1
|
Cable JM, Reinoso-Vizcaino NM, White RE, Luftig MA. Epstein-Barr virus protein EBNA-LP engages YY1 through leucine-rich motifs to promote naïve B cell transformation. PLoS Pathog 2024; 20:e1011950. [PMID: 39083560 PMCID: PMC11318927 DOI: 10.1371/journal.ppat.1011950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 08/12/2024] [Accepted: 06/30/2024] [Indexed: 08/02/2024] Open
Abstract
Epstein-Barr Virus (EBV) is associated with numerous cancers including B cell lymphomas. In vitro, EBV transforms primary B cells into immortalized Lymphoblastoid Cell Lines (LCLs) which serves as a model to study the role of viral proteins in EBV malignancies. EBV induced cellular transformation is driven by viral proteins including EBV-Nuclear Antigens (EBNAs). EBNA-LP is important for the transformation of naïve but not memory B cells. While EBNA-LP was thought to promote gene activation by EBNA2, EBNA-LP Knockout (LPKO) virus-infected cells express EBNA2-activated cellular genes efficiently. Therefore, a gap in knowledge exists as to what roles EBNA-LP plays in naïve B cell transformation. We developed a trans-complementation assay wherein transfection with wild-type EBNA-LP rescues the transformation of peripheral blood- and cord blood-derived naïve B cells by LPKO virus. Despite EBNA-LP phosphorylation sites being important in EBNA2 co-activation; neither phospho-mutant nor phospho-mimetic EBNA-LP was defective in rescuing naïve B cell outgrowth. However, we identified conserved leucine-rich motifs in EBNA-LP that were required for transformation of adult naïve and cord blood B cells. Because cellular PPAR-g coactivator (PGC) proteins use leucine-rich motifs to engage transcription factors including YY1, a key regulator of DNA looping and metabolism, we examined the role of EBNA-LP in engaging transcription factors. We found a significant overlap between EBNA-LP and YY1 in ChIP-Seq data. By Cut&Run, YY1 peaks unique to WT compared to LPKO LCLs occur at more highly expressed genes. Moreover, Cas9 knockout of YY1 in primary B cells prior to EBV infection indicated YY1 to be important for EBV-mediated transformation. We confirmed EBNA-LP and YY1 biochemical association in LCLs by endogenous co-immunoprecipitation and found that the EBNA-LP leucine-rich motifs were required for YY1 interaction in LCLs. We propose that EBNA-LP engages YY1 through conserved leucine-rich motifs to promote EBV transformation of naïve B cells.
Collapse
Affiliation(s)
- Jana M. Cable
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Nicolás M. Reinoso-Vizcaino
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Robert E. White
- Section of Virology, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Micah A. Luftig
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, United States of America
| |
Collapse
|
2
|
Wang D, Chen D, Xu S, Wei F, Zhao H. Comparative proteomic analysis of PK-15 cells infected with wild-type strain and its EP0 gene-deleted mutant strain of pseudorabies virus. J Vet Sci 2024; 25:e54. [PMID: 39083206 PMCID: PMC11291433 DOI: 10.4142/jvs.24069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/27/2024] [Accepted: 06/06/2024] [Indexed: 08/02/2024] Open
Abstract
IMPORTANCE As one of the main etiologic agents of infectious diseases in pigs, pseudorabies virus (PRV) infections have caused enormous economic losses worldwide. EP0, one of the PRV early proteins (EP) plays a vital role in PRV infections, but the mechanisms are unclear. OBJECTIVE This study examined the function of EP0 to provide a direction for its in-depth analysis. METHODS In this study, the EP0-deleted PRV mutant was obtained, and Tandem Mass Tag-based proteomic analysis was used to screen the differentially expressed proteins (DEPs) quantitatively in EP0-deleted PRV- or wild-type PRV-infected porcine kidney 15 cells. RESULTS This study identified 7,391 DEPs, including 120 and 21 up-regulated and down-regulated DEPs, respectively. Western blot analysis confirmed the changes in the expression of the selected proteins, such as speckled protein 100. Comprehensive analysis revealed 141 DEPs involved in various biological processes and molecular functions, such as transcription regulator activity, biological regulation, and localization. CONCLUSIONS AND RELEVANCE These results holistically outlined the functions of EP0 during a PRV infection and might provide a direction for more detailed function studies of EP0 and the stimulation of lytic PRV infections.
Collapse
Affiliation(s)
- Di Wang
- School of Agroforestry and Medicine, The Open University of China, Beijing 100039, China
| | - Dongjie Chen
- Institute of Animal Inspection and Quarantine, Chinese Academy of Inspection and Quarantine, Beijing 100176, China.
| | - Shengkui Xu
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Fang Wei
- Institute of Animal Inspection and Quarantine, Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Hongyuan Zhao
- School of Modern Agriculture & Biotechnology, Ankang University, Ankang 725000, China.
| |
Collapse
|
3
|
Cable JM, Reinoso-Vizcaino NM, White RE, Luftig MA. Epstein-Barr virus protein EBNA-LP engages YY1 through leucine-rich motifs to promote naïve B cell transformation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.07.574580. [PMID: 38260266 PMCID: PMC10802455 DOI: 10.1101/2024.01.07.574580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Epstein-Barr Virus (EBV) is associated with numerous cancers including B cell lymphomas. In vitro, EBV transforms primary B cells into immortalized Lymphoblastoid Cell Lines (LCLs) which serves as a model to study the role of viral proteins in EBV malignancies. EBV induced cellular transformation is driven by viral proteins including EBV-Nuclear Antigens (EBNAs). EBNA-LP is important for the transformation of naïve but not memory B cells. While EBNA-LP was thought to promote gene activation by EBNA2, EBNA-LP Knock Out (LPKO) virus-infected cells express EBNA2-activated genes efficiently. Therefore, a gap in knowledge exists as to what roles EBNA-LP plays in naïve B cell transformation. We developed a trans-complementation assay wherein transfection with wild-type EBNA-LP rescues the transformation of peripheral blood- and cord blood-derived naïve B cells by LPKO virus. Despite EBNA-LP phosphorylation sites being important in EBNA2 co-activation; neither phospho-mutant nor phospho-mimetic EBNA-LP was defective in rescuing naïve B cell outgrowth. However, we identified conserved leucine-rich motifs in EBNA-LP that were required for transformation of adult naïve and cord blood B cells. Because cellular PPAR-γ coactivator (PGC) proteins use leucine-rich motifs to engage transcription factors including YY1, a key regulator of DNA looping and metabolism, we examined the role of EBNA-LP in engaging cellular transcription factors. We found a significant overlap between EBNA-LP and YY1 in ChIP-Seq data and confirmed their biochemical association in LCLs by endogenous co-immunoprecipitation. Moreover, we found that the EBNA-LP leucine-rich motifs were required for YY1 interaction in LCLs. Finally, we used Cas9 to knockout YY1 in primary total B cells and naïve B cells prior to EBV infection and found YY1 to be essential for EBV-mediated transformation. We propose that EBNA-LP engages YY1 through conserved leucine-rich motifs to promote EBV transformation of naïve B cells.
Collapse
Affiliation(s)
- Jana M Cable
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, United States
| | - Nicolás M Reinoso-Vizcaino
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, United States
| | - Robert E. White
- Section of Virology, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Micah A Luftig
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
4
|
Fraschilla I, Jeffrey KL. The Speckled Protein (SP) Family: Immunity's Chromatin Readers. Trends Immunol 2020; 41:572-585. [PMID: 32386862 PMCID: PMC8327362 DOI: 10.1016/j.it.2020.04.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 03/25/2020] [Accepted: 04/04/2020] [Indexed: 01/25/2023]
Abstract
Chromatin 'readers' are central interpreters of the epigenome that facilitate cell-specific transcriptional programs and are therapeutic targets in cancer and inflammation. The Speckled Protein (SP) family of chromatin 'readers' in humans consists of SP100, SP110, SP140, and SP140L. SPs possess functional domains (SAND, PHD, bromodomain) that dock to DNA or post-translationally modified histones and a caspase activation and recruitment domain (CARD) to promote multimerization. Mutations within immune expressed SPs associate with numerous immunological diseases including Crohn's disease, multiple sclerosis, chronic lymphocytic leukemia, veno-occlusive disease with immunodeficiency, as well as Mycobacterium tuberculosis infection, underscoring their importance in immune regulation. In this review, we posit that SPs are central chromatin regulators of gene silencing that establish immune cell identity and function.
Collapse
Affiliation(s)
- Isabella Fraschilla
- Division of Gastroenterology and Center for the Study of Inflammatory Bowel Disease, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Program in Immunology, Harvard Medical School, Boston, MA 02114, USA
| | - Kate L Jeffrey
- Division of Gastroenterology and Center for the Study of Inflammatory Bowel Disease, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Program in Immunology, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
5
|
Szymula A, Palermo RD, Bayoumy A, Groves IJ, Ba abdullah M, Holder B, White RE. Epstein-Barr virus nuclear antigen EBNA-LP is essential for transforming naïve B cells, and facilitates recruitment of transcription factors to the viral genome. PLoS Pathog 2018; 14:e1006890. [PMID: 29462212 PMCID: PMC5834210 DOI: 10.1371/journal.ppat.1006890] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 03/02/2018] [Accepted: 01/21/2018] [Indexed: 12/11/2022] Open
Abstract
The Epstein-Barr virus (EBV) nuclear antigen leader protein (EBNA-LP) is the first viral latency-associated protein produced after EBV infection of resting B cells. Its role in B cell transformation is poorly defined, but it has been reported to enhance gene activation by the EBV protein EBNA2 in vitro. We generated EBNA-LP knockout (LPKO) EBVs containing a STOP codon within each repeat unit of internal repeat 1 (IR1). EBNA-LP-mutant EBVs established lymphoblastoid cell lines (LCLs) from adult B cells at reduced efficiency, but not from umbilical cord B cells, which died approximately two weeks after infection. Adult B cells only established EBNA-LP-null LCLs with a memory (CD27+) phenotype. Quantitative PCR analysis of virus gene expression after infection identified both an altered ratio of the EBNA genes, and a dramatic reduction in transcript levels of both EBNA2-regulated virus genes (LMP1 and LMP2) and the EBNA2-independent EBER genes in the first 2 weeks. By 30 days post infection, LPKO transcription was the same as wild-type EBV. In contrast, EBNA2-regulated cellular genes were induced efficiently by LPKO viruses. Chromatin immunoprecipitation revealed that EBNA2 and the host transcription factors EBF1 and RBPJ were delayed in their recruitment to all viral latency promoters tested, whereas these same factors were recruited efficiently to several host genes, which exhibited increased EBNA2 recruitment. We conclude that EBNA-LP does not simply co-operate with EBNA2 in activating gene transcription, but rather facilitates the recruitment of several transcription factors to the viral genome, to enable transcription of virus latency genes. Additionally, our findings suggest that EBNA-LP is essential for the survival of EBV-infected naïve B cells. Epstein-Barr virus (EBV) infects almost everyone. Once infected, people harbor the virus for life, shedding it in saliva. Infection of children is asymptomatic, but a first infection during adolescence or adulthood can cause glandular fever (infectious mononucleosis). EBV is also implicated in several different cancers. EBV infection of B cells (antibody-producing immune cells) can drive them to replicate almost indefinitely (‘transformation’), generating cell lines. We have investigated the role of an EBV protein (EBNA-LP) which is thought to support gene activation by the essential virus protein EBNA2. We have made an EBV in which the EBNA-LP gene has been disrupted. This virus (LPKO) shows several properties. 1. It is reduced in its ability to transform B cells; 2. ‘Naïve’ B cells (those whose antibodies have not adapted to fight infections) die two weeks after LPKO infection; 3. Some virus genes fail to turn on immediately after LPKO infection. 4. Binding of EBNA2 and various cellular factors to these genes is delayed. 5. EBNA-LP does not affect EBNA2-targeted cellular genes in the same way. This shows that EBNA-LP is more important in naïve B cells, and that it helps to turn on virus genes, but not cell genes.
Collapse
MESH Headings
- Adult
- B-Lymphocytes/pathology
- B-Lymphocytes/virology
- Cell Transformation, Viral/genetics
- Cells, Cultured
- Epstein-Barr Virus Infections/complications
- Epstein-Barr Virus Infections/genetics
- Epstein-Barr Virus Infections/pathology
- Female
- Gene Expression Regulation, Viral
- Genome, Viral
- HEK293 Cells
- Herpesvirus 4, Human/genetics
- Humans
- Infant, Newborn
- Leukemia, B-Cell/genetics
- Leukemia, B-Cell/pathology
- Leukemia, B-Cell/virology
- Pregnancy
- Promoter Regions, Genetic
- Protein Binding/genetics
- Transcription Factors/metabolism
- Viral Proteins/physiology
Collapse
Affiliation(s)
- Agnieszka Szymula
- Section of Virology, Department of Medicine, Imperial College London, London, United Kingdom
| | - Richard D. Palermo
- Section of Virology, Department of Medicine, Imperial College London, London, United Kingdom
| | - Amr Bayoumy
- Section of Virology, Department of Medicine, Imperial College London, London, United Kingdom
| | - Ian J. Groves
- Section of Virology, Department of Medicine, Imperial College London, London, United Kingdom
| | - Mohammed Ba abdullah
- Section of Virology, Department of Medicine, Imperial College London, London, United Kingdom
| | - Beth Holder
- Section of Pediatrics, Department of Medicine, Imperial College London, London, United Kingdom
| | - Robert E. White
- Section of Virology, Department of Medicine, Imperial College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
6
|
Zhang K, van Drunen Littel-van den Hurk S. Herpesvirus tegument and immediate early proteins are pioneers in the battle between viral infection and nuclear domain 10-related host defense. Virus Res 2017; 238:40-48. [DOI: 10.1016/j.virusres.2017.05.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 05/21/2017] [Accepted: 05/22/2017] [Indexed: 01/10/2023]
|
7
|
Xu P, Roizman B. The SP100 component of ND10 enhances accumulation of PML and suppresses replication and the assembly of HSV replication compartments. Proc Natl Acad Sci U S A 2017; 114:E3823-E3829. [PMID: 28439026 PMCID: PMC5441741 DOI: 10.1073/pnas.1703395114] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nuclear domain 10 (ND10) bodies are small (0.1-1 μM) nuclear structures containing both constant [e.g., promyelocytic leukemia protein (PML), SP100, death domain-associated protein (Daxx)] and variable proteins, depending on the function of the cells or the stress to which they are exposed. In herpes simplex virus (HSV)-infected cells, ND10 bodies assemble at the sites of DNA entering the nucleus after infection. In sequence, the ND10 bodies become viral replication compartments, and ICP0, a viral E3 ligase, degrades both PML and SP100. The amounts of PML and SP100 and the number of ND10 structures increase in cells exposed to IFN-β. Earlier studies have shown that PML has three key functions. Thus, (i) the interaction of PML with viral components facilitates the initiation of replication compartments, (ii) viral replication is significantly less affected by IFN-β in PML-/- cells than in parental PML+/+ cells, and (iii) viral yields are significantly lower in PML-/- cells exposed to low ratios of virus per cell compared with parental PML+/+ cells. This report focuses on the function of SP100. In contrast to PML-/- cells, SP100-/- cells retain the sensitivity of parental SP100+/+ cells to IFN-β and support replication of the ΔICP0 virus. At low multiplicities of infection, wild-type virus yields are higher in SP100-/- cells than in parental HEp-2 cells. In addition, the number of viral replication compartments is significantly higher in SP100-/- cells than in parental SP100+/+ cells or in PML-/- cells.
Collapse
Affiliation(s)
- Pei Xu
- Marjorie B. Kovler Viral Oncology Laboratories, The University of Chicago, Chicago, IL 60637
| | - Bernard Roizman
- Marjorie B. Kovler Viral Oncology Laboratories, The University of Chicago, Chicago, IL 60637
| |
Collapse
|
8
|
Abstract
While all herpesviruses can switch between lytic and latent life cycle, which are both driven by specific transcription programs, a unique feature of latent EBV infection is the expression of several distinct and well-defined viral latent transcription programs called latency I, II, and III. Growth transformation of B-cells by EBV in vitro is based on the concerted action of Epstein-Barr virus nuclear antigens (EBNAs) and latent membrane proteins(LMPs). EBV growth-transformed B-cells express a viral transcriptional program, termed latency III, which is characterized by the coexpression of EBNA2 and EBNA-LP with EBNA1, EBNA3A, -3B, and -3C as well as LMP1, LMP2A, and LMP2B. The focus of this review will be to discuss the current understanding of how two of these proteins, EBNA2 and EBNA-LP, contribute to EBV-mediated B-cell growth transformation.
Collapse
Affiliation(s)
- Bettina Kempkes
- Department of Gene Vectors, Helmholtz Center Munich, German Research Center for Environmental Health, Marchioninistr. 25, 81377, Munich, Germany.
| | - Paul D Ling
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
9
|
Landolfo S, Andrea MD, Gariglio M. Restriction factors against human CMV. Future Virol 2014. [DOI: 10.2217/fvl.14.22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cellular proteins called 'restriction factors' (RFs) form an important component of the innate immune response to viral replication. However, viruses have learned how to antagonize RFs through mechanisms that are specific for each virus. Here, we summarize the general hallmarks of RFs before going on to discuss the specific strategies recruited by some key RFs that strive to hold human CMV (HCMV) infection back, as well as the counter-restriction mechanisms employed by the virus to overcome this innate defense. Such RFs include the cellular constituents of nuclear domain 10 (ND10), and IFI16, a nuclear member of the PYHIN protein family. Viral regulatory proteins, such as IE1 or pp71, try to oppose the ND10-induced blockade of virus replication by either modifying or disrupting this RF. IFI16, on the other hand, inhibits virus DNA synthesis by downregulating the transcription of viral gene UL54; the intruding virus attempts to antagonize IFI16 by mislocalizing it from the nucleus to the cytoplasm via the action of viral protein UL97. Finally, we consider how Viperin, a RF initially thought to inhibit HCMV maturation late during infection, has actually been demonstrated to enhance virus maturation by increasing lipid metabolism and enhancing virus envelopment.
Collapse
Affiliation(s)
- Santo Landolfo
- Viral Pathogenesis Unit, Department of Public Health & Pediatric Sciences, Medical School, University of Turin, Italy
| | - Marco De Andrea
- Viral Pathogenesis Unit, Department of Public Health & Pediatric Sciences, Medical School, University of Turin, Italy
- Virology Unit, Department of Translational Medicine, Medical School of Novara, Italy
| | - Marisa Gariglio
- Virology Unit, Department of Translational Medicine, Medical School of Novara, Italy
| |
Collapse
|
10
|
Klein G, Klein E, Kashuba E. Interaction of Epstein-Barr virus (EBV) with human B-lymphocytes. Biochem Biophys Res Commun 2010; 396:67-73. [PMID: 20494113 DOI: 10.1016/j.bbrc.2010.02.146] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Accepted: 02/22/2010] [Indexed: 12/22/2022]
Abstract
Epstein-Barr virus, EBV, and humans have a common history that reaches back to our primate ancestors. The virus co-evolved with man and has established a largely harmless and highly complex co-existence. It is carried as silent infection by almost all human adults. A serendipitous discovery established that it is the causative agent of infectious mononucleosis. Still, EBV became known first in 1964, in a rare, geographically prevalent malignant lymphoma of B-cell origin, Burkitt lymphoma BL. Its association with a malignancy prompted intensive studies and its capacity to immortalize B-lymphocytes in vitro was soon demonstrated. Consequently EBV was classified therefore as a potentially tumorigenic virus. Despite of this property however, the virus carrier state itself does not lead to malignancies because the transformed cells are recognized by the immune response. Consequently the EBV induced proliferation of EBV carrying B-lymphocytes is manifested only under immunosuppressive conditions. The expression of EBV encoded genes is regulated by the cell phenotype. The virus genome can be found in malignancies originating from cell types other than the B-lymphocyte. Even in the EBV infected B-cell, the direct transforming capacity is restricted to a defined window of differentiation. A complex interaction between virally encoded proteins and B-cell specific cellular proteins constitute the proliferation inducing program. In this short review we touch upon aspects which are the subject of our present work. We describe the mechanisms of some of the functional interactions between EBV encoded and cellular proteins that determine the phenotype of latently infected B-cells. The growth promoting EBV encoded genes are not expressed in the virus carrying BL cells. Still, EBV seems to contribute to the etiology of this tumor by modifying events that influence cell survival and proliferation. We describe a possible growth promoting mechanism in the genesis of Burkitt lymphoma that depends on the presence of EBV.
Collapse
Affiliation(s)
- George Klein
- Karolinska Institutet, Department of Microbiology, Tumor and Cell Biology (MTC), Box 280, S17177 Stockholm, Sweden.
| | | | | |
Collapse
|
11
|
Tavalai N, Stamminger T. Interplay between Herpesvirus Infection and Host Defense by PML Nuclear Bodies. Viruses 2009; 1:1240-64. [PMID: 21994592 PMCID: PMC3185544 DOI: 10.3390/v1031240] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Revised: 12/10/2009] [Accepted: 12/14/2009] [Indexed: 12/17/2022] Open
Abstract
In recent studies we and others have identified the cellular proteins PML, hDaxx, and Sp100, which form a subnuclear structure known as nuclear domain 10 (ND10) or PML nuclear bodies (PML-NBs), as host restriction factors that counteract herpesviral infections by inhibiting viral replication at different stages. The antiviral function of ND10, however, is antagonized by viral regulatory proteins (e.g., ICP0 of herpes simplex virus; IE1 of human cytomegalovirus) which induce either a modification or disruption of ND10. This review will summarize the current knowledge on how viral replication is inhibited by ND10 proteins. Furthermore, herpesviral strategies to defeat this host defense mechanism are discussed.
Collapse
Affiliation(s)
- Nina Tavalai
- Institute for Clinical and Molecular Virology, University of Erlangen-Nuremberg, Schlossgarten 4, 91054 Erlangen, Germany; E-Mail:
| | - Thomas Stamminger
- Institute for Clinical and Molecular Virology, University of Erlangen-Nuremberg, Schlossgarten 4, 91054 Erlangen, Germany; E-Mail:
| |
Collapse
|
12
|
Niller HH, Wolf H, Minarovits J. Regulation and dysregulation of Epstein–Barr virus latency: Implications for the development of autoimmune diseases. Autoimmunity 2009; 41:298-328. [DOI: 10.1080/08916930802024772] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
13
|
Nuclear-cytoplasmic shuttling is not required for the Epstein-Barr virus EBNA-LP transcriptional coactivation function. J Virol 2009; 83:7109-16. [PMID: 19403674 DOI: 10.1128/jvi.00654-09] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Epstein-Barr virus (EBV) EBNA-LP is a transcriptional coactivator of EBNA2 that works though interaction with the promyelocytic leukemia nuclear-body-associated protein Sp100A. EBNA-LP localizes predominantly in the nucleus through the action of nuclear localization signals in the repeated regions of the protein. EBNA-LP has also been detected in the cytoplasm, and a previous study suggested that some of the EBNA-LP coactivation function is mediated by relocalizing histone deacetylase 4 (HDAC4) from the nucleus to the cytoplasm. Although EBNA-LP can be found in the cytoplasm, it has no obvious nuclear export signal, and there is no direct evidence for active shuttling between these cellular compartments. Whether active shuttling between the nucleus and cytoplasm is required for coactivation remains to be clarified. To address these issues, we tested a variety of EBNA-LP isoforms and mutants for nuclear-cytoplasmic shuttling activity in an interspecies heterokaryon assay and for the ability to associate with HDAC4. EBNA-LP isoforms smaller than 42 kDa shuttle efficiently in the heterokaryon assay via a crm-1-independent mechanism. In addition, no specific EBNA-LP domain that mediates nuclear export could be identified. In contrast, an EBNA-LP 62-kDa isoform does not demonstrate detectable shuttling in the heterokaryon assay yet still coactivates EBNA2 similarly to the smaller EBNA-LP isoforms. All of the EBNA-LP mutants tested, including the coactivation-deficient DeltaCR3 mutant and the nonshuttling 62-kDa isoform, were capable of associating with HDAC4. Taken together, our results suggest that simple diffusion may account for the nuclear export observed with smaller isoforms of EBNA-LP, that nuclear-cytoplasmic shuttling is not required for efficient EBNA-LP coactivation function, and that competence for HDAC4 association is not sufficient to mediate nuclear-cytoplasmic shuttling or EBNA-LP coactivation in the absence of a functional interaction with Sp100A.
Collapse
|
14
|
Stuber G, Flaberg E, Petranyi G, Otvös R, Rökaeus N, Kashuba E, Wiman KG, Klein G, Szekely L. PRIMA-1MET induces nucleolar translocation of Epstein-Barr virus-encoded EBNA-5 protein. Mol Cancer 2009; 8:23. [PMID: 19323829 PMCID: PMC2667484 DOI: 10.1186/1476-4598-8-23] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2008] [Accepted: 03/26/2009] [Indexed: 12/14/2022] Open
Abstract
The low molecular weight compound, PRIMA-1MET restores the transcriptional transactivation function of certain p53 mutants in tumor cells. We have previously shown that PRIMA-1MET induces nucleolar translocation of p53, PML, CBP and Hsp70. The Epstein-Barr virus encoded, latency associated antigen EBNA-5 (also known as EBNA-LP) is required for the efficient transformation of human B lymphocytes by EBV. EBNA-5 associates with p53-hMDM2-p14ARF complexes. EBNA-5 is a nuclear protein that translocates to the nucleolus upon heat shock or inhibition of proteasomes along with p53, hMDM2, Hsp70, PML and proteasome subunits. Here we show that PRIMA-1MET induces the nucleolar translocation of EBNA-5 in EBV transformed B lymphoblasts and in transfected tumor cells. The PRIMA-1MET induced translocation of EBNA-5 is not dependent on the presence of mutant p53. It also occurs in p53 null cells or in cells that express wild type p53. Both the native and the EGFP or DSRed conjugated EBNA-5 respond to PRIMA-1MET treatment in the same way. Image analysis of DSRed-EBNA-5 expressing cells, using confocal fluorescence time-lapse microscopy showed that the nucleolar translocation requires several hours to complete. FRAP (fluorescence recovery after photobleaching) and FLIP (fluorescence loss in photobleaching) measurements on live cells showed that the nucleolar translocation was accompanied by the formation of EBNA-5 aggregates. The process is reversible since the aggregates are dissolved upon removal of PRIMA-1MET. Our results suggest that mutant p53 is not the sole target of PRIMA-1MET. We propose that PRIMA-1MET may reversibly inhibit cellular chaperons that prevent the aggregation of misfolded proteins, and that EBNA-5 may serve as a surrogate drug target for elucidating the precise molecular action of PRIMA-1MET.
Collapse
Affiliation(s)
- György Stuber
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institute, Stockholm, Sweden.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Tavalai N, Stamminger T. New insights into the role of the subnuclear structure ND10 for viral infection. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:2207-21. [PMID: 18775455 DOI: 10.1016/j.bbamcr.2008.08.004] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2008] [Revised: 08/06/2008] [Accepted: 08/07/2008] [Indexed: 12/12/2022]
Abstract
Nuclear domains 10 (ND10), alternatively termed PML nuclear bodies (PML-NBs) or PML oncogenic domains (PODs), have been discovered approximately 15 years ago as a nuclear substructure that is targeted by a variety of viruses belonging to different viral families. This review will summarize the most important structural and functional characteristics of ND10 and its major protein constituents followed by a discussion of the current view regarding the role of this subnuclear structure for various DNA and RNA viruses with an emphasis on herpesviruses. It is concluded that accumulating evidence argues for an involvement of ND10 in host antiviral defenses either via mediating an intrinsic immune response against specific viruses or via acting as a component of the cellular interferon pathway.
Collapse
Affiliation(s)
- Nina Tavalai
- Institute for Clinical and Molecular Virology, University Erlangen-Nuremberg, Schlossgarten 4, 91054 Erlangen, Germany
| | | |
Collapse
|
16
|
Rush EA, Schlesinger KW, Watkins SC, Redner RL. The NPM-RAR fusion protein associated with the t(5;17) variant of APL does not interact with PML. Leuk Res 2006; 30:979-86. [PMID: 16504291 DOI: 10.1016/j.leukres.2005.12.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2005] [Revised: 12/22/2005] [Accepted: 12/23/2005] [Indexed: 10/25/2022]
Abstract
The PML protein localizes to regions of the nucleus known as nuclear bodies or PODs. However, in t(15;17) Acute Promyelocytic Leukemia (APL) blasts, PML is found in a micro-punctate pattern. In order to test the hypothesis that delocalization of PML from PODs is necessary for APL, we investigated the interaction of the t(5;17) APL fusion protein NPM-RAR with PML. NPM-RAR localizes diffusely throughout the nucleoplasm. NPM-RAR does not alter the localization of PML in transfected HeLa cells, and does not associate with PML in vitro. These studies suggest that NPM-RAR does not interact with PML.
Collapse
Affiliation(s)
- Elizabeth A Rush
- Department of Medicine, University of Pittsburgh Medical Center and the University of Pittsburgh Cancer Institute, USA
| | | | | | | |
Collapse
|
17
|
Shaku F, Matsuda G, Furuya R, Kamagata C, Igarashi M, Tanaka M, Kanamori M, Nishiyama Y, Yamamoto N, Kawaguchi Y. Development of a monoclonal antibody against Epstein-Barr virus nuclear antigen leader protein (EBNA-LP) that can detect EBNA-LP expressed in P3HR1 cells. Microbiol Immunol 2005; 49:477-83. [PMID: 15905610 DOI: 10.1111/j.1348-0421.2005.tb03743.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A mouse monoclonal antibody, LP4D3, was raised against purified Epstein-Barr virus nuclear antigen leader protein (EBNA-LP) fused to glutathione-S-transferase. The antibody detected endogenous and exogenous EBNA-LP in immunoblotting, immunofluorescence and immunoprecipitation assays, and the epitope of the antibody was mapped in the W2 domain of EBNA-LP. While another monoclonal antibody to EBNA-LP, JF186, which is widely used for analyses of the viral protein, did not react with truncated forms of EBNA-LP expressed in P3HR1 cells, as reported earlier, the LP4D3 antibody did. The LP4D3 antibody will be a useful tool for further studies of EBNA-LP, especially investigations into the phenotypes of mutant EBNA-LP expressed in P3HR1 cells.
Collapse
Affiliation(s)
- Fumio Shaku
- Department of Cell Regulation, Medical Research Institute, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Ling PD, Peng RS, Nakajima A, Yu JH, Tan J, Moses SM, Yang WH, Zhao B, Kieff E, Bloch KD, Bloch DB. Mediation of Epstein-Barr virus EBNA-LP transcriptional coactivation by Sp100. EMBO J 2005; 24:3565-75. [PMID: 16177824 PMCID: PMC1276704 DOI: 10.1038/sj.emboj.7600820] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2005] [Accepted: 08/25/2005] [Indexed: 12/15/2022] Open
Abstract
The Epstein-Barr virus (EBV) EBNA-LP protein is important for EBV-mediated B-cell immortalization and is a potent gene-specific coactivator of the viral transcriptional activator, EBNA2. The mechanism(s) by which EBNA-LP functions as a coactivator remains an important question in the biology of EBV-induced B-cell immortalization. In this study, we found that EBNA-LP interacts with the promyelocytic leukemia nuclear body (PML NB)-associated protein Sp100 and displaces Sp100 and heterochromatin protein 1alpha (HP1alpha) from PML NBs. Interaction between EBNA-LP and Sp100 was mediated through conserved region 3 in EBNA-LP and the PML NB targeting domain in Sp100. Overexpression of Sp100 lacking the N-terminal PML NB targeting domain, but not a mutant form of Sp100 lacking the HP1alpha interaction domain, was sufficient to coactivate EBNA2 in a gene-specific manner independent of EBNA-LP. These findings suggest that Sp100 is a major mediator of EBNA-LP coactivation. These studies indicate that modulation of PML NB-associated proteins may be important for establishment of latent viral infections, and also identify a convenient model system to investigate the functions of Sp100.
Collapse
Affiliation(s)
- Paul D Ling
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Rong Sheng Peng
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Ayako Nakajima
- Department of Medicine, Harvard Medical School and Center for Immunology and Inflammatory Diseases of the General Medical Services, Massachusetts General Hospital, Boston, MA, USA
| | - Jiang H Yu
- Department of Medicine, Harvard Medical School and Center for Immunology and Inflammatory Diseases of the General Medical Services, Massachusetts General Hospital, Boston, MA, USA
| | - Jie Tan
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Stephanie M Moses
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Wei-Hong Yang
- Department of Medicine, Harvard Medical School and Center for Immunology and Inflammatory Diseases of the General Medical Services, Massachusetts General Hospital, Boston, MA, USA
| | - Bo Zhao
- Departments of Medicine and Microbiology and Molecular Genetics, Channing Laboratory, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Elliott Kieff
- Departments of Medicine and Microbiology and Molecular Genetics, Channing Laboratory, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Kenneth D Bloch
- Department of Medicine, Harvard Medical School and Cardiovascular Research Center of the General Medical Services, Massachusetts General Hospital, Boston, MA, USA
| | - Donald B Bloch
- Department of Medicine, Harvard Medical School and Center for Immunology and Inflammatory Diseases of the General Medical Services, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
19
|
Takemoto M, Koike M, Mori Y, Yonemoto S, Sasamoto Y, Kondo K, Uchiyama Y, Yamanishi K. Human herpesvirus 6 open reading frame U14 protein and cellular p53 interact with each other and are contained in the virion. J Virol 2005; 79:13037-46. [PMID: 16189006 PMCID: PMC1235810 DOI: 10.1128/jvi.79.20.13037-13046.2005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2005] [Accepted: 06/23/2005] [Indexed: 02/02/2023] Open
Abstract
A mass spectroscopic analysis of proteins from human herpesvirus 6 (HHV-6)-infected cells showed that the HHV-6 U14 protein coimmunoprecipitated with the tumor suppressor p53. The binding of U14 to p53 was verified by coimmunoprecipitation experiments in both Molt-3 cells infected with HHV-6 and 293 cells cotransfected with U14 and p53 expression vectors. Indirect immunofluorescence assays (IFAs) showed that by 18 h postinfection (hpi) U14 localized to the dot-like structures observed in both the nucleus and cytoplasm where p53 was partly accumulated. Despite Northern blotting evidence that U14 follows late kinetics, the U14 protein was detected immediately after infection (at 3 hpi) by IFA. In addition, by Western blotting, U14 was detected at 0 hpi or in the presence of cycloheximide which completely abolished the expression of IE1 protein. In addition to U14, p53 was detected at 0 hpi although it was not detected in mock-infected cells. Furthermore, both U14 and p53 were clearly detected in the viral particles by Western blotting and immunoelectron microscopy, supporting the idea that U14 and p53 are incorporated into virions. Our study provides the first evidence of the incorporation of cellular p53 into viral particles and suggests that p53 may play an important role in viral infection.
Collapse
Affiliation(s)
- Masaya Takemoto
- Department of Microbiology, Osaka University Graduate School of Medicine C1, Japan
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Peng R, Moses SC, Tan J, Kremmer E, Ling PD. The Epstein-Barr virus EBNA-LP protein preferentially coactivates EBNA2-mediated stimulation of latent membrane proteins expressed from the viral divergent promoter. J Virol 2005; 79:4492-505. [PMID: 15767449 PMCID: PMC1061541 DOI: 10.1128/jvi.79.7.4492-4505.2005] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mechanistic contribution of the Epstein-Barr virus (EBV) EBNA-LP protein to B-cell immortalization remains an enigma. However, previous studies have indicated that EBNA-LP may contribute to immortalization by enhancing EBNA2-mediated transcriptional activation of the LMP-1 gene. To gain further insight into the potential role EBNA-LP has in EBV-mediated B-cell immortalization, we asked whether it is a global or gene-specific coactivator of EBNA2 and whether coactivation requires interaction between these proteins. In type I Burkitt's lymphoma cells, we found that EBNA-LP strongly coactivated EBNA2 stimulation of LMP-1 and LMP2B RNAs, which are expressed from the viral divergent promoter. Surprisingly, the viral LMP2A gene and cellular CD21 and Hes-1 genes were induced by EBNA2 but showed no further induction after EBNA-LP coexpression. We also found that EBNA-LP did not stably interact with EBNA2 in coimmunoprecipitation assays, even though the conditions were adequate to observe specific interactions between EBNA2 and its cellular cofactor, CBF1. Colocalization between EBNA2 and EBNA-LP was not detectable in EBV-transformed cell lines or transfected type I Burkitt's cells. Finally, no significant interactions between EBNA2 and EBNA-LP were found with mammalian two-hybrid assays. From this data, we conclude that EBNA-LP is not a global coactivator of EBNA2 targets, but it preferentially coactivates EBNA2 stimulation of the viral divergent promoter. While this may require specific transient interactions between these proteins that only occur in the context of the divergent promoter, our data strongly suggest that EBNA-LP also cooperates with EBNA2 through mechanisms that do not require direct or indirect complex formation between these proteins.
Collapse
Affiliation(s)
- Rongsheng Peng
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
21
|
Weitzman MD, Carson CT, Schwartz RA, Lilley CE. Interactions of viruses with the cellular DNA repair machinery. DNA Repair (Amst) 2005; 3:1165-73. [PMID: 15279805 DOI: 10.1016/j.dnarep.2004.03.018] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Mammalian cells are equipped with complex machinery to monitor and repair damaged DNA. In addition to responding to breaks in cellular DNA, recent studies have revealed that the DNA repair machinery also recognizes viral genetic material. We review some examples that highlight the different strategies that viruses have developed to interact with the host DNA repair apparatus. While adenovirus (Ad) inactivates the host machinery to prevent signaling and concatemerization of the viral genome, other viruses may utilize DNA repair to their own advantage. Viral interactions with the repair machinery can also have detrimental consequences for the host cells and their ability to maintain the integrity of the host genome. Exploring the interactions between viruses and the host DNA repair machinery has revealed novel host responses to virus infections and has provided new tools to study the DNA damage response.
Collapse
Affiliation(s)
- Matthew D Weitzman
- Laboratory of Genetics, The Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA.
| | | | | | | |
Collapse
|
22
|
Zheng C, Brownlie R, Babiuk LA, van Drunen Littel-van den Hurk S. Characterization of nuclear localization and export signals of the major tegument protein VP8 of bovine herpesvirus-1. Virology 2004; 324:327-39. [PMID: 15207619 DOI: 10.1016/j.virol.2004.03.042] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2003] [Revised: 07/29/2003] [Accepted: 03/24/2004] [Indexed: 11/18/2022]
Abstract
Bovine herpesvirus-1 (BHV-1) VP8 is found in the nucleus immediately after infection. Transient expression of VP8 fused to yellow fluorescent protein (YFP) in COS-7 cells confirmed the nuclear localization of VP8 in the absence of other viral proteins. VP8 has four putative nuclear localization signals (NLS). Deletion of pat4 ((51)RRPR(54)) or pat7 ((48)PRVRRPR(54)) NLS2 abrogated nuclear accumulation, whereas deletion of (48)PRV(50) did not, so pat4 NLS2 is critical for nuclear localization of VP8. Furthermore, NLS1 ((11)RRPRR(15)), pat4 NLS2, and pat7 NLS2 were all capable of transporting the majority of YFP to the nucleus. Finally, a 12-amino-acid peptide with the sequence RRPRRPRVRRPR directed all of YFP into the nucleus, suggesting that reiteration of the RRPR motif makes the nuclear localization more efficient. Heterokaryon assays demonstrated that VP8 is also capable of shuttling between the nucleus and cytoplasm of the cell. Deletion mutant analysis revealed that this property is attributed to a leucine-rich nuclear export sequence (NES) consisting of amino acids (485)LSAYLTLFVAL(495). This leucine-rich NES caused transport of YFP to the cytoplasm. These results demonstrate that VP8 shuttles between the nucleus and cytoplasm.
Collapse
Affiliation(s)
- Chunfu Zheng
- Vaccine and Infectious Disease Organization, University of Saskatchewan, 120 Veterinary Road, Saskatoon, Saskatchewan, Canada S7N 5E3
| | | | | | | |
Collapse
|
23
|
Kanamori M, Watanabe S, Honma R, Kuroda M, Imai S, Takada K, Yamamoto N, Nishiyama Y, Kawaguchi Y. Epstein-Barr virus nuclear antigen leader protein induces expression of thymus- and activation-regulated chemokine in B cells. J Virol 2004; 78:3984-93. [PMID: 15047814 PMCID: PMC374277 DOI: 10.1128/jvi.78.8.3984-3993.2004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Epstein-Barr virus (EBV) nuclear antigen leader protein (EBNA-LP) plays a critical role in transformation of primary B lymphocytes to continuously proliferating lymphoblastoid cell lines (LCLs). To identify cellular genes in B cells whose expression is regulated by EBNA-LP, we performed microarray expression profiling on an EBV-negative human B-cell line, BJAB cells, that were transduced by a retroviral vector expressing the EBV EBNA-LP (BJAB-LP cells) and on BJAB cells that were transduced with a control vector (BJAB-vec cells). Microarray analysis led to the identification of a cellular gene encoding the CC chemokine TARC as a novel target gene that was induced by EBNA-LP. The levels of TARC mRNA expression and TARC secretion were significantly up-regulated in BJAB-LP compared with BJAB-vec cells. Induction of TARC was also observed when a subline of BJAB cells was converted by a recombinant EBV. Among the EBV-infected B-cell lines with the latency III phenotype that were tested, the LCLs especially secreted significantly high levels of TARC. The level of TARC secretion appeared to correlate with the level of full-length EBNA-LP expression. These results indicate that EBV infection induces TARC expression in B cells and that EBNA-LP is one of the viral gene products responsible for the induction.
Collapse
Affiliation(s)
- Mikiko Kanamori
- Department of Virology, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya 466-8550, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Rosendorff A, Illanes D, David G, Lin J, Kieff E, Johannsen E. EBNA3C coactivation with EBNA2 requires a SUMO homology domain. J Virol 2004; 78:367-77. [PMID: 14671118 PMCID: PMC303384 DOI: 10.1128/jvi.78.1.367-377.2004] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Epstein-Barr virus (EBV) nuclear antigen 3C (EBNA3C) is critical for EBV immortalization of infected B lymphocytes and can coactivate the EBV LMP1 promoter with EBNA2. EBNA3C amino acids 365 to 545 are necessary and sufficient for coactivation and are required for SUMO-1 and SUMO-3 interaction. We found that EBNA3C but not EBNA3CDelta343-545 colocalized with SUMO-1 in nuclear bodies and was modified by SUMO-2, SUMO-3, and SUMO-1. EBNA3C amino acids 545 to 628 and amino acids 30 to 365 were also required for EBNA3C sumolation and nuclear body localization but were dispensable for coactivation, indicating that EBNA3C sumolation is not required for coactivation. Furthermore, EBNA3C amino acids 476 to 992 potently coactivated with EBNA2 but EBNA3C amino acids 516 to 922 lacked activity, indicating that amino acids 476 to 515 are critical for coactivation. EBNA3C amino acids 476 to 515 include DDDVIEV(507-513), which are similar to SUMO-1 EEDVIEV(84-90). EBNA3C m1 and m2 point mutations, DDD(507-509) mutated to AAA and DVIEVID(509-513) mutated to AVIAVIA, respectively, diminished SUMO-1 and SUMO-3 interaction in directed yeast two-hybrid and glutathione S-transferase pulldown assays. Furthermore, EBNA3C m1 and m2 did not coactivate the LMP1 promoter with EBNA2. Overexpression of wild-type SUMO-1, SUMO-3, and the SUMO-conjugating enzyme UBC9 coactivated the LMP1 promoter with EBNA2. Since EBNA2 activation is dependent on p300/CBP, the possible effect of EBNA3C on p300-mediated transcription was assayed. EBNA3C potentiated transcription of p300 fused to a heterologous DNA binding domain, whereas EBNA3C m1 and m2 did not. All of these data are consistent with a model in which EBNA3C upregulates EBNA2-mediated gene activation by binding to a sumolated repressor and inhibiting repressive effects on p300/CBP and other transcription factor(s) at EBNA2-regulated promoters.
Collapse
Affiliation(s)
- Adam Rosendorff
- Virology Program and Department of Medicine, Channing Laboratory, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
25
|
Kato K, Yokoyama A, Tohya Y, Akashi H, Nishiyama Y, Kawaguchi Y. Identification of protein kinases responsible for phosphorylation of Epstein-Barr virus nuclear antigen leader protein at serine-35, which regulates its coactivator function. J Gen Virol 2004; 84:3381-3392. [PMID: 14645919 DOI: 10.1099/vir.0.19454-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Epstein-Barr virus (EBV) nuclear antigen leader protein (EBNA-LP) is a phosphoprotein suggested to play important roles in EBV-induced immortalization. Earlier studies have shown that the major site of phosphorylation of EBNA-LP by cellular kinase(s) is a serine residue at position 35 (Ser-35) and that the phosphorylation of Ser-35 is critical for regulation of the coactivator function of EBNA-LP (Yokoyama et al., J Virol 75, 5119-5128, 2001). In the present study, we have attempted to identify protein kinase(s) responsible for the phosphorylation of EBNA-LP at Ser-35. A purified chimeric protein consisting of glutathione S-transferase (GST) fused to a domain of EBNA-LP containing Ser-35 was found to be specifically phosphorylated by purified cdc2 in vitro, while GST fused to a mutated domain of EBNA-LP in which Ser-35 was replaced with alanine was not. In addition, overexpression of cdc2 in mammalian cells caused a significant increase in the phosphorylation of EBNA-LP, while this increased phosphorylation was eliminated if Ser-35 of EBNA-LP was replaced with alanine. These results indicate that the cellular protein kinase cdc2 mediates the phosphorylation of EBNA-LP at Ser-35. Recently, we reported that cdc2 and conserved protein kinases encoded by herpesviruses phosphorylate the same amino acid residue of target proteins (Kawaguchi et al., J Virol 77, 2359-2368, 2003). Consistent with this, the EBV-encoded conserved protein kinase BGLF4 specifically mediated the phosphorylation of EBNA-LP at Ser-35. These results indicate that the coactivator function of EBNA-LP can be regulated by the activity of these cellular and viral protein kinases.
Collapse
Affiliation(s)
- Kentaro Kato
- Department of Veterinary Microbiology, Graduate School of Agricultural and Life Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
- Department of Cell Regulation, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Akihiko Yokoyama
- Department of Cell Regulation, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Yukinobu Tohya
- Department of Veterinary Microbiology, Graduate School of Agricultural and Life Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hiroomi Akashi
- Department of Veterinary Microbiology, Graduate School of Agricultural and Life Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yukihiro Nishiyama
- Department of Virology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Yasushi Kawaguchi
- PRESTO, Japan Science and Technology Corporation, Tachikawa, Tokyo 190-0012, Japan
- Department of Virology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
- Department of Cell Regulation, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| |
Collapse
|
26
|
Kashuba E, Mattsson K, Pokrovskaja K, Kiss C, Protopopova M, Ehlin-Henriksson B, Klein G, Szekely L. EBV-encoded EBNA-5 associates with P14ARF in extranucleolar inclusions and prolongs the survival of P14ARF-expressing cells. Int J Cancer 2003; 105:644-53. [PMID: 12740913 DOI: 10.1002/ijc.11124] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Epstein-Barr virus (EBV) carrying lymphoblastoid cells of normal origin express the full program of all 9 virus-encoded, growth transformation associated proteins. They have an intact p53 pathway as a rule. This raises the question of whether any of the viral proteins impair the pathway functionally. Using a yeast 2-hybrid system, we have shown that EBNA-5 but not the other EBNAs interacts with the p14ARF protein, a regulator of the p53 pathway. The interaction was confirmed in vitro using a GST pull-down assay. Moreover, expression of EBNA-5 increased the survival of p14ARF-transfected cells. EBV infection of resting B cells induced the expression of p14ARF mRNA without increased level of the protein. A fraction of the p14ARF localized to the nucleoli but the bulk of the protein accumulated in nuclear but extranucleolar inclusions. Formation of the extranucleolar inclusions led to complete relocalization of EBNA-5 from nucleoplasm to these structures. The inclusions also contained p53 and HDM2, and were surrounded by PML bodies and proteasomes, which suggests that these inclusions could be targets for proteasome dependent protein degradation.
Collapse
Affiliation(s)
- Elena Kashuba
- Microbiology and Tumor Biology Center (MTC), Karolinska Institute, Nobels vag 16, Box 280, S-171 77 Stockholm, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Becker Y. Evolution of viruses by acquisition of genes that control nuclear functions in infected cells--an introduction. Virus Genes 2003; 24:5-10. [PMID: 11928989 DOI: 10.1023/a:1014021617345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The sequencing and deciphering of the human genome provided an insight into the gene complement of the human chromosomes as well as information on the nongenic sequences that constitute the chromosomal DNA molecules. The analyses of the genes and nongenic sequences in the human genome also provided important information on the presence of endogenous retroviruses, retroposons, retrotransposition of genes in the human genome as well as retroduplication of genes and distribution of the duplicated genes in different chromosomes. These issues were discussed in the first Special Issue of Virus Genes on Molecular Evolution of Viruses-Past and Present. In that issue, the discovery of the reverse transcriptase gene in archeabacteria, the retrovirus in drosophilae and endogenous retroviruses in the human genome were discussed. The aim of the present special issue on Molecular Evolution of Viruses is to consider the strategies developed by RNA and DNA viruses to control the nucleus and the nuclear functions in the infected cells.
Collapse
Affiliation(s)
- Yechiel Becker
- Department of Molecular Virology, Faculty of Medicine, The Hebrew University of Jerusalem, Israel.
| |
Collapse
|
28
|
Matsuda G, Nakajima K, Kawaguchi Y, Yamanashi Y, Hirai K. Epstein-Barr virus (EBV) nuclear antigen leader protein (EBNA-LP) forms complexes with a cellular anti-apoptosis protein Bcl-2 or its EBV counterpart BHRF1 through HS1-associated protein X-1. Microbiol Immunol 2003; 47:91-9. [PMID: 12636258 DOI: 10.1111/j.1348-0421.2003.tb02790.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Epstein-Barr virus (EBV) nuclear antigen leader protein (EBNA-LP) plays a critical role in EBV-induced transformation. An earlier report (Y. Kawaguchi et al., J. Virol. 74: 10104-10111, 2000) showed that EBNA-LP interacts with a cellular protein HS1-associated protein X-1 (HAX-1). The predicted amino acid sequence of HAX-1 exhibits similarity to that of another cellular protein Nip3 which has been shown to interact with cellular and viral anti-apoptotic proteins such as Bcl-2 and BHRF1, an EBV homolog of Bcl-2. Here we investigated whether HAX-1, like Nip3, interacts with Bcl-2 proteins and report the following. (i) A purified chimeric protein consisting of gluthathione S-transferase (GST) fused to BHRF1 (GST-BHRF1) or Bcl-2 (GST-Bcl-2) specifically pulled down HAX-1 transiently expressed in COS-7 cells. (ii) GST-BHRF1 or GST-Bcl-2 was not able to pull down EBNA-LP transiently expressed in COS-7 cells, whereas each of the GST fusion proteins formed complexes with EBNA-LP in the presence of RAX-1. These results indicated that EBNA-LP interacts with the viral and cellular Bcl-2 proteins through HAX-1, suggesting that EBNA-LP possesses a potential function in the regulation of apoptosis in EBV-infected cells.
Collapse
Affiliation(s)
- Go Matsuda
- Department of Cell Regulation, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | | | | | | | | |
Collapse
|
29
|
Taylor TJ, Knipe DM. C-terminal region of herpes simplex virus ICP8 protein needed for intranuclear localization. Virology 2003; 309:219-31. [PMID: 12758170 DOI: 10.1016/s0042-6822(03)00108-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The herpes simplex virus single-stranded DNA-binding protein, ICP8, localizes initially to structures in the nucleus called prereplicative sites. As replication proceeds, these sites mature into large globular structures called replication compartments. The details of what signals or proteins are involved in the redistribution of viral and cellular proteins within the nucleus between prereplicative sites and replication compartments are poorly understood; however, we showed previously that the dominant-negative d105 ICP8 does not localize to prereplicative sites and prevents the localization of other viral proteins to prereplicative sites (J. Virol. 74 (2000) 10122). Within the residues deleted in d105 (1083 to 1168), we identified a region between amino acid residues 1080 and 1135 that was predicted by computer models to contain two alpha-helices, one with considerable amphipathic nature. We used site-specific and random mutagenesis techniques to identify residues or structures within this region that are required for proper ICP8 localization within the nucleus. Proline substitutions in the predicted helix generated ICP8 molecules that did not localize to prereplicative sites and acted as dominant-negative inhibitors. Other substitutions that altered the charged residues in the predicted alpha-helix to alanine or leucine residues had little or no effect on ICP8 intranuclear localization. The predicted alpha-helix was dispensable for the interaction of ICP8 with the U(L)9 origin-binding protein. We propose that this C-terminal alpha-helix is required for localization of ICP8 to prereplicative sites by binding viral or cellular factors that target or retain ICP8 at specific intranuclear sites.
Collapse
Affiliation(s)
- Travis J Taylor
- Department of Microbiology and Molecular, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | | |
Collapse
|
30
|
Björndal AS, Szekely L, Elgh F. Ebola virus infection inversely correlates with the overall expression levels of promyelocytic leukaemia (PML) protein in cultured cells. BMC Microbiol 2003; 3:6. [PMID: 12697055 PMCID: PMC154099 DOI: 10.1186/1471-2180-3-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2002] [Accepted: 04/04/2003] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Ebola virus causes severe, often fatal hemorrhagic fever in humans. The mechanism of escape from cellular anti-viral mechanisms is not yet fully understood. The promyelocytic leukaemia (PML) associated nuclear body is part of the interferon inducible cellular defense system. Several RNA viruses have been found to interfere with the anti-viral function of the PML body. The possible interaction between Ebola virus and the PML bodies has not yet been explored. RESULTS We found that two cell lines, Vero E6 and MCF7, support virus production at high and low levels respectively. The expression of viral proteins was visualized and quantified using high resolution immunofluorescence microscopy. Ebola encoded NP and VP35 accumulated in cytoplasmic inclusion bodies whereas VP40 was mainly membrane associated but it was also present diffusely in the cytoplasm as well as in the euchromatic areas of the nucleus. The anti-VP40 antibody also allowed the detection of extracellular virions. Interferon-alpha treatment decreased the production of all three viral proteins and delayed the development of cytopathic effects in both cell lines. Virus infection and interferon-alpha treatment induced high levels of PML protein expression in MCF7 but much less in Vero E6 cells. No disruption of PML bodies, a common phenomenon induced by a variety of different viruses, was observed. CONCLUSION We have established a simple fixation and immunofluorescence staining procedure that allows specific co-detection and precise sub-cellular localization of the PML nuclear bodies and the Ebola virus encoded proteins NP, VP35 and VP40 in formaldehyde treated cells. Interferon-alpha treatment delays virus production in vitro. Intact PML bodies may play an anti-viral role in Ebola infected cells.
Collapse
Affiliation(s)
- Asa Szekely Björndal
- Centre for Microbiological Preparedness, Swedish Institute for Infectious Disease Control (SMI), Nobels väg 18, 17182 Solna, Sweden
- Microbiology and Tumor Biology Center (MTC), Karolinska Institute, Nobels väg 16, 17177 Stockholm, Sweden
| | - Laszlo Szekely
- Microbiology and Tumor Biology Center (MTC), Karolinska Institute, Nobels väg 16, 17177 Stockholm, Sweden
| | - Fredrik Elgh
- Centre for Microbiological Preparedness, Swedish Institute for Infectious Disease Control (SMI), Nobels väg 18, 17182 Solna, Sweden
- Swedish Defence Research Agency (FOI), Cementvägen 20, 90182 Umeå, Sweden
- Department of Medical Biosciences, Pathology, Umeå University, 90185 Umeå, Sweden
| |
Collapse
|
31
|
Ariumi Y, Ego T, Kaida A, Matsumoto M, Pandolfi PP, Shimotohno K. Distinct nuclear body components, PML and SMRT, regulate the trans-acting function of HTLV-1 Tax oncoprotein. Oncogene 2003; 22:1611-9. [PMID: 12642864 DOI: 10.1038/sj.onc.1206244] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Several viruses target cellular promyelocytic leukemia (PML)-nuclear bodies (PML-NBs) to induce their disruption, marked morphological changes in these structures or the relocation to PML-NB components to the cytoplasm of infected cells. PML conversely interferes with viral replication. We demonstrate that PML acts as a coactivator for the human T-cell leukemia virus type 1 (HTLV-1) Tax oncoprotein without direct binding. Tax was identified within interchromatin granule clusters (IGCs)/RNA splicing bodies (SBs), not PML-NBs; Tax expression did not affect PML-NB formation. Moreover, PML and CBP/p300 cooperatively activated Tax-mediated HTLV-1-LTR-dependent gene expression. Interestingly, two PML mutants, PML-RAR and PMLDelta216-331, which fail to form PML-NBs, could also coactivate Tax-mediated trans-acting function but had no effect on retinoic acid receptor (RAR)- or p53-dependent gene expression. In contrast, SMRT (silencing mediator for retinoic acid and thyroid hormone receptors), a nuclear corepressor found within the matrix-associated deacetylase (MAD) nuclear body, relocalized into Tax-associated nuclear bodies upon coexpression with Tax. SMRT coactivated the trans-acting function of Tax through direct binding. Coexpression of SMRT and PML resulted in an additive activation of Tax trans-acting function. Thus, crosstalk between distinct nuclear bodies may control Tax function.
Collapse
Affiliation(s)
- Yasuo Ariumi
- Laboratory of Human Tumor Viruses, Institute for Virus Research, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| | | | | | | | | | | |
Collapse
|
32
|
Igarashi M, Kawaguchi Y, Hirai K, Mizuno F. Physical interaction of Epstein-Barr virus (EBV) nuclear antigen leader protein (EBNA-LP) with human oestrogen-related receptor 1 (hERR1): hERR1 interacts with a conserved domain of EBNA-LP that is critical for EBV-induced B-cell immortalization. J Gen Virol 2003; 84:319-327. [PMID: 12560563 DOI: 10.1099/vir.0.18615-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Epstein-Barr virus (EBV) nuclear antigen leader protein (EBNA-LP) consists of W1W2 repeats and a unique C-terminal Y1Y2 domain and plays a critical role in EBV-induced transformation. To identify the cellular proteins associating with EBNA-LP, we performed a yeast two-hybrid screen using EBNA-LP cDNA containing a single W1W2 domain as bait and an EBV-transformed human peripheral blood lymphocyte cDNA library as the source of cellular genes. Our results were as follows. (i) A cDNA in the positive yeast colony was found to encode a cellular protein, human oestrogen-related receptor 1 (hERR1), which is a constitutive transcriptional activator of the various types of oestrogen response elements. (ii) A purified chimeric protein consisting of glutathione S-transferase (GST) fused to hERR1 specifically formed complexes with EBNA-LPs containing one (EBNA-LPR1), two (EBNA-LPR2) or four W1W2 repeats (EBNA-LPR4) transiently expressed in COS-7 cells. Reciprocally, GST fused to EBNA-LPR1 or EBNA-LPR2 pulled down hERR1 transiently expressed in COS-7 cells. (iii) Mutational analyses of EBNA-LP revealed that the Y2 domain of EBNA-LP is responsible for the interaction with hERR1 and two leucines in the Y2 domain (Leu-78 and -82), which are conserved among a subset of primate gammaherpesviruses, are interactive sites for hERR1. So far, it has been reported that the only domain of EBNA-LP critical for EBV-induced transformation is the Y1Y2 domain. Potential roles of hERR1 in EBV-induced transformation are discussed.
Collapse
Affiliation(s)
- Mie Igarashi
- Department of Microbiology, Tokyo Medical University, 6-1-1, Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
- Department of Tumor Virology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Yasushi Kawaguchi
- Department of Tumor Virology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Kanji Hirai
- Department of Tumor Virology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Fumio Mizuno
- Department of Microbiology, Tokyo Medical University, 6-1-1, Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| |
Collapse
|
33
|
Eskiw CH, Bazett-Jones DP. The promyelocytic leukemia nuclear body: sites of activity? Biochem Cell Biol 2003; 80:301-10. [PMID: 12123283 DOI: 10.1139/o02-079] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The promyelocytic leukemia (PML) nuclear body is one of many subnuclear domains in the eukaryotic cell nucleus. It has received much attention in the past few years because it accumulates the promyelocytic leukemia protein called PML. This protein is implicated in many nuclear events and is found as a fusion with the retinoic acid receptor RARalpha in leukemic cells. The importance of PML bodies in cell differentiation and growth is implicated in acute promyelocitic leukemia cells, which do not contain PML bodies. Treatment of patients with drugs that reverse the disease phenotype also causes PML bodies to reform. In this review, we discuss the structure, composition, and dynamics that may provide insights into the function of PML bodies. We also discuss the repsonse of PML bodies to cellular stresses, such as virus infection and heat shock. We interpret the changes that occur as evidence for a role of these structures in gene transcription. We also examine the role of the posttranslational modification. SUMO-1 addition, in directing proteins to this nuclear body. Characterization of the mobility of PML body associated proteins further supports a role in specific nuclear events, rather than the bodies resulting from random accumulations of proteins.
Collapse
Affiliation(s)
- Christopher H Eskiw
- Programme in Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | | |
Collapse
|
34
|
Blondel D, Regad T, Poisson N, Pavie B, Harper F, Pandolfi PP, De Thé H, Chelbi-Alix MK. Rabies virus P and small P products interact directly with PML and reorganize PML nuclear bodies. Oncogene 2002; 21:7957-70. [PMID: 12439746 DOI: 10.1038/sj.onc.1205931] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2002] [Revised: 08/05/2002] [Accepted: 08/05/2002] [Indexed: 11/09/2022]
Abstract
The interferon-induced promyelocytic leukaemia (PML) protein localizes both in the nucleoplasm and in matrix-associated multi-protein complexes known as nuclear bodies (NBs). NBs are disorganized in acute promyelocytic leukaemia or during some viral infections, suggesting that PML NBs could be a part of cellular defense mechanism. Rabies virus, a member of the rhabdoviridae family, replicates in the cytoplasm. Rabies phosphoprotein P and four other amino-terminally truncated products (P2, P3, P4, P5) are all translated from P mRNA. P and P2 are located in the cytoplasm, whereas P3, P4 and P5 are found mostly in the nucleus. Infection with rabies virus reorganized PML NBs. PML NBs became larger and appeared as dense aggregates when analysed by confocal or electron microscopy, respectively. The expression of P sequesters PML in the cytoplasm where both proteins colocalize, whereas that of P3 results in an increase in PML body size, as observed in infected cells. The P and P3 interacted directly in vivo and in vitro with PML. The C-terminal domain of P and the PML RING finger seem to be involved in this binding. Moreover, PML-/- primary mouse embryonic fibroblasts expressed viral proteins at a higher level and produced 20 times more virus than wild-type cells, suggesting that the absence of all PML isoforms resulted in an increase in rabies virus replication.
Collapse
|
35
|
Madani N, Millette R, Platt EJ, Marin M, Kozak SL, Bloch DB, Kabat D. Implication of the lymphocyte-specific nuclear body protein Sp140 in an innate response to human immunodeficiency virus type 1. J Virol 2002; 76:11133-8. [PMID: 12368356 PMCID: PMC136615 DOI: 10.1128/jvi.76.21.11133-11138.2002] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The viral infectivity factor (Vif) of human immunodeficiency virus type 1 (HIV-1) neutralizes an unidentified antiviral pathway that occurs only in nonpermissive (NP) cells. Using a yeast two-hybrid screen of a human lymphocyte cDNA library, we identified several potential Vif partners. One, the nuclear body protein Sp140, was found specifically in all NP cells (n = 12 cell lines tested; P < or = 0.001), and HIV-1 infection induced its partial dispersal from nuclear bodies into cytosolic colocalization with Vif. Our results implicate Sp140 in a response to HIV-1 that may be related to or coordinated with the pathway that inactivates HIV-1 lacking vif.
Collapse
Affiliation(s)
- Navid Madani
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon 97201-3098, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Stanton R, Fox JD, Caswell R, Sherratt E, Wilkinson GWG. Analysis of the human herpesvirus-6 immediate-early 1 protein. J Gen Virol 2002; 83:2811-2820. [PMID: 12388818 DOI: 10.1099/0022-1317-83-11-2811] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Herpesvirus immediate-early (IE) gene products play key roles in establishing productive infections, regulating reactivation from latency and evading immune recognition. Analyses of HHV-6 IE gene expression have revealed that the IE1 gene of the HHV-6A and HHV-6B variants exhibits a higher degree of sequence variation than other regions of the genome and no obvious similarity to its positional analogue in HCMV. We have analysed expression of the HHV-6 U1102 (HHV-6A) and Z29 (HHV-6B) IE1 gene products using transient expression vectors, stable cell lines and in the context of lytic virus infection. The IE1 transcripts from both variants demonstrate a similar pattern of splice usage within their translated regions. The HHV-6 IE1 proteins from both variants traffic to, and form a stable interaction with, PML-bodies (also known as ND10 or PODS). Remarkably, PML-bodies remained structurally intact and associated with the IE1 protein throughout lytic HHV-6 infection. Immunoprecipitation studies demonstrated that HHV-6 IE1 from both variants is covalently modified by conjugation to the small ubiquitin-like protein SUMO-1. Overexpression of SUMO-1 in cell lines resulted in substantially enhanced levels of IE1 expression; thus sumoylation may bestow stability to the protein. These results indicate that the HHV-6 IE1 protein interacts with PML-bodies yet, unlike other herpesviruses, HHV-6 appears to have no requirement or mechanism to induce PML-body dispersal during lytic replication.
Collapse
Affiliation(s)
- Richard Stanton
- Department of Medical Microbiology1 and Section of Infection and Immunity2, University of Wales College of Medicine, Tenovus Building, Heath Park, Cardiff CF14 4XN, UK
| | - Julie D Fox
- Department of Medical Microbiology1 and Section of Infection and Immunity2, University of Wales College of Medicine, Tenovus Building, Heath Park, Cardiff CF14 4XN, UK
| | - Richard Caswell
- Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3US, UK3
| | - Emma Sherratt
- Department of Medical Microbiology1 and Section of Infection and Immunity2, University of Wales College of Medicine, Tenovus Building, Heath Park, Cardiff CF14 4XN, UK
| | - Gavin W G Wilkinson
- Department of Medical Microbiology1 and Section of Infection and Immunity2, University of Wales College of Medicine, Tenovus Building, Heath Park, Cardiff CF14 4XN, UK
| |
Collapse
|
37
|
Kashuba E, Kashuba V, Sandalova T, Klein G, Szekely L. Epstein-Barr virus encoded nuclear protein EBNA-3 binds a novel human uridine kinase/uracil phosphoribosyltransferase. BMC Cell Biol 2002; 3:23. [PMID: 12199906 PMCID: PMC126255 DOI: 10.1186/1471-2121-3-23] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2002] [Accepted: 08/29/2002] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Epstein-Barr virus (EBV) infects resting B-lymphocytes and transforms them into immortal proliferating lymphoblastoid cell lines (LCLs) in vitro. The transformed immunoblasts may grow up as immunoblastic lymphomas in immuno-suppressed hosts. RESULTS In order to identify cellular protein targets that may be involved in Epstein-Barr virus mediated B-cell transformation, human LCL cDNA library was screened with one of the transformation associated nuclear antigens, EBNA-3 (also called EBNA-3A), using the yeast two-hybrid system. A clone encoding a fragment of a novel human protein was isolated (clone 538). The interaction was confirmed using in vitro binding assays. A full-length cDNA clone (F538) was isolated. Sequence alignment with known proteins and 3D structure predictions suggest that F538 is a novel human uridine kinase/uracil phosphoribosyltransferase. The GFP-F538 fluorescent fusion protein showed a preferentially cytoplasmic distribution but translocated to the nucleus upon co-expression of EBNA-3. A naturally occurring splice variant of F538, that lacks the C-terminal uracil phosphoribosyltransferase part but maintain uridine kinase domain, did not translocate to the nucleus in the presence of EBNA3. Antibody that was raised against the bacterially produced GST-538 protein showed cytoplasmic staining in EBV negative Burkitt lymphomas but gave a predominantly nuclear staining in EBV positive LCL-s and stable transfected cells expressing EBNA-3. CONCLUSION We suggest that EBNA-3 by direct protein-protein interaction induces the nuclear accumulation of a novel enzyme, that is part of the ribonucleotide salvage pathway. Increased intranuclear levels of UK/UPRT may contribute to the metabolic build-up that is needed for blast transformation and rapid proliferation.
Collapse
Affiliation(s)
- Elena Kashuba
- Microbiology and Tumor Biology Centre (MTC), Karolinska Institute, S-171 77, Stockholm, Sweden
| | - Vladimir Kashuba
- Microbiology and Tumor Biology Centre (MTC), Karolinska Institute, S-171 77, Stockholm, Sweden
| | - Tatjana Sandalova
- Department of Medical Biochemistry and Biophysics (MBB), Karolinska Institute, S-171 77, Stockholm, Sweden
| | - George Klein
- Microbiology and Tumor Biology Centre (MTC), Karolinska Institute, S-171 77, Stockholm, Sweden
| | - Laszlo Szekely
- Microbiology and Tumor Biology Centre (MTC), Karolinska Institute, S-171 77, Stockholm, Sweden
| |
Collapse
|
38
|
Dufva M, Flodin J, Nerstedt A, Rüetschi U, Rymo L. Epstein-Barr virus nuclear antigen 5 inhibits pre-mRNA cleavage and polyadenylation. Nucleic Acids Res 2002; 30:2131-43. [PMID: 12000833 PMCID: PMC115292 DOI: 10.1093/nar/30.10.2131] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The long-standing suspicion that Epstein-Barr virus nuclear antigen 5 (EBNA5) is involved in transcription regulation was recently confirmed by the observation by several groups that EBNA5 cooperates with EBNA2 in activation of the LMP1 promoter. In attempts to elucidate the molecular basis for the EBNA5-mediated enhancement of EBNA2 transactivation, we obtained evidence of an additional function of EBNA5: at high but still biologically relevant levels, EBNA5 acted as a repressor of gene expression by interfering with the processing of pre-mRNA. Transient transfections with reporter plasmids revealed that EBNA5 repressed reporter mRNA and protein expression in the cytoplasm, but did not lower the steady-state level of reporter RNA in the total cellular RNA fraction. We have excluded that repression occurred as a consequence of cell death induced by EBNA5. Using the RNase protection assay with a probe comprising the pre-mRNA cleavage and polyadenylation site, EBNA5 was found to inhibit 3'-end cleavage and polyadenylation of pre-mRNAs from the reporter plasmids investigated. The effect of inhibitory levels of EBNA5 on chromosomal genes was examined in transient transfections by expression profiling using a cDNA microarray panel containing 588 genes. The results showed that EBNA5 could also inhibit the expression of chromosomal genes and did it in a discriminatory manner. This is consistent with the notion that a regulatory mechanism exists in the cell that confers specificity to the selection by EBNA5 of target genes for repression.
Collapse
Affiliation(s)
- Martin Dufva
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Laboratory Medicine, Göteborg University, Sahlgrenska University Hospital, S-413 45 Gothenburg, Sweden
| | | | | | | | | |
Collapse
|
39
|
Han I, Xue Y, Harada S, Orstavik S, Skalhegg B, Kieff E. Protein kinase A associates with HA95 and affects transcriptional coactivation by Epstein-Barr virus nuclear proteins. Mol Cell Biol 2002; 22:2136-46. [PMID: 11884601 PMCID: PMC133669 DOI: 10.1128/mcb.22.7.2136-2146.2002] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
HA95, a nuclear protein homologous to AKAP95, has been identified in immune precipitates of the Epstein-Barr virus (EBV) coactivating nuclear protein EBNA-LP from EBV-transformed lymphoblastoid cells (LCLs). We now find that HA95 and EBNA-LP are highly associated in LCLs and in B-lymphoma cells where EBNA-LP is expressed by gene transfer. Binding was also evident in yeast two-hybrid assays. HA95 binds to the EBNA-LP repeat domain that is the principal coactivator of transcription. EBNA-LP localizes with HA95 and causes HA95 to partially relocalize with EBNA-LP in promyelocytic leukemia nuclear bodies. Protein kinase A catalytic subunit alpha (PKAcsalpha) is significantly associated with HA95 in the presence or absence of EBNA-LP. Although EBNA-LP is not a PKA substrate, HA95 or PKAcsalpha expression in B lymphoblasts specifically down-regulates the strong coactivating effects of EBNA-LP. The inhibitory effects of PKAcsalpha are reversed by coexpression of protein kinase inhibitor. PKAcsalpha also inhibits EBNA-LP coactivation with the EBNA-2 acidic domain fused to the Gal4 DNA binding domain. Furthermore, EBNA-LP- and EBNA-2-induced expression of the EBV oncogene, LMP1, is down-regulated by PKAcsalpha or HA95 expression in EBV-infected lymphoblasts. These experiments indicate that HA95 and EBNA-LP localize PKAcsalpha at nuclear sites where it can affect transcription from specific promoters. The role of HA95 as a scaffold for transcriptional regulation is discussed.
Collapse
Affiliation(s)
- Innoc Han
- Ewha Institute of Neuroscience, Ewha University Medical School, Seoul 110-783, Korea
| | | | | | | | | | | |
Collapse
|
40
|
Bonilla WV, Pinschewer DD, Klenerman P, Rousson V, Gaboli M, Pandolfi PP, Zinkernagel RM, Salvato MS, Hengartner H. Effects of promyelocytic leukemia protein on virus-host balance. J Virol 2002; 76:3810-8. [PMID: 11907221 PMCID: PMC136073 DOI: 10.1128/jvi.76.8.3810-3818.2002] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The cellular promyelocytic leukemia protein (PML) associates with the proteins of several viruses and in some cases reduces viral propagation in cell culture. To examine the role of PML in vivo, we compared immune responses and virus loads of PML-deficient and control mice infected with lymphocytic choriomeningitis virus (LCMV) and vesicular stomatitis virus (VSV). PML(-/-) mice exhibited accelerated primary footpad swelling reactions to very-low-dose LCMV, higher swelling peaks upon high-dose inoculation, and higher viral loads in the early phase of systemic LCMV infection. T-cell-mediated hepatitis and consequent mortality upon infection with a hepatotropic LCMV strain required 10- to 100-times-lower inocula despite normal cytotoxic T-lymphocyte reactivity in PML(-/-) mice. Furthermore, PML deficiency rendered mice 10 times more susceptible to lethal immunopathology upon intracerebral LCMV inoculation. Accordingly, 10-times-lower VSV inocula elicited specific neutralizing-antibody responses, a replication-based effect not observed with inactivated virus or after immunization with recombinant VSV glycoprotein. These in vivo observations corroborated our results showing more virus production in PML(-/-) fibroblasts. Thus, PML is a contributor to innate immunity, defining host susceptibility to viral infections and to immunopathology.
Collapse
Affiliation(s)
- Weldy V Bonilla
- Institute of Experimental Immunology, University Hospital, CH-8091 Zurich, Switzerland.
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Florin L, Schäfer F, Sotlar K, Streeck RE, Sapp M. Reorganization of nuclear domain 10 induced by papillomavirus capsid protein l2. Virology 2002; 295:97-107. [PMID: 12033769 DOI: 10.1006/viro.2002.1360] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nuclear domains (ND) 10 are associated with proteins implicated in transcriptional regulation, growth suppression, and apoptosis. We now show that the minor capsid protein L2 of human papillomavirus (HPV) type 33 induces a reorganization of ND10-associated proteins. Whereas the promyelocytic leukemia protein, the major structural component of ND10, was unaffected by L2, Sp100 was released from ND10 upon L2 expression. The total cellular amount of Sp100, but not of Sp100 mRNA, decreased significantly, suggesting degradation of Sp100. Proteasome inhibitors induced the dispersal of Sp100 and inhibited the nuclear translocation of L2. In contrast to Sp100, Daxx was recruited to ND10 by L2 expression. Coimmunoprecipitation demonstrated interaction of the two proteins. L2-induced reorganization of ND10 was observed both in cell culture and in natural HPV lesions. The differential change in protein composition observed provides further evidence to suggest that the ND10-associated proteins are an important interface of viral life cycle and host cell.
Collapse
Affiliation(s)
- Luise Florin
- Institute for Medical Microbiology and Hygiene, University of Mainz, Mainz, 55101, Germany
| | | | | | | | | |
Collapse
|
42
|
Tanaka M, Yokoyama A, Igarashi M, Matsuda G, Kato K, Kanamori M, Hirai K, Kawaguchi Y, Yamanashi Y. Conserved region CR2 of Epstein-Barr virus nuclear antigen leader protein is a multifunctional domain that mediates self-association as well as nuclear localization and nuclear matrix association. J Virol 2002; 76:1025-32. [PMID: 11773378 PMCID: PMC135869 DOI: 10.1128/jvi.76.3.1025-1032.2002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Self-association of viral proteins is important for many of their functions, including enzymatic, transcriptional, and transformational activities. Epstein-Barr virus (EBV) nuclear antigen leader protein (EBNA-LP) contains various numbers of W1W2 repeats and a unique carboxyl-terminal Y1Y2 domain. It was reported that EBNA-LP associates with a variety of cellular proteins and plays a critical role in EBV-induced transformation. We report here that EBNA-LP self-associates in vivo and the domain responsible for the homotypic association is a multifunctional domain mediating nuclear localization, nuclear matrix association, and EBNA-2-dependent coactivator function of the protein. Our conclusions are based on the following observations. (i) EBNA-LP interacts with itself or its derivatives in the yeast two-hybrid system. (ii) A purified chimeric protein consisting of glutathione S-transferase fused to EBNA-LP specifically formed complexes with EBNA-LP transiently expressed in COS-7 cells. (iii) When Flag epitope-tagged EBNA-LP with either one or two W1W2 repeats and EBNA-LP containing four W1W2 repeats were coexpressed in COS-7 cells, the latter was specifically coimmunoprecipitated with the former. (iv) Mutational analyses of EBNA-LP with deletion mutants revealed that the region between codons 19 and 39 (relative to the first amino acid residue of the W2 domain) is essential for self-association of the protein. The mapped region almost completely overlaps with CR2 and CR3, regions conserved among a subset of primate gamma-herpesviruses and critical for EBNA-2-dependent coactivator function. Amino acid substitutions in CR2 alone abolished the ability of the protein to self-interact. This laboratory previously reported that CR2 is also responsible for nuclear localization and nuclear matrix association (A. Yokoyama, Y. Kawaguchi, I. Kitabayashi, M. Ohki, and K. Hirai, Virology 279:401-413, 2001). (v) Sucrose gradient sedimentation showed that amino acid substitutions in CR2 reduced the ability of the protein to form protein complexes in B cells. These results suggest that self-association of EBNA-LP may be important for its various functions and interactions of the protein with multiple cellular proteins.
Collapse
Affiliation(s)
- Michiko Tanaka
- Department of Tumor Virology, Division of Virology and Immunology, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Regad T, Chelbi-Alix MK. Role and fate of PML nuclear bodies in response to interferon and viral infections. Oncogene 2001; 20:7274-86. [PMID: 11704856 DOI: 10.1038/sj.onc.1204854] [Citation(s) in RCA: 222] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Interferons (IFNs) are a family of secreted proteins with antiviral, antiproliferative and immunomodulatory activities. The different biological actions of IFN are believed to be mediated by the products of specifically induced cellular genes in the target cells. The promyelocytic leukaemia (PML) protein localizes both in the nucleoplasm and in matrix-associated multi-protein complexes known as nuclear bodies (NBs). PML is essential for the proper formation and the integrity of the NBs. Modification of PML by the Small Ubiquitin MOdifier (SUMO) was shown to be required for its localization in NBs. The number and the intensity of PML NBs increase in response to interferon (IFN). Inactivation of the IFN-induced PML gene by its fusion to retinoic acid receptor alpha alters the normal localization of PML from the punctuate nuclear patterns of NBs to micro-dispersed tiny dots and results in uncontrolled growth in Acute Promyelocytic Leukaemia. The NBs-associated proteins, PML, Sp100, Sp140, Sp110, ISG20 and PA28 are induced by IFN suggesting that nuclear bodies could play a role in IFN response. Although the function of PML NBs is still unclear, some results indicate that they may represent preferential targets for viral infections and that PML could play a role in the mechanism of the antiviral action of IFNs. Viruses, which require the cellular machinery for their replication, have evolved different ways to counteract the action of IFN by inhibiting IFN signalling, by blocking the activities of specific antiviral mediators or by altering PML expression and/or localization on nuclear bodies.
Collapse
Affiliation(s)
- T Regad
- UPR 9045 CNRS, Institut André Lwoff, 7 rue Guy Moquet 94801, Villejuif, Cedex, France
| | | |
Collapse
|
44
|
Bandobashi K, Maeda A, Teramoto N, Nagy N, Székely L, Taguchi H, Miyoshi I, Klein G, Klein E. Intranuclear localization of the transcription coadaptor CBP/p300 and the transcription factor RBP-Jk in relation to EBNA-2 and -5 in B lymphocytes. Virology 2001; 288:275-82. [PMID: 11601899 DOI: 10.1006/viro.2001.1103] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have studied the expression and the localization of the cellular proteins CBP/p300 and RBP-Jk in in vitro EBV-infected human B lymphocytes in relation to the EBNA-2 and EBNA-5 proteins. We found that the level of CBP/p300 was elevated drastically by EBV infection and also after activation by CD40 ligation. Thus the increase in CBP/p300 expression in the EBV-infected cells is related to the virus-induced activation and proliferation of the cells. EBNA-2 and RBP-Jk colocalized in the nucleoplasm, which is in accordance with their functional interaction. We confirmed earlier reports about the presence and colocalization of EBNA-5 and CBP in the nuclear POD bodies. On the other hand, neither EBNA-2 nor p300 was detected in the PODs. The expression of these two proteins overlapped in some distinct dots of the nucleoplasm. Taken together, the different patterns of CBP and p300 expression and their different localization in relation to the PML bodies and two EBV-encoded proteins in the B cells may provide some clue to their distinct functional roles.
Collapse
Affiliation(s)
- K Bandobashi
- Microbiology and Tumor Biology Center, Karolinska Institute, S-171 77 Stockholm, Sweden.
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Yin H, Morioka H, Towle CA, Vidal M, Watanabe T, Weissbach L. Evidence that HAX-1 is an interleukin-1 alpha N-terminal binding protein. Cytokine 2001; 15:122-37. [PMID: 11554782 DOI: 10.1006/cyto.2001.0891] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
During studies aimed at understanding the function of the N-terminal peptide of interleukin-1 alpha (IL-1 NTP, amino acids 1-112), which is liberated from the remainder of IL-1 alpha during intracellular processing, we identified by yeast two-hybrid analysis a putative interacting protein previously designated as HAX-1. In vitro binding studies and transient transfection experiments confirmed that HAX-1 can associate with the IL-1 NTP. HAX-1 was first identified as a protein that associates with HS1, a target of non-receptor protein tyrosine kinases within haematopoietic cells. Recent data have also revealed interactions between HAX-1 and three disparate proteins, polycystin-2 (derived from the PKD2 gene), a protein linked to polycystic kidney disease, cortactin, and Epstein-Barr virus nuclear antigen leader protein (EBNA-LP). Sequence analysis of different HAX-1 binding domains revealed a putative consensus binding motif that is present in various intracellular proteins. Overlapping peptides comprising the IL-1 NTP were synthesized, and binding experiments revealed that discrete peptides were capable of interacting with HAX-1. HAX-1 may serve to retain the IL-1 NTP in the cytoplasm, and complex formation between the IL-1 NTP and HAX-1 may play a role in motility and/or adhesion of cells.
Collapse
Affiliation(s)
- H Yin
- Orthopaedic Research Laboratories, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | | | | | | | | | | |
Collapse
|
46
|
Katano H, Ogawa-Goto K, Hasegawa H, Kurata T, Sata T. Human-herpesvirus-8-encoded K8 protein colocalizes with the promyelocytic leukemia protein (PML) bodies and recruits p53 to the PML bodies. Virology 2001; 286:446-55. [PMID: 11485412 DOI: 10.1006/viro.2001.1005] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Promyelocytic leukemia protein (PML) bodies are nuclear sites for both input viral genome deposition and immediate-early (IE) gene transcription during infection with certain human DNA viruses, such as human cytomegalovirus (HCMV), herpes simplex virus type 1, and adenovirus. In this study, we showed that the K8 (K-bZIP) protein, an early protein encoded by the human herpesvirus 8 (HHV-8), colocalized with the PML bodies in HHV-8-infected primary effusion lymphoma cells. Cotransfection of two plasmids expressing the K8 protein and green-fluorescence protein (GFP)-PML fusion protein into 293T cells revealed that the K8 protein colocalized with PML in cells with high PML expression. Overexpression of the K8 protein in Chinese hamster ovary (CHO) cells with stable GFP-PML expression did not induce the dispersion of the PML bodies, unlike the IE1 protein of HCMV. Transfection of a truncated K8 gene revealed that the leucine zipper domain of the K8 protein was required for the colocalization with PML. We also demonstrated that the K8 protein bound to p53 in vivo and in vitro, and that high expression of the K8 protein caused the accumulation of p53 to the PML bodies in CHO cells, suggesting that the K8 protein functions in the recruitment of p53 to the PML bodies. These data suggest that the K8 protein may be associated with the functional modulation of p53 in the nucleus during the lytic phase of HHV-8.
Collapse
Affiliation(s)
- H Katano
- Department of Pathology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo 162-8640, Japan.
| | | | | | | | | |
Collapse
|
47
|
Dufva M, Olsson M, Rymo L. Epstein-Barr virus nuclear antigen 5 interacts with HAX-1, a possible component of the B-cell receptor signalling pathway. J Gen Virol 2001; 82:1581-1587. [PMID: 11413368 DOI: 10.1099/0022-1317-82-7-1581] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Using a yeast two-hybrid screen of a B-cell cDNA library with an Epstein-Barr nuclear antigen 5 (EBNA5) molecule containing seven repeats of the W(1)W(2) domain as bait, we have isolated the EBNA5-interacting protein HAX-1. HAX-1 has previously been shown to associate with HS1, a protein specifically expressed in cells of the haematopoietic lineage, and is thought to be involved in signal transduction in B-cells. Immunofluorescence experiments showed that HAX-1 co-localized with the hsp60 protein that is associated with the mitochondria in the cell cytoplasm. Pull down experiments with a fusion protein between glutathione S-transferase and the seven copy repeat EBNA5 synthesized in bacteria and in yeast cells confirmed that HAX-1 can interact with EBNA5 in vitro. Conventionally, EBNA5 is regarded as a nuclear protein. However, we show here that the smallest EBNA5 species, composed of the unique Y domain and only one copy of the W(1)W(2) repeat domain, like HAX-1, co-localizes with the mitochondrial hsp60 protein in the B-cell cytoplasm. Furthermore, immunoprecipitation experiments demonstrate that the single repeat EBNA5 associates with HAX-1 in transfected B-lymphoblastoid cells.
Collapse
Affiliation(s)
- Martin Dufva
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Laboratory Medicine, Göteborg University, Sahlgrenska University Hospital, S-413 45 Gothenburg, Sweden1
| | - Maria Olsson
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Laboratory Medicine, Göteborg University, Sahlgrenska University Hospital, S-413 45 Gothenburg, Sweden1
| | - Lars Rymo
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Laboratory Medicine, Göteborg University, Sahlgrenska University Hospital, S-413 45 Gothenburg, Sweden1
| |
Collapse
|
48
|
Liu JL, Kung HJ. Marek's disease herpesvirus transforming protein MEQ: a c-Jun analogue with an alternative life style. Virus Genes 2001; 21:51-64. [PMID: 11022789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
In order to adapt to and to cope with an often hostile host environment, many viruses have evolved to encode products that are homologous to cellular proteins. These proteins exploit the existing host machinery and allow viruses to readily integrate into the host functional network. As a result, viruses are able to maneuver their journey seemingly effortlessly inside the host cell to achieve ultimate survival. Such molecular mimicries sometime go overboard, allowing viruses to overtake the cellular pathways or evade the immune system as do many of the retroviral oncogenes. Retroviral oncogenes are derived directly from host genes, and they are virtually identical to host genes in sequences except those mutations that make them unregulatable by host. Oncogenic herpesviruses also encode oncogenes, or transforming genes, which have independently evolved and are distantly related to host genes. However, these genes do share consensus structural motifs with cellular genes involved in cell growth and apoptosis and are functional analogues to host genes. The Marek's disease virus oncoprotein, MEQ, is one such example. MEQ is a basic region-leucine zipper (bZIP) transactivator which shares extensive homology with the Jun/Fos family of transcription factors within the bZIP domain, but not in other regions. Like all other bZIP proteins, MEQ is capable of dimerizing with itself and with a variety of bZIP partners including c-Jun, B-Jun, c-Fos, CREB, ATF-1, ATF-2, and SNF. MEQ-Jun heterodimers bind to a TRE/CRE-like sequence in the meq promoter region and have been shown to up-regulate MEQ expression in both chicken embryo fibroblasts and F9 cells. In addition, the bZIP and transactivation domains are interchangeable between MEQ and c-Jun in terms of transforming potential; i.e. MEQ can functionally substitute for c-Jun. These properties enable MEQ to engage in host cell processes by disguising itself as c-Jun. On the other hand, there are properties of MEQ notably different from c-Jun, which include its capability to bind RNA, to bind a CACAC-bent DNA structure as a homodimer, to inhibit apoptosis, and to interact with CDK2. MEQ's subcellular localization in the nucleolus and coiled body, is also different from Jun/Fos family of transactivators. These unique features may provide the MEQ with additional facility in regulating MDV replication, establishing latency, and cellular transformation. In this review, we will attempt to summarize the past research progress on MDV meq, with a focused on the similarities and differences between MEQ and cellular proteins, and between MEQ and other viral oncoproteins.
Collapse
Affiliation(s)
- J L Liu
- Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4960, USA
| | | |
Collapse
|
49
|
Tanner JE, Alfieri C. The Epstein-Barr virus and post-transplant lymphoproliferative disease: interplay of immunosuppression, EBV, and the immune system in disease pathogenesis. Transpl Infect Dis 2001; 3:60-9. [PMID: 11395971 DOI: 10.1034/j.1399-3062.2001.003002060.x] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Transplant patients are at particular risk for developing post-transplant lymphoproliferative disease (PTLD) following administration of immunosuppressive therapy. In many cases the PTLD lesions express Epstein-Barr virus (EBV) latent and lytic genes as well as elevated levels of host cytokines. An outline of the potential contributions of EBV, host cytokines and T cells, and the immunosuppressive cyclosporine A, tacrolimus, and anti-CD3 antibody in the mechanism and pathogenesis of this disease is presented and discussed.
Collapse
Affiliation(s)
- J E Tanner
- Department of Pediatrics, Children's Hospital of Eastern Ontario, University of Ottawa Medical School, Ottawa, Ontario, Canada
| | | |
Collapse
|
50
|
Yokoyama A, Tanaka M, Matsuda G, Kato K, Kanamori M, Kawasaki H, Hirano H, Kitabayashi I, Ohki M, Hirai K, Kawaguchi Y. Identification of major phosphorylation sites of Epstein-Barr virus nuclear antigen leader protein (EBNA-LP): ability of EBNA-LP to induce latent membrane protein 1 cooperatively with EBNA-2 is regulated by phosphorylation. J Virol 2001; 75:5119-28. [PMID: 11333893 PMCID: PMC114917 DOI: 10.1128/jvi.75.11.5119-5128.2001] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Epstein-Barr virus (EBV) nuclear antigen leader protein (EBNA-LP) is a phosphoprotein suggested to play important roles in EBV-induced immortalization of B cells. One of the potential functions of EBNA-LP is a cooperative induction with EBNA-2 of viral and cellular gene expression, including that of the genes for viral latent membrane protein 1 (LMP-1) and cellular cyclin D2. We report here that the phosphorylation of EBNA-LP by cellular kinase(s) is critical to its ability to cooperate with EBNA-2 in up-regulating the expression of LMP-1 in a B-lymphoma cell line. Our conclusion is based on the following observations. (i) Mass-spectrometric analysis of purified EBNA-LP and mutational analyses of EBNA-LP revealed that the serine residue at position 35 in the W2 repeat domain is the major phosphorylation site of EBNA-LP in vivo. (ii) Substitutions of this site in each W2 repeat domain with alanine markedly reduced the ability of the protein to induce LMP-1 expression in combination with EBNA-2 in Akata cells. (iii) Replacement at the major phosphorylation sites with glutamic acids restored the wild-type phenotype. It is well established that this substitution mimics constitutive phosphorylation. These results indicated that the coactivator function of EBNA-LP is regulated by phosphorylation.
Collapse
Affiliation(s)
- A Yokoyama
- Department of Tumor Virology, Division of Virology and Immunology, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|