1
|
Moi D, Nishio S, Li X, Valansi C, Langleib M, Brukman NG, Flyak K, Dessimoz C, de Sanctis D, Tunyasuvunakool K, Jumper J, Graña M, Romero H, Aguilar PS, Jovine L, Podbilewicz B. Discovery of archaeal fusexins homologous to eukaryotic HAP2/GCS1 gamete fusion proteins. Nat Commun 2022; 13:3880. [PMID: 35794124 PMCID: PMC9259645 DOI: 10.1038/s41467-022-31564-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/22/2022] [Indexed: 12/26/2022] Open
Abstract
Sexual reproduction consists of genome reduction by meiosis and subsequent gamete fusion. The presence of genes homologous to eukaryotic meiotic genes in archaea and bacteria suggests that DNA repair mechanisms evolved towards meiotic recombination. However, fusogenic proteins resembling those found in gamete fusion in eukaryotes have so far not been found in prokaryotes. Here, we identify archaeal proteins that are homologs of fusexins, a superfamily of fusogens that mediate eukaryotic gamete and somatic cell fusion, as well as virus entry. The crystal structure of a trimeric archaeal fusexin (Fusexin1 or Fsx1) reveals an archetypical fusexin architecture with unique features such as a six-helix bundle and an additional globular domain. Ectopically expressed Fusexin1 can fuse mammalian cells, and this process involves the additional globular domain and a conserved fusion loop. Furthermore, archaeal fusexin genes are found within integrated mobile elements, suggesting potential roles in cell-cell fusion and gene exchange in archaea, as well as different scenarios for the evolutionary history of fusexins.
Collapse
Affiliation(s)
- David Moi
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-CONICET), Buenos Aires, Argentina
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Shunsuke Nishio
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Xiaohui Li
- Department of Biology, Technion- Israel Institute of Technology, Haifa, Israel
| | - Clari Valansi
- Department of Biology, Technion- Israel Institute of Technology, Haifa, Israel
| | - Mauricio Langleib
- Unidad de Genómica Evolutiva, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
- Unidad de Bioinformática, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Nicolas G Brukman
- Department of Biology, Technion- Israel Institute of Technology, Haifa, Israel
| | - Kateryna Flyak
- Department of Biology, Technion- Israel Institute of Technology, Haifa, Israel
| | - Christophe Dessimoz
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Department of Genetics, Evolution and Environment, Centre for Life's Origins and Evolution, University College London, London, UK
- Department of Computer Science, University College London, London, UK
| | | | | | | | - Martin Graña
- Unidad de Bioinformática, Institut Pasteur de Montevideo, Montevideo, Uruguay.
| | - Héctor Romero
- Unidad de Genómica Evolutiva, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay.
- Centro Universitario Regional Este - CURE, Centro Interdisciplinario de Ciencia de Datos y Aprendizaje Automático - CICADA, Universidad de la República, Montevideo, Uruguay.
| | - Pablo S Aguilar
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-CONICET), Buenos Aires, Argentina.
- Instituto de Investigaciones Biotecnológicas Universidad Nacional de San Martín (IIB-CONICET), San Martín, Buenos Aires, Argentina.
| | - Luca Jovine
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden.
| | | |
Collapse
|
2
|
Barrett CT, Dutch RE. Viral Membrane Fusion and the Transmembrane Domain. Viruses 2020; 12:v12070693. [PMID: 32604992 PMCID: PMC7412173 DOI: 10.3390/v12070693] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 01/05/2023] Open
Abstract
Initiation of host cell infection by an enveloped virus requires a viral-to-host cell membrane fusion event. This event is mediated by at least one viral transmembrane glycoprotein, termed the fusion protein, which is a key therapeutic target. Viral fusion proteins have been studied for decades, and numerous critical insights into their function have been elucidated. However, the transmembrane region remains one of the most poorly understood facets of these proteins. In the past ten years, the field has made significant advances in understanding the role of the membrane-spanning region of viral fusion proteins. We summarize developments made in the past decade that have contributed to the understanding of the transmembrane region of viral fusion proteins, highlighting not only their critical role in the membrane fusion process, but further demonstrating their involvement in several aspects of the viral lifecycle.
Collapse
|
3
|
Vesicular stomatitis virus G protein transmembrane region is crucial for the hemi-fusion to full fusion transition. Sci Rep 2018; 8:10669. [PMID: 30006542 PMCID: PMC6045571 DOI: 10.1038/s41598-018-28868-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 06/29/2018] [Indexed: 11/30/2022] Open
Abstract
Viral fusion proteins are essential for enveloped virus infection. These proteins mediate fusion between the virus envelope and host cellular membrane to release the viral genome into cells. Vesicular stomatitis virus G (VSV G) protein is a typical type III viral fusion protein. To study the mechanism of VSV G protein mediated membrane fusion, we set up a cell-cell fusion system in which cells are marked by different fluorescent proteins. Taking advantage of this system, we performed real-time recording and quantitative analysis of the cell fusion mediated by VSV G. We found that the time scale required for VSV G mediated cell-cell fusion was approximately 1–2 minutes. Next, we specifically examined the function of the transmembrane (TM) region of VSV G protein in membrane fusion by replacing the TM region with those of other fusion proteins. The TM region replacements dramatically impaired VSV G protein function in the cell-cell fusion assay and diminished VSV G mediated lentivirus and recombinant VSV infection efficiency. Further experiments implied that the TM region played a role in the transition from hemi-fusion to full fusion. Several residues within the TM region were identified as important for membrane fusion. Overall, our findings unraveled the important function of the TM region in VSV G mediated viral fusion.
Collapse
|
4
|
Yu GM, Zu SL, Zhou WW, Wang XJ, Shuai L, Wang XL, Ge JY, Bu ZG. Chimeric rabies glycoprotein with a transmembrane domain and cytoplasmic tail from Newcastle disease virus fusion protein incorporates into the Newcastle disease virion at reduced levels. J Vet Sci 2018; 18:351-359. [PMID: 27515260 PMCID: PMC5583423 DOI: 10.4142/jvs.2017.18.s1.351] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 04/29/2016] [Accepted: 07/21/2016] [Indexed: 11/20/2022] Open
Abstract
Rabies remains an important worldwide health problem. Newcastle disease virus (NDV) was developed as a vaccine vector in animals by using a reverse genetics approach. Previously, our group generated a recombinant NDV (LaSota strain) expressing the complete rabies virus G protein (RVG), named rL-RVG. In this study, we constructed the variant rL-RVGTM, which expresses a chimeric rabies virus G protein (RVGTM) containing the ectodomain of RVG and the transmembrane domain (TM) and a cytoplasmic tail (CT) from the NDV fusion glycoprotein to study the function of RVG's TM and CT. The RVGTM did not detectably incorporate into NDV virions, though it was abundantly expressed at the surface of infected BHK-21 cells. Both rL-RVG and rL-RVGTM induced similar levels of NDV virus-neutralizing antibody (VNA) after initial and secondary vaccination in mice, whereas rabies VNA induction by rL-RVGTM was markedly lower than that induced by rL-RVG. Though rL-RVG could spread from cell to cell like that in rabies virus, rL-RVGTM lost this ability and spread in a manner similar to the parental NDV. Our data suggest that the TM and CT of RVG are essential for its incorporation into NDV virions and for spreading of the recombinant virus from the initially infected cells to surrounding cells.
Collapse
Affiliation(s)
- Gui Mei Yu
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Shu Long Zu
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Wei Wei Zhou
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Xi Jun Wang
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Lei Shuai
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Xue Lian Wang
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Jin Ying Ge
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Zhi Gao Bu
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| |
Collapse
|
5
|
Singh S, Mittal A. Transmembrane Domain Lengths Serve as Signatures of Organismal Complexity and Viral Transport Mechanisms. Sci Rep 2016; 6:22352. [PMID: 26925972 PMCID: PMC4772119 DOI: 10.1038/srep22352] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 02/12/2016] [Indexed: 12/24/2022] Open
Abstract
It is known that membrane proteins are important in various secretory pathways, with
a possible role of their transmembrane domains (TMDs) as sorting determinant
factors. One key aspect of TMDs associated with various
“checkposts” (i.e. organelles) of intracellular trafficking
is their length. To explore possible linkages in organisms with varying
“complexity” and differences in TMD lengths of membrane
proteins associated with different organelles (such as Endoplasmic Reticulum, Golgi,
Endosomes, Nucleus, Plasma Membrane), we analyzed ~70000 membrane
protein sequences in over 300 genomes of fungi, plants, non-mammalian vertebrates
and mammals. We report that as we move from simpler to complex organisms, variation
in organellar TMD lengths decreases, especially compared to their respective plasma
membranes, with increasing organismal complexity. This suggests an evolutionary
pressure in modulating length of TMDs of membrane proteins with increasing
complexity of communication between sub-cellular compartments. We also report
functional applications of our findings by discovering remarkable distinctions in
TMD lengths of membrane proteins associated with different intracellular transport
pathways. Finally, we show that TMD lengths extracted from viral proteins can serve
as somewhat weak indicators of viral replication sites in plant cells but very
strong indicators of different entry pathways employed by animal viruses.
Collapse
Affiliation(s)
- Snigdha Singh
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Aditya Mittal
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
6
|
Herpesvirus gB: A Finely Tuned Fusion Machine. Viruses 2015; 7:6552-69. [PMID: 26690469 PMCID: PMC4690880 DOI: 10.3390/v7122957] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 11/15/2015] [Accepted: 11/27/2015] [Indexed: 01/03/2023] Open
Abstract
Enveloped viruses employ a class of proteins known as fusogens to orchestrate the merger of their surrounding envelope and a target cell membrane. Most fusogens accomplish this task alone, by binding cellular receptors and subsequently catalyzing the membrane fusion process. Surprisingly, in herpesviruses, these functions are distributed among multiple proteins: the conserved fusogen gB, the conserved gH/gL heterodimer of poorly defined function, and various non-conserved receptor-binding proteins. We summarize what is currently known about gB from two closely related herpesviruses, HSV-1 and HSV-2, with emphasis on the structure of the largely uncharted membrane interacting regions of this fusogen. We propose that the unusual mechanism of herpesvirus fusion could be linked to the unique architecture of gB.
Collapse
|
7
|
Torres J, Surya W, Li Y, Liu DX. Protein-Protein Interactions of Viroporins in Coronaviruses and Paramyxoviruses: New Targets for Antivirals? Viruses 2015; 7:2858-83. [PMID: 26053927 PMCID: PMC4488717 DOI: 10.3390/v7062750] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 05/21/2015] [Accepted: 05/28/2015] [Indexed: 12/13/2022] Open
Abstract
Viroporins are members of a rapidly growing family of channel-forming small polypeptides found in viruses. The present review will be focused on recent structural and protein-protein interaction information involving two viroporins found in enveloped viruses that target the respiratory tract; (i) the envelope protein in coronaviruses and (ii) the small hydrophobic protein in paramyxoviruses. Deletion of these two viroporins leads to viral attenuation in vivo, whereas data from cell culture shows involvement in the regulation of stress and inflammation. The channel activity and structure of some representative members of these viroporins have been recently characterized in some detail. In addition, searches for protein-protein interactions using yeast-two hybrid techniques have shed light on possible functional roles for their exposed cytoplasmic domains. A deeper analysis of these interactions should not only provide a more complete overview of the multiple functions of these viroporins, but also suggest novel strategies that target protein-protein interactions as much needed antivirals. These should complement current efforts to block viroporin channel activity.
Collapse
Affiliation(s)
- Jaume Torres
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
| | - Wahyu Surya
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
| | - Yan Li
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
| | - Ding Xiang Liu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
| |
Collapse
|
8
|
Sengupta T, Chakraborty H, Lentz BR. The transmembrane domain peptide of vesicular stomatitis virus promotes both intermediate and pore formation during PEG-mediated vesicle fusion. Biophys J 2015; 107:1318-26. [PMID: 25229140 DOI: 10.1016/j.bpj.2014.03.053] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 01/08/2014] [Accepted: 03/06/2014] [Indexed: 02/01/2023] Open
Abstract
We propose mechanisms by which the transmembrane domain of vesicular stomatitis virus (VSV-TMD) promotes both initiation of fusion and formation of a fusion pore. Time courses of polyethyleneglycol (PEG)-mediated fusion of 25 nm small unilamellar vesicles composed of dioleoylphosphatidylcholine, dioleoylphosphatidylethanolamine (DOPE), bovine brain sphingomyelin, and cholesterol (35:30:15:20 molar ratio) were recorded at pH 7.4 at five different temperatures (from 17°C to 37°C) and compared with time courses obtained with the same vesicles containing the fusion-active TMD of the G protein of VSV. Multiple time courses were fitted globally to a one-intermediate ensemble kinetic model to estimate the rate constants for conversion of the aggregated state to an intermediate hemifused state (k1, stalk, or I1) that rapidly transits to an unstable intermediate (I2 state) that converts to a final fusion pore state with a combined rate k3. The probabilities of lipid mixing, contents mixing, and contents leakage in the three states were also obtained from this analysis. The activation thermodynamics for each step were consistent with previously published models of lipid rearrangements during intermediate and pore formation. The influences of VSV-TMD, hexadecane, and VSV-TMD + hexadecane on the kinetics, activation thermodynamics, and membrane structure support the hypothesis that these two agents do not catalyze fusion by a common mechanism, except possibly at the lowest temperatures examined. VSV-TMD primarily catalyzed initial intermediate formation, although it substantially increased the probability of contents mixing in the intermediate state. Our results support the hypothesis that the catalytic influence of VSV-TMD on the initial-intermediate- and pore-forming steps of PEG-mediated fusion derives from its ability to impose a positive intrinsic curvature and thereby stress small unilamellar vesicle outer leaflets as well as the periphery of intermediate microstructures.
Collapse
Affiliation(s)
- Tanusree Sengupta
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, North Carolina; Program in Molecular and Cellular Biophysics, University of North Carolina at Chapel Hill, North Carolina
| | - Hirak Chakraborty
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, North Carolina; Program in Molecular and Cellular Biophysics, University of North Carolina at Chapel Hill, North Carolina
| | - Barry R Lentz
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, North Carolina; Program in Molecular and Cellular Biophysics, University of North Carolina at Chapel Hill, North Carolina.
| |
Collapse
|
9
|
Smith EC, Smith SE, Carter JR, Webb SR, Gibson KM, Hellman LM, Fried MG, Dutch RE. Trimeric transmembrane domain interactions in paramyxovirus fusion proteins: roles in protein folding, stability, and function. J Biol Chem 2013; 288:35726-35. [PMID: 24178297 DOI: 10.1074/jbc.m113.514554] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Paramyxovirus fusion (F) proteins promote membrane fusion between the viral envelope and host cell membranes, a critical early step in viral infection. Although mutational analyses have indicated that transmembrane (TM) domain residues can affect folding or function of viral fusion proteins, direct analysis of TM-TM interactions has proved challenging. To directly assess TM interactions, the oligomeric state of purified chimeric proteins containing the Staphylococcal nuclease (SN) protein linked to the TM segments from three paramyxovirus F proteins was analyzed by sedimentation equilibrium analysis in detergent and buffer conditions that allowed density matching. A monomer-trimer equilibrium best fit was found for all three SN-TM constructs tested, and similar fits were obtained with peptides corresponding to just the TM region of two different paramyxovirus F proteins. These findings demonstrate for the first time that class I viral fusion protein TM domains can self-associate as trimeric complexes in the absence of the rest of the protein. Glycine residues have been implicated in TM helix interactions, so the effect of mutations at Hendra F Gly-508 was assessed in the context of the whole F protein. Mutations G508I or G508L resulted in decreased cell surface expression of the fusogenic form, consistent with decreased stability of the prefusion form of the protein. Sedimentation equilibrium analysis of TM domains containing these mutations gave higher relative association constants, suggesting altered TM-TM interactions. Overall, these results suggest that trimeric TM interactions are important driving forces for protein folding, stability and membrane fusion promotion.
Collapse
Affiliation(s)
- Everett Clinton Smith
- From the Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky 40536
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Lipid interaction of the C terminus and association of the transmembrane segments facilitate atlastin-mediated homotypic endoplasmic reticulum fusion. Proc Natl Acad Sci U S A 2012; 109:E2146-54. [PMID: 22802620 DOI: 10.1073/pnas.1208385109] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The homotypic fusion of endoplasmic reticulum (ER) membranes is mediated by atlastin (ATL), which consists of an N-terminal cytosolic domain containing a GTPase module and a three-helix bundle followed by two transmembrane (TM) segments and a C-terminal tail (CT). Fusion depends on a GTP hydrolysis-induced conformational change in the cytosolic domain. Here, we show that the CT and TM segments also are required for efficient fusion and provide insight into their mechanistic roles. The essential feature of the CT is a conserved amphipathic helix. A synthetic peptide corresponding to the helix, but not to unrelated amphipathic helices, can act in trans to restore the fusion activity of tailless ATL. The CT promotes vesicle fusion by interacting directly with and perturbing the lipid bilayer without causing significant lysis. The TM segments do not serve as mere membrane anchors for the cytosolic domain but rather mediate the formation of ATL oligomers. Point mutations in either the C-terminal helix or the TMs impair ATL's ability to generate and maintain ER morphology in vivo. Our results suggest that protein-lipid and protein-protein interactions within the membrane cooperate with the conformational change of the cytosolic domain to achieve homotypic ER membrane fusion.
Collapse
|
11
|
Molecular and cellular aspects of rhabdovirus entry. Viruses 2012; 4:117-39. [PMID: 22355455 PMCID: PMC3280520 DOI: 10.3390/v4010117] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Revised: 01/05/2012] [Accepted: 01/10/2012] [Indexed: 01/13/2023] Open
Abstract
Rhabdoviruses enter the cell via the endocytic pathway and subsequently fuse with a cellular membrane within the acidic environment of the endosome. Both receptor recognition and membrane fusion are mediated by a single transmembrane viral glycoprotein (G). Fusion is triggered via a low-pH induced structural rearrangement. G is an atypical fusion protein as there is a pH-dependent equilibrium between its pre- and post-fusion conformations. The elucidation of the atomic structures of these two conformations for the vesicular stomatitis virus (VSV) G has revealed that it is different from the previously characterized class I and class II fusion proteins. In this review, the pre- and post-fusion VSV G structures are presented in detail demonstrating that G combines the features of the class I and class II fusion proteins. In addition to these similarities, these G structures also reveal some particularities that expand our understanding of the working of fusion machineries. Combined with data from recent studies that revealed the cellular aspects of the initial stages of rhabdovirus infection, all these data give an integrated view of the entry pathway of rhabdoviruses into their host cell.
Collapse
|
12
|
Beyond anchoring: the expanding role of the hendra virus fusion protein transmembrane domain in protein folding, stability, and function. J Virol 2012; 86:3003-13. [PMID: 22238302 DOI: 10.1128/jvi.05762-11] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
While work with viral fusion proteins has demonstrated that the transmembrane domain (TMD) can affect protein folding, stability, and membrane fusion promotion, the mechanism(s) remains poorly understood. TMDs could play a role in fusion promotion through direct TMD-TMD interactions, and we have recently shown that isolated TMDs from three paramyxovirus fusion (F) proteins interact as trimers using sedimentation equilibrium (SE) analysis (E. C. Smith, et al., submitted for publication). Immediately N-terminal to the TMD is heptad repeat B (HRB), which plays critical roles in fusion. Interestingly, addition of HRB decreased the stability of the trimeric TMD-TMD interactions. This result, combined with previous findings that HRB forms a trimeric coiled coil in the prefusion form of the whole protein though HRB peptides fail to stably associate in isolation, suggests that the trimeric TMD-TMD interactions work in concert with elements in the F ectodomain head to stabilize a weak HRB interaction. Thus, changes in TMD-TMD interactions could be important in regulating F triggering and refolding. Alanine insertions between the TMD and HRB demonstrated that spacing between these two regions is important for protein stability while not affecting TMD-TMD interactions. Additional mutagenesis of the C-terminal end of the TMD suggests that β-branched residues within the TMD play a role in membrane fusion, potentially through modulation of TMD-TMD interactions. Our results support a model whereby the C-terminal end of the Hendra virus F TMD is an important regulator of TMD-TMD interactions and show that these interactions help hold HRB in place prior to the triggering of membrane fusion.
Collapse
|
13
|
The paramyxovirus fusion protein C-terminal region: mutagenesis indicates an indivisible protein unit. J Virol 2011; 86:2600-9. [PMID: 22171273 DOI: 10.1128/jvi.06546-11] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Paramyxoviruses enter host cells by fusing the viral envelope with a host cell membrane. Fusion is mediated by the viral fusion (F) protein, and it undergoes large irreversible conformational changes to cause membrane merger. The C terminus of PIV5 F contains a membrane-proximal 7-residue external region (MPER), followed by the transmembrane (TM) domain and a 20-residue cytoplasmic tail. To study the sequence requirements of the F protein C terminus for fusion, we constructed chimeras containing the ectodomain of parainfluenza virus 5 F (PIV5 F) and either the MPER, the TM domain, or the cytoplasmic tail of the F proteins of the paramyxoviruses measles virus, mumps virus, Newcastle disease virus, human parainfluenza virus 3, and Nipah virus. The chimeras were expressed, and their ability to cause cell fusion was analyzed. The chimeric proteins were variably expressed at the cell surface. We found that chimeras containing the ectodomain of PIV5 F with the C terminus of other paramyxoviruses were unable to cause cell fusion. Fusion could be restored by decreasing the activation energy of refolding through introduction of a destabilizing mutation (S443P). Replacing individual regions, singly or doubly, in the chimeras with native PIV5 F sequences restored fusion to various degrees, but it did not have an additive effect in restoring activity. Thus, the F protein C terminus may be a specific structure that only functions with its cognate ectodomain. Alanine scanning mutagenesis of MPER indicates that it has a regulatory role in fusion since both hyperfusogenic and hypofusogenic mutations were found.
Collapse
|
14
|
Neumann S, Langosch D. Conserved conformational dynamics of membrane fusion protein transmembrane domains and flanking regions indicated by sequence statistics. Proteins 2011; 79:2418-27. [DOI: 10.1002/prot.23063] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2011] [Revised: 03/26/2011] [Accepted: 04/19/2011] [Indexed: 11/07/2022]
|
15
|
Helix-destabilizing, beta-branched, and polar residues in the baboon reovirus p15 transmembrane domain influence the modularity of FAST proteins. J Virol 2011; 85:4707-19. [PMID: 21367887 DOI: 10.1128/jvi.02223-10] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The fusogenic reoviruses induce syncytium formation using the fusion-associated small transmembrane (FAST) proteins. A recent study indicated the p14 FAST protein transmembrane domain (TMD) can be functionally replaced by the TMDs of the other FAST proteins but not by heterologous TMDs, suggesting that the FAST protein TMDs are modular fusion units. We now show that the p15 FAST protein is also a modular fusogen, as indicated by the functional replacement of the p15 ectodomain with the corresponding domain from the p14 FAST protein. Paradoxically, the p15 TMD is not interchangeable with the TMDs of the other FAST proteins, implying that unique attributes of the p15 TMD are required when this fusion module is functioning in the context of the p15 ecto- and/or endodomain. A series of point substitutions, truncations, and reextensions were created in the p15 TMD to define features that are specific to the functioning of the p15 TMD. Removal of only one or two residues from the N terminus or four residues from the C terminus of the p15 TMD eliminated membrane fusion activity, and there was a direct correlation between the fusion-promoting function of the p15 TMD and the presence of N-terminal, hydrophobic β-branched residues. Substitution of the glycine residues and triserine motif present in the p15 TMD also impaired or eliminated the fusion-promoting activity of the p15 TMD. The ability of the p15 TMD to function in an ecto- and endodomain-specific context is therefore influenced by stringent sequence requirements that reflect the importance of TMD polar residues and helix-destabilizing residues.
Collapse
|
16
|
The transmembrane domain sequence affects the structure and function of the Newcastle disease virus fusion protein. J Virol 2011; 85:3486-97. [PMID: 21270151 DOI: 10.1128/jvi.02308-10] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The role of specific sequences in the transmembrane (TM) domain of Newcastle disease virus (NDV) fusion (F) protein in the structure and function of this protein was assessed by replacing this domain with the F protein TM domains from two other paramyxoviruses, Sendai virus (SV) and measles virus (MV), or the TM domain of the unrelated glycoprotein (G) of vesicular stomatitis virus (VSV). Mutant proteins with the SV or MV F protein TM domains were expressed, transported to cell surfaces, and proteolytically cleaved at levels comparable to that of the wild-type protein, while mutant proteins with the VSV G protein TM domain were less efficiently expressed on cell surfaces and proteolytically cleaved. All mutant proteins were defective in all steps of membrane fusion, including hemifusion. In contrast to the wild-type protein, the mutant proteins did not form detectable complexes with the NDV hemagglutinin-neuraminidase (HN) protein. As determined by binding of conformation-sensitive antibodies, the conformations of the ectodomains of the mutant proteins were altered. These results show that the specific sequence of the TM domain of the NDV F protein is important for the conformation of the preactivation form of the ectodomain, the interactions of the protein with HN protein, and fusion activity.
Collapse
|
17
|
Abstract
This chapter discusses the structure and working of viral fusion machinery. The entry of enveloped viruses into cells requires the fusion of viral and cellular membranes, driven by conformational changes in viral glycoproteins. Structural studies have defined three classes of viral membrane fusion proteins. Despite their different structural organizations, all seem to have a common mechanism of action that generates the same lipid organizations during the fusion pathway. The entry of enveloped viruses into host cells requires binding of the virus to one or more receptors present at the cell surface, followed by fusion of the viral envelope with a cellular membrane. These steps are mediated by virally encoded glycoproteins that promote both receptor recognition and membrane fusion. The first crystal structure of a viral fusion protein ectodomain that has been determined is that of influenza virus hemagglutinin (HA) in its prefusion conformation. The structures of viral fusion glycoproteins, of which the conformational change is triggered at low pH, has allowed the identification of amino acid residues that play the role of pH-sensitive molecular switches.
Collapse
|
18
|
Poschner BC, Fischer K, Herrmann JR, Hofmann MW, Langosch D. Structural features of fusogenic model transmembrane domains that differentially regulate inner and outer leaflet mixing in membrane fusion. Mol Membr Biol 2010; 27:1-10. [PMID: 19939203 DOI: 10.3109/09687680903362044] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The transmembrane domains of fusion proteins are known to be important for their fusogenic activity. In an effort to systematically investigate the structure/function relationships of transmembrane domains we had previously designed LV-peptides that mimic natural fusion protein TMDs in their ability to drive fusion after incorporation into liposomal membranes. Here, we investigate the impact of different structural features of LV-peptide TMDs on inner and outer leaflet mixing. We find that fusion driven by the helical peptides involves a hemifusion intermediate as previously seen for natural fusion proteins. Helix backbone dynamics enhances fusion by selectively promoting outer leaflet mixing. Furthermore, the hydrophobic length of the peptides as well as covalent attachment of long acyl chains affects outer and inner leaflet mixing to different extents. Different structural features of transmembrane domains thus appear to differentially influence the rearrangements of lipids in fusion initiation and the hemifusion-to-fusion transition. The relevance of these findings in respect to the function of natural fusion proteins is discussed.
Collapse
Affiliation(s)
- Bernhard C Poschner
- Lehrstuhl Chemie der Biopolymere, Technische Universität München, Weihenstephaner Berg 3, 85354 Freising, and Munich Center for Integrated Protein Science (CIPSM), Germany
| | | | | | | | | |
Collapse
|
19
|
Sun X, Roth SL, Bialecki MA, Whittaker GR. Internalization and fusion mechanism of vesicular stomatitis virus and related rhabdoviruses. Future Virol 2010; 5:85-96. [PMID: 23516023 DOI: 10.2217/fvl.09.72] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Members of the Rhabdoviridae infect a wide variety of animals and plants, and are the causative agents of many important diseases. Rhabdoviruses enter host cells following internalization into endosomes, with the glycoprotein (G protein) mediating both receptor binding to host cells and fusion with the cellular membrane. The recently solved crystal structure of vesicular stomatitis virus G has allowed considerable insight into the mechanism of rhabdovirus entry, in particular the low pH-dependent conformational changes that lead to fusion activation. Rhabdovirus entry shows several distinct features compared with other enveloped viruses; first, the entry process appears to consist of two distinct fusion events, initial fusion into vesicles within endosomes followed by back-fusion into the cytosol; second, the conformational changes in the G protein that lead to fusion activation are reversible; and third, the G protein is structurally distinct from other viral fusion proteins and is not proteolytically cleaved. The internalization and fusion mechanisms of rhabdoviruses are discussed in this article, with a focus on viral systems where the G protein has been studied extensively: vesicular stomatitis virus and rabies virus, as well as viral hemorrhagic septicemia virus.
Collapse
Affiliation(s)
- Xiangjie Sun
- Department of Microbiology & Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA, Tel.: +1 607 253 4020
| | | | | | | |
Collapse
|
20
|
Multifaceted sequence-dependent and -independent roles for reovirus FAST protein cytoplasmic tails in fusion pore formation and syncytiogenesis. J Virol 2009; 83:12185-95. [PMID: 19759162 DOI: 10.1128/jvi.01667-09] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fusogenic reoviruses utilize the FAST proteins, a novel family of nonstructural viral membrane fusion proteins, to induce cell-cell fusion and syncytium formation. Unlike the paradigmatic enveloped virus fusion proteins, the FAST proteins position the majority of their mass within and internal to the membrane in which they reside, resulting in extended C-terminal cytoplasmic tails (CTs). Using tail truncations, we demonstrate that the last 8 residues of the 36-residue CT of the avian reovirus p10 FAST protein and the last 20 residues of the 68-residue CT of the reptilian reovirus p14 FAST protein enhance, but are not required for, pore expansion and syncytium formation. Further truncations indicate that the membrane-distal 12 residues of the p10 and 47 residues of the p14 CTs are essential for pore formation and that a residual tail of 21 to 24 residues that includes a conserved, membrane-proximal polybasic region present in all FAST proteins is insufficient to maintain FAST protein fusion activity. Unexpectedly, a reextension of the tail-truncated, nonfusogenic p10 and p14 constructs with scrambled versions of the deleted sequences restored pore formation and syncytiogenesis, while reextensions with heterologous sequences partially restored pore formation but failed to rescue syncytiogenesis. The membrane-distal regions of the FAST protein CTs therefore exert multiple effects on the membrane fusion reaction, serving in both sequence-dependent and sequence-independent manners as positive effectors of pore formation, pore expansion, and syncytiogenesis.
Collapse
|
21
|
Schibli DJ, Weissenhorn W. Class I and class II viral fusion protein structures reveal similar principles in membrane fusion (Review). Mol Membr Biol 2009; 21:361-71. [PMID: 15764366 DOI: 10.1080/09687860400017784] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Recent crystal structures of Flavivirus and Alphavirus fusion proteins (class II) confirm two major principles of protein machineries that mediate the merger of two opposing lipid bilayers. First, the fusion protein can bridge both membranes tethered by two membrane anchors. Second, refolding or domain rearrangement steps lead to the positioning of both anchors into close proximity at the same end of an elongated structure. Although these two steps are in principle sufficient to pull two opposing membranes together and initiate membrane fusion, accumulating evidence suggests that the process requires the concerted action of a number of fusion proteins at and outside the contact sites. This review will focus on the structures of viral class I and class II fusion proteins and their similarities in facilitating membrane fusion.
Collapse
|
22
|
Langosch D, Arkin IT. Interaction and conformational dynamics of membrane-spanning protein helices. Protein Sci 2009; 18:1343-58. [PMID: 19530249 PMCID: PMC2775205 DOI: 10.1002/pro.154] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Revised: 04/19/2009] [Accepted: 04/20/2009] [Indexed: 12/23/2022]
Abstract
Within 1 or 2 decades, the reputation of membrane-spanning alpha-helices has changed dramatically. Once mostly regarded as dull membrane anchors, transmembrane domains are now recognized as major instigators of protein-protein interaction. These interactions may be of exquisite specificity in mediating assembly of stable membrane protein complexes from cognate subunits. Further, they can be reversible and regulatable by external factors to allow for dynamic changes of protein conformation in biological function. Finally, these helices are increasingly regarded as dynamic domains. These domains can move relative to each other in different functional protein conformations. In addition, small-scale backbone fluctuations may affect their function and their impact on surrounding lipid shells. Elucidating the ways by which these intricate structural features are encoded by the amino acid sequences will be a fascinating subject of research for years to come.
Collapse
Affiliation(s)
- Dieter Langosch
- Lehrstuhl Chemie der Biopolymere, Technische Universität München, Weihenstephaner Berg 3, 85354 Freising, Germany.
| | | |
Collapse
|
23
|
Reovirus FAST protein transmembrane domains function in a modular, primary sequence-independent manner to mediate cell-cell membrane fusion. J Virol 2009; 83:2941-50. [PMID: 19129451 DOI: 10.1128/jvi.01869-08] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The FAST proteins are a unique family of virus-encoded cell-cell membrane fusion proteins. In the absence of a cleavable N-terminal signal peptide, a single-pass transmembrane domain (TMD) functions as a reverse signal-anchor to direct the FAST proteins into the plasma membrane in an N(exo)/C(cyt) topology. There is little information available on the role of the FAST protein TMD in the cell-cell membrane fusion reaction. We show that in the absence of conservation in the length or primary amino acid sequence, the p14 TMD can be functionally exchanged with the TMDs of the p10 and p15 FAST proteins. This is not the case for chimeric p14 proteins containing the TMDs of two different enveloped viral fusion proteins or a cellular membrane protein; such chimeric proteins were defective for both pore formation and syncytiogenesis. TMD structural features that are conserved within members of the FAST protein family presumably play direct roles in the fusion reaction. Molecular modeling suggests that the funnel-shaped architecture of the FAST protein TMDs may represent such a conserved structural and functional motif. Interestingly, although heterologous TMDs exert diverse influences on the trafficking of the p14 FAST protein, these TMDs are capable of functioning as reverse signal-anchor sequences to direct p14 into lipid rafts in the correct membrane topology. The FAST protein TMDs are therefore not primary determinants of type III protein topology, but they do play a direct, sequence-independent role in the membrane fusion reaction.
Collapse
|
24
|
Poschner BC, Quint S, Hofmann MW, Langosch D. Sequence-specific conformational dynamics of model transmembrane domains determines their membrane fusogenic function. J Mol Biol 2009; 386:733-41. [PMID: 19154744 DOI: 10.1016/j.jmb.2008.12.077] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2008] [Accepted: 12/29/2008] [Indexed: 10/21/2022]
Abstract
The transmembrane domains of fusion proteins are known to be functionally important and display an overabundance of helix-destabilizing Ile and Val residues. In an effort to systematically study the relationship of fusogenicity and helix stability, we previously designed LV peptides, a low-complexity model system whose hydrophobic core consists of Leu and Val residues at different ratios. The ability of LV peptides to fuse membranes increases with the content of helix-destabilizing residues. Here, we monitored the kinetics of amide deuterium/hydrogen exchange of LV-peptide helices to probe their conformational dynamics. The kinetics indeed increases strongly with the content of helix-destabilizing residues and is likely to reflect local fluctuations of the helix backbones as all peptides exhibit uncorrelated exchange and contain subpopulations of amide deuterium atoms that exchange with different velocities. Interestingly, helices whose amide deuterium atoms are shifted from slower to faster subpopulations are more fusogenic. Novel peptide variants in which Val residues are concentrated at peripheral or central domains of the hydrophobic core were designed to map functionally relevant helix subdomains. Their structural and functional analysis suggests that dynamic domains close to the helix termini are more relevant for fusogenicity than central domains but cooperate with the latter to achieve strong fusogenicity.
Collapse
Affiliation(s)
- Bernhard C Poschner
- Lehrstuhl für Chemie der Biopolymere, Technische Universität München, Weihenstephaner Berg 3, 85354 Freising, Germany
| | | | | | | |
Collapse
|
25
|
Functional analysis of the transmembrane (TM) domain of the Autographa californica multicapsid nucleopolyhedrovirus GP64 protein: substitution of heterologous TM domains. J Virol 2008; 82:3329-41. [PMID: 18216100 DOI: 10.1128/jvi.02104-07] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
GP64, the major envelope glycoprotein of the Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV) budded virion, is important for host cell receptor binding and mediates low-pH-triggered membrane fusion during entry by endocytosis. In the current study, we examined the functional role of the AcMNPV GP64 transmembrane (TM) domain by replacing the 23-amino-acid GP64 TM domain with corresponding TM domain sequences from a range of viral and cellular type I membrane proteins, including Orgyia pseudotsugata MNPV (OpMNPV) GP64 and F, thogotovirus GP75, Lymantria dispar MNPV (LdMNPV) F, human immunodeficiency virus type 1 (HIV-1) GP41, human CD4 and glycophorin A (GpA), and influenza virus hemagglutinin (HA), and with a glycosylphosphatidylinositol (GPI) anchor addition sequence. In transient expression experiments with Sf9 cells, chimeric GP64 proteins containing either a GPI anchor or TM domains from LdMNPV F or HIV-1 GP41 failed to localize to the cell surface and thus appear to be incompatible with either GP64 structure or cell transport. All of the mutant constructs detected at the cell surface mediated hemifusion (outer leaflet merger) upon low-pH treatment, but only those containing TM domains from CD4, GpA, OpMNPV GP64, and thogotovirus GP75 mediated pore formation and complete membrane fusion activity. This supports a model in which partial fusion (hemifusion) proceeds by a mechanism that is independent of the TM domain and the TM domain participates in the enlargement or expansion of fusion pores after hemifusion. GP64 proteins containing heterologous TM domains mediated virion budding with dramatically differing levels of efficiency. In addition, chimeric GP64 proteins containing TM domains from CD4, GpA, HA, and OpMNPV F were incorporated into budded virions but were unable to rescue the infectivity of a gp64 null virus, whereas those with TM domains from OpMNPV GP64 and thogotovirus GP75 rescued infectivity. These results show that in addition to its basic role in membrane anchoring, the GP64 TM domain is critically important for GP64 trafficking, membrane fusion, virion budding, and virus infectivity. These critical functions were replaced only by TM domains from related viral membrane proteins.
Collapse
|
26
|
Ciczora Y, Callens N, Penin F, Pécheur EI, Dubuisson J. Transmembrane domains of hepatitis C virus envelope glycoproteins: residues involved in E1E2 heterodimerization and involvement of these domains in virus entry. J Virol 2006; 81:2372-81. [PMID: 17166909 PMCID: PMC1865936 DOI: 10.1128/jvi.02198-06] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The transmembrane (TM) domains of hepatitis C virus (HCV) envelope glycoproteins E1 and E2 have been shown to play multiple roles during the biogenesis of the E1E2 heterodimer. By using alanine scanning insertion mutagenesis within the TM domains of HCV envelope glycoproteins, we have previously shown that the central regions of these domains as well as the N-terminal part of the TM domain of E1 are involved in heterodimerization. Here, we used a tryptophan replacement scan of these regions to identify individual residues that participate in those interactions. Our mutagenesis study identified at least four residues involved in heterodimerization: Gly 354, Gly 358, Lys 370, and Asp 728. Interestingly, Gly 354 and Gly 358 belong to a GXXXG oligomerization motif. Our tryptophan mutants were also used to generate retrovirus-based, HCV-pseudotyped particles (HCVpp) in order to analyze the effects of these mutations on virus entry. Surprisingly, two mutants consistently displayed higher infectivity compared to that of the wild type. In contrast, HCVpp infectivity was strongly affected for many mutants, despite normal E1E2 heterodimerization and normal levels of incorporation of HCV glycoproteins into HCVpp. The characterization of some of these HCVpp mutants in the recently developed in vitro fusion assay using fluorescent-labeled liposomes indicated that mutations reducing HCVpp infectivity without altering E1E2 heterodimerization affected the fusion properties of HCV envelope glycoproteins. In conclusion, this mutational analysis identified residues involved in E1E2 heterodimerization and revealed that the TM domains of HCV envelope glycoproteins play a major role in the fusion properties of these proteins.
Collapse
Affiliation(s)
- Yann Ciczora
- Hepatitis C Laboratory, CNRS-UMR8161, Institut de Biologie de Lille, 1 rue Calmette, BP447, 59021 Lille cedex, France
| | | | | | | | | |
Collapse
|
27
|
Welman M, Lemay G, Cohen EA. Role of envelope processing and gp41 membrane spanning domain in the formation of human immunodeficiency virus type 1 (HIV-1) fusion-competent envelope glycoprotein complex. Virus Res 2006; 124:103-12. [PMID: 17129629 DOI: 10.1016/j.virusres.2006.10.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2006] [Revised: 10/04/2006] [Accepted: 10/20/2006] [Indexed: 10/23/2022]
Abstract
Human immunodeficiency virus type 1 (HIV-1) entry into target cells is directed by the envelope (Env) glycoproteins, which are present on the surface of HIV-1 virion or infected cells in the form of trimers consisting of gp120/gp41 complexes. The surface subunit, gp120, initiates the entry process by interacting sequentially with the CD4 receptor and a co-receptor, thereby inducing a conformational change that allows the transmembrane (TM) gp41 subunit to mediate fusion between viral and target cell membranes. Cleavage of Env into its gp120 and gp41 components is necessary for activation of its fusogenic activity. Here, the gp41 TM glycoprotein was altered by either deleting an isoleucine residue (DeltaI642) in a critical region of its ectodomain or by substituting its membrane spanning domain (MSD) by that of the influenza hemagglutinin (HA) glycoprotein (TM-HA) to examine the contribution of these regions to Env functions. Characterization of these mutant forms of gp41 revealed that they both affected the infectivity of pseudotyped virions, however, through distinct defects in Env functions. While deletion of Ile 642 drastically altered processing of Env, replacement of gp41 MSD by that of HA led to a marked fusion defect even though the TM-HA Env was efficiently processed and incorporated into viral particles. Interestingly, both DeltaI642 and TM-HA Env were found to act as trans dominant-negative mutant of viral infectivity, presumably via their ability to form hetero-oligomers with wild type Env. Together, these results support a previously proposed model whereby all three gp120-gp41 monomers must be cleaved for the Env homo-trimer to function and suggest that the gp41 MSD plays a critical role in the formation of fusion-competent Env trimers.
Collapse
Affiliation(s)
- Mélanie Welman
- Département de Microbiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada H3C 3J7
| | | | | |
Collapse
|
28
|
Ungermann C, Langosch D. Functions of SNAREs in intracellular membrane fusion and lipid bilayer mixing. J Cell Sci 2005; 118:3819-28. [PMID: 16129880 DOI: 10.1242/jcs.02561] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Intracellular membrane fusion occurs with exquisite coordination and specificity. Each fusion event requires three basic components: Rab-GTPases organize the fusion site; SNARE proteins act during fusion; and N-ethylmaleimide-sensitive factor (NSF) plus its cofactor alpha-SNAP are required for recycling or activation of the fusion machinery. Whereas Rab-GTPases seem to mediate the initial membrane contact, SNAREs appear to lie at the center of the fusion process. It is known that formation of complexes between SNAREs from apposed membranes is a prerequisite for lipid bilayer mixing; however, the biophysics and many details of SNARE function are still vague. Nevertheless, recent observations are shedding light on the role of SNAREs in membrane fusion. Structural studies are revealing the mechanisms by which SNARES form complexes and interact with other proteins. Furthermore, it is now apparent that the SNARE transmembrane segment not only anchors the protein but engages in SNARE-SNARE interactions and plays an active role in fusion. Recent work indicates that the fusion process itself may comprise two stages and proceed via a hemifusion intermediate.
Collapse
Affiliation(s)
- Christian Ungermann
- Biochemie Zentrum der Universität Heidelberg, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany.
| | | |
Collapse
|
29
|
Carneiro FA, Lapido-Loureiro PA, Cordo SM, Stauffer F, Weissmüller G, Bianconi ML, Juliano MA, Juliano L, Bisch PM, Da Poian AT, Poian ATD. Probing the interaction between vesicular stomatitis virus and phosphatidylserine. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2005; 35:145-54. [PMID: 16184389 DOI: 10.1007/s00249-005-0012-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2005] [Revised: 06/30/2005] [Accepted: 07/20/2005] [Indexed: 11/26/2022]
Abstract
The entry of enveloped animal viruses into their host cells always depends on membrane fusion triggered by conformational changes in viral envelope glycoproteins. Vesicular stomatitis virus (VSV) infection is mediated by virus spike glycoprotein G, which induces membrane fusion between the viral envelope and the endosomal membrane at the acidic environment of this compartment. In this work, we evaluated VSV interactions with membranes of different phospholipid compositions, at neutral and acidic pH, using atomic force microscopy (AFM) operating in the force spectroscopy mode, isothermal calorimetry (ITC) and molecular dynamics simulation. We found that the binding forces differed dramatically depending on the membrane phospholipid composition, revealing a high specificity of G protein binding to membranes containing phosphatidylserine (PS). In a previous work, we showed that the sequence corresponding amino acid 164 of VSV G protein was as efficient as the virus in catalyzing membrane fusion at pH 6.0. Here, we used this sequence to explore VSV-PS interaction using ITC. We found that peptide binding to membranes was exothermic, suggesting the participation of electrostatic interactions. Peptide-membrane interaction at pH 7.5 was shown to be specific to PS and dependent on the presence of His residues in the fusion peptide. The application of the simplified continuum Gouy-Chapman theory to our system predicted a pH of 5.0 at membrane surface, suggesting that the His residues should be protonated when located close to the membrane. Molecular dynamics simulations suggested that the peptide interacts with the lipid bilayer through its N-terminal residues, especially Val(145) and His(148).
Collapse
Affiliation(s)
- Fabiana A Carneiro
- Instituto de Bioquìmica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Da Poian AT, Carneiro FA, Stauffer F. Viral membrane fusion: is glycoprotein G of rhabdoviruses a representative of a new class of viral fusion proteins? Braz J Med Biol Res 2005; 38:813-23. [PMID: 15933774 DOI: 10.1590/s0100-879x2005000600002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Enveloped viruses always gain entry into the cytoplasm by fusion of their lipid envelope with a cell membrane. Some enveloped viruses fuse directly with the host cell plasma membrane after virus binding to the cell receptor. Other enveloped viruses enter the cells by the endocytic pathway, and fusion depends on the acidification of the endosomal compartment. In both cases, virus-induced membrane fusion is triggered by conformational changes in viral envelope glycoproteins. Two different classes of viral fusion proteins have been described on the basis of their molecular architecture. Several structural data permitted the elucidation of the mechanisms of membrane fusion mediated by class I and class II fusion proteins. In this article, we review a number of results obtained by our laboratory and by others that suggest that the mechanisms involved in rhabdovirus fusion are different from those used by the two well-studied classes of viral glycoproteins. We focus our discussion on the electrostatic nature of virus binding and interaction with membranes, especially through phosphatidylserine, and on the reversibility of the conformational changes of the rhabdovirus glycoprotein involved in fusion. Taken together, these data suggest the existence of a third class of fusion proteins and support the idea that new insights should emerge from studies of membrane fusion mediated by the G protein of rhabdoviruses. In particular, the elucidation of the three-dimensional structure of the G protein or even of the fusion peptide at different pH's might provide valuable information for understanding the fusion mechanism of this new class of fusion proteins.
Collapse
Affiliation(s)
- A T Da Poian
- Programa de Biologia Molecular e Biotecnologia, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, 21941-590 Rio de Janeiro, RJ, Brasil.
| | | | | |
Collapse
|
31
|
Miyauchi K, Komano J, Yokomaku Y, Sugiura W, Yamamoto N, Matsuda Z. Role of the specific amino acid sequence of the membrane-spanning domain of human immunodeficiency virus type 1 in membrane fusion. J Virol 2005; 79:4720-9. [PMID: 15795258 PMCID: PMC1069530 DOI: 10.1128/jvi.79.8.4720-4729.2005] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fusion between cell and virus membranes mediated by gp41 initiates the life cycle of human immunodeficiency virus type 1. In contrast to the many studies that have elucidated the structure-function relationship of the ectodomain, the study of the membrane-spanning domain (MSD) has been rather limited. In particular, the role that the MSD's specific amino acid sequences may have in membrane fusion as well as other gp41 functions is not well understood. The MSD of gp41 contains well-conserved glycine residues that form the GXXXG motif (G, glycine; X, other amino acid residues), a motif often found at the helix-helix interface of membrane spanning alpha-helices. Here we examined the role that the specific amino acid sequence of the gp41 MSD has in gp41 function, particularly in membrane fusion, by making two types of MSD mutants: (i) glycine substitution mutants in which glycine residues of the MSD were mutated to alanine or leucine residues, and (ii) replacement mutants in which the entire MSD was replaced with one derived from glycophorin A or from vesicular stomatitis virus G. The substitution of glycines did not affect gp41 function. MSD-replacement mutants, however, showed severely impaired fusion activity. The assay using the Env expression vector revealed defects in membrane fusion after CD4 binding steps in the MSD-replacement mutants. In addition, the change in Env processing was noted for MSD-replacement mutants. These results suggest that the MSD of gp41 has a relatively wide but not unlimited tolerance for mutations and plays a critical role in membrane fusion as well as in other steps of Env biogenesis.
Collapse
Affiliation(s)
- Kosuke Miyauchi
- Laboratory of Virology and Pathogenesis, AIDS Research Center, National Institute of Infectious Diseases, 4-7-1 Gakuen Musashimurayama, Tokyo 208-0011, Japan
| | | | | | | | | | | |
Collapse
|
32
|
Liao M, Kielian M. The conserved glycine residues in the transmembrane domain of the Semliki Forest virus fusion protein are not required for assembly and fusion. Virology 2005; 332:430-7. [PMID: 15661173 DOI: 10.1016/j.virol.2004.11.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2004] [Revised: 11/17/2004] [Accepted: 11/29/2004] [Indexed: 11/30/2022]
Abstract
The alphavirus Semliki Forest virus (SFV) infects cells via a low pH-triggered fusion reaction mediated by the viral E1 protein. Both the E1 fusion peptide and transmembrane (TM) domain are essential for membrane fusion, but the functional requirements for the TM domain are poorly understood. Here we explored the role of the five TM domain glycine residues, including the highly conserved glycine pair at E1 residues 415/416. SFV mutants with alanine substitutions for individual or all five glycine residues (5G/A) showed growth kinetics and fusion pH dependence similar to those of wild-type SFV. Mutants with increasing substitution of glycine residues showed an increasingly more stringent requirement for cholesterol during fusion. The 5G/A mutant showed decreased fusion kinetics and extent in fluorescent lipid mixing assays. TM domain glycine residues thus are not required for efficient SFV fusion or assembly but can cause subtle effects on the properties of membrane fusion.
Collapse
Affiliation(s)
- Maofu Liao
- Department of Cell Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | |
Collapse
|
33
|
Cohen FS, Melikyan GB. The energetics of membrane fusion from binding, through hemifusion, pore formation, and pore enlargement. J Membr Biol 2005; 199:1-14. [PMID: 15366419 DOI: 10.1007/s00232-004-0669-8] [Citation(s) in RCA: 236] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The main steps of viral membrane fusion are local membrane approach, hemifusion, pore formation, and pore enlargement. Experiments and theoretical analyses have helped determine the relative energies required for each step. Key protein structures and conformational changes of the fusion process have been identified. The physical deformations of monolayer bending and lipid tilt have been applied to the steps of membrane fusion. Experiment and theory converge to strongly indicate that, contrary to former conceptions, the fusion process is progressively more energetically difficult: hemifusion has a relatively low energy barrier, pore formation is more energy-consuming, and pore enlargement is the most difficult to achieve.
Collapse
Affiliation(s)
- F S Cohen
- Rush University Medical Center, Department of Molecular Biophysics and Physiology, 1653 W Congress Parkway, Chicago, IL 60612, USA.
| | | |
Collapse
|
34
|
Rocha A, Ruiz S, Tafalla C, Coll JM. Conformation- and fusion-defective mutations in the hypothetical phospholipid-binding and fusion peptides of viral hemorrhagic septicemia salmonid rhabdovirus protein G. J Virol 2004; 78:9115-22. [PMID: 15308707 PMCID: PMC506951 DOI: 10.1128/jvi.78.17.9115-9122.2004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fourteen single and two double point mutants in the highly conserved region (positions 56 to 159) of the G gene of viral hemorrhagic septicaemia virus (VHSV), a salmonid rhabdovirus, were selected and obtained in plasmids by site-directed mutagenesis. Fish cell monolayers transfected with the mutant plasmids were then assayed for protein G (pG) expression, conformation-dependent monoclonal antibody (MAb) reactivity, and cell-cell fusion. Some mutations located in the phospholipid-binding p2 peptide (positions 82 to 110; mutants P86A, A96E, G98A, and R107A) abolished both MAb recognition and fusion activity, while others (P79A, L85S, and R103A) abolished MAb recognition but retained fusion at similar or lower pHs compared to those for the wild type. Phospholipid-binding assays of p2-derived synthetic peptides suggested that phosphatidylserine binding was not affected by the mutations studied. On the other hand, three (P79A, L85S, and T135E) of the four mutants retaining fusion activity mapped around two locations showing amino acid variation in 22 VHSV isolates and in neutralizing MAb-resistant mutants described previously. Mutations located in the hypothetical fusion peptide (positions 142 to 159; mutants F147K, P148K, and W154K) abolished both MAb recognition and fusion activity. The existence of mutants with altered conformation and defective fusion in both p2 and fusion peptides provides further evidence in favor of the participation of these and adjacent regions in some of the steps of the VHSV fusion processes, as suggested by previous studies. In addition, because the studied region induced strong immunological responses in trout, some of the mutants described here might be used to design attenuated VHSV vaccines.
Collapse
Affiliation(s)
- A Rocha
- Departamento di Biotecnología, SGIT, INIA, Madrid, Spain
| | | | | | | |
Collapse
|
35
|
Basu A, Beyene A, Meyer K, Ray R. The hypervariable region 1 of the E2 glycoprotein of hepatitis C virus binds to glycosaminoglycans, but this binding does not lead to infection in a pseudotype system. J Virol 2004; 78:4478-86. [PMID: 15078928 PMCID: PMC387685 DOI: 10.1128/jvi.78.9.4478-4486.2004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2003] [Accepted: 01/09/2004] [Indexed: 12/17/2022] Open
Abstract
The hypervariable region 1 (HVR1) of hepatitis C virus (HCV) E2 envelope glycoprotein is a 27-amino-acid sequence located at its N terminus. In this study, we investigated the functional role of HVR1 for interaction with the mammalian cell surface. The C-terminal truncated E2 glycoprotein was appended to a transmembrane domain and cytoplasmic tail of vesicular stomatitis virus (VSV) G protein for generation of the chimeric E2-G gene construct. A deletion of the HVR1 sequence from E2 was created for the construction of E2DeltaHVR1-G. Pseudotype virus, generated separately by infection of a stable cell line expressing E2-G or E2DeltaHVR1-G with a temperature-sensitive mutant of VSV (VSVts045), displayed unique functional properties compared to VSVts045 as a negative control. Virus generated from E2DeltaHVR1-G had a reduced plaquing efficiency ( approximately 50%) in HepG2 cells compared to that for the E2-G virus. Cells prior treated with pronase (0.5 U/ml) displayed a complete inhibition of infectivity of the E2DeltaHVR1-G or E2-G pseudotypes, whereas heparinase I treatment (8 U/ml) of cells reduced 40% E2-G pseudotype virus titer only. E2DeltaHVR1-G pseudotypes were not sensitive to heparin (6 to 50 micro g/ml) as an inhibitor of plaque formation compared to the E2-G pseudotype virus. Although the HVR1 sequence itself does not match with the known heparin-binding domain, a synthetic peptide representing 27 amino acids of the E2 HVR1 displayed a strong affinity for heparin in an enzyme-linked immunosorbent assay. This binding was competitively inhibited by a peptide from the V3 loop of a human immunodeficiency virus glycoprotein subunit (gp120) known to bind with cell surface heparin. Taken together, our results suggest that the HVR1 of E2 glycoprotein binds to the cell surface proteoglycans and may facilitate virus-host interaction for replication cycle of HCV.
Collapse
Affiliation(s)
- Arnab Basu
- Department of Internal Medicine, Saint Louis University, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
36
|
Jeetendra E, Ghosh K, Odell D, Li J, Ghosh HP, Whitt MA. The membrane-proximal region of vesicular stomatitis virus glycoprotein G ectodomain is critical for fusion and virus infectivity. J Virol 2003; 77:12807-18. [PMID: 14610202 PMCID: PMC262588 DOI: 10.1128/jvi.77.23.12807-12818.2003] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2003] [Accepted: 08/22/2003] [Indexed: 11/20/2022] Open
Abstract
The glycoprotein (G) of vesicular stomatitis virus (VSV) is responsible for binding of virus to cells and for mediating virus entry following endocytosis by inducing fusion of the viral envelope with the endosomal membrane. The fusion peptide of G is internal (residues 116 to 137) and exhibits characteristics similar to those of other internal fusion peptides, but recent studies have implicated the region adjacent to the transmembrane domain as also being important for G-mediated membrane fusion. Sequence alignment of the membrane-proximal region of G from several different vesiculoviruses revealed that this domain is highly conserved, suggesting that it is important for G function. Mutational analysis was used to show that this region is not essential for G protein oligomerization, transport to the cell surface, or incorporation into virus particles but that it is essential for acid-induced membrane fusion activity and for virus infectivity. Deletion of the 13 membrane-proximal amino acids (N449 to W461) dramatically reduced cell-cell fusion activity and reduced virus infectivity approximately 100-fold, but mutation of conserved aromatic residues (W457, F458, and W461) either singly or together had only modest effects on cell-cell fusion activity; recombinant virus encoding these mutants replicated as efficiently as wild-type (WT) VSV. Insertion of heterologous sequences in the juxtamembrane region completely abolished membrane fusion activity and virus infectivity, as did deletion of residues F440 to N449. The insertion mutants showed some changes in pH-dependent conformational changes and in virus binding, which could partially explain the defects in membrane fusion activity, but all the other mutants were similar to WT G with respect to conformational changes and virus binding. These data support the hypothesis that the membrane-proximal domain contributes to G-mediated membrane fusion activity, yet the conserved aromatic residues are not essential for membrane fusion or virus infectivity.
Collapse
Affiliation(s)
- E Jeetendra
- Department of Molecular Sciences, University of Tennessee Health Sciences Center. GTx, Inc., Memphis, Tennessee 38163, USA
| | | | | | | | | | | |
Collapse
|
37
|
Shmulevitz M, Salsman J, Duncan R. Palmitoylation, membrane-proximal basic residues, and transmembrane glycine residues in the reovirus p10 protein are essential for syncytium formation. J Virol 2003; 77:9769-79. [PMID: 12941885 PMCID: PMC224572 DOI: 10.1128/jvi.77.18.9769-9779.2003] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Avian reovirus and Nelson Bay reovirus are two unusual nonenveloped viruses that induce extensive cell-cell fusion via expression of a small nonstructural protein, termed p10. We investigated the importance of the transmembrane domain, a conserved membrane-proximal dicysteine motif, and an endodomain basic region in the membrane fusion activity of p10. We now show that the p10 dicysteine motif is palmitoylated and that loss of palmitoylation correlates with a loss of fusion activity. Mutational and functional analyses also revealed that a triglycine motif within the transmembrane domain and the membrane-proximal basic region were essential for p10-mediated membrane fusion. Mutations in any of these three motifs did not influence events upstream of syncytium formation, such as p10 membrane association, protein topology, or surface expression, suggesting that these motifs are more intimately associated with the membrane fusion reaction. These results suggest that the rudimentary p10 fusion protein has evolved a mechanism of inducing membrane merger that is highly dependent on the specific interaction of several different motifs with donor membranes. In addition, cross-linking, coimmunoprecipitation, and complementation assays provided no evidence for p10 homo- or heteromultimer formation, suggesting that p10 may be the first example of a membrane fusion protein that does not form stable, higher-order multimers.
Collapse
Affiliation(s)
- Maya Shmulevitz
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4H7
| | | | | |
Collapse
|
38
|
Yao Y, Ghosh K, Epand RF, Epand RM, Ghosh HP. Membrane fusion activity of vesicular stomatitis virus glycoprotein G is induced by low pH but not by heat or denaturant. Virology 2003; 310:319-32. [PMID: 12781719 DOI: 10.1016/s0042-6822(03)00146-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The fusogenic envelope glycoprotein G of the rhabdovirus vesicular stomatitis virus (VSV) induces membrane fusion at acidic pH. At acidic pH the G protein undergoes a major structural reorganization leading to the fusogenic conformation. However, unlike other viral fusion proteins, the low-pH-induced conformational change of VSV G is completely reversible. As well, the presence of an alpha-helical coiled-coil motif required for fusion by a number of viral and cellular fusion proteins was not predicted in VSV G protein by using a number of algorithms. Results of pH dependence of the thermal stability of G protein as determined by intrinsic Trp fluorescence and circular dichroism (CD) spectroscopy show that the G protein is equally stable at neutral or acidic pH. Destabilization of G structure at neutral pH with either heat or urea did not induce membrane fusion or conformational change(s) leading to membrane fusion. Taken together, these data suggest that the mechanism of VSV G-induced fusion is distinct from the fusion mechanism of fusion proteins that involve a coiled-coil motif.
Collapse
Affiliation(s)
- Yi Yao
- Department of Biochemistry, McMaster University, Hamilton, Ontario, Canada
| | | | | | | | | |
Collapse
|
39
|
Dennison SM, Greenfield N, Lenard J, Lentz BR. VSV transmembrane domain (TMD) peptide promotes PEG-mediated fusion of liposomes in a conformationally sensitive fashion. Biochemistry 2002; 41:14925-34. [PMID: 12475241 DOI: 10.1021/bi0203233] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Helical instability induced by gly residues in the transmembrane domain (TMD) of G protein, the fusion protein of vesicular stomatitis virus (VSV), was speculated to aid in the later steps of the fusion process, because G protein with ala's substituted for the two TMD gly's was inactive (Cleverley, D. Z., and Lenard, J. (1998) Proc. Natl. Acad. Sci. U. S. A. 95, 3425-30). Here we examine the conformations of synthetic peptides corresponding to fusion-active (GGpep) and inactive (AApep; G's replaced by A's) TMDs by CD spectroscopy, and then their effects on the kinetics of poly (ethyleneglycol) (PEG)-mediated fusion of small unilamellar vesicles. GGpep and AApep both assumed history-dependent, non-interconvertible ordered structures. Both peptides were largely helical under all conditions if derived from trifluoroethanol solutions, and aggregated in a beta-sheet form if derived from acetonitrile solutions. In solvent, detergents or lipid bilayers, GGpep showed a greater range of secondary structural features than did AApep. The two peptides had large but different effects on PEG-mediated fusion. Both enhanced the rate but not the extent of lipid mixing. AApep significantly inhibited the extent of fusion pore formation while GGpep had no effect. The initial rate of fusion was enhanced 6-fold by GGpep and less than 2-fold by AApep. Addition of 5 mol % hexadecane overrode all peptide-induced effects. We suggest that both GGpep and hexadecane promote pore formation by stabilizing the nonlamellar structures in fusion intermediates or initial small pores. AApep, which had fewer nonhelical features in its CD spectrum than GGpep, actually inhibited fusion pore formation.
Collapse
Affiliation(s)
- S Moses Dennison
- Department of Biochemistry & Program in Molecular/Cell Biophysics, University of North Carolina, Chapel Hill, 27599-7260, USA
| | | | | | | |
Collapse
|
40
|
Harman A, Browne H, Minson T. The transmembrane domain and cytoplasmic tail of herpes simplex virus type 1 glycoprotein H play a role in membrane fusion. J Virol 2002; 76:10708-16. [PMID: 12368313 PMCID: PMC136627 DOI: 10.1128/jvi.76.21.10708-10716.2002] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Herpes simplex virus glycoprotein H (gH) is one of the four virion envelope proteins which are required for virus entry and for cell-cell fusion in a transient system. In this report, the role of the transmembrane and cytoplasmic tail domains of gH in membrane fusion was investigated by generating chimeric constructs in which these regions were replaced with analogous domains from other molecules and by introducing amino acid substitutions within the membrane-spanning sequence. gH molecules which lack the authentic transmembrane domain or cytoplasmic tail were unable to mediate cell-cell fusion when coexpressed with gB, gD, and gL and were unable to rescue the infectivity of a gH-null virus as efficiently as a wild-type gH molecule. Many amino acid substitutions of specific amino acid residues within the transmembrane domain also affected cell-cell fusion, in particular, those introduced at a conserved glycine residue. Some gH mutants that were impaired in cell-cell fusion were nevertheless able to rescue the infectivity of a gH-negative virus, but these pseudotyped virions entered cells more slowly than wild-type virions. These results indicate that the fusion event mediated by the coexpression of gHL, gB, and gD in cells shares common features with the fusion of the virus envelope with the plasma membrane, they point to a likely role for the membrane-spanning and cytoplasmic tail domains of gH in both processes, and they suggest that a conserved glycine residue in the membrane-spanning sequence is crucial for efficient fusion.
Collapse
Affiliation(s)
- Andrew Harman
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom
| | | | | |
Collapse
|
41
|
Maillard AP, Gaudin Y. Rabies virus glycoprotein can fold in two alternative, antigenically distinct conformations depending on membrane-anchor type. J Gen Virol 2002; 83:1465-1476. [PMID: 12029162 DOI: 10.1099/0022-1317-83-6-1465] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Rabies virus glycoprotein (G) is a trimeric type I transmembrane glycoprotein that mediates both receptor recognition and low pH-induced membrane fusion. We have previously demonstrated that a soluble form of the ectodomain of G (G(1-439)), although secreted, is folded in an alternative conformation, which is monomeric and antigenically distinct from the native state of the complete, membrane-anchored glycoprotein. This has raised questions concerning the role of the transmembrane domain (TMD) in the correct native folding of the ectodomain. Here, we show that an ectodomain anchored in the membrane by a glycophosphatidylinositol is also folded in an alternative conformation, whereas replacement of the TMD of G by other peptide TMDs results in correct antigenicity of G. However, mutants with an insertion of a hydrophilic linker between the ectodomain and the TMD also fold in an alternative conformation. The influence of the membrane-anchor type on G ectodomain trimerization and folding is discussed.
Collapse
Affiliation(s)
- Antoine P Maillard
- Laboratoire de Génétique des Virus du CNRS, 91198 Gif sur Yvette Cedex, France1
| | - Yves Gaudin
- Laboratoire de Génétique des Virus du CNRS, 91198 Gif sur Yvette Cedex, France1
| |
Collapse
|
42
|
Chen FS, Markosyan RM, Melikyan GB. The process of membrane fusion: Nipples, hemifusion, pores, and pore growth. PEPTIDE-LIPID INTERACTIONS 2002. [DOI: 10.1016/s1063-5823(02)52020-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
43
|
Estepa AM, Rocha AI, Mas V, Pérez L, Encinar JA, Nuñez E, Fernandez A, Gonzalez Ros JM, Gavilanes F, Coll JM. A protein G fragment from the salmonid viral hemorrhagic septicemia rhabdovirus induces cell-to-cell fusion and membrane phosphatidylserine translocation at low pH. J Biol Chem 2001; 276:46268-75. [PMID: 11590161 DOI: 10.1074/jbc.m108682200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The fusion-related properties of segments p9, p3, p4, and p9 + p2 surrounding the p2 phospholipid-binding domain of the protein G (pG) of the salmonid rhabdovirus of viral hemorrhagic septicemia (VHS) (Nuñez, E., Fernandez, A. M., Estepa, A., Gonzalez-Ros, J. M., Gavilanes, F., and Coll, J. M. (1998) Virology 243, 322-330; Estepa, A., and Coll, J. M. (1996) Virology 216, 60-70), have been studied at neutral and fusion (low) pH values by using its derived peptides. Cell-to-cell fusion, translocation of phosphatidylserine, and inhibition of fusion of pG-transfected cells defined the p9 + p2 (fragment 11, sequence 56-110) as a fragment with higher specific activity for anionic phospholipid aggregation than the previously reported p2. While fragment 11, p2, and p3 showed interactions with anionic phospholipids, p9 and p4 showed no interactions with any phospholipids. When added to a cell monolayer model at low pH, fragment 11 induced pH-dependent cell-to-cell fusion and translocated phosphatidylserine from the inner to the outer leaflet of the membrane. At low pH and in the presence of anionic phospholipids, fragment 11 showed more than 80% beta-sheet conformation (IR and CD spectroscopies). Finally, anti-fragment 11 antibodies inhibited low pH-dependent pG-transfected cell-to-cell fusion. All of the data support the conclusion that fragment 11 is a primary determinant of some of the viral cell fusion events in VHSV.
Collapse
Affiliation(s)
- A M Estepa
- Centro Biologia Molecular y Celular, Universidad Miguel Hernandez, Elche, Spain 03202
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Tang J, Yang T, Ghosh HP, Geller AI. Helper virus-free HSV-1 vectors packaged both in the presence of VSV G protein and in the absence of HSV-1 glycoprotein B support gene transfer into neurons in the rat striatum. J Neurovirol 2001; 7:548-55. [PMID: 11704887 DOI: 10.1080/135502801753248132] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Herpes simplex virus (HSV-1) vectors have potential for gene transfer into quiescent cells, but the gene transfer process could be more efficient. In other vector systems, both the titers and the efficiency of gene transfer have been enhanced by pseudotyping the vector particles with vesicular stomatitis virus (VSV) G protein. In this report, we pseudotyped helper virus-free HSV-1 plasmid vectors with VSV G protein. Packaging was performed in the presence of both VSV G protein and a deletion in an essential HSV-1 glycoprotein, gB. The resulting vector stocks supported gene transfer into both fibroblast and neuronal cell lines. VSV G protein was required for gene transfer because preincubation of these vector stocks with antibodies directed against either VSV G protein or VSV reduced the titer to undetectable levels. Although the titers were lower than those obtained using the unmodified vector system, the titers were not increased by use of chimeric proteins that contain the extracellular domain of VSV G protein and the transmembrane and/or cytoplasmic domains of specific HSV-1 glycoproteins. Also, the titers were not increased by performing the packaging in the presence of deletions in multiple HSV-1 glycoproteins. Nonetheless, pHSVlac pseudotyped with VSV G protein supported gene transfer into striatal neurons in the rat brain. Thus, HSV-1 vectors pseudotyped with VSV G protein may be useful for specific gene transfer studies.
Collapse
Affiliation(s)
- J Tang
- Division of Endocrinology, Children's Hospital, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
45
|
West JT, Johnston PB, Dubay SR, Hunter E. Mutations within the putative membrane-spanning domain of the simian immunodeficiency virus transmembrane glycoprotein define the minimal requirements for fusion, incorporation, and infectivity. J Virol 2001; 75:9601-12. [PMID: 11559792 PMCID: PMC114531 DOI: 10.1128/jvi.75.20.9601-9612.2001] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The membrane-spanning domain (MSD) of a number of retroviral transmembrane (TM) glycoproteins, including those from the human and simian immunodeficiency viruses (HIV and SIV), have been predicted to contain a charged arginine residue. The wild-type SIV TM glycoprotein is 354 amino acids long. The entire putative cytoplasmic domain of SIV (amino acids 193 to 354) is dispensable for virus replication in vitro, and such truncation-containing viruses are capable of reaching wild-type titers after a short delay. We show here that further truncation of eight additional amino acids to TM185 results in a protein that lacks fusogenicity but is, nevertheless, efficiently incorporated into budding virions. By analyzing a series of nonsense mutations between amino acids 193 and 185 in Env expression vectors and in the SIVmac239 proviral clone, a region of the SIV TM that contains the minimum requirement for glycoprotein-mediated cell-to-cell fusion and that for virus replication was identified. Virus entry and infectivity were evident in truncations to a minimum of 189 amino acids, whereas cell-cell fusion was observed for a protein of only 187 amino acids. Glycoprotein was efficiently incorporated into budding virions in truncations up to 185 amino acids, indicating that such proteins are membrane anchored and are transported to the cell surface. However, truncation of the TM to 180 amino acids resulted in a protein that displays a transport defect and may be retained in the endoplasmic reticulum. Based on our analyses of these mutants, an alternative model for the MSD of SIV is proposed. Our model suggests that membrane-imbedded charged residues can be neutralized by side-chain interactions with lipid polar head groups. As a consequence, the membrane-spanning region can be reduced by more than a helical turn. This new model accounts for the ability of truncations within the predicted MSD to remain membrane anchored and maintain biological activity.
Collapse
Affiliation(s)
- J T West
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | | | |
Collapse
|
46
|
Langosch D, Brosig B, Pipkorn R. Peptide mimics of the vesicular stomatitis virus G-protein transmembrane segment drive membrane fusion in vitro. J Biol Chem 2001; 276:32016-21. [PMID: 11418597 DOI: 10.1074/jbc.m102579200] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The efficiency of cell-cell fusion mediated by heterologously expressed vesicular stomatitis virus G-protein has previously been shown to be affected by mutating its transmembrane segment. Here, we show that a synthetic peptide modeled after this transmembrane segment drives liposome-liposome fusion. Addition of millimolar Ca(2+) concentrations strongly potentiated the effect of the peptides suggesting that Ca(2+)-mediated liposome aggregation supports the activity of the peptide. Peptide-driven fusion was suppressed by lysolipid, an established inhibitor of natural membrane fusion, and involved inner and outer leaflets of the liposomal bilayer. Thus, transmembrane segment peptide-driven liposome fusion exhibits important hallmarks characteristic of natural membrane fusion. Importantly, the mutations previously shown to attenuate the function of full-length G-protein in cell-cell fusion also attenuated the fusogenicity of the peptide, albeit in a less pronounced fashion. Therefore, the function of the peptide mimic is dependent on its primary structure, similar to full-length G-protein. Together, our data suggest that the G-protein transmembrane segment is an autonomous functional domain. We propose that it acts at a late step in membrane fusion elicited by vesicular stomatitis virus.
Collapse
Affiliation(s)
- D Langosch
- Department of Neurobiology, Universität Heidelberg, Im Neuenheimer Feld 364, D-69120 Heidelberg, Germany.
| | | | | |
Collapse
|
47
|
Langosch D, Crane JM, Brosig B, Hellwig A, Tamm LK, Reed J. Peptide mimics of SNARE transmembrane segments drive membrane fusion depending on their conformational plasticity. J Mol Biol 2001; 311:709-21. [PMID: 11518525 DOI: 10.1006/jmbi.2001.4889] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
SNARE proteins are essential for different types of intracellular membrane fusion. Whereas interaction between their cytoplasmic domains is held responsible for establishing membrane proximity, the role of the transmembrane segments in the fusion process is currently not clear. Here, we used an in vitro approach based on lipid mixing and electron microscopy to examine a potential fusogenic activity of the transmembrane segments. We show that the presence of synthetic peptides representing the transmembrane segments of the presynaptic soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) synaptobrevin II (also referred to as VAMP II) or syntaxin 1A, but not of an unrelated control peptide, in liposomal membranes drives their fusion. Liposome aggregation by millimolar Ca(2+) concentrations strongly potentiated the effect of the peptides; this indicates that juxtaposition of the bilayers favours their fusion in the absence of the cytoplasmic SNARE domains. Peptide-driven fusion is reminiscent of natural membrane fusion, since it was suppressed by lysolipid and involved both bilayer leaflets. This suggests transient presence of a hemifusion intermediate followed by complete membrane merger. Structural studies of the peptides in lipid bilayers performed by Fourier transform infrared spectroscopy indicated mixtures of alpha-helical and beta-sheet conformations. In isotropic solution, circular dichroism spectroscopy showed the peptides to exist in a concentration-dependent equilibrium of alpha-helical and beta-sheet structures. Interestingly, the fusogenic activity decreased with increasing stability of the alpha-helical solution structure for a panel of variant peptides. Thus, structural plasticity of transmembrane segments may be important for SNARE protein function at a late step in membrane fusion.
Collapse
Affiliation(s)
- D Langosch
- Department of Neurobiology, Im Neuenheimer Feld 364, Universität Heidelberg, D-69120, Germany.
| | | | | | | | | | | |
Collapse
|
48
|
Cross KJ, Wharton SA, Skehel JJ, Wiley DC, Steinhauer DA. Studies on influenza haemagglutinin fusion peptide mutants generated by reverse genetics. EMBO J 2001; 20:4432-42. [PMID: 11500371 PMCID: PMC125568 DOI: 10.1093/emboj/20.16.4432] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Influenza haemagglutinin (HA) is responsible for fusing viral and endosomal membranes during virus entry. In this process, conformational changes in the HA relocate the HA(2) N-terminal 'fusion peptide' to interact with the target membrane. The highly conserved HA fusion peptide shares composition and sequence features with functionally analogous regions of other viral fusion proteins, including the presence and distribution of glycines and large side-chain hydrophobic residues. HAs with mutations in the fusion peptide were expressed using vaccinia virus recombinants to examine the requirement for fusion of specific hydrophobic residues and the significance of glycine spacing. Mutant HAs were also incorporated into infectious influenza viruses for analysis of their effects on infectivity and replication. In most cases alanine, but not glycine substitutions for the large hydrophobic residues, yielded fusion-competent HAs and infectious viruses, suggesting that the conserved spacing of glycines may be structurally significant. When viruses containing alanine substitutions for large hydrophobic residues were passaged, pseudoreversion to valine was observed, indicating a preference for large hydrophobic residues at specific positions. Viruses were also obtained with serine, leucine or phenylalanine as the N-terminal residue, but these replicated to significantly lower levels than wild-type virus with glycine at this position.
Collapse
Affiliation(s)
| | | | | | - Don C. Wiley
- National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK and
Department of Molecular and Cellular Biology and Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138, USA Corresponding author e-mail:
| | - David A. Steinhauer
- National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK and
Department of Molecular and Cellular Biology and Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138, USA Corresponding author e-mail:
| |
Collapse
|
49
|
Carneiro FA, Ferradosa AS, Da Poian AT. Low pH-induced conformational changes in vesicular stomatitis virus glycoprotein involve dramatic structure reorganization. J Biol Chem 2001; 276:62-7. [PMID: 11024041 DOI: 10.1074/jbc.m008753200] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Membrane fusion is the key step in the entry of enveloped animal viruses into their host cells. Fusion of vesicular stomatitis virus with membranes occurs at acidic pH and is mediated by its envelope glycoprotein, the G protein. To study the structural transitions induced by acidic pH on G protein, we have extracted the protein from purified virus by incubation with nonionic detergent. At pH 6.0, purified G protein was able to mediate fusion of either phospholipid vesicles or Vero cells in culture. Intrinsic fluorescence studies revealed that changes in the environment of Trp residues occurred as pH decreases. In the absence of lipidic membranes, acidification led to G protein aggregation, whereas protein-protein interactions were substituted by protein-lipid interactions in the presence of liposomes. 1,1'-Bis(4-aniline-5-naphthalene sulfonate) (bis-ANS) binding was utilized to probe the degree of exposure of hydrophobic regions of G protein during acidification. Bis-ANS binding was maximal at pH 6.2, suggesting that a hydrophobic segment is exposed to the medium at this pH. At pH 6.0, a dramatic decrease in bis-ANS binding was observed, probably due to loss of tridimensional structure during the conformational rearrangement. This hypothesis was confirmed by circular dichroism analysis at different pH values, which showed a great decrease in alpha-helix content at pH values close to 6.0, suggesting that a reorganization of G protein secondary structure occurs during the fusion reaction. Our results indicate that G protein undergoes dramatic structural changes at acidic pH and acquires a conformational state able to interact with the target membrane.
Collapse
Affiliation(s)
- F A Carneiro
- Departamento de Bioquimica Médica, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, 21941-590 Rio de Janeiro, Brazil
| | | | | |
Collapse
|
50
|
Meyer K, Basu A, Ray R. Functional features of hepatitis C virus glycoproteins for pseudotype virus entry into mammalian cells. Virology 2000; 276:214-26. [PMID: 11022009 DOI: 10.1006/viro.2000.0547] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We have previously reported the generation of pseudotype virus from chimeric gene constructs encoding the ectodomain of the E1 or E2 glycoprotein of hepatitis C virus (HCV) genotype 1a appended to the trans membrane domain and cytoplasmic tail of the vesicular stomatitis virus (VSV) G protein. Sera derived from chimpanzees immunized with homologous HCV glycoproteins neutralized pseudotype virus infectivity (L. M. Lagging et al., J. Virol. 72, 3539-3546, 1998). We have now extended this study to further understand the role of HCV glycoproteins in pseudotype virus entry. Although a number of mammalian epithelial cells were susceptible to VSV/HCV pseudotype virus infection, plaquing efficiency was different among host cell lines. Pseudotype virus adsorption at low temperature decreased plaque numbers. Treatment of E1 or E2 pseudotype virus in media between pH 5 and 8 before adsorption on cells did not significantly reduce plaque numbers. On the other hand, treatment of cells with lysosomotropic agents or inhibitors of vacuolar H(+) ATPases had an inhibitory role on virus entry. Concanavalin A, a plant lectin, exhibited neutralization of both HCV E1 and E2 pseudotype virus infectivity. However, mannose binding protein, a C-type mammalian lectin, did not neutralize virus in the absence or presence of serum complement. Pseudotype virus infectivity was only partially inhibited by heparin, a highly sulfated glycosaminoglycan, in a saturable manner. Additional studies suggested that low-density lipoprotein receptor related molecules partially inhibit E1 pseudotype virus infectivity, while CD81 related molecules interfere with E2 pseudotype virus infectivity. A further understanding of HCV entry and strategies appropriate for mimicking cell surface molecules may help in the development of new therapeutic modalities against HCV infection.
Collapse
Affiliation(s)
- K Meyer
- Department of Internal Medicine, Saint Louis University, St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|