1
|
Broad-Based Influenza-Specific CD8 + T Cell Response without the Typical Immunodominance Hierarchy and Its Potential Implication. Viruses 2021; 13:v13061080. [PMID: 34198851 PMCID: PMC8229067 DOI: 10.3390/v13061080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/27/2021] [Accepted: 06/02/2021] [Indexed: 11/25/2022] Open
Abstract
Syngeneic murine systems have pre-fixed MHC, making them an imperfect model for investigating the impact of MHC polymorphism on immunodominance in influenza A virus (IAV) infections. To date, there are few studies focusing on MHC allelic differences and its impact on immunodominance even though it is well documented that an individual’s HLA plays a significant role in determining immunodominance hierarchy. Here, we describe a broad-based CD8+ T cell response in a healthy individual to IAV infection rather than a typical immunodominance hierarchy. We used a systematic antigen screen approach combined with epitope prediction to study such a broad CD8+ T cell response to IAV infection. We show CD8+ T cell responses to nine IAV proteins and identify their minimal epitope sequences. These epitopes are restricted to HLA-B*44:03, HLA-A*24:02 and HLA-A*33:03 and seven out of the nine epitopes are novel (NP319–330# (known and demonstrated minimal epitope positions are subscripted; otherwise, amino acid positions are shown as normal text (for example NP 319–330 or NP 313–330)), M1124–134, M27–15, NA337–346, PB239–49, HA445–453 and NS1195–203). Additionally, most of these novel epitopes are highly conserved among H1N1 and H3N2 strains that circulated in Australia and other parts of the world.
Collapse
|
2
|
Kolawole EM, Andargachew R, Liu B, Jacobs JR, Evavold BD. 2D Kinetic Analysis of TCR and CD8 Coreceptor for LCMV GP33 Epitopes. Front Immunol 2018; 9:2348. [PMID: 30374353 PMCID: PMC6197077 DOI: 10.3389/fimmu.2018.02348] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 09/21/2018] [Indexed: 11/13/2022] Open
Abstract
The LCMV GP33 CD8 epitope has long been one of the most widely used antigens in viral immunology. Of note, almost all of the in vitro analyses of CD8 T cell responses to this epitope make use of an altered peptide ligand (APL) in which the cysteine from the original 9-mer peptide (KAVYNFATC) is substituted by a methionine at position 41 (KAVYNFATM). In addition, it is possible that the antigen processed during natural LCMV infection is an 11-mer peptide (KAVYNFATCGI) rather than the widely used 9-mer. Although previous affinity measurements using purified proteins for these antigen variants revealed minimal differences, we applied highly sensitive two dimensional (2D) biophysical based techniques to further dissect TCR interaction with these closely related GP33 variants. The kinetic analyses of affinity provided by the 2D micropipette adhesion frequency assay (2D-MP) and bond lifetime under force analyzed using a biomembrane force probe (BFP) revealed significant differences between 41M, 41C and the 11-mer 41CGI antigen. We found a hierarchy in 2D affinity as 41M peptide displayed augmented TCR 2D affinity compared to 41C and 41CGI. These differences were also maintained in the presence of CD8 coreceptor and when analysis of total TCR:pMHC and CD8:pMHC bonds were considered. Moreover, the three ligands displayed dramatic differences in the bond lifetimes generated under force, in particular the 41CGI variant with the lowest 2D affinity demonstrated a 15-fold synergistic contribution of the CD8 coreceptor to overall bond lifetime. Our analyses emphasize the sensitivity of single cell and single bond 2D kinetic measurements in distinguishing between related agonist peptides.
Collapse
Affiliation(s)
- Elizabeth M Kolawole
- Department of Pathology, Microbiology and Immunology, University of Utah, Salt Lake City, UT, United States
| | - Rakieb Andargachew
- Department of Microbiology and Immunology, Emory University, Atlanta, GA, United States
| | - Baoyu Liu
- Department of Pathology, Microbiology and Immunology, University of Utah, Salt Lake City, UT, United States
| | - Jesica R Jacobs
- Department of Pathology, Microbiology and Immunology, University of Utah, Salt Lake City, UT, United States
| | - Brian D Evavold
- Department of Pathology, Microbiology and Immunology, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
3
|
Zhang Z, Pan L, Ding Y, Zhou P, Lv J, Chen H, Fang Y, Liu X, Chang H, Zhang J, Shao J, Lin T, Zhao F, Zhang Y, Wang Y. Efficacy of synthetic peptide candidate vaccines against serotype-A foot-and-mouth disease virus in cattle. Appl Microbiol Biotechnol 2014; 99:1389-98. [DOI: 10.1007/s00253-014-6129-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 10/01/2014] [Accepted: 10/08/2014] [Indexed: 11/28/2022]
|
4
|
Wlodarczyk MF, Kraft AR, Chen HD, Kenney LL, Selin LK. Anti-IFN-γ and peptide-tolerization therapies inhibit acute lung injury induced by cross-reactive influenza A-specific memory T cells. THE JOURNAL OF IMMUNOLOGY 2013; 190:2736-46. [PMID: 23408839 DOI: 10.4049/jimmunol.1201936] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Viral infections have variable outcomes, with severe disease occurring in only few individuals. We hypothesized that this variable outcome could correlate with the nature of responses made to previous microbes. To test this, mice were infected initially with influenza A virus (IAV) and in memory phase challenged with lymphocytic choriomeningitis virus (LCMV), which we show in this study to have relatively minor cross-reactivity with IAV. The outcome in genetically identical mice varied from mild pneumonitis to severe acute lung injury with extensive pneumonia and bronchiolization, similar to that observed in patients who died of the 1918 H1N1 pandemic. Lesion expression did not correlate with virus titers. Instead, disease severity directly correlated with and was predicted by the frequency of IAV-PB1703- and IAV-PA224-specific responses, which cross-reacted with LCMV-GP34 and LCMV-GP276, respectively. Eradication or functional ablation of these pathogenic memory T cell populations, using mutant-viral strains, peptide-based tolerization strategies, or short-term anti-IFN-γ treatment, inhibited severe lesions such as bronchiolization from occurring. Heterologous immunity can shape outcome of infections and likely individual responses to vaccination, and can be manipulated to treat or prevent severe pathology.
Collapse
Affiliation(s)
- Myriam F Wlodarczyk
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | | | | | | | | |
Collapse
|
5
|
Memory CD8+ T cells specific for a single immunodominant or subdominant determinant induced by peptide-dendritic cell immunization protect from an acute lethal viral disease. J Virol 2012; 86:9748-59. [PMID: 22740418 DOI: 10.1128/jvi.00981-12] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The antigens recognized by individual CD8(+) T cells are small peptides bound to major histocompatibility complex (MHC) class I molecules. The CD8(+) T cell response to a virus is restricted to several peptides, and the magnitudes of the effector as well as memory phases of the response to the individual peptides are generally hierarchical. The peptide eliciting a stronger response is called immunodominant (ID), and those with smaller-magnitude responses are termed subdominant (SD). The relative importance of ID and SD determinants in protective immunity remains to be fully elucidated. We previously showed that multispecific memory CD8(+) T cells can protect susceptible mice from mousepox, an acute lethal viral disease. It remained unknown, however, whether CD8(+) T cells specific for single ID or SD peptides could be protective. Here, we demonstrate that immunization with dendritic cells pulsed with ID and some but not all SD peptides induces memory CD8(+) T cells that are fully capable of protecting susceptible mice from mousepox. Additionally, while natural killer (NK) cells are essential for the natural resistance of nonimmune C57BL/6 (B6) to mousepox, we show that memory CD8(+) T cells of single specificity also protect B6 mice depleted of NK cells. This suggests it is feasible to produce effective antiviral CD8(+) T cell vaccines using single CD8(+) T cell determinants and that NK cells are no longer essential when memory CD8(+) T cells are present.
Collapse
|
6
|
Bijker MS, Melief CJM, Offringa R, van der Burg SH. Design and development of synthetic peptide vaccines: past, present and future. Expert Rev Vaccines 2007; 6:591-603. [PMID: 17669012 DOI: 10.1586/14760584.6.4.591] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Synthetic peptide vaccines aiming at the induction of a protective CD8(+) T-cell response against infectious or malignant diseases are widely used in the clinic but, despite their success in animal models, they do not yet live up to their promise in humans. This review assesses the development of synthetic peptide vaccines, weighs it against the immunological concepts that have emerged, and identifies the key issues that play a role in the failure or success of a synthetic peptide vaccine. The current state-of-the-art peptide vaccine is a complete synthetic inflammatory product that is ingested by professional antigen-presenting cells and stimulates both CD4(+) and CD8(+) T cells.
Collapse
Affiliation(s)
- Martijn S Bijker
- Leiden University Medical Center, Department of Immunohematology, Leiden, The Netherlands.
| | | | | | | |
Collapse
|
7
|
Burlet-Schiltz O, Claverol S, Gairin JE, Monsarrat B. The Use of Mass Spectrometry to Identify Antigens from Proteasome Processing. Methods Enzymol 2005; 405:264-300. [PMID: 16413318 DOI: 10.1016/s0076-6879(05)05011-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Mass spectrometry (MS) is a powerful tool for the characterization of antigenic peptides that play a major role in the immune system. Most of the major histocompatibility complex (MHC) class I peptides are generated during the degradation of intracellular proteins by the proteasome, a catalytic complex present in all eukaryotic cells. This chapter focuses on the contribution of MS to the understanding of the mechanisms of antigen processing by the proteasome. This knowledge may be valuable for the design of specific inhibitors of proteasome, which has recently been recognized as a therapeutic target in cancer therapies and for the development of efficient peptidic vaccines in immunotherapies. Examples from the literature have been chosen to illustrate how MS data can contribute first to the understanding of the mechanisms of proteasomal processing and, second, to the understanding of the crucial role of proteasome in cytotoxic T lymphocytes (CTL) activation. The general strategy based on MS analyses used in these studies is also described.
Collapse
|
8
|
van der Most RG, Murali-Krishna K, Lanier JG, Wherry EJ, Puglielli MT, Blattman JN, Sette A, Ahmed R. Changing immunodominance patterns in antiviral CD8 T-cell responses after loss of epitope presentation or chronic antigenic stimulation. Virology 2003; 315:93-102. [PMID: 14592762 DOI: 10.1016/j.virol.2003.07.001] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The H-2(b)-restricted CD8 T-cell response against lymphocytic choriomeningitis virus is directed against at least 10 dominant and subdominant epitopes, including two newly identified epitopes in the nucleoprotein. We have used this set of epitopes to characterize the plasticity of the hierarchy under different experimental circumstances, i.e., loss of MHC class I molecules, loss of specific epitopes (CTL escape), and prolonged antigenic stimulation (chronic infection). We found that loss of epitope-specific responses was almost inevitably associated with compensatory responses against other, subdominant, epitopes. Multiple epitope loss was required to change the hierarchy. Persistent viral infection was associated with a loss of not only the dominant response against the NP396 epitope, but also a loss of subdominant responses against nucleoprotein epitopes. In contrast, responses against glycoprotein epitopes, dominant and subdominant, survived under chronic infection conditions, and even dominated the response (GP118). Our results suggest that the fate of each specific T-cell response during chronic infection is in part determined by the origin of the cognate epitopes, i.e, the proteins from which they are processed, or, more specifically, nucleoprotein versus glycoprotein. A model in which recruitment time plays a role in the longevity of antiviral T-cell responses during persistent infection is discussed.
Collapse
Affiliation(s)
- Robbert G van der Most
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Kanduc D, Lucchese A, Mittelman A. Individuation of monoclonal anti-HPV16 E7 antibody linear peptide epitope by computational biology. Peptides 2001; 22:1981-5. [PMID: 11786180 DOI: 10.1016/s0196-9781(01)00539-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We applied computational biology to identify the linear amino acid sequence recognized by a mouse monoclonal antibody raised against the full length HPV16 E7 oncoprotein. Computer-assisted search for the epitopic peptide used two parameters: the capability of E7 peptides to bind to MHC class II molecules, and the similarity level of the oncoprotein sequence to the mouse proteome. We report that anti-E7 mAb recognized the peptide having both high binding potential to MHC II molecules and low level of molecular mimicry to mouse proteome. Peptide ability to bind to MHC II molecules appears a necessary but not sufficient condition to determine peptide immunodominance, by needing to be supported by a low degree of peptide similarity to the host's proteome.
Collapse
Affiliation(s)
- D Kanduc
- CARSO Cancer Research Center, University of Bari, Italy.
| | | | | |
Collapse
|
10
|
Hudrisier D, Riond J, Mazarguil H, Gairin JE. Pleiotropic effects of post-translational modifications on the fate of viral glycopeptides as cytotoxic T cell epitopes. J Biol Chem 2001; 276:38255-60. [PMID: 11479317 DOI: 10.1074/jbc.m105974200] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The fate of viral glycopeptides as cytotoxic T lymphocyte (CTL) epitopes is unclear. We have dissected the mechanisms of antigen presentation and CTL recognition of the peptide GP392-400 (WLVTNGSYL) from the lymphocytic choriomeningitis virus (LCMV) and compared them with those of the previously reported GP92-101 antigen (CSANNSHHYI). Both GP392-400 and GP92-101 bear a glycosylation motif, are naturally N-glycosylated in the mature viral glycoproteins, bind to major histocompatibility complex H-2D(b) molecules, and are immunogenic. However, post-translational modifications differentially affected GP92-101 and GP392-400. Upon N-glycosylation or de-N-glycosylation, a marked decrease in major histocompatibility complex binding was observed for GP392-400 but not for GP92-101. Further, under its N-glycosylated or de-N-glycosylated form, GP392-400 then lost its initial ability to generate a CTL response in mice, whereas GP92-101 was still immunogenic under the same conditions. The genetically encoded form of GP392-400, which on the basis of its immunogenicity could still be presented with H-2D(b) during the course of LCMV infection, does not in fact appear at the surface of LCMV-infected cells. Our results show that post-translational modifications of viral glycopeptides can have pleiotropic effects on their presentation to and recognition by CTL that contribute to either creation of neo-epitopes or destruction of potential epitopes.
Collapse
Affiliation(s)
- D Hudrisier
- Institut de Pharmacologie et de Biologie Structurale, UMR5089 CNRS/Université Paul Sabatier, 205 route de Narbonne, 31400 Toulouse, France
| | | | | | | |
Collapse
|
11
|
Hudrisier D, Riond J, Gairin JE. Molecular and functional dissection of the H-2Db-restricted subdominant cytotoxic T-cell response to lymphocytic choriomeningitis virus. J Virol 2001; 75:2468-71. [PMID: 11160751 PMCID: PMC114831 DOI: 10.1128/jvi.75.5.2468-2471.2001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Infection of H-2b mice with lymphocytic choriomeningitis virus (LCMV) generates an H-2Db-restricted cytotoxic T-lymphocyte (CTL) response whose subdominant component is directed against the GP92-101 (CSANNSHHYI) epitope. The aim of this study was to identify the functional parameters accounting for this subdominance. We found that the two naturally occurring (genetically encoded and posttranslationally modified) forms of LCMV GP92-101 were immunogenic, did not act as T-cell antagonists, and bound efficiently to but were unable to form stable complexes with H-2Db, a crucial factor for immunodominance. Thus, the H-2Db-restricted subdominant CTL response to LCMV resulted not from altered T-cell activation but from impaired major histocompatibility complex presentation properties.
Collapse
Affiliation(s)
- D Hudrisier
- Laboratoire d'ImmunoPharmacologie Structurale, Institut de Pharmacologie et de Biologie Structurale, CNRS, 31400 Toulouse, France
| | | | | |
Collapse
|
12
|
Abstract
CD8 T cells exist in a dynamic network whose repertoire remains static in the absence of infection but changes in the presence of foreign antigens. Individuals each have unique T-cell repertoires that continually evolve in the presence of antigen and of cross-reactive heterologous antigens, and homeostatic forces drive deletions in T-cell memory pools to accommodate the entry of new memory cells into a finite immune system.
Collapse
Affiliation(s)
- M Y Lin
- The Department of Pathology and Program in Immunology and Virology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | | | | |
Collapse
|
13
|
Hudrisier D, Riond J, Mazarguil H, Oldstone MB, Gairin JE. Genetically encoded and post-translationally modified forms of a major histocompatibility complex class I-restricted antigen bearing a glycosylation motif are independently processed and co-presented to cytotoxic T lymphocytes. J Biol Chem 1999; 274:36274-80. [PMID: 10593916 DOI: 10.1074/jbc.274.51.36274] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mechanisms by which antigenic peptides bearing a glycosylation site may be processed from viral glycoproteins, post-translationally modified, and presented by major histocompatibility complex class I molecules remain poorly understood. With the aim of exploring these processes, we have dissected the structural and functional properties of the MHC-restricted peptide GP92-101 (CSANNSHHYI) generated from the lymphocytic choriomeningitis virus (LCMV) GP1 glycoprotein. LCMV GP92-101 bears a glycosylation motif -NXS- that is naturally N-glycosylated in the mature viral glycoprotein, displays high affinity for H-2D(b) molecules, and elicits a CD8(+) cytotoxic T lymphocyte response. By analyzing the functional properties of natural and synthetic peptides and by identifying the viral sequence(s) from the pool of naturally occurring peptides, we demonstrated that multiple forms of LCMV GP92-101 were generated from the viral glycoprotein and co-presented at the surface of LCMV-infected cells. They corresponded to non-glycosylated and post-translationally modified sequences (conversion of Asn-95 to Asp or alteration of Cys-92). The glycosylated form, despite its potential immunogenicity, was not detected. These data illustrate that distinct, non-mutually exclusive antigen presentation pathways may occur simultaneously within a cell to generate structurally and functionally different peptides from a single genetically encoded sequence, thus contributing to increasing the diversity of the T cell repertoire.
Collapse
Affiliation(s)
- D Hudrisier
- Institut de Pharmacologie et de Biologie Structurale, UPR 9062 CNRS, 205 route de Narbonne, 31400 Toulouse, France.
| | | | | | | | | |
Collapse
|
14
|
Selin LK, Lin MY, Kraemer KA, Pardoll DM, Schneck JP, Varga SM, Santolucito PA, Pinto AK, Welsh RM. Attrition of T cell memory: selective loss of LCMV epitope-specific memory CD8 T cells following infections with heterologous viruses. Immunity 1999; 11:733-42. [PMID: 10626895 DOI: 10.1016/s1074-7613(00)80147-8] [Citation(s) in RCA: 231] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Using a variety of techniques, including limiting dilution assays (LDA), intracellular IFNgamma assays, and Db-IgG1 MHC dimer staining to measure viral peptide-specific T cell number and function, we show here that heterologous virus infections quantitatively delete and qualitatively alter the memory pool of T cells specific to a previously encountered virus. We also show that a prior history of a virus infection can alter the hierarchy of the immunodominant peptide response to a second virus and that virus infections selectively reactivate memory T cells with distinct specificities to earlier viruses. These results are consistent with a model for the immune system that accommodates memory T cell populations for multiple pathogens over the course of a lifetime.
Collapse
Affiliation(s)
- L K Selin
- Department of Pathology, University of Massachusetts Medical School, Worcester 01655, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Meyer D, Torres JV. Hypervariable epitope construct: a synthetic immunogen that overcomes MHC restriction of antigen presentation. Mol Immunol 1999; 36:631-7. [PMID: 10509814 DOI: 10.1016/s0161-5890(99)00080-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Vaccines are not universal in their ability to induce favorable immune responses in all individuals because the major histocompatibility complex (MHC) molecules needed for presentation of vaccine components to T cells are limited in the peptides they recognize and bind. A heterogeneous cocktail of related peptides synthesized simultaneously and representing amino acids 414-434 of the SIV envelope protein was used to induce immune responses stronger than those induced by a single T cell peptide synthesized conventionally and representing the same region of the viral envelope. The heterogeneous peptide mixture called a hypervariable epitope construct (HEC) was capable of overcoming MHC restriction in peptide presentation in four different inbred mouse strains, including a strain that was a poor responder to the AA 414-434 single sequence peptide (SSP). HEC induced proliferation responses 15 times better than those induced by SSP. Antibodies elicited by HEC but not SSP immunization effectively bind viral antigen. The 414-434 HEC and the 414-434 SSP were also tested for their ability to upregulate the expression of MHC class I molecules on the surface of the mutant RMA-S murine cell line. Surface display of MHC molecules was measured by confocal microscopy followed by calculation of fluorescence intensity of images. HECs upregulated expression of MHC molecules 30% more than SSP peptides. Our findings suggest that HEC cocktails could be effective components of subunit vaccines to help overcome the unresponsiveness observed in outbred animals and in humans as a result of MHC-restricted antigen presentation.
Collapse
Affiliation(s)
- D Meyer
- Rand Afrikaans University, Aucklandpark, South Africa
| | | |
Collapse
|
16
|
Grufman P, Wolpert EZ, Sandberg JK, Kärre K. T cell competition for the antigen-presenting cell as a model for immunodominance in the cytotoxic T lymphocyte response against minor histocompatibility antigens. Eur J Immunol 1999; 29:2197-204. [PMID: 10427982 DOI: 10.1002/(sici)1521-4141(199907)29:07<2197::aid-immu2197>3.0.co;2-b] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We recently demonstrated that spleen cells primed against dominant BALB.B antigens can inhibit the cytotoxic T lymphocyte (CTL) response against subdominant antigens in vitro. In this study, we show that this interference is dependent on CD8+, but not CD4+, T cells directed against dominant antigens. Similar to immunodominance in vivo, T cell interference in vitro required presentation of dominant and subdominant antigens by the same antigen-presenting cell. In vivo priming with cells expressing dominant and subdominant antigens did not induce long-lasting unresponsiveness against the latter. These results support a model in which immunodominance is mediated by T cell competition. In line with this, we found that the immunodominance effects in the CTL response against these minor histocompatibility antigens could be broken by immunization with live bone marrow-derived dendritic cells.
Collapse
Affiliation(s)
- P Grufman
- Microbiology and Tumor Biology Center, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | |
Collapse
|
17
|
Buesa J, Raga JV, Colomina J, de Souza CO, Muñoz C, Gil MT. Rotavirus-specific cytotoxic T lymphocytes recognize overlapping epitopes in the amino-terminal region of the VP7 glycoprotein. Virology 1999; 257:424-37. [PMID: 10329553 DOI: 10.1006/viro.1999.9646] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Rotavirus-specific cytotoxic T lymphocytes (CTL) play an important role in the resolution of rotavirus infection. The outer capsid glycoprotein, VP7, elicits a class I MHC-restricted CTL response. Vaccinia virus recombinants expressing the VP7 genes from simian rotavirus SA11 (serotype G3) and from the RF strain of bovine rotavirus (serotype G6) were used to analyze the CTL activity to this antigen in BALB/c (H-2(d)) and C57BL/6 (H-2(b)) mice neonatally infected with homologous and heterologous rotaviruses. A vaccinia virus recombinant expressing the first amino-terminal 88 amino acids of VP7 was constructed and used to search for cross-reactive CTL against this region of the protein. By using synthetic Kb, Db, and Kd motif-fitting peptides two overlapping CTL epitopes have been identified located in the first hydrophobic domain (H1) of VP7. Splenocytes obtained from rotavirus SA11-infected C57BL/6 mice induced the strongest CTL response against target cells sensitized with a peptide containing a Kb-restricted CTL epitope (amino acids 8-16). A second Kd-restricted epitope (residues 5-13) was recognized by splenocytes derived from rotavirus-infected BALB/c mice. These findings reveal the existence of CTL epitopes in the H1 signal sequence of the VP7 glycoprotein that coexist with a CTL epitope (residues 31-40) previously described within the H2 region.
Collapse
Affiliation(s)
- J Buesa
- Hospital Clinico Universitario and School of Medicine, University of Valencia, Valencia, Spain.
| | | | | | | | | | | |
Collapse
|
18
|
Wilson CS, Moser JM, Altman JD, Jensen PE, Lukacher AE. Cross-Recognition of Two Middle T Protein Epitopes by Immunodominant Polyoma Virus-Specific CTL. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.162.7.3933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
We recently identified the immunodominant epitope for polyoma virus-specific CTL as the Dk-associated peptide MT389–397 derived from the middle T (MT) viral oncoprotein. Another Dk-restricted peptide corresponding to residues 236–244 of MT was recognized by nearly all MT389–397-reactive CTL clones, but required concentrations at least 2 logs higher to sensitize syngeneic target cells for lysis. Except for identity at the three putative Dk-peptide anchor residues, MT236–244 shares no homology with MT389–397. Using a novel europium-based class I MHC-peptide binding immunoassay, we determined that MT236–244 bound Dk 2–3 logs less well than MT389–397. Infection with a mutant polyoma virus whose MT is truncated just before the MT389–397 epitope or immunization with MT389–397 or MT236–244 peptides elicited CTL that recognized both MT389–397 and MT236–244. Importantly, infection with a polyoma virus lacking MT389–397 and mutated in an MT236–244 Dk anchor position induced polyoma virus-specific CTL recognizing neither MT389–397 nor MT236–244 epitopes. Despite predominant usage of the Vβ6 gene segment, MT389–397/MT236–244 cross-reactive CTL clones possess diverse complementarity-determining region 3β domains; this is functionally reflected in their heterogeneous recognition patterns of alanine-monosubstituted MT389–397 peptides. Using Dk/MT389–397 tetramers, we directly visualized MT236–244 peptide-induced TCR down-modulation of virtually all MT389–397-specific CD8+ T cells freshly explanted from polyoma-infected mice, suggesting that a single TCR recognizes both Dk-restricted epitopes. The availability of immunodominant epitope-specific CTL capable of recognizing a second epitope in MT, a viral protein essential for tumorigenesis, may serve to amplify the CTL response to the immunodominant epitope and prevent the emergence of immunodominant epitope-loss viruses and virus-induced tumors.
Collapse
Affiliation(s)
| | - Janice M. Moser
- *Department of Pathology, Emory University School of Medicine, Atlanta, GA 30322
| | - John D. Altman
- †Departments of Microbiology and Immunology and Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322
| | - Peter E. Jensen
- *Department of Pathology, Emory University School of Medicine, Atlanta, GA 30322
| | - Aron E. Lukacher
- *Department of Pathology, Emory University School of Medicine, Atlanta, GA 30322
| |
Collapse
|
19
|
Vijh S, Pilip IM, Pamer EG. Noncompetitive expansion of cytotoxic T lymphocytes specific for different antigens during bacterial infection. Infect Immun 1999; 67:1303-9. [PMID: 10024575 PMCID: PMC96461 DOI: 10.1128/iai.67.3.1303-1309.1999] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Listeria monocytogenes is an intracellular bacterium that elicits complex cytotoxic T-lymphocyte (CTL) responses in infected mice. The responses of CTL populations that differ in antigen specificity range in magnitude from large, dominant responses to small, subdominant responses. To test the hypothesis that dominant T-cell responses inhibit subdominant responses, we eliminated the two dominant epitopes of L. monocytogenes by anchor residue mutagenesis and measured the T-cell responses to the remaining subdominant epitopes. Surprisingly, the loss of dominant T-cell responses did not enhance subdominant responses. While mice immunized with bacteria lacking dominant epitopes developed L. monocytogenes-specific immunity, their ability to respond to dominant epitopes upon rechallenge with wild-type bacteria was markedly diminished. Recall responses in mice immunized with wild-type or epitope-deficient L. monocytogenes showed that antigen presentation during recall infection is sufficient for activating memory cells yet insufficient for optimal priming of naive T lymphocytes. Our findings suggest that T-cell priming to different epitopes during L. monocytogenes infection is not competitive. Rather, T-cell populations specific for different antigens but the same pathogen expand independently.
Collapse
Affiliation(s)
- S Vijh
- Section of Infectious Diseases, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | |
Collapse
|
20
|
von Herrath MG, Coon B, Lewicki H, Mazarguil H, Gairin JE, Oldstone MBA. In Vivo Treatment with a MHC Class I-Restricted Blocking Peptide Can Prevent Virus-Induced Autoimmune Diabetes. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.161.9.5087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
We tested the in vivo potential of a MHC class I-restricted blocking peptide to sufficiently lower an anti-viral CTL response for preventing virus-induced CTL-mediated autoimmune diabetes (insulin-dependent diabetes mellitus (IDDM)) in vivo without affecting systemic viral clearance. By designing and screening several peptides with high binding affinities to MHC class I H-2Db for best efficiency in blocking killing of target cells by lymphocytic choriomeningitis virus (LCMV) and other viral CTL, we identified the peptide for this study. In vitro, it selectively lowered CTL killing restricted to the Db allele, which correlated directly with the affinity of the respective epitopes. Expression of the blocking peptide in the target cell lowered recognition of all Db-restricted LCMV epitopes. In addition, in vitro expansion of LCMV memory CTL was prevented, resulting in decreased IFN-γ secretion. In vivo, a 2-wk treatment with this peptide lowered the LCMV Db-restricted CTL response by over threefold without affecting viral clearance. However, the CTL reduction by the peptide treatment was sufficient to prevent LCMV-induced IDDM in rat insulin promoter-LCMV-glycoprotein transgenic mice. Following LCMV infection, these mice develop IDDM, which depends on Db-restricted anti-self (viral) CTL. Precursor numbers of splenic LCMV-CTL in peptide-treated mice were reduced, but their cytokine profile was not altered, indicating that the peptide did not induce regulatory cells. Further, non-LCMV-CTL recognizing the blocking peptide secreted IFN-γ and did not protect from IDDM. This study demonstrates that in vivo treatment with a MHC class I blocking peptide can prevent autoimmune disease by directly affecting expansion of autoreactive CTL.
Collapse
Affiliation(s)
- Matthias G. von Herrath
- *Division of Virology, Department of Neuropharmacology, The Scripps Research Institute, La Jolla, CA 92037; and
| | - Bryan Coon
- *Division of Virology, Department of Neuropharmacology, The Scripps Research Institute, La Jolla, CA 92037; and
| | - Hanna Lewicki
- *Division of Virology, Department of Neuropharmacology, The Scripps Research Institute, La Jolla, CA 92037; and
| | - Honore Mazarguil
- †Institut de Pharmacologie et de Biologie Structurale, Unité Propre de Recherche 9062 Centre National de la Recherche Scientifique, Toulouse, France
| | - Jean Edouard Gairin
- †Institut de Pharmacologie et de Biologie Structurale, Unité Propre de Recherche 9062 Centre National de la Recherche Scientifique, Toulouse, France
| | - Michael B. A. Oldstone
- *Division of Virology, Department of Neuropharmacology, The Scripps Research Institute, La Jolla, CA 92037; and
| |
Collapse
|
21
|
Abstract
Molecular mimicry has been proposed as a pathogenetic mechanism for autoimmune disease, as well as a probe useful in uncovering its etiologic agents. The hypothesis is based in part on the abundant epidemiological, clinical, and experimental evidence of an association of infectious agents with autoimmune disease and observed cross-reactivity of immune reagents with host 'self' antigens and microbial determinants. For our purpose, molecular mimicry is defined as similar structures shared by molecules from dissimilar genes or by their protein products. Either the molecules' linear amino acid sequences or their conformational fits may be shared, even though their origins are as separate as, for example, a virus and a normal host self determinant. An immune response against the determinant shared by the host and virus can evoke a tissue-specific immune response that is presumably capable of eliciting cell and tissue destruction. The probable mechanism is generation of cytotoxic cross-reactive effector lymphocytes or antibodies that recognize specific determinants on target cells. The induction of cross-reactivity does not require a replicating agent, and immune-mediated injury can occur after the immunogen has been removed a hit-and-run event. Hence, the viral or microbial infection that initiates the autoimmune phenomenon may not be present by the time overt disease develops. By a complementary mechanism, the microbe can induce cellular injury and release self antigens, which generate immune responses that cross-react with additional but genetically distinct self antigens. In both scenarios, analysis of the T cells or antibodies specifically engaged in the autoimmune response and disease provides a fingerprint for uncovering the initiating infectious agent.
Collapse
Affiliation(s)
- M B Oldstone
- Viral Immunobiology Laboratory, Division of Virology, The Scripps Research Institute,Department of Neuropharmacology, La Jolla, California 92037, USA.
| |
Collapse
|
22
|
Abstract
Recent research has brought additional information on how virus products interfere with host cell antigen processing in vitro, new information on the interaction of virus with dendritic cells as a mechanism for alteration of immune responses - especially immunosuppression, and a preliminary proposal that nonretroviral RNA viruses might persist by utilizing host-cell reverse transcriptase to enter a DNA phase of replication.
Collapse
Affiliation(s)
- M B Oldstone
- Division of Virology, Department of Neuropharmacology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
23
|
Borrow P, Shaw GM. Cytotoxic T-lymphocyte escape viral variants: how important are they in viral evasion of immune clearance in vivo? Immunol Rev 1998; 164:37-51. [PMID: 9795762 PMCID: PMC7165923 DOI: 10.1111/j.1600-065x.1998.tb01206.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Although viral variants which are not recognized by epitope-specific cytotoxic T lymphocytes (CTL) have been shown to arise during a number of persistent virus infections, in many cases their significance remains controversial: it has been argued that the immune response is sufficiently plastic to contain their replication. In this review, we describe the mechanisms by which amino acid changes in viral proteins may affect epitope recognition by virus-specific CTL, and discuss the viral and immunological basis for the emergence of viral variants bearing such amino acid changes during infection. We then consider the impact that viral variation may have on the host CTL response and its ability to contain virus replication. We argue that the emergence of a viral variant demonstrates that it must have an in vivo replicative advantage, and that as such, the variant must tip the balance between virus replication and immune control somewhat in favor of the virus. Further, we suggest that although the immune response can evolve to recognize new viral epitopes, the CTL generated following such evolution frequently have a reduced ability to contain virus replication. We conclude that this escape mechanism likely does make a significant contribution to persistence/pathogenesis during a number of different virus infections.
Collapse
Affiliation(s)
- P Borrow
- Edward Jenner Institute for Vaccine Research, Compton, Newbury, Berkshire, UK.
| | | |
Collapse
|
24
|
Abstract
Studies carried out using either mice or humans have shown that cytotoxic T-lymphocyte (CTL) responses to many different pathogenic organisms often comprise CTL specific for multiple class I-restricted peptide epitopes. Differences in the magnitude of epitope-specific CTL responses appear to arise mainly from differences in the expression level of the corresponding class I/peptide complex on the surface of the antigen-presenting cell. The size of the CTL response may be limited by the frequency and possibly by the affinity of specific CTL precursors in the naive T-cell pool. Thus, both the efficiency of antigen processing and the composition of the peripheral T-cell pool impose direct limitations on the extent of a T-cell response to a given peptide epitope. Studies of CTL hierarchies have resulted in the identification of immunodominant epitopes i.e. peptide epitopes which stimulate the largest number of specific CTL and which are therefore generally believed to offer the best level of protection against the pathogen from which they were derived. It is also thought that CTL responses to non-dominant epitopes mediate protection against pathogenic challenge. These ideas are considered here with respect to experimental data collected following infection of mice with lymphocytic choriomeningitis virus.
Collapse
Affiliation(s)
- A Gallimore
- Institute of Experimental Immunology, Zürich, Switzerland.
| | | | | |
Collapse
|
25
|
Newmaster RS, Mylin LM, Fu TM, Tevethia SS. Role of a subdominant H-2Kd-restricted SV40 tumor antigen cytotoxic T lymphocyte epitope in tumor rejection. Virology 1998; 244:427-41. [PMID: 9601511 DOI: 10.1006/viro.1998.9148] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
SV40-transformed mKSA cells (H-2d) readily induce progressively growing tumors in adult syngeneic BALB/c mice while expressing the full complement of H-2d MHC class I antigens. BALB/c mice previously immunized with SV40, soluble SV40 T antigen, or irradiated SV40-transformed syngeneic, allogeneic, or xenogeneic cells reject an mKSA tumor challenge even though these mice have been considered low- or nonresponders to T antigen due to difficulty in demonstrating SV40 T antigen-specific CTL. We have investigated the role of H-2d-restricted CTL in the rejection of SV40 tumors in BALB/c mice. Immunization of BALB/c mice with SV40 induced T antigen-specific CTL which were largely. H-2Ld-restricted. However, following repeated in vitro restimulation with mKSA cells, CTL emerged which recognized a subdominant H-2Kd-restricted epitope corresponding to T antigen residues 499-507. Immunization of BALB/c mice with a recombinant vaccinia virus expressing the T499-507 epitope provided partial protection against a challenge of syngeneic mKSA tumor cells and induced the generation of T499-507-specific CTL. These results indicate that a subdominant H-2Kd-restricted CTL epitope can participate in the rejection of SV40 tumors in BALB/c mice.
Collapse
Affiliation(s)
- R S Newmaster
- Department of Microbiology and Immunology H107, Pennsylvania State University College of Medicine, Hershey 17033, USA
| | | | | | | |
Collapse
|
26
|
Nandi D, Marusina K, Monaco JJ. How do endogenous proteins become peptides and reach the endoplasmic reticulum. Curr Top Microbiol Immunol 1998; 232:15-47. [PMID: 9557392 DOI: 10.1007/978-3-642-72045-1_2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- D Nandi
- Howard Hughes Medical Institute, University of Cincinnati, OH 45267-0524, USA
| | | | | |
Collapse
|
27
|
Hudrisier D, Gairin JE. Peptide-major histocompatibility complex class I complex: from the structural and molecular basis to pharmacological principles and therapeutic applications. Curr Top Microbiol Immunol 1998; 232:75-97. [PMID: 9557394 DOI: 10.1007/978-3-642-72045-1_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- D Hudrisier
- Institut de Pharmacologie et de Biologie Structurale, Toulouse, France
| | | |
Collapse
|
28
|
Weidt G, Utermöhlen O, Heukeshoven J, Lehmann-Grube F, Deppert W. Relationship Among Immunodominance of Single CD8+ T Cell Epitopes, Virus Load, and Kinetics of Primary Antiviral CTL Response. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.160.6.2923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
The primary CTL response of BALB/c mice infected with the lymphocytic choriomeningitis (LCM) virus strain WE is directed exclusively against one major epitope, n118, whereas a viral variant, ESC, that does not express n118 induces CTL against minor epitopes. We identified one minor epitope, g283, that induces primary lytic activity in ESC-infected mice. Infections of mice with WE and ESC were used to study the hierarchical control of a T cell response. Presentation of minor epitopes is not reduced in WE-infected cells. Generation of CTL against n118 does not suppress the generation of minor epitope-specific CTL systemically, as mice coinfected with WE and ESC developed CTL against n118 and g283. However, elimination of ESC and development of minor epitope-specific CTL in ESC infection were slower than elimination of WE and development of CTL against n118. CD8+ T cells against the minor epitope were activated in ESC and WE infection, but did not expand in the latter to show lytic activity in a primary response. We explain the absence of minor epitope-specific lytic activity in WE infection by the fast reduction of virus load due to the early developing n118-specific CTL. Immunodominance of CTL epitopes in primary virus infections thus can be explained as a kinetic phenomenon composed of 1) expansion of CD8+ T cells specific for individual epitopes, 2) stimulatory effect of virus load, and 3) negative feedback control on virus load by the fastest CTL population.
Collapse
Affiliation(s)
- Gunnar Weidt
- Heinrich Pette Institut für Experimentelle Virologie und Immunologie an der Universität Hamburg, Martinistrasse 52, D-20251 Hamburg, Germany
| | - Olaf Utermöhlen
- Heinrich Pette Institut für Experimentelle Virologie und Immunologie an der Universität Hamburg, Martinistrasse 52, D-20251 Hamburg, Germany
| | - Jochen Heukeshoven
- Heinrich Pette Institut für Experimentelle Virologie und Immunologie an der Universität Hamburg, Martinistrasse 52, D-20251 Hamburg, Germany
| | - Fritz Lehmann-Grube
- Heinrich Pette Institut für Experimentelle Virologie und Immunologie an der Universität Hamburg, Martinistrasse 52, D-20251 Hamburg, Germany
| | - Wolfgang Deppert
- Heinrich Pette Institut für Experimentelle Virologie und Immunologie an der Universität Hamburg, Martinistrasse 52, D-20251 Hamburg, Germany
| |
Collapse
|
29
|
Butz EA, Bevan MJ. Differential Presentation of the Same MHC Class I Epitopes by Fibroblasts and Dendritic Cells. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.160.5.2139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
Ag is presented to CTL as peptide associated with MHC class I molecules, which are present on most types of cells. We have investigated the presentation of Db-restricted lymphocytic choriomeningitis virus (LCMV) peptides by a fibroblast line (MC57) and a dendritic cell line (JawsII) to splenocytes from LCMV-immune C57BL/6 mice. We found that when LCMV-infected MC57 were used to restimulate the spleen cells, the resulting CTL line lost its ability to respond to the two dominant epitopes of the immune response to LCMV glycoprotein (gp)33 and nucleoprotein (np)396 but remained strongly lytic for targets coated with the subdominant gp276 epitope. In contrast, when LCMV-infected JawsII cells were used to restimulate the splenocytes, the resulting line continued to target gp33 and np396 but lost reactivity to gp276. When uninfected JawsII or MC57 cells were coated with peptides and used as stimulators, the resulting CTL lines continued to recognize all three epitopes, indicating that costimulatory or other potential innate differences in Ag presentation between the two cell lines are unlikely to account for the selective expansion of CTL specificities. When infected, both cell types produce similar levels of infectious LCMV, have similar levels of the NP and GP proteins from which np396 and gp33 are derived, and can be recognized by CTL specific for each of the three epitopes. These data indicate that in the generation of peptides for MHC-I binding and presentation to CTL, MC57 and JawsII process the same set of virus proteins in quantitatively different ways.
Collapse
Affiliation(s)
- Eric A. Butz
- Howard Hughes Medical Institute and Department of Immunology, University of Washington, Seattle, WA 98195
| | - Michael J. Bevan
- Howard Hughes Medical Institute and Department of Immunology, University of Washington, Seattle, WA 98195
| |
Collapse
|
30
|
Fu TM, Mylin LM, Schell TD, Bacik I, Russ G, Yewdell JW, Bennink JR, Tevethia SS. An endoplasmic reticulum-targeting signal sequence enhances the immunogenicity of an immunorecessive simian virus 40 large T antigen cytotoxic T-lymphocyte epitope. J Virol 1998; 72:1469-81. [PMID: 9445050 PMCID: PMC124628 DOI: 10.1128/jvi.72.2.1469-1481.1998] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
An immunological hierarchy among three H-2Db-restricted cytotoxic T lymphocyte (CTL) determinants in simian virus 40 (SV40) large T antigen (Tag) was described previously: determinants I and II/III are immunodominant, whereas determinant V is immunorecessive. To assess the immunogenicity of each determinant individually and define mechanisms that contribute to the immunorecessive nature of determinant V, we constructed a panel of recombinant vaccinia viruses (rVVs) expressing minigenes encoding these determinants in various polypeptide contexts. We found the following. (i) Immunization of mice with an rVV encoding full-length SV40 Tag resulted in priming for CTL responses to determinants I and II/III but not determinant V. (ii) rVVs encoding peptide I or II/III in the cytosol or targeted to the endoplasmic reticulum (ER) were highly antigenic and immunogenic. (iii) rVVs encoding peptide V minigenes were antigenic and immunogenic if the peptide was targeted to the ER, expressed in the cytosol with short flanking sequences, or expressed from within a self-protein, murine dihydrofolate reductase. (iv) Presentation of the nonflanked peptide V (preceded by a Met codon only) could be enhanced by using a potent inhibitor of the proteasome. (v) H-2Db-epitope V peptide complexes decayed more rapidly than complexes containing epitope I or II/III peptides. In brefeldin A blocking experiments, functional epitope V complexes were detected longer on targets expressing ER-targeted epitope V than on targets expressing forms of epitope V dependent on the transporter associated with antigen processing. Therefore, limited formation of relatively unstable cell surface H-2Db complexes most likely contributes to the immunorecessive nature of epitope V within SV40 Tag. Increasing the delivery of epitope V peptide to the major histocompatibility complex class I presentation pathway by ER targeting dramatically enhanced the immunogenicity of epitope V.
Collapse
Affiliation(s)
- T M Fu
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey 17033, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
van der Most RG, Murali-Krishna K, Whitton JL, Oseroff C, Alexander J, Southwood S, Sidney J, Chesnut RW, Sette A, Ahmed R. Identification of Db- and Kb-restricted subdominant cytotoxic T-cell responses in lymphocytic choriomeningitis virus-infected mice. Virology 1998; 240:158-67. [PMID: 9448700 DOI: 10.1006/viro.1997.8934] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Antiviral cytotoxic T-cells are critical for control of lymphocytic choriomeningitis virus (LCMV) infection in mice. In H-2b mice, the antiviral response is directed against three Db-restricted epitopes in the viral nucleoprotein (NP396-404) and glycoprotein (GP276-286 and GP33-41). Our present data revealed a clear hierarchy among these three epitopes, in which NP396-404 is immunodominant, followed by GP33-41 and GP276-286, respectively. In order to identify additional CTL epitopes in the LCMV nucleoprotein and glycoprotein, we used the motifs for Db2- and Kb-binding peptides, combined with MHC class I-binding assays. Out of 23 Db motif-fitting peptides, we identified 4 Db binders, one of which (GP92-101) turned out to be a new CTL epitope. Among 28 Kb motif-fitting peptides, 12 bound Kb, and one of these (NP205-212) was a CTL epitope. Both newly identified CTL peptides were recognized by LCMV-immune splenocytes after secondary in vitro stimulation. Both peptides bound their MHC class I molecules with intermediate affinity (470 and 170 nM for GP92-101 and NP205-212, respectively). Responses against these peptides were weaker than the responses against the three major epitopes. None of the high affinity binders were new epitopes, suggesting that high affinity binders are either immunodominant epitopes or no epitopes at all. Thus, analysis of 51 Kb and Db motif-fitting peptides yielded 2 new, subdominant epitopes. Immunization of C57BL/6 mice with these peptides, or vaccinia virus recombinants expressing these epitopes as minigenes, protected against chronic LCMV infection, demonstrating that immunization with subdominant epitopes can confer protection against chronic viral infection.
Collapse
Affiliation(s)
- R G van der Most
- Department of Microbiology and Immunology, University of California, Los Angeles School of Medicine 90024, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Rajnavölgyi E, Horváth A, Gogolák P, Tóth GK, Fazekas G, Fridkin M, Pecht I. Characterizing immunodominant and protective influenza hemagglutinin epitopes by functional activity and relative binding to major histocompatibility complex class II sites. Eur J Immunol 1997; 27:3105-14. [PMID: 9464794 DOI: 10.1002/eji.1830271205] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In the present study the analysis of functional activity and major histocompatibility complex (MHC) binding of two adjacent MHC class II-restricted epitopes, located in the C-terminal 306-329 region of human influenza A virus hemagglutinin 1 subunit (HA1) conserved with subtype sequences and not affected by antigenic drift, was undertaken to explore the hierarchy of local immunodominance. The functional activity of two T cell hybridomas of the memory/effector Th1 phenotype in combination with in vivo immunization studies provided a good tool for investigating the functional characteristics of the T cell response. The in vitro binding assays performed with a series of overlapping, N-terminal biotinylated peptides covering the 306-341 sequence enabled us to compare the relative binding efficiency of peptides, comprising two distinct epitopes of this region, to I-Ed expressed on living antigen-presenting cells. Our studies revealed that (i) immunization of BALB/c mice with the 306-329 H1 or H2 peptides resulted in the activation and proliferation of T cells recognizing both the 306-318 and the 317-329 epitopes, while the 306-329 H3 peptide elicits predominantly 306-318-specific T cells, (ii) the 317-329 HA1 epitope of the H1 and H2 but not the H3 sequence is recognized by T cells and is available for recognition not only in the 317-329 peptide but also in the extended 306-329 or 306-341 peptides, (iii) the 306-318 and the 317-329 hemagglutinin peptides encompassing the H1, H2 but not the H3 sequence bind with an apparently similar affinity to and therefore compete for I-Ed binding sites, and (iv) the 317-341, the 317-329 peptides and their truncated analogs show subtype-dependent differences in MHC binding and those with lower binding capacity represent the H3 subtype sequences. These results demonstrate that differences in the binding capacity of peptides comprising two non-overlapping epitopes located in the C-terminal 306-329 region of HA1 of all three subtype-specific sequences to MHC class II provide a rationale for the local and also for the previously observed in vivo immunodominance of the 306-318 region over the 317-329 epitope in the H3 but not in the H1 or H2 sequences. In good correlation with the results of the binding and functional inhibition assays, these data demonstrate that in the H1 and H2 subtypes both regions are available for T cell recognition, they compete for the same restriction element with an apparently similar binding efficiency and, therefore, function as co-dominant epitopes. Due to the stabilizing effect of the fusion peptide, peptides comprising the 306-341 or 317-341 H1 sequences are highly immunogenic and elicit a protective immune response which involves the production of antibodies and interleukin-2 and tumor necrosis factor producing effector Th1 cells both directed against the 317-329 region. Based on the similarity of the I-Ed and HLA-DR1 peptide binding grooves and motifs, these results suggest that amino acid substitutions inserted to the H3 subtype sequence during viral evolution can modify the relative MHC binding capacity and invert the local hierarchy of immunodominance of two closely situated epitopes that are able to bind to the same MHC class II molecule.
Collapse
Affiliation(s)
- E Rajnavölgyi
- Department of Immunology, L. Eötvös University, Göd, Hungary.
| | | | | | | | | | | | | |
Collapse
|
33
|
Irvine KR, Chamberlain RS, Shulman EP, Surman DR, Rosenberg SA, Restifo NP. Enhancing efficacy of recombinant anticancer vaccines with prime/boost regimens that use two different vectors. J Natl Cancer Inst 1997; 89:1595-601. [PMID: 9362157 DOI: 10.1093/jnci/89.21.1595] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The identification of tumor-associated antigens and the cloning of DNA sequences encoding them have enabled the development of anticancer vaccines. Such vaccines target tumors by stimulating an immune response against the antigens. One method of vaccination involves the delivery of antigen-encoding DNA sequences, and a number of recombinant vectors have been used for this purpose. To optimize the efficacy of recombinant vaccines, we compared primary and booster treatment regimens that used a single vector (i.e., homologous boosting) with regimens that used two different vectors (i.e., heterologous boosting). METHODS Pulmonary tumors (experimental metastases) were induced in BALB/c mice inoculated with CT26.CL25 murine colon carcinoma cells, which express recombinant bacterial beta-galactosidase (the model antigen). Protocols for subsequent vaccination used three vectors that encoded beta-galactosidase--vaccinia (cowpox) virus, fowlpox virus, naked bacterial plasmid DNA. Mouse survival was evaluated in conjunction with antibody and cytotoxic T-lymphocyte responses to beta-galactosidase. RESULTS Heterologous boosting resulted in significantly longer mouse survival than homologous boosting (all P<.0001, two-sided). Potent antigen-specific cytotoxic T lymphocytes were generated following heterologous boosting with poxvirus vectors. This response was not observed with any of the homologous boosting regimens. Mice primed with recombinant poxvirus vectors generated highly specific antibodies against viral proteins. CONCLUSIONS The poor efficacy of homologous boosting regimens with viral vectors was probably a consequence of the induction of a strong antiviral antibody response. Heterologous boosting augmented antitumor immunity by generating a strong antigen-specific cytotoxic T-lymphocyte response. These data suggest that heterologous boosting strategies may be useful in increasing the efficacy of recombinant DNA anticancer vaccines that have now entered clinical trials.
Collapse
Affiliation(s)
- K R Irvine
- Surgery Branch, Division of Clinical Sciences, National Cancer Institute, Bethesda, MD 20892-1502, USA
| | | | | | | | | | | |
Collapse
|
34
|
Hudrisier D, Oldstone MB, Gairin JE. The signal sequence of lymphocytic choriomeningitis virus contains an immunodominant cytotoxic T cell epitope that is restricted by both H-2D(b) and H-2K(b) molecules. Virology 1997; 234:62-73. [PMID: 9234947 DOI: 10.1006/viro.1997.8627] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Infection of H-2b mice with lymphocytic choriomeningitis virus (LCMV) generates three well-characterized H-2D(b)-restricted immunodominant epitopes delineated in the NP, GP1, and GP2 proteins. Here we report that the H-2D(b)-restricted GP1 epitope GP33-41/43 (KAVYNFATC/GI) located in the signal sequence of LCMV is also the immunodominant epitope recognized by CTL at the surface of the same infected cells in the context of H-2K(b) restriction. The GP1 epitope bound to H-2D(b) and H-2K(b) molecules with comparable affinities. The respective binding processes involved different sets of peptide anchoring residues and required dramatically different conformations of the peptide backbone as well as rearrangement of residue side chains. The 10-mer peptide GP34-43 (AVYNFATCGI) was the optimal H-2K(b)-binding sequence and the 8-mer peptide GP34-41 (AVYNFATC) the minimal sequence for optimal H-2K(b)-restricted CTL recognition. Comparison of lytic activities of primary splenic anti-LCMV CTL from C57BL/6 (D(b+)/K(b+)), B10A.[5R] (D(b-)/K(b+)), and B10A.[2R] (D(b+)/K(b-)) mice against LCMV-infected or peptide-coated target cells expressing either one or the two MHC alleles revealed that the H-2K(b)-restricted component of the anti-GP1 CTL response was mounted independently of but as efficiently as its H-2D(b) counterpart. Analysis of the immune response against a GP1 variant that escapes CTL recognition showed that the GP1 epitope: (i) was likely the only immunodominant LCMV epitope in the context of H-2K(b), and (ii) could efficiently evade H-2D(b) and H-2K(b)-restricted CTL mediated lysis.
Collapse
Affiliation(s)
- D Hudrisier
- Institut de Pharmacologie et de Biologie Structurale, UPR 9062 CNRS, Toulouse, France
| | | | | |
Collapse
|
35
|
Manchester M, Gairin JE, Patterson JB, Alvarez J, Liszewski MK, Eto DS, Atkinson JP, Oldstone MB. Measles virus recognizes its receptor, CD46, via two distinct binding domains within SCR1-2. Virology 1997; 233:174-84. [PMID: 9201227 DOI: 10.1006/viro.1997.8581] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Measles virus (MV) enters cells by attachment of the viral hemagglutinin to the major cell surface receptor CD46 (membrane cofactor protein). CD46 is a transmembrane glycoprotein whose ectodomain is largely composed of four conserved modules called short consensus repeats (SCRs). We have previously shown that MV interacts with SCR1 and SCR2 of CD46. (M. Manchester et al. (1995) Proc. Natl. Acad. Sci. USA 92, 2303-2307) Here we report mapping the MV interaction with SCR1 and SCR2 of CD46 using a combination of peptide inhibition and mutagenesis studies. By testing a series of overlapping peptides corresponding to the 126 amino acid SCR1-2 region for inhibition of MV infection, two domains were identified that interacted with MV. One domain was found within SCR1 (amino acids 37-56) and another within SCR2 (amino acids 85-104). These results were confirmed by constructing chimeras with complementary regions from structurally similar, but non-MV-binding, SCRs of decay accelerating factor (DAF; CD55). These results indicate that MV contacts at least two distinct sites within SCR1-2.
Collapse
Affiliation(s)
- M Manchester
- Department of Neuropharmacology, Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Fu TM, Friedman A, Ulmer JB, Liu MA, Donnelly JJ. Protective cellular immunity: cytotoxic T-lymphocyte responses against dominant and recessive epitopes of influenza virus nucleoprotein induced by DNA immunization. J Virol 1997; 71:2715-21. [PMID: 9060624 PMCID: PMC191393 DOI: 10.1128/jvi.71.4.2715-2721.1997] [Citation(s) in RCA: 107] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
DNA immunization offers a novel means to induce cellular immunity in a population with a heterogeneous genetic background. An immunorecessive cytotoxic T-lymphocyte (CTL) epitope in influenza virus nucleoprotein (NP), residues 218 to 226, was identified when mice were immunized with a plasmid DNA encoding a full-length mutant NP in which the anchor residues for the immunodominant NP147-155 epitope were altered. Mice immunized with wild-type or mutant NP DNA were protected from lethal cross-strain virus challenge, and the protection could be adoptively transferred by immune splenocytes, indicating the role of cell-mediated immunity in the protection. DNA immunization is capable of eliciting protective cellular immunity against both immunodominant and immunorecessive CTL epitopes in the hierarchy seen with virus infection.
Collapse
MESH Headings
- Animals
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- Cytotoxicity Tests, Immunologic
- Epitopes, T-Lymphocyte/immunology
- Female
- Humans
- Immunity, Cellular
- Immunodominant Epitopes/immunology
- Influenza A virus/immunology
- Influenza Vaccines/immunology
- Influenza, Human/prevention & control
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Nucleocapsid Proteins
- Nucleoproteins/genetics
- Nucleoproteins/immunology
- RNA-Binding Proteins
- T-Lymphocytes, Cytotoxic/immunology
- Vaccination
- Vaccines, DNA/immunology
- Viral Core Proteins/genetics
- Viral Core Proteins/immunology
Collapse
Affiliation(s)
- T M Fu
- Department of Virus and Cell Biology, Merck Research Laboratories, West Point, Pennsylvania 19486, USA
| | | | | | | | | |
Collapse
|
37
|
Von Herrath MG, Coon B, Oldstone MB. Low-affinity cytotoxic T-lymphocytes require IFN-gamma to clear an acute viral infection. Virology 1997; 229:349-59. [PMID: 9126248 DOI: 10.1006/viro.1997.8442] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The majority of the response of cytotoxic T-lymphocytes (CTL) to lymphocytic choriomeningitis virus (LCMV) in H-2d mice is directed toward one epitope located on the nucleoprotein (NP, aa 118-126), and usually no primary responses to other epitopes are detectable. Previous studies have shown that thymic expression of lymphocytic choriomeningitis virus-nucleoprotein (LCMV-NP) in H-2d transgenic mice (Thy-NP mice) leads to deletion of high-affinity anti-LCMV-NP CTL by negative selection. Selection is incomplete, so that low-affinity NP-specific CTL pass through the thymus and are detectable in the periphery. To analyze the importance of interferon-gamma (IFN-gamma) in the ability of low-affinity antiviral CTL to clear an acute viral infection, double transgenic mice were generated that are IFN-gamma deficient and express the NP of LCMV in the thymus (Thy-NP x IFN-gamma -/- mice). When infected with LCMV, these bigenic mice were unable to clear the infection despite generating low-affinity primary antiviral CTL, and they became persistently infected. In contrast, IFN-gamma competent Thy-NP mice cleared LCMV within 7-8 days and IFN-gamma deficient mice that did not express NP in their thymus generated high-affinity CTL that terminated an acute LCMV infection within 10-12 days post-viral challenge. Persistently infected IFN-gamma deficient mice selectively depleted LCMV-specific CTL and displayed reduced levels of antigen-presenting cells in the spleen, and 60% of these mice died at 2-3 months postinfection. Thus, IFN-gamma is required for clearing an acute viral infection in the absence of a high-affinity CTL response. In the absence of IFN-gamma persistent viral infection results despite the presence of low-affinity CTL.
Collapse
Affiliation(s)
- M G Von Herrath
- Department of Neuropharmacology, Scripps Research Institute, La Jolla, California 92037, USA.
| | | | | |
Collapse
|
38
|
Abstract
The breaking of tolerance or unresponsiveness to self-antigens, involving the activation of autoreactive lymphocytes, is a critical event leading to autoimmune diseases. The precise mechanisms by which this can occur are mostly unknown. Viruses have been implicated in this process, among other etiological factors, such as genetic predisposition and cytokine activity. Several ways have been proposed by which a viral infection might break tolerance to self and trigger an autoreactive cascade that ultimately leads to the destruction of a specific cell type or an entire organ. The process termed "molecular mimicry' and the use of transgenic models in which viral and host genes can be manipulated to analyze their effects in causing autoimmunity have been particular focuses for research. For example, there is a transgenic murine model of virus-induced autoimmune disease, in which a known viral gene is selectively expressed as a self-antigen in beta cells of the pancreas. In these mice, insulin-dependent diabetes develops after either a viral infection, the release of a cytokine such as IFN-gamma, or the expression of the costimulatory molecule B7.1 in the islets of Langerhans. Recent studies using this model have contributed to the understanding of the pathogenesis of virus-induced autoimmune disease and have furthered the design and testing of novel immunotherapeutic approaches.
Collapse
Affiliation(s)
- M G von Herrath
- Scripps Research Institute, Department of Neuropharmacology, La Jolla, CA 92037, USA
| | | |
Collapse
|
39
|
Affiliation(s)
- MI Johnston
- The International AIDS Vaccine Initiative, c/o The Rockefeller Foundation, 420 Fifth Avenue, New York, NY 10018-2702, USA
| |
Collapse
|
40
|
von Herrath MG, Evans CF, Horwitz MS, Oldstone MB. Using transgenic mouse models to dissect the pathogenesis of virus-induced autoimmune disorders of the islets of Langerhans and the central nervous system. Immunol Rev 1996; 152:111-43. [PMID: 8930670 DOI: 10.1111/j.1600-065x.1996.tb00913.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Viruses have often been associated with autoimmune diseases. One mechanism by which self-destruction can be triggered is molecular mimicry. Many examples of cross-reactive immune responses between pathogens and self-antigens have been described. This review presents two transgenic models of autoimmune disease induced by a virus through activation of anti-self lymphocytes. Viral antigens are expressed as transgenes either in beta-cells of the pancreas or in the oligodendrocytes of the CNS. Infection by a virus encoding the same gene activated autoreactive T cells that cleared the viral infection, and as a consequence of transgene expression resulted in organ-specific autoimmune disease. In both transgenic mouse models, autoreactive lymphocytes that escaped thymic negative selection were present in the periphery. Several factors are described that play a role in the regulation of the self-reactive process precipitated by a viral infection. These include the quantity of activated autoreactive T cells, the affinity of these T cells, the number of memory T cells generated following primary infection, costimulation by accessory molecules, and the types and locations of cytokines produced. In addition, unique barriers exist in target tissues that prevent or suppress autoreactive responses and define to a large extent the outcome of disease. Restimulation of autoreactive memory lymphocytes may be required to bypass these barriers and enhance autoimmune disease. Therapy directed at modifying these factors can reduce and even prevent autoimmune disease after it has been initiated.
Collapse
Affiliation(s)
- M G von Herrath
- Department of Neuropharmacology, Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|
41
|
Hudrisier D, Mazarguil H, Laval F, Oldstone MB, Gairin JE. Binding of viral antigens to major histocompatibility complex class I H-2Db molecules is controlled by dominant negative elements at peptide non-anchor residues. Implications for peptide selection and presentation. J Biol Chem 1996; 271:17829-36. [PMID: 8663374 DOI: 10.1074/jbc.271.30.17829] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Binding of viral antigens to major histocompatibility complex (MHC) class I molecules is a critical step in the activation process of CD8(+) cytotoxic T lymphocytes. In this study, we investigated the impact of structural factors at non-anchor residues in peptide-MHC interaction using the model of lymphocytic choriomeningitis virus (LCMV) infection of its natural host, the mouse. Altering viral genes by making reassortants, recombinants, and using synthetic peptides, CD8(+) cytotoxic T lymphocytes were shown to recognize only three H-2Db-restricted epitopes, GP amino acids 33-41/43, GP 276-286, and NP 396-404. However, LCMV NP and GP proteins contain 31 other peptides bearing the H-2Db motif. These 34 LCMV peptides and 11 other known H2-Db-restricted peptides were synthesized and examined for MHC binding properties. Despite the presence of the H-2Db binding motif, the majority of LCMV peptides showed weak or no affinity for H-2Db. We observed that dominant negative structural elements located at non-anchor positions played a crucial role in peptide-MHC interaction. By comparative sequence analysis of strong versus non-binders and using molecular modeling, we delineated these negative elements and evaluated their impact on peptide-MHC interaction. Our findings were validated by showing that a single mutation of a favorable non-anchor residue in the sequence of known viral epitopes for a negative element resulted in dramatic reduction of antigen presentation properties, while conversely, substitution of one negative for a positive element in the sequence of a non-binder conferred to the peptide an ability to now bind to MHC molecules.
Collapse
Affiliation(s)
- D Hudrisier
- Institut de Pharmacologie et de Biologie Structurale, CNRS, 205 route de Narbonne, 31400 Toulouse, France
| | | | | | | | | |
Collapse
|