet Mans
- Molecular Biology Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bldg. 10; Room 11N311, 10 Center Drive, Bethesda, MD 20892-1892, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Kielczewska A, Pyzik M, Sun T, Krmpotic A, Lodoen MB, Munks MW, Babic M, Hill AB, Koszinowski UH, Jonjic S, Lanier LL, Vidal SM. Ly49P recognition of cytomegalovirus-infected cells expressing H2-Dk and CMV-encoded m04 correlates with the NK cell antiviral response. ACTA ACUST UNITED AC 2009; 206:515-23. [PMID: 19255146 PMCID: PMC2699136 DOI: 10.1084/jem.20080954] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Natural killer (NK) cells are crucial in resistance to certain viral infections, but the mechanisms used to recognize infected cells remain largely unknown. Here, we show that the activating Ly49P receptor recognizes cells infected with mouse cytomegalovirus (MCMV) by a process that requires the presence of H2-Dk and the MCMV m04 protein. Using H2 chimeras between H2-Db and -Dk, we demonstrate that the H2-Dk peptide-binding platform is required for Ly49P recognition. We identified m04 as a viral component necessary for recognition using a panel of MCMV-deletion mutant viruses and complementation of m04-deletion mutant (Δm04) virus infection. MA/My mice, which express Ly49P and H2-Dk, are resistant to MCMV; however, infection with Δm04 MCMV abrogates resistance. Depletion of NK cells in MA/My mice abrogates their resistance to wild-type MCMV infection, but does not significantly affect viral titers in mice infected with Δm04 virus, implicating NK cells in host protection through m04-dependent recognition. These findings reveal a novel mechanism of major histocompatability complex class I–restricted recognition of virally infected cells by an activating NK cell receptor.
Collapse
|
10
|
Cmv1 and natural killer cell responses to murine cytomegalovirus infection. Curr Top Microbiol Immunol 2008; 321:101-22. [PMID: 18727489 DOI: 10.1007/978-3-540-75203-5_5] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The dissection of genetic resistance to murine cytomegalovirus infection in inbred laboratory mouse strains led to the identification of a natural killer cell activation receptor that recognizes a virus-encoded protein. Herein, we summarize the genetic approach and findings that have provided novel insights into innate immune control of virus infections.
Collapse
|
11
|
Pinto AK, Jamieson AM, Raulet DH, Hill AB. The role of NKG2D signaling in inhibition of cytotoxic T-lymphocyte lysis by the Murine cytomegalovirus immunoevasin m152/gp40. J Virol 2007; 81:12564-71. [PMID: 17855532 PMCID: PMC2169000 DOI: 10.1128/jvi.01328-07] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2007] [Accepted: 08/31/2007] [Indexed: 12/26/2022] Open
Abstract
Three proteins encoded by murine cytomegalovirus (MCMV) -- gp34, encoded by m04 (m04/gp34), gp48, encoded by m06 (m06/gp48), and gp40, encoded by m152 (m152/gp40) -- act together to powerfully impact the ability of primed cytotoxic CD8 T lymphocytes (CTL) to kill virus-infected cells. Of these three, the impact of m152/gp40 on CTL lysis appears greater than would be expected based on its impact on cell surface major histocompatibility complex (MHC) class I. In addition to MHC class I, m152/gp40 also downregulates the RAE-1 family of NKG2D ligands, which can provide costimulation for CD8 T cells. We hypothesized that m152/gp40 may impact CTL lysis so profoundly because it inhibits both antigen presentation and NKG2D-mediated costimulation. We therefore tested the extent to which m152/gp40's ability to inhibit CTL lysis of MCMV-infected cells could be accounted for by its inhibition of NKG2D signaling. As was predictable from the results reported in the literature, NKG2D ligands were not detected by NKG2D tetramer staining of cells infected with wild-type MCMV, whereas those infected with MCMV lacking m152/gp40 displayed measurable levels of the NKG2D ligand. To determine whether NKG2D signaling contributed to the ability of CTL to lyse these cells, we used a blocking anti-NKG2D antibody. Blocking NKG2D signaling did affect the killing of MCMV-infected cells for some epitopes. However, for all epitopes, the impact of m152/gp40 on CTL lysis was much greater than the impact of inhibition of NKG2D signaling. We conclude that the downregulation of NKG2D ligands by MCMV makes only a small contribution to the impact of m152/gp40 on CTL lysis and only for a small subset of CTL.
Collapse
Affiliation(s)
- Amelia K Pinto
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97239, USA
| | | | | | | |
Collapse
|
12
|
Pinto AK, Munks MW, Koszinowski UH, Hill AB. Coordinated function of murine cytomegalovirus genes completely inhibits CTL lysis. THE JOURNAL OF IMMUNOLOGY 2006; 177:3225-34. [PMID: 16920962 DOI: 10.4049/jimmunol.177.5.3225] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Murine CMV (MCMV) encodes three viral genes that interfere with Ag presentation (VIPRs) to CD8 T cells, m04, m06, and m152. Because the functional impact of these genes during normal infection of C57BL/6 mice is surprisingly modest, we wanted to determine whether the VIPRs are equally effective against the entire spectrum of H-2(b)-restricted CD8 T cell epitopes. We also wanted to understand how the VIPRs interact at a functional level. To address these questions, we used a panel of MCMV mutants lacking each VIPR in all possible combinations, and CTL specific for 15 H-2(b)-restricted MCMV epitopes. Only expression of all three MCMV VIPRs completely inhibited killing by CTL specific for all 15 epitopes, but removal of any one VIPR enabled lysis by at least some CTL. The dominant interaction between the VIPRs was cooperation: m06 increased the inhibition of lysis achieved by either m152 or m04. However, for 1 of 15 epitopes m04 functionally antagonized m152. There was little differential impact of any of the VIPRs on K(b) vs D(b), but a surprising degree of differential impact of the three VIPRs for different epitopes. These epitope-specific differences did not correlate with functional avidity, or with timing of VIPR expression in relation to Ag expression in the virus replication cycle. Although questions remain about the molecular mechanism and in vivo role of these genes, we conclude that the coordinated function of MCMV's three VIPRs results in a powerful inhibition of lysis of infected cells by CD8 T cells.
Collapse
Affiliation(s)
- Amelia K Pinto
- Oregon Health and Science University, Molecular Microbiology and Immunology, Portland, OR 97239, USA
| | | | | | | |
Collapse
|
13
|
Holtappels R, Gillert-Marien D, Thomas D, Podlech J, Deegen P, Herter S, Oehrlein-Karpi SA, Strand D, Wagner M, Reddehase MJ. Cytomegalovirus encodes a positive regulator of antigen presentation. J Virol 2006; 80:7613-24. [PMID: 16840340 PMCID: PMC1563742 DOI: 10.1128/jvi.00723-06] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Murine cytomegalovirus encodes three regulators of antigen presentation to antiviral CD8 T cells. According to current paradigms, all three regulators are committed to the inhibition of the presentation of antigenic peptides. Whereas m152/gp40 catalyzes the retention of peptide-loaded major histocompatibility complex (MHC) class I molecules in a cis-Golgi compartment, m06/gp48 binds stably to class I molecules and directs them into the cellular cargo-sorting pathway of lysosomal degradation. Regulator m04/gp34 also binds stably to class I molecules, but unlike m152 and m06, it does not downmodulate MHC class I cell surface expression. It has entered the literature as a direct inhibitor of T-cell recognition of the MHC-peptide complex at the cell surface. In this work, we have studied the presentation of antigenic viral peptides in cells infected with a comprehensive set of mutant viruses expressing the three regulators separately as well as in all possible combinations. The results redefine m04 as a positive regulator dedicated to the facilitation of antigen presentation. When expressed alone, it did not inhibit T-cell recognition, and when expressed in the presence of m152, it restored antigen presentation by antagonizing the inhibitory function of m152. Its intrinsic positive function, however, was antagonized and even slightly overcompensated for by the negative regulator m06. In an adoptive cell transfer model, the opposing forces of the three regulators were found to govern immune surveillance in the infected host. While negative regulators, also known as immunoevasins, are common, the existence of a positive regulator is without precedent and indicates an intriguing genetic potential of this virus to influence antigen presentation.
Collapse
Affiliation(s)
- Rafaela Holtappels
- Institute for Virology, Johannes Gutenberg-University, Hochhaus am Augustusplatz, 55101 Mainz, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Pinto AK, Hill AB. Viral Interference with Antigen Presentation to CD8+T Cells: Lessons from Cytomegalovirus. Viral Immunol 2005; 18:434-44. [PMID: 16212522 DOI: 10.1089/vim.2005.18.434] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Cytomegaloviruses (CMV), in common with other Herpesviruses, establish lifelong persistence in their hosts. These highly host-specific viruses each encode viral genes that interfere with antigen presentation to CD8+ T cells, although the molecular mechanisms by which this end is achieved differ for human and murine CMVs. In each case, there has been a presumption that these genes are necessary for virus persistence in the host. However, recent data in the murine model casts doubt on that presumption. Here, we review the molecular mechanisms of interference with the class I pathway, and the published data regarding functional significance, with a focus on the murine model.
Collapse
Affiliation(s)
- Amelia K Pinto
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97239, USA
| | | |
Collapse
|
15
|
Lodoen MB, Abenes G, Umamoto S, Houchins JP, Liu F, Lanier LL. The cytomegalovirus m155 gene product subverts natural killer cell antiviral protection by disruption of H60-NKG2D interactions. ACTA ACUST UNITED AC 2004; 200:1075-81. [PMID: 15477345 PMCID: PMC2211837 DOI: 10.1084/jem.20040583] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Natural killer (NK) cells are an important early mediator of host immunity to murine cytomegalovirus (MCMV) infection. However, MCMV has evolved mechanisms to elude recognition and clearance by NK cells. We have identified an MCMV immune evasion protein that impairs NKG2D-mediated NK cell antiviral activity. Infection of BALB/c 3T3 cells with the Smith strain of MCMV resulted in strong down-regulation of H60, a high affinity ligand for NKG2D, from the surface of virus-infected cells. The MCMV m155 protein specifically down-regulated H60 without affecting expression of the other known NKG2D ligands, RAE-1 and MULT-1. Treatment with the proteasome inhibitors lactacystin or epoxomicin reversed m155 down-regulation of H60. An MCMV mutant virus lacking m155 was severely attenuated in BALB/c mice; however, treatment with neutralizing anti-NKG2D monoclonal antibody or with NK-depleting anti-asialo GM1 antisera restored virulence of the mutant virus. Thus, down-regulation of H60 by m155 is a powerful mechanism of inhibiting NKG2D-mediated antiviral function.
Collapse
Affiliation(s)
- Melissa B Lodoen
- Department of Microbiology and Immunology, Cancer Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | | | | | | | | |
Collapse
|
16
|
Gold MC, Munks MW, Wagner M, McMahon CW, Kelly A, Kavanagh DG, Slifka MK, Koszinowski UH, Raulet DH, Hill AB. Murine cytomegalovirus interference with antigen presentation has little effect on the size or the effector memory phenotype of the CD8 T cell response. THE JOURNAL OF IMMUNOLOGY 2004; 172:6944-53. [PMID: 15153514 DOI: 10.4049/jimmunol.172.11.6944] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
As with most herpesviruses, CMVs encode viral genes that inhibit Ag presentation to CD8 T cells (VIPRs). VIPR function has been assumed to be essential for CMV to establish its characteristic lifetime infection of its host. We compared infection of C57BL/6 mice with wild-type murine CMV (MCMV) and a virus lacking each of MCMV's three known VIPRs: m4, m6, and m152. During acute infection, there was very little difference between the two viruses with respect to the kinetics of viral replication and clearance, or in the size and kinetics of the virus-specific CD8 T cell response. During chronic infection, a large, effector memory, virus-specific CD8 T cell population (CD8(low)CD62L(-)CD11c(+)NKG2A(+)) was maintained in both infections; the size and phenotype of the CD8 T cell response to both viruses was remarkably similar. The characteristic effector memory phenotype of the CD8 T cells suggested that both wild-type and Deltam4+m6+m152 virus continued to present Ag to CD8 T cells during the chronic phase of infection. During the chronic phase of infection, MCMV cannot be isolated from immunocompetent mice. However, upon immunosuppression, both Deltam4+m6+m152 and wild-type virus could be reactivated from mice infected for 6 wk. Thus, restoring the ability of CD8 T cells to detect MCMV had little apparent effect on the course of MCMV infection and on the CD8 T cell response to it. These results challenge the notion that VIPR function is necessary for CMV persistence in the host.
Collapse
Affiliation(s)
- Marielle C Gold
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97239, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Bubeck A, Wagner M, Ruzsics Z, Lötzerich M, Iglesias M, Singh IR, Koszinowski UH. Comprehensive mutational analysis of a herpesvirus gene in the viral genome context reveals a region essential for virus replication. J Virol 2004; 78:8026-35. [PMID: 15254174 PMCID: PMC446129 DOI: 10.1128/jvi.78.15.8026-8035.2004] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Essential viral proteins perform vital functions during morphogenesis via a complex interaction with other viral and cellular gene products. Here, we present a novel approach to comprehensive mutagenesis of essential cytomegalovirus genes and biological analysis in the 230-kbp-genome context. A random Tn7-based mutagenesis procedure at the single-gene level was combined with site-specific recombination via the FLP/FLP recognition target site system for viral genome reconstitution. We show the function of more than 100 mutants from a larger library of M50/p35, a protein involved in capsid egress from the nucleus. This protein recruits other viral proteins and cellular enzymes to the inner nuclear membrane. Our approach enabled us to rapidly discriminate between essential and nonessential regions within the coding sequence. Based on the prediction of the screen, we were able to map a site essential for viral protein-protein interaction at the amino acid level.
Collapse
Affiliation(s)
- Anja Bubeck
- Max von Pettenkofer Institut für Virologie, Ludwig-Maximilians-Universität, 80336 Munich, Germany
| | | | | | | | | | | | | |
Collapse
|
18
|
Bubić I, Wagner M, Krmpotić A, Saulig T, Kim S, Yokoyama WM, Jonjić S, Koszinowski UH. Gain of virulence caused by loss of a gene in murine cytomegalovirus. J Virol 2004; 78:7536-44. [PMID: 15220428 PMCID: PMC434107 DOI: 10.1128/jvi.78.14.7536-7544.2004] [Citation(s) in RCA: 177] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Mouse strains are either resistant or susceptible to murine cytomegalovirus (MCMV). Resistance is determined by the Cmv1(r) (Ly49h) gene, which encodes the Ly49H NK cell activation receptor. The protein encoded by the m157 gene of MCMV has been defined as a ligand for Ly49H. To find out whether the m157 protein is the only Ly49H ligand encoded by MCMV, we constructed the m157 deletion mutant and a revertant virus. Viruses were tested for susceptibility to NK cell control in Ly49H+ and Ly49H- mouse strains. Deletion of the m157 gene abolished the viral activation of Ly49H+ NK cells, resulting in higher virus virulence in vivo. Thus, in the absence of m157, Ly49H+ mice react like susceptible strains. 129/SvJ mice lack the Ly49H activation NK cell receptor but express the inhibitory Ly49I NK cell receptor that binds to the m157 protein. The Deltam157 inhibitory phenotype was weak because MCMV encodes a number of proteins that mediate NK inhibition, whose contribution could be shown by another mutant.
Collapse
Affiliation(s)
- Ivan Bubić
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | | | | | | | | | | | | | | |
Collapse
|
19
|
French AR, Pingel JT, Wagner M, Bubic I, Yang L, Kim S, Koszinowski U, Jonjic S, Yokoyama WM. Escape of mutant double-stranded DNA virus from innate immune control. Immunity 2004; 20:747-56. [PMID: 15189739 DOI: 10.1016/j.immuni.2004.05.006] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2003] [Revised: 04/15/2004] [Accepted: 04/21/2004] [Indexed: 11/29/2022]
Abstract
As innate immune system components, natural killer (NK) cells respond rapidly to infections and effectively control replication of pathogens, including murine cytomegalovirus (MCMV), a double-stranded DNA beta-herpesvirus. In the absence of NK cell control, MCMV infection results in early mortality due to uncontrolled viral replication. However, here we show that even in the face of initial NK cell control, there is late recrudescence of disease and mortality in immunodeficient mice due to the outgrowth of MCMV mutants that escape recognition by innate NK cells. These data suggest that viral infections in certain clinical settings also may be due to viral escape from innate immunity.
Collapse
Affiliation(s)
- Anthony R French
- Division of Pediatric Rheumatology, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Abenes G, Chan K, Lee M, Haghjoo E, Zhu J, Zhou T, Zhan X, Liu F. Murine cytomegalovirus with a transposon insertional mutation at open reading frame m155 is deficient in growth and virulence in mice. J Virol 2004; 78:6891-9. [PMID: 15194765 PMCID: PMC421665 DOI: 10.1128/jvi.78.13.6891-6899.2004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
A pool of murine cytomegalovirus (MCMV) mutants was previously generated by using a Tn3-based transposon mutagenesis approach (X. Zhan, M. Lee, J. Xiao, and F. Liu, J. Virol. 74:7411-7421, 2000). In this study, one of the MCMV mutants, Rvm155, which contained the transposon insertion in open reading frame m155, was characterized in vitro for its replication in tissue culture and in vivo for its growth and virulence in immunodeficient SCID mice. Compared to the wild-type strain and a rescued virus that restored the m155 region, the mutant is significantly deficient in growth in many organs of the infected animals. At 21 days postinfection the titers of Rvm155 in the salivary glands, lungs, spleens, livers, and kidneys of the intraperitoneally infected SCID mice were lower than the titers of the wild-type virus and the rescued virus by 50-, 1,000-, 500-, 100-, and 500-fold, respectively. Moreover, the viral mutant was attenuated in killing the SCID mice, as none of the SCID mice that were intraperitoneally infected with Rvm155 died until 38 days postinfection while all the animals infected with the wild-type and rescued viruses died at 27 days postinfection. Our results provide the first direct evidence that a disruption of m155 expression leads to attenuation of viral virulence and growth in animals. Moreover, these results suggest that m155 is a viral determinant for optimal MCMV growth and virulence in vivo.
Collapse
Affiliation(s)
- Gerardo Abenes
- Division of Infectious Diseases, School of Public Health, University of California, Berkeley, 94720, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Reddehase MJ, Simon CO, Podlech J, Holtappels R. Stalemating a clever opportunist: lessons from murine cytomegalovirus. Hum Immunol 2004; 65:446-55. [PMID: 15172444 DOI: 10.1016/j.humimm.2004.02.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2003] [Revised: 01/15/2004] [Accepted: 02/03/2004] [Indexed: 12/29/2022]
Abstract
Cytomegaloviruses and their specific hosts have come to an arrangement that avoids disease but allows the viruses to persist in the individual host and to spread in the host species. Recent work has uncovered some of the molecular details of this evolutionary "contract for mutual survival." Cytomegaloviruses encode proteins, referred to as "immunoevasins," which are specifically committed to subvert the immune defense of the host for evading virus elimination. In reply, the hosts have evolved countermeasures to overcome the viral immunoevasins and present antigenic peptides to an extent that is sufficient for confining virus replication to below a harmful level. Accordingly, cytomegalic inclusion disease is a disease only of the immunocompromised. Although the details of the contract differ between the various cytomegalovirus host pairs, the general principles are strikingly analogous. Paradigmatic findings were made in the murine model, which adds the advantage of providing proof of principle by in vivo studies. With the focus on CD8 T cells and the major histocompatibility complex class I pathway of antigen presentation, we will discuss our view on the immune surveillance of cytomegalovirus in the murine model.
Collapse
|
22
|
Zhu J, Chen J, Hai R, Tong T, Xiao J, Zhan X, Lu S, Liu F. In vitro and in vivo characterization of a murine cytomegalovirus with a mutation at open reading frame m166. J Virol 2003; 77:2882-91. [PMID: 12584312 PMCID: PMC149767 DOI: 10.1128/jvi.77.5.2882-2891.2003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have recently generated a pool of murine cytomegalovirus (MCMV) mutants by using a Tn3-based transposon mutagenesis approach. In this study, one of the mutants, Rvm166, which contained the transposon sequence at open reading frame m166, was characterized both in tissue culture and in immunocompetent BALB/c mice and immunodeficient SCID mice. The viral mutant replicated as well as the wild-type Smith strain in vitro in NIH 3T3 cells, whereas the transposon insertion precluded the expression of >65% of the m166 open reading frame. Compared to the wild-type strain and a rescued virus that restored the m166 region, the viral mutant was significantly attenuated in growth in both BALB/c and SCID mice that were intraperitoneally infected with the viruses. At 21 days postinfection, the titers of the viral mutant in the salivary glands, lungs, spleens, livers, and kidneys of the infected SCID mice were lower than the titers of the Smith strain and the rescued virus by about 30000-, 10000-, 1000-, 300-, and 800-fold, respectively. Moreover, the virulence of the mutant virus appears to be severely attenuated because no death was found in SCID mice infected with the viral mutant up to 90 days postinfection, whereas all of the animals infected with the wild-type and rescued viruses died at 27 days postinfection. Our results suggest that m166 probably encodes a virulence factor and is required for MCMV virulence in killing SCID mice and for optimal viral growth in vivo.
Collapse
Affiliation(s)
- Jiaming Zhu
- Division of Infectious Diseases, School of Public Health, University of California, Berkeley, California 94720, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
LoPiccolo DM, Gold MC, Kavanagh DG, Wagner M, Koszinowski UH, Hill AB. Effective inhibition of K(b)- and D(b)-restricted antigen presentation in primary macrophages by murine cytomegalovirus. J Virol 2003; 77:301-8. [PMID: 12477835 PMCID: PMC140608 DOI: 10.1128/jvi.77.1.301-308.2003] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Macrophages play an important role in murine cytomegalovirus (MCMV) infection in vivo, both in disseminating infection and in harboring latent virus. MCMV encodes three immune evasion genes (m4, m6, and m152) that interfere with the ability of cytotoxic T cells (CTL) to detect virus-infected fibroblasts, but the efficacy of immune evasion in macrophages has been controversial. Here we show that MCMV immune evasion genes function in H-2(b) primary bone marrow macrophages (BMMphi) in the same way that they do in fibroblasts. Metabolic labeling experiments showed that class I is retained in the endoplasmic reticulum by MCMV infection and associates with m4/gp34 to a similar extent in fibroblasts and BMMphi. We tested a series of K(b)- and D(b)-restricted CTL clones specific for MCMV early genes against a panel of MCMV wild-type virus and mutants lacking m152, m4, or m6. MCMV immune evasion genes effectively inhibited antigen presentation. m152 appeared sufficient to abolish D(b)-restricted presentation in infected macrophages, as has been previously observed in infected fibroblasts. However, for inhibition of recognition of infected macrophages by K(b)-restricted CTL, m4, m6, and m152 were all required. The contribution of m4 to inhibition of recognition appeared much more important in macrophages than in fibroblasts. Thus, MCMV immune evasion genes function effectively in primary macrophages to prevent CTL recognition of early antigens and show the same pattern of major histocompatibility complex class I allele discrimination as is seen in fibroblasts. Furthermore, for inhibition of K(b)-restricted presentation, a strong synergistic effect was noted among m152, m4, and m6.
Collapse
Affiliation(s)
- Diane M LoPiccolo
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland 97202, USA
| | | | | | | | | | | |
Collapse
|
24
|
Gutermann A, Bubeck A, Wagner M, Reusch U, Ménard C, Koszinowski UH. Strategies for the identification and analysis of viral immune-evasive genes--cytomegalovirus as an example. Curr Top Microbiol Immunol 2002; 269:1-22. [PMID: 12224503 DOI: 10.1007/978-3-642-59421-2_1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Abstract
Co-evolution of herpesviruses with their hosts has resulted in multiple interactions between viral genes and cellular functions. Some interactions control genomic maintenance and replication in specific tissues, other affect the immune control at various stages. Few immunomodulatory functions of genes can be predicted by sequence homology. The majority of genes with immunomodulatory properties only become apparent in functional assays. This chapter reviews procedures which have been used for successful identification of immunomodulatory genes in the past and deals with recent methods which may be applicable for the identification of additional immunomodulatory functions unknown so far.
Collapse
Affiliation(s)
- A Gutermann
- Max-von-Pettenkofer Institut, Ludwig-Maximilians-Universität München, 80336 München, Germany
| | | | | | | | | | | |
Collapse
|
25
|
Reddehase MJ. Antigens and immunoevasins: opponents in cytomegalovirus immune surveillance. Nat Rev Immunol 2002; 2:831-44. [PMID: 12415307 DOI: 10.1038/nri932] [Citation(s) in RCA: 240] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
CD8+ T cells are the main effector cells for the immune control of cytomegaloviruses. To subvert this control, human and mouse cytomegaloviruses each encode a set of immune-evasion proteins, referred to here as immunoevasins, which interfere specifically with the MHC class I pathway of antigen processing and presentation. Although the concerted action of immunoevasins prevents the presentation of certain viral peptides, other viral peptides escape this blockade conditionally or constitutively and thereby provide the molecular basis of immune surveillance by CD8+ T cells. The definition of viral antigenic peptides that are presented despite the presence of immunoevasins adds a further dimension to the prediction of protective epitopes for use in vaccines.
Collapse
Affiliation(s)
- Matthias J Reddehase
- Institute for Virology, Johannes Gutenberg University, Hochhaus am Augustusplatz, 55101 Mainz, Germany.
| |
Collapse
|
26
|
Gold MC, Munks MW, Wagner M, Koszinowski UH, Hill AB, Fling SP. The murine cytomegalovirus immunomodulatory gene m152 prevents recognition of infected cells by M45-specific CTL but does not alter the immunodominance of the M45-specific CD8 T cell response in vivo. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:359-65. [PMID: 12077265 DOI: 10.4049/jimmunol.169.1.359] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Although in vitro studies have shown that herpesviruses, including murine CMV (MCMV), encode genes that interfere with the MHC class I pathway, their effects on the CTL response in vivo is unclear. We identified a D(b)-restricted CTL epitope from MCMV M45 by screening an MCMV genomic library using CTL clones isolated from mice infected with MCMV lacking m152. Because m152 severely inhibits CTL recognition of M45 in vitro, we questioned whether an M45-specific response would be generated in mice infected with wild-type MCMV expressing m152. Mice infected with wild-type MCMV or MCMVDelta(m)152 made similar responses to the M45 Ag. Moreover, we saw no skewing of the proportion of M45-specific CD8 T cells within the total MCMV-specific response after infection with MCMV with m152. Despite the profound effect m152 has on presentation of M45 in vitro, it does not affect the immunodominance of M45 in the CTL response in vivo.
Collapse
MESH Headings
- Adjuvants, Immunologic/genetics
- Adjuvants, Immunologic/physiology
- Animals
- Antigen Presentation/genetics
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/virology
- Cell Line
- Cell Line, Transformed
- Cell Separation
- Clone Cells
- Epitopes, T-Lymphocyte/immunology
- Female
- H-2 Antigens/immunology
- Herpesviridae Infections/immunology
- Histocompatibility Antigen H-2D
- Immediate-Early Proteins/genetics
- Immediate-Early Proteins/immunology
- Immunodominant Epitopes/immunology
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/physiology
- Mice
- Mice, Inbred C57BL
- Muromegalovirus/genetics
- Muromegalovirus/immunology
- Muromegalovirus/physiology
- Peptide Fragments/immunology
- Peptide Fragments/metabolism
- Ribonucleotide Reductases/immunology
- Ribonucleotide Reductases/metabolism
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
- T-Lymphocytes, Cytotoxic/virology
- Viral Proteins
Collapse
Affiliation(s)
- Marielle C Gold
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97201, USA
| | | | | | | | | | | |
Collapse
|
27
|
Smith HRC, Heusel JW, Mehta IK, Kim S, Dorner BG, Naidenko OV, Iizuka K, Furukawa H, Beckman DL, Pingel JT, Scalzo AA, Fremont DH, Yokoyama WM. Recognition of a virus-encoded ligand by a natural killer cell activation receptor. Proc Natl Acad Sci U S A 2002; 99:8826-31. [PMID: 12060703 PMCID: PMC124383 DOI: 10.1073/pnas.092258599] [Citation(s) in RCA: 619] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2002] [Accepted: 04/29/2002] [Indexed: 11/18/2022] Open
Abstract
Natural killer (NK) cells express inhibitory and activation receptors that recognize MHC class I-like molecules on target cells. These receptors may be involved in the critical role of NK cells in controlling initial phases of certain viral infections. Indeed, the Ly49H NK cell activation receptor confers in vivo genetic resistance to murine cytomegalovirus (MCMV) infections, but its ligand was previously unknown. Herein, we use heterologous reporter cells to demonstrate that Ly49H recognizes MCMV-infected cells and a ligand encoded by MCMV itself. Exploiting a bioinformatics approach to the MCMV genome, we find at least 11 ORFs for molecules with previously unrecognized features of predicted MHC-like folds and limited MHC sequence homology. We identify one of these, m157, as the ligand for Ly49H. m157 triggers Ly49H-mediated cytotoxicity, and cytokine and chemokine production by freshly isolated NK cells. We hypothesize that the other ORFs with predicted MHC-like folds may be involved in immune evasion or interactions with other NK cell receptors.
Collapse
Affiliation(s)
- Hamish R C Smith
- Howard Hughes Medical Institute, and Division of Rheumatology, Department of Medicine, Washington University School of Medicine, and Barnes-Jewish Hospital, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Holtappels R, Grzimek NKA, Simon CO, Thomas D, Dreis D, Reddehase MJ. Processing and presentation of murine cytomegalovirus pORFm164-derived peptide in fibroblasts in the face of all viral immunosubversive early gene functions. J Virol 2002; 76:6044-53. [PMID: 12021337 PMCID: PMC136202 DOI: 10.1128/jvi.76.12.6044-6053.2002] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CD8 T cells are the principal effector cells in the resolution of acute murine cytomegalovirus (mCMV) infection in host organs. This undoubted antiviral and protective in vivo function of CD8 T cells appeared to be inconsistent with immunosubversive strategies of the virus effected by early (E)-phase genes m04, m06, and m152. The so-called immune evasion proteins gp34, gp48, and gp37/40, respectively, were found to interfere with peptide presentation at different steps in the major histocompatibility complex (MHC) class I pathway of antigen processing and presentation in fibroblasts. Accordingly, they were proposed to prevent recognition and lysis of infected fibroblasts by cytolytic T lymphocytes (CTL) during the E phase of viral gene expression. We document here that the previously identified MHC class I D(d)-restricted antigenic peptide (257)AGPPRYSRI(265) encoded by gene m164 is processed as well as presented for recognition by m164-specific CTL during the E and late phases of viral replication in the very same cells in which the immunosubversive viral proteins are effectual in preventing the presentation of processed immediate-early 1 (m123-exon 4) peptide (168)YPHFMPTNL(176). Thus, while immunosubversion is a reality, these mechanisms are apparently not as efficient as the term immune evasion implies. The pORFm164-derived peptide is the first noted peptide that constitutively escapes the immunosubversive viral functions. The most important consequence is that even the concerted action of all immunosubversive E-phase proteins eventually fails to prevent immune recognition in the E phase. The bottom-line message is that there exists no immune evasion of mCMV in fibroblasts.
Collapse
Affiliation(s)
- Rafaela Holtappels
- Institute for Virology, Johannes Gutenberg University, 55101 Mainz, Germany
| | | | | | | | | | | |
Collapse
|
29
|
Arase H, Mocarski ES, Campbell AE, Hill AB, Lanier LL. Direct recognition of cytomegalovirus by activating and inhibitory NK cell receptors. Science 2002; 296:1323-6. [PMID: 11950999 DOI: 10.1126/science.1070884] [Citation(s) in RCA: 953] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Natural killer (NK) cells express inhibitory receptors for major histocompatibility complex (MHC) class I antigens, preventing attack against healthy cells. Mouse cytomegalovirus (MCMV) encodes an MHC-like protein (m157) that binds to an inhibitory NK cell receptor in certain MCMV-susceptible mice. In MCMV-resistant mice, this viral protein engages a related activating receptor (Ly49H) and confers host protection. These activating and inhibitory receptors are highly homologous, suggesting the possibility that one evolved from the other in response to selective pressure imposed by the pathogen.
Collapse
MESH Headings
- 3T3 Cells
- Animals
- Antigens, Ly/chemistry
- Antigens, Ly/genetics
- Antigens, Ly/immunology
- Antigens, Ly/metabolism
- Cell Line
- Coculture Techniques
- Disease Susceptibility
- Evolution, Molecular
- Herpesviridae Infections/immunology
- Histocompatibility Antigens Class I/immunology
- Hybridomas
- Immunity, Innate
- Interferon-gamma/biosynthesis
- Killer Cells, Natural/immunology
- Lectins, C-Type
- Ligands
- Lymphocyte Activation
- Membrane Glycoproteins/chemistry
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/immunology
- Membrane Glycoproteins/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Inbred Strains
- Muromegalovirus/genetics
- Muromegalovirus/immunology
- Muromegalovirus/metabolism
- NK Cell Lectin-Like Receptor Subfamily A
- Protein Binding
- Receptors, Immunologic/chemistry
- Receptors, Immunologic/genetics
- Receptors, Immunologic/immunology
- Receptors, Immunologic/metabolism
- Receptors, NK Cell Lectin-Like
- Recombinant Fusion Proteins/metabolism
- Transfection
- Viral Proteins/chemistry
- Viral Proteins/genetics
- Viral Proteins/immunology
- Viral Proteins/metabolism
Collapse
Affiliation(s)
- Hisashi Arase
- Department of Microbiology and Immunology and the Cancer Research Institute, University of California San Francisco, San Francisco, CA 94143, USA
| | | | | | | | | |
Collapse
|
30
|
Kavanagh DG, Koszinowski UH, Hill AB. The murine cytomegalovirus immune evasion protein m4/gp34 forms biochemically distinct complexes with class I MHC at the cell surface and in a pre-Golgi compartment. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:3894-902. [PMID: 11564807 DOI: 10.4049/jimmunol.167.7.3894] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have recently demonstrated that the murine CMV (MCMV) gene m4 is an immune evasion gene that protects MCMV-infected targets from some virus-specific CTL clones. m4 encodes m4/gp34, a 34-kDa glycoprotein that binds to major histocompatibility complex class I in the endoplasmic reticulum and forms a detergent-stable complex that is exported to the surface of the cell. To investigate how m4/gp34 promotes CTL evasion, we analyzed the assembly and export of m4/gp34-K(b) complexes. We found that 50-70% of K(b) exported over the course of MCMV infection was m4/gp34 associated. Because these complexes are present at the cell surface, it is possible that m4 mediates CTL evasion by interfering with contact between class I and receptors on the T cell. In addition, we found that K(b) retained by the MCMV immune evasion gene m152 formed a novel type of complex with Endo H-sensitive m4/gp34; these complexes are distinguished from the exported complexes by being stable in 1% digitonin and unstable in 1% Nonidet P-40. Because this association occurs in a pre-Golgi compartment, m4/gp34 might also interfere with Ag presentation by affecting some aspect of class I assembly, such as peptide loading. Although m4/gp34 requires beta(2)-microglobulin to bind class I, there was no significant binding of m4/gp34 to beta(2)-microglobulin in the absence of class I H chain, demonstrating that m4/gp34 forms Nonidet P-40-stable complexes specifically with folded conformations of class I. We conclude that m4/gp34 promotes immune evasion by a novel mechanism involving altered assembly and/or T cell recognition of class I molecules.
Collapse
Affiliation(s)
- D G Kavanagh
- Department of Molecular Microbiology and Immunology, Oregon Health Sciences University, 3181 SW Sam Jackson Park Road, Portland, OR 97201, USA
| | | | | |
Collapse
|
31
|
Kavanagh DG, Gold MC, Wagner M, Koszinowski UH, Hill AB. The multiple immune-evasion genes of murine cytomegalovirus are not redundant: m4 and m152 inhibit antigen presentation in a complementary and cooperative fashion. J Exp Med 2001; 194:967-78. [PMID: 11581318 PMCID: PMC2193484 DOI: 10.1084/jem.194.7.967] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Both human cytomegaloviruses (HCMVs) and murine cytomegaloviruses (MCMVs) encode multiple genes that interfere with antigen presentation by major histocompatibility complex (MHC) class I, and thus protect infected targets from lysis by virus-specific cytotoxic T lymphocytes (CTLs). HCMV has been shown to encode four such genes and MCMV to encode two. MCMV m152 blocks the export of class I from a pre-Golgi compartment, and MCMV m6 directs class I to the lysosome for degradation. A third MCMV gene, m4, encodes a glycoprotein which is expressed at the cell surface in association with class I. Here we here show that m4 is a CTL-evasion gene which, unlike previously described immune-evasion genes, inhibited CTLs without blocking class I surface expression. m152 was necessary to block antigen presentation to both K(b)- and D(b)-restricted CTL clones, while m4 was necessary to block presentation only to K(b)-restricted clones. m152 caused complete retention of D(b), but only partial retention of K(b), in a pre-Golgi compartment. Thus, while m152 effectively inhibited D(b)-restricted CTLs, m4 was required to completely inhibit K(b)-restricted CTLs. We propose that cytomegaloviruses encode multiple immune-evasion genes in order to cope with the diversity of class I molecules in outbred host populations.
Collapse
Affiliation(s)
- Daniel G. Kavanagh
- Department of Molecular Microbiology and Immunology, Oregon Health Sciences University, Portland, Oregon 97201
| | - Marielle C. Gold
- Department of Molecular Microbiology and Immunology, Oregon Health Sciences University, Portland, Oregon 97201
| | - Markus Wagner
- Max von Pettenkofer Institut, D-81377 Munich, Germany
| | | | - Ann B. Hill
- Department of Molecular Microbiology and Immunology, Oregon Health Sciences University, Portland, Oregon 97201
| |
Collapse
|
32
|
Abstract
Murine cytomegalovirus causes lifelong infections with little pathology in normal host animals. Control of viral replication and prevention of pathology depend on both innate and adaptive immune mechanisms, and cytolytic T lymphocytes play a key role in this process. The virus encodes a number of genes which alter the normal assembly of class I major histocompatability complex proteins, and thus interfere with the ability of infected cells to present antigen to CD8(+)T cells. This review will examine what is known about these viral genes, and present some unanswered questions regarding the role of CTL evasion in the viral infectious cycle.
Collapse
Affiliation(s)
- D G Kavanagh
- Department of Molecular Microbiology and Immunology, Oregon Health Sciences University, Portland, OR 97201-3098, USA
| | | |
Collapse
|
33
|
Morello CS, Cranmer LD, Spector DH. Suppression of murine cytomegalovirus (MCMV) replication with a DNA vaccine encoding MCMV M84 (a homolog of human cytomegalovirus pp65). J Virol 2000; 74:3696-708. [PMID: 10729145 PMCID: PMC111879 DOI: 10.1128/jvi.74.8.3696-3708.2000] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cytotoxic T-lymphocyte (CTL) response against the murine cytomegalovirus (MCMV) immediate-early gene 1 (IE1) 89-kDa phosphoprotein pp89 plays a major role in protecting BALB/c mice against the lethal effects of the viral infection. CTL populations specific to MCMV early-phase and structural antigens are also generated during infection, but the identities of these antigens and their relative contributions to overall immunity against MCMV are not known. We previously demonstrated that DNA vaccination with a pp89-expressing plasmid effectively generated a CTL response and conferred protection against infection (J. C. Gonzalez Armas, C. S. Morello, L. D. Cranmer, and D. H. Spector, J. Virol. 70:7921-7928, 1996). In this report, we have sought (i) to identify other viral antigens that contribute to immunity against MCMV and (ii) to determine whether the protective response is haplotype specific. DNA immunization was used to test the protective efficacies of plasmids encoding MCMV homologs of human cytomegalovirus (HCMV) tegument (M32, M48, M56, M82, M83, M69, and M99), capsid (M85 and M86), and nonstructural antigens (IE1-pp89 and M84). BALB/c (H-2(d)) and C3H/HeN (H-2(k)) mice were immunized by intradermal injection of either single plasmids or cocktails of up to four expression plasmids and then challenged with sublethal doses of virulent MCMV administered intraperitoneally. In this way, we identified a new viral gene product, M84, that conferred protection against viral replication in the spleens of BALB/c mice. M84 is expressed early in the infection and encodes a nonstructural protein that shares significant amino acid homology with the HCMV UL83-pp65 tegument protein, a major target of protective CTLs in humans. Specificity of the immune response to the M84 protein was confirmed by showing that immunization with pp89 DNA, but not M84 DNA, protected mice against subsequent infection with an MCMV deletion mutant lacking the M84 gene. The other MCMV genes tested did not generate a protective response even when mice were immunized with vaccinia viruses expressing the viral proteins. However, the M84 plasmid was protective when injected in combination with nonprotective plasmids, and coimmunization of BALB/c mice with pp89 and M84 provided a synergistic level of protection in the spleen. Viral titers in the salivary glands were also reduced, but not to the same extent as observed in the spleen, and the decrease was seen only when the BALB/c mice were immunized with pp89 plus M84 or with pp89 alone. The experiments with the C3H/HeN mice showed that the immunity conferred by DNA vaccination was haplotype dependent. In this strain of mice, only pp89 elicited a protective response as measured by a reduction in spleen titer. These results suggest that DNA immunization with the appropriate combination of CMV genes may provide a strategy for improving vaccine efficacy.
Collapse
Affiliation(s)
- C S Morello
- Department of Pathology, University of California, San Diego, La Jolla, California 92093-0366, USA
| | | | | |
Collapse
|
34
|
Ziegler H, Muranyi W, Burgert HG, Kremmer E, Koszinowski UH. The luminal part of the murine cytomegalovirus glycoprotein gp40 catalyzes the retention of MHC class I molecules. EMBO J 2000; 19:870-81. [PMID: 10698929 PMCID: PMC305627 DOI: 10.1093/emboj/19.5.870] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Murine cytomegalovirus (MCMV) interferes with the MHC class I pathway of antigen presentation. The type I transmembrane glycoprotein gp40, encoded by the gene m152, retains major histocompatibility complex (MHC) class I complexes in the endoplasmic reticulum (ER)-Golgi intermediate compartment (ERGIC)/cis-Golgi. These MHC class I complexes are stable, show an extended half-life and do not exchange beta(2)-microglobulin, whereas gp40 reaches an endosomal/lysosomal compartment where it subsequently is degraded. The analysis of regions within the viral protein that are essential for MHC class I retention revealed that a secreted form of gp40, lacking the cytoplasmic tail and the transmembrane region, still has the capacity to retain MHC class I complexes. Continuous expression of gp40 is not required for MHC class I retention. Our data indicate that the retention of MHC class I complexes in the ERGIC/cis-Golgi is triggered by gp40 and does not require the further presence of the viral protein.
Collapse
Affiliation(s)
- H Ziegler
- Max-von-Pettenkofer Institut, Genzentrum, Ludwig-Maximilians-Universität München, Germany
| | | | | | | | | |
Collapse
|
35
|
Holtappels R, Thomas D, Podlech J, Geginat G, Steffens HP, Reddehase MJ. The putative natural killer decoy early gene m04 (gp34) of murine cytomegalovirus encodes an antigenic peptide recognized by protective antiviral CD8 T cells. J Virol 2000; 74:1871-84. [PMID: 10644360 PMCID: PMC111665 DOI: 10.1128/jvi.74.4.1871-1884.2000] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Several early genes of murine cytomegalovirus (MCMV) encode proteins that mediate immune evasion by interference with the major histocompatibility complex class I (MHC-I) pathway of antigen presentation to cytolytic T lymphocytes (CTL). Specifically, the m152 gene product gp37/40 causes retention of MHC-I molecules in the endoplasmic reticulum (ER)-Golgi intermediate compartment. Lack of MHC-I on the cell surface should activate natural killer (NK) cells recognizing the "missing self." The retention, however, is counteracted by the m04 early gene product gp34, which binds to folded MHC-I molecules in the ER and directs the complex to the cell surface. It was thus speculated that gp34 might serve to silence NK cells and thereby complete the immune evasion of MCMV. In light of these current views, we provide here results demonstrating an in vivo role for gp34 in protective antiviral immunity. We have identified an antigenic nonapeptide derived from gp34 and presented by the MHC-I molecule D(d). Besides the immunodominant immediate-early nonapeptide consisting of IE1 amino acids 168-176 (IE1(168-176)), the early nonapeptide m04(243-251) is the second antigenic peptide described for MCMV. The primary immune response to MCMV generates significant m04-specific CD8 T-cell memory. Upon adoptive transfer into immunodeficient recipients, an m04-specific CTL line controls MCMV infection with an efficacy comparable to that of an IE1-specific CTL line. Thus, gp34 is the first noted early protein of MCMV that escapes viral immune evasion mechanisms. These data document that MCMV is held in check by a redundance of protective CD8 T cells recognizing antigenic peptides in different phases of viral gene expression.
Collapse
Affiliation(s)
- R Holtappels
- Institute for Virology, Johannes Gutenberg University, 55101 Mainz, Germany
| | | | | | | | | | | |
Collapse
|
36
|
Zhan X, Lee M, Abenes G, Von Reis I, Kittinunvorakoon C, Ross-Macdonald P, Snyder M, Liu F. Mutagenesis of murine cytomegalovirus using a Tn3-based transposon. Virology 2000; 266:264-74. [PMID: 10639313 DOI: 10.1006/viro.1999.0089] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A transposon derived from Escherichia coli Tn3 was introduced into the genome of murine cytomegalovirus (MCMV) to generate a pool of viral mutants. We analyzed three of the constructed recombinant viruses that contained the transposon within the M25, M27, and m155 open reading frames. Our studies provide the first direct evidence to suggest that M25 and M27 are not essential for viral replication in mouse NIH 3T3 cells. Studies in cultured cells and Balb/c mice indicated that the transposon insertion is stable during viral propagation both in vitro and in vivo. Moreover the virus that contained the insertion mutation in M25 exhibited a titer similar to that of the wild-type virus in the salivary glands, lungs, livers, spleens, and kidneys of the Balb/c mice that were intraperitoneally infected with these viruses. These results suggest that M25 is dispensable for viral growth in these organs and the presence of the transposon sequence in the viral genome does not significantly affect viral replication in vivo. The Tn3-based system can be used as a mutagenesis approach for studying the function of MCMV genes in both tissue culture and in animals.
Collapse
Affiliation(s)
- X Zhan
- Program in Infectious Diseases and Immunity, School of Public Health, University of California, 140 Warren Hall, Berkeley, California, 94720, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Krmpotic A, Messerle M, Crnkovic-Mertens I, Polic B, Jonjic S, Koszinowski UH. The immunoevasive function encoded by the mouse cytomegalovirus gene m152 protects the virus against T cell control in vivo. J Exp Med 1999; 190:1285-96. [PMID: 10544200 PMCID: PMC2195686 DOI: 10.1084/jem.190.9.1285] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Cytomegaloviruses encode numerous functions that inhibit antigen presentation in the major histocompatibility complex (MHC) class I pathway in vitro. One example is the mouse cytomegalovirus (MCMV) glycoprotein gp40, encoded by the m152 gene, which selectively retains murine but not human MHC class I complexes in the endoplasmic reticulum-Golgi intermediate compartment/cis-Golgi compartment (Ziegler, H., R. Thäle, P. Lucin, W. Muranyi, T. Flohr, H. Hengel, H. Farrell, W. Rawlinson, and U.H. Koszinowski. 1997. Immunity. 6:57-66). To investigate the in vivo significance of this gene function during MCMV infection of the natural host, we constructed recombinants of MCMV in which the m152 gene was deleted, as were the corresponding virus revertants. We report on the following findings: Deletion of the m152 gene has no effect on virus replication in cell culture, whereas after infection of mice, the m152-deficient virus replicates to significantly lower virus titers. This attenuating effect is lifted by reinsertion of the gene into the mutant. Mutants and revertants grow to the same titer in animals deprived of the function targeted by the viral gene function, namely in mice deficient in beta2-microglobulin, mice deficient in the CD8 molecule, and mice depleted of T cells. Upon adoptive transfer of naive lymphocytes into infected mice, the absence of the m152 gene function sensitizes the virus to primary lymphocyte control. These results prove that MHC-reactive functions protect CMVs against attack by CD8(+) T lymphocytes in vivo.
Collapse
Affiliation(s)
- Astrid Krmpotic
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Martin Messerle
- Max von Pettenkofer-Institute for Hygiene and Medical Microbiology, Ludwig-Maximilians-University of Munich, D-80336 Munich, Germany
| | - Irena Crnkovic-Mertens
- Max von Pettenkofer-Institute for Hygiene and Medical Microbiology, Ludwig-Maximilians-University of Munich, D-80336 Munich, Germany
| | - Bojan Polic
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Stipan Jonjic
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Ulrich H. Koszinowski
- Max von Pettenkofer-Institute for Hygiene and Medical Microbiology, Ludwig-Maximilians-University of Munich, D-80336 Munich, Germany
| |
Collapse
|
38
|
Hanson LK, Dalton BL, Karabekian Z, Farrell HE, Rawlinson WD, Stenberg RM, Campbell AE. Transcriptional analysis of the murine cytomegalovirus HindIII-I region: identification of a novel immediate-early gene region. Virology 1999; 260:156-64. [PMID: 10405367 DOI: 10.1006/viro.1999.9796] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cytomegaloviruses likely encode numerous gene products involved in regulating virus-host cell interactions and pathogenesis. We previously identified a region of murine cytomegalovirus (MCMV) within HindIII-J and -I that regulates pathogenesis of the virus [open reading frames (ORFs) M139-M141] or is likely required for MCMV replication (ORFs m142 and m143). As a prerequisite for further studies on the structure and function of this gene region, we mapped the transcripts encoded within MCMV HindIII-I. Probes for ORFs M140 and M141 hybridized to 5.4- and 7.0-kb RNA, respectively, which were transcribed with early kinetics and were 3' coterminal with HindIII-J ORF M139. Probes representing ORFs m142, m143, or m144 hybridized to 3' coterminal transcripts of 1.8, 3.8, and 5.1 kb, respectively. ORFs m142 and m143 were transcribed with immediate-early kinetics but were most abundantly expressed at early times. Probes for the rightmost end of HindIII-I hybridized to a 5. 1-kb early/late RNA corresponding to m144 and to a 1.8-kb early RNA transcribed from m145. All of the major transcripts were polyadenylated and therefore are likely coding. Additional minor transcripts of intermediate sizes were also detected. ORFs M139-m143 showed homology to the betaherpesvirus-specific HCMV US22 gene family. Because deletion of these viral genes results in attenuated or helper-dependent phenotypes, this conserved region of US22 family genes may have a role in virus replication as well as in the pathogenesis of betaherpesviruses in their natural hosts.
Collapse
Affiliation(s)
- L K Hanson
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, Virginia, 23507, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Hengel H, Reusch U, Gutermann A, Ziegler H, Jonjic S, Lucin P, Koszinowski UH. Cytomegaloviral control of MHC class I function in the mouse. Immunol Rev 1999; 168:167-76. [PMID: 10399073 DOI: 10.1111/j.1600-065x.1999.tb01291.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Cytomegaloviruses (CMVs) represent prototypic viruses of the beta-subgroup of herpesviruses. Murine cytomegalovirus (MCMV) infects mice as its natural host. Among viruses, CMVs have evolved the most extensive genetic repertoire to subvert MHC class I functions. To date three MCMV proteins have been identified which affect MHC I complexes. They are encoded by members of large virus-specific gene families located at either flanking region of the 235 kb MCMV genome. The MHC I subversive genes belong to the early class of genes and code for type I transmembrane glycoproteins. The m152-encoded 37/40 kDa glycoprotein interacts with MHC I transiently and retains class I complexes in the endoplasmic reticulum (ER) Golgi intermediate compartment on its journey to the endolysosome. In contrast, the m06-encoded glycoprotein of 48 kDa complexes tightly with ternary MHC class I molecules in the FR. Due to sorting signals in its cytoplasmic tail, gp48 redirects MHC I to endolysosomal compartments for proteolytic destruction. Likewise, the 34 kDa glycoprotein encoded by m04 binds tightly to MHC class I complexes in the ER but the gp34/MHC I complex reaches the plasma membrane. The CD8+ T-cell-dependent attenuation of a m152 deletion mutant virus proves for the first time that inhibition of antigen presentation is indeed essential for the biological fitness of CMVs in vivo.
Collapse
Affiliation(s)
- H Hengel
- Max von Pettenkofer-Institut, Ludwig-Maximilians-Universität München, Germany
| | | | | | | | | | | | | |
Collapse
|
40
|
Reusch U, Muranyi W, Lucin P, Burgert HG, Hengel H, Koszinowski UH. A cytomegalovirus glycoprotein re-routes MHC class I complexes to lysosomes for degradation. EMBO J 1999; 18:1081-91. [PMID: 10022849 PMCID: PMC1171199 DOI: 10.1093/emboj/18.4.1081] [Citation(s) in RCA: 184] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Mouse cytomegalovirus (MCMV) early gene expression interferes with the major histocompatibility complex class I (MHC class I) pathway of antigen presentation. Here we identify a 48 kDa type I transmembrane glycoprotein encoded by the MCMV early gene m06, which tightly binds to properly folded beta2-microglobulin (beta2m)-associated MHC class I molecules in the endoplasmic reticulum (ER). This association is mediated by the lumenal/transmembrane part of the protein. gp48-MHC class I complexes are transported out of the ER, pass the Golgi, but instead of being expressed on the cell surface, they are redirected to the endocytic route and rapidly degraded in a Lamp-1(+) compartment. As a result, m06-expressing cells are impaired in presenting antigenic peptides to CD8(+) T cells. The cytoplasmic tail of gp48 contains two di-leucine motifs. Mutation of the membrane-proximal di-leucine motif of gp48 restored surface expression of MHC class I, while mutation of the distal one had no effect. The results establish a novel viral mechanism for downregulation of MHC class I molecules by directly binding surface-destined MHC complexes and exploiting the cellular di-leucine sorting machinery for lysosomal degradation.
Collapse
Affiliation(s)
- U Reusch
- Max von Pettenkofer-Institut and Genzentrum, Ludwig-Maximilians-Universität München, 81377 München
| | | | | | | | | | | |
Collapse
|
41
|
Holtappels R, Podlech J, Geginat G, Steffens HP, Thomas D, Reddehase MJ. Control of murine cytomegalovirus in the lungs: relative but not absolute immunodominance of the immediate-early 1 nonapeptide during the antiviral cytolytic T-lymphocyte response in pulmonary infiltrates. J Virol 1998; 72:7201-12. [PMID: 9696814 PMCID: PMC109942 DOI: 10.1128/jvi.72.9.7201-7212.1998] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/1998] [Accepted: 06/12/1998] [Indexed: 11/20/2022] Open
Abstract
The lungs are a major organ site of cytomegalovirus (CMV) infection, pathogenesis, and latency. Interstitial CMV pneumonia represents a critical manifestation of CMV disease, in particular in recipients of bone marrow transplantation (BMT). We have employed a murine model for studying the immune response to CMV in the lungs in the specific scenario of immune reconstitution after syngeneic BMT. Control of pulmonary infection was associated with a vigorous infiltration of the lungs, which was characterized by a preferential recruitment and massive expansion of the CD8 subset of alpha/beta T cells. The infiltrate provided a microenvironment in which the CD8 T cells differentiated into mature effector cells, that is, into functionally active cytolytic T lymphocytes (CTL). This gave us the opportunity for an ex vivo testing of the antigen specificities of CTL present at a relevant organ site of viral pathogenesis. The contribution of the previously identified immediate-early 1 (IE1) nonapeptide of murine CMV was evaluated by comparison with the CD3epsilon-redirected cytolytic activity used as a measure of the overall CTL response in the lungs. The IE1 peptide was detected by pulmonary CTL, but it accounted for a minor part of the response. Interestingly, no additional viral or virus-induced antigenic peptides were detectable among naturally processed peptides derived from infected lungs, even though infected fibroblasts were recognized in a major histocompatibility complex-restricted manner. We conclude that the antiviral pulmonary immune response is a collaborative function that involves many antigenic peptides, among which the IE1 peptide is immunodominant in a relative sense.
Collapse
Affiliation(s)
- R Holtappels
- Institute for Virology, Johannes Gutenberg-University, 55101 Mainz, Germany
| | | | | | | | | | | |
Collapse
|
42
|
Abstract
Recent research has brought additional information on how virus products interfere with host cell antigen processing in vitro, new information on the interaction of virus with dendritic cells as a mechanism for alteration of immune responses - especially immunosuppression, and a preliminary proposal that nonretroviral RNA viruses might persist by utilizing host-cell reverse transcriptase to enter a DNA phase of replication.
Collapse
Affiliation(s)
- M B Oldstone
- Division of Virology, Department of Neuropharmacology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
43
|
Affiliation(s)
- C H Tay
- Department of Pathology, University of Massachusetts Medical Center, Worcester 01655, USA
| | | | | |
Collapse
|
44
|
Affiliation(s)
- D C Johnson
- Department of Molecular Microbiology & Immunology, Oregon Health Sciences University, Portland, OR 97201, USA
| | | |
Collapse
|
45
|
Human and Murine Cytomegalovirus Evasion of Cytotoxic T Lymphocyte and Natural Killer Cell-Mediated Immune Responses. ACTA ACUST UNITED AC 1998. [DOI: 10.1006/smvy.1997.0142] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
46
|
Baker DG. Natural pathogens of laboratory mice, rats, and rabbits and their effects on research. Clin Microbiol Rev 1998; 11:231-66. [PMID: 9564563 PMCID: PMC106832 DOI: 10.1128/cmr.11.2.231] [Citation(s) in RCA: 218] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Laboratory mice, rats, and rabbits may harbor a variety of viral, bacterial, parasitic, and fungal agents. Frequently, these organisms cause no overt signs of disease. However, many of the natural pathogens of these laboratory animals may alter host physiology, rendering the host unsuitable for many experimental uses. While the number and prevalence of these pathogens have declined considerably, many still turn up in laboratory animals and represent unwanted variables in research. Investigators using mice, rats, and rabbits in biomedical experimentation should be aware of the profound effects that many of these agents can have on research.
Collapse
Affiliation(s)
- D G Baker
- Division of Laboratory Animal Medicine, School of Veterinary Medicine, Louisiana State University, Baton Rouge 70810, USA.
| |
Collapse
|
47
|
Steffens HP, Kurz S, Holtappels R, Reddehase MJ. Preemptive CD8 T-cell immunotherapy of acute cytomegalovirus infection prevents lethal disease, limits the burden of latent viral genomes, and reduces the risk of virus recurrence. J Virol 1998; 72:1797-804. [PMID: 9499030 PMCID: PMC109469 DOI: 10.1128/jvi.72.3.1797-1804.1998] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In the immunocompetent host, primary cytomegalovirus (CMV) infection is resolved by the immune response without causing overt disease. The viral genome, however, is not cleared but is maintained in a latent state that entails a risk of virus recurrence and consequent organ disease. By using murine CMV as a model, we have shown previously that multiple organs harbor latent CMV and that reactivation occurs with an incidence that is determined by the viral DNA load in the respective organ (M. J. Reddehase, M. Balthesen, M. Rapp, S. Jonjic, I. Pavic, and U. H. Koszinowski. J. Exp. Med. 179:185-193, 1994). This predicts that a therapeutic intervention capable of limiting the load of latent viral genome should also reduce the risk of virus recurrence. Here we demonstrate the benefits and the limits of a preemptive CD8 T-cell immunotherapy of CMV infection in the immunocompromised bone marrow transplantation recipient. Antiviral CD8 T cells prevented CMV disease and accelerated the resolution of productive infection. The therapy also resulted in a lower load of latent CMV DNA in organs and consequently reduced the incidence of recurrence. The data thus provide a further supporting argument for clinical trials of preemptive cytoimmunotherapy of human CMV disease with CD8 T cells. However, CD8 T cells failed to clear the viral DNA. The therapy-susceptible portion of the DNA load differed between organs and was highest in the lungs. The existence of an invariant, therapy-resistant load suggests a role for immune system evasion mechanisms in the establishment of CMV latency.
Collapse
Affiliation(s)
- H P Steffens
- Institute for Virology, Johannes Gutenberg-University, Mainz, Germany
| | | | | | | |
Collapse
|
48
|
Crnković-Mertens I, Messerle M, Milotić I, Szepan U, Kucić N, Krmpotić A, Jonjić S, Koszinowski UH. Virus attenuation after deletion of the cytomegalovirus Fc receptor gene is not due to antibody control. J Virol 1998; 72:1377-82. [PMID: 9445038 PMCID: PMC124616 DOI: 10.1128/jvi.72.2.1377-1382.1998] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The murine cytomegalovirus (MCMV) fcr-1 gene codes for a glycoprotein located at the surface of infected cells which strongly binds the Fc fragment of murine immunoglobulin G. To determine the biological significance of the fcr-1 gene during viral infection, we constructed MCMV fcr-1 deletion mutants and revertants. The fcr-1 gene was disrupted by insertion of the Escherichia coli lacZ gene. In another mutant, the marker gene was also deleted, by recombinase cre. As expected for its hypothetical role in immunoevasion, the infection of mice with fcr-1 deletion mutants resulted in significantly restricted replication in comparison with wild-type MCMV and revertant virus. In mutant mice lacking antibodies, however, the fcr-1 deletion mutants also replicated poorly. This demonstrated that the cell surface-expressed viral glycoprotein with FcR activity strongly modulates the virus-host interaction but that this biological function is not caused by the immunoglobulin binding property.
Collapse
Affiliation(s)
- I Crnković-Mertens
- Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, University of Munich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
49
|
MacDonald MR, Li XY, Stenberg RM, Campbell AE, Virgin HW. Mucosal and parenteral vaccination against acute and latent murine cytomegalovirus (MCMV) infection by using an attenuated MCMV mutant. J Virol 1998; 72:442-51. [PMID: 9420244 PMCID: PMC109393 DOI: 10.1128/jvi.72.1.442-451.1998] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/1997] [Accepted: 08/19/1997] [Indexed: 02/05/2023] Open
Abstract
We used a live attenuated murine cytomegalovirus (MCMV) mutant to analyze mechanisms of vaccination against acute and latent CMV infection. We selected MCMV mutant RV7 as a vaccine candidate since this virus grows well in tissue culture but is profoundly attenuated for growth in normal and severe combined immunodeficient (SCID) mice (V. J. Cavanaugh et al., J. Virol. 70:1365-1374, 1996). BALB/c mice were immunized twice (0 and 14 days) subcutaneously (s.c.) with tissue culture-passaged RV7 and then challenged with salivary gland-passaged wild-type MCMV (sgMCMV) intraperitoneally (i.p.) on day 28. RV7 vaccination protected mice against challenge with 10(5) PFU of sgMCMV, a dose that killed 100% of mock-vaccinated mice. RV7 vaccination reduced MCMV replication 100- to 500-fold in the spleen between 1 and 8 days after challenge. We used the capacity to control replication of MCMV in the spleen 4 days after challenge as a surrogate for protection. Protection was antigen specific and required both live RV7 and antigen-specific lymphocytes. Interestingly, RV7 was effective when administered s.c., i.p., perorally, intranasally, and intragastrically, demonstrating that attenuated CMV applied to mucosal surfaces can elicit protection against parenteral virus challenge. B cells and immunoglobulin G were not essential for RV7-induced immunity since B-cell-deficient mice were effectively vaccinated by RV7. CD8 T cells, but not CD4 T cells, were critical for RV7-induced protection. Depletion of CD8 T cells by passive transfer of monoclonal anti-CD8 (but not anti-CD4) antibody abrogated RV7-mediated protection, and RV7 vaccination was less efficient in CD8 T-cell-deficient mice with a targeted mutation in the beta2-microglobulin gene. Although gamma interferon is important for innate resistance to MCMV, it was not essential for RV7 vaccination since gamma interferon receptor-deficient mice were protected by RV7 vaccination. Establishment of and/or reactivation from latency by sgMCMV was decreased by RV7 vaccination, as measured by diminished reactivation of MCMV from splenic explants. We found no evidence for establishment of splenic latency by RV7 after s.c. vaccination. We conclude that RV7 administered through both systemic and mucosal routes is an effective vaccine against MCMV infection. It may be possible to design human CMV vaccines with similar properties.
Collapse
Affiliation(s)
- M R MacDonald
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | |
Collapse
|
50
|
Hinkley S, Hill AB, Srikumaran S. Bovine herpesvirus-1 infection affects the peptide transport activity in bovine cells. Virus Res 1998; 53:91-6. [PMID: 9617772 DOI: 10.1016/s0168-1702(97)00128-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Infection of cattle with bovine herpesvirus-1 (BHV-1) impairs the cell-mediated immune response (CMI) of the affected host. We investigated the location of interference of BHV-1 with the major histocompatibility complex (MHC) class I antigen presentation pathway by employing an assay that allows assessment of the peptide transport activity of the Transporter associated with Antigen Presentation (TAP) from the cytoplasm into the endoplasmic reticulum (ER). We found a considerable down-regulation of the peptide transport activity in bovine epithelial cells, taking place as early as 2 h after virus infection. This down-regulation was also dose-dependent, and, at high multiplicities of infection (moi), led to an almost complete shutdown of TAP. By inhibiting peptide transport into the ER, the virus impairs loading of MHC class I molecules and their subsequent egress from the ER to the cell surface. This may lead to defective priming of cytotoxic T lymphocytes. Thus, BHV-1 is yet another member of its family Herpesviridae that selectively interferes with the host's antigen presentation machinery to evade the host's immune response in vivo.
Collapse
Affiliation(s)
- S Hinkley
- Department of Veterinary and Biomedical Sciences, University of Nebraska, Lincoln 68583-0905, USA
| | | | | |
Collapse
|