1
|
Characterization of SARS-CoV-2 Glycoprotein Using a Quantitative Cell-Cell Fusion System. Methods Mol Biol 2022; 2610:179-186. [PMID: 36534291 DOI: 10.1007/978-1-0716-2895-9_15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Coronaviruses (CoVs) infect host cells through the fusion of viral and cellular membrane and may also spread to the neighboring uninfected cells from infected cells through cell-cell fusion. The viral spike (S) glycoproteins play an essential role in mediating membrane fusion. Here, we present a luciferase-based quantitative assay to measure the efficiency of cell-cell fusion mediated by the S protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This method applies to S proteins of the other coronaviruses and can be adapted to fusion proteins of other enveloped viruses.
Collapse
|
2
|
Abstract
Parainfluenza viruses, members of the enveloped, negative-sense, single stranded RNA Paramyxoviridae family, impact global child health as the cause of significant lower respiratory tract infections. Parainfluenza viruses enter cells by fusing directly at the cell surface membrane. How this fusion occurs via the coordinated efforts of the two molecules that comprise the viral surface fusion complex, and how these efforts may be blocked, are the subjects of this chapter. The receptor binding protein of parainfluenza forms a complex with the fusion protein of the virus, remaining stably associated until a receptor is reached. At that point, the receptor binding protein actively triggers the fusion protein to undergo a series of transitions that ultimately lead to membrane fusion and viral entry. In recent years it has become possible to examine this remarkable process on the surface of viral particles and to begin to understand the steps in the transition of this molecular machine, using a structural biology approach. Understanding the steps in entry leads to several possible strategies to prevent fusion and inhibit infection.
Collapse
Affiliation(s)
- Tara C Marcink
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States; Center for Host-Pathogen Interaction, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States
| | - Matteo Porotto
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States; Center for Host-Pathogen Interaction, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States; Department of Microbiology & Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States
| | - Anne Moscona
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States; Center for Host-Pathogen Interaction, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States; Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Caserta, Italy; Department of Physiology & Cellular Biophysics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States.
| |
Collapse
|
3
|
Liu Y, Liu Y, Huang Y, Wen H, Zhao L, Song Y, Wang Z. The effect of the HRB linker of Newcastle disease virus fusion protein on the fusogenic activity. J Microbiol 2021; 59:513-521. [PMID: 33779959 DOI: 10.1007/s12275-021-0539-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 02/05/2021] [Accepted: 02/05/2021] [Indexed: 10/21/2022]
Abstract
Newcastle disease, designated a class A disease of poultry by the Office international des epizooties (OIE), is an acute infection caused by Newcastle disease virus (NDV). The merging of the envelope of NDV with the membrane of a target host cell is the key step in the infection pathway, which is driven by the concerted action of two glycoproteins: haemagglutinin-neuraminidase (HN) and fusion (F) protein. When the HN protein binds to the host cell surface receptor, the F protein is activated to mediate fusion. The three-dimensional structure of the F protein has been reported to have low electron density between the DIII domain and the HRB domain, and this electron-poor region is defined as the HRB linker. To clarify the contributing role of the HRB linker in the NDV F protein-mediated fusion process, 6 single amino acid mutants were obtained by site-directed mutagenesis of the HRB linker. The expression of the mutants and their abilities to mediate fusion were analysed, and the key amino acids in the HRB linker were identified as L436, E439, I450, and S453, as they can modulate the fusion ability or expression of the active form to a certain extent. The data shed light on the crucial role of the F protein HRB linker in the acquisition of a normal fusogenic phenotype.
Collapse
Affiliation(s)
- Yaqing Liu
- Department of Virology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250014, China
| | - Ying Liu
- Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250014, China
| | - Yanan Huang
- Department of Virology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250014, China
| | - Hongling Wen
- Department of Virology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250014, China
| | - Li Zhao
- Department of Virology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250014, China
| | - Yanyan Song
- Department of Virology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250014, China
| | - Zhiyu Wang
- Department of Virology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250014, China.
| |
Collapse
|
4
|
Third Helical Domain of the Nipah Virus Fusion Glycoprotein Modulates both Early and Late Steps in the Membrane Fusion Cascade. J Virol 2020; 94:JVI.00644-20. [PMID: 32669342 DOI: 10.1128/jvi.00644-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 07/08/2020] [Indexed: 01/21/2023] Open
Abstract
Medically important paramyxoviruses, such as measles, mumps, parainfluenza, Nipah, and Hendra viruses, infect host cells by directing fusion of the viral and cellular plasma membranes. Upon infection, paramyxoviruses cause a second type of membrane fusion, cell-cell fusion (syncytium formation), which is linked to pathogenicity. Host cell receptor binding causes conformational changes in the attachment glycoprotein (HN, H, or G) that trigger a conformational cascade in the fusion (F) glycoprotein that mediates membrane fusion. F, a class I fusion protein, contains the archetypal heptad repeat regions 1 (HR1) and 2 (HR2). It is well established that binding of HR1 and HR2 is key to fusing viral and cellular membranes. In this study, we uncovered a novel fusion-modulatory role of a third structurally conserved helical region (HR3) in F. Based on its location within the F structure, and structural differences between its prefusion and postfusion conformations, we hypothesized that the HR3 modulates triggering of the F conformational cascade (still requiring G). We used the deadly Nipah virus (NiV) as an important paramyxoviral model to perform alanine scan mutagenesis and a series of multidisciplinary structural/functional analyses that dissect the various states of the membrane fusion cascade. Remarkably, we found that specific residues within the HR3 modulate not only early F-triggering but also late extensive fusion pore expansion steps in the membrane fusion cascade. Our results characterize these novel fusion-modulatory roles of the F HR3, improving our understanding of the membrane fusion process for NiV and likely for the related Henipavirus genus and possibly Paramyxoviridae family members.IMPORTANCE The Paramyxoviridae family includes important human and animal pathogens, such as measles, mumps, and parainfluenza viruses and the deadly henipaviruses Nipah (NiV) and Hendra (HeV) viruses. Paramyxoviruses infect the respiratory tract and the central nervous system (CNS) and can be highly infectious. Most paramyxoviruses have a limited host range. However, the biosafety level 4 NiV and HeV are highly pathogenic and have a wide mammalian host range. Nipah viral infections result in acute respiratory syndrome and severe encephalitis in humans, leading to 40 to 100% mortality rates. The lack of licensed vaccines or therapeutic approaches against NiV and other important paramyxoviruses underscores the need to understand viral entry mechanisms. In this study, we uncovered a novel role of a third helical region (HR3) of the NiV fusion glycoprotein in the membrane fusion process that leads to viral entry. This discovery sets HR3 as a new candidate target for antiviral strategies for NiV and likely for related viruses.
Collapse
|
5
|
Ojeda N, Cárdenas C, Marshall S. Interaction of the Amino-Terminal Domain of the ISAV Fusion Protein with a Cognate Cell Receptor. Pathogens 2020; 9:pathogens9060416. [PMID: 32471165 PMCID: PMC7350309 DOI: 10.3390/pathogens9060416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/12/2020] [Accepted: 05/16/2020] [Indexed: 11/16/2022] Open
Abstract
The infectious salmon anemia virus (ISAV), etiological agent of the disease by the same name, causes major losses to the salmon industry. Classified as a member of the Orthomyxoviridae family, ISAV is characterized by the presence of two surface glycoproteins termed hemagglutinin esterase (HE) and fusion protein (F), both of them directly involved in the initial interaction of the virus with the target cell. HE mediates receptor binding and destruction, while F promotes the fusion process of the viral and cell membranes. The carboxy-terminal end of F (F2) possesses canonical structural characteristics of a type I fusion protein, while no functional properties have been proposed for the amino-terminal (F1) region. In this report, based on in silico modeling, we propose a tertiary structure for the F1 region, which resembles a sialic acid binding domain. Furthermore, using recombinant forms of both HE and F proteins and an in vitro model system, we demonstrate the interaction of F with a cell receptor, the hydrolysis of this receptor by the HE esterase, and a crucial role for F1 in the fusion mechanism. Our interpretation is that binding of F to its cell receptor is fundamental for membrane fusion and that the esterase in HE modulates this interaction.
Collapse
|
6
|
Liu Y, Chi M, Liu Y, Wen H, Zhao L, Song Y, Liu N, Wang Z. Roles of the highly conserved amino acids in the second receptor binding site of the Newcastle disease virus HN protein. Virol J 2019; 16:164. [PMID: 31881976 PMCID: PMC6935236 DOI: 10.1186/s12985-019-1273-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 12/13/2019] [Indexed: 01/26/2023] Open
Abstract
Background The paramyxovirus haemagglutinin-neuraminidase (HN) is a multifunctional protein that is responsible for attachment to receptors, removal of receptors from infected cells to prevent viral self-aggregation (neuraminidase, NA) and fusion promotion. It is commonly accepted that there are two receptor binding sites in the globular head of HN, and the second receptor binding site is only involved in the function of receptor binding and fusion promotion. Methods 10 conserved residues in the second receptor binding site of Newcastle disease virus (NDV) HN were chosen and substituted to alanine (A). The desired mutants were examined to detect the functional change in hemadsorption (HAD) ability, NA activity and fusion promotion ability. Results The HAD and fusion promotion ability of mutants C172A, R174A, C196A, D198A, Y526A and E547A were abolished. Compared with wild-type (wt) HN, the HAD of mutants T167A, S202A and R516A decreased to 55.81, 44.53, 69.02%, respectively, and the fusion promotion ability of these three mutants decreased to 54.74, 49.46, 65.26%, respectively; however, mutant G171A still maintained fusion promotion ability comparable with wt HN but had impaired HAD ability. All the site-directed mutations altered the NA activity of NDV HN without affecting protein cell surface expression. Conclusions The data suggest that mutants C172A, R174A, C196A, D198A, Y526A and E547A do not allow the conformational change that is required for fusion promotion ability and HAD activity, while the other mutants only affect the conformational change to a limited extent, except mutant G171A with intact fusion promotion ability. Overall, the conserved amino acids in the second receptor binding site, especially residues C172, R174, C196, D198, Y526 and E547, are crucial to normal NDV HN protein function.
Collapse
Affiliation(s)
- Yaqing Liu
- Department of Virology, School of Public Health, Shandong University, Jinan, 250012, China
| | - Miaomiao Chi
- Department of Virology, School of Public Health, Shandong University, Jinan, 250012, China
| | - Ying Liu
- Department of Virology, School of Public Health, Shandong University, Jinan, 250012, China
| | - Hongling Wen
- Department of Virology, School of Public Health, Shandong University, Jinan, 250012, China
| | - Li Zhao
- Department of Virology, School of Public Health, Shandong University, Jinan, 250012, China
| | - Yanyan Song
- Department of Virology, School of Public Health, Shandong University, Jinan, 250012, China
| | - Na Liu
- Department of Virology, School of Public Health, Shandong University, Jinan, 250012, China
| | - Zhiyu Wang
- Department of Virology, School of Public Health, Shandong University, Jinan, 250012, China. .,The Key Laboratory for Experimental Teratology of the Ministry of Education, Shandong University, Jinan, 250012, China.
| |
Collapse
|
7
|
Nipah and Hendra Virus Glycoproteins Induce Comparable Homologous but Distinct Heterologous Fusion Phenotypes. J Virol 2019; 93:JVI.00577-19. [PMID: 30971473 DOI: 10.1128/jvi.00577-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 04/07/2019] [Indexed: 02/02/2023] Open
Abstract
Nipah and Hendra viruses (NiV and HeV) exhibit high lethality in humans and are biosafety level 4 (BSL-4) paramyxoviruses in the growing genus Henipavirus The attachment (G) and fusion (F) envelope glycoproteins are both required for viral entry into cells and for cell-cell fusion, which is pathognomonic of henipaviral infections. Here, we compared the fusogenic capacities between homologous and heterologous pairs of NiV and HeV glycoproteins. Importantly, to accurately measure their fusogenic capacities, as these depend on glycoprotein cell surface expression (CSE) levels, we inserted identical extracellular tags to both fusion (FLAG tags) or both attachment (hemagglutinin [HA] tags) glycoproteins. Importantly, these tags were placed in extracellular sites where they did not affect glycoprotein expression or function. NiV and HeV glycoproteins induced comparable levels of homologous HEK293T cell-cell fusion. Surprisingly, however, while the heterologous NiV F/HeV G (NF/HG) combination yielded a hypofusogenic phenotype, the heterologous HeV F/NiV G (HF/NG) combination yielded a hyperfusogenic phenotype. Pseudotyped viral entry levels primarily corroborated the fusogenic phenotypes of the glycoprotein pairs analyzed. Furthermore, we constructed G and F chimeras that allowed us to map the overall regions in G and F that contributed to these hyperfusogenic or hypofusogenic phenotypes. Importantly, the fusogenic phenotypes of the glycoprotein combinations negatively correlated with the avidities of F-G interactions, supporting the F/G dissociation model of henipavirus-induced membrane fusion, even in the context of heterologous glycoprotein pairs.IMPORTANCE The NiV and HeV henipaviruses are BSL-4 pathogens transmitted from bats. NiV and HeV often lead to human death and animal diseases. The formation of multinucleated cells (syncytia) is a hallmark of henipaviral infections and is caused by fusion of cells coordinated by interactions of the viral attachment (G) and fusion (F) glycoproteins. We found via various assays that viral entry and syncytium formation depend on the viral origin of the glycoproteins, with HeV F and NiV G promoting higher membrane fusion levels than their counterparts. This is important knowledge, since both viruses use the same bat vector species and potential coinfections of these or subsequent hosts may alter the outcome of disease.
Collapse
|
8
|
Mutations in the DI–DII linker of the NDV fusion protein conferred hemagglutinin-neuraminidase-independent cell fusion promotion. J Gen Virol 2019; 100:958-967. [DOI: 10.1099/jgv.0.001278] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
9
|
Chi M, Xie W, Liu Y, Zhang C, Liu Y, Wen H, Zhao L, Song Y, Liu N, Chi L, Wang Z. Conserved amino acids around the DIII-DI linker region of the Newcastle disease virus fusion protein are critical for protein folding and fusion activity. Biosci Trends 2019; 13:225-233. [PMID: 31142702 DOI: 10.5582/bst.2019.01070] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Newcastle disease virus (NDV), an avian paramyxovirus, causes Newcastle disease (ND) which is a highly contagious and fatal viral disease affecting poultry and most species of birds. The fusion (F) protein of NDV mediates membrane fusion, which is essential to the processes of viral entry, replication, and dissemination. Although several domains of NDV F are known to have important effects on regulating the membrane fusion activity, the role of the region around domain III (DIII) and domain I (DI) still remains ill-defined. Site-directed mutagenesis was utilized to change the conserved amino acids at 269, 274, 277, 286, 287, 290, 295, and 297 to alanine in order to investigate the effects of these conserved amino acids around the DIII and DI linker region of the NDV F protein on fusion activity. It was found that five of these substitutions almost abolished fusion activity except for mutants I269A, Q286A, and N297A, which showed 57.1%, 161.1%, and 97.7% of the wt F level, respectively. Four (I274A, D277A, V287A, and P290A) of these five mutants likely result in interfering with folding or transporting of the molecule since these proteins were minimally expressed at the cell surface, formed aggregates, or not proteolytically cleaved. However, mutant L295A almost abolished fusion activity even with a similar level of cell surface expression. These data indicated that conserved amino acids around the DIII-DI linker region are critical for the folding of the F protein and have an important influence on fusion activity.
Collapse
Affiliation(s)
- Miaomiao Chi
- Department of Virology, School of Public Health, Shandong University
| | - Wenyan Xie
- Department of Laboratory Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University
| | - Ying Liu
- Department of Virology, School of Public Health, Shandong University
| | - Chi Zhang
- Department of Virology, School of Public Health, Shandong University
| | - Yaqing Liu
- Department of Virology, School of Public Health, Shandong University
| | - Hongling Wen
- Department of Virology, School of Public Health, Shandong University
| | - Li Zhao
- Department of Virology, School of Public Health, Shandong University
| | - Yanyan Song
- Department of Virology, School of Public Health, Shandong University
| | - Na Liu
- Department of Virology, School of Public Health, Shandong University
| | - Lianli Chi
- State Key Laboratory of Microbial Technology, National Glycoengineering Research Center, Shandong University
| | - Zhiyu Wang
- Department of Virology, School of Public Health, Shandong University.,The Key Laboratory for Experimental Teratology of the Ministry of Education, Shandong University
| |
Collapse
|
10
|
The Heptad Repeat C Domain of the Respiratory Syncytial Virus Fusion Protein Plays a Key Role in Membrane Fusion. J Virol 2018; 92:JVI.01323-17. [PMID: 29212939 DOI: 10.1128/jvi.01323-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 11/28/2017] [Indexed: 11/20/2022] Open
Abstract
Respiratory syncytial virus (RSV) mediates host cell entry through the fusion (F) protein, which undergoes a conformational change to facilitate the merger of viral and host lipid membrane envelopes. The RSV F protein comprises a trimer of disulfide-bonded F1 and F2 subunits that is present on the virion surface in a metastable prefusion state. This prefusion form is readily triggered to undergo refolding to bring two heptad repeats (heptad repeat A [HRA] and HRB) into close proximity to form a six-helix bundle that stabilizes the postfusion form and provides the free energy required for membrane fusion. This process can be triggered independently of other proteins. Here, we have performed a comprehensive analysis of a third heptad repeat region, HRC (amino acids 75 to 97), an amphipathic α-helix that lies at the interface of the prefusion F trimer and is a major structural feature of the F2 subunit. We performed alanine scanning mutagenesis from Lys-75 to Met-97 and assessed all mutations in transient cell culture for expression, proteolytic processing, cell surface localization, protein conformation, and membrane fusion. Functional characterization revealed a striking distribution of activity in which fusion-increasing mutations localized to one side of the helical face, while fusion-decreasing mutations clustered on the opposing face. Here, we propose a model in which HRC plays a stabilizing role within the globular head for the prefusion F trimer and is potentially involved in the early events of triggering, prompting fusion peptide release and transition into the postfusion state.IMPORTANCE RSV is recognized as the most important viral pathogen among pediatric populations worldwide, yet no vaccine or widely available therapeutic treatment is available. The F protein is critical for the viral replication process and is the major target for neutralizing antibodies. Recent years have seen the development of prefusion stabilized F protein-based approaches to vaccine design. A detailed understanding of the specific domains and residues that contribute to protein stability and fusion function is fundamental to such efforts. Here, we present a comprehensive mutagenesis-based study of a region of the RSV F2 subunit (amino acids 75 to 97), referred to as HRC, and propose a role for this helical region in maintaining the delicate stability of the prefusion form.
Collapse
|
11
|
Yun B, Zhang Y, Liu Y, Guan X, Wang Y, Qi X, Cui H, Liu C, Zhang Y, Gao H, Gao L, Li K, Gao Y, Wang X. TMPRSS12 Is an Activating Protease for Subtype B Avian Metapneumovirus. J Virol 2016; 90:11231-11246. [PMID: 27707927 PMCID: PMC5126379 DOI: 10.1128/jvi.01567-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 09/29/2016] [Indexed: 12/28/2022] Open
Abstract
The entry of avian metapneumovirus (aMPV) into host cells initially requires the fusion of viral and cell membranes, which is exclusively mediated by fusion (F) protein. Proteolysis of aMPV F protein by endogenous proteases of host cells allows F protein to induce membrane fusion; however, these proteases have not been identified. Here, we provide the first evidence that the transmembrane serine protease TMPRSS12 facilitates the cleavage of subtype B aMPV (aMPV/B) F protein. We found that overexpression of TMPRSS12 enhanced aMPV/B F protein cleavage, F protein fusogenicity, and viral replication. Subsequently, knockdown of TMPRSS12 with specific small interfering RNAs (siRNAs) reduced aMPV/B F protein cleavage, F protein fusogenicity, and viral replication. We also found a cleavage motif in the aMPV/B F protein (amino acids 100 and 101) that was recognized by TMPRSS12. The histidine, aspartic acid, and serine residue (HDS) triad of TMPRSS12 was shown to be essential for the proteolysis of aMPV/B F protein via mutation analysis. Notably, we observed TMPRSS12 mRNA expression in target organs of aMPV/B in chickens. Overall, our results indicate that TMPRSS12 is crucial for aMPV/B F protein proteolysis and aMPV/B infectivity and that TMPRSS12 may serve as a target for novel therapeutics and prophylactics for aMPV. IMPORTANCE Proteolysis of the aMPV F protein is a prerequisite for F protein-mediated membrane fusion of virus and cell and for aMPV infection; however, the proteases used in vitro and vivo are not clear. A combination of analyses, including overexpression, knockdown, and mutation methods, demonstrated that the transmembrane serine protease TMPRSS12 facilitated cleavage of subtype B aMPV (aMPV/B) F protein. Importantly, we located the motif in the aMPV/B F protein recognized by TMPRSS12 and the catalytic triad in TMPRSS12 that facilitated proteolysis of the aMPV/B F protein. This is the first report on TMPRSS12 as a protease for proteolysis of viral envelope glycoproteins. Our study will shed light on the mechanism of proteolysis of aMPV F protein and pathogenesis of aMPV.
Collapse
Affiliation(s)
- Bingling Yun
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Nan Gang District, Harbin, Heilongjiang Province, People's Republic of China
| | - Yao Zhang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Nan Gang District, Harbin, Heilongjiang Province, People's Republic of China
| | - Yongzhen Liu
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Nan Gang District, Harbin, Heilongjiang Province, People's Republic of China
| | - Xiaolu Guan
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Nan Gang District, Harbin, Heilongjiang Province, People's Republic of China
| | - Yongqiang Wang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Nan Gang District, Harbin, Heilongjiang Province, People's Republic of China
| | - Xiaole Qi
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Nan Gang District, Harbin, Heilongjiang Province, People's Republic of China
| | - Hongyu Cui
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Nan Gang District, Harbin, Heilongjiang Province, People's Republic of China
| | - Changjun Liu
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Nan Gang District, Harbin, Heilongjiang Province, People's Republic of China
| | - Yanping Zhang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Nan Gang District, Harbin, Heilongjiang Province, People's Republic of China
| | - Honglei Gao
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Nan Gang District, Harbin, Heilongjiang Province, People's Republic of China
| | - Li Gao
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Nan Gang District, Harbin, Heilongjiang Province, People's Republic of China
| | - Kai Li
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Nan Gang District, Harbin, Heilongjiang Province, People's Republic of China
| | - Yulong Gao
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Nan Gang District, Harbin, Heilongjiang Province, People's Republic of China
| | - Xiaomei Wang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Nan Gang District, Harbin, Heilongjiang Province, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, People's Republic of China
| |
Collapse
|
12
|
Yun BL, Guan XL, Liu YZ, Zhang Y, Wang YQ, Qi XL, Cui HY, Liu CJ, Zhang YP, Gao HL, Gao L, Li K, Gao YL, Wang XM. Integrin αvβ1 Modulation Affects Subtype B Avian Metapneumovirus Fusion Protein-mediated Cell-Cell Fusion and Virus Infection. J Biol Chem 2016; 291:14815-25. [PMID: 27226547 DOI: 10.1074/jbc.m115.711382] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Indexed: 01/08/2023] Open
Abstract
Avian metapneumovirus (aMPV) fusion (F) protein mediates virus-cell membrane fusion to initiate viral infection, which requires F protein binding to its receptor(s) on the host cell surface. However, the receptor(s) for aMPV F protein is still not identified. All known subtype B aMPV (aMPV/B) F proteins contain a conserved Arg-Asp-Asp (RDD) motif, suggesting that the aMPV/B F protein may mediate membrane fusion via the binding of RDD to integrin. When blocked with integrin-specific peptides, aMPV/B F protein fusogenicity and viral replication were significantly reduced. Specifically we identified integrin αv and/or β1-mediated F protein fusogenicity and viral replication using antibody blocking, small interfering RNAs (siRNAs) knockdown, and overexpression. Additionally, overexpression of integrin αv and β1 in aMPV/B non-permissive cells conferred aMPV/B F protein binding and aMPV/B infection. When RDD was altered to RAE (Arg-Ala-Glu), aMPV/B F protein binding and fusogenic activity were profoundly impaired. These results suggest that integrin αvβ1 is a functional receptor for aMPV/B F protein-mediated membrane fusion and virus infection, which will provide new insights on the fusogenic mechanism and pathogenesis of aMPV.
Collapse
Affiliation(s)
- Bing-Ling Yun
- From the Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 427 Maduan Street, Nan Gang District, Harbin 150001, Heilongjiang Province and
| | - Xiao-Lu Guan
- From the Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 427 Maduan Street, Nan Gang District, Harbin 150001, Heilongjiang Province and
| | - Yong-Zhen Liu
- From the Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 427 Maduan Street, Nan Gang District, Harbin 150001, Heilongjiang Province and
| | - Yao Zhang
- From the Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 427 Maduan Street, Nan Gang District, Harbin 150001, Heilongjiang Province and
| | - Yong-Qiang Wang
- From the Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 427 Maduan Street, Nan Gang District, Harbin 150001, Heilongjiang Province and
| | - Xiao-Le Qi
- From the Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 427 Maduan Street, Nan Gang District, Harbin 150001, Heilongjiang Province and
| | - Hong-Yu Cui
- From the Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 427 Maduan Street, Nan Gang District, Harbin 150001, Heilongjiang Province and
| | - Chang-Jun Liu
- From the Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 427 Maduan Street, Nan Gang District, Harbin 150001, Heilongjiang Province and
| | - Yan-Ping Zhang
- From the Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 427 Maduan Street, Nan Gang District, Harbin 150001, Heilongjiang Province and
| | - Hong-Lei Gao
- From the Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 427 Maduan Street, Nan Gang District, Harbin 150001, Heilongjiang Province and
| | - Li Gao
- From the Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 427 Maduan Street, Nan Gang District, Harbin 150001, Heilongjiang Province and
| | - Kai Li
- From the Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 427 Maduan Street, Nan Gang District, Harbin 150001, Heilongjiang Province and
| | - Yu-Long Gao
- From the Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 427 Maduan Street, Nan Gang District, Harbin 150001, Heilongjiang Province and
| | - Xiao-Mei Wang
- From the Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 427 Maduan Street, Nan Gang District, Harbin 150001, Heilongjiang Province and the Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou 225009, China
| |
Collapse
|
13
|
A generic screening platform for inhibitors of virus induced cell fusion using cellular electrical impedance. Sci Rep 2016; 6:22791. [PMID: 26976324 PMCID: PMC4792136 DOI: 10.1038/srep22791] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 02/22/2016] [Indexed: 11/12/2022] Open
Abstract
Fusion of the viral envelope with host cell membranes is an essential step in the life cycle of all enveloped viruses. Despite such a clear target for antiviral drug development, few anti-fusion drugs have progressed to market. One significant hurdle is the absence of a generic, high-throughput, reproducible fusion assay. Here we report that real time, label-free measurement of cellular electrical impedance can quantify cell-cell fusion mediated by either individually expressed recombinant viral fusion proteins, or native virus infection. We validated this approach for all three classes of viral fusion and demonstrated utility in quantifying fusion inhibition using antibodies and small molecule inhibitors specific for dengue virus and respiratory syncytial virus.
Collapse
|
14
|
Xie W, Wen H, Chu F, Yan S, Xie W, Lin B, Chen Y, Li Z, Ren G, Song Y, Zhao L, Wang Z. Mutations in the Leucine Zipper-Like Motif of the Human Parainfluenza Virus 3 Fusion Protein Impair Fusion Activity. Intervirology 2015; 58:297-309. [PMID: 26694747 PMCID: PMC7179560 DOI: 10.1159/000441978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 10/24/2015] [Indexed: 01/28/2023] Open
Abstract
Objective To investigate the effect of the leucine zipper-like motif between HRA and HRB of the human parainfluenza virus 3 fusion protein on fusion activity. Methods Site-directed mutagenesis was utilized to substitute the heptadic residues at 257, 264, 271, 278, 285, 292, and 299 in this motif with alanine. Additionally, 3 middle heptadic leucine residues at 271, 278, and 285 were replaced with alanine singly or in combination. A vaccinia virus-T7 RNA polymerase transient expression system was employed to express the wild-type or mutated fusion (F) proteins. Three different types of membrane fusion assays were performed to analyze the fusogenic activity, fluorescence-activated cell sorting (FACS) analysis was executed to examine the cell surface expression level, and a coimmunoprecipitation assay was conducted to probe the hemagglutinin-neuraminidase (HN)-F interaction at the cell surface. Results All of the substitutions in this motif exhibited diminished or even lost fusion activity in all stages of fusion, although they all had no effect on cell surface expression. In the coimmunoprecipitation assay, all mutants resulted in decreased detection of the HN-F complexes compared with that of the wild-type F protein. Conclusions This motif has an important influence on fusion activity, and its integrality is indispensable for membrane fusion.
Collapse
Affiliation(s)
- Wenyan Xie
- Department of Virology, School of Public Health, Shandong University, Jinan, PR China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Trypsin- and low pH-mediated fusogenicity of avian metapneumovirus fusion proteins is determined by residues at positions 100, 101 and 294. Sci Rep 2015; 5:15584. [PMID: 26498473 PMCID: PMC4620442 DOI: 10.1038/srep15584] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 09/29/2015] [Indexed: 12/03/2022] Open
Abstract
Avian metapneumovirus (aMPV) and human metapneumovirus (hMPV) are members of the genus Metapneumovirus in the subfamily Pneumovirinae. Metapneumovirus fusion (F) protein mediates the fusion of host cells with the virus membrane for infection. Trypsin- and/or low pH-induced membrane fusion is a strain-dependent phenomenon for hMPV. Here, we demonstrated that three subtypes of aMPV (aMPV/A, aMPV/B, and aMPV/C) F proteins promoted cell-cell fusion in the absence of trypsin. Indeed, in the presence of trypsin, only aMPV/C F protein fusogenicity was enhanced. Mutagenesis of the amino acids at position 100 and/or 101, located at a putative cleavage region in aMPV F proteins, revealed that the trypsin-mediated fusogenicity of aMPV F proteins is regulated by the residues at positions 100 and 101. Moreover, we demonstrated that aMPV/A and aMPV/B F proteins mediated cell-cell fusion independent of low pH, whereas the aMPV/C F protein did not. Mutagenesis of the residue at position 294 in the aMPV/A, aMPV/B, and aMPV/C F proteins showed that 294G played a critical role in F protein-mediated fusion under low pH conditions. These findings on aMPV F protein-induced cell-cell fusion provide new insights into the molecular mechanisms underlying membrane fusion and pathogenesis of aMPV.
Collapse
|
16
|
Xie W, Wen H, Chu F, Yan S, Lin B, Xie W, Liu Y, Ren G, Zhao L, Song Y, Sun C, Wang Z. Mutations in the DI-DII Linker of Human Parainfluenza Virus Type 3 Fusion Protein Result in Diminished Fusion Activity. PLoS One 2015; 10:e0136474. [PMID: 26305905 PMCID: PMC4549179 DOI: 10.1371/journal.pone.0136474] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 08/04/2015] [Indexed: 01/21/2023] Open
Abstract
Human parainfluenza virus type 3 (HPIV3) can cause severe respiratory tract diseases in infants and young children, but no licensed vaccines or antiviral agents are currently available for treatment. Fusing the viral and target cell membranes is a prerequisite for its entry into host cells and is directly mediated by the fusion (F) protein. Although several domains of F are known to have important effects on regulating the membrane fusion activity, the roles of the DI-DII linker (residues 369–374) of the HPIV3 F protein in the fusogenicity still remains ill-defined. To facilitate our understanding of the role of this domain might play in F-induced cell-cell fusion, nine single mutations were engineered into this domain by site-directed mutagenesis. A vaccinia virus-T7 RNA polymerase transient expression system was employed to express the wild-type or mutated F proteins. These mutants were analyzed for membrane fusion activity, cell surface expression, and interaction between F and HN protein. Each of the mutated F proteins in this domain has a cell surface expression level similar to that of wild-type F. All of them resulted in a significant reduction in fusogenic activity in all steps of membrane fusion. Furthermore, all these fusion-deficient mutants reduced the amount of the HN-F complexes at the cell surface. Together, the results of our work suggest that this region has an important effect on the fusogenic activity of F.
Collapse
Affiliation(s)
- Wenyan Xie
- Department of Virology, School of Public Health, Shandong University, Jinan, China
| | - Hongling Wen
- Department of Virology, School of Public Health, Shandong University, Jinan, China
| | - Fulu Chu
- Department of Laboratory Medicine, Provincial Hospital affiliated to Shandong University, Jinan, China
| | - Shaofeng Yan
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, China
| | - Bin Lin
- Shandong Center for Disease Control and Prevention, Jinan, China
| | - Wenli Xie
- Department of Laboratory Medicine, Shandong Tumor Hospital and Institute, Jinan, China
| | - Ying Liu
- Department of Virology, School of Public Health, Shandong University, Jinan, China
| | - Guijie Ren
- Institute of Biochemistry and Molecular Biology, School of Medicine, Shandong University, Jinan, China
| | - Li Zhao
- Department of Virology, School of Public Health, Shandong University, Jinan, China
| | - Yanyan Song
- Department of Virology, School of Public Health, Shandong University, Jinan, China
| | - Chengxi Sun
- Department of Virology, School of Public Health, Shandong University, Jinan, China
| | - Zhiyu Wang
- Department of Virology, School of Public Health, Shandong University, Jinan, China
- The Key Laboratory for Experimental Teratology of the Ministry of Education, Shandong University, Jinan, China
- * E-mail:
| |
Collapse
|
17
|
Effect of amino acid sequence variations at position 149 on the fusogenic activity of the subtype B avian metapneumovirus fusion protein. Arch Virol 2015; 160:2445-53. [PMID: 26175070 DOI: 10.1007/s00705-015-2524-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 07/03/2015] [Indexed: 10/23/2022]
Abstract
The entry of enveloped viruses into host cells requires the fusion of viral and cell membranes. These membrane fusion reactions are mediated by virus-encoded glycoproteins. In the case of avian metapneumovirus (aMPV), the fusion (F) protein alone can mediate virus entry and induce syncytium formation in vitro. To investigate the fusogenic activity of the aMPV F protein, we compared the fusogenic activities of three subtypes of aMPV F proteins using a TCSD50 assay developed in this study. Interestingly, we found that the F protein of aMPV subtype B (aMPV/B) strain VCO3/60616 (aMPV/vB) was hyperfusogenic when compared with F proteins of aMPV/B strain aMPV/f (aMPV/fB), aMPV subtype A (aMPV/A), and aMPV subtype C (aMPV/C). We then further demonstrated that the amino acid (aa) residue 149F contributed to the hyperfusogenic activity of the aMPV/vB F protein. Moreover, we revealed that residue 149F had no effect on the fusogenic activities of aMPV/A, aMPV/C, and human metapneumovirus (hMPV) F proteins. Collectively, we provide the first evidence that the amino acid at position 149 affects the fusogenic activity of the aMPV/B F protein, and our findings will provide new insights into the fusogenic mechanism of this protein.
Collapse
|
18
|
Functional properties and genetic relatedness of the fusion and hemagglutinin-neuraminidase proteins of a mumps virus-like bat virus. J Virol 2015; 89:4539-48. [PMID: 25741010 DOI: 10.1128/jvi.03693-14] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED A bat virus with high phylogenetic relatedness to human mumps virus (MuV) was identified recently at the nucleic acid level. We analyzed the functional activities of the hemagglutinin-neuraminidase (HN) and the fusion (F) proteins of the bat virus (batMuV) and compared them to the respective proteins of a human isolate. Transfected cells expressing the F and HN proteins of batMuV were recognized by antibodies directed against these proteins of human MuV, indicating that both viruses are serologically related. Fusion, hemadsorption, and neuraminidase activities were demonstrated for batMuV, and either bat-derived protein could substitute for its human MuV counterpart in inducing syncytium formation when coexpressed in different mammalian cell lines, including chiropteran cells. Cells expressing batMuV glycoproteins were shown to have lower neuraminidase activity. The syncytia were smaller, and they were present in lower numbers than those observed after coexpression of the corresponding glycoproteins of a clinical isolate of MuV (hMuV). The phenotypic differences in the neuraminidase and fusion activity between the glycoproteins of batMuV and hMuV are explained by differences in the expression level of the HN and F proteins of the two viruses. In the case of the F protein, analysis of chimeric proteins revealed that the signal peptide of the bat MuV fusion protein is responsible for the lower surface expression. These results indicate that the surface glycoproteins of batMuV are serologically and functionally related to those of hMuV, raising the possibility of bats as a reservoir for interspecies transmission. IMPORTANCE The recently described MuV-like bat virus is unique among other recently identified human-like bat-associated viruses because of its high sequence homology (approximately 90% in most genes) to its human counterpart. Although it is not known if humans can be infected by batMuV, the antigenic relatedness between the bat and human forms of the virus suggests that humans carrying neutralizing antibodies against MuV are protected from infection by batMuV. The close functional relationship between MuV and batMuV is demonstrated by cooperation of the respective HN and F proteins to induce syncytium formation in heterologous expression studies. An interesting feature of the glycoproteins of batMuV is the downregulation of the fusion activity by the signal peptide of F, which has not been reported for other paramyxoviruses. These results are important contributions for risk assessment and for a better understanding of the replication strategy of batMuV.
Collapse
|
19
|
Interaction between the hemagglutinin-neuraminidase and fusion glycoproteins of human parainfluenza virus type III regulates viral growth in vivo. mBio 2013; 4:e00803-13. [PMID: 24149514 PMCID: PMC3812707 DOI: 10.1128/mbio.00803-13] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Paramyxoviruses, enveloped RNA viruses that include human parainfluenza virus type 3 (HPIV3), cause the majority of childhood viral pneumonia. HPIV3 infection starts when the viral receptor-binding protein engages sialic acid receptors in the lung and the viral envelope fuses with the target cell membrane. Fusion/entry requires interaction between two viral surface glycoproteins: tetrameric hemagglutinin-neuraminidase (HN) and fusion protein (F). In this report, we define structural correlates of the HN features that permit infection in vivo. We have shown that viruses with an HN-F that promotes growth in cultured immortalized cells are impaired in differentiated human airway epithelial cell cultures (HAE) and in vivo and evolve in HAE into viable viruses with less fusogenic HN-F. In this report, we identify specific structural features of the HN dimer interface that modulate HN-F interaction and fusion triggering and directly impact infection. Crystal structures of HN, which promotes viral growth in vivo, show a diminished interface in the HN dimer compared to the reference strain's HN, consistent with biochemical and biological data indicating decreased dimerization and decreased interaction with F protein. The crystallographic data suggest a structural explanation for the HN's altered ability to activate F and reveal properties that are critical for infection in vivo. IMPORTANCE Human parainfluenza viruses cause the majority of childhood cases of croup, bronchiolitis, and pneumonia worldwide. Enveloped viruses must fuse their membranes with the target cell membranes in order to initiate infection. Parainfluenza fusion proceeds via a multistep reaction orchestrated by the two glycoproteins that make up its fusion machine. In vivo, viruses adapt for survival by evolving to acquire a set of fusion machinery features that provide key clues about requirements for infection in human beings. Infection of the lung by parainfluenzavirus is determined by specific interactions between the receptor binding molecule (hemagglutinin-neuraminidase [HN]) and the fusion protein (F). Here we identify specific structural features of the HN dimer interface that modulate HN-F interaction and fusion and directly impact infection. The crystallographic and biochemical data point to a structural explanation for the HN's altered ability to activate F for fusion and reveal properties that are critical for infection by this important lung virus in vivo.
Collapse
|
20
|
Chu FL, Wen HL, Hou GH, Lin B, Zhang WQ, Song YY, Ren GJ, Sun CX, Li ZM, Wang Z. Role of N-linked glycosylation of the human parainfluenza virus type 3 hemagglutinin-neuraminidase protein. Virus Res 2013; 174:137-47. [PMID: 23562646 DOI: 10.1016/j.virusres.2013.03.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Revised: 03/14/2013] [Accepted: 03/20/2013] [Indexed: 10/27/2022]
Abstract
Human parainfluenza virus type 3 (hPIV-3) is a major respiratory tract pathogen that affects infants and young children. The hPIV-3 hemagglutinin-neuraminidase (HN) protein is a multifunctional protein mediating hemadsorption (HAD), neuraminidase (NA), and fusion promotion activities, each of which affects the ability of HN to promote viral fusion and entry. The hPIV-3 HN protein contains four potential sites (N308, N351, N485 and N523) for N-linked glycosylation. Electrophoretic mobility analysis of mutated HN proteins indicated that N308, N351 and N523 sites, but not the N485 site in HN protein, were targeted for the addition of glycans in BHK-21 cells. These functional glycosylation sites were systematically eliminated in various combinations from HN to form a panel of mutants in which the roles of individual carbohydrate chains and groups of carbohydrate chains could be analyzed. Removal of individual or multiple N-glycans on the hPIV-3 HN protein had no effects on transport to the cell surface, expression and NA activity. Single glycosylation site mutants (G1, G2 and G4) not only impaired fusion promotion activity but also reduced HAD activity of HN protein, which was even more obvious for all three double mutants (G12, G14 and G24) and the triple mutant (G124). In addition, every mutant protein retained F-interactive capability that was equal to the wild-type protein capability. Interestingly, the F protein that could be co-immunoprecipitated with the G12 mutated protein or immunoprecipitated with anti-F antibody was not efficiently cleaved. For G14, G24 and G124, little cleaved F protein was detected in co-immuoprecipitation F protein assay and its total amounts where in the cell lysates. The mechanism underlying hPIV-3 HN and F protein remained associated before and after receptor engagement and the strength of the HN-receptor interaction modulated the activation of F the protein which could determine the extent of fusion. Finally, we demonstrated that single or multiple N-glycosylation site mutations inhibited fusion at the earliest stages. Taken together, these results indicated that N-glycosylation of hPIV-3 HN is critical to its receptor recognition activity, cleavage of the F protein, and fusion promotion activity, but had no influence on its interaction with the homologous F protein and NA activity.
Collapse
Affiliation(s)
- Fu-Lu Chu
- Department of Virology, School of Public Health, Shandong University, Jinan 250012, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
|
22
|
Regulation of paramyxovirus fusion activation: the hemagglutinin-neuraminidase protein stabilizes the fusion protein in a pretriggered state. J Virol 2012; 86:12838-48. [PMID: 22993149 DOI: 10.1128/jvi.01965-12] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The hemagglutinin (HA)-neuraminidase protein (HN) of paramyxoviruses carries out three discrete activities, each of which affects the ability of HN to promote viral fusion and entry: receptor binding, receptor cleaving (neuraminidase), and triggering of the fusion protein. Binding of HN to its sialic acid receptor on a target cell triggers its activation of the fusion protein (F), which then inserts into the target cell and mediates the membrane fusion that initiates infection. We provide new evidence for a fourth function of HN: stabilization of the F protein in its pretriggered state before activation. Influenza virus hemagglutinin protein (uncleaved HA) was used as a nonspecific binding protein to tether F-expressing cells to target cells, and heat was used to activate F, indicating that the prefusion state of F can be triggered to initiate structural rearrangement and fusion by temperature. HN expression along with uncleaved HA and F enhances the F activation if HN is permitted to engage the receptor. However, if HN is prevented from engaging the receptor by the use of a small compound, temperature-induced F activation is curtailed. The results indicate that HN helps stabilize the prefusion state of F, and analysis of a stalk domain mutant HN reveals that the stalk domain of HN mediates the F-stabilization effect.
Collapse
|
23
|
Entry of influenza A Virus with a α2,6-linked sialic acid binding preference requires host fibronectin. J Virol 2012; 86:10704-13. [PMID: 22837202 DOI: 10.1128/jvi.01166-12] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The receptor binding specificity of influenza A virus is one of the major determinants of viral tropism and host specificity. In general, avian viral hemagglutinin prefers to bind to α2,3-linked sialic acid, whereas the human viral hemagglutinin prefers to bind to α2,6-linked sialic acid. Here, we demonstrate that host fibronectin protein plays an important role in the life cycle of some influenza A viruses. Treating cells with anti-fibronectin antibodies or fibronectin-specific small interfering RNA can inhibit the virus replication of human H1N1 influenza A viruses. Strikingly, these inhibitory effects cannot be observed in cells infected with H5N1 viruses. By using reverse genetics techniques, we observed that the receptor binding specificity, but not the origin of the hemagglutinin subtype, is responsible for this differential inhibitory effect. Changing the binding preference of hemagglutinin from α2,6-linked sialic acid to α2,3-linked sialic acid can make the virus resistant to the anti-fibronectin antibody treatment and vice versa. Our further characterizations indicate that anti-fibronectin antibody acts on the early phase of viral replication cycle, but it has no effect on the initial binding of influenza A virus to cell surface. Our subsequent investigations further show that anti-fibronectin antibody can block the postattachment entry of influenza virus. Overall, these results indicate that the sialic acid binding preference of influenza viral hemagglutinin can modulate the preferences of viral entry pathways, suggesting that there are subtle differences between the virus entries of human and avian influenza viruses.
Collapse
|
24
|
Read JA, Duncan R. Biophysical and functional assays for viral membrane fusion peptides. Methods 2011; 55:122-6. [PMID: 21958986 DOI: 10.1016/j.ymeth.2011.09.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 09/12/2011] [Accepted: 09/13/2011] [Indexed: 11/26/2022] Open
Abstract
Membrane fusion is a protein catalyzed biophysical reaction that involves the simultaneous intermixing of two phospholipid bilayers and of the aqueous compartments bound by their respective bilayers. In the case of enveloped virus fusogens, short hydrophobic or amphipathic fusion peptides that are components of the larger fusion complex are essential for the membrane merger event. The process of cell-cell membrane fusion and syncytium formation induced by the nonenveloped fusogenic orthoreoviruses is driven by the Fusion-Associated Small Transmembrane (FAST) proteins, which are similarly dependent on the action of fusion peptides. In this article, we describe some simple methods for the biophysical characterization of viral membrane fusion peptides. Liposomes serve as an ideal model system for characterizing peptide-membrane interactions because their size, shape and composition can be readily manipulated. We present details of fluorescence assays used to elucidate the kinetics of membrane fusion as well as complimentary assays used to characterize peptide-induced liposome binding and aggregation.
Collapse
Affiliation(s)
- Jolene A Read
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada B3H4R2
| | | |
Collapse
|
25
|
Takaguchi M, Takahashi T, Hosokawa C, Ueyama H, Fukushima K, Hayakawa T, Itoh K, Ikeda K, Suzuki T. A single amino acid mutation at position 170 of human parainfluenza virus type 1 fusion glycoprotein induces obvious syncytium formation and caspase-3-dependent cell death. ACTA ACUST UNITED AC 2010; 149:191-202. [DOI: 10.1093/jb/mvq139] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
26
|
Sabahi A, Marsh KA, Dahari H, Corcoran P, Lamora JM, Yu X, Garry RF, Uprichard SL. The rate of hepatitis C virus infection initiation in vitro is directly related to particle density. Virology 2010; 407:110-9. [PMID: 20800257 PMCID: PMC2946418 DOI: 10.1016/j.virol.2010.07.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Revised: 06/10/2010] [Accepted: 07/18/2010] [Indexed: 02/06/2023]
Abstract
To gain a more complete understanding of hepatitis C virus (HCV) entry, we initially assessed the rate at which HCV initiates productive attachment/infection in vitro and discovered it to be slower than most viruses. Since HCV, including cell culture-derived HCV (HCVcc), exhibits a broad-density profile (1.01-1.16 g/ml), we hypothesized that the varying densities of the HCVcc particles present in the inoculum may be responsible for this prolonged entry phenotype. To test this hypothesis, we show that during infection, particles of high density disappeared from the viral inoculum sooner and initiated productive infection faster than virions of low density. Moreover, we could alter the rate of attachment/infection initiation by increasing or decreasing the density of the cell culture medium. Together, these findings demonstrate that the relationship between the density of HCVcc and the density of the extracellular milieu can significantly impact the rate at which HCVcc productively interacts with target cells in vitro.
Collapse
Affiliation(s)
- Ali Sabahi
- Department of Microbiology and Immunology, Tulane University Health Sciences Center, New Orleans, LA, USA
| | - Katherine A. Marsh
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, USA
| | - Harel Dahari
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Peter Corcoran
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Jennifer M. Lamora
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, USA
| | - Xuemei Yu
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Robert F. Garry
- Department of Microbiology and Immunology, Tulane University Health Sciences Center, New Orleans, LA, USA
| | - Susan L. Uprichard
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
27
|
Low-pH triggering of human metapneumovirus fusion: essential residues and importance in entry. J Virol 2008; 83:1511-22. [PMID: 19036821 DOI: 10.1128/jvi.01381-08] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Human metapneumovirus (HMPV) is a significant respiratory pathogen classified in the Pneumovirinae subfamily of the paramyxovirus family. Recently, we demonstrated that HMPV F protein-promoted cell-cell fusion is stimulated by exposure to low pH, in contrast to what is observed for other paramyxovirus F proteins. In the present study, we examined the potential role of histidine protonation in HMPV F fusion and investigated the role of low pH in HMPV viral entry. Mutagenesis of the three ectodomain histidine residues of the HMPV F protein demonstrated that the mutation of a histidine in the heptad repeat B linker domain (H435) ablated fusion activity without altering cell surface expression or proteolytic processing significantly. Modeling of the HMPV F protein revealed several basic residues surrounding this histidine residue, and the mutation of these residues also reduced fusion activity. These results suggest that electrostatic repulsion in the heptad repeat B linker region may contribute to the triggering of HMPV F. In addition, we examined the effect of inhibitors of endosomal acidification or endocytosis on the entry of a recombinant green fluorescent protein-expressing HMPV. Interestingly, chemicals that raise the pH of endocytic vesicles resulted in a 30 to 50% decrease in HMPV infection, while the inhibitors of endocytosis reduced infection by as much as 90%. These data suggest that HMPV utilizes an endocytic entry mechanism, in contrast to what has been hypothesized for most paramyxoviruses. In addition, our results indicate that HMPV uses the low pH of the endocytic pathway to enhance infectivity, though the role of low pH likely differs from classically described mechanisms.
Collapse
|
28
|
Yuan P, Leser GP, Demeler B, Lamb RA, Jardetzky TS. Domain architecture and oligomerization properties of the paramyxovirus PIV 5 hemagglutinin-neuraminidase (HN) protein. Virology 2008; 378:282-91. [PMID: 18597807 DOI: 10.1016/j.virol.2008.05.023] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Revised: 04/01/2008] [Accepted: 05/22/2008] [Indexed: 11/27/2022]
Abstract
The mechanism by which the paramyxovirus hemagglutinin-neuraminidase (HN) protein couples receptor binding to activation of virus entry remains to be fully understood, but the HN stalk is thought to play an important role in the process. We have characterized ectodomain constructs of the parainfluenza virus 5 HN to understand better the underlying architecture and oligomerization properties that may influence HN functions. The PIV 5 neuraminidase (NA) domain is monomeric whereas the ectodomain forms a well-defined tetramer. The HN stalk also forms tetramers and higher order oligomers with high alpha-helical content. Together, the data indicate that the globular NA domains form weak intersubunit interactions at the end of the HN stalk tetramer, while stabilizing the stalk and overall oligomeric state of the ectodomain. Electron microscopy of the HN ectodomain reveals flexible arrangements of the NA and stalk domains, which may be important for understanding how these two HN domains impact virus entry.
Collapse
Affiliation(s)
- Ping Yuan
- Department of Structural Biology, Stanford University, Palo Alto, CA 94305-5126, USA
| | | | | | | | | |
Collapse
|
29
|
Dey B, Berger EA. Vaccinia-based reporter gene cell-fusion assays to quantitate functional interactions of HIV envelope glycoprotein with receptors. ACTA ACUST UNITED AC 2008; Chapter 12:Unit 12.10. [PMID: 18432897 DOI: 10.1002/0471142735.im1210s54] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This unit describes quantitation of functional interactions between HIV envelope glucoprotein and target cell receptors, using assay of cell fusion-dependent reporter gene activation. The method is particularly useful since it isolates the fusion reaction from the rest of the HIV replication cycle, and obviates the need for infectious HIV particles. Reporter Gene Cell Fusion Assays to Quantitate Functional Interactions of HIV Envelope Glycoprotein with Receptors.
Collapse
Affiliation(s)
- Barna Dey
- National Institutes of Health, Bethesda, Maryland, USA
| | | |
Collapse
|
30
|
Salsman J, Top D, Barry C, Duncan R. A virus-encoded cell-cell fusion machine dependent on surrogate adhesins. PLoS Pathog 2008; 4:e1000016. [PMID: 18369467 PMCID: PMC2267009 DOI: 10.1371/journal.ppat.1000016] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2007] [Accepted: 01/30/2008] [Indexed: 12/18/2022] Open
Abstract
The reovirus fusion-associated small transmembrane (FAST) proteins function as virus-encoded cellular fusogens, mediating efficient cell–cell rather than virus–cell membrane fusion. With ectodomains of only ∼20–40 residues, it is unclear how such diminutive viral fusion proteins mediate the initial stages (i.e. membrane contact and close membrane apposition) of the fusion reaction that precede actual membrane merger. We now show that the FAST proteins lack specific receptor-binding activity, and in their natural biological context of promoting cell–cell fusion, rely on cadherins to promote close membrane apposition. The FAST proteins, however, are not specifically reliant on cadherin engagement to mediate membrane apposition as indicated by their ability to efficiently utilize other adhesins in the fusion reaction. Results further indicate that surrogate adhesion proteins that bridge membranes as close as 13 nm apart enhance FAST protein-induced cell–cell fusion, but active actin remodelling is required for maximal fusion activity. The FAST proteins are the first example of membrane fusion proteins that have specifically evolved to function as opportunistic fusogens, designed to exploit and convert naturally occurring adhesion sites into fusion sites. The capacity of surrogate, non-cognate adhesins and active actin remodelling to enhance the cell–cell fusion activity of the FAST proteins are features perfectly suited to the structural and functional evolution of these fusogens as the minimal fusion component of a virus-encoded cellular fusion machine. These results also provide a basis for reconciling the rudimentary structure of the FAST proteins with their capacity to fuse cellular membranes. Much of our current understanding of how proteins mediate membrane fusion derives from the study of enveloped virus fusion proteins. These fusion protein complexes function autonomously to co-ordinately regulate virus–cell attachment and subsequent membrane merger. In contrast, the reovirus Fusion-Associated Small Transmembrane (FAST) proteins are the only example of virus-encoded cellular fusogens, specifically designed to mediate cell–cell rather than virus–cell membrane fusion. In view of their small size, it was unclear if, or how, the FAST proteins are responsible for promoting the membrane attachment and close apposition stages of the fusion reaction. We now show that the FAST proteins have specifically evolved to function as the fusion component in a biphasic cell–cell fusion reaction, where the membrane attachment and membrane merger stages represent two distinct, uncoupled phases. Exploiting cadherins as surrogate adhesins, the FAST proteins have retained within their rudimentary structures the minimal determinants required to convert pre-existing adherens junctions into sites of cell–cell membrane fusion. These results raise the interesting possibility that other, yet to be identified cellular fusion proteins may resemble the FAST proteins, using separate adhesins and less complex fusion proteins in a similar biphasic membrane fusion reaction.
Collapse
Affiliation(s)
- Jayme Salsman
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | | | |
Collapse
|
31
|
Su Y, Yang H, Zhang B, Qi X, Tien P. A dual reporter gene based system to quantitate the cell fusion of avian influenza virus H5N1. Biotechnol Lett 2007; 30:73-9. [PMID: 17823774 DOI: 10.1007/s10529-007-9521-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2007] [Revised: 08/09/2007] [Accepted: 08/15/2007] [Indexed: 12/01/2022]
Abstract
Membrane fusion is central to the entry of influenza virus into host cells. To quantitatively determine the fusion activity of hemagglutinin (HA) of avian influenza virus H5N1, we established a cell fusion assay based on a dual luciferase reporter gene. The HA fusion activity was assayed by measuring luciferase expression in fused cells, allowing a rapid, sensitive, and quantitative comparison of HA fusion activities at various pHs and in different cells types. The simplicity and the quantitative nature of this novel assay are ideally suited for identifying viral receptors or screening for inhibitors of viral entry in the future.
Collapse
Affiliation(s)
- Yan Su
- Molecular Virology Research Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | | | | | | | | |
Collapse
|
32
|
Corey EA, Iorio RM. Mutations in the stalk of the measles virus hemagglutinin protein decrease fusion but do not interfere with virus-specific interaction with the homologous fusion protein. J Virol 2007; 81:9900-10. [PMID: 17626104 PMCID: PMC2045382 DOI: 10.1128/jvi.00909-07] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The hemagglutinin (H) protein of measles virus (MV) mediates attachment to cellular receptors. The ectodomain of the H spike is thought to consist of a membrane-proximal stalk and terminal globular head, in which resides the receptor-binding activity. Like other paramyxovirus attachment proteins, MV H also plays a role in fusion promotion, which is mediated through an interaction with the viral fusion (F) protein. The stalk of the hemagglutinin-neuraminidase (HN) protein of several paramyxoviruses determines specificity for the homologous F protein. In addition, mutations in a conserved domain in the Newcastle disease virus (NDV) HN stalk result in a sharp decrease in fusion and an impaired ability to interact with NDV F in a cell surface coimmunoprecipitation (co-IP) assay. The region of MV H that determines specificity for the F protein has not been identified. Here, we have adapted the co-IP assay to detect the MV H-F complex at the surface of transfected HeLa cells. We have also identified mutations in a domain in the MV H stalk, similar to the one in the NDV HN stalk, that also drastically reduce fusion yet do not block complex formation with MV F. These results indicate that this domain in the MV H stalk is required for fusion but suggest either that mutation of it indirectly affects the H-dependent activation of F or that the MV H-F interaction is mediated by more than one domain in H. This points to an apparent difference in the way the MV and NDV glycoproteins interact to regulate fusion.
Collapse
Affiliation(s)
- Elizabeth A Corey
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA
| | | |
Collapse
|
33
|
Sawatsky B, Grolla A, Kuzenko N, Weingartl H, Czub M. Inhibition of henipavirus infection by Nipah virus attachment glycoprotein occurs without cell-surface downregulation of ephrin-B2 or ephrin-B3. J Gen Virol 2007; 88:582-591. [PMID: 17251577 DOI: 10.1099/vir.0.82427-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Nipah virus (NiV) and Hendra virus (HeV) are newly identified members of the family Paramyxoviridae and have been classified in the new genus Henipavirus based on unique genetic characteristics distinct from other paramyxoviruses. Transgenic cell lines were generated that expressed either the attachment protein (G) or the fusion protein (F) of NiV. Functional expression of NiV F and G was verified by complementation with the corresponding glycoprotein, which resulted in the development of syncytia. When exposed to NiV and HeV, expression of NiV G in Crandall feline kidney cells resulted in a qualitative inhibition of both cytopathic effect (CPE) and cell death by both viruses. RT-PCR analysis of surviving exposed cells showed a complete absence of viral positive-sense mRNA and genomic negative-sense viral RNA. Cells expressing NiV G were also unable to fuse with cells co-expressing NiV F and G in a fluorescent fusion inhibition assay. Cell-surface staining for the cellular receptors for NiV and HeV (ephrin-B2 and ephrin-B3) indicated that they were located on the surface of cells, regardless of NiV G expression or infection by NiV. These results indicated that viral interference can be established for henipaviruses and requires only the expression of the attachment protein, G. Furthermore, it was found that this interference probably occurs at the level of virus entry, as fusion was not observed in cells expressing NiV G. Finally, expression of NiV G by either transient transfection or NiV infection did not alter the cell-surface levels of the two known viral receptors.
Collapse
Affiliation(s)
- Bevan Sawatsky
- Department of Medical Microbiology, University of Manitoba, 730 William Avenue, Winnipeg, MB R3E 0W3, Canada
- National Microbiology Laboratory, Canadian Science Centre for Human and Animal Health, 1015 Arlington Street, Winnipeg, MB R3E 3R2, Canada
| | - Allen Grolla
- National Microbiology Laboratory, Canadian Science Centre for Human and Animal Health, 1015 Arlington Street, Winnipeg, MB R3E 3R2, Canada
| | - Nina Kuzenko
- Department of Medical Microbiology, University of Manitoba, 730 William Avenue, Winnipeg, MB R3E 0W3, Canada
- National Microbiology Laboratory, Canadian Science Centre for Human and Animal Health, 1015 Arlington Street, Winnipeg, MB R3E 3R2, Canada
| | - Hana Weingartl
- National Centre for Foreign Animal Disease, Canadian Science Centre for Human and Animal Health, 1015 Arlington Street, Winnipeg, MB R3E 3R2, Canada
- Department of Medical Microbiology, University of Manitoba, 730 William Avenue, Winnipeg, MB R3E 0W3, Canada
| | - Markus Czub
- Department of Medical Microbiology, University of Manitoba, 730 William Avenue, Winnipeg, MB R3E 0W3, Canada
- National Microbiology Laboratory, Canadian Science Centre for Human and Animal Health, 1015 Arlington Street, Winnipeg, MB R3E 3R2, Canada
| |
Collapse
|
34
|
Bousse T, Takimoto T. Mutation at residue 523 creates a second receptor binding site on human parainfluenza virus type 1 hemagglutinin-neuraminidase protein. J Virol 2006; 80:9009-16. [PMID: 16940513 PMCID: PMC1563932 DOI: 10.1128/jvi.00969-06] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The paramyxovirus hemagglutinin-neuraminidase (HN) is a multifunctional protein mediating hemagglutination (HA), neuraminidase (NA), and fusion promotion activities. It has been a matter of debate whether HN contains combined or separate sites for HA and NA activities. To clear the issue, we determined the presence of the second binding site on human parainfluenza virus (hPIV) type 1, 2, and 3 and Sendai virus (SeV) HN proteins. Results of virus elution from erythrocytes at an elevated temperature and HA inhibition by NA inhibitor BCX-2798 suggest that all hPIVs bind to the receptor only through the NA catalytic site, while SeV HN has an additional receptor binding site. Comparison of SeV and hPIV1 HN sequences revealed two amino acid differences at residues 521 and 523 in the region close to the second binding site identified in Newcastle disease virus HN. We mutated hPIV1 HN at position 523 from Asn to the residue of SeV HN, Asp, and rescued a recombinant SeV that carries the mutated hPIV1 HN by a reverse genetics system. The hPIV1 HN with Asp at position 523 hemagglutinated in the presence of BCX-2798, suggesting that the amino acid difference at position 523 is critical for the formation of a second binding site. Creation of the second binding site on hPIV1 HN, however, did not significantly affect the growth or fusion activity of the recombinant virus. Our study indicates that the presence and requirement of a second binding site vary among paramyxoviruses.
Collapse
Affiliation(s)
- Tatiana Bousse
- Department of Microbiology and Immunology, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | | |
Collapse
|
35
|
Schowalter RM, Smith SE, Dutch RE. Characterization of human metapneumovirus F protein-promoted membrane fusion: critical roles for proteolytic processing and low pH. J Virol 2006; 80:10931-41. [PMID: 16971452 PMCID: PMC1642150 DOI: 10.1128/jvi.01287-06] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human metapneumovirus (HMPV) is a recently described human pathogen of the pneumovirus subfamily within the paramyxovirus family. HMPV infection is prevalent worldwide and is associated with severe respiratory disease, particularly in infants. The HMPV fusion protein (F) amino acid sequence contains features characteristic of other paramyxovirus F proteins, including a putative cleavage site and potential N-linked glycosylation sites. Propagation of HMPV in cell culture requires exogenous trypsin, which cleaves the F protein, and HMPV, like several other pneumoviruses, is infectious in the absence of its attachment protein (G). However, little is known about HMPV F-promoted fusion, since the HMPV glycoproteins have yet to be analyzed separately from the virus. Using syncytium and luciferase reporter gene fusion assays, we determined the basic requirements for HMPV F protein-promoted fusion in transiently transfected cells. Our data indicate that proteolytic cleavage of the F protein is a stringent requirement for fusion and that the HMPV G protein does not significantly enhance fusion. Unexpectedly, we also found that fusion can be detected only when transfected cells are treated with trypsin and exposed to low pH, indicating that this viral fusion protein may function in a manner unique among the paramyxoviruses. We also analyzed the F protein cleavage site and three potential N-linked glycosylation sites by mutagenesis. Mutations in the cleavage site designed to facilitate endogenous cleavage did so with low efficiency, and our data suggest that all three N-glycosylation sites are utilized and that each affects cleavage and fusion to various degrees.
Collapse
Affiliation(s)
- Rachel M Schowalter
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Biomedical Biological Sciences Research Building, 741 South Limestone, Lexington, KY 40536-0509, USA
| | | | | |
Collapse
|
36
|
Senkevich TG, Ojeda S, Townsley A, Nelson GE, Moss B. Poxvirus multiprotein entry-fusion complex. Proc Natl Acad Sci U S A 2005; 102:18572-7. [PMID: 16339313 PMCID: PMC1309049 DOI: 10.1073/pnas.0509239102] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Poxviruses have evolved elaborate mechanisms for cell entry, assembly, and exocytosis. Recently, four vaccinia virus membrane proteins, namely A21, A28, H2 and L5, were reported to be necessary for cell entry and virus-induced cell-cell fusion but not for virion morphogenesis or attachment of virus particles to cells. Using immunoaffinity purification followed by mass spectrometry, we now show that these four proteins as well as four additional previously uncharacterized putative membrane proteins (A16, G3, G9, and J5) form a stable complex. These proteins fall into two groups: A21, A28, G3, H2, and L5 have an N-terminal transmembrane domain, 0-2 intramolecular disulfide bonds, and no sequence similarity, whereas A16, G9, and J5 have a C-terminal transmembrane domain and 4-10 predicted disulfide bonds and are homologous. Studies with conditional-lethal null mutants indicated that the viral membrane was crucial for assembly of the complex and that the absence of individual polypeptide components profoundly decreased complex formation or stability, suggesting a complicated interaction network. Analysis of purified virions, however, demonstrated that the polypeptides of the complex trafficked independently to the viral membrane even under conditions in which the complex itself could not be isolated. All eight proteins comprising the entry-fusion complex are conserved in all poxviruses, suggesting that they have nonredundant functions and that the basic entry mechanism evolved before the division between vertebrate and invertebrate poxvirus species.
Collapse
Affiliation(s)
- Tatiana G Senkevich
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-0445, USA
| | | | | | | | | |
Collapse
|
37
|
Aspehaug V, Mikalsen AB, Snow M, Biering E, Villoing S. Characterization of the infectious salmon anemia virus fusion protein. J Virol 2005; 79:12544-53. [PMID: 16160182 PMCID: PMC1211514 DOI: 10.1128/jvi.79.19.12544-12553.2005] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Infectious salmon anemia virus (ISAV) is an orthomyxovirus causing serious disease in Atlantic salmon (Salmo salar L.). This study presents the characterization of the ISAV 50-kDa glycoprotein encoded by segment 5, here termed the viral membrane fusion protein (F). This is the first description of a separate orthomyxovirus F protein, and to our knowledge, the first pH-dependent separate viral F protein described. The ISAV F protein is synthesized as a precursor protein, F0, that is proteolytically cleaved to F1 and F2, which are held together by disulfide bridges. The cleaved protein is in a metastable, fusion-activated state that can be triggered by low pH, high temperature, or a high concentration of urea. Cell-cell fusion can be initiated by treatment with trypsin and low pH of ISAV-infected cells and of transfected cells expressing F, although the coexpression of ISAV HE significantly improves fusion. Fusion is initiated at pH 5.4 to 5.6, and the fusion process is coincident with the trimerization of the F protein, or most likely a stabilization of the trimer, suggesting that it represents the formation of the fusogenic structure. Exposure to trypsin and a low pH prior to infection inactivated the virus, demonstrating the nonreversibility of this conformational change. Sequence analyses identified a potential coiled coil and a fusion peptide. Size estimates of F1 and F2 and the localization of the putative fusion peptide and theoretical trypsin cleavage sites suggest that the proteolytic cleavage site is after residue K276 in the protein sequence.
Collapse
Affiliation(s)
- Vidar Aspehaug
- Department of Biology, University of Bergen, Thormøhlensgate 55, 5020 Bergen, Norway.
| | | | | | | | | |
Collapse
|
38
|
Zimmer G, Bossow S, Kolesnikova L, Hinz M, Neubert WJ, Herrler G. A chimeric respiratory syncytial virus fusion protein functionally replaces the F and HN glycoproteins in recombinant Sendai virus. J Virol 2005; 79:10467-77. [PMID: 16051839 PMCID: PMC1182616 DOI: 10.1128/jvi.79.16.10467-10477.2005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Entry of most paramyxoviruses is accomplished by separate attachment and fusion proteins that function in a cooperative manner. Because of this close interdependence, it was not possible with most paramyxoviruses to replace either of the two protagonists by envelope glycoproteins from related paramyxoviruses. By using reverse genetics of Sendai virus (SeV), we demonstrate that chimeric respiratory syncytial virus (RSV) fusion proteins containing either the cytoplasmic domain of the SeV fusion protein or in addition the transmembrane domain were efficiently incorporated into SeV particles provided the homotypic SeV-F was deleted. In the presence of SeV-F, the chimeric glycoproteins were incorporated with significantly lower efficiency, indicating that determinants in the SeV-F ectodomain exist that contribute to glycoprotein uptake. Recombinant SeV in which the homotypic fusion protein was replaced with chimeric RSV fusion protein replicated in a trypsin-independent manner and was neutralized by antibodies directed to RSV-F. However, replication of this virus also relied on the hemagglutinin-neuraminidase (HN) as pretreatment of cells with neuraminidase significantly reduced the infection rate. Finally, recombinant SeV was generated with chimeric RSV-F as the only envelope glycoprotein. This virus was not neutralized by antibodies to SeV and did not use sialic acids for attachment. It replicated more slowly than hybrid virus containing HN and produced lower virus titers. Thus, on the one hand RSV-F can mediate infection in an autonomous way while on the other hand it accepts support by a heterologous attachment protein.
Collapse
Affiliation(s)
- Gert Zimmer
- Institut für Virologie, Tierärztliche Hochschule Hannover, Bünteweg 17, D-30559 Hannover, Germany.
| | | | | | | | | | | |
Collapse
|
39
|
Moscona A. Entry of parainfluenza virus into cells as a target for interrupting childhood respiratory disease. J Clin Invest 2005; 115:1688-98. [PMID: 16007245 PMCID: PMC1159152 DOI: 10.1172/jci25669] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Human parainfluenza viruses cause several serious respiratory diseases in children for which there is no effective prevention or therapy. Parainfluenza viruses initiate infection by binding to cell surface receptors and then, via coordinated action of the 2 viral surface glycoproteins, fuse directly with the cell membrane to release the viral replication machinery into the host cell's cytoplasm. During this process, the receptor-binding molecule must trigger the viral fusion protein to mediate fusion and entry of the virus into a cell. This review explores the binding and entry into cells of parainfluenza virus type 3, focusing on how the receptor-binding molecule triggers the fusion process. There are several steps during the process of binding, triggering, and fusion that are now understood at the molecular level, and each of these steps represents potential targets for interrupting infection.
Collapse
Affiliation(s)
- Anne Moscona
- Department of Pediatrics, Weill Medical College of Cornell University, New York, NY 10021, USA.
| |
Collapse
|
40
|
Porotto M, Murrell M, Greengard O, Doctor L, Moscona A. Influence of the human parainfluenza virus 3 attachment protein's neuraminidase activity on its capacity to activate the fusion protein. J Virol 2005; 79:2383-92. [PMID: 15681439 PMCID: PMC546598 DOI: 10.1128/jvi.79.4.2383-2392.2005] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In order to examine functions of the hemagglutinin-neuraminidase (HN) protein that quantitatively influence fusion promotion, human parainfluenza virus 3 (HPIV3) variants with alterations in HN were studied. The variant HNs have mutations that affect either receptor binding avidity, neuraminidase activity, or fusion protein (F) activation. Neuraminidase activity was regulated by manipulation of temperature and pH. F activation was assessed by quantitating the irreversible binding of target erythrocytes (RBC) to HN/F-coexpressing cells in the presence of 4-GU-DANA (zanamivir) to release target cells bound only by HN-receptor interactions; the remaining, irreversibly bound target cells are retained via the fusion protein. In cells coexpressing wild-type (wt) or variant HNs with wt F, the fusion promotion capacity of HN was distinguished from target cell binding by measuring changes with time in the amounts of target RBC that were (i) reversibly bound by HN-receptor interaction (released only upon the addition of 4-GU-DANA), (ii) released by HN's neuraminidase, and (iii) irreversibly bound by F-insertion or fusion (F triggered). For wt HN, lowering the pH (to approach the optimum for HPIV3 neuraminidase) decreased F triggering via release of HN from its receptor. An HN variant with increased receptor binding avidity had F-triggering efficiency like that of wt HN at pH 8.0, but this efficiency was not decreased by lowering the pH to 5.7, which suggested that the variant HN's higher receptor binding activity counterbalanced the receptor dissociation promoted by increased neuraminidase activity. To dissect the specific contribution of neuraminidase to triggering, two variant HNs that are triggering-defective due to a mutation in the HN stalk were evaluated. One of these variants has, in addition, a mutation in the globular head that renders it neuraminidase dead, while the HN with the stalk mutation alone has 30% of wt neuraminidase. While the variant without neuraminidase activity triggered F effectively at 37 degrees C irrespective of pH, the variant possessing effective neuraminidase activity completely failed to activate F at pH 5.7 and was capable of only minimal triggering activity even at pH 8.0. These results demonstrate that neuraminidase activity impacts the extent of HPIV3-mediated fusion by releasing HN from contact with receptor. Any particular HN's competence to promote F-mediated fusion depends on the balance between its inherent F-triggering efficacy and its receptor-attachment regulatory functions (binding and receptor cleavage).
Collapse
Affiliation(s)
- Matteo Porotto
- Department of Pediatrics, Mount Sinai School of Medicine, 1 Gustave L. Levy Pl., New York, NY 10029, USA
| | | | | | | | | |
Collapse
|
41
|
West DS, Sheehan MS, Segeleon PK, Dutch RE. Role of the simian virus 5 fusion protein N-terminal coiled-coil domain in folding and promotion of membrane fusion. J Virol 2005; 79:1543-51. [PMID: 15650180 PMCID: PMC544100 DOI: 10.1128/jvi.79.3.1543-1551.2005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Formation of a six-helix bundle comprised of three C-terminal heptad repeat regions in antiparallel orientation in the grooves of an N-terminal coiled-coil is critical for promotion of membrane fusion by paramyxovirus fusion (F) proteins. We have examined the effect of mutations in four residues of the N-terminal heptad repeat in the simian virus 5 (SV5) F protein on protein folding, transport, and fusogenic activity. The residues chosen have previously been shown from study of isolated peptides to have differing effects on stability of the N-terminal coiled-coil and six-helix bundle (R. E. Dutch, G. P. Leser, and R. A. Lamb, Virology 254:147-159, 1999). The mutant V154M showed reduced proteolytic cleavage and surface expression, indicating a defect in intracellular transport, though this mutation had no effect when studied in isolated peptides. The mutation I137M, previously shown to lower thermostability of the six-helix bundle, resulted in an F protein which was properly processed and transported to the cell surface but which had reduced fusogenic activity. Finally, mutations at L140M and L161M, previously shown to disrupt alpha-helix formation of isolated N-1 peptides but not to affect six-helix bundle formation, resulted in F proteins that were properly processed. Interestingly, the L161M mutant showed increased syncytium formation and promoted fusion at lower temperatures than the wild-type F protein. These results indicate that interactions separate from formation of an N-terminal coiled-coil or six-helix bundle are important in the initial folding and transport of the SV5 F protein and that mutations that destabilize the N-terminal coiled-coil can result in stimulation of membrane fusion.
Collapse
Affiliation(s)
- Dava S West
- Department of Molecular and Cellular Biochemistry, University of Kentucky, 800 Rose St., UKMC MN606, Lexington, KY 40536-0298, USA
| | | | | | | |
Collapse
|
42
|
Cheng LT, Plemper RK, Compans RW. Atypical fusion peptide of Nelson Bay virus fusion-associated small transmembrane protein. J Virol 2005; 79:1853-60. [PMID: 15650209 PMCID: PMC544091 DOI: 10.1128/jvi.79.3.1853-1860.2005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A 10-kDa nonstructural transmembrane protein (p10) encoded by a reovirus, Nelson Bay virus, has been shown to induce syncytium formation (34). Sequence analysis and structural studies identified p10 as a type I membrane protein with a central transmembrane domain, a cytoplasmic basic region, and an N-terminal hydrophobic domain (HD) that was hypothesized to function as a fusion peptide. We performed mutational analysis on this slightly hydrophobic motif to identify possible structural requirements for fusion activity. Bulky aliphatic residues were found to be essential for optimal fusion, and an aromatic or highly hydrophobic side chain was found to be required at position 12. The requirement for hydrophilic residues within the HD was also examined: substitution of 10-Ser or 14-Ser with hydrophobic residues was found to reduce cell surface expression of p10 and delayed the onset of syncytium formation. Nonconservative substitutions of charged residues in the HD did not have an effect on fusion activity. Taken together, our results suggest that the HD is involved in both syncytium formation and in determining p10 transport and surface expression.
Collapse
Affiliation(s)
- LiTing T Cheng
- Department of Microbiology and Immunology, Emory University School of Medicine, 1510 Clifton Rd., Rm. 3001, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
43
|
Abstract
Every enveloped virus fuses its membrane with a host cell membrane, thereby releasing its genome into the cytoplasm and initiating the viral replication cycle. In each case, one or a small set of viral surface transmembrane glycoproteins mediates fusion. Viral fusion proteins vary in their mode of activation and in structural class. These features combine to yield many different fusion mechanisms. Despite their differences, common principles for how fusion proteins function are emerging: In response to an activating trigger, the metastable fusion protein converts to an extended, in some cases rodlike structure, which inserts into the target membrane via its fusion peptide. A subsequent conformational change causes the fusion protein to fold back upon itself, thereby bringing its fusion peptide and its transmembrane domain-and their attached target and viral membranes-into intimate contact. Fusion ensues as the initial lipid stalk progresses through local hemifusion, and then opening and enlargement of a fusion pore. Here we review recent advances in our understanding of how fusion proteins are activated, how fusion proteins change conformation during fusion, and what is happening to the lipids during fusion. We also briefly discuss the therapeutic potential of fusion inhibitors in treating viral infections.
Collapse
Affiliation(s)
- Mark Marsh
- Cell Biology Unit, MRC-LMCB, University College London, Gower Street, London, WC1E 6BT UK
| |
Collapse
|
44
|
Seth S, Goodman AL, Compans RW. Mutations in multiple domains activate paramyxovirus F protein-induced fusion. J Virol 2004; 78:8513-23. [PMID: 15280460 PMCID: PMC479096 DOI: 10.1128/jvi.78.16.8513-8523.2004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
SER virus, a paramyxovirus that is closely related to simian virus 5 (SV5), is unusual in that it fails to induce syncytium formation. The SER virus F protein has an unusually long cytoplasmic tail (CT), and it was previously observed that truncations or specific mutations of this domain result in enhanced syncytium formation. In addition to the long CT, the SER F protein has nine amino acid differences from the F protein of SV5. We previously observed only a partial suppression of fusion in a chimeric SV5 F protein with a CT derived from SER virus, indicating that these other amino acid differences between the SER and SV5 F proteins also play a role in regulating the fusion phenotype. To examine the effects of individual amino acid differences, we mutated the nine SER residues individually to the respective residues of the SV5 F protein. We found that most of the mutants were expressed well and were transported to the cell surface at levels comparable to that of the wild-type SER F protein. Many of the mutants showed enhanced lipid mixing, calcein transfer, and syncytium formation even in the presence of the long SER F protein CT. Some mutants, such as the I310 M, T438S, M489I, T516V, and N529K mutants, also showed fusion at lower temperatures of 32, 25, and 18 degrees C. The residue Asn529 plays a critical role in the suppression of fusion activity, as the mutation of this residue to lysine caused a marked enhancement of fusion. The effect of the N529K mutation on the enhancement of fusion by a previously described mutant, L539,548A, as well as by chimeric SV5/SER F proteins was also dramatic. These results indicate that activation to a fusogenic conformation is dependent on the interplay of residues in the ectodomain, the transmembrane domain, and the CT domain of paramyxovirus F proteins.
Collapse
Affiliation(s)
- Shaguna Seth
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
45
|
Morrison TG. Structure and function of a paramyxovirus fusion protein. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1614:73-84. [PMID: 12873767 DOI: 10.1016/s0005-2736(03)00164-0] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Paramyxoviruses initiate infection by attaching to cell surface receptors and fusing viral and cell membranes. Viral attachment proteins, hemagglutinin-neuraminidase (HN), hemagglutinin (HA), or glycoprotein (G), bind receptors while fusion (F) proteins direct membrane fusion. Because paramyxovirus fusion is pH independent, virus entry occurs at host cell plasma membranes. Paramyxovirus fusion also usually requires co-expression of both the attachment protein and the fusion (F) protein. Newcastle disease virus (NDV) has assumed increased importance as a prototype paramyxovirus because crystal structures of both the NDV F protein and the attachment protein (HN) have been determined. Furthermore, analysis of structure and function of both viral glycoproteins by mutation, reactivity of antibody, and peptides have defined domains of the NDV F protein important for virus fusion. These domains include the fusion peptide, the cytoplasmic domain, as well as heptad repeat (HR) domains. Peptides with sequences from HR domains inhibit fusion, and characterization of the mechanism of this inhibition provides evidence for conformational changes in the F protein upon activation of fusion. Both proteolytic cleavage of the F protein and interactions with the attachment protein are required for fusion activation in most systems. Subsequent steps in membrane merger directed by F protein are poorly understood.
Collapse
Affiliation(s)
- Trudy G Morrison
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA
| |
Collapse
|
46
|
Vaughn CP, Elenitoba-Johnson KSJ. Hybridization-induced dequenching of fluorescein-labeled oligonucleotides: a novel strategy for PCR detection and genotyping. THE AMERICAN JOURNAL OF PATHOLOGY 2003; 163:29-35. [PMID: 12819008 PMCID: PMC1868185 DOI: 10.1016/s0002-9440(10)63627-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Fluorescence-based detection methods are being increasingly utilized in molecular analyses. Sequence-specific fluorescently-labeled probes are favored because they provide specific product identification. The most established fluorescence-based detection systems employ a resonance energy transfer mechanism effected through the interaction of two or more fluorophores or functional groups conjugated to oligonucleotide probes. The design, synthesis and purification of such multiple fluorophore-labeled probes can be technically challenging and expensive. By comparison, single fluorophore-labeled probes are easier to design and synthesize, and are straightforward to implement in molecular assays. We describe herein a novel fluorescent strategy for specific nucleic acid detection and genotyping. The format utilizes an internally quenched fluorescein-oligonucleotide conjugate that is subsequently dequenched following hybridization to the target with an attendant increase in fluorescence. Reversibility of the process with strand dissociation permits Tm-based assessment of bp complementarity and mismatches. Using this approach, we demonstrated specific detection, and discrimination of base substitutions of a variety of synthetic nucleic acid targets including Factor V Leiden and methylenetetrahydrofolate reductase. We further demonstrated compatibility of the novel chemistry with polymerase chain reaction by amplification and genotyping of the above listed loci and the human hemoglobin beta chain locus. In total, we analyzed 172 clinical samples, comprising wild-type, heterozygous and homozygous mutants of all three loci, with 100% accuracy as confirmed by DNA sequencing, established dual hybridization probe or high performance liquid chromatography-based methods. Our results indicate that the dequenching-based single fluorophore format is a feasible strategy for the specific detection of nucleic acids in solution, and that assays using this strategy can provide accurate genotyping results.
Collapse
Affiliation(s)
- Cecily P Vaughn
- ARUP Institute for Clinical and Experimental Pathology, Salt Lake City, Utah, USA
| | | |
Collapse
|
47
|
Seth S, Vincent A, Compans RW. Activation of fusion by the SER virus F protein: a low-pH-dependent paramyxovirus entry process. J Virol 2003; 77:6520-7. [PMID: 12743308 PMCID: PMC155032 DOI: 10.1128/jvi.77.11.6520-6527.2003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
SER virus, a paramyxovirus closely related to simian virus 5, induces no syncytium formation. The SER virus F protein has a long cytoplasmic tail (CT), and truncation or mutations of the CT result in enhanced syncytium formation (S. Seth, A. Vincent, and R. W. Compans, J. Virol. 77:167-178, 2003; S. Tong, M. Li, A. Vincent, R. W. Compans, E. Fritsch, R. Beier, C. Klenk, M. Ohuchi, and H.-D. Klenk, Virology 301:322-333, 2002). We hypothesized that the presence of the long CT serves to stabilize the metastable conformation of the F protein. We observed that the hemifusion, cytoplasmic content mixing, and syncytium formation ability of the wild-type SER virus F coexpressed with the SER virus hemagglutinin-neuraminidase (HN) protein was enhanced, both qualitatively and quantitatively, at elevated temperatures. We also observed enhanced hemifusion, content mixing, and syncytium formation in SER virus F- and HN-expressing cells at reduced pH conditions ranging between 4.8 and 6.2. We have obtained evidence that in contrast to other paramyxoviruses, entry of SER virus into cells occurs by a low-pH-dependent process, indicating that the conversion to the fusion-active state for SER virus F is triggered by exposure to reduced pH.
Collapse
Affiliation(s)
- Shaguna Seth
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | |
Collapse
|
48
|
Abstract
The fusion of viral membranes with target-cell membranes is an essential step in the entry of enveloped viruses into cells, and recent X-ray structures of paramyxoviral envelope proteins have provided new insights into protein-mediated plasma-membrane fusion. Here, we review our understanding of the structural transitions that are involved in this fusion pathway, compare it to our understanding of influenza virus membrane fusion, and discuss the implications for retroviral membrane fusion.
Collapse
Affiliation(s)
- Peter M Colman
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3050, Australia.
| | | |
Collapse
|
49
|
Porotto M, Murrell M, Greengard O, Moscona A. Triggering of human parainfluenza virus 3 fusion protein (F) by the hemagglutinin-neuraminidase (HN) protein: an HN mutation diminishes the rate of F activation and fusion. J Virol 2003; 77:3647-54. [PMID: 12610140 PMCID: PMC149538 DOI: 10.1128/jvi.77.6.3647-3654.2003] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
For human parainfluenza virus type 3 and many other paramyxoviruses, membrane fusion mediated by the fusion protein (F) has a stringent requirement for the presence of the homotypic hemagglutinin-neuraminidase protein (HN). With the goal of gaining further insight into the role of HN in the fusion process, we developed a simple method for quantitative comparison of the ability of wild-type and variant HNs to activate F. In this method, HN/F-coexpressing cells with red blood cells (RBC) bound to them at 4 degrees C are transferred to 22 degrees C, and at different times after transfer 4-guanidino-neu5Ac2en (4-GU-DANA) is added; this inhibitor of the HN-receptor interaction then releases all reversibly bound RBC but not those in which F insertion in the target membrane or fusion has occurred. Thus, the amount of irreversibly bound (nonreleased) RBC provides a measure of F activation, and the use of fluorescently labeled RBC permits microscopic assessment of the extent to which F insertion has progressed to fusion. We studied two neuraminidase-deficient HN variants, C28a, which has two mutations, P111S and D216N, and C28, which possesses the D216N mutation only. C28a but not C28 exhibits a slow fusion phenotype, although determination of the HNs' receptor-binding avidity (with our sensitive method, employing RBC with different degrees of receptor depletion) showed that the receptor-binding avidity of C28a or C28 HN was not lower than that of the wild type. The F activation assay, however, revealed fusion-triggering defects in C28a HN. After 10 and also 20 min at 22 degrees C, irreversible RBC binding was significantly less for cells coexpressing wild-type F with C28a HN than for cells coexpressing wild-type F with wild-type HN. In addition, F insertion progressed to fusion more slowly in the case of C28a HN-expressing cells than of wild-type HN-expressing cells. Identical defects were found for P111S HN, whereas for C28 HN, representing the 216 mutation of C28a, F activation and fusion were as rapid as for wild-type HN. The diminished fusion promotion capacity of C28a HN is therefore attributable to P111S, a mutation in the stalk region of the molecule that causes no decrease in receptor-binding avidity. C28a HN is the first parainfluenza virus variant found so far to be specifically defective in HN's F-triggering and fusion promotion functions and may contribute to our understanding of transmission of the activating signal from HN to F.
Collapse
Affiliation(s)
- Matteo Porotto
- Department of Pediatrics, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | |
Collapse
|
50
|
Seth S, Vincent A, Compans RW. Mutations in the cytoplasmic domain of a paramyxovirus fusion glycoprotein rescue syncytium formation and eliminate the hemagglutinin-neuraminidase protein requirement for membrane fusion. J Virol 2003; 77:167-78. [PMID: 12477822 PMCID: PMC140627 DOI: 10.1128/jvi.77.1.167-178.2003] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
SER virus is closely related to the paramyxovirus simian virus 5 (SV5) but is defective in syncytium formation. The SER virus F protein has a long cytoplasmic tail (CT) domain that has been shown to inhibit membrane fusion, and this inhibitory effect could be eliminated by truncation of the C-terminal sequence (S. Tong, M. Li, A. Vincent, R. W. Compans, E. Fritsch, R. Beier, C. Klenk, M. Ohuchi, and H.-D. Klenk, Virology 301:322-333, 2002). To study the sequence requirements for regulation of fusion, codons for SER virus F protein residues spanning amino acids 535 to 542 and 548 were mutated singly to alanines, and the two leucine residues at positions 539 and 548 were mutated doubly to alanines. We found that leu-539 and leu-548 in the CT domain played a critical role in the inhibition of fusion, as mutation of the two leucines singly to alanines partially rescued fusion, and the double mutation L539, 548A completely rescued syncytium formation. Mutation of charged residues to alanines had little effect on the suppression of fusion activity, whereas the mutation of serine residues to alanines enhanced fusion activity significantly. The L539, 548A mutant also showed extensive syncytium formation when expressed without the SER virus HN protein. By constructing a chimeric SV5-SER virus F CT protein, we also found that the inhibitory effect of the long CT of the SER virus F protein could be partially transferred to the SV5 F protein. These results demonstrate that an elongated CT of a paramyxovirus F protein interferes with membrane fusion in a sequence-dependent manner.
Collapse
Affiliation(s)
- Shaguna Seth
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | |
Collapse
|