1
|
Vallbracht M, Backovic M, Klupp BG, Rey FA, Mettenleiter TC. Common characteristics and unique features: A comparison of the fusion machinery of the alphaherpesviruses Pseudorabies virus and Herpes simplex virus. Adv Virus Res 2019; 104:225-281. [PMID: 31439150 DOI: 10.1016/bs.aivir.2019.05.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Membrane fusion is a fundamental biological process that allows different cellular compartments delimited by a lipid membrane to release or exchange their respective contents. Similarly, enveloped viruses such as alphaherpesviruses exploit membrane fusion to enter and infect their host cells. For infectious entry the prototypic human Herpes simplex viruses 1 and 2 (HSV-1 and -2, collectively termed HSVs) and the porcine Pseudorabies virus (PrV) utilize four different essential envelope glycoproteins (g): the bona fide fusion protein gB and the regulatory heterodimeric gH/gL complex that constitute the "core fusion machinery" conserved in all members of the Herpesviridae; and the subfamily specific receptor binding protein gD. These four components mediate attachment and fusion of the virion envelope with the host cell plasma membrane through a tightly regulated sequential activation process. Although PrV and the HSVs are closely related and employ the same set of glycoproteins for entry, they show remarkable differences in the requirements for fusion. Whereas the HSVs strictly require all four components for membrane fusion, PrV can mediate cell-cell fusion without gD. Moreover, in contrast to the HSVs, PrV provides a unique opportunity for reversion analyses of gL-negative mutants by serial cell culture passaging, due to a limited cell-cell spread capacity of gL-negative PrV not observed in the HSVs. This allows a more direct analysis of the function of gH/gL during membrane fusion. Unraveling the molecular mechanism of herpesvirus fusion has been a goal of fundamental research for years, and yet important mechanistic details remain to be uncovered. Nevertheless, the elucidation of the crystal structures of all key players involved in PrV and HSV membrane fusion, coupled with a wealth of functional data, has shed some light on this complex puzzle. In this review, we summarize and discuss the contemporary knowledge on the molecular mechanism of entry and membrane fusion utilized by the alphaherpesvirus PrV, and highlight similarities but also remarkable differences in the requirements for fusion between PrV and the HSVs.
Collapse
Affiliation(s)
- Melina Vallbracht
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany.
| | - Marija Backovic
- Institut Pasteur, Unité de Virologie Structurale, UMR3569 (CNRS), Paris, France
| | - Barbara G Klupp
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| | - Felix A Rey
- Institut Pasteur, Unité de Virologie Structurale, UMR3569 (CNRS), Paris, France
| | - Thomas C Mettenleiter
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| |
Collapse
|
2
|
Functional Relevance of the N-Terminal Domain of Pseudorabies Virus Envelope Glycoprotein H and Its Interaction with Glycoprotein L. J Virol 2017; 91:JVI.00061-17. [PMID: 28228592 DOI: 10.1128/jvi.00061-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 02/15/2017] [Indexed: 01/17/2023] Open
Abstract
Several envelope glycoproteins are involved in herpesvirus entry into cells, direct cell-to-cell spread, and induction of cell fusion. The membrane fusion protein glycoprotein B (gB) and the presumably gB-activating heterodimer gH/gL are essential for these processes and conserved throughout the Herpesviridae However, after extended cell culture passage of gL-negative mutants of the alphaherpesvirus pseudorabies virus (PrV), phenotypic revertants could be isolated which had acquired spontaneous mutations affecting the gL-interacting N-terminal part of the gH ectodomain (gDH and gHB4.1) (B. G. Klupp and T. C. Mettenleiter, J Virol 73:3014-3022, 1999; C. Schröter, M. Vallbracht, J. Altenschmidt, S. Kargoll, W. Fuchs, B. G. Klupp, and T. C. Mettenleiter, J Virol 90:2264-2272, 2016). To investigate the functional relevance of this part of gH in more detail, we introduced an in-frame deletion of 66 codons at the 5' end of the plasmid-cloned gH gene (gH32/98). The N-terminal signal peptide was retained, and the deletion did not affect expression or processing of gH but abrogated its function in in vitro fusion assays. Insertion of the engineered gH gene into the PrV genome resulted in a defective mutant (pPrV-gH32/98K), which was incapable of entry and spread. Interestingly, in vitro activity of mutated gH32/98 was restored when it was coexpressed with hyperfusogenic gBB4.1, obtained from a passaged gL deletion mutant of PrV. Moreover, the entry and spread defects of pPrV-gH32/98K were compensated by the mutations in gBB4.1 in cis, as well as in trans, independent of gL. Thus, PrV gL and the gL-interacting domain of gH are not strictly required for function.IMPORTANCE Membrane fusion is crucial for infectious entry and spread of enveloped viruses. While many enveloped viruses require only one or two proteins for receptor binding and membrane fusion, herpesvirus infection depends on several envelope glycoproteins. Besides subfamily-specific receptor binding proteins, the core fusion machinery consists of the conserved fusion protein gB and the gH/gL complex. The role of the latter is unclear, but it is hypothesized to interact with gB for fusion activation. Using isogenic virus recombinants, we demonstrate here that gL and the gL-binding domain of PrV gH are not strictly required for membrane fusion during virus entry and spread when concomitantly mutations in gB are present which increase its fusogenicity. Thus, our results strongly support the notion of a functional gB-gH interaction during the fusion process.
Collapse
|
3
|
B Virus (Macacine herpesvirus 1) Glycoprotein D Is Functional but Dispensable for Virus Entry into Macaque and Human Skin Cells. J Virol 2015; 89:5515-24. [PMID: 25740986 DOI: 10.1128/jvi.03568-14] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 02/26/2015] [Indexed: 12/23/2022] Open
Abstract
UNLABELLED Glycoprotein D (gD) plays an essential role in cell entry of many simplexviruses. B virus (Macacine herpesvirus 1) is closely related to herpes simplex virus 1 (HSV-1) and encodes gD, which shares more than 70% amino acid similarity with HSV-1 gD. Previously, we have demonstrated that B virus gD polyclonal antibodies were unable to neutralize B virus infectivity on epithelial cell lines, suggesting gD is not required for B virus entry into these cells. In the present study, we confirmed this finding by producing a B virus mutant, BV-ΔgDZ, in which the gD gene was replaced with a lacZ expression cassette. Recombinant plaques were selected on complementing VD60 cells expressing HSV-1 gD. Virions lacking gD were produced in Vero cells infected with BV-ΔgDZ. In contrast to HSV-1, B virus lacking gD was able to infect and form plaques on noncomplementing cell lines, including Vero, HEp-2, LLC-MK2, primary human and macaque dermal fibroblasts, and U373 human glioblastoma cells. The gD-negative BV-ΔgDZ also failed to enter entry-resistant murine B78H1 cells bearing a single gD receptor, human nectin-1, but gained the ability to enter when phenotypically supplemented with HSV-1 gD. Cell attachment and penetration rates, as well as the replication characteristics of BV-ΔgDZ in Vero cells, were almost identical to those of wild-type (wt) B virus. These observations indicate that B virus can utilize gD-independent cell entry and transmission mechanisms, in addition to generally used gD-dependent mechanisms. IMPORTANCE B virus is the only known simplexvirus that causes zoonotic infection, resulting in approximately 80% mortality in untreated humans or in lifelong persistence with the constant threat of reactivation in survivors. Here, we report that B virus lacking the gD envelope glycoprotein infects both human and monkey cells as efficiently as wild-type B virus. These data provide evidence for a novel mechanism(s) utilized by B virus to gain access to target cells. This mechanism is different from those used by its close relatives, HSV-1 and -2, where gD is a pivotal protein in the virus entry process. The possibility remains that unidentified receptors, specific for B virus, permit virus entry into target cells through gD-independent pathways. Understanding the molecular mechanisms of B virus entry may help in developing rational therapeutic strategies for the prevention and treatment of B virus infection in both macaques and humans.
Collapse
|
4
|
Wilkes RP, Kania SA. Use of interfering RNAs targeted against feline herpesvirus 1 glycoprotein D for inhibition of feline herpesvirus 1 infection of feline kidney cells. Am J Vet Res 2009; 70:1018-25. [PMID: 19645584 DOI: 10.2460/ajvr.70.8.1018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To evaluate the use of RNA interference targeted against feline herpesvirus 1 (FHV-1) glycoprotein D for inhibition of FHV-1 infection of feline kidney cells. SAMPLE POPULATION Crandell-Rees feline kidney cells. PROCEDURES Crandell-Rees feline kidney cells were transfected with small interfering RNAs (siRNAs) that were designed to inhibit expression of FHV-1 glycoprotein D. The effectiveness of the treatment was determined via measurement of amounts of glycoprotein D mRNA, intracellular glycoprotein D, and glycoprotein D expressed on the surface of infected cells and comparison with appropriate control sample data. RESULTS 2 of 6 siRNAs tested were highly effective in reducing expression (ie, knockdown) of glycoprotein D mRNA; there were 77% and 85% reductions in mRNA in treated samples, compared with findings in the control samples. The knockdown of glycoprotein D mRNA resulted in reduced glycoprotein D protein production, as evidenced by 27% and 43% decreases in expression of glycoprotein D on the surface of siRNA-treated, FHV-1-infected cells and decreased expression of the protein within infected cells, compared with control samples. Treatment with these siRNAs also resulted in inhibition of FHV-1 replication, with reductions of 84% and 77% in amounts of virus released into cell culture supernatant, compared with findings in control samples. CONCLUSIONS AND CLINICAL RELEVANCE 2 chemically produced siRNAs that targeted the glycoprotein D gene significantly reduced FHV-1 titers in treated cells, suggesting that glycoprotein D is necessary for production of infective virions. This gene is a potential target for RNA interference as a means of inhibition of FHV-1 infection of feline cells.
Collapse
Affiliation(s)
- Rebecca P Wilkes
- Department of Comparative Medicine, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA
| | | |
Collapse
|
5
|
A review of the biology of bovine herpesvirus type 1 (BHV-1), its role as a cofactor in the bovine respiratory disease complex and development of improved vaccines. Anim Health Res Rev 2008; 8:187-205. [PMID: 18218160 DOI: 10.1017/s146625230700134x] [Citation(s) in RCA: 169] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Infection of cattle by bovine herpesvirus type 1 (BHV-1) can lead to upper respiratory tract disorders, conjunctivitis, genital disorders and immune suppression. BHV-1-induced immune suppression initiates bovine respiratory disease complex (BRDC), which costs the US cattle industry approximately 3 billion dollars annually. BHV-1 encodes at least three proteins that can inhibit specific arms of the immune system: (i) bICP0 inhibits interferon-dependent transcription, (ii) the UL41.5 protein inhibits CD8+ T-cell recognition of infected cells by preventing trafficking of viral peptides to the surface of the cells and (iii) glycoprotein G is a chemokine-binding protein that prevents homing of lymphocytes to sights of infection. Following acute infection of calves, BHV-1 can also infect and induce high levels of apoptosis of CD4+ T-cells. Consequently, the ability of BHV-1 to impair the immune response can lead to BRDC. Following acute infection, BHV-1 establishes latency in sensory neurons of trigeminal ganglia (TG) and germinal centers of pharyngeal tonsil. Periodically BHV-1 reactivates from latency, virus is shed, and consequently virus transmission occurs. Two viral genes, the latency related gene and ORF-E are abundantly expressed during latency, suggesting that they regulate the latency-reactivation cycle. The ability of BHV-1 to enter permissive cells, infect sensory neurons and promote virus spread from sensory neurons to mucosal surfaces following reactivation from latency is also regulated by several viral glycoproteins. The focus of this review is to summarize the biology of BHV-1 and how this relates to BRDC.
Collapse
|
6
|
Muylkens B, Thiry J, Kirten P, Schynts F, Thiry E. Bovine herpesvirus 1 infection and infectious bovine rhinotracheitis. Vet Res 2007; 38:181-209. [PMID: 17257569 DOI: 10.1051/vetres:2006059] [Citation(s) in RCA: 257] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2006] [Accepted: 11/15/2006] [Indexed: 12/12/2022] Open
Abstract
Bovine herpesvirus 1 (BoHV-1), classified as an alphaherpesvirus, is a major pathogen of cattle. Primary infection is accompanied by various clinical manifestations such as infectious bovine rhinotracheitis, abortion, infectious pustular vulvovaginitis, and systemic infection in neonates. When animals survive, a life-long latent infection is established in nervous sensory ganglia. Several reactivation stimuli can lead to viral re-excretion, which is responsible for the maintenance of BoHV-1 within a cattle herd. This paper focuses on an updated pathogenesis based on a molecular characterization of BoHV-1 and the description of the virus cycle. Special emphasis is accorded to the impact of the latency and reactivation cycle on the epidemiology and the control of BoHV-1. Several European countries have initiated BoHV-1 eradication schemes because of the significant losses incurred by disease and trading restrictions. The vaccines used against BoHV-1 are described in this context where the differentiation of infected from vaccinated animals is of critical importance to achieve BoHV-1 eradication.
Collapse
Affiliation(s)
- Benoît Muylkens
- Virology, Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, University of Liège, Boulevard de Colonster 20, B43b, 4000 Liège, Belgium
| | | | | | | | | |
Collapse
|
7
|
Abstract
This review analyses recent structural results that provide clues about a possible molecular mechanism for the transmission of a fusogenic signal among the envelope glycoproteins of the herpes simplex virus on receptor binding by glycoprotein gD. This signal triggers the membrane-fusion machinery of the virus--contained in glycoproteins gB, gH and gL--to induce the merging of viral and cellular membranes, and to allow virus entry into target cells. This activating process parallels that of gamma-retroviruses, in which receptor binding by the amino-terminal domain of the envelope protein activates the fusogenic potential of the virion in a similar way, despite the different organization of the envelope complexes of these two types of viruses. Therefore, the new structural results on the interaction of gD with its receptors might also provide insights into the mechanism of fusogenic signal transmission in gamma-retroviruses. Furthermore, the fusion activation parallels with retroviruses, together with the recently reported structural homology of gB with the rhabdovirus envelope glycoprotein indicate that the complex entry apparatus of herpesviruses appears to be functionally related to that of simpler enveloped viruses.
Collapse
Affiliation(s)
- Félix A Rey
- Unité de Virologie Structurale and Centre National de la Recherche Scientifique, Institut Pasteur, 25 Rue du Dr Roux, 75015 Paris, France.
| |
Collapse
|
8
|
Muylkens B, Meurens F, Schynts F, de Fays K, Pourchet A, Thiry J, Vanderplasschen A, Antoine N, Thiry E. Biological characterization of bovine herpesvirus 1 recombinants possessing the vaccine glycoprotein E negative phenotype. Vet Microbiol 2006; 113:283-91. [PMID: 16321480 DOI: 10.1016/j.vetmic.2005.11.038] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Intramolecular recombination is a frequent event during the replication cycle of bovine herpesvirus 1 (BoHV-1). Recombinant viruses frequently arise and survive in cattle after concomitant nasal infections with two BoHV-1 mutants. The consequences of this process, related to herpesvirus evolution, have to be assessed in the context of large use of live marker vaccines based on glycoprotein E (gE) gene deletion. In natural conditions, double nasal infections by vaccine and wild-type strains are likely to occur. This situation might generate virulent recombinant viruses inducing a serological response indistinguishable from the vaccine one. This question was addressed by generating in vitro BoHV-1 recombinants deleted in the gE gene from seven wild-type BoHV-1 strains and one mutant strain deleted in the genes encoding gC and gE. In vitro growth properties were assessed by virus production, one step growth kinetics and plaque size assay. Heterogeneity in the biological properties was shown among the investigated recombinant viruses. The results demonstrated that some recombinants, in spite of their gE minus phenotype, have biological characteristics close to wild-type BoHV-1.
Collapse
Affiliation(s)
- Benoît Muylkens
- Department of Infectious and Parasitic Diseases, Virology and Immunology, Faculty of Veterinary Medicine, University of Liège, B-4000 Liège, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Santoro F, Greenstone HL, Insinga A, Liszewski MK, Atkinson JP, Lusso P, Berger EA. Interaction of glycoprotein H of human herpesvirus 6 with the cellular receptor CD46. J Biol Chem 2003; 278:25964-9. [PMID: 12724329 DOI: 10.1074/jbc.m302373200] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human herpesvirus 6 (HHV-6) employs the complement regulator CD46 (membrane cofactor protein) as a receptor for fusion and entry into target cells. Like other known herpesviruses, HHV-6 encodes multiple glycoproteins, several of which have been implicated in the entry process. In this report, we present evidence that glycoprotein H (gH) is the viral component responsible for binding to CD46. Antibodies to CD46 co-immunoprecipitated an approximately 110-kDa protein band specifically associated with HHV-6-infected cells. This protein was identified as gH by selective depletion with an anti-gH monoclonal antibody, as well as by immunoblot analysis with a rabbit hyperimmune serum directed against a gH synthetic peptide. In reciprocal experiments, a monoclonal antibody against HHV-6 gH was found to co-immunoprecipitate CD46. Studies using monoclonal antibodies directed against specific CD46 domains, as well as engineered constructs lacking defined CD46 regions, demonstrated a close correspondence between the CD46 domains involved in the interaction with gH and those previously shown to be critical for HHV-6 fusion (i.e. short consensus repeats 2 and 3).
Collapse
Affiliation(s)
- Fabio Santoro
- Laboratory of Viral Diseases, NIAID, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Trapp S, Osterrieder N, Keil GM, Beer M. Mutagenesis of a bovine herpesvirus type 1 genome cloned as an infectious bacterial artificial chromosome: analysis of glycoprotein E and G double deletion mutants. J Gen Virol 2003; 84:301-306. [PMID: 12560561 DOI: 10.1099/vir.0.18682-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The genome of bovine herpesvirus type 1 Schönböken was cloned as a bacterial artificial chromosome (BAC) by inserting mini F plasmid sequences into the glycoprotein (g) E gene. The resulting BAC clone, pBHV-1DeltagE, was transfected into bovine kidney cells and viable gE-negative BHV-1 (BHV-1DeltagE) was recovered. By RecE/T mutagenesis in Escherichia coli, the gG open reading frame was deleted from pBHV-1DeltagE. From the mutated BAC, double negative BHV-1DeltagE-gG was reconstituted and its growth properties were compared to those of rescuant viruses in which the gE gene was restored (BHV-1rev, BHV-1DeltagG). The mutant viruses did not exhibit markedly lowered virus titres. Plaque sizes of BHV-1DeltagE, BHV-1DeltagE-gG and BHV-1DeltagG, however, were reduced by 19 to 55 % compared to parental strain Schönböken or BHV-1rev. Our results suggested that gE and gG function independently from each other in cell-to-cell spread, because an additive effect on plaque formation was observed in the gE/gG double deletion mutant.
Collapse
Affiliation(s)
- Sascha Trapp
- Institute of Molecular Biology, Friedrich-Loeffler-Institutes, Federal Research Centre for Virus Diseases of Animals, Boddenblick 5a, D-17498 Insel Riems, Germany
| | - Nikolaus Osterrieder
- Institute of Molecular Biology, Friedrich-Loeffler-Institutes, Federal Research Centre for Virus Diseases of Animals, Boddenblick 5a, D-17498 Insel Riems, Germany
| | - Günther M Keil
- Institute of Molecular Biology, Friedrich-Loeffler-Institutes, Federal Research Centre for Virus Diseases of Animals, Boddenblick 5a, D-17498 Insel Riems, Germany
| | - Martin Beer
- Institute for Diagnostic Virology, Friedrich-Loeffler-Institutes, Federal Research Centre for Virus Diseases of Animals, Boddenblick 5a, D-17498 Insel Riems, Germany
| |
Collapse
|
11
|
Zhou G, Roizman B. Truncated forms of glycoprotein D of herpes simplex virus 1 capable of blocking apoptosis and of low-efficiency entry into cells form a heterodimer dependent on the presence of a cysteine located in the shared transmembrane domains. J Virol 2002; 76:11469-75. [PMID: 12388708 PMCID: PMC136777 DOI: 10.1128/jvi.76.22.11469-11475.2002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Earlier studies have shown that herpes simplex virus 1 (HSV-1) virions of mutant lacking glycoprotein D (gD) and made in either complementing (gD(-/+) stocks) or noncomplementing cells (gD(-/-) stocks) induce apoptosis. Subsequent studies have shown that apoptosis induced by gD(-/-) mutant virus stocks can be blocked by in trans delivery of viral genes that encode either intact gD or a mixture of two genes encoding the glycoprotein ectodomain plus transmembrane domain (gD-B) and transmembrane domain plus the cytoplasmic carboxyl terminus of the protein (gD-D), respectively. Since the presence of the transmembrane domains was critical for precluding apoptosis in the bipartite system, the question arose whether the two components, gD-B and gD-D, form a heterodimer mediated by an unpaired cysteine located in the transmembrane domain. We report the following. (i) The substitution of the unpaired cysteine with serine in either gD-B or gD-D truncated forms of gD disabled the ability of gD-D and gD-B to block apoptosis. (ii) Immunoprecipitation of gD-D coprecipitated gD-B only from lysates of cells transduced with gD-D and gD-B containing the cysteine in the transmembrane domains. Replacement of cysteine with serine ablated coprecipitation of the components. (ii) The mixture of gD-D and gD-B complemented at a low level gD(-/+) virions. We conclude that the gD-B and gD-D can form a heterodimer dependent on the presence of cysteines in the transmembrane domain and the heterodimer can substitute for intact gD but at a much reduced efficiency.
Collapse
Affiliation(s)
- Guoying Zhou
- The Marjorie B. Kovler Viral Oncology Laboratories, The University of Chicago, Chicago, Illinois 60637, USA
| | | |
Collapse
|
12
|
Affiliation(s)
- Thomas C Mettenleiter
- Institute of Molecular Biology, Friedrich-Loeffler-Institutes, Federal Research Centre for Virus Diseases of Animals, Insel Riems, Germany.
| |
Collapse
|
13
|
Nixdorf R, Klupp BG, Mettenleiter TC. Restoration of function of carboxy-terminally truncated pseudorabies virus glycoprotein B by point mutations in the ectodomain. J Virol 2001; 75:11526-33. [PMID: 11689634 PMCID: PMC114739 DOI: 10.1128/jvi.75.23.11526-11533.2001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Glycoprotein B (gB) of pseudorabies virus (PrV) is essential for virus entry into target cells and direct viral cell-to-cell spread. Recently, we described a carboxy-terminally truncated derivative of PrV gB, gB-007, which was inefficiently incorporated into virions, was unable to complement infectivity, but was fully capable of restoring direct viral cell-to-cell spread of gB-negative PrV (R. Nixdorf, B. G. Klupp, and T. C. Mettenleiter, J. Virol. 74:7137-7145, 2000). Since recombinant PrV-007, which expresses gB-007 instead of wild-type gB, was able to spread directly from cell to cell, we attempted to obtain compensatory mutations leading to restoration of the entry defect by performing serial passages in cell culture. This procedure has previously been used to successfully restore entry defects in gD- or gL-deficient PrV mutants. From an initial titer of 100 PFU per ml in the supernatant, titers increased, reaching wild-type levels of up to 10(7) PFU after ca. 20 passages. One single-plaque isolate of the passaged mutant, designated PrV-007Pass, was further characterized. PrV-007Pass gB was efficiently incorporated into the viral envelope and restored infectivity to a gB-negative PrV mutant, PrV-gB(-). Interestingly, localization of PrV-007Pass gB in the plasma membrane was similar to that of PrV-007. In contrast, wild-type gB is mainly found in intracellular vesicles. Marker rescue experiments and trans-complementation assays demonstrated the presence of compensatory mutations within the gB gene of PrV-007Pass. DNA sequencing revealed two point mutations in the gB open reading frame of PrV-007Pass, resulting in amino acid substitutions at positions 305 and 744 of gB, both of which are required for compensation of the defect in PrV-007. Our data again demonstrate the power of reversion analysis of herpesviruses and suggest that cytosolic and ectodomains play a role in incorporation of gB into virions.
Collapse
Affiliation(s)
- R Nixdorf
- Institute of Molecular Biology, Friedrich-Loeffler-Institutes, Federal Research Centre for Virus Diseases of Animals, D-17498 Insel Riems, Germany
| | | | | |
Collapse
|
14
|
Schumacher D, Tischer BK, Reddy SM, Osterrieder N. Glycoproteins E and I of Marek's disease virus serotype 1 are essential for virus growth in cultured cells. J Virol 2001; 75:11307-18. [PMID: 11689611 PMCID: PMC114716 DOI: 10.1128/jvi.75.23.11307-11318.2001] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2001] [Accepted: 08/10/2001] [Indexed: 11/20/2022] Open
Abstract
The role of glycoprotein E (gE) and gI of Marek's disease virus serotype 1 (MDV-1) for growth in cultured cells was investigated. MDV-1 mutants lacking either gE (20DeltagE), gI (20DeltagI), or both gE and gI (20DeltagEI) were constructed by recE/T-mediated mutagenesis of a recently established infectious bacterial artificial chromosome (BAC) clone of MDV-1 (D. Schumacher, B. K. Tischer, W. Fuchs, and N. Osterrieder, J. Virol. 74:11088-11098, 2000). Deletion of either gE or gI, which form a complex in MDV-1-infected cells, resulted in the production of virus progeny that were unable to spread from cell to cell in either chicken embryo fibroblasts or quail muscle cells. This was reflected by the absence of virus plaques and the detection of only single infected cells after transfection, even after coseeding of transfected cells with uninfected cells. In contrast, growth of rescuant viruses, in which the deleted glycoprotein genes were reinserted by homologous recombination, was indistinguishable from that of parental BAC20 virus. In addition, the 20DeltagE mutant virus was able to spread from cell to cell when cotransfected into chicken embryo fibroblasts with an expression plasmid encoding MDV-1 gE, and the 20DeltagI mutant virus exhibited cell-to-cell spread capability after cotransfection with a gI expression plasmid. The 20DeltagEI mutant virus, however, was not able to spread in the presence of either a gE or gI expression plasmid, and only single infected cells were detected by indirect immunofluorescence. The results reported here demonstrate for the first time that both gE and gI are absolutely essential for cell-to-cell spread of a member of the Alphaherpesvirinae.
Collapse
Affiliation(s)
- D Schumacher
- Institute of Molecular Biology, Friedrich-Loeffler-Institutes, Federal Research Centre for Virus Diseases of Animals, D-17498 Insel Riems, Germany
| | | | | | | |
Collapse
|
15
|
Schmidt J, Gerdts V, Beyer J, Klupp BG, Mettenleiter TC. Glycoprotein D-independent infectivity of pseudorabies virus results in an alteration of in vivo host range and correlates with mutations in glycoproteins B and H. J Virol 2001; 75:10054-64. [PMID: 11581374 PMCID: PMC114580 DOI: 10.1128/jvi.75.21.10054-10064.2001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2001] [Accepted: 08/08/2001] [Indexed: 11/20/2022] Open
Abstract
Infection of cells by herpesviruses is initiated by the interaction of viral envelope glycoproteins with cellular receptors. In the alphaherpesvirus pseudorabies virus (PrV), the causative agent of Aujeszky's disease in pigs, the essential glycoprotein D (gD) mediates secondary attachment of virions to target cells by binding to newly identified cellular receptors (R. J. Geraghty, C. Krummenacher, G. H. Cohen, R. J. Eisenberg, and P. G. Spear, Science 280:1618-1620, 1998). However, in the presence of compensatory mutations, infection can also occur in the absence of gD, as evidenced by the isolation in cell culture of an infectious gD-negative PrV mutant (PrV-gD(-) Pass) (J. Schmidt, B. G. Klupp, A. Karger, and T. C. Mettenleiter, J. Virol. 71:17-24, 1997). PrV-gD(-) Pass is replication competent with an only moderate reduction in specific infectivity but appears to bind to receptors different from those recognized by wild-type PrV (A. Karger, J. Schmidt, and T. C. Mettenleiter, J. Virol. 72:7341-7348, 1998). To analyze whether this alteration in receptor usage in vitro influences infection in vivo, the model host mouse and the natural host pig were intranasally infected with PrV-gD(-) Pass and were compared to animals infected by wild-type PrV. For mice, a comparable progress of disease was observed, and all animals infected with mutant virus died, although they exhibited a slight delay in the onset of symptoms and, correspondingly, a longer time to death. In contrast, whereas wild-type PrV-infected pigs showed clinical signs and histological and histopathological findings typical of PrV infection, no signs of disease were observed after infection with PrV-gD(-) Pass. Moreover, in these animals, virus-infected cells were not detectable by immunohistochemical staining of different organ samples and no virus could be isolated from nasal swabs. Mutations in glycoproteins B and H were found to correlate with, and probably contribute to, gD-independent infectivity. In conclusion, although PrV-gD(-) Pass is virulent in mice, it is apparently unable to infect the natural host, the pig. This altered host range in vivo correlates with a difference of receptor usage in vitro and demonstrates for the first time the importance of gD receptors in alphaherpesvirus infection of an animal host.
Collapse
Affiliation(s)
- J Schmidt
- Institute of Molecular Biology, Friedrich-Loeffler-Institutes, Federal Research Centre for Virus Diseases of Animals, D-17498 Insel Riems, Germany
| | | | | | | | | |
Collapse
|
16
|
Menotti L, Avitabile E, Dubreuil P, Lopez M, Campadelli-Fiume G. Comparison of murine and human nectin1 binding to herpes simplex virus glycoprotein D (gD) reveals a weak interaction of murine nectin1 to gD and a gD-dependent pathway of entry. Virology 2001; 282:256-66. [PMID: 11289808 DOI: 10.1006/viro.2001.0850] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The murine nectin1alpha (mNectin1alpha), a homolog of human nectin1alpha (hNectin1alpha, or PRR1, HveC), mediates the entry of herpes simplex virus (HSV) into cells. Previously, we reported that the binding of hNectin1 to HSV glycoprotein D (gD) was readily detectable, whereas the binding of mNectin1 to gD was not detectable, thus raising the question whether mNectin1 mediates a gD-dependent or a gD-independent pathway of entry. Here we report comparative binding studies of murine- and human-nectin1alpha to virions and to gD. The assays consistently showed either a very weak binding or no detectable binding of murine nectin1alpha to gD. They included (i) binding of soluble mNectin1-Fc or hNectin1-Fc to virions and competition of the binding by soluble gD(Delta290-299t) and by monoclonal antibodies to gD; (ii) pull-down experiments of wt gD from lysates of infected cells; and (iii) ELISA binding of soluble gD(Delta290-299t) to cells expressing mNectin1 or hNectin1. In contrast to the binding studies, the entry studies readily showed that entry mediated by mNectin1 was dependent on gD. Thus, a gDnull (gD-/-) mutant virus was unable to enter mNectin1-expressing cells, and entry of wild-type virus was inhibited by antibodies to gD or soluble gD at similar concentrations. We infer that gD represents a weak ligand in the interaction between mNectin1 and virions, whereas it represents a strong and the major ligand for hNectin1. Yet gD is required in HSV-1 entry mediated by mNectin1alpha. We conclude that a high-affinity binding of the receptor to gD is not a requirement in the gD-dependent pathway of HSV entry to cells.
Collapse
Affiliation(s)
- L Menotti
- Department of Experimental Pathology, Section on Microbiology and Virology, University of Bologna, Via San Giacomo, 12, Bologna, 40126, Italy
| | | | | | | | | |
Collapse
|
17
|
Connolly SA, Whitbeck JJ, Rux AH, Krummenacher C, van Drunen Littel-van den Hurk S, Cohen GH, Eisenberg RJ. Glycoprotein D homologs in herpes simplex virus type 1, pseudorabies virus, and bovine herpes virus type 1 bind directly to human HveC(nectin-1) with different affinities. Virology 2001; 280:7-18. [PMID: 11162814 DOI: 10.1006/viro.2000.0747] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Distinct subsets of human receptors for alphaherpesviruses mediate the entry of herpes simplex virus (HSV), pseudorabies virus (PrV), or bovine herpes virus type 1 (BHV-1) into cells. Glycoprotein D (gD) is essential for receptor-mediated entry of all three viruses into cells. However, the gD homologs of these viruses share only 22-33% amino acid identity. Several entry receptors for HSV have been identified. Two of these, HveA (HVEM) and HveC (nectin-1), mediate entry of most HSV-1 and HSV-2 strains and are bound directly by HSV gD. A third receptor, HveB (nectin-2), mediates entry of HSV-2 and only a limited number of HSV-1 strains. HveB and HveC can also serve as entry receptors for PrV, whereas only HveC can serve this function for BHV-1. We show here that gD from PrV and BHV-1 binds directly to the human receptors that mediate PrV and BHV-1 entry. We expressed soluble forms of PrV gD and BHV-1 gD using recombinant baculoviruses and purified each protein. Using ELISA, we detected direct binding of PrV gD to HveB and HveC and direct binding of BHV-1 gD to HveC. Biosensor analysis revealed that PrV gD had a 10-fold higher affinity than HSV-1 gD for human HveC. In contrast, the binding of BHV-1 gD to HveC was weak. PrV gD and HSV-1 gD competed for binding to the V domain of HveC and both inhibited entry of the homologous and heterologous viruses. These data suggest that the two forms of gD bind to a common region on human HveC despite their low amino acid similarity. Based on affinities for human HveC, we predict a porcine HveC homolog may be important for PrV infection in its natural host, whereas a BHV-1 infection in its natural host may be mediated by a receptor other than a bovine HveC homolog.
Collapse
Affiliation(s)
- S A Connolly
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia 19104, USA.
| | | | | | | | | | | | | |
Collapse
|
18
|
Nixdorf R, Klupp BG, Mettenleiter TC. Role of the cytoplasmic tails of pseudorabies virus glycoproteins B, E and M in intracellular localization and virion incorporation. J Gen Virol 2001; 82:215-226. [PMID: 11125174 DOI: 10.1099/0022-1317-82-1-215] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The cytoplasmic domains of several herpesviral glycoproteins encompass potential intracellular sorting signals. To analyse the function of the cytoplasmic domains of different pseudorabies virus (PrV) glycoproteins, hybrid proteins were constructed consisting of the extracellular and transmembrane domains of envelope glycoprotein D (gD) fused to the cytoplasmic tails of gB, gE or gM (designated gDB, gDE and gDM), all of which contain putative endocytosis motifs. gD is a type I membrane protein required for binding to and entry into target cells. Localization of hybrid proteins compared to full-length gB, gE and gM as well as carboxy-terminally truncated variants of gD was studied by confocal laser scanning microscopy. The function of gD hybrids was assayed by trans-complementation of a gD-negative PrV mutant. The carboxy-terminal domains of gB and gM directed a predominantly intracellular localization of gDB and gDM, while full-length gD and a tail-less gD mutant (gDc) were preferentially expressed on the cell surface. In contrast gDE, and a gDB lacking the putative gB endocytosis signal (gDB Delta 29), were predominantly located in the plasma membrane. Despite the different intracellular localization, all tested proteins were able to complement infectivity of a PrV gD(-) mutant. Cells which stably express full-length gD and plasma-membrane-associated gD hybrids exhibit a significant resistance to PrV infection, while cells expressing predominantly intracellularly located forms do not. This suggests that the assumed sequestration of receptors by gD, which is supposed to be responsible for the interference phenomenon, occurs at the cell surface.
Collapse
Affiliation(s)
- Ralf Nixdorf
- Institute of Molecular Biology, Friedrich-Loeffler-Institutes, Federal Research Centre for Virus Diseases of Animals, D-17498 Insel Riems, Germany1
| | - Barbara G Klupp
- Institute of Molecular Biology, Friedrich-Loeffler-Institutes, Federal Research Centre for Virus Diseases of Animals, D-17498 Insel Riems, Germany1
| | - Thomas C Mettenleiter
- Institute of Molecular Biology, Friedrich-Loeffler-Institutes, Federal Research Centre for Virus Diseases of Animals, D-17498 Insel Riems, Germany1
| |
Collapse
|
19
|
Rauch DA, Rodriguez N, Roller RJ. Mutations in herpes simplex virus glycoprotein D distinguish entry of free virus from cell-cell spread. J Virol 2000; 74:11437-46. [PMID: 11090139 PMCID: PMC112422 DOI: 10.1128/jvi.74.24.11437-11446.2000] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) glycoprotein D (gD) is an essential component of the entry apparatus that is responsible for viral penetration and subsequent cell-cell spread. To test the hypothesis that gD may serve distinguishable functions in entry of free virus and cell-cell spread, mutants were selected for growth on U(S)11cl19.3 cells, which are resistant to both processes due to the lack of a functional gD receptor, and then tested for their ability to enter as free virus and to spread from cell to cell. Unlike their wild-type parent, HSV-1(F), the variants that emerged from this selection, which were named SP mutants, are all capable of forming macroscopic plaques on the resistant cells. This ability is caused by a marked increase in cell-cell spread without a concomitant increase in efficiency of entry of free virus. gD substitutions that arose within these mutants are sufficient to mediate cell-cell spread in U(S)11cl19.3 cells but are insufficient to overcome the restriction to entry of free virions. These results suggest that mutations in gD (i) are sufficient but not necessary to overcome the block to cell-cell spread exhibited by U(S)11cl19.3 cells and (ii) are insufficient to mediate entry of free virus in the same cells.
Collapse
Affiliation(s)
- D A Rauch
- Department of Microbiology, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | |
Collapse
|
20
|
Spear PG, Eisenberg RJ, Cohen GH. Three classes of cell surface receptors for alphaherpesvirus entry. Virology 2000; 275:1-8. [PMID: 11017782 DOI: 10.1006/viro.2000.0529] [Citation(s) in RCA: 384] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- P G Spear
- Department of Microbiology-Immunology, Northwestern University Medical School, Chicago, Illinois 60611, USA.
| | | | | |
Collapse
|
21
|
Campadelli-Fiume G, Cocchi F, Menotti L, Lopez M. The novel receptors that mediate the entry of herpes simplex viruses and animal alphaherpesviruses into cells. Rev Med Virol 2000. [DOI: 10.1002/1099-1654(200009/10)10:5%3c305::aid-rmv286%3e3.0.co;2-t] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
22
|
Campadelli-Fiume G, Cocchi F, Menotti L, Lopez M. The novel receptors that mediate the entry of herpes simplex viruses and animal alphaherpesviruses into cells. Rev Med Virol 2000; 10:305-19. [PMID: 11015742 DOI: 10.1002/1099-1654(200009/10)10:5<305::aid-rmv286>3.0.co;2-t] [Citation(s) in RCA: 198] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
An extended array of cell surface molecules serve as receptors for HSV entry into cells. In addition to the heparan sulphate glycosaminoglycans, which mediate the attachment of virion to cells, HSV requires an entry receptor. The repertoire of entry receptors into human cells includes molecules from three structurally unrelated molecular families. They are (i) HveA (herpesvirus entry mediator A), (ii) members of the nectin family, (iii) 3-O-sulphated heparan sulphate. The molecules have different attributes and play potentially different roles in HSV infection and spread to human tissues. All the human entry receptors interact physically with the virion envelope glycoprotein D (gD). (i) HveA is a member of the TNF-receptor family. It mediates entry of a restricted range of HSV strains. Its expression is restricted to few lineages (e.g. T-lymphocytes). (ii) The human nectin1alpha (HIgR), nectin1delta (PRR1-HveC), and the nectin2alpha (PRR2alpha-HveB) and nectin2delta (PRR2delta) belong to the immunoglobulin superfamily. They are homologues of the poliovirus receptor (CD155), with which they share the overall structure of the ectodomain. The human nectin1alpha-delta are broadly expressed in cell lines of different lineages, are expressed in human tissue targets of HSV infection, serve as receptors for all HSV-1 and HSV-2 strains tested and mediate entry not only of free virions, but also cell-to-cell spread of virus. (iii) The 3-O-sulphated heparan sulphate is expressed in some selected human cell lines (e.g. endothelial and mast cells) and human tissues, and mediates entry of HSV-1, but not HSV-2. The human nectin2alpha and nectin2delta serve as receptors for a narrow range of viruses. A characteristic of the human nectin1alpha-delta is the promiscuous species non-specific receptor activity towards the animal alphaherpesviruses, pseudorabies virus (PrV) and bovine herpesvirus 1 (BHV-1). By contrast with the human nectin1delta, its murine homologue (mNectin1delta) does not bind gD at detectable level, yet it mediates entry of HSV, as well as of PrV and BHV-1. This provides the first example of a mediator of HSV entry independent of a detectable interaction with gD.
Collapse
Affiliation(s)
- G Campadelli-Fiume
- Department of Experimental Pathology, Section on Microbiology and Virology, University of Bologna, Via San Giacomo 12, 40126 Bologna, Italy.
| | | | | | | |
Collapse
|
23
|
Lyaku JR, McKenna PK, Fredrickson RA, Kibenge FS. Characterization of monoclonal antibodies against bovine herpesvirus 1 gD fusion protein expressed in E. coli. J Virol Methods 1999; 83:83-9. [PMID: 10598086 DOI: 10.1016/s0166-0934(99)00109-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
A total of 20 hybridoma cell lines secreting monoclonal antibodies (MAbs) against E. coli expressed bovine herpesvirus-1 (BHV-1) gD fusion protein were produced following the fusion of Sp2/0 myeloma cells with splenocytes from BALB/c mice immunized previously with immunoaffinity purified BHV-1 gD fusion protein. An indirect fluorescent antibody test (IFAT) using BHV-1 infected MDBK cells was used for the selection of positive hybridomas secreting specific antibody. The monoclonal antibody isotypes were 11 IgM, six IgG2b, one IgG1 and two IgG3. All MAbs reacted positively with the E. coli expressed BHV-1 gD fusion protein, BHV-1 infected MDBK cell lysates and PCR BHV-1 gD transcription-translation polypeptide antigens by an ELISA.
Collapse
Affiliation(s)
- J R Lyaku
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Canada
| | | | | | | |
Collapse
|
24
|
Schmitt J, Becher P, Thiel HJ, Keil GM. Expression of bovine viral diarrhoea virus glycoprotein E2 by bovine herpesvirus-1 from a synthetic ORF and incorporation of E2 into recombinant virions. J Gen Virol 1999; 80 ( Pt 11):2839-2848. [PMID: 10580045 DOI: 10.1099/0022-1317-80-11-2839] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Expression cassettes containing the codons for the pestivirus E (rns) signal peptide (Sig) followed by a chemically synthesized ORF that encoded the bovine viral diarrhoea virus (BVDV) strain C86 glycoprotein E2, a class I membrane glycoprotein, were constructed with and without a chimeric intron sequence immediately upstream of the translation start codon, and incorporated into the genome of bovine herpesvirus-1 (BHV-1). The resulting recombinants, BHV- 1/SigE2(syn) and BHV-1/SigE2(syn)-intron, expressed comparable quantities of glycoprotein E2, and Northern blot hybridizations indicated that the presence of the intron did not increase significantly the steady-state levels of transcripts encompassing the SigE2(syn) ORF. In BHV-1/SigE2(syn)- infected cells, the 54 kDa E2 glycoprotein formed a dimer with an apparent molecular mass of 94 kDa, which was further modified to a 101 kDa form found in the envelope of recombinant virus particles. Penetration kinetics and single-step growth curves indicated that the incorporation of the BVDV E2 glycoprotein in the BHV-1 envelope, which apparently did not require BHV-1-specific signals, interfered with entry into target cells and egress of progeny virions. These results demonstrate that a pestivirus glycoprotein can be expressed efficiently by BHV-1 and incorporated into the viral envelope. BHV-1 thus represents a promising tool for the development of efficacious live and inactivated BHV-1-based vector vaccines.
Collapse
Affiliation(s)
- Jutta Schmitt
- Institute of Molecular Biology, Friedrich-Loeffler-Institutes, Federal Research Centre for Virus Diseases of Animals, D-17498 Insel Riems, Germany1
| | - Paul Becher
- Institut für Virologie, Fachbereich Veterinärmedizin, Justus-Liebig-Universit ät Giessen, D-35392 Giessen, Germany 2
| | - Heinz-Jürgen Thiel
- Institut für Virologie, Fachbereich Veterinärmedizin, Justus-Liebig-Universit ät Giessen, D-35392 Giessen, Germany 2
| | - Günther M Keil
- Institute of Molecular Biology, Friedrich-Loeffler-Institutes, Federal Research Centre for Virus Diseases of Animals, D-17498 Insel Riems, Germany1
| |
Collapse
|
25
|
Sinzger C, Schmidt K, Knapp J, Kahl M, Beck R, Waldman J, Hebart H, Einsele H, Jahn G. Modification of human cytomegalovirus tropism through propagation in vitro is associated with changes in the viral genome. J Gen Virol 1999; 80 ( Pt 11):2867-2877. [PMID: 10580048 DOI: 10.1099/0022-1317-80-11-2867] [Citation(s) in RCA: 182] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Following extensive propagation in fibroblasts, human cytomegalovirus (HCMV) loses tropism for a number of otherwise natural host cells, in particular, endothelial cells. In this study, the hypothesis was tested that loss of endothelial tropism is associated with the appearance of genomic variants. Initial quantitative focus expansion assays on endothelial monolayers demonstrated that, while the laboratory strains AD169 and Towne failed to form detectable foci, 29 out of 30 recent clinical HCMV isolates had the potential to expand in endothelial cell culture. By long-term adaptation in fibroblast cultures, nonendotheliotropic strains could be selected from clinical HCMV isolates, while long-term endothelial-adapted strains of the same isolates retained both fibroblast tropism and endothelial tropism. Such differentially adapted isolate pairs always displayed genomic differences in restriction fragment length analyses. Coinfection of endothelial cells by two nonendotheliotropic HCMV strains yielded an endotheliotropic recombinant HCMV variant combining portions of the genomes of both parental viruses. When DNA purified from various isolates was transfected into fibroblasts, progeny virus retained the specific tropism of parental virus from which the DNA was isolated. These findings demonstrate that endothelial tropism is an inherent property of most clinical HCMV isolates and is determined by the viral genome. Although the specific determinants of HCMV cell tropism are still unknown, this study provides the first evidence for a genetic contribution.
Collapse
Affiliation(s)
- C Sinzger
- Department of Medical Virology1 and Department of Medicine3, University of Tü bingen, Calwerstraße 7/6, D-72076 Tübingen, Germany
| | - K Schmidt
- Department of Medical Virology1 and Department of Medicine3, University of Tü bingen, Calwerstraße 7/6, D-72076 Tübingen, Germany
| | - J Knapp
- Department of Medical Virology1 and Department of Medicine3, University of Tü bingen, Calwerstraße 7/6, D-72076 Tübingen, Germany
| | - M Kahl
- Department of Medical Virology1 and Department of Medicine3, University of Tü bingen, Calwerstraße 7/6, D-72076 Tübingen, Germany
| | - R Beck
- Department of Medical Virology1 and Department of Medicine3, University of Tü bingen, Calwerstraße 7/6, D-72076 Tübingen, Germany
| | - J Waldman
- Department of Pathology, Ohio State University, Columbus, USA 2
| | - H Hebart
- Department of Medical Virology1 and Department of Medicine3, University of Tü bingen, Calwerstraße 7/6, D-72076 Tübingen, Germany
| | - H Einsele
- Department of Medical Virology1 and Department of Medicine3, University of Tü bingen, Calwerstraße 7/6, D-72076 Tübingen, Germany
| | - G Jahn
- Department of Medical Virology1 and Department of Medicine3, University of Tü bingen, Calwerstraße 7/6, D-72076 Tübingen, Germany
| |
Collapse
|
26
|
Nixdorf R, Schmidt J, Karger A, Mettenleiter TC. Infection of Chinese hamster ovary cells by pseudorabies virus. J Virol 1999; 73:8019-26. [PMID: 10482550 PMCID: PMC112817 DOI: 10.1128/jvi.73.10.8019-8026.1999] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chinese hamster ovary (CHO) cells have recently been used for identification of receptors for several alphaherpesviruses, including pseudorabies virus (PrV) (R. J. Geraghty, C. Krummenacher, G. H. Cohen, R. J. Eisenberg, and P. G. Spear, Science 280:1618-1620, 1998). The experiments were based on the fact that CHO cells are inefficient target cells for PrV. However, a detailed analysis of the interaction between PrV and CHO wild-type and recombinant PrV-receptor bearing cells has not been performed. We show here that PrV has a growth defect on CHO cells which leads to a ca. 100-fold reduction in plating efficiency, strongly delayed penetration kinetics, and a 10(4)-fold reduction in one-step growth. Entry of PrV into CHO cells is significantly delayed but is not affected by inhibitors of endocytosis, suggesting that the mechanism of penetration resembles that on permissive cells. The defects in plating efficiency and penetration could be corrected by expression of herpesvirus entry mediators B (HveB), HveC, or HveD, with HveC being the most effective. However, the defects in one-step growth and plaque formation were not corrected by expression of PrV receptors, indicating an additional restriction in viral replication after entry. Surprisingly, PrV infection of CHO cells was sensitive to neutralization by a gB-specific monoclonal antibody, which does not inhibit PrV infection of other host cells. Moreover, the same monoclonal antibody neutralized PrV infectivity on cells displaying the interference phenomenon by overexpression of gD and subsequent intracellular sequestration of gD receptors. Thus, absence of gD receptors on two different host cells leads to an increased sensitivity of PrV toward gB neutralization. We hypothesize that this is due to the increased requirement for interaction of gB with a cellular surface protein in the absence of the gD-gD receptor interaction. As expected, CHO cells are as susceptible as other host cells to infection by PrV gD(-) Pass, an infectious gD-negative PrV mutant. However, PrV gD(-) Pass was also not able to form plaques on CHO cells.
Collapse
Affiliation(s)
- R Nixdorf
- Institute of Molecular Biology, Friedrich-Loeffler-Institutes, Federal Research Centre for Virus Diseases of Animals, D-17498 Insel Riems, Germany
| | | | | | | |
Collapse
|
27
|
Shukla D, Liu J, Blaiklock P, Shworak NW, Bai X, Esko JD, Cohen GH, Eisenberg RJ, Rosenberg RD, Spear PG. A novel role for 3-O-sulfated heparan sulfate in herpes simplex virus 1 entry. Cell 1999; 99:13-22. [PMID: 10520990 DOI: 10.1016/s0092-8674(00)80058-6] [Citation(s) in RCA: 822] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Herpes simplex virus type 1 (HSV-1) binds to cells through interactions of viral glycoproteins gB and gC with heparan sulfate chains on cell surface proteoglycans. This binding is not sufficient for viral entry, which requires fusion between the viral envelope and cell membrane. Here, we show that heparan sulfate modified by a subset of the multiple D-glucosaminyl 3-O-sulfotransferase isoforms provides sites for the binding of a third viral glycoprotein, gD, and for initiation of HSV-1 entry. We conclude that susceptibility of cells to HSV-1 entry depends on (1) presence of heparan sulfate chains to which virus can bind and (2) 3-O-sulfation of specific glucosamine residues in heparan sulfate to generate gD-binding sites or the expression of other previously identified gD-binding receptors.
Collapse
Affiliation(s)
- D Shukla
- Department of Microbiology-Immunology, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Renjifo X, Letellier C, Keil GM, Ismaili J, Vanderplasschen A, Michel P, Godfroid J, Walravens K, Charlier G, Pastoret PP, Urbain J, Denis M, Moser M, Kerkhofs P. Susceptibility of bovine antigen-presenting cells to infection by bovine herpesvirus 1 and in vitro presentation to T cells: two independent events. J Virol 1999; 73:4840-6. [PMID: 10233945 PMCID: PMC112527 DOI: 10.1128/jvi.73.6.4840-4846.1999] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The aim of the present study was to develop an in vitro system for presentation of bovine herpesvirus 1 (BHV-1) antigens to bovine T lymphocytes and to characterize the antigen-presenting cells (APC) which efficiently activate CD4(+) T cells. Two approaches were used to monitor the infection of APC by BHV-1 as follows: (i) detection of viral glycoproteins at the cell surface by immunofluorescence staining and (ii) detection of UL26 transcripts by reverse transcription-PCR. The monocytes were infected, while dendritic cells (DC) did not demonstrate any detectable viral expression. These data suggest that monocytes are one site of replication, while DC are not. The capacities of monocytes and DC to present BHV-1 viral antigens in vitro were compared. T lymphocytes (CD2(+) or CD4(+)) from BHV-1 immune cattle were stimulated in the presence of APC previously incubated with live or inactivated wild-type BHV-1. DC stimulated strong proliferation of Ag-specific T cells, while monocytes were poor stimulators of T-cell proliferation. When viral attachment to the surface of the APC was inhibited by virus pretreatment with soluble heparin, T-cell proliferation was dramatically decreased. Unexpectedly, incubation of DC and monocytes with the deletion mutant BHV-1 gD-/-, which displays impaired fusion capacity, resulted in strong activation of T lymphocytes by both APC types. Collectively, these results indicate that presentation of BHV-1 antigens to immune T cells is effective in the absence of productive infection and suggest that BHV-1 gD-/- mutant virus could be used to induce virus-specific immune responses in cattle.
Collapse
Affiliation(s)
- X Renjifo
- Département de Biologie Moléculaire, Université Libre de Bruxelles, 1640 Rhode-Saint-Genèse, Belgium.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Hanon E, Keil G, van Drunen Littel-van den Hurk S, Griebel P, Vanderplasschen A, Rijsewijk FA, Babiuk L, Pastoret PP. Bovine herpesvirus 1-induced apoptotic cell death: role of glycoprotein D. Virology 1999; 257:191-7. [PMID: 10208932 DOI: 10.1006/viro.1999.9620] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bovine herpesvirus 1 (BHV-1) induces apoptotic cell death in peripheral blood mononuclear cells and in bovine B lymphoma (BL-3) cells. Attachment but not penetration of BHV-1 is necessary to induce apoptosis in target cells, suggesting that one or more BHV-1 envelope glycoproteins could be involved in the activation of the apoptotic process. In the present study, we demonstrate that, although BHV-1 virions devoid of glycoprotein D (BHV-1 gD-/-) still bind to BL-3 cells, they are no longer able to induce apoptosis. In contrast, virions that contain glycoprotein D (gD) in the viral envelope but do not genetically encode gD (BHV-1 gD-/+) induce a level of apoptosis comparable to that produced by wild-type (wt) BHV-1. In addition, monoclonal antibodies directed against gD, but not against gB or gC, strongly reduced the high levels of apoptosis induced by BHV-1. These observations demonstrate that the induction of apoptosis is directly due to BHV-1 viral particles harboring gD in the viral envelope. Interestingly, binding of affinity-purified gD to BL-3 cells did not induce apoptosis but inhibited the ability of wt BHV-1 to induce apoptosis. Altogether, these results provide evidence for the direct or indirect involvement of gD in the mechanism by which BHV-1 induces apoptosis.
Collapse
Affiliation(s)
- E Hanon
- Faculty of Veterinary Medicine, University of Liège, Liège, B-4000, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Klupp BG, Mettenleiter TC. Glycoprotein gL-independent infectivity of pseudorabies virus is mediated by a gD-gH fusion protein. J Virol 1999; 73:3014-22. [PMID: 10074151 PMCID: PMC104061 DOI: 10.1128/jvi.73.4.3014-3022.1999] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Envelope glycoproteins gH and gL, which form a complex, are conserved throughout the family Herpesviridae. The gH-gL complex is essential for the fusion between the virion envelope and the cellular cytoplasmic membrane during penetration and is also required for direct viral cell-to-cell spread from infected to adjacent noninfected cells. It has been proposed for several herpesviruses that gL is required for proper folding, intracellular transport, and virion localization of gH. In pseudorabies virus (PrV), glycoprotein gL is necessary for infectivity but is dispensable for virion localization of gH. A virus mutant lacking gL, PrV-DeltagLbeta, is defective in entry into target cells, and direct cell-to-cell spread is drastically reduced, resulting in only single or small foci of infected cells (B. G. Klupp, W. Fuchs, E. Weiland, and T. C. Mettenleiter, J. Virol. 71:7687-7695, 1997). We used this limited cell-to-cell spreading ability of PrV-DeltagLbeta for serial passaging of cells infected with transcomplemented virus by coseeding with noninfected cells. After repeated passaging, plaque formation was restored and infectivity in the supernatant was observed. One single-plaque isolate, designated PrV-DeltagLPass, was further characterized. To identify the mutation leading to this gL-independent infectious phenotype, Southern and Western blot analyses, radioimmunoprecipitations, and DNA sequencing were performed. The results showed that rearrangement of a genomic region comprising part of the gH gene into a duplicated copy of part of the unique short region resulted in a fusion fragment predicted to encode a protein consisting of the N-terminal 271 amino acids of gD fused to the C-terminal 590 residues of gH. Western blotting and radioimmunoprecipitation with gD- and gH-specific antibodies verified the presence of a gDH fusion protein. To prove that this fusion protein mediates infectivity of PrV-DeltagLPass, cotransfection of PrV-DeltagLbeta DNA with the cloned fusion fragment was performed, and a cell line, Nde-67, carrying the fusion gene was established. After cotransfection, infectious gL-negative PrV was recovered, and propagation of PrV-DeltagLbeta on Nde-67 cells produced infectious virions. Thus, a gDH fusion polypeptide can compensate for function of the essential gL in entry and cell-to-cell spread of PrV.
Collapse
Affiliation(s)
- B G Klupp
- Institute of Molecular and Cellular Virology, Friedrich-Loeffler-Institutes, Federal Research Centre for Virus Diseases of Animals, D-17498 Insel Riems, Germany
| | | |
Collapse
|
31
|
Karger A, Schmidt J, Mettenleiter TC. Infectivity of a pseudorabies virus mutant lacking attachment glycoproteins C and D. J Virol 1998; 72:7341-8. [PMID: 9696830 PMCID: PMC109958 DOI: 10.1128/jvi.72.9.7341-7348.1998] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Initiation of herpesvirus infection requires attachment of virions to the host cell followed by fusion of virion envelope and cellular cytoplasmic membrane during penetration. In several alphaherpesviruses, glycoprotein C (gC) is the primary attachment protein, interacting with cell-surface heparan sulfate proteoglycans. Secondary binding is mediated by gD, which, normally, is also required for penetration. Recently, we described the isolation of a gD-negative infectious pseudorabies virus (PrV) mutant, PrV gD- Pass (J. Schmidt, B. G. Klupp, A. Karger, and T. C. Mettenleiter, J. Virol. 71:17-24, 1997). In PrV gD- Pass, attachment and penetration occur in the absence of gD. To assess the importance of specific attachment for infectivity of PrV gD- Pass, the gene encoding gC was deleted, resulting in mutant PrV gCD- Pass. Deletion of both known attachment proteins reduced specific infectivity compared to wild-type PrV by more than 10,000-fold. Surprisingly, the virus mutant still retained significant infectivity and could be propagated on normal noncomplementing cells, indicating the presence of another receptor-binding virion protein. Selection of bovine kidney (MDBK) cells resistant to infection by PrV gCD- Pass resulted in the isolation of a cell clone, designated NB, which was susceptible to infection by wild-type PrV but refractory to infection by either PrV gCD- Pass or PrV gD- Pass, a defect which could partially be overcome by polyethylene glycol (PEG)-induced membrane fusion. However, even after PEG-induced infection plaque formation of PrV gCD- Pass or PrV gD- Pass did not ensue in NB cells. Also, phenotypic gD complementation of PrV gCD- Pass or PrV gD- Pass rescued the defect in infection of NB cells but did not restore plaque formation. Glycosaminoglycan analyses of MDBK and NB cells yielded identical results, and NB cells were normally susceptible to infection by other alphaherpesviruses as well as vesicular stomatitis virus. Infectious center assays after PEG-induced infection of NB cells with PrV gD- Pass on MDBK cells indicated efficient exit of virions from infected NB cells. Together, our data suggest the presence of another receptor and receptor-binding virion protein which can mediate PrV entry and cell-to-cell spread in MDBK cells.
Collapse
Affiliation(s)
- A Karger
- Institute of Molecular and Cellular Virology, Friedrich-Loeffler-Institutes, Federal Research Centre for Virus Diseases of Animals, D-17498 Insel Riems, Germany
| | | | | |
Collapse
|
32
|
Hanon E, Meyer G, Vanderplasschen A, Dessy-Doizé C, Thiry E, Pastoret PP. Attachment but not penetration of bovine herpesvirus 1 is necessary to induce apoptosis in target cells. J Virol 1998; 72:7638-41. [PMID: 9696867 PMCID: PMC110026 DOI: 10.1128/jvi.72.9.7638-7641.1998] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bovine herpesvirus 1 (BHV-1) induces apoptotic cell death in bovine peripheral blood mononuclear cells and B-lymphoma cells. Using a BHV-1 glycoprotein H null mutant, we have demonstrated that although penetration of BHV-1 is not required, attachment of BHV-1 viral particles is essential for the induction of apoptosis.
Collapse
Affiliation(s)
- E Hanon
- Departments of Immunology/Vaccinology, Faculty of Veterinary Medicine, University of Liège, B-4000 Liège, Belgium.
| | | | | | | | | | | |
Collapse
|
33
|
Kühnle G, Heinze A, Schmitt J, Giesow K, Taylor G, Morrison I, Rijsewijk FA, van Oirschot JT, Keil GM. The class II membrane glycoprotein G of bovine respiratory syncytial virus, expressed from a synthetic open reading frame, is incorporated into virions of recombinant bovine herpesvirus 1. J Virol 1998; 72:3804-11. [PMID: 9557663 PMCID: PMC109603 DOI: 10.1128/jvi.72.5.3804-3811.1998] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The bovine herpesvirus 1 (BHV-1) recombinants BHV-1/eG(ori) and BHV-1/eG(syn) were isolated after insertion of expression cassettes which contained either a genomic RNA-derived cDNA fragment (BHV-1/eG(ori)) or a modified, chemically synthesized open reading frame (ORF) (BHV-1/eG(syn)), which both encode the attachment glycoprotein G of bovine respiratory syncytial virus (BRSV), a class II membrane glycoprotein. Northern blot analyses and nuclear runoff transcription experiments indicated that transcripts encompassing the authentic BRSV G ORF were unstable in the nucleus of BHV-1/eG(ori)-infected cells. In contrast, high levels of BRSV G RNA were detected in BHV-1/eG(syn)-infected cells. Immunoblots showed that the BHV-1/eG(syn)-expressed BRSV G glycoprotein contains N- and O-linked carbohydrates and that it is incorporated into the membrane of infected cells and into the envelope of BHV-1/eG(syn) virions. The latter was also demonstrated by neutralization of BHV-1/eG(syn) infectivity by monoclonal antibodies or polyclonal anti-BRSV G antisera and complement. Our results show that expression of the BRSV G glycoprotein by BHV-1 was dependent on the modification of the BRSV G ORF and indicate that incorporation of class II membrane glycoproteins into BHV-1 virions does not necessarily require BHV-1-specific signals. This raises the possibility of targeting heterologous polypeptides to the viral envelope, which might enable the construction of BHV-1 recombinants with new biological properties and the development of improved BHV-1-based live and inactivated vector vaccines.
Collapse
Affiliation(s)
- G Kühnle
- Institute of Molecular and Cellular Virology, Friedrich-Loeffler-Institutes, Federal Research Centre for Virus Diseases of Animals, Riems, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Anderson AS, Parcells MS, Morgan RW. The glycoprotein D (US6) homolog is not essential for oncogenicity or horizontal transmission of Marek's disease virus. J Virol 1998; 72:2548-53. [PMID: 9499123 PMCID: PMC109562 DOI: 10.1128/jvi.72.3.2548-2553.1998] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
RB1BUS6lacgpt, a Marek's disease virus (MDV) mutant having a disrupted glycoprotein D (gD) homolog gene, established infection and induced tumors in chickens exposed to it by inoculation or by contact. Lymphoblastoid cell lines derived from RB1BUS6lacgpt-induced tumors harbored only the mutant virus. These results provide strong evidence that an intact gD homolog gene is not essential for oncogenicity or horizontal transmission of MDV.
Collapse
MESH Headings
- Animals
- Bacterial Proteins/genetics
- Cell Transformation, Viral
- Chickens
- Cloning, Molecular
- Disease Transmission, Infectious
- Escherichia coli Proteins
- Gene Expression
- Herpesvirus 2, Gallid/genetics
- Herpesvirus 2, Gallid/isolation & purification
- Herpesvirus 2, Gallid/metabolism
- Herpesvirus 2, Gallid/pathogenicity
- Lac Operon
- Lymphoma
- Marek Disease/transmission
- Marek Disease/virology
- Mutagenesis, Insertional
- Pentosyltransferases
- Proteins
- RNA, Viral
- Tumor Cells, Cultured
- Viral Envelope Proteins/genetics
- Viral Envelope Proteins/physiology
Collapse
Affiliation(s)
- A S Anderson
- Delaware Agricultural Experiment Station, Department of Animal and Food Sciences, College of Agricultural Sciences, University of Delaware, Newark 19717-1303, USA
| | | | | |
Collapse
|
35
|
Roller RJ, Rauch D. Herpesvirus entry mediator HVEM mediates cell-cell spread in BHK(TK-) cell clones. J Virol 1998; 72:1411-7. [PMID: 9445042 PMCID: PMC124620 DOI: 10.1128/jvi.72.2.1411-1417.1998] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/1997] [Accepted: 11/03/1997] [Indexed: 02/05/2023] Open
Abstract
95-19 and U(S)11c119.3 are BHK(TK-)-derived cell lines that are highly resistant to postattachment entry of herpes simplex virus type 1 (HSV-1) and HSV-2 but not to later steps in single-step replication. The resistance properties of these two cell types are not identical. U(S)11c119.3 cells are fully susceptible to pseudorabies virus (PRV), as shown by single-step growth experiments, whereas 95-19 cells are resistant to entry of free PRV but not to entry by cell-cell spread. We have tested the ability of HVEM to overcome the block to infection in both cell lines following transient and stable transfection. HVEM was able to mediate entry of free HSV-1 into both cell lines, as shown by an increase in the number of beta-galactosidase-expressing cells in cultures transiently transfected with an HVEM expression plasmid and infected with lacZ-expressing HSV-1. In stably transfected 95-19 cells, HVEM enhanced infection by free HSV-1, as shown by an increase in the number of infectious centers obtained following infection. In both cell types, HVEM strongly enhanced entry of HSV-1 and HSV-2 by cell-cell spread, suggesting that HVEM can function as an entry mediator both in entry of free virus and in entry by cell-cell spread.
Collapse
Affiliation(s)
- R J Roller
- Department of Microbiology, University of Iowa, Iowa City 52242, USA.
| | | |
Collapse
|
36
|
Klupp BG, Fuchs W, Weiland E, Mettenleiter TC. Pseudorabies virus glycoprotein L is necessary for virus infectivity but dispensable for virion localization of glycoprotein H. J Virol 1997; 71:7687-95. [PMID: 9311852 PMCID: PMC192119 DOI: 10.1128/jvi.71.10.7687-7695.1997] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Herpesviruses contain a number of envelope glycoproteins which play important roles in the interaction between virions and target cells. Although several glycoproteins are not present in all herpesviruses, others, including glycoproteins H and L (gH and gL), are conserved throughout the Herpesviridae. To elucidate common properties and differences in herpesvirus glycoprotein function, corresponding virus mutants must be constructed and analyzed in different herpesvirus backgrounds. Analysis of gH- mutants of herpes simplex virus type 1 (HSV-1) and pseudorabies virus (PrV) showed that in both viruses gH is essential for penetration and cell-to-cell spread and that its presence is required for virion localization of gL. Since gH homologs are found complexed with gL, it was of interest to assess the phenotype of gL- mutant viruses. By using this approach, HSV-1 gL has been shown to be required for entry and for virion localization of gH (C. Roop, L. Hutchinson, and D. Johnson, J. Virol. 67:2285-2297, 1993). To examine whether a similar phenotype is associated with lack of gL in another alphaherpesvirus, PrV, we constructed two independent gL- PrV mutants by insertion and deletion-insertion mutagenesis. The salient findings are as follows: (i) PrV gL is required for penetration of virions and cell-to-cell spread; (ii) unlike HSV-1, PrV gH is incorporated into the virion in the absence of gL; (iii) virion localization of gH in the absence of gL is not sufficient for infectivity; (iv) in the absence of gL, N-glycans on PrV gH are processed to a greater extent than in the presence of gL, indicating masking of N-glycans by association with gL; and (v) an anti-gL polyclonal antiserum is able to neutralize virion infectivity but did not inhibit cell-to-cell spread. Thus, whereas PrV gL is essential for virus replication, as is HSV-1 gL, gL- PrV mutants exhibit properties strikingly different from those of HSV-1. In conclusion, our data show an important functional role for PrV gL in the viral entry process, which is not explained by a chaperone-type mechanism in gH maturation and processing.
Collapse
Affiliation(s)
- B G Klupp
- Institute of Molecular and Cellular Virology, Friedrich-Loeffler-Institutes, Federal Research Centre for Virus Diseases of Animals, Insel Riems, Germany
| | | | | | | |
Collapse
|
37
|
Schmidt J, Klupp BG, Karger A, Mettenleiter TC. Adaptability in herpesviruses: glycoprotein D-independent infectivity of pseudorabies virus. J Virol 1997; 71:17-24. [PMID: 8985318 PMCID: PMC191019 DOI: 10.1128/jvi.71.1.17-24.1997] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Initial contact between herpesviruses and host cells is mediated by virion envelope glycoproteins which bind to cellular receptors. In several alphaherpesviruses, the nonessential glycoprotein gC has been found to interact with cell surface proteoglycans, whereas the essential glycoprotein gD is involved in stable secondary attachment. In addition, gD is necessary for penetration, which involves fusion between virion envelope and cellular cytoplasmic membrane. As opposed to other alphaherpesvirus gD homologs, pseudorabies virus (PrV) gD is not required for direct viral cell-to-cell spread. Therefore, gD- PrV can be passaged in noncomplementing cells by cocultivating infected and noninfected cells. Whereas infectivity was found to be strictly cell associated in early passages, repeated passaging resulted in the appearance of infectivity in the supernatant, finally reaching titers as high as 10(7) PFU/ml (PrV gD- Pass). Filtration experiments indicated that this infectivity was not due to the presence of infected cells, and the absence of gD was verified by Southern and Western blotting and by virus neutralization. Infection of bovine kidney cells constitutively expressing PrV gD interfered with the infectivity of wild-type PrV but did not inhibit that of PrV gD- Pass. Similar results were obtained after passaging of a second PrV mutant, PrV-376, which in addition to gD also lacks gG, gI, and gE. Penetration assays demonstrated that PrV gD- Pass entered cells much more slowly than wild-type PrV. In summary, our data demonstrate the existence of a gD-independent mode of initiation of infection in PrV and indicate that the essential function(s) that gD performs in wild-type PrV infection can be compensated for after passaging. Therefore, regarding the requirement for gD, PrV seems to be intermediate between herpes simplex virus type 1, in which gD is necessary for penetration and cell-to-cell spread, and varicella-zoster virus (VZV), which lacks a gD gene. Our data show that the relevance of an essential protein can change under selective pressure and thus demonstrate a way in which VZV could have evolved from a PrV-like ancestor.
Collapse
Affiliation(s)
- J Schmidt
- Institute of Molecular and Cellular Virology, Federal Research Centre for Virus Diseases of Animals, Insel Riems, Germany
| | | | | | | |
Collapse
|