1
|
Ohyama T, Osawa T, Sekine SI, Ishii Y. NMR Studies of Genomic RNA in 3' Untranslated Region Unveil Pseudoknot Structure that Initiates Viral RNA Replication in SARS-CoV-2. JACS AU 2024; 4:1323-1333. [PMID: 38665648 PMCID: PMC11041675 DOI: 10.1021/jacsau.3c00641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/20/2024] [Accepted: 03/08/2024] [Indexed: 04/28/2024]
Abstract
In the 3' untranslated region of the SARS-CoV-2 virus RNA genome, genomic RNA replication is initiated in the highly conserved region called 3'PK, containing three stem structures (P1pk, P2, and P5). According to one proposed mechanism, P1pk and distal P2 stems switch their structure to a pseudoknot through base-pairing, thereby initiating transcription by recruiting RNA-dependent RNA polymerase complexed with nonstructural proteins (nsp)7 and nsp8. However, experimental evidence of pseudoknot formation or structural switching is unavailable. Using SARS-CoV-2 3'PK fragments, we show that 3'PK adopted stem-loop and pseudoknot forms in a mutually exclusive manner. When P1pk and P2 formed a pseudoknot, the P5 stem, which includes a sequence at the 3' end, exited from the stem-loop structure and opened up. Interaction with the nsp7/nsp8 complex destabilized the stem-loop form but did not alter the pseudoknot form. These results suggest that the interaction between the pseudoknot and nsp7/nsp8 complex transformed the 3' end of viral genomic RNA into single-stranded RNA ready for synthesis, presenting the unique pseudoknot structure as a potential pharmacological target.
Collapse
Affiliation(s)
- Takako Ohyama
- Laboratory for Advanced NMR Application and
Development, Center for Biosystems Dynamics Research, RIKEN,
1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Kanagawa,
Japan
- School of Life Science and Technology,
Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku,
Yokohama 226-8503, Kanagawa, Japan
| | - Takuo Osawa
- Laboratory for Transcription Structural Biology,
Center for Biosystems Dynamics Research, RIKEN, 1-7-22
Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Kanagawa, Japan
| | - Shun-ichi Sekine
- Laboratory for Transcription Structural Biology,
Center for Biosystems Dynamics Research, RIKEN, 1-7-22
Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Kanagawa, Japan
| | - Yoshitaka Ishii
- Laboratory for Advanced NMR Application and
Development, Center for Biosystems Dynamics Research, RIKEN,
1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Kanagawa,
Japan
- School of Life Science and Technology,
Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku,
Yokohama 226-8503, Kanagawa, Japan
| |
Collapse
|
2
|
Liao Y, Wang H, Liao H, Sun Y, Tan L, Song C, Qiu X, Ding C. Classification, replication, and transcription of Nidovirales. Front Microbiol 2024; 14:1291761. [PMID: 38328580 PMCID: PMC10847374 DOI: 10.3389/fmicb.2023.1291761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/06/2023] [Indexed: 02/09/2024] Open
Abstract
Nidovirales is one order of RNA virus, with the largest single-stranded positive sense RNA genome enwrapped with membrane envelope. It comprises four families (Arterividae, Mesoniviridae, Roniviridae, and Coronaviridae) and has been circulating in humans and animals for almost one century, posing great threat to livestock and poultry,as well as to public health. Nidovirales shares similar life cycle: attachment to cell surface, entry, primary translation of replicases, viral RNA replication in cytoplasm, translation of viral proteins, virion assembly, budding, and release. The viral RNA synthesis is the critical step during infection, including genomic RNA (gRNA) replication and subgenomic mRNAs (sg mRNAs) transcription. gRNA replication requires the synthesis of a negative sense full-length RNA intermediate, while the sg mRNAs transcription involves the synthesis of a nested set of negative sense subgenomic intermediates by a discontinuous strategy. This RNA synthesis process is mediated by the viral replication/transcription complex (RTC), which consists of several enzymatic replicases derived from the polyprotein 1a and polyprotein 1ab and several cellular proteins. These replicases and host factors represent the optimal potential therapeutic targets. Hereby, we summarize the Nidovirales classification, associated diseases, "replication organelle," replication and transcription mechanisms, as well as related regulatory factors.
Collapse
Affiliation(s)
- Ying Liao
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Huan Wang
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Huiyu Liao
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yingjie Sun
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Lei Tan
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Cuiping Song
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Xusheng Qiu
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Chan Ding
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| |
Collapse
|
3
|
Suardana IBK, Mahardika BK, Pharmawati M, Sudipa PH, Sari TK, Mahendra NB, Mahardika GN. Whole-Genome Comparison of Representatives of All Variants of SARS-CoV-2, Including Subvariant BA.2 and the GKA Clade. Adv Virol 2023; 2023:6476626. [PMID: 36938489 PMCID: PMC10019969 DOI: 10.1155/2023/6476626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 12/10/2022] [Accepted: 02/17/2023] [Indexed: 03/11/2023] Open
Abstract
Since its discovery at the end of 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has rapidly evolved into many variants, including the subvariant BA.2 and the GKA clade. Genomic clarification is needed for better management of the current pandemic as well as the possible reemergence of novel variants. The sequence of the reference genome Wuhan-Hu-1 and approximately 20 representatives of each variant were downloaded from GenBank and GISAID. Two representatives with no track of in-definitive nucleotides were selected. The sequences were aligned using muscle. The location of insertion/deletion (indel) in the genome was mapped following the open reading frame (ORF) of Wuhan-Hu-1. The phylogeny of the spike protein coding region was constructed using the maximum likelihood method. Amino acid substitutions in all ORFs were analyzed separately. There are two indel sites in ORF1AB, eight in spike, and one each in ORF3A, matrix (MA), nucleoprotein (NP), and the 3'-untranslated regions (3'UTR). Some indel sites and residues/substitutions are not unique, and some are variant-specific. The phylogeny shows that Omicron, Deltacron, and BA2 are clustered together and separated from other variants with 100% bootstrap support. In conclusion, whole-genome comparison of representatives of all variants revealed indel patterns that are specific to SARS-CoV-2 variants or subvariants. Polymorphic amino acid comparison across all coding regions also showed amino acid residues shared by specific groups of variants. Finally, the higher transmissibility of BA.2 might be due at least in part to the 48 nucleotide deletions in the 3'UTR, while the seem-to-be extinction of GKA clade is due to the lack of genetic advantages as a consequence of amino acid substitutions in various genes.
Collapse
Affiliation(s)
- Ida B. K. Suardana
- 1Virology Laboratory, The Faculty of Veterinary Medicine, Udayana University, Denpasar, Bali, Indonesia
| | - Bayu K. Mahardika
- 2The Animal Biomedical and Molecular Biology Laboratory, Udayana University, Jl. Sesetan-Markisa 6A, Denpasar 80223, Bali, Indonesia
| | - Made Pharmawati
- 3The Biology Study Program, The Faculty of Mathematic and Natural Science, Udayana University, Kampus Bukit Jimbaran, Badung, Bali, Indonesia
| | - Putu H. Sudipa
- 4Veterinary Bacteriology and Mycology Laboratory, The Faculty of Veterinary Medicine, Udayana University, Denpasar, Bali, Indonesia
| | - Tri K. Sari
- 1Virology Laboratory, The Faculty of Veterinary Medicine, Udayana University, Denpasar, Bali, Indonesia
| | - Nyoman B. Mahendra
- 5The Department of Obstetrics and Genecology, The Faculty of Medicine, Udayana University, Kuta Selatan, Bali, Indonesia
| | - Gusti N. Mahardika
- 1Virology Laboratory, The Faculty of Veterinary Medicine, Udayana University, Denpasar, Bali, Indonesia
- 2The Animal Biomedical and Molecular Biology Laboratory, Udayana University, Jl. Sesetan-Markisa 6A, Denpasar 80223, Bali, Indonesia
| |
Collapse
|
4
|
Xu Z, Yang D, Wang L, Demongeot J. Statistical analysis supports UTR (untranslated region) deletion theory in SARS-CoV-2. Virulence 2022; 13:1772-1789. [PMID: 36217240 PMCID: PMC9553139 DOI: 10.1080/21505594.2022.2132059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/14/2022] [Accepted: 09/29/2022] [Indexed: 11/08/2022] Open
Abstract
It was noticed that the mortality rate of SARS-CoV-2 infection experienced a significant declination in the early stage of the epidemic. We suspect that the sharp deterioration of virus toxicity is related to the deletion of the untranslated region (UTR) of the virus genome. It was found that the genome length of SARS-CoV-2 engaged a significant truncation due to UTR deletion after a mega-sequence analysis. Sequence similarity analysis further indicated that short UTR strains originated from its long UTR ancestors after an irreversible deletion. A good correlation was discovered between genome length and mortality, which demonstrated that the deletion of the virus UTR significantly affected the toxicity of the virus. This correlation was further confirmed in a significance analysis of the genetic influence on the clinical outcomes. The viral genome length of hospitalized patients was significantly more extensive than that of asymptomatic patients. In contrast, the viral genome length of asymptomatic was considerably longer than that of ordinary patients with symptoms. A genome-level mutation scanning was performed to systematically evaluate the influence of mutations at each position on virulence. The results indicated that UTR deletion was the primary driving force in alternating virus virulence in the early evolution. In the end, we proposed a mathematical model to explain why this UTR deletion was not continuous.
Collapse
Affiliation(s)
- Zhaobin Xu
- Department of Life Science, Dezhou University, Dezhou, China
| | - Dongying Yang
- Department of Medicine, Dezhou University, Dezhou, China
| | - Liyan Wang
- Department of Life Science, Dezhou University, Dezhou, China
| | - Jacques Demongeot
- Laboratory AGEIS EA 7407, Team Tools for e-Gnosis Medical, Faculty of Medicine, University Grenoble Alpes (UGA), La Tronche, France
| |
Collapse
|
5
|
Girgis S, Xu Z, Oikonomopoulos S, Fedorova AD, Tchesnokov EP, Gordon CJ, Schmeing TM, Götte M, Sonenberg N, Baranov PV, Ragoussis J, Hobman TC, Pelletier J. Evolution of naturally arising SARS-CoV-2 defective interfering particles. Commun Biol 2022; 5:1140. [PMID: 36302891 PMCID: PMC9610340 DOI: 10.1038/s42003-022-04058-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 09/30/2022] [Indexed: 11/23/2022] Open
Abstract
Defective interfering (DI) particles arise during virus propagation, are conditional on parental virus for replication and packaging, and interfere with viral expansion. There is much interest in developing DIs as anti-viral agents. Here we characterize DI particles that arose following serial passaging of SARS-CoV-2 at high multiplicity of infection. The prominent DIs identified have lost ~84% of the SARS-CoV-2 genome and are capable of attenuating parental viral titers. Synthetic variants of the DI genomes also interfere with infection and can be used as conditional, gene delivery vehicles. In addition, the DI genomes encode an Nsp1-10 fusion protein capable of attenuating viral replication. These results identify naturally selected defective viral genomes that emerged and stably propagated in the presence of parental virus. Genomes from defective interfering (DI) particles following serial passaging of SARS-CoV-2 reveal a fusion protein that attenuates viral replication. Synthetic, recombinant DI genomes are designed to interfere with SARS-CoV-2 replication.
Collapse
Affiliation(s)
- Samer Girgis
- Department of Biochemistry, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Zaikun Xu
- Department of Cell Biology, U Alberta, Edmonton, AB, T6G 2H7, Canada
| | - Spyros Oikonomopoulos
- McGill Genome Centre, Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Alla D Fedorova
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland.,SFI Centre for Research Training in Genomics Data Science, University College Cork, Cork, Ireland
| | - Egor P Tchesnokov
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Calvin J Gordon
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - T Martin Schmeing
- Department of Biochemistry, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Matthias Götte
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Nahum Sonenberg
- Department of Biochemistry, McGill University, Montreal, QC, H3G 1Y6, Canada.,Rosalind and Morris Goodman Cancer Institute, Montreal, QC, H3A 1A3, Canada
| | - Pavel V Baranov
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Jiannis Ragoussis
- McGill Genome Centre, Department of Human Genetics, McGill University, Montreal, QC, Canada.,Department of Bioengineering, McGill University, Montreal, QC, Canada
| | - Tom C Hobman
- Department of Cell Biology, U Alberta, Edmonton, AB, T6G 2H7, Canada. .,Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, T6G 2E1, Canada. .,Li Ka Shing Institute of Virology, U Alberta, Edmonton, AB, T6G 2E1, Canada. .,Women & Children's Health Research Institute, U Alberta, Edmonton, AB, T6G 1C9, Canada.
| | - Jerry Pelletier
- Department of Biochemistry, McGill University, Montreal, QC, H3G 1Y6, Canada. .,Rosalind and Morris Goodman Cancer Institute, Montreal, QC, H3A 1A3, Canada. .,Department of Oncology, McGill University, Montreal, QC, H3A 1G5, Canada.
| |
Collapse
|
6
|
Zhang LQ, Cui H, Wang L, Fang X, Su S. Role of microRNA-29a in the development of diabetic retinopathy by targeting AGT gene in a rat model. Exp Mol Pathol 2017; 102:296-302. [PMID: 28189547 DOI: 10.1016/j.yexmp.2017.02.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 02/05/2017] [Accepted: 02/08/2017] [Indexed: 12/31/2022]
Abstract
OBJECTIVES This study intends to explore the role of microRNA-29a (miRNA-29a) in the development of diabetic retinopathy by targeting AGT gene in a rat model. METHODS Fifty-six DR rat models were established and divided into 7 groups (with 8 rats in each group): the model group, the miRNA-29a group, the miRNA-29a knockdown group, the negative control (NC) group, the AGT group, the miRNA-29a+AGT group, and the miRNA-29a knockdown+AGT group respectively, while 8 normal rats were selected as the normal group. The qRT-PCR was used to detect the expression of miRNA-29a and AGT mRNA. The AGT protein expression was measured using Western blotting. The ADPase histochemical staining was applied to detect retinal neo-vascular morphology. The number of retinal vascular endothelial cells was counted by H&E staining. RESULTS MiRNA-29a and AGT mRNA expressions were negatively correlated. Compared with rats in the normal group, the miRNA-29a expression in DR rats of each group decreased, but the AGT mRNA and protein expression increased; the vascular distribution was in disorder, and the new retinal vessels, vascular density, and endothelial nuclei all increased. Compared with the model group, miRNA-29a increased, and the AGT mRNA and protein expression decreased in the miRNA-29a group; additionally, the vascular density, tortuosity, and endothelial cell nuclei significantly decreased. The opposite trend was found in the miRNA-29a knockdown group, the miRNA-29a knockdown+AGT group, and the AGT group, particularly in the miRNA-29a knockdown+AGT group. CONCLUSION Overexpression of miRNA-29a could down-regulate AGT expression, thereby preventing the development of DR in a rat model.
Collapse
Affiliation(s)
- Li-Qiong Zhang
- Department of Ophthalmology, First Affiliated Hospital, Harbin Medical University, Harbin 150001, PR China.
| | - Hao Cui
- Department of Ophthalmology, First Affiliated Hospital, Harbin Medical University, Harbin 150001, PR China
| | - Lin Wang
- Department of Ophthalmology, First Affiliated Hospital, Harbin Medical University, Harbin 150001, PR China
| | - Xu Fang
- Department of Ophthalmology, First Affiliated Hospital, Harbin Medical University, Harbin 150001, PR China
| | - Sheng Su
- Department of Ophthalmology, First Affiliated Hospital, Harbin Medical University, Harbin 150001, PR China
| |
Collapse
|
7
|
Abstract
Coronaviruses have exceptionally large RNA genomes of approximately 30 kilobases. Genome replication and transcription is mediated by a multisubunit protein complex comprised of more than a dozen virus-encoded proteins. The protein complex is thought to bind specific cis-acting RNA elements primarily located in the 5'- and 3'-terminal genome regions and upstream of the open reading frames located in the 3'-proximal one-third of the genome. Here, we review our current understanding of coronavirus cis-acting RNA elements, focusing on elements required for genome replication and packaging. Recent bioinformatic, biochemical, and genetic studies suggest a previously unknown level of conservation of cis-acting RNA structures among different coronavirus genera and, in some cases, even beyond genus boundaries. Also, there is increasing evidence to suggest that individual cis-acting elements may be part of higher-order RNA structures involving long-range and dynamic RNA-RNA interactions between RNA structural elements separated by thousands of nucleotides in the viral genome. We discuss the structural and functional features of these cis-acting RNA elements and their specific functions in coronavirus RNA synthesis.
Collapse
Affiliation(s)
- R Madhugiri
- Institute of Medical Virology, Justus Liebig University Giessen, Giessen, Germany
| | - M Fricke
- Faculty of Mathematics and Computer Science, Friedrich Schiller University Jena, Jena, Germany
| | - M Marz
- Faculty of Mathematics and Computer Science, Friedrich Schiller University Jena, Jena, Germany; FLI Leibniz Institute for Age Research, Jena, Germany
| | - J Ziebuhr
- Institute of Medical Virology, Justus Liebig University Giessen, Giessen, Germany.
| |
Collapse
|
8
|
Bok M, Miño S, Rodriguez D, Badaracco A, Nuñes I, Souza SP, Bilbao G, Louge Uriarte E, Galarza R, Vega C, Odeon A, Saif LJ, Parreño V. Molecular and antigenic characterization of bovine Coronavirus circulating in Argentinean cattle during 1994-2010. Vet Microbiol 2015; 181:221-9. [PMID: 26520931 PMCID: PMC7185509 DOI: 10.1016/j.vetmic.2015.10.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 08/28/2015] [Accepted: 10/13/2015] [Indexed: 12/11/2022]
Abstract
Detection rate of BCoV was statistically higher in dairy than in beef calves. Argentinean strains are distant from the Mebus strain included in local vaccines. In vitro cross-protection between Arg95 field strain and Mebus reference strain.
Bovine coronavirus (BCoV) is an important viral pathogen associated with neonatal calf diarrhea. Our aim was to investigate the incidence of BCoV in diarrhea outbreaks in beef and dairy herds from Argentina during 1994–2010. A total of 5.365 fecal samples from diarrheic calves were screened for BCoV diagnosis by ELISA. The virus was detected in 1.71% (92/5365) of the samples corresponding to 5.95% (63/1058) of the diarrhea cases in 239 beef and 324 dairy farms. The detection rate of BCoV was significantly higher in dairy than in beef herds: 12.13% (29/239) vs. 4.32% (14/324) respectively. Phylogenetic analysis of the hypervariable S1 region of seven representative samples (from different husbandry systems, farm locations and years of sampling) indicated that BCoV strains circulating in Argentinean beef and dairy herds formed a cluster distinct from other geographical regions. Interestingly, Argentinean strains are distantly related (at both the nucleotide and amino acid levels) with the Mebus historic reference BCoV strain included in the vaccines currently available in Argentina. However, Mebus-induced antibodies were capable of neutralizing the BCoV Arg95, a field strain adapted to grow in vitro, and vice versa, indicating that both strains belong to the same CoV serotype reported in cattle. This work represents the first large survey describing BCoV circulation in Argentinean cattle.
Collapse
Affiliation(s)
- M Bok
- Virology Institute, CICVyA, National Institute of Agricultural Technology (INTA), Buenos Aires, Argentina
| | - S Miño
- Virology Institute, CICVyA, National Institute of Agricultural Technology (INTA), Buenos Aires, Argentina; State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agriculture Sciences, Harbin, 150001 Heilongjiang, China
| | - D Rodriguez
- Virology Institute, CICVyA, National Institute of Agricultural Technology (INTA), Buenos Aires, Argentina
| | - A Badaracco
- Virology Institute, CICVyA, National Institute of Agricultural Technology (INTA), Buenos Aires, Argentina
| | - I Nuñes
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine, University of São Paulo, Brazil
| | - S P Souza
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine, University of São Paulo, Brazil
| | - G Bilbao
- Laboratory of Animal Health, EEA INTA- Balcarce, Buenos Aires, Argentina
| | | | - R Galarza
- EEA, INTA Rafaela, Santa Fe, Argentina
| | - C Vega
- Virology Institute, CICVyA, National Institute of Agricultural Technology (INTA), Buenos Aires, Argentina
| | - A Odeon
- Laboratory of Animal Health, EEA INTA- Balcarce, Buenos Aires, Argentina
| | - L J Saif
- Food Animal Health Research Program, The Ohio State University, Wooster, OH, USA
| | - V Parreño
- Virology Institute, CICVyA, National Institute of Agricultural Technology (INTA), Buenos Aires, Argentina.
| |
Collapse
|
9
|
Madhugiri R, Fricke M, Marz M, Ziebuhr J. RNA structure analysis of alphacoronavirus terminal genome regions. Virus Res 2014; 194:76-89. [PMID: 25307890 PMCID: PMC7114417 DOI: 10.1016/j.virusres.2014.10.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 09/30/2014] [Accepted: 10/01/2014] [Indexed: 02/07/2023]
Abstract
Review of current knowledge of cis-acting RNA elements essential to coronavirus replication. Identification of RNA structural elements in alphacoronavirus terminal genome regions. Discussion of intra- and intergeneric conservation of genomic cis-acting RNA elements in alpha- and betacoronaviruses.
Coronavirus genome replication is mediated by a multi-subunit protein complex that is comprised of more than a dozen virally encoded and several cellular proteins. Interactions of the viral replicase complex with cis-acting RNA elements located in the 5′ and 3′-terminal genome regions ensure the specific replication of viral RNA. Over the past years, boundaries and structures of cis-acting RNA elements required for coronavirus genome replication have been extensively characterized in betacoronaviruses and, to a lesser extent, other coronavirus genera. Here, we review our current understanding of coronavirus cis-acting elements located in the terminal genome regions and use a combination of bioinformatic and RNA structure probing studies to identify and characterize putative cis-acting RNA elements in alphacoronaviruses. The study suggests significant RNA structure conservation among members of the genus Alphacoronavirus but also across genus boundaries. Overall, the conservation pattern identified for 5′ and 3′-terminal RNA structural elements in the genomes of alpha- and betacoronaviruses is in agreement with the widely used replicase polyprotein-based classification of the Coronavirinae, suggesting co-evolution of the coronavirus replication machinery with cognate cis-acting RNA elements.
Collapse
Affiliation(s)
- Ramakanth Madhugiri
- Institute of Medical Virology, Justus Liebig University Giessen, Schubertstrasse 81, 35392 Giessen, Germany
| | - Markus Fricke
- Faculty of Mathematics and Computer Science, Friedrich Schiller University Jena, Leutragraben 1, 07743 Jena, Germany
| | - Manja Marz
- Faculty of Mathematics and Computer Science, Friedrich Schiller University Jena, Leutragraben 1, 07743 Jena, Germany
| | - John Ziebuhr
- Institute of Medical Virology, Justus Liebig University Giessen, Schubertstrasse 81, 35392 Giessen, Germany.
| |
Collapse
|
10
|
Chen IH, Chu CH, Lin JW, Hsu YH, Tsai CH. Maintaining the structural integrity of the Bamboo mosaic virus 3' untranslated region is necessary for retaining the catalytic constant for minus-strand RNA synthesis. Virol J 2013; 10:208. [PMID: 23800142 PMCID: PMC3720222 DOI: 10.1186/1743-422x-10-208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Accepted: 06/21/2013] [Indexed: 12/03/2022] Open
Abstract
Background Bamboo mosaic virus (BaMV) and the Potato virus X (PVX) are members of the genus Potexvirus and have a single-stranded positive-sense RNA genome. The 3′-untranslated region (UTR) of the BaMV RNA genome was mapped structurally into ABC (a cloverleaf-like), D (a stem-loop), and E (pseudoknot) domains. The BaMV replicase complex that was isolated from the infected plants was able to recognize the 3′ UTR of PVX RNA to initiate minus-strand RNA synthesis in vitro. Results To investigate whether the 3′ UTR of PVX RNA is also compatible with BaMV replicase in vivo, we constructed chimera mutants using a BaMV backbone containing the PVX 3′ UTR, which was inserted in or used to replace the various domains in the 3′ UTR of BaMV. None of the mutants, except for the mutant with the PVX 3′ UTR inserted upstream of the BaMV 3′ UTR, exhibited a detectable accumulation of viral RNA in Nicotiana benthamiana plants. The in vitro BaMV RdRp replication assay demonstrated that the RNA products were generated by the short RNA transcripts, which were derived from the chimera mutants to various extents. Furthermore, the Vmax/KM of the BaMV 3′ UTR (rABCDE) was approximately three fold higher than rABCP, rP, and rDE in minus-strand RNA synthesis. These mutants failed to accumulate viral products in protoplasts and plants, but were adequately replicated in vitro. Conclusions Among the various studied BaMV/PVX chimera mutants, the BaMV-S/PABCDE that contained non-interrupted BaMV 3′ UTR was the only mutant that exhibited a wild-type level of viral product accumulation in protoplasts and plants. These results indicate that the continuity of the domains in the 3′ UTR of BaMV RNA was not interrupted and the domains were not replaced with the 3′ UTR of PVX RNA in vivo.
Collapse
Affiliation(s)
- I-Hsuan Chen
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan
| | | | | | | | | |
Collapse
|
11
|
Sztuba-Solińska J, Stollar V, Bujarski JJ. Subgenomic messenger RNAs: mastering regulation of (+)-strand RNA virus life cycle. Virology 2011; 412:245-55. [PMID: 21377709 PMCID: PMC7111999 DOI: 10.1016/j.virol.2011.02.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 12/14/2010] [Accepted: 02/04/2011] [Indexed: 12/12/2022]
Abstract
Many (+)-strand RNA viruses use subgenomic (SG) RNAs as messengers for protein expression, or to regulate their viral life cycle. Three different mechanisms have been described for the synthesis of SG RNAs. The first mechanism involves internal initiation on a (−)-strand RNA template and requires an internal SGP promoter. The second mechanism makes a prematurely terminated (−)-strand RNA which is used as template to make the SG RNA. The third mechanism uses discontinuous RNA synthesis while making the (−)-strand RNA templates. Most SG RNAs are translated into structural proteins or proteins related to pathogenesis: however other SG RNAs regulate the transition between translation and replication, function as riboregulators of replication or translation, or support RNA–RNA recombination. In this review we discuss these functions of SG RNAs and how they influence viral replication, translation and recombination.
Collapse
Affiliation(s)
- Joanna Sztuba-Solińska
- Plant Molecular Biology Center and the Department of Biological Sciences, Northern Illinois University, De Kalb, IL 60115, USA
| | | | | |
Collapse
|
12
|
Enjuanes L, Almazán F, Sola I, Zuñiga S. Biochemical aspects of coronavirus replication and virus-host interaction. Annu Rev Microbiol 2006; 60:211-30. [PMID: 16712436 DOI: 10.1146/annurev.micro.60.080805.142157] [Citation(s) in RCA: 157] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Infection by different coronaviruses (CoVs) causes alterations in the transcriptional and translational patterns, cell cycle, cytoskeleton, and apoptosis pathways of the host cells. In addition, CoV infection may cause inflammation, alter immune and stress responses, and modify the coagulation pathways. The balance between the up- and downregulated genes could explain the pathogenesis caused by these viruses. We review specific aspects of CoV-host interactions. CoV genome replication takes place in the cytoplasm in a membrane-protected microenvironment and may control the cell machinery by locating some of their proteins in the host cell nucleus. CoVs initiate translation by cap-dependent and cap-independent mechanisms. CoV transcription involves a discontinuous RNA synthesis (template switching) during the extension of a negative copy of the subgenomic mRNAs. The requirement for base-pairing during transcription has been formally demonstrated in arteriviruses and CoVs. CoV N proteins have RNA chaperone activity that may help initiate template switching. Both viral and cellular proteins are required for replication and transcription, and the role of selected proteins is addressed.
Collapse
Affiliation(s)
- Luis Enjuanes
- Department of Molecular and Cell Biology, CNB, CSIC, 28049 Madrid, Spain.
| | | | | | | |
Collapse
|
13
|
Pasternak AO, Spaan WJM, Snijder EJ. Nidovirus transcription: how to make sense...? J Gen Virol 2006; 87:1403-1421. [PMID: 16690906 DOI: 10.1099/vir.0.81611-0] [Citation(s) in RCA: 256] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Many positive-stranded RNA viruses use subgenomic mRNAs to express part of their genetic information. To produce structural and accessory proteins, members of the order Nidovirales (corona-, toro-, arteri- and roniviruses) generate a 3' co-terminal nested set of at least three and often seven to nine mRNAs. Coronavirus and arterivirus subgenomic transcripts are not only 3' co-terminal but also contain a common 5' leader sequence, which is derived from the genomic 5' end. Their synthesis involves a process of discontinuous RNA synthesis that resembles similarity-assisted RNA recombination. Most models proposed over the past 25 years assume co-transcriptional fusion of subgenomic RNA leader and body sequences, but there has been controversy over the question of whether this occurs during plus- or minus-strand synthesis. In the latter model, which has now gained considerable support, subgenomic mRNA synthesis takes place from a complementary set of subgenome-size minus-strand RNAs, produced by discontinuous minus-strand synthesis. Sense-antisense base-pairing interactions between short conserved sequences play a key regulatory role in this process. In view of the presumed common ancestry of nidoviruses, the recent finding that ronivirus and torovirus mRNAs do not contain a common 5' leader sequence is surprising. Apparently, major mechanistic differences must exist between nidoviruses, which raises questions about the functions of the common leader sequence and nidovirus transcriptase proteins and the evolution of nidovirus transcription. In this review, nidovirus transcription mechanisms are compared, the experimental systems used are critically assessed and, in particular, the impact of recently developed reverse genetic systems is discussed.
Collapse
Affiliation(s)
- Alexander O Pasternak
- Molecular Virology Laboratory, Department of Medical Microbiology, Center of Infectious Diseases, Leiden University Medical Center, LUMC P4-26, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Willy J M Spaan
- Molecular Virology Laboratory, Department of Medical Microbiology, Center of Infectious Diseases, Leiden University Medical Center, LUMC P4-26, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Eric J Snijder
- Molecular Virology Laboratory, Department of Medical Microbiology, Center of Infectious Diseases, Leiden University Medical Center, LUMC P4-26, PO Box 9600, 2300 RC Leiden, The Netherlands
| |
Collapse
|
14
|
Abstract
As the largest RNA virus, coronavirus replication employs complex mechanisms and involves various viral and cellular proteins. The first open reading frame of the coronavirus genome encodes a large polyprotein, which is processed into a number of viral proteins required for viral replication directly or indirectly. These proteins include the RNA-dependent RNA polymerase (RdRp), RNA helicase, proteases, metal-binding proteins, and a number of other proteins of unknown function. Genetic studies suggest that most of these proteins are involved in viral RNA replication. In addition to viral proteins, several cellular proteins, such as heterogeneous nuclear ribonucleoprotein (hnRNP) A1, polypyrimidine-tract-binding (PTB) protein, poly(A)-binding protein (PABP), and mitochondrial aconitase (m-aconitase), have been identified to interact with the critical cis-acting elements of coronavirus replication. Like many other RNA viruses, coronavirus may subvert these cellular proteins from cellular RNA processing or translation machineries to play a role in viral replication.
Collapse
Affiliation(s)
- Luis Enjuanes
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología, Campus Universidad Autónoma, Cantoblanco, 38049 Madrid, Spain
| |
Collapse
|
15
|
Choi KS, Mizutani A, Lai MMC. SYNCRIP, a member of the heterogeneous nuclear ribonucleoprotein family, is involved in mouse hepatitis virus RNA synthesis. J Virol 2004; 78:13153-62. [PMID: 15542667 PMCID: PMC525026 DOI: 10.1128/jvi.78.23.13153-13162.2004] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Several cellular proteins, including several heterogeneous nuclear ribonucleoproteins (hnRNPs), have been shown to function as regulatory factors for mouse hepatitis virus (MHV) RNA synthesis as a result of their binding to the 5' and 3' untranslated regions (UTRs) of the viral RNA. Here, we identified another cellular protein, p70, which has been shown by UV cross-linking to bind both the positive- and negative-strand UTRs of MHV RNA specifically. We purified p70 with a a one-step RNA affinity purification procedure with the biotin-labeled 5'-UTR. Matrix-assisted laser desorption ionization (MALDI)-mass spectrometry identified it as synaptotagmin-binding cytoplasmic RNA-interacting protein (SYNCRIP). SYNCRIP is a member of the hnRNP family and localizes largely in the cytoplasm. The p70 was cross-linked to the MHV positive- or negative-strand UTR in vitro and in vivo. The bacterially expressed SYNCRIP was also able to bind to the 5'-UTR of both strands. The SYNCRIP-binding site was mapped to the leader sequence of the 5'-UTR, requiring the UCUAA repeat sequence. To investigate the functional significance of SYNCRIP in MHV replication, we expressed a full-length or a C-terminally truncated form of SYNCRIP in mammalian cells expressing the MHV receptor. The overexpression of either form of SYNCRIP inhibited syncytium formation induced by MHV infection. Furthermore, downregulation of the endogenous SYNCRIP with a specific short interfering RNA delayed MHV RNA synthesis; in contrast, overexpression or downregulation of SYNCRIP did not affect MHV translation. These results suggest that SYNCRIP may be directly involved in MHV RNA replication as a positive regulator. This study identified an additional cellular hnRNP as an MHV RNA-binding protein potentially involved in viral RNA synthesis.
Collapse
Affiliation(s)
- Keum S Choi
- Department of Molecular Microbiology and Immunology, University of Southern California, Keck School of Medicine, 2011 Zonal Ave., HMR 401, Los Angeles, CA 90033-1054, USA
| | | | | |
Collapse
|
16
|
Pasternak AO, Spaan WJM, Snijder EJ. Regulation of relative abundance of arterivirus subgenomic mRNAs. J Virol 2004; 78:8102-13. [PMID: 15254182 PMCID: PMC446141 DOI: 10.1128/jvi.78.15.8102-8113.2004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2003] [Accepted: 03/22/2004] [Indexed: 11/20/2022] Open
Abstract
The subgenomic (sg) mRNAs of arteriviruses (order Nidovirales) form a 5'- and 3'-coterminal nested set with the viral genome. Their 5' common leader sequence is derived from the genomic 5'-proximal region. Fusion of sg RNA leader and "body" segments involves a discontinuous transcription step. Presumably during minus-strand synthesis, the nascent RNA strand is transferred from one site in the genomic template to another, a process guided by conserved transcription-regulating sequences (TRSs) at these template sites. Subgenomic RNA species are produced in different but constant molar ratios, with the smallest RNAs usually being most abundant. Factors thought to influence sg RNA synthesis are size differences between sg RNA species, differences in sequence context between body TRSs, and the mutual influence (or competition) between strand transfer reactions occurring at different body TRSs. Using an Equine arteritis virus infectious cDNA clone, we investigated how body TRS activity affected sg RNA synthesis from neighboring body TRSs. Flanking sequences were standardized by head-to-tail insertion of several copies of an RNA7 body TRS cassette. A perfect gradient of sg RNA abundance, progressively favoring smaller RNA species, was observed. Disruption of body TRS function by mutagenesis did not have a significant effect on the activity of other TRSs. However, deletion of body TRS-containing regions enhanced synthesis of sg RNAs from upstream TRSs but not of those produced from downstream TRSs. The results of this study provide considerable support for the proposed discontinuous extension of minus-strand RNA synthesis as a crucial step in sg RNA synthesis.
Collapse
Affiliation(s)
- Alexander O Pasternak
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | |
Collapse
|
17
|
Xu J, Hu J, Wang J, Han Y, Hu Y, Wen J, Li Y, Ji J, Ye J, Zhang Z, Wei W, Li S, Wang J, Wang J, Yu J, Yang H. Genome organization of the SARS-CoV. GENOMICS, PROTEOMICS & BIOINFORMATICS 2003; 1:226-35. [PMID: 15629035 PMCID: PMC5172239 DOI: 10.1016/s1672-0229(03)01028-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Annotation of the genome sequence of the SARS-CoV (severe acute respiratory syndrome-associated coronavirus) is indispensable to understand its evolution and pathogenesis. We have performed a full annotation of the SARS-CoV genome sequences by using annotation programs publicly available or developed by ourselves. Totally, 21 open reading frames (ORFs) of genes or putative uncharacterized proteins (PUPs) were predicted. Seven PUPs had not been reported previously, and two of them were predicted to contain transmembrane regions. Eight ORFs partially overlapped with or embedded into those of known genes, revealing that the SARS-CoV genome is a small and compact one with overlapped coding regions. The most striking discovery is that an ORF locates on the minus strand. We have also annotated non-coding regions and identified the transcription regulating sequences (TRS) in the intergenic regions. The analysis of TRS supports the minus strand extending transcription mechanism of coronavirus. The SNP analysis of different isolates reveals that mutations of the sequences do not affect the prediction results of ORFs.
Collapse
Affiliation(s)
- Jing Xu
- Beijing Genomics Institute, Chinese Academy of Sciences, Beijing 101300, China
| | - Jianfei Hu
- Beijing Genomics Institute, Chinese Academy of Sciences, Beijing 101300, China
- College of Life Sciences, Peking University, Beijing 100871, China
| | - Jing Wang
- Beijing Genomics Institute, Chinese Academy of Sciences, Beijing 101300, China
- College of Life Sciences, Peking University, Beijing 100871, China
| | - Yujun Han
- Beijing Genomics Institute, Chinese Academy of Sciences, Beijing 101300, China
| | - Yongwu Hu
- Beijing Genomics Institute, Chinese Academy of Sciences, Beijing 101300, China
- Wenzhou Medical College, Wenzhou 325003, China
| | - Jie Wen
- Beijing Genomics Institute, Chinese Academy of Sciences, Beijing 101300, China
| | - Yan Li
- Beijing Genomics Institute, Chinese Academy of Sciences, Beijing 101300, China
| | - Jia Ji
- Beijing Genomics Institute, Chinese Academy of Sciences, Beijing 101300, China
| | - Jia Ye
- Beijing Genomics Institute, Chinese Academy of Sciences, Beijing 101300, China
- James D. Watson Institute of Genome Sciences, Zhijiang Campus, Zhejiang University and Hangzhou Genomics Institute, Hangzhou 310008, China
| | - Zizhang Zhang
- College of Materials Science and Chemical Engineering, Yuquan Campus, Zhejiang University, Hangzhou 310027, China
| | - Wei Wei
- James D. Watson Institute of Genome Sciences, Zhijiang Campus, Zhejiang University and Hangzhou Genomics Institute, Hangzhou 310008, China
| | - Songgang Li
- Beijing Genomics Institute, Chinese Academy of Sciences, Beijing 101300, China
- College of Life Sciences, Peking University, Beijing 100871, China
| | - Jun Wang
- Beijing Genomics Institute, Chinese Academy of Sciences, Beijing 101300, China
| | - Jian Wang
- Beijing Genomics Institute, Chinese Academy of Sciences, Beijing 101300, China
- James D. Watson Institute of Genome Sciences, Zhijiang Campus, Zhejiang University and Hangzhou Genomics Institute, Hangzhou 310008, China
| | - Jun Yu
- Beijing Genomics Institute, Chinese Academy of Sciences, Beijing 101300, China
- James D. Watson Institute of Genome Sciences, Zhijiang Campus, Zhejiang University and Hangzhou Genomics Institute, Hangzhou 310008, China
| | - Huanming Yang
- Beijing Genomics Institute, Chinese Academy of Sciences, Beijing 101300, China
- James D. Watson Institute of Genome Sciences, Zhijiang Campus, Zhejiang University and Hangzhou Genomics Institute, Hangzhou 310008, China
| |
Collapse
|
18
|
Choi KS, Huang PY, Lai MMC. Polypyrimidine-tract-binding protein affects transcription but not translation of mouse hepatitis virus RNA. Virology 2002; 303:58-68. [PMID: 12482658 DOI: 10.1006/viro.2002.1675] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Polypyrimidine-tract-binding protein (PTB) has been shown to bind specifically to the 5' ends of mouse hepatitis virus (MHV) RNA and its complementary strand. To further characterize the function of PTB in MHV replication, we generated dominant-negative mutant cell lines that express a full-length PTB or a truncated form of PTB, which includes only the N-terminal half of the protein, retaining its protein-dimerization domain. The truncated form of PTB was localized in the cytoplasm, whereas the full-length PTB was present mainly in the nucleus. The truncated form can interact with the full-length PTB in vitro. We observed that both the full-length and the truncated PTB, when overexpressed, functioned in a dominant-negative manner in MHV replication. However, the truncated form exhibited more severe effects on syncytia formation, virus production, and synthesis of viral RNA and viral proteins. To clarify the precise function of PTB in MHV replication, we dissociated the processes of viral transcription from translation by transfecting different types of MHV defective-interfering (DI) RNA that contain various reporter genes into these stable cell lines. Transcription of the DI RNA during MHV infection was greatly inhibited in these cell lines, indicating that PTB modulates MHV transcription. In contrast, translation of the DI RNA was not affected by PTB depletion in in vitro translation in rabbit reticulocyte lysate or by PTB overexpression in in vivo translation experiments in MHV-infected cells. Given that PTB interacts with the viral N protein, which is one of the components of the MHV replication complex, PTB may exert its function on viral replication/transcription by association with viral RNA as well as other viral and cellular factors in the replication complex.
Collapse
Affiliation(s)
- Keum S Choi
- Department of Molecular Microbiology and Immunology, University of Southern California, Keck School of Medicine, Los Angeles, California 90033, USA
| | | | | |
Collapse
|
19
|
Shanmukhappa K, Kapil S. Cloning and identification of MARC-145 cell proteins binding to 3'UTR and partial nucleoprotein gene of porcine reproductive and respiratory syndrome virus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2002; 494:641-6. [PMID: 11774539 DOI: 10.1007/978-1-4615-1325-4_95] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Affiliation(s)
- K Shanmukhappa
- Department of Diagnostic Medicine-Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | | |
Collapse
|
20
|
Brian DA. Nidovirus genome replication and subgenomic mRNA synthesis. Pathways followed and cis-acting elements required. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2002; 494:415-28. [PMID: 11774502 DOI: 10.1007/978-1-4615-1325-4_62] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Affiliation(s)
- D A Brian
- Department of Microbiology, University of Tennessee, Knoxville, TN, USA
| |
Collapse
|
21
|
Huang P, Lai MM. Heterogeneous nuclear ribonucleoprotein a1 binds to the 3'-untranslated region and mediates potential 5'-3'-end cross talks of mouse hepatitis virus RNA. J Virol 2001; 75:5009-17. [PMID: 11333880 PMCID: PMC114904 DOI: 10.1128/jvi.75.11.5009-5017.2001] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2000] [Accepted: 03/06/2001] [Indexed: 11/20/2022] Open
Abstract
The 3'-untranslated region (3'-UTR) of mouse hepatitis virus (MHV) RNA regulates the replication of and transcription from the viral RNA. Several host cell proteins have previously been shown to interact with this regulatory region. By immunoprecipitation of UV-cross-linked cellular proteins and in vitro binding of the recombinant protein, we have identified the major RNA-binding protein species as heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1). A strong hnRNP A1-binding site was located 90 to 170 nucleotides from the 3' end of MHV RNA, and a weak binding site was mapped at nucleotides 260 to 350 from the 3' end. These binding sites are complementary to the sites on the negative-strand RNA that bind another cellular protein, polypyrimidine tract-binding protein (PTB). Mutations that affect PTB binding to the negative strand of the 3'-UTR also inhibited hnRNP A1 binding on the positive strand, indicating a possible relationship between these two proteins. Defective-interfering RNAs containing a mutated hnRNP A1-binding site have reduced RNA transcription and replication activities. Furthermore, hnRNP A1 and PTB, both of which also bind to the complementary strands at the 5' end of MHV RNA, together mediate the formation of an RNP complex involving the 5'- and 3'-end fragments of MHV RNA in vitro. These studies suggest that hnRNP A1-PTB interactions provide a molecular mechanism for potential 5'-3' cross talks in MHV RNA, which may be important for RNA replication and transcription.
Collapse
Affiliation(s)
- P Huang
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, California 90033-1054, USA
| | | |
Collapse
|
22
|
Nanda SK, Leibowitz JL. Mitochondrial aconitase binds to the 3' untranslated region of the mouse hepatitis virus genome. J Virol 2001; 75:3352-62. [PMID: 11238861 PMCID: PMC114128 DOI: 10.1128/jvi.75.7.3352-3362.2001] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mouse hepatitis virus (MHV), a member of the Coronaviridae, contains a polyadenylated positive-sense single-stranded genomic RNA which is 31 kb long. MHV replication and transcription take place via the synthesis of negative-strand RNA intermediates from a positive-strand genomic template. A cis-acting element previously identified in the 3' untranslated region binds to trans-acting host factors from mouse fibroblasts and forms at least three RNA-protein complexes. The largest RNA-protein complex formed by the cis-acting element and the lysate from uninfected mouse fibroblasts has a molecular weight of about 200 kDa. The complex observed in gel shift assays has been resolved by second-dimension sodium dodecyl sulfate-polyacrylamide gel electrophoresis into four proteins of approximately 90, 70, 58, and 40 kDa after RNase treatment. Specific RNA affinity chromatography also has revealed the presence of a 90-kDa protein associated with RNA containing the cis-acting element bound to magnetic beads. The 90-kDa protein has been purified from uninfected mouse fibroblast crude lysates. Protein microsequencing identified the 90-kDa protein as mitochondrial aconitase. Antibody raised against purified mitochondrial aconitase recognizes the RNA-protein complex and the 90-kDa protein, which can be released from the complex by RNase digestion. Furthermore, UV cross-linking studies indicate that highly purified mitochondrial aconitase binds specifically to the MHV 3' protein-binding element. Increasing the intracellular level of mitochondrial aconitase by iron supplementation resulted in increased RNA-binding activity in cell extracts and increased virus production as well as viral protein synthesis at early hours of infection. These results are particularly interesting in terms of identification of an RNA target for mitochondrial aconitase, which has a cytoplasmic homolog, cytoplasmic aconitase, also known as iron regulatory protein 1, a well-recognized RNA-binding protein. The binding properties of mitochondrial aconitase and the functional relevance of RNA binding appear to parallel those of cytoplasmic aconitase.
Collapse
Affiliation(s)
- S K Nanda
- Department of Pathology and Laboratory Medicine, Texas A&M University System Health Science Center, College Station, Texas 77843-1114, USA
| | | |
Collapse
|
23
|
Wang Y, Zhang X. The leader RNA of coronavirus mouse hepatitis virus contains an enhancer-like element for subgenomic mRNA transcription. J Virol 2000; 74:10571-80. [PMID: 11044101 PMCID: PMC110931 DOI: 10.1128/jvi.74.22.10571-10580.2000] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
While the 5' cis-acting sequence of mouse hepatitis virus (MHV) for genomic RNA replication has been determined in several defective interfering (DI) RNA systems, it remains elusive for subgenomic RNA transcription. Previous studies have shown that the leader RNA in the DI genome significantly enhances the efficiency of DI subgenomic mRNA transcription, indicating that the leader RNA is a cis-acting sequence for mRNA transcription. To further characterize the cis-acting sequence, we made a series of deletion mutants, all but one of which have an additional deletion of the cis-acting signal for replication in the 5' untranslated region. This deletion effectively eliminated the replication of the DI-chloramphenicol acetyltransferase (CAT)-reporter, as demonstrated by the sensitive reverse transcription (RT)-PCR. The ability of these replication-minus mutants to transcribe subgenomic mRNAs was then assessed using the DI RNA-CAT reporter system. Results from both CAT activity and mRNA transcripts detected by RT-PCR showed that a 5'-proximal sequence of 35 nucleotides (nt) at nt 25 to 59 is a cis-acting sequence required for subgenomic RNA transcription, while the consensus repeat sequence of the leader RNA does not have such effect. Analyses of the secondary structure indicate that this 35-nt sequence forms two stem-loops conserved among MHVs. Deletion of this sequence abrogated transcriptional activity and disrupted the predicted stem-loops and overall RNA secondary structure at the 5' untranslated region, suggesting that the secondary structure formed by this 35-nt sequence may facilitate the downstream consensus sequence accessible for the discontinuous RNA transcription. This may provide a mechanism by which the 5' cis-acting sequence regulates subgenomic RNA transcription. The 5'-most 24 nt are not essential for transcription, while the 9 nt immediately downstream of the leader enhances RNA transcription. The sequence between nt 86 and 135 had little effect on transcription. This study thus defines the cis-acting transcription signal at the 5' end of the DI genome.
Collapse
Affiliation(s)
- Y Wang
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
| | | |
Collapse
|
24
|
Shi ST, Huang P, Li HP, Lai MM. Heterogeneous nuclear ribonucleoprotein A1 regulates RNA synthesis of a cytoplasmic virus. EMBO J 2000; 19:4701-11. [PMID: 10970862 PMCID: PMC302072 DOI: 10.1093/emboj/19.17.4701] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Heterogeneous nuclear ribonucleoprotein (hnRNP A1) is involved in pre-mRNA splicing in the nucleus and translational regulation in the cytoplasm. In the present study, we demonstrate that hnRNP A1 also participates in the transcription and replication of a cytoplasmic RNA virus, mouse hepatitis virus (MHV). Overexpression of hnRNP A1 accelerated the kinetics of viral RNA synthesis, whereas the expression in the cytoplasm of a dominant-negative hnRNP A1 mutant that lacks the nuclear transport domain significantly delayed it. The hnRNP A1 mutant caused a global inhibition of viral mRNA transcription and genomic replication, and also a preferential inhibition of the replication of defective-interfering RNAs. Similar to the wild-type hnRNP A1, the hnRNP A1 mutant complexed with an MHV polymerase gene product, the nucleocapsid protein and the viral RNA. However, in contrast to the wild-type hnRNP A1, the mutant protein failed to bind a 250 kDa cellular protein, suggesting that the recruitment of cellular proteins by hnRNP A1 is important for MHV RNA synthesis. Our findings establish the importance of cellular factors in viral RNA-dependent RNA synthesis.
Collapse
Affiliation(s)
- S T Shi
- Department of Molecular Microbiology and Immunology and Howard Hughes Medical Institute, University of Southern California School of Medicine, 2011 Zonal Avenue, Los Angeles, CA 90033, USA
| | | | | | | |
Collapse
|
25
|
MESH Headings
- Genes, Viral/genetics
- Genome, Viral
- Models, Genetic
- Nucleic Acid Conformation
- Promoter Regions, Genetic/genetics
- RNA Viruses/genetics
- RNA, Messenger/biosynthesis
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Viral/biosynthesis
- RNA, Viral/chemistry
- RNA, Viral/genetics
Collapse
Affiliation(s)
- W A Miller
- Plant Pathology Department, Iowa State University, Ames, Iowa, 50011, USA
| | | |
Collapse
|
26
|
Koev G, Miller WA. A positive-strand RNA virus with three very different subgenomic RNA promoters. J Virol 2000; 74:5988-96. [PMID: 10846080 PMCID: PMC112095 DOI: 10.1128/jvi.74.13.5988-5996.2000] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/1999] [Accepted: 04/16/2000] [Indexed: 01/19/2023] Open
Abstract
Numerous RNA viruses generate subgenomic mRNAs (sgRNAs) for expression of their 3'-proximal genes. A major step in control of viral gene expression is the regulation of sgRNA synthesis by specific promoter elements. We used barley yellow dwarf virus (BYDV) as a model system to study transcriptional control in a virus with multiple sgRNAs. BYDV generates three sgRNAs during infection. The sgRNA1 promoter has been mapped previously to a 98-nucleotide (nt) region which forms two stem-loop structures. It was determined that sgRNA1 is not required for BYDV RNA replication in oat protoplasts. In this study, we show that neither sgRNA2 nor sgRNA3 is required for BYDV RNA replication. The promoters for sgRNA2 and sgRNA3 synthesis were mapped by using deletion mutagenesis. The minimal sgRNA2 promoter is approximately 143 nt long (nt 4810 to 4952) and is located immediately downstream of the putative sgRNA2 start site (nt 4809). The minimal sgRNA3 core promoter is 44 nt long (nt 5345 to 5388), with most of the sequence located downstream of sgRNA3 start site (nt 5348). For both promoters, additional sequences upstream of the start site enhanced sgRNA promoter activity. These promoters contrast to the sgRNA1 promoter, in which almost all of the promoter is located upstream of the transcription initiation site. Comparison of RNA sequences and computer-predicted secondary structures revealed little or no homology between the three sgRNA promoter elements. Thus, a small RNA virus with multiple sgRNAs can have very different subgenomic promoters, which implies a complex system for promoter recognition and regulation of subgenomic RNA synthesis.
Collapse
Affiliation(s)
- G Koev
- Plant Pathology Department, Iowa State University, Ames 50011-1020, USA
| | | |
Collapse
|
27
|
Shanmukhappa K, Majhdi F, Kapil S. Production, characterization, and uses of monoclonal antibodies against porcine reproductive and respiratory syndrome virus 3' untranslated region and nucleoprotein RNA binding proteins. Hybridoma (Larchmt) 2000; 19:263-7. [PMID: 10952415 DOI: 10.1089/02724570050109666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Previous studies in our laboratory of interactions between the 3' untranslated region of porcine reproductive and respiratory syndrome virus (PRRSV) and MARC 145 cell cytoplasmic proteins have identified 11 RNA binding proteins. Here, we report the production and characterization of monoclonal antibodies (MAbs) against a 67-kD RNA binding protein of MARC 145 tissue cultured cells. Of the MAbs produced, 11 were reactive in ELISA with 67-kD protein. Immunoprecipitation tests showed that six clones precipitated a protein of 67 kD, and one clone recognized a multiple protein bands of 45, 37, and 27 kD. Western blotting showed that these clones detected two proteins of 67 and 55 kD. Indirect fluorescent antibody staining of testing of PRRSV-infected cells with these MAbs revealed diffuse cytoplasmic staining and intense perinuclear staining to one side of the nucleus. The presence of the double membrane vesicles in the same region in PRRSV-infected alveolar macrophages suggests that these RNA binding proteins might have a role in their formation.
Collapse
Affiliation(s)
- K Shanmukhappa
- Department of Diagnostic Medicine-Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan 66506, USA
| | | | | |
Collapse
|
28
|
Zhou M, Collisson EW. The amino and carboxyl domains of the infectious bronchitis virus nucleocapsid protein interact with 3' genomic RNA. Virus Res 2000; 67:31-9. [PMID: 10773316 PMCID: PMC7125745 DOI: 10.1016/s0168-1702(00)00126-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Previous studies indicated that the nucleocapsid (N) protein of infectious bronchitis virus (IBV) interacted with specific sequences in the 3' non-coding region of IBV RNA. In order to identify domains in the N protein that bind to RNA, the whole protein (409 amino acids) and six overlapping fragments were expressed as fusion polypeptides with six histidine-tags. Using gel shift assays, the intact N protein and amino polypeptides, from residues 1 to 171 and residues 1 to 274, and carboxyl polypeptides, extending from residues 203 to 409 and residues 268 to 407, were found to interact with positive-stranded IBV RNA representing the 3' end of the genome. The two 32P-labeled probes that interacted with N and the amino and carboxyl fragments of N were RNA consisting of the IBV N gene and adjacent 3' non-coding terminus, and RNA consisting of the 155-nucleotide sequences at the 3' end of the 504-nt 3' untranslated region. In contrast, the polypeptide fragment from the middle region, residues 101-283, did not interact with these 3' IBV RNAs. The binding site in the amino region of N was either not present or only partially present in the first 91 residues because no interaction with RNA was observed with the polypeptide incorporating these residues. Cache Valley virus N expressed with a histidine tag, bovine serum albumin, and the basic lysozyme protein did not shift the IBV RNA. The lower molarities of the carboxyl fragment compared with residue 1-274 fragment needed for equivalent shifts suggested that the binding avidity for RNA at the carboxyl domain was greater than the amino domain.
Collapse
Affiliation(s)
- M Zhou
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX 77843-4467, USA
| | | |
Collapse
|
29
|
Zhang X, Li HP, Xue W, Lai MM. Formation of a ribonucleoprotein complex of mouse hepatitis virus involving heterogeneous nuclear ribonucleoprotein A1 and transcription-regulatory elements of viral RNA. Virology 1999; 264:115-24. [PMID: 10544136 DOI: 10.1006/viro.1999.9970] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) specifically binds to two transcription-regulatory elements, i.e., the leader and intergenic sequence, of the negative-strand (template-strand) RNA of mouse hepatitis virus (MHV) and may play a role in viral RNA transcription. Previous studies based on the defective-interfering RNAs of MHV suggested that these two RNA elements may interact with each other during transcription, although they do not have complementary sequences. In this study, we showed by an in vitro reconstitution assay that hnRNP A1 could mediate the formation of an RNP complex involving these two RNA elements. Both the RNA-binding domains and protein-interacting domain of hnRNP A1 contributed to the efficient formation of the RNP complex; however, the presence of the two RNA-binding domains alone, without the protein-interacting domain, also resulted in some RNP formation. Omission of hnRNP A1 in the reconstitution reaction abolished the RNP formation, and mutations of the IG sequences significantly inhibited the RNP formation. These findings suggest that the two cis-acting transcription-regulatory sequences of MHV RNA can interact with each other through the formation of an RNP complex involving a cellular protein hnRNP A1. This RNP complex may participate in MHV RNA transcription.
Collapse
Affiliation(s)
- X Zhang
- Department of Neurology, University of Southern California School of Medicine, Los Angeles, California 90033, USA
| | | | | | | |
Collapse
|
30
|
Huang P, Lai MM. Polypyrimidine tract-binding protein binds to the complementary strand of the mouse hepatitis virus 3' untranslated region, thereby altering RNA conformation. J Virol 1999; 73:9110-6. [PMID: 10516017 PMCID: PMC112943 DOI: 10.1128/jvi.73.11.9110-9116.1999] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Mouse hepatitis virus (MHV) RNA transcription is regulated mainly by the leader and intergenic (IG) sequences. However, a previous study has shown that the 3' untranslated region (3'-UTR) of the viral genome is also required for subgenomic mRNA transcription; deletion of nucleotides (nt) 270 to 305 from the 3'-UTR completely abolished subgenomic mRNA transcription without affecting minus-strand RNA synthesis (Y.-J. Lin, X. Zhang, R.-C. Wu, and M. M. C. Lai, J. Virol. 70:7236-7240, 1996), suggesting that the 3'-UTR affects positive-strand RNA synthesis. In this study, by UV-cross-linking experiments, we found that several cellular proteins bind specifically to the minus-strand 350 nucleotides complementary to the 3'-UTR of the viral genome. The major protein species, p55, was identified as the polypyrimidine tract-binding protein (PTB, also known as heterogeneous nuclear RNP I) by immunoprecipitation of the UV-cross-linked protein and binding of the recombinant PTB. A strong PTB-binding site was mapped to nt 53 to 149, and another weak binding site was mapped to nt 270 to 307 on the complementary strand of the 3'-UTR (c3'-UTR). Partial substitutions of the PTB-binding nucleotides reduced PTB binding in vitro. Furthermore, defective interfering (DI) RNAs harboring these mutations showed a substantially reduced ability to synthesize subgenomic mRNA. By enzymatic and chemical probing, we found that PTB binding to nt 53 to 149 caused a conformational change in the neighboring RNA region. Partial deletions within the PTB-binding sequence completely abolished the PTB-induced conformational change in the mutant RNA even when the RNA retained partial PTB-binding activity. Correspondingly, the MHV DI RNAs containing these deletions completely lost their ability to transcribe mRNAs. Thus, the conformational change in the c3'-UTR caused by PTB binding may play a role in mRNA transcription.
Collapse
Affiliation(s)
- P Huang
- Department of Molecular Microbiology, University of Southern California School of Medicine, Los Angeles, California 90033-1054, USA
| | | |
Collapse
|
31
|
Zhang G, Slowinski V, White KA. Subgenomic mRNA regulation by a distal RNA element in a (+)-strand RNA virus. RNA (NEW YORK, N.Y.) 1999; 5:550-61. [PMID: 10199571 PMCID: PMC1369781 DOI: 10.1017/s1355838299982080] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Subgenomic (sg) mRNAs are synthesized by (+)-strand RNA viruses to allow for efficient translation of products encoded 3' in their genomes. This strategy also provides a means for regulating the expression of such products via modulation of sg mRNA accumulation. We have studied the mechanism by which sg mRNAs levels are controlled in tomato bushy stunt virus, a small (+)-strand RNA virus which synthesizes two sg mRNAs during infections. Neither the viral capsid nor movement proteins were found to play any significant role in modulating the accumulation levels of either sg mRNA. Deletion analysis did, however, identify a 12-nt-long RNA sequence located approximately 1,000 nt upstream from the site of initiation of sg mRNA2 synthesis that was required specifically for accumulation of sg mRNA2. Further analysis revealed a potential base-pairing interaction between this sequence and a sequence located just 5' to the site of initiation for sg mRNA2 synthesis. Mutant genomes in which this interaction was either disrupted or maintained were analyzed and the results indicated a positive correlation between the predicted stability of the base-pairing interaction and the efficiency of sg mRNA2 accumulation. The functional significance of the long-distance interaction was further supported by phylogenetic sequence analysis which revealed conservation of base-pairing interactions of similar stability and relative position in the genomes of different tombusviruses. It is proposed that the upstream sequence represents a cis-acting RNA element which facilitates sg mRNA accumulation by promoting efficient synthesis of sg mRNA2 via a long-distance RNA-RNA interaction.
Collapse
Affiliation(s)
- G Zhang
- Department of Biology, York University, Toronto, Ontario, Canada
| | | | | |
Collapse
|
32
|
Izeta A, Smerdou C, Alonso S, Penzes Z, Mendez A, Plana-Durán J, Enjuanes L. Replication and packaging of transmissible gastroenteritis coronavirus-derived synthetic minigenomes. J Virol 1999; 73:1535-45. [PMID: 9882359 PMCID: PMC103978 DOI: 10.1128/jvi.73.2.1535-1545.1999] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/1998] [Accepted: 11/09/1998] [Indexed: 11/20/2022] Open
Abstract
The sequences involved in the replication and packaging of transmissible gastroenteritis virus (TGEV) RNA have been studied. The structure of a TGEV defective interfering RNA of 9.7 kb (DI-C) was described previously (A. Mendez, C. Smerdou, A. Izeta, F. Gebauer, and L. Enjuanes, Virology 217: 495-507, 1996), and a cDNA with the information to encode DI-C RNA was cloned under the control of the T7 promoter. The molecularly cloned DI-C RNA was replicated in trans upon transfection of helper virus-infected cells and inhibited 20-fold the replication of the parental genome. A collection of 14 DI-C RNA deletion mutants (TGEV minigenomes) was synthetically generated and tested for their ability to be replicated and packaged. The smallest minigenome (M33) that was replicated by the helper virus and efficiently packaged was 3.3 kb. A minigenome of 2.1 kb (M21) was also replicated, but it was packaged with much lower efficiency than the M33 minigenome, suggesting that it had lost either the sequences containing the main packaging signal or the required secondary structure in the packaging signal due to alteration of the flanking sequences. The low packaging efficiency of the M21 minigenome was not due to minimum size restrictions. The sequences essential for minigenome replication by the helper virus were reduced to 1,348 nt and 492 nt at the 5' and 3' ends, respectively. The TGEV-derived RNA minigenomes were successfully expressed following a two-step amplification system that couples pol II-driven transcription in the nucleus to replication supported by helper virus in the cytoplasm, without any obvious splicing. This system and the use of the reporter gene beta-glucuronidase (GUS) allowed minigenome detection at passage zero, making it possible to distinguish replication efficiency from packaging capability. The synthetic minigenomes have been used to design a helper-dependent expression system that produces around 1.0 microgram/10(6) cells of GUS.
Collapse
Affiliation(s)
- A Izeta
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Campus Universidad Autónoma, Canto Blanco, 28049 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
33
|
Li HP, Huang P, Park S, Lai MM. Polypyrimidine tract-binding protein binds to the leader RNA of mouse hepatitis virus and serves as a regulator of viral transcription. J Virol 1999; 73:772-7. [PMID: 9847386 PMCID: PMC103887 DOI: 10.1128/jvi.73.1.772-777.1999] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A cellular protein, previously described as p55, binds specifically to the plus strand of the mouse hepatitis virus (MHV) leader RNA. We have purified this protein and determined by partial peptide sequencing that it is polypyrimidine tract-binding protein (PTB) (also known as heterogeneous nuclear ribonucleoprotein [hnRNP] I), a nuclear protein which shuttles between the nucleus and cytoplasm. PTB plays a role in the regulation of alternative splicing of pre-mRNAs in normal cells and translation of several viruses. By UV cross-linking and immunoprecipitation studies using cellular extracts and a recombinant PTB, we have established that PTB binds to the MHV plus-strand leader RNA specifically. Deletion analyses of the leader RNA mapped the PTB-binding site to the UCUAA pentanucleotide repeats. Using a defective-interfering RNA reporter system, we have further shown that the PTB-binding site in the leader RNA is critical for MHV RNA synthesis. This and our previous study (H.-P. Li, X. Zhang, R. Duncan, L. Comai, and M. M. C. Lai, Proc. Natl. Acad. Sci. USA 94:9544-9549, 1997) combined thus show that two cellular hnRNPs, PTB and hnRNP A1, bind to the transcription-regulatory sequences of MHV RNA and may participate in its transcription.
Collapse
Affiliation(s)
- H P Li
- Department of Molecular Microbiology and Immunology, University of Southern California School of Medicine, Los Angeles, California 90033-1054, USA
| | | | | | | |
Collapse
|
34
|
Nelsen CJ, Murtaugh MP, Faaberg KS. Porcine reproductive and respiratory syndrome virus comparison: divergent evolution on two continents. J Virol 1999; 73:270-80. [PMID: 9847330 PMCID: PMC103831 DOI: 10.1128/jvi.73.1.270-280.1999] [Citation(s) in RCA: 561] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/1998] [Accepted: 09/16/1998] [Indexed: 11/20/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is a recently described arterivirus responsible for disease in swine worldwide. Comparative sequence analysis of 3'-terminal structural genes of the single-stranded RNA viral genome revealed the presence of two genotypic classes of PRRSV, represented by the prototype North American and European strains, VR-2332 and Lelystad virus (LV), respectively. To better understand the evolution and pathogenicity of PRRSV, we obtained the 12,066-base 5'-terminal nucleotide sequence of VR-2332, encoding the viral replication activities, and compared it to those of LV and other arteriviruses. VR-2332 and LV differ markedly in the 5' leader and sections of the open reading frame (ORF) 1a region. The ORF 1b sequence was nearly colinear but varied in similarity of proteins encoded in identified regions. Furthermore, molecular and biochemical analysis of subgenomic mRNA (sgmRNA) processing revealed extensive variation in the number of sgmRNAs which may be generated during infection and in the lengths of noncoding sequence between leader-body junctions and the translation-initiating codon AUG. In addition, VR-2332 and LV select different leader-body junction sites from a pool of similar candidate sites to produce sgmRNA 7, encoding the viral nucleocapsid protein. The presence of substantial variations across the entire genome and in sgmRNA processing indicates that PRRSV has evolved independently on separate continents. The near-simultaneous global emergence of a new swine disease caused by divergently evolved viruses suggests that changes in swine husbandry and management may have contributed to the emergence of PRRS.
Collapse
Affiliation(s)
- C J Nelsen
- Department of Veterinary PathoBiology, University of Minnesota, St. Paul, Minnesota 55108, USA
| | | | | |
Collapse
|
35
|
Maeda A, An S, Makino S. Importance of coronavirus negative-strand genomic RNA synthesis prior to subgenomic RNA transcription. Virus Res 1998; 57:35-42. [PMID: 9833884 PMCID: PMC7127783 DOI: 10.1016/s0168-1702(98)00090-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/1998] [Revised: 05/18/1998] [Accepted: 06/25/1998] [Indexed: 11/29/2022]
Abstract
The (-)-strand viral RNAs that result from after infection of cells with coronaviruses, which possess RNA genomes of message polarity, are genomic-sized and subgenomic-sized. Each of the (-)-strand subgenomic RNAs corresponds in size to each of the subgenomic mRNA species that are made in infected cells. We tested whether (-)-strand subgenomic RNAs might initially be synthesized from the input single-stranded (+)-strand genomic RNA prior to the production of subgenomic mRNAs. We used a mouse hepatitis virus (MHV) defective interfering (DI) RNA. from which subgenomic RNA was produced in DI RNA-replicating cells, because this DI RNA had a functional MHV intergenic region inserted in its interior. MHV samples containing the DI particles were irradiated with UV-light and then superinfected into cells that had been infected with MHV 4 h prior to superinfection. Northern blot analysis of intracellular RNAs that were extracted 3 h after superinfection showed that genomic DI RNA and subgenomic DI RNA had similar UV-target sizes, indicating that (-)-strand genomic DI RNA synthesis from input genomic DI RNA probably occurred prior to the subgenomic-size DI RNA synthesis. We discuss why, in the course of coronavirus transcription, (-)-strand genomic-length coronavirus RNA synthesis might occur before subgenomic-sized RNAs of either polarity are made.
Collapse
Affiliation(s)
| | | | - Shinji Makino
- Department of Microbiology, and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Tx 78712-1095, USA
| |
Collapse
|
36
|
Lai MM. Cellular factors in the transcription and replication of viral RNA genomes: a parallel to DNA-dependent RNA transcription. Virology 1998; 244:1-12. [PMID: 9581772 DOI: 10.1006/viro.1998.9098] [Citation(s) in RCA: 222] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Viral RNA replication and transcription involves not only viral RNA-dependent RNA polymerases, but also cellular proteins, the majority of which are subverted from the RNA-processing or translation machineries of host cells. These factors interact with viral RNA or polymerases to form transcription or replication ribonucleoprotein complexes and may provide template specificity for RNA-dependent RNA synthesis, suggesting a close parallel to the mechanism of DNA-dependent RNA synthesis. The types of cellular proteins involved and their modes of action are reviewed.
Collapse
Affiliation(s)
- M M Lai
- Howard Hughes Medical Institute and Department of Molecular Microbiology and Immunology, University of Southern California School of Medicine, Los Angeles 90033-1054, USA.
| |
Collapse
|
37
|
An S, Makino S. Characterizations of coronavirus cis-acting RNA elements and the transcription step affecting its transcription efficiency. Virology 1998; 243:198-207. [PMID: 9527929 PMCID: PMC7133654 DOI: 10.1006/viro.1998.9059] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/1997] [Revised: 12/19/1997] [Accepted: 01/26/1998] [Indexed: 11/22/2022]
Abstract
Seven to eight species of viral subgenomic mRNAs are produced in coronavirus-infected cells. These mRNAs are produced in different quantities, and their molar ratios remain constant during viral replication. We studied RNA elements that affect coronavirus transcription efficiency by characterizing a series of cloned coronavirus mouse hepatitis virus (MHV) defective interfering (DI) RNAs containing an inserted intergenic sequence, from which subgenomic DI RNA is transcribed in MHV-infected cells. Certain combinations of upstream and downstream flanking sequences of the intergenic sequence suppressed subgenomic DI RNA transcription, yet changing one of the flanking sequences to a different sequence eliminated transcription suppression. The suppressive effect of certain combinations of flanking sequences, but not all combinations, could be counteracted by altering the intergenic sequence. Thus, the combination of intergenic sequence and flanking sequence affected transcription efficiency. We also characterized another set of DI RNAs designed to clarify which transcription step determines the relative molar ratios of coronavirus mRNAs. Our study indicated that if subgenomic mRNAs were exclusively synthesized from negative-strand genomic RNA, then the relative molar ratios of coronavirus mRNAs were most likely determined after synthesis of the genomic-sized template RNA. If negative-strand subgenomic RNAs were templates for subgenomic mRNAs, then the relative molar ratios of coronavirus mRNAs probably were determined after synthesis of the genomic-sized template RNA used for subgenomic-sized RNA transcription but prior to the completion of the synthesis of subgenomic-sized RNAs containing the leader sequence. The relative molar ratios of coronavirus mRNAs, therefore, seem to have been established prior to a putative replicon-type amplification of subgenomic mRNAs.
Collapse
Affiliation(s)
- S An
- Department of Microbiology, University of Texas at Austin 78712-1095, USA
| | | |
Collapse
|
38
|
Hsue B, Masters PS. A bulged stem-loop structure in the 3' untranslated region of the genome of the coronavirus mouse hepatitis virus is essential for replication. J Virol 1997; 71:7567-78. [PMID: 9311837 PMCID: PMC192104 DOI: 10.1128/jvi.71.10.7567-7578.1997] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The 3' untranslated region (UTR) of the positive-sense RNA genome of the coronavirus mouse hepatitis virus (MHV) contains sequences that are necessary for the synthesis of negative-strand viral RNA as well as sequences that may be crucial for both genomic and subgenomic positive-strand RNA synthesis. We have found that the entire 3' UTR of MHV could be replaced by the 3' UTR of bovine coronavirus (BCV), which diverges overall by 31% in nucleotide sequence. This exchange between two viruses that are separated by a species barrier was carried out by targeted RNA recombination. Our results define regions of the two 3' UTRs that are functionally equivalent despite having substantial sequence substitutions, deletions, or insertions with respect to each other. More significantly, our attempts to generate an unallowed substitution of a particular portion of the BCV 3' UTR for the corresponding region of the MHV 3' UTR led to the discovery of a bulged stem-loop RNA secondary structure, adjacent to the stop codon of the nucleocapsid gene, that is essential for MHV viral RNA replication.
Collapse
Affiliation(s)
- B Hsue
- Department of Biomedical Sciences, University at Albany, State University of New York, 12201, USA
| | | |
Collapse
|
39
|
Abstract
This chapter discusses the manipulation of clones of coronavirus and of complementary DNAs (cDNAs) of defective-interfering (DI) RNAs to study coronavirus RNA replication, transcription, recombination, processing and transport of proteins, virion assembly, identification of cell receptors for coronaviruses, and processing of the polymerase. The nature of the coronavirus genome is nonsegmented, single-stranded, and positive-sense RNA. Its size ranges from 27 to 32 kb, which is significantly larger when compared with other RNA viruses. The gene encoding the large surface glycoprotein is up to 4.4 kb, encoding an imposing trimeric, highly glycosylated protein. This soars some 20 nm above the virion envelope, giving the virus the appearance-with a little imagination-of a crown or coronet. Coronavirus research has contributed to the understanding of many aspects of molecular biology in general, such as the mechanism of RNA synthesis, translational control, and protein transport and processing. It remains a treasure capable of generating unexpected insights.
Collapse
Affiliation(s)
- M M Lai
- Department of Molecular Microbiology and Immunology, Howard Hughes Medical Institute, University of Southern California School of Medicine, Los Angeles 90033-1054, USA
| | | |
Collapse
|
40
|
Li HP, Zhang X, Duncan R, Comai L, Lai MM. Heterogeneous nuclear ribonucleoprotein A1 binds to the transcription-regulatory region of mouse hepatitis virus RNA. Proc Natl Acad Sci U S A 1997; 94:9544-9. [PMID: 9275159 PMCID: PMC23214 DOI: 10.1073/pnas.94.18.9544] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A cellular protein, previously described as p35/38, binds to the complementary (-)-strand of the leader RNA and intergenic (IG) sequence of mouse hepatitis virus (MHV) RNA. The extent of the binding of this protein to IG sites correlates with the efficiency of the subgenomic mRNA transcription from that IG site, suggesting that it is a requisite transcription factor. We have purified this protein and determined by partial peptide sequencing that it is heterogeneous nuclear ribonucleoprotein (hnRNP) A1, an abundant, primarily nuclear protein. hnRNP A1 shuttles between the nucleus and cytoplasm and plays a role in the regulation of alternative RNA splicing. The MHV(-)-strand leader and IG sequences conform to the consensus binding motifs of hnRNP A1. Recombinant hnRNP A1 bound to these two RNA regions in vitro in a sequence-specific manner. During MHV infection, hnRNP A1 relocalizes from the nucleus to the cytoplasm, where viral replication occurs. These data suggest that hnRNP A1 is a cellular factor that regulates the RNA-dependent RNA transcription of the virus.
Collapse
Affiliation(s)
- H P Li
- Department of Molecular Microbiology and Immunology, University of Southern California Schools of Medicine, Los Angeles, CA 90033, USA
| | | | | | | | | |
Collapse
|
41
|
Abstract
Coronavirus, with a 31-kb RNA genome, replicates its own RNA and transcribes subgenomic mRNAs by complex mechanisms. Viral RNA synthesis is regulated by multiple RNA regions, which appear to interact either directly or indirectly. Multiple cellular proteins bind to these regions and may undergo additional protein-protein interactions. These findings suggest that coronavirus RNA synthesis is carried out on a ribonucleoprotein via a mechanism that involves both viral and cellular proteins associated with viral RNA, similar to DNA-dependent RNA transcription. This mode of RNA synthesis may be applicable to most RNA viruses.
Collapse
Affiliation(s)
- M M Lai
- Howard Hughes Medical Institute, Department of Molecular Microbiology and Immunology, University of Southern California School of Medicine, Los Angeles 90033-1054, USA
| |
Collapse
|
42
|
Kim KH, Hemenway C. Mutations that alter a conserved element upstream of the potato virus X triple block and coat protein genes affect subgenomic RNA accumulation. Virology 1997; 232:187-97. [PMID: 9185602 DOI: 10.1006/viro.1997.8565] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The putative subgenomic RNA (sgRNA) promoter regions upstream of the potato virus X (PVX) triple block and coat protein (CP) genes contain sequences common to other potexviruses. The importance of these sequences to PVX sgRNA accumulation was determined by inoculation of Nicotiana tabacum NT1 cell suspension protoplasts with transcripts derived from wild-type and modified PVX cDNA clones. Analyses of RNA accumulation by S1 nuclease digestion and primer extension indicated that a conserved octanucleotide sequence element and the spacing between this element and the start-site for sgRNA synthesis are critical for accumulation of the two major sgRNA species. The impact of mutations on CP sgRNA levels was also reflected in the accumulation of CP. In contrast, genomic minus- and plus-strand RNA accumulation were not significantly affected by mutations in these regions. Studies involving inoculation of tobacco plants with the modified transcripts suggested that the conserved octanucleotide element functions in sgRNA accumulation and some other aspect of the infection process.
Collapse
Affiliation(s)
- K H Kim
- Department of Biochemistry, North Carolina State University, Raleigh 27695-7622, USA
| | | |
Collapse
|
43
|
|
44
|
Lai MM, Cavanagh D. The molecular biology of coronaviruses. Adv Virus Res 1997; 48:1-100. [PMID: 9233431 PMCID: PMC7130985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This chapter discusses the manipulation of clones of coronavirus and of complementary DNAs (cDNAs) of defective-interfering (DI) RNAs to study coronavirus RNA replication, transcription, recombination, processing and transport of proteins, virion assembly, identification of cell receptors for coronaviruses, and processing of the polymerase. The nature of the coronavirus genome is nonsegmented, single-stranded, and positive-sense RNA. Its size ranges from 27 to 32 kb, which is significantly larger when compared with other RNA viruses. The gene encoding the large surface glycoprotein is up to 4.4 kb, encoding an imposing trimeric, highly glycosylated protein. This soars some 20 nm above the virion envelope, giving the virus the appearance-with a little imagination-of a crown or coronet. Coronavirus research has contributed to the understanding of many aspects of molecular biology in general, such as the mechanism of RNA synthesis, translational control, and protein transport and processing. It remains a treasure capable of generating unexpected insights.
Collapse
Affiliation(s)
- M M Lai
- Department of Molecular Microbiology and Immunology, Howard Hughes Medical Institute, University of Southern California School of Medicine, Los Angeles 90033-1054, USA
| | | |
Collapse
|