1
|
Bigay J, Le Grand R, Martinon F, Maisonnasse P. Vaccine-associated enhanced disease in humans and animal models: Lessons and challenges for vaccine development. Front Microbiol 2022; 13:932408. [PMID: 36033843 PMCID: PMC9399815 DOI: 10.3389/fmicb.2022.932408] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
The fight against infectious diseases calls for the development of safe and effective vaccines that generate long-lasting protective immunity. In a few situations, vaccine-mediated immune responses may have led to exacerbated pathology upon subsequent infection with the pathogen targeted by the vaccine. Such vaccine-associated enhanced disease (VAED) has been reported, or at least suspected, in animal models, and in a few instances in humans, for vaccine candidates against the respiratory syncytial virus (RSV), measles virus (MV), dengue virus (DENV), HIV-1, simian immunodeficiency virus (SIV), feline immunodeficiency virus (FIV), severe acute respiratory syndrome coronavirus 1 (SARS-CoV-1), and the Middle East respiratory syndrome coronavirus (MERS-CoV). Although alleviated by clinical and epidemiological evidence, a number of concerns were also initially raised concerning the short- and long-term safety of vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is causing the ongoing COVID-19 pandemic. Although the mechanisms leading to this phenomenon are not yet completely understood, the individual and/or collective role of antibody-dependent enhancement (ADE), complement-dependent enhancement, and cell-dependent enhancement have been highlighted. Here, we review mechanisms that may be associated with the risk of VAED, which are important to take into consideration, both in the assessment of vaccine safety and in finding ways to define models and immunization strategies that can alleviate such concerns.
Collapse
Affiliation(s)
| | | | - Frédéric Martinon
- Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department, Institut de Biologie François-Jacob (IBJF), University Paris-Sud-INSERM U1184, CEA, Fontenay-Aux-Roses, France
| | | |
Collapse
|
2
|
Lack of protection against feline immunodeficiency virus infection among domestic cats in New Zealand vaccinated with the Fel-O-Vax® FIV vaccine. Vet Microbiol 2020; 250:108865. [PMID: 33045631 DOI: 10.1016/j.vetmic.2020.108865] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 09/17/2020] [Indexed: 11/20/2022]
Abstract
Infections with feline immunodeficiency virus (FIV) are common in New Zealand, although the impact of those infections on the health status of the cats remains unclear. Although many cats are vaccinated yearly with a commercial FIV vaccine containing FIV subtypes A and D, the effectiveness of this vaccine in protection against infection with field FIVs is unclear, as a high proportion of New Zealand viruses belong to subtype C. The objective of the study was to compare the frequency of FIV infection among adult FIV-vaccinated and FIV-unvaccinated domestic cats with access to outdoors. Buccal swabs were collected by the participating veterinarians and tested for the presence of FIV provirus by quantitative PCR. Overall, 26/185 (14.0 %) samples were positive for FIV, including 7/82 (8.5 %) samples from FIV-unvaccinated and 19/103 (18.4 %) from FIV-vaccinated cats. There was no protective effect of vaccination on FIV infection among sampled cats (p = 0.05). Partial sequences of the FIV envelope gene from five New Zealand viruses were analysed by the maximum likelihood method. All clustered with other New Zealand FIV sequences from subtypes A (n = 2), C (n = 2) or putative recombinant viruses (n = 1). While the FIV vaccination did not prevent FIV infection among sampled cats, it may have had an impact on transmissibility of the virus or on disease progression. As neither was addressed in the current study, further research is needed to fully assess the potential benefits of FIV vaccination. Considering the frequency of FIV infection in FIV-vaccinated cats, FIV infection status should be monitored not only before the first vaccination, but before each yearly booster.
Collapse
|
3
|
Failed Disruption of Tick Feeding, Viability, and Molting after Immunization of Mice and Sheep with Recombinant Ixodes ricinus Salivary Proteins IrSPI and IrLip1. Vaccines (Basel) 2020; 8:vaccines8030475. [PMID: 32858821 PMCID: PMC7564719 DOI: 10.3390/vaccines8030475] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/20/2020] [Accepted: 08/24/2020] [Indexed: 12/11/2022] Open
Abstract
To identify potential vaccine candidates against Ixodes ricinus and tick-borne pathogen transmission, we have previously sequenced the salivary gland transcriptomes of female ticks infected or not with Bartonella henselae. The hypothesized potential of both IrSPI (I. ricinus serine protease inhibitor) and IrLip1 (I. ricinus lipocalin 1) as protective antigens decreasing tick feeding and/or the transmission of tick-borne pathogens was based on their presumed involvement in dampening the host immune response to tick feeding. Vaccine endpoints included tick larval and nymphal mortality, feeding, and molting in mice and sheep. Whether the antigens were administered individually or in combination, the vaccination of mice or sheep elicited a potent antigen-specific antibody response. However, and contrary to our expectations, vaccination failed to afford protection against the infestation of mice and sheep by I. ricinus nymphs and larvae, respectively. Rather, vaccination with IrSPI and IrLip1 appeared to enhance tick engorgement and molting and decrease tick mortality. To the best of our knowledge, these observations represent the first report of induction of vaccine-mediated enhancement in relation to anti-tick vaccination.
Collapse
|
4
|
FIV vaccine with receptor epitopes results in neutralizing antibodies but does not confer resistance to challenge. NPJ Vaccines 2018; 3:16. [PMID: 29736270 PMCID: PMC5928050 DOI: 10.1038/s41541-018-0051-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 03/16/2018] [Accepted: 03/21/2018] [Indexed: 11/09/2022] Open
Abstract
Feline immunodeficiency virus (FIV) is the feline analogue to human immunodeficiency virus (HIV) and utilizes parallel modes of receptor-mediated entry. The FIV surface glycoprotein (SU) is an important target for induction of neutralizing antibodies, and autoantibodies to the FIV binding receptor (CD134) block infection ex vivo; thus highlighting the potential for immunotherapies which utilize anti-receptor antibodies to block viral infection. To determine whether vaccination with CD134-SU complexes could induce protection against FIV infection, cats (n = 5 per group) were immunized with soluble CD134, recombinant FIV-SU protein, and/or CD134+SU complexes. Two trials were performed with different antigen combinations and vaccination schedules. In vivo generation of anti-CD134 and anti-SU IgG antibodies was measured, and in vitro neutralization assays were conducted. Immunization induced production of anti-CD134 and anti-SU antibodies that significantly inhibited FIV infection in vitro. However, no vaccine combination protected cats from FIV infection, and neat serum from vaccinated cats enhanced FIV growth in vitro. CD134+SU vaccinated cats exhibited increased CD4:CD8 ratio immediately prior to challenge, and antibodies were much more efficiently generated against vaccine by-products versus target antigens. Results suggest vaccination against viral and cryptic receptor epitopes yields neutralizing antibodies that synergistically inhibit FIV infection in vitro. Factors contributing to vaccine failure may include: (1) Heat-labile serum factors that enhance viral replication, (2) changes in circulating target cell populations induced by vaccination, and (3) weak immunogenicity of neutralizing epitopes compared to off-target vaccine components. Results reinforce the need to monitor vaccine preparation components and avoid non-specific immune stimulation during vaccination. A vaccine candidate for feline immunodeficiency virus elicits strong immunological reaction in vitro, but no protection to live cats. The feline analog to human immunodeficiency virus, FIV shares a similar infection paradigm and has only one partially effective vaccine. A US team, led by Colorado State University’s Susan VandeWoude, immunized cats using a complex of an FIV surface protein and a feline cell-surface protein known to facilitate FIV’s entry into immune cells. Tissue culture assays yielded promising results; however, this did not translate to live-animal protection. The researchers highlighted multiple factors that could explain the lack of success, including circulatory pro-infection factors, and immune responses generated against vaccine by-products rather than intended targets. While the vaccine candidate failed, the research provides invaluable guidance for future efforts into FIV vaccination with implications for HIV vaccine trials.
Collapse
|
5
|
Applications of the FIV Model to Study HIV Pathogenesis. Viruses 2018; 10:v10040206. [PMID: 29677122 PMCID: PMC5923500 DOI: 10.3390/v10040206] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 04/17/2018] [Accepted: 04/17/2018] [Indexed: 12/15/2022] Open
Abstract
Feline immunodeficiency virus (FIV) is a naturally-occurring retrovirus that infects domestic and non-domestic feline species, producing progressive immune depletion that results in an acquired immunodeficiency syndrome (AIDS). Much has been learned about FIV since it was first described in 1987, particularly in regard to its application as a model to study the closely related lentivirus, human immunodeficiency virus (HIV). In particular, FIV and HIV share remarkable structure and sequence organization, utilize parallel modes of receptor-mediated entry, and result in a similar spectrum of immunodeficiency-related diseases due to analogous modes of immune dysfunction. This review summarizes current knowledge of FIV infection kinetics and the mechanisms of immune dysfunction in relation to opportunistic disease, specifically in regard to studying HIV pathogenesis. Furthermore, we present data that highlight changes in the oral microbiota and oral immune system during FIV infection, and outline the potential for the feline model of oral AIDS manifestations to elucidate pathogenic mechanisms of HIV-induced oral disease. Finally, we discuss advances in molecular biology, vaccine development, neurologic dysfunction, and the ability to apply pharmacologic interventions and sophisticated imaging technologies to study experimental and naturally occurring FIV, which provide an excellent, but often overlooked, resource for advancing therapies and the management of HIV/AIDS.
Collapse
|
6
|
Abstract
Despite major advances in antiretroviral therapy against HIV-1, an effective HIV vaccine is urgently required to reduce the number of new cases of HIV infections in the world. Vaccines are the ultimate tool in the medical arsenal to control and prevent the spread of infectious diseases such as HIV/AIDS. Several failed phase-IIb to –III clinical vaccine trials against HIV-1 in the past generated a plethora of information that could be used for better designing of an effective HIV vaccine in the future. Most of the tested vaccine candidates produced strong humoral responses against the HIV proteins; however, failed to protect due to: 1) the low levels and the narrow breadth of the HIV-1 neutralizing antibodies and the HIV-specific antibody-dependent Fc-mediated effector activities, 2) the low levels and the poor quality of the anti-HIV T-cell responses, and 3) the excessive responses to immunodominant non-protective HIV epitopes, which in some cases blocked the protective immunity and/or enhanced HIV infection. The B-cell epitopes on HIV for producing broadly neutralizing antibodies (bNAbs) against HIV have been extensively characterized, and the next step is to develop bNAb epitope immunogen for HIV vaccine. The bNAb epitopes are often conformational epitopes and therefore more difficult to construct as vaccine immunogen and likely to include immunodominant non-protective HIV epitopes. In comparison, T-cell epitopes are short linear peptides which are easier to construct into vaccine immunogen free of immunodominant non-protective epitopes. However, its difficulty lies in identifying the T-cell epitopes conserved among HIV subtypes and induce long-lasting, potent polyfunctional T-cell and cytotoxic T lymphocyte (CTL) activities against HIV. In addition, these protective T-cell epitopes must be recognized by the HLA prevalent in the country(s) targeted for the vaccine trial. In conclusion, extending from the findings from previous vaccine trials, future vaccines should combine both T- and B-cell epitopes as vaccine immunogen to induce multitude of broad and potent immune effector activities required for sterilizing protection against global HIV subtypes.
Collapse
Affiliation(s)
- Bikash Sahay
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, P.O. Box 110880, Gainesville, FL 32611-0880, USA
| | - Cuong Q Nguyen
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, P.O. Box 110880, Gainesville, FL 32611-0880, USA
| | - Janet K Yamamoto
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, P.O. Box 110880, Gainesville, FL 32611-0880, USA
| |
Collapse
|
7
|
The Comparative Value of Feline Virology Research: Can Findings from the Feline Lentiviral Vaccine Be Translated to Humans? Vet Sci 2017; 4:vetsci4010007. [PMID: 29056666 PMCID: PMC5606627 DOI: 10.3390/vetsci4010007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 01/17/2017] [Accepted: 01/24/2017] [Indexed: 12/30/2022] Open
Abstract
Feline immunodeficiency virus (FIV) is a lentivirus of domestic cats that shares several similarities with its human counterpart, human immunodeficiency virus (HIV). Their analogies include genomic organization, lymphocyte tropism, viral persistence and induction of immunodeficiency. FIV is the only lentivirus for which a commercial vaccine is registered for prevention in either human or veterinary medicine. This provides a unique opportunity to investigate the mechanisms of protection induced by lentivirus vaccines at the population level and might contribute to the development of efficacious HIV vaccines. As well as having comparative value for vaccine studies, FIV research has shed some light on the relationship between lentiviral tropism and pathogenesis. Recent studies in our laboratory demonstrated that the interaction between FIV and its primary receptor changes as disease progresses, reminiscent of the receptor switch observed as disease progresses in HIV infected individuals. Here we summarise findings illustrating that, in addition to its veterinary significance, FIV has comparative value, providing a useful model to explore lentivirus–host interactions and to examine potential immune correlates of protection against HIV infection.
Collapse
|
8
|
Roff SR, Sanou MP, Rathore MH, Levy JA, Yamamoto JK. Conserved epitopes on HIV-1, FIV and SIV p24 proteins are recognized by HIV-1 infected subjects. Hum Vaccin Immunother 2016; 11:1540-56. [PMID: 25844718 DOI: 10.1080/21645515.2015.1026500] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cross-reactive peptides on HIV-1 and FIV p24 protein sequences were studied using peripheral blood mononuclear cells (PBMC) from untreated HIV-1-infected long-term survivors (LTS; >10 y of infection without antiretroviral therapy, ART), short-term HIV-1 infected subjects not on ART, and ART-treated HIV-1 infected subjects. IFNγ-ELISpot and CFSE-proliferation analyses were performed with PBMC using overlapping HIV-1 and FIV p24 peptides. Over half of the HIV-1 infected subjects tested (22/31 or 71%) responded to one or more FIV p24 peptide pools by either IFNγ or T-cell proliferation analysis. PBMC and T cells from infected subjects in all 3 HIV(+) groups predominantly recognized one FIV p24 peptide pool (Fp14) by IFNγ production and one additional FIV p24 peptide pool (Fp9) by T-cell proliferation analysis. Furthermore, evaluation of overlapping SIV p24 peptide sequences identified conserved epitope(s) on the Fp14/Hp15-counterpart of SIV, Sp14, but none on Fp9-counterpart of SIV, Sp9. The responses to these FIV peptide pools were highly reproducible and persisted throughout 2-4 y of monitoring. Intracellular staining analysis for cytotoxins and phenotyping for CD107a determined that peptide epitopes from Fp9 and Fp14 pools induced cytotoxic T lymphocyte-associated molecules including perforin, granzyme B, granzyme A, and/or expression of CD107a. Selected FIV and corresponding SIV epitopes recognized by HIV-1 infected patients indicate that these protein sequences are evolutionarily conserved on both SIV and HIV-1 (e.g., Hp15:Fp14:Sp14). These studies demonstrate that comparative immunogenicity analysis of HIV-1, FIV, and SIV can identify evolutionarily-conserved T cell-associated lentiviral epitopes, which could be used as a vaccine for prophylaxis or immunotherapy.
Collapse
Key Words
- AIDS, acquired immune deficiency syndrome
- ART, anti-retroviral therapy
- CFSE, Carboxyfluorescein succinimidyl ester
- CMI, cell mediated immunity
- CTL epitopes
- CTL, cytotoxic T cell
- FIV p24
- FIV, feline immunodeficiency virus
- GrzA, granzyme A
- GrzB, granzyme B
- HERV, human endogenous retrovirus
- HIV p24
- HIV, human immunodeficiency virus
- HLA, human leukocyte antigen
- ICS, intracellular staining
- LANL, Los Alamos National Laboratory
- LTS, Long term survivors
- Nab, broadly neutralizing antibody
- PHA, phytohaemagglutinin
- SFU, spot forming units
- SIV p24
- SIV, simian immunodeficiency virus
- ST, short term survivors
- aa, amino acid
- feline immunodeficiency virus
- vaccine epitopes
Collapse
Affiliation(s)
- Shannon R Roff
- a Department of Infectious Diseases and Pathology; College of Veterinary Medicine; University of Florida ; Gainesville , FL , USA
| | | | | | | | | |
Collapse
|
9
|
Sholukh AM, Byrareddy SN, Shanmuganathan V, Hemashettar G, Lakhashe SK, Rasmussen RA, Watkins JD, Vyas HK, Thorat S, Brandstoetter T, Mukhtar MM, Yoon JK, Novembre FJ, Villinger F, Landucci G, Forthal DN, Ratcliffe S, Tuero I, Robert-Guroff M, Polonis VR, Bilska M, Montefiori DC, Johnson WE, Ertl HC, Ruprecht RM. Passive immunization of macaques with polyclonal anti-SHIV IgG against a heterologous tier 2 SHIV: outcome depends on IgG dose. Retrovirology 2014; 11:8. [PMID: 24444350 PMCID: PMC3905655 DOI: 10.1186/1742-4690-11-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 01/09/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A key goal for HIV-1 envelope immunogen design is the induction of cross-reactive neutralizing antibodies (nAbs). As AIDS vaccine recipients will not be exposed to strains exactly matching any immunogens due to multiple HIV-1 quasispecies circulating in the human population worldwide, heterologous SHIV challenges are essential for realistic vaccine efficacy testing in primates. We assessed whether polyclonal IgG, isolated from rhesus monkeys (RMs) with high-titer nAbs (termed SHIVIG), could protect RMs against the R5-tropic tier-2 SHIV-2873Nip, which was heterologous to the viruses or HIV-1 envelopes that had elicited SHIVIG. RESULTS SHIVIG demonstrated binding to HIV Gag, Tat, and Env of different clades and competed with the broadly neutralizing antibodies b12, VRC01, 4E10, and 17b. SHIVIG neutralized tier 1 and tier 2 viruses, including SHIV-2873Nip. NK-cell depletion decreased the neutralizing activity of SHIVIG 20-fold in PBMC assays. Although SHIVIG neutralized SHIV-2873Nip in vitro, this polyclonal IgG preparation failed to prevent acquisition after repeated intrarectal low-dose virus challenges, but at a dose of 400 mg/kg, it significantly lowered peak viremia (P = 0.001). Unexpectedly, single-genome analysis revealed a higher number of transmitted variants at the low dose of 25 mg/kg, implying increased acquisition at low SHIVIG levels. In vitro, SHIVIG demonstrated complement-mediated Ab-dependent enhancement of infection (C'-ADE) at concentrations similar to those observed in plasmas of RMs treated with 25 mg/kg of SHIVIG. CONCLUSION Our primate model data suggest a dual role for polyclonal anti-HIV-1 Abs depending on plasma levels upon virus encounter.
Collapse
Affiliation(s)
- Anton M Sholukh
- Department of Virology and Immunology, Texas Biomedical Research Institute, PO Box 760549, San Antonio, TX 78245-0549, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Siddappa N Byrareddy
- Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, USA
| | | | | | - Samir K Lakhashe
- Department of Virology and Immunology, Texas Biomedical Research Institute, PO Box 760549, San Antonio, TX 78245-0549, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Robert A Rasmussen
- Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Jennifer D Watkins
- Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Hemant K Vyas
- Department of Virology and Immunology, Texas Biomedical Research Institute, PO Box 760549, San Antonio, TX 78245-0549, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Swati Thorat
- Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | | | - Muhammad M Mukhtar
- Department of Virology and Immunology, Texas Biomedical Research Institute, PO Box 760549, San Antonio, TX 78245-0549, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - John K Yoon
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - Francis J Novembre
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
- Department of Microbiology and Immunology and Laboratory Medicine, Emory University, Atlanta, GA, USA
| | - Francois Villinger
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, USA
| | - Gary Landucci
- Division of Infectious Diseases, Department of Medicine, University of California, Irvine School of Medicine, Irvine, CA, USA
| | - Donald N Forthal
- Division of Infectious Diseases, Department of Medicine, University of California, Irvine School of Medicine, Irvine, CA, USA
| | - Sarah Ratcliffe
- Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Iskra Tuero
- National Cancer Institute, Center for Cancer Research, Vaccine Branch, Bethesda, MD, USA
| | - Marjorie Robert-Guroff
- National Cancer Institute, Center for Cancer Research, Vaccine Branch, Bethesda, MD, USA
| | - Victoria R Polonis
- The Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Miroslawa Bilska
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - David C Montefiori
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | | | | | - Ruth M Ruprecht
- Department of Virology and Immunology, Texas Biomedical Research Institute, PO Box 760549, San Antonio, TX 78245-0549, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
10
|
Patel JR, Heldens JGM, Bakonyi T, Rusvai M. Important mammalian veterinary viral immunodiseases and their control. Vaccine 2012; 30:1767-81. [PMID: 22261411 PMCID: PMC7130670 DOI: 10.1016/j.vaccine.2012.01.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 01/03/2012] [Accepted: 01/05/2012] [Indexed: 11/16/2022]
Abstract
This paper offers an overview of important veterinary viral diseases of mammals stemming from aberrant immune response. Diseases reviewed comprise those due to lentiviruses of equine infectious anaemia, visna/maedi and caprine arthritis encephalitis and feline immunodeficiency. Diseases caused by viruses of feline infectious peritonitis, feline leukaemia, canine distemper and aquatic counterparts, Aleutian disease and malignant catarrhal fever. We also consider prospects of immunoprophylaxis for the diseases and briefly other control measures. It should be realised that the outlook for effective vaccines for many of the diseases is remote. This paper describes the current status of vaccine research and the difficulties encountered during their development.
Collapse
Affiliation(s)
- J R Patel
- Jas Biologicals Ltd, 12 Pembroke Avenue, Denny Industrial Estate, Waterbeach, Cambridge CB25 9QR, UK.
| | | | | | | |
Collapse
|
11
|
Blacklaws BA. Small ruminant lentiviruses: immunopathogenesis of visna-maedi and caprine arthritis and encephalitis virus. Comp Immunol Microbiol Infect Dis 2012; 35:259-69. [PMID: 22237012 DOI: 10.1016/j.cimid.2011.12.003] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2011] [Revised: 12/08/2011] [Accepted: 12/09/2011] [Indexed: 10/14/2022]
Abstract
The small ruminant lentiviruses include the prototype for the genus, visna-maedi virus (VMV) as well as caprine arthritis encephalitis virus (CAEV). Infection of sheep or goats with these viruses causes slow, progressive, inflammatory pathology in many tissues, but the most common clinical signs result from pathology in the lung, mammary gland, central nervous system and joints. This review examines replication, immunity to and pathogenesis of these viruses and highlights major differences from and similarities to some of the other lentiviruses.
Collapse
Affiliation(s)
- Barbara A Blacklaws
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK.
| |
Collapse
|
12
|
Hosie MJ, Pajek D, Samman A, Willett BJ. Feline immunodeficiency virus (FIV) neutralization: a review. Viruses 2011; 3:1870-90. [PMID: 22069520 PMCID: PMC3205386 DOI: 10.3390/v3101870] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 09/28/2011] [Accepted: 09/29/2011] [Indexed: 11/16/2022] Open
Abstract
One of the major obstacles that must be overcome in the design of effective lentiviral vaccines is the ability of lentiviruses to evolve in order to escape from neutralizing antibodies. The primary target for neutralizing antibodies is the highly variable viral envelope glycoprotein (Env), a glycoprotein that is essential for viral entry and comprises both variable and conserved regions. As a result of the complex trimeric nature of Env, there is steric hindrance of conserved epitopes required for receptor binding so that these are not accessible to antibodies. Instead, the humoral response is targeted towards decoy immunodominant epitopes on variable domains such as the third hypervariable loop (V3) of Env. For feline immunodeficiency virus (FIV), as well as the related human immunodeficiency virus-1 (HIV-1), little is known about the factors that lead to the development of broadly neutralizing antibodies. In cats infected with FIV and patients infected with HIV-1, only rarely are plasma samples found that contain antibodies capable of neutralizing isolates from other clades. In this review we examine the neutralizing response to FIV, comparing and contrasting with the response to HIV. We ask whether broadly neutralizing antibodies are induced by FIV infection and discuss the comparative value of studies of neutralizing antibodies in FIV infection for the development of more effective vaccine strategies against lentiviral infections in general, including HIV-1.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antibodies, Neutralizing/blood
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Cat Diseases/immunology
- Cat Diseases/prevention & control
- Cat Diseases/virology
- Cats
- Gene Products, env/genetics
- Gene Products, env/immunology
- Gene Products, env/metabolism
- Humans
- Immune Evasion
- Immunity, Humoral
- Immunodeficiency Virus, Feline/genetics
- Immunodeficiency Virus, Feline/immunology
- Immunodominant Epitopes/immunology
- Lentivirus Infections/immunology
- Lentivirus Infections/prevention & control
- Lentivirus Infections/veterinary
- Lentivirus Infections/virology
- Molecular Sequence Data
Collapse
Affiliation(s)
- Margaret J Hosie
- Medical Research Council, University of Glasgow Centre for Virus Research, Henry Wellcome Building for Comparative Medical Sciences, 464 Bearsden Road, Glasgow G61 1QH, UK.
| | | | | | | |
Collapse
|
13
|
Willey S, Aasa-Chapman MMI, O'Farrell S, Pellegrino P, Williams I, Weiss RA, Neil SJD. Extensive complement-dependent enhancement of HIV-1 by autologous non-neutralising antibodies at early stages of infection. Retrovirology 2011; 8:16. [PMID: 21401915 PMCID: PMC3065417 DOI: 10.1186/1742-4690-8-16] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Accepted: 03/14/2011] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Non-neutralising antibodies to the envelope glycoprotein are elicited during acute HIV-1 infection and are abundant throughout the course of disease progression. Although these antibodies appear to have negligible effects on HIV-1 infection when assayed in standard neutralisation assays, they have the potential to exert either inhibitory or enhancing effects through interactions with complement and/or Fc receptors. Here we report that non-neutralising antibodies produced early in response to HIV-1 infection can enhance viral infectivity. RESULTS We investigated this complement-mediated antibody-dependent enhancement (C'-ADE) of early HIV infection by carrying out longitudinal studies with primary viruses and autologous sera derived sequentially from recently infected individuals, using a T cell line naturally expressing the complement receptor 2 (CR2; CD21). The C'-ADE was consistently observed and in some cases achieved infection-enhancing levels of greater than 350-fold, converting a low-level infection to a highly destructive one. C'-ADE activity declined as a neutralising response to the early virus emerged, but later virus isolates that had escaped the neutralising response demonstrated an increased capacity for enhanced infection by autologous antibodies. Moreover, sera with autologous enhancing activity were capable of C'ADE of heterologous viral isolates, suggesting the targeting of conserved epitopes on the envelope glycoprotein. Ectopic expression of CR2 on cell lines expressing HIV-1 receptors was sufficient to render them sensitive to C'ADE. CONCLUSIONS Taken together, these results suggest that non-neutralising antibodies to the HIV-1 envelope that arise during acute infection are not 'passive', but in concert with complement and complement receptors may have consequences for HIV-1 dissemination and pathogenesis.
Collapse
Affiliation(s)
- Suzanne Willey
- MRC/UCL Centre for Medical Molecular Virology, Division of Infection and Immunity, University College London, 46 Cleveland Street, London W1T 4JF, UK
- Department of Infectious Diseases, King's College London, Peter Gorer Department of Immunobiology, Borough Wing, Guy's Hospital, London SE1 9RT, UK
| | - Marlén MI Aasa-Chapman
- MRC/UCL Centre for Medical Molecular Virology, Division of Infection and Immunity, University College London, 46 Cleveland Street, London W1T 4JF, UK
| | - Stephen O'Farrell
- Centre for Sexual Health and HIV Research, University College London, UK
| | - Pierre Pellegrino
- Centre for Sexual Health and HIV Research, University College London, UK
| | - Ian Williams
- Centre for Sexual Health and HIV Research, University College London, UK
| | - Robin A Weiss
- MRC/UCL Centre for Medical Molecular Virology, Division of Infection and Immunity, University College London, 46 Cleveland Street, London W1T 4JF, UK
| | - Stuart JD Neil
- MRC/UCL Centre for Medical Molecular Virology, Division of Infection and Immunity, University College London, 46 Cleveland Street, London W1T 4JF, UK
- Department of Infectious Diseases, King's College London, Peter Gorer Department of Immunobiology, Borough Wing, Guy's Hospital, London SE1 9RT, UK
| |
Collapse
|
14
|
Gag-specific immune enhancement of lentiviral infection after vaccination with an adenoviral vector in an animal model of AIDS. Vaccine 2009; 27:928-39. [DOI: 10.1016/j.vaccine.2008.11.086] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Revised: 10/27/2008] [Accepted: 11/06/2008] [Indexed: 12/22/2022]
|
15
|
Huisman W, Martina BEE, Rimmelzwaan GF, Gruters RA, Osterhaus ADME. Vaccine-induced enhancement of viral infections. Vaccine 2008; 27:505-12. [PMID: 19022319 PMCID: PMC7131326 DOI: 10.1016/j.vaccine.2008.10.087] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2008] [Revised: 10/29/2008] [Accepted: 10/29/2008] [Indexed: 12/19/2022]
Abstract
Examples of vaccine-induced enhancement of susceptibility to virus infection or of aberrant viral pathogenesis have been documented for infections by members of different virus families. Several mechanisms, many of which still are poorly understood, are at the basis of this phenomenon. Vaccine development for lentivirus infections in general, and for HIV/AIDS in particular, has been little successful. Certain experimental lentiviral vaccines even proved to be counterproductive: they rendered vaccinated subjects more susceptible to infection rather than protecting them. For vaccine-induced enhanced susceptibility to infection with certain viruses like feline coronavirus, Dengue virus, and feline immunodeficiency virus, it has been shown that antibody-dependent enhancement (ADE) plays an important role. Other mechanisms may, either in the absence of or in combination with ADE, be involved. Consequently, vaccine-induced enhancement has been a major stumble block in the development of certain flavi-, corona-, paramyxo-, and lentivirus vaccines. Also recent failures in the development of a vaccine against HIV may at least in part be attributed to induction of enhanced susceptibility to infection. There may well be a delicate balance between the induction of protective immunity on the one hand and the induction of enhanced susceptibility on the other. The present paper reviews the currently known mechanisms of vaccine-induced enhancement of susceptibility to virus infection or of aberrant viral pathogenesis.
Collapse
Affiliation(s)
- W Huisman
- Erasmus MC, Institute of Virology, P.O. Box 1738, 3000 DR Rotterdam, The Netherlands
| | | | | | | | | |
Collapse
|
16
|
Huisman W, Schrauwen EJA, Pas SD, van Amerongen G, Rimmelzwaan GF, Osterhaus ADME. Evaluation of ISCOM-adjuvanted subunit vaccines containing recombinant feline immunodeficiency virus Rev, OrfA and envelope protein in cats. Vaccine 2008; 26:2553-61. [PMID: 18430494 DOI: 10.1016/j.vaccine.2008.03.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Revised: 03/05/2008] [Accepted: 03/12/2008] [Indexed: 10/22/2022]
Abstract
For the development of feline immunodeficiency virus (FIV) vaccines mostly structural proteins have been evaluated for their capacity to induce protective immunity. In the present study, subunit vaccines containing recombinant FIV accessory proteins Rev and OrfA were evaluated in cats. Cats were vaccinated repeatedly with these proteins, adjuvanted with immune stimulating complexes (ISCOMs). In addition, cats were vaccinated with bacterially expressed fragments spanning the entire FIV envelope protein, either alone or in combination with the regulatory proteins. Subsequently, the cats were challenged with a homologous FIV strain to assess the level of protective immunity achieved with the respective vaccination regimens. Although the vaccines proved to be immunogenic, vaccinated cats were not protected from infection with FIV.
Collapse
Affiliation(s)
- Willem Huisman
- Erasmus MC, Institute of Virology, Rotterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
17
|
Torsteinsdóttir S, Carlsdóttir HM, Svansson V, Matthíasdóttir S, Martin AH, Pétursson G. Vaccination of sheep with Maedi-visna virus gag gene and protein, beneficial or harmful? Vaccine 2007; 25:6713-20. [PMID: 17686553 DOI: 10.1016/j.vaccine.2007.07.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2007] [Revised: 04/27/2007] [Accepted: 07/07/2007] [Indexed: 11/20/2022]
Abstract
In spite of intense efforts no vaccine is yet available that protects against lentiviral infections. Sheep were immunised eight times over a period of 2.5 years with the maedi-visna (MVV) gag gene on two different vectors, 2 sheep with VR1012-gag-CTE and 2 sheep with pcDNA3.1-gag-CTE. All sheep responded to some of the mature MVV Gag proteins in Western blot (WB). Three of them responded to the virus in lymphocyte proliferation test. The sheep received a boost with recombinant Gag protein resulting in elevated antibody response. However, when they were challenged intratracheally with MVV they all became immediately infected as judged by a strong rise in antibody titer and virus isolation from blood. It is therefore clear that the vaccination gave no protection. It is even possible that it facilitated infectivity since virus was isolated earlier from all the vaccinated sheep than from any of the unvaccinated sheep infected in the same way with the same dose.
Collapse
Affiliation(s)
- Sigurbjörg Torsteinsdóttir
- Institute for Experimental Pathology, University of Iceland, Keldur v/Vesturlandsveg, IS-112 Reykjavík, Iceland.
| | | | | | | | | | | |
Collapse
|
18
|
Lecollinet S, Richardson J. Vaccination against the feline immunodeficiency virus: the road not taken. Comp Immunol Microbiol Infect Dis 2007; 31:167-90. [PMID: 17706778 DOI: 10.1016/j.cimid.2007.07.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2007] [Indexed: 11/28/2022]
Abstract
Natural infection of domestic cats by the feline immunodeficiency virus (FIV) causes acquired immunodeficiency syndrome (AIDS). FIV is genetically related to human immunodeficiency virus (HIV), and the clinical and biological features of infections caused by feline and human viruses in their respective hosts are highly analogous. Although the obstacles to vaccinating against FIV and HIV would seem to be of comparable difficulty, a licensed vaccine against feline AIDS is already in widespread use in several countries. While this seemingly major advance in prevention of AIDS would appear to be highly instructive for HIV vaccine development, its message has not been heeded by investigators in the HIV field. This review endeavours to relate what has been learned about vaccination against feline AIDS, and to suggest what this may mean for HIV vaccine development.
Collapse
Affiliation(s)
- Sylvie Lecollinet
- UMR 1161 Virologie INRA-AFSSA-ENVA, Ecole Nationale Vétérinaire d'Alfort, 7 avenue du Général de Gaulle, 94700 Maisons-Alfort, France
| | | |
Collapse
|
19
|
Giannecchini S, D'Ursi AM, Esposito C, Scrima M, Zabogli E, Freer G, Rovero P, Bendinelli M. Antibodies generated in cats by a lipopeptide reproducing the membrane-proximal external region of the feline immunodeficiency virus transmembrane enhance virus infectivity. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2007; 14:944-51. [PMID: 17596431 PMCID: PMC2044484 DOI: 10.1128/cvi.00140-07] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The immunogenicity of a lipoylated peptide (lipo-P59) reproducing the membrane-proximal external region (MPER) of the transmembrane glycoprotein of feline immunodeficiency virus (FIV) was investigated with cats. In the attempt to mimic the context in which MPER is located within intact virions, lipo-P59 was administered in association with membrane-like micelles. Analyses showed that in this milieu, lipo-P59 had a remarkable propensity to be positioned at the membrane interface, displayed a large number of ordered structures folded in turn helices, and was as active as lipo-P59 alone at inhibiting FIV infectivity in vitro. The antibodies developed differed from the ones previously obtained by immunizing cats with the nonlipoylated version of the peptide (G. Freer, S. Giannecchini, A. Tissot, M. F. Bachmann, P. Rovero, P. F. Serres, and M. Bendinelli, Virology 322:360-369, 2004) in epitope specificity and in the fact that they bound FIV virions. However, they too lacked virus-neutralizing activity and actually enhanced FIV infectivity for lymphoid cell cultures. It is concluded that the use of MPER-reproducing oligopeptides is not a viable approach for vaccinating against FIV.
Collapse
Affiliation(s)
- Simone Giannecchini
- Retrovirus Center and Virology Section, Department of Experimental Pathology, University of Pisa, I-56127 Pisa, Italy
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Nenci C, Zahno ML, Vogt HR, Obexer-Ruff G, Doherr MG, Zanoni R, Peterhans E, Bertoni G. Vaccination with a T-cell-priming Gag peptide of caprine arthritis encephalitis virus enhances virus replication transiently in vivo. J Gen Virol 2007; 88:1589-1593. [PMID: 17412991 DOI: 10.1099/vir.0.82800-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
CD4+ T cells are involved in several immune response pathways used to control viral infections. In this study, a group of genetically defined goats was immunized with a synthetic peptide known to encompass an immunodominant helper T-cell epitope of caprine arthritis encephalitis virus (CAEV). Fifty-five days after challenge with the molecularly cloned CAEV strain CO, the vaccinated animals had a higher proviral load than the controls. The measurement of gamma interferon and interleukin-4 gene expression showed that these cytokines were reliable markers of an ongoing immune response but their balance did not account for more or less efficient control of CAEV replication. In contrast, granulocyte–macrophage colony-stimulating factor appeared to be a key cytokine that might support virus replication in the early phase of infection. The observation of a potential T-cell-mediated enhancement of virus replication supports other recent findings showing that lentivirus-specific T cells can be detrimental to the host, suggesting caution in designing vaccine candidates.
Collapse
Affiliation(s)
- Chiara Nenci
- Institute of Veterinary Virology, University of Bern, Switzerland
| | | | - Hans-Rudolf Vogt
- Institute of Veterinary Virology, University of Bern, Switzerland
| | - Gabriela Obexer-Ruff
- Institute of Animal Genetics, Nutrition and Housing, University of Bern, Switzerland
| | - Marcus G Doherr
- Clinical Research, Department of Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, Switzerland
| | - Reto Zanoni
- Institute of Veterinary Virology, University of Bern, Switzerland
| | - Ernst Peterhans
- Institute of Veterinary Virology, University of Bern, Switzerland
| | - Giuseppe Bertoni
- Institute of Veterinary Virology, University of Bern, Switzerland
| |
Collapse
|
21
|
Abstract
Since feline immunodeficiency virus (FIV) was first isolated, international research efforts have been directed towards developing a protective vaccine, not least because it may provide a model for a candidate human immunodeficiency virus (HIV) vaccine. This article reviews the challenges facing vaccine development, the current state of knowledge and future prospects for FIV vaccination.
Collapse
Affiliation(s)
- M J Hosie
- Retrovirus Research Laboratory, Institute for Comparative Medicine, Faculty of Veterinary Medicine, The University of Glasgow
| | | |
Collapse
|
22
|
Abstract
Many experimental strategies have been adopted in experiments to protect cats from FIV infection by vaccination, and some have been successful. The interest in developing a vaccine arose both because FIV is a common cause of morbidity and mortality in pet cats and because the feline virus provides a model for its counterpart in man, human immunodeficiency virus (HIV), for which an effective vaccine is urgently required to halt the current tragic pandemic of acquired immunodeficiency syndrome (AIDS). Shortly after the discovery of FIV and its characterization as a lentivirus, attempts were made to produce a vaccine and success was soon achieved with relatively simple inactivated virus or inactivated virus-infected cell vaccines.82 Further development of this approach led to the introduction in 2002 of the first commercial vaccine against FIV.59 With an estimated prevalence of the infection of up to 25% in populations of pet cats, an effective FIV vaccine could have a significant influence on animal welfare. In addition, this success poses the question of whether a similar strategy might produce an effective vaccine against HIV.
Collapse
|
23
|
Abstract
Animal models for human immunodeficiency virus (HIV) infection play a key role in understanding the pathogenesis of AIDS and the development of therapeutic agents and vaccines. As the only lentivirus that causes an immunodeficiency resembling that of HIV infection, in its natural host, feline immunodeficiency virus (FIV) has been a unique and powerful model for AIDS research. FIV was first described in 1987 by Niels Pedersen and co-workers as the causative agent for a fatal immunodeficiency syndrome observed in cats housed in a cattery in Petaluma, California. Since this landmark observation, multiple studies have shown that natural and experimental infection of cats with biological isolates of FIV produces an AIDS syndrome very similar in pathogenesis to that observed for human AIDS. FIV infection induces an acute viremia associated with Tcell alterations including depressed CD4 :CD8 T-cell ratios and CD4 T-cell depletion, peripheral lymphadenopathy, and neutropenia. In later stages of FIV infection, the host suffers from chronic persistent infections that are typically self-limiting in an immunocompetent host, as well as opportunistic infections, chronic diarrhea and wasting, blood dyscracias, significant CD4 T-cell depletion, neurologic disorders, and B-cell lymphomas. Importantly, chronic FIV infection induces a progressive lymphoid and CD4 T-cell depletion in the infected cat. The primary mode of natural FIV transmission appears to be blood-borne facilitated by fighting and biting. However, experimental infection through transmucosal routes (rectal and vaginal mucosa and perinatal) have been well documented for specific FIV isolates. Accordingly, FIV disease pathogenesis exhibits striking similarities to that described for HIV-1 infection.
Collapse
|
24
|
Yamamoto JK, Pu R, Sato E, Hohdatsu T. Feline immunodeficiency virus pathogenesis and development of a dual-subtype feline-immunodeficiency-virus vaccine. AIDS 2007; 21:547-63. [PMID: 17314517 DOI: 10.1097/qad.0b013e328013d88a] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
25
|
van Montfort T, Nabatov AA, Geijtenbeek TBH, Pollakis G, Paxton WA. Efficient Capture of Antibody Neutralized HIV-1 by Cells Expressing DC-SIGN and Transfer to CD4+T Lymphocytes. THE JOURNAL OF IMMUNOLOGY 2007; 178:3177-85. [PMID: 17312166 DOI: 10.4049/jimmunol.178.5.3177] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Infection of CD4+ T lymphocytes is enhanced by the capture and subsequent transfer of HIV-1 by dendritic cells (DCs) via the interaction with C-type lectins such as the DC-specific ICAM-grabbing nonintegrin (DC-SIGN). Numerous HIV-1 envelope-directed neutralizing Abs have been shown to successfully block the infection of CD4(+) T lymphocytes. In this study, we find that HIV-1-neutralized with the mAb 2F5 is more efficiently captured by immature monocyte-derived DCs (iMDDCs) and DC-SIGN-expressing Raji cells (Raji-DC-SIGN). Furthermore, a 2F5-neutralized virus captured by these cells was able to subsequently infect CD4+ T lymphocytes upon the release of HIV-1 from iMDDCs, thereby enhancing infection. We show that upon transfer via DC-SIGN-expressing cells, HIV-1 is released from immune-complexes with the Abs 2F5 and 4E10 (gp41-directed) and 2G12, 4.8D, and 1.7b (gp120-directed). The nonneutralizing V3-21 (V3 region of the gp120-directed) Ab enhanced HIV-1 infection upon capture and transfer via Raji-DC-SIGN cells, whereas no infection was observed with the neutralizing b12 Ab (gp120-directed), indicating that different Abs have variant effects on inhibiting HIV-1 transfer to CD4+ T lymphocytes. The increased capture of the 2F5-neutralized virus by iMDDCs was negated upon blocking the Fc receptors. Blocking DC-SIGN on iMDDCs resulted in a 70-75% inhibition of HIV-1 capture at 37 degrees C, whereas at 4 degrees C a full block was observed, showing that the observed transfer is mediated via DC-SIGN. Taken together, we propose that DC-SIGN-mediated capture of neutralized HIV-1 by iMDDCs has the potential to induce immune evasion from the neutralization effects of HIV-1 Abs, with implications for HIV-1 pathogenesis and vaccine development.
Collapse
Affiliation(s)
- Thijs van Montfort
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center of Infection and Immunity Amsterdam, Academic Medical Center of the University of Amsterdam, Meibergdreef 15, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
26
|
Pistello M, Bonci F, Flynn JN, Mazzetti P, Isola P, Zabogli E, Camerini V, Matteucci D, Freer G, Pelosi P, Bendinelli M. AIDS vaccination studies with an ex vivo feline immunodeficiency virus model: analysis of the accessory ORF-A protein and DNA as protective immunogens. J Virol 2006; 80:8856-68. [PMID: 16940498 PMCID: PMC1563914 DOI: 10.1128/jvi.00397-06] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Determining which antigen must be included in AIDS vaccines to confer maximum protection is of utmost importance. In primate models, vaccines consisting of or including accessory viral proteins have yielded conflicting results. We investigated the protective potential of the accessory protein ORF-A of feline immunodeficiency virus (FIV) in cats. All three immunization strategies used (protein alone in alum adjuvant, DNA alone, or DNA prime-protein boost) clearly generated detectable immune responses. Upon challenge with ex vivo homologous FIV, ORF-A-immunized cats showed distinct enhancement of acute-phase infection relative to mock-immunized animals given alum or empty vector DNA. This effect was tentatively attributed to increased expression of the FIV receptor CD134 that was observed in the immunized cats. However, at subsequent sampling points that were continued for up to 10 months postchallenge, the average plasma viral loads of the ORF-A-immunized animals were slightly but consistently reduced relative to those of the control animals. In addition, CD4(+) T lymphocytes in the circulation system declined more slowly in immunized animals than in control animals. These findings support the contention that immunization with lentiviral accessory proteins can improve the host's ability to control virus replication and slow down disease progression but also draw attention to the fact that even simple immunogens that eventually contribute to protective activity can transiently exacerbate subsequent lentiviral infections.
Collapse
Affiliation(s)
- Mauro Pistello
- Dipartimento di Patologia Sperimentale, Università di Pisa, Via San Zeno 37, I-56127 Pisa, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Feline immunodeficiency virus (FIV) is a natural infection of domestic cats, which produces a disease with many similarities to human immunodeficiency virus (HIV) infection in man. The virus is an important cause of morbidity and mortality in pet cats worldwide. As such an effective vaccine is desirable both for its use in veterinary medicine and also as a model for the development of an HIV vaccine. A large number of candidate vaccines have been tested against feline immunodeficiency virus. These include inactivated virus and infected cell vaccines, DNA and viral vectored vaccines, subunit and peptide vaccines and vaccines using bacterial vectors. Ultimately, the development of inactivated virus and infected cell vaccines led to the release of the first licensed vaccine against FIV, in 2002. This review highlights some of the difficulties associated with the development of lentiviral vaccines and some of the lessons that have been learned in the FIV model that are of particular relevance to the development of HIV vaccines.
Collapse
Affiliation(s)
- Stephen P Dunham
- Retrovirus Research Laboratory, Institute of Comparative Medicine, Faculty of Veterinary Medicine, University of Glasgow, Bearsden Road, Glasgow G61 1QH, United Kingdom.
| |
Collapse
|
28
|
Moris A, Pajot A, Blanchet F, Guivel-Benhassine F, Salcedo M, Schwartz O. Dendritic cells and HIV-specific CD4+ T cells: HIV antigen presentation, T-cell activation, and viral transfer. Blood 2006; 108:1643-51. [PMID: 16675708 DOI: 10.1182/blood-2006-02-006361] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human immunodeficiency virus (HIV)-specific CD4+ lymphocytes are preferentially infected in HIV-positive individuals. To study this preferential infection, we have derived several HIV-specific (HS) CD4+ clones. We show that in dendritic cells (DCs), HIV virion capture led to major histocompatibility complex class-II (MHC-II)-restricted viral antigen presentation and to activation of HS cells. In contrast, neither cell-free virions nor infected lymphocytes activated HS cells. In DCs, the dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin (DC-SIGN/CD209), which internalizes virions, promoted MHC-II presentation of HIV antigens. Activation of HS cells by HIV-exposed DCs triggered an efficient viral spread in lymphocytes. CD4+ clones with irrelevant antigenic specificities were not activated by HIV-exposed DCs and poorly supported viral replication under this setting. Our results unravel the mechanisms of MHC-II-restricted HIV antigen presentation by DCs and describe how HIV gains access to the very cells designed by the immune system to counteract this pathogen.
Collapse
Affiliation(s)
- Arnaud Moris
- Groupe Virus et Immunité, Unité de Recherche Associée (URA) Centre National de la Recherche Scientifique (CNRS) 1930, Paris, France
| | | | | | | | | | | |
Collapse
|
29
|
Broche-Pierre S, Richardson J, Moraillon A, Sonigo P. Evaluation of live feline immunodeficiency virus vaccines with modified antigenic properties. J Gen Virol 2005; 86:2495-2506. [PMID: 16099908 DOI: 10.1099/vir.0.80469-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Live-attenuated viruses have typically been generated from pathogenic viruses by genetic modifications that modified their replicative capacity. The present study investigated whether modification of the antigenic properties of live-attenuated viruses might improve upon the protection that such vaccines afford against lentivirus infection. In a previous study, random amino acid substitutions were introduced into the transmembrane envelope glycoprotein of the feline immunodeficiency virus (FIV), within a highly conserved domain (principal immunodominant domain) bearing immunodominant B-cell epitopes. Amongst a wide set of mutants, mutations that modified antibody specificity without abolishing infectivity ex vivo were selected. In the present study, two such mutants, TN14 and TN92, were evaluated for their replicative capacities and pathogenic properties in vivo in comparison with the parental virus, FIV 34TF10. No significant differences in viral load were observed between mutant and parental viruses. After 1 year of infection, all animals were subjected to a heterologous intraclade superinfection with a primary strain of FIV. Whilst both parental and modified viruses protected cats from high viral loads after superinfection, the TN92 virus afforded a higher degree of protection (P=0·0079). Such improvement in protection might correlate with a decrease in the immunogenicity of a B-cell epitope potentially involved in antibody enhancement of infection.
Collapse
MESH Headings
- Amino Acid Sequence
- Amino Acid Substitution
- Animals
- Antibodies, Viral/blood
- Base Sequence
- Cat Diseases/immunology
- Cat Diseases/prevention & control
- Cat Diseases/virology
- Cats
- Epitopes, B-Lymphocyte/immunology
- Gene Products, env/administration & dosage
- Gene Products, env/genetics
- Gene Products, env/immunology
- Immunodeficiency Virus, Feline/genetics
- Immunodeficiency Virus, Feline/immunology
- Immunodeficiency Virus, Feline/pathogenicity
- Immunodominant Epitopes/immunology
- Lentivirus Infections/immunology
- Lentivirus Infections/prevention & control
- Lentivirus Infections/veterinary
- Lentivirus Infections/virology
- Molecular Sequence Data
- Vaccination
- Vaccines, Attenuated/administration & dosage
- Vaccines, Attenuated/immunology
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/immunology
- Viral Vaccines/administration & dosage
- Viral Vaccines/immunology
Collapse
Affiliation(s)
- Sophie Broche-Pierre
- Génétique des Virus, Institut Cochin (INSERM U567, CNRS UMR8104), 22 rue Méchain, 75014 Paris, France
| | - Jennifer Richardson
- Génétique des Virus, Institut Cochin (INSERM U567, CNRS UMR8104), 22 rue Méchain, 75014 Paris, France
| | - Anne Moraillon
- UMR INRA-ENVA-AFSSA 1161 de Virologie, Ecole Nationale Vétérinaire d'Alfort (ENVA), 7 rue du Général de Gaulle, 94704 Maisons-Alfort, France
| | - Pierre Sonigo
- Génétique des Virus, Institut Cochin (INSERM U567, CNRS UMR8104), 22 rue Méchain, 75014 Paris, France
| |
Collapse
|
30
|
Pistello M, Bonci F, Isola P, Mazzetti P, Merico A, Zaccaro L, Matteucci D, Bendinelli M. Evaluation of feline immunodeficiency virus ORF-A mutants as candidate attenuated vaccine. Virology 2005; 332:676-90. [PMID: 15680433 DOI: 10.1016/j.virol.2004.12.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2004] [Revised: 11/19/2004] [Accepted: 12/04/2004] [Indexed: 11/17/2022]
Abstract
Feline immunodeficiency virus (FIV) made defective in the accessory gene ORF-A were previously shown to be greatly attenuated in its ability to replicate in lymphocytes but to grow normally or near normally in other cell types. Here, we examined whether FIV thus mutated could protect specific pathogen-free cats against challenge with ex vivo fully virulent homologous virus. No reversion of the vaccinating infections to wild type ORF-A was noted over 22 months of in vivo infection. Following challenge, 6/6 unvaccinated control cats became readily and heavily infected. In contrast, 3/9 vaccinees showed no evidence of the challenge virus over a 15-month observation period. In the other vaccinees, the challenge virus was predominant for various periods of time, but pre-existing viral loads and CD4 lymphocyte counts were either unaffected or altered only marginally and transiently. These findings show that ORF-A-defective FIV should be further examined as a candidate live attenuated vaccine.
Collapse
Affiliation(s)
- M Pistello
- Department of Experimental Pathology, Retrovirus Center and Virology Section, University of Pisa, Via San Zeno, 37, Pisa, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Burrer R, Haessig-Einius S, Aubertin AM, Moog C. Neutralizing as well as non-neutralizing polyclonal immunoglobulin (Ig)G from infected patients capture HIV-1 via antibodies directed against the principal immunodominant domain of gp41. Virology 2005; 333:102-13. [PMID: 15708596 DOI: 10.1016/j.virol.2004.12.034] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2004] [Accepted: 12/31/2004] [Indexed: 10/25/2022]
Abstract
We analyzed the factors influencing the binding of polyclonal immunoglobulin (Ig)G from HIV-infected patients to primary isolates (PI) in capture assays and a potential correlation between this binding and neutralization. The fixation of antibodies (Abs) to viral particles was measured by quantifying the capture of 4 PI by purified IgG immobilized onto a plate or by analyzing the capture of IgG-virus complexes formed in solution. We found that the capture of virus and the formation of immune complexes is mainly achieved by Abs directed against the principal immunodominant domain (PID) of gp41. We have further compared the binding measured by these two methods and the neutralizing activity of our polyclonal IgG and found no correlation. Thus, capture assays, including the immune complex capture assay that is more representative of "physiological" conditions, cannot be used as surrogate method for the investigation of the neutralizing activity of Abs.
Collapse
Affiliation(s)
- Renaud Burrer
- EA3770, Institut de Virologie, Université Louis Pasteur, 67000 Strasbourg, France
| | | | | | | |
Collapse
|
32
|
Staprans SI, Barry AP, Silvestri G, Safrit JT, Kozyr N, Sumpter B, Nguyen H, McClure H, Montefiori D, Cohen JI, Feinberg MB. Enhanced SIV replication and accelerated progression to AIDS in macaques primed to mount a CD4 T cell response to the SIV envelope protein. Proc Natl Acad Sci U S A 2004; 101:13026-31. [PMID: 15326293 PMCID: PMC516468 DOI: 10.1073/pnas.0404739101] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Given the dual role of CD4 T cells as both immune effectors and targets for HIV infection, the balance of CD4 versus CD8 T cell-mediated responses induced by candidate AIDS vaccines may be critical in determining postvaccination infection outcomes. An attenuated recombinant varicella-zoster virus vaccine expressing the simian immunodeficiency virus (SIV) envelope (Env) elicited nonneutralizing Env-binding antibodies and little if any cytotoxic T lymphocyte responses in rhesus macaques (Macaca mulatta). After challenge with SIV, Env vaccinees manifested increased levels of SIV replication, more rapid CD4 depletion, and accelerated progression to AIDS compared with controls. Enhanced SIV replication correlated with increased CD4 T cell proliferation soon after SIV challenge, apparently the result of an anamnestic response to SIV antigens. Thus activation of virus-specific CD4 T cells at the time of exposure to a CD4 T cell-tropic lentivirus, in the absence of an effective CD8 response, may enhance virus replication and disease. These data suggest suggest that candidate AIDS vaccines may not simply be either efficacious or neutral; they may also have the potential to be harmful.
Collapse
|
33
|
Huisman W, Schrauwen EJA, Pas SD, Karlas JA, Rimmelzwaan GF, Osterhaus ADME. Antibodies specific for hypervariable regions 3 to 5 of the feline immunodeficiency virus envelope glycoprotein are not solely responsible for vaccine-induced acceleration of challenge infection in cats. J Gen Virol 2004; 85:1833-1841. [PMID: 15218167 DOI: 10.1099/vir.0.79949-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In a previous vaccination study in cats, the authors reported on accelerated feline immunodeficiency virus (FIV) replication upon challenge in animals vaccinated with a candidate envelope subunit vaccine. Plasma transfer studies as well as antibody profiles in vaccinated cats indicated a causative role for antibodies directed against the hypervariable regions HV3, HV4 and HV5 (HV3-5) of the envelope glycoprotein. The present study was designed to investigate further the contribution of antibodies in envelope vaccine-induced acceleration of FIV infection. To this end, regions HV3-5 of the envelope glycoprotein were deleted from the original vaccine, thus addressing the contributing role of antibodies directed against these hypervariable regions. Interestingly, this approach did not prevent acceleration of challenge infection. Analysis of the antibody responses in the respective groups suggested that removal of HV3-5 redirected the humoral immune response towards other regions of the envelope glycoprotein, indicating that these regions can also induce antibodies that accelerate virus replication.
Collapse
Affiliation(s)
- Willem Huisman
- Erasmus MC, Institute of Virology, PO Box 1738, 3000 DR Rotterdam, The Netherlands
| | - Eefje J A Schrauwen
- Erasmus MC, Institute of Virology, PO Box 1738, 3000 DR Rotterdam, The Netherlands
| | - Suzan D Pas
- Erasmus MC, Institute of Virology, PO Box 1738, 3000 DR Rotterdam, The Netherlands
| | - Jos A Karlas
- Erasmus MC, Institute of Virology, PO Box 1738, 3000 DR Rotterdam, The Netherlands
| | - Guus F Rimmelzwaan
- Erasmus MC, Institute of Virology, PO Box 1738, 3000 DR Rotterdam, The Netherlands
| | | |
Collapse
|
34
|
Abstract
In general, virus-specific antibodies are considered antiviral and play an important role in the control of virus infections in a number of ways. However, in some instances, the presence of specific antibodies can be beneficial to the virus. This activity is known as antibody-dependent enhancement (ADE) of virus infection. The ADE of virus infection is a phenomenon in which virus-specific antibodies enhance the entry of virus, and in some cases the replication of virus, into monocytes/macrophages and granulocytic cells through interaction with Fc and/or complement receptors. This phenomenon has been reported in vitro and in vivo for viruses representing numerous families and genera of public health and veterinary importance. These viruses share some common features such as preferential replication in macrophages, ability to establish persistence, and antigenic diversity. For some viruses, ADE of infection has become a great concern to disease control by vaccination. Consequently, numerous approaches have been made to the development of vaccines with minimum or no risk for ADE. Identification of viral epitopes associated with ADE or neutralization is important for this purpose. In addition, clear understanding of the cellular events after virus entry through ADE has become crucial for developing efficient intervention. However, the mechanisms of ADE still remain to be better understood.
Collapse
Affiliation(s)
- Sol M Cancel Tirado
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | | |
Collapse
|
35
|
Goto Y, Nishimura Y, Baba K, Mizuno T, Endo Y, Masuda K, Ohno K, Tsujimoto H. Association of plasma viral RNA load with prognosis in cats naturally infected with feline immunodeficiency virus. J Virol 2002; 76:10079-83. [PMID: 12208990 PMCID: PMC136479 DOI: 10.1128/jvi.76.19.10079-10083.2002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We measured the quantity of plasma feline immunodeficiency virus (FIV) RNA using a real-time sequence detecting system. Plasma viral RNA load was shown to correlate with the clinical stage, survival time, and disease progression in naturally FIV-infected cats. The present study indicates that the plasma viral RNA load can be used as a clinical marker representing the impairment of the immune system and predicting the clinical outcome in FIV-infected cats.
Collapse
Affiliation(s)
- Yuko Goto
- Department of Veterinary Internal Medicine, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Richardson J, Broche S, Baud S, Leste-Lasserre T, Féménia F, Levy D, Moraillon A, Pancino G, Sonigo P. Lymphoid activation: a confounding factor in AIDS vaccine development? J Gen Virol 2002; 83:2515-2521. [PMID: 12237435 DOI: 10.1099/0022-1317-83-10-2515] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In a previous vaccination trial, inoculation of env gene DNA failed to elicit a detectable antibody response, yet accelerated virus dissemination in most immunized cats following challenge with feline immunodeficiency virus. This result raised the possibility that cell-mediated immune responses had given rise to immune-mediated enhancement of infection. Since high-level replication of immunodeficiency viruses in lymphocytes requires cellular activation, antigen-specific responses or non-specific polyclonal activation may have increased the frequency of optimal target cells. In the present DNA vaccination trial, although designed so as to minimize non-specific polyclonal activation, immune-mediated enhancement was nonetheless observed in certain immunized cats. Moreover, rapid virus dissemination in vivo was associated with the presence of T-helper responses prior to challenge, and was linked to increased susceptibility of lymphocytes to ex vivo infection. Immune activation may thus be a confounding factor in vaccination against lentivirus infection, diminishing vaccine efficacy and giving rise to immune-mediated enhancement.
Collapse
Affiliation(s)
- Jennifer Richardson
- Génétique des Virus, Institut Cochin (INSERM U567 CNRS UMR 8104), 22 rue Méchain, 75014 Paris, France1
| | - Sophie Broche
- Génétique des Virus, Institut Cochin (INSERM U567 CNRS UMR 8104), 22 rue Méchain, 75014 Paris, France1
| | - Sandrine Baud
- Génétique des Virus, Institut Cochin (INSERM U567 CNRS UMR 8104), 22 rue Méchain, 75014 Paris, France1
| | - Thierry Leste-Lasserre
- Génétique des Virus, Institut Cochin (INSERM U567 CNRS UMR 8104), 22 rue Méchain, 75014 Paris, France1
| | - Françoise Féménia
- Génétique des Virus, Institut Cochin (INSERM U567 CNRS UMR 8104), 22 rue Méchain, 75014 Paris, France1
| | - Daniel Levy
- Génétique des Virus, Institut Cochin (INSERM U567 CNRS UMR 8104), 22 rue Méchain, 75014 Paris, France1
| | - Anne Moraillon
- Génétique des Virus, Institut Cochin (INSERM U567 CNRS UMR 8104), 22 rue Méchain, 75014 Paris, France1
| | - Gianfranco Pancino
- Génétique des Virus, Institut Cochin (INSERM U567 CNRS UMR 8104), 22 rue Méchain, 75014 Paris, France1
| | - Pierre Sonigo
- Génétique des Virus, Institut Cochin (INSERM U567 CNRS UMR 8104), 22 rue Méchain, 75014 Paris, France1
| |
Collapse
|
37
|
Edgeworth RL, San JH, Rosenzweig JA, Nguyen NL, Boyer JD, Ugen KE. Vaccine development against HIV-1: current perspectives and future directions. Immunol Res 2002; 25:53-74. [PMID: 11868934 DOI: 10.1385/ir:25:1:53] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The development of an efficacious vaccine against the human immunodeficiency virus (HIV) is of great urgency, because it is accepted that vaccination is the only means capable of controlling the AIDS pandemic. The foundation of HIV vaccine development is the analysis of immune responses during natural infection and the utilization of this knowledge for the development of protective immunization strategies. Initial vaccine development and experimentation are usually in animal models, including murine, feline, and nonhuman primates. Experimental vaccine candidates are closely studied for both efficacy and safety before proceeding to human clinical trials. There are a number of different therapeutic and prophylactic vaccine strategies currently being studied in human clinical trials. Vaccine strategies that are being tested, or have previously been tested, in humans include subunit, DNA plasmid, and viral vector, and combinations of these various strategies. Some of the results of these trials are promising, and additional research has focused on the development of appropriate chemical and genetic adjuvants as well as methods of vaccine delivery to improve the host immune response. This review summarizes the vaccine strategies that have been tested in both animal models and human clinical trials.
Collapse
Affiliation(s)
- Rebecca L Edgeworth
- Department of Medical Microbiology and Immunology, University of South Florida, College of Medicine, Tampa 33612, USA
| | | | | | | | | | | |
Collapse
|
38
|
Pistello M, Moscardini M, Mazzetti P, Bonci F, Zaccaro L, Isola P, Freer G, Specter S, Matteucci D, Bendinelli M. Development of feline immunodeficiency virus ORF-A (tat) mutants: in vitro and in vivo characterization. Virology 2002; 298:84-95. [PMID: 12093176 DOI: 10.1006/viro.2002.1442] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A functional ORF-A is essential for efficient feline immunodeficiency virus replication in lymphocytes. We have characterized a series of mutants of the Petaluma strain, derived from p34TF10 and having different combinations of stop codons and increasingly long deletions in ORF-A. Six clones proved fully replicative in fibroblastoid Crandell feline kidney cells and monocyte-derived macrophage cultures but failed to replicate in T cell lines and primary lymphoblasts. Cats inoculated with three selected mutants had considerably milder infections than controls given intact ORF-A virus. In vivo, the mutants maintained growth properties similar to those in vitro for at least 7 months, except that replication in lymphoid cells was strongly reduced but not ablated. One mutant underwent extensive ORF-A changes without, however, reverting to wild-type. Antiviral immune responses were feeble in all cats, suggesting that viral loads were too low to represent a sufficiently powerful antigenic stimulus.
Collapse
Affiliation(s)
- M Pistello
- Retrovirus Center and Virology Section, University of Pisa, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Dunham SP, Flynn JN, Rigby MA, Macdonald J, Bruce J, Cannon C, Golder MC, Hanlon L, Harbour DA, Mackay NA, Spibey N, Jarrett O, Neil JC. Protection against feline immunodeficiency virus using replication defective proviral DNA vaccines with feline interleukin-12 and -18. Vaccine 2002; 20:1483-96. [PMID: 11858854 DOI: 10.1016/s0264-410x(01)00507-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
A molecular clone of the Glasgow-8 isolate of FIV (FIVGL8) was rendered replication defective by an in-frame deletion in either reverse transcriptase (deltaRT) or integrase (deltaIN) genes for use as DNA vaccines. To test the ability of these multi-gene vaccines to protect against two feline immunodeficiency virus (FIV) isolates of differing virulence, cats were immunized using either DNA vaccine alone or co-administered with interleukin-12 (IL-12) and/or interleukin-18 (IL-18) cytokine DNA. Animals were challenged sequentially with FIV-Petaluma (FIVPET) an FIV isolate of relatively low virulence and subsequently with the more virulent FIVGL8. A proportion of vaccinates (5/18 deltaIN and 2/12 deltaRT) were protected against primary challenge with FIV(PET). Five of the vaccinated-protected cats were re-challenged with FIV(PET); four (all deltaIN) remained free of viraemia whilst all naive controls became viraemic. Following subsequent challenge with the more virulent FIVGL8 these four vaccinated-protected animals all became viraemic but showed lower proviral loads than naive cats. This study suggests that while our current DNA vaccines may not produce sterilizing immunity against more virulent isolates of FIV, they may nevertheless significantly reduce the impact of infection.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antibodies, Viral/biosynthesis
- Base Sequence
- Cats
- DNA, Viral/genetics
- Defective Viruses/enzymology
- Defective Viruses/genetics
- Defective Viruses/immunology
- Feline Acquired Immunodeficiency Syndrome/immunology
- Feline Acquired Immunodeficiency Syndrome/prevention & control
- Genes, Viral
- Immunodeficiency Virus, Feline/enzymology
- Immunodeficiency Virus, Feline/genetics
- Immunodeficiency Virus, Feline/immunology
- Immunodeficiency Virus, Feline/pathogenicity
- Integrases/genetics
- Interleukin-12/administration & dosage
- Interleukin-18/administration & dosage
- Molecular Sequence Data
- Proviruses/isolation & purification
- RNA-Directed DNA Polymerase/genetics
- Sequence Deletion
- T-Lymphocytes, Cytotoxic/immunology
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/pharmacology
- Viral Vaccines/administration & dosage
- Viral Vaccines/pharmacology
- Virulence
- Virus Replication/genetics
Collapse
Affiliation(s)
- Stephen P Dunham
- Retrovirus Research Laboratory, Department of Veterinary Pathology, University of Glasgow Veterinary School, Bearsden Road, Glasgow G61 1QH, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Hanlon L, Argyle D, Bain D, Nicolson L, Dunham S, Golder MC, McDonald M, McGillivray C, Jarrett O, Neil JC, Onions DE. Feline leukemia virus DNA vaccine efficacy is enhanced by coadministration with interleukin-12 (IL-12) and IL-18 expression vectors. J Virol 2001; 75:8424-33. [PMID: 11507187 PMCID: PMC115087 DOI: 10.1128/jvi.75.18.8424-8433.2001] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2001] [Accepted: 06/07/2001] [Indexed: 11/20/2022] Open
Abstract
The expectation that cell-mediated immunity is important in the control of feline leukemia virus (FeLV) infection led us to test a DNA vaccine administered alone or with cytokines that favored the development of a Th1 immune response. The vaccine consisted of two plasmids, one expressing the gag/pol genes and the other expressing the env gene of FeLV-A/Glasgow-1. The genetic adjuvants were plasmids encoding the feline cytokines interleukin-12 (IL-12), IL-18, or gamma interferon (IFN-gamma). Kittens were immunized by three intramuscular inoculations of the FeLV DNA vaccine alone or in combination with plasmids expressing IFN-gamma, IL-12, or both IL-12 and IL-18. Control kittens were inoculated with empty plasmid. Following immunization, anti-FeLV antibodies were not detected in any kitten. Three weeks after the final immunization, the kittens were challenged by the intraperitoneal inoculation of FeLV-A/Glasgow-1 and were then monitored for a further 15 weeks for the presence of virus in plasma and, at the end of the trial, for latent virus in bone marrow. The vaccine consisting of FeLV DNA with the IL-12 and IL-18 genes conferred significant immunity, protecting completely against transient and persistent viremia, and in five of six kittens protecting against latent infection. None of the other vaccines provided significant protection.
Collapse
Affiliation(s)
- L Hanlon
- Department of Veterinary Pathology, University of Glasgow, Bearsden, Glasgow G61 1QH, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Pu R, Coleman J, Omori M, Arai M, Hohdatsu T, Huang C, Tanabe T, Yamamoto JK. Dual-subtype FIV vaccine protects cats against in vivo swarms of both homologous and heterologous subtype FIV isolates. AIDS 2001; 15:1225-37. [PMID: 11426067 DOI: 10.1097/00002030-200107060-00004] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To evaluate the immunogenicity and efficacy of an inactivated dual-subtype feline immunodeficiency virus (FIV) vaccine. DESIGN Specific-pathogen-free cats were immunized with dual-subtype (subtype A FIV(Pet) and subtype D FIV(Shi)) vaccine and challenged with either in vivo- or in vitro-derived FIV inocula. METHODS Dual-subtype vaccinated, single-subtype vaccinated, and placebo-immunized cats were challenged within vivo-derived heterologous subtype B FIV(Bang) [10--100 50% cat infectious doses (CID(50))], in vivo-derived homologous FIV(Shi)(50 CID(50)), and in vitro- and in vivo-derived homologous FIV(Pet)(20--50 CID(50)). Dual-subtype vaccine immunogenicity and efficacy were evaluated and compared to single-subtype strain vaccines. FIV infection was determined using virus isolation and proviral PCR of peripheral blood mononuclear cells and lymphoid tissues. RESULTS Four out of five dual-subtype vaccinated cats were protected against low-dose FIV(Bang) (10 CID(50)) and subsequently against in vivo-derived FIV(Pet) (50 CID(50)) challenge, whereas all placebo-immunized cats became infected. Furthermore, dual-subtype vaccine protected two out of five cats against high-dose FIV(Bang) challenge (100 CID(50)) which infected seven out of eight single-subtype vaccinated cats. All dual-subtype vaccinated cats were protected against in vivo-derived FIV(Pet), but only one out of five single-subtype vaccinated cats were protected against in vivo-derived FIV(Pet). Dual-subtype vaccination induced broad-spectrum virus-neutralizing antibodies and FIV-specific interferon-gamma responses along with elevated FIV-specific perforin mRNA levels, suggesting an increase in cytotoxic cell activities. CONCLUSION Dual-subtype vaccinated cats developed broad-spectrum humoral and cellular immunity which protected cats against in vivo-derived inocula of homologous and heterologous FIV subtypes. Thus, multi-subtype antigen vaccines may be an effective strategy against AIDS viruses.
Collapse
Affiliation(s)
- R Pu
- Department of Pathobiology, College of Veterinary Medicine, University of Florida, Gainesville, 32611-0880, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Matteucci D, Poli A, Mazzetti P, Sozzi S, Bonci F, Isola P, Zaccaro L, Giannecchini S, Calandrella M, Pistello M, Specter S, Bendinelli M. Immunogenicity of an anti-clade B feline immunodeficiency fixed-cell virus vaccine in field cats. J Virol 2000; 74:10911-9. [PMID: 11069985 PMCID: PMC113170 DOI: 10.1128/jvi.74.23.10911-10919.2000] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Attempts at vaccine development for feline immunodeficiency virus (FIV) have been extensive, both because this is a significant health problem for cats and because FIV may be a useful vaccine model for human immunodeficiency virus. To date, only modest success, producing only short-term protection, has been achieved for vaccine trials in controlled laboratory settings. It is unclear how relevant such experiments are to prevention of natural infection. The current study used a vaccine that employs cell-associated FIV-M2 strain fixed with paraformaldehyde. Subject cats were in a private shelter where FIV was endemic, a prevalence of 29 to 58% over an 8-year observation period. Cats roamed freely from the shelter through the surrounding countryside but returned for food and shelter. After ensuring that cats were FIV negative, they were immunized using six doses of vaccine over a 16-month period and observed for 28 months after the initiation of immunization. Twenty-six cats (12 immunized and 14 nonimmunized controls) were monitored for a minimum of 22 months. Immunized cats did not experience significant adverse effects from immunization and developed both antibodies and cellular immunity to FIV, although individual responses varied greatly. At the conclusion of the study, 0 of 12 immunized cats had evidence of FIV infection, while 5 of 14 control cats were infected. Thus, the vaccine was safe and immunogenic and did not transmit infection. Furthermore, vaccinated cats did not develop FIV infection in a limited clinical trial over an extended time period. Thus, the data suggest that a fixed, FIV-infected cell vaccine has potential for preventing natural FIV infection in free-roaming cats.
Collapse
Affiliation(s)
- D Matteucci
- Department of Biomedicine, Retrovirus Center and Virology Section, University of Pisa, I-56127 Pisa, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
Polynucleotide immunization has captured the imagination of numerous researchers and commercial companies around the world as a novel approach for inducing immunity in animals. Clearly, the 'proof-of-principle' has been demonstrated both in rodents and various animal species. However, to date, no commercial veterinary vaccine has been developed, or to our knowledge, is in the licensing phase. The present review summarizes the types of pathogens and host species for which polynucleotide immunization has been tried. We have tried to identify possible barriers to commercialization of this technology and areas that need attention if this promising technology is ever to become a reality in the commercial arena.
Collapse
Affiliation(s)
- L A Babiuk
- University of Saskatchewan, Veterinary Infectious Disease Organization VIDO, 120 Veterinary Road, Saskatoon, Sask., Canada S7N 5E3.
| | | | | |
Collapse
|
44
|
Boretti FS, Leutenegger CM, Mislin C, Hofmann-Lehmann R, König S, Schroff M, Junghans C, Fehr D, Huettner SW, Habel A, Flynn JN, Aubert A, Pedersen NC, Wittig B, Lutz H. Protection against FIV challenge infection by genetic vaccination using minimalistic DNA constructs for FIV env gene and feline IL-12 expression. AIDS 2000; 14:1749-57. [PMID: 10985311 DOI: 10.1097/00002030-200008180-00009] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
OBJECTIVE To evaluate the efficacy of a genetic vaccination protocol based on minimalistic, immunogenic defined gene expression (MIDGE) vectors coding for domains of the feline immunodeficiency virus (FIV) env gene and feline IL-12. METHODS Three groups of four cats each were immunized three times within 6 weeks by the ballistic transfer of gold particles coated with MIDGE vectors. Group 1 received non-coated gold beads, groups 2 and 3 MIDGE vectors expressing FIV surface plus part of the transmembrane protein. In addition, group 3 received feline IL-12 DNA. All cats were challenged by intraperitoneal injection of 25 TCID50 of infectious FIV Z2. The following criteria were monitored: clinical signs, antibodies to transmembrane protein, antibodies to whole FIV, haematological parameters and kinetics of CD4 and CD8 cells, FIV proviral load (determined by quantitative polymerase chain reaction; PCR) and cytotoxic T lymphocyte (CTL) activity (in selected cats). RESULTS None of the cats developed a detectable antibody response during immunizations. Four weeks after challenge exposure, all cats in group 1 (control) and group 2 (FIV surface-transmembrane protein) had seroconverted and showed a high proviral load until week 19 (end of experiment). In contrast, only one of four cats in group 3 (surface-transmembrane protein and IL-12) showed antibodies; it was provirus positive at reduced virus load. Short-lived CTL activity was found in two cats in group 3. CONCLUSION Genetic vaccination using a MIDGE-based construct for the expression of the surface-transmembrane protein domain of FIV env and feline IL-12 DNA led to protection against homologous virus challenge in three out of four vaccinated cats.
Collapse
Affiliation(s)
- F S Boretti
- Department of Veterinary Internal Medicine, University of Zurich, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
Recently, there has been a great deal of interest in polynucleotide vaccination also referred to as DNA vaccines or genetic immunization for inducing long-term immunity in various animals and humans. The main attraction of this technology is the possibility to induce a broad range of immune responses without the use of conventional adjuvants. To date, most of the studies (>500 reports) have focused on DNA vaccination in mice. The present report summarizes the limited number of trials that have used target animal species to not only test the immune responses but also correlate them to protection.
Collapse
Affiliation(s)
- L A Babiuk
- Veterinary Infectious Disease Organization, University of Saskatchewan, Saskatoon, Canada
| | | |
Collapse
|
46
|
Abstract
Therapeutic and prophylactic DNA vaccine clinical trials for a variety of pathogens and cancers are underway (Chattergoon et al., 1997; Taubes, 1997). The speed with which initiation of these trials occurred is no less than astounding; clinical trials for a human immunodeficiency virus (HIV) gp160 DNA-based vaccine were underway within 36 months of the first description of "genetic immunization" (Tang et al., 1992) and within 24 months of publication of the first article describing intramuscular delivery of a DNA vaccine (Ulmer et al., 1993). Despite the relative fervor with which clinical trials have progressed, it can be safely stated that DNA-based vaccines will not be an immunological "silver bullet." In this regard, it was satisfying to see a publication entitled "DNA Vaccines--A Modern Gimmick or a Boon to Vaccinology?" (Manickan et al., 1997b). There is no doubt that this technology is well beyond the phenomenology phase of study. Research niches and models have been established and will allow the truly difficult questions of mechanism and application to target species to be studied. These two aspects of future studies are intricately interwoven and will ultimately determine the necessity for mechanistic understanding and the evolution of target species studies. The basic science of DNA vaccines has yet to be clearly defined and will ultimately determine the success or failure of this technology to find a place in the immunological arsenal against disease. In a commentary on a published study describing DNA vaccine-mediated protection against heterologous challenge with HIV-1 in chimpanzees, Ronald Kennedy (1997) states, "As someone who has been in the trenches of AIDS vaccine research for over a decade and who, together with collaborators, has attempted a number of different vaccine approaches that have not panned out, I have a relatively pessimistic view of new AIDS vaccine approaches." Kennedy then goes on to summarize a DNA-based multigene vaccine approach and the subsequent development of neutralizing titers and potent CTL activity in immunized chimpanzees (Boyer et al., 1997). Dr. Kennedy closes his commentary by stating. "The most exciting aspect of this report is the experimental challenge studies.... Viraemia was extremely transient and present at low levels during a single time point. These animals remained seronegative ... for one year after challenge" and "Overall, these observations engender some excitement". (Kennedy, 1997). Although this may seem a less than rousing cheer for DNA vaccine technology, it is a refreshingly hopeful outlook for a pathogen to which experience has taught humility. It has also been suggested that DNA vaccine technology may find its true worth as a novel alternative option for the development of vaccines against diseases that conventional vaccines have been unsuccessful in controlling (Manickan et al., 1997b). This is a difficult task for any vaccine, let alone a novel technology. DNA-based vaccine technology represents a powerful and novel entry into the field of immunological control of disease. The spinoff research has also been dramatic, and includes the rediscovery of potent bacterially derived immunomodulatory DNA sequences (Gilkeson et al., 1989), as well as availability of a methodology that allows extremely rapid assessment and dissection of both antigens and immunity. The benefits of potent Th1-type immune responses to DNA vaccines must not be overlooked, particularly in the light of suggestions that Western culture immunization practices may be responsible for the rapid increases in adult allergic and possibly autoimmune disorders (Rook and Stanford, 1998). The full utility of this technology has not yet been realized, and yet its broad potential is clearly evident. Future investigations of this technology must not be hindered by impatience, misunderstanding, and lack of funding or failure of an informed collective and collaborative effort.
Collapse
Affiliation(s)
- P J Lewis
- Veterinary Infectious Disease Organization, University of Saskatchewan, Saskatoon, Canada
| | | |
Collapse
|
47
|
Hasan UA, Abai AM, Harper DR, Wren BW, Morrow WJ. Nucleic acid immunization: concepts and techniques associated with third generation vaccines. J Immunol Methods 1999; 229:1-22. [PMID: 10556687 DOI: 10.1016/s0022-1759(99)00104-0] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A radical change in vaccine methodology arrived nine years ago with the advent of nucleic acid immunization. Aspects such as plasmid design, gene selection, the use of immunostimulatory complexes and clinical trials are discussed in this review. Furthermore, concepts and protocols involved in the construction, evaluation and immunization of a DNA vaccine have been examined as new strategies to enhance this technology continues to grow.
Collapse
Affiliation(s)
- U A Hasan
- Molecular Immunology and Infection Research Group, Department of Immunology, St. Bartholomew's and the Royal London School of Medicine and Dentistry, 38 Little Britain, London, UK
| | | | | | | | | |
Collapse
|
48
|
Matteucci D, Pistello M, Mazzetti P, Giannecchini S, Isola P, Merico A, Zaccaro L, Rizzuti A, Bendinelli M. AIDS vaccination studies using feline immunodeficiency virus as a model: immunisation with inactivated whole virus suppresses viraemia levels following intravaginal challenge with infected cells but not following intravenous challenge with cell-free virus. Vaccine 1999; 18:119-30. [PMID: 10501242 DOI: 10.1016/s0264-410x(99)00189-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The feline immunodeficiency virus (FIV) provides an excellent model system for AIDS vaccination studies. In the present experiments we investigated the immunogenicity and the protective activity of two inactivated vaccines prepared from a primary virus isolate. One vaccine was composed of whole virus inactivated with paraformaldehyde and then purified (WIV) and the other of viral proteins extracted with Tween-ether (TEV). Both vaccines elicited robust antiviral responses, but neither conferred appreciable levels of resistance against systemic challenge with the homologous virus. In addition, we tested whether the WIV vaccine, that had appeared more immunogenic, could protect against nontraumatic intravaginal exposure to FIV-infected cells. Although the proportions of control and vaccinated animals that became infected following mucosal challenge were similar, the vaccinees had significantly lower viral burdens than the controls, thus suggesting that immunisation with the WIV vaccine had limited FIV replication following intravaginal challenge.
Collapse
Affiliation(s)
- D Matteucci
- Department of Biomedicine, University of Pisa, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Raabe ML, Issel CJ, Montelaro RC. In vitro antibody-dependent enhancement assays are insensitive indicators of in vivo vaccine enhancement of equine infectious anemia virus. Virology 1999; 259:416-27. [PMID: 10388665 DOI: 10.1006/viro.1999.9772] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have previously demonstrated a high propensity for enhancement of virus replication and disease resulting from experimental immunization of ponies with a baculovirus recombinant envelope (rgp90) vaccine from equine infectious anemia virus (EIAV). The current studies were undertaken to examine the correlation between the observed in vivo vaccine enhancement and in vitro assays for antibody-dependent enhancement (ADE) of EIAV replication. Toward this goal an optimized EIAV in vitro enhancement assay was developed using primary equine macrophage cells and used to evaluate the enhancement properties of immune serum taken from rgp90 immunized ponies that displayed various levels of vaccine enhancement after experimental challenge with EIAV. For comparison, we analyzed in parallel immune serum samples from a group of ponies immunized with a viral envelope subunit vaccine (LL-gp) that produced sterile protection from EIAV challenge. The results of these assays demonstrated that the rgp90 immune serum had a greater propensity for in vitro enhancement of EIAV replication than serum from the protected LL-gp immunized ponies; in vitro enhancement levels for the rgp90 immune sera averaged about 1.5, with a maximum enhancement value of about 2.0. While distinguishing between immune serum produced by the rgp90 and LL-gp immunizations, the in vitro enhancement assay failed to reliably correlate with the severity of in vivo enhancement observed among the rgp90 vaccine recipients. Vaccinated ponies that experienced moderate to no disease signs displayed levels of in vitro enhancement similar to those of ponies that experienced severe and fatal enhancement of disease after viral challenge. The observed in vitro enhancement was demonstrated to be dependent on serum immunoglobulin, but independent of complement. These studies demonstrate in the EIAV system that in vitro ADE assays appear to be relatively insensitive indicators of the severity of in vivo enhancement and that relatively low levels of in vitro ADE can be associated with severe to fatal enhancement of virus replication and disease in vivo. These observations suggest that relatively low levels of serum ADE observed in other lentivirus systems, including HIV-1, may have more profound effects on in vivo virus replication and disease than previously recognized.
Collapse
Affiliation(s)
- M L Raabe
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, 15261, USA
| | | | | |
Collapse
|
50
|
Gerdts V, Jöns A, Mettenleiter TC. Potency of an experimental DNA vaccine against Aujeszky's disease in pigs. Vet Microbiol 1999; 66:1-13. [PMID: 10223318 DOI: 10.1016/s0378-1135(98)00300-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Intradermal vaccination with plasmid DNA encoding envelope glycoprotein C (gC) of pseudorabies virus (PrV) conferred protection of pigs against Aujeszky's disease when challenged with strain 75V19, but proved to be inadequate for protection against the highly virulent strain NIA-3. To improve the performance of the DNA vaccine, animals were vaccinated intradermally with a combination of plasmids expressing PrV glycoproteins gB, gC, gD, or gE under control of the major immediate-early promotor/enhancer of human cytomegalovirus. 12.5 microg per plasmid were used per immunization of 5-week old piglets which were injected three times at biweekly intervals. Five out of six animals survived a lethal challenge with strain NIA-3 without exhibiting central nervous signs, whereas all the control animals succumbed to the disease. This result shows the increased protection afforded by administration of the plasmid mixture over vaccination with a gC expressing plasmid alone. A comparative trial was performed using commercially available inactivated and modified-live vaccines and a mixture of plasmids expressing gB, gC, and gD. gE was omitted to conform with current eradication strategies based on gE-deleted vaccines. All six animals vaccinated with the live vaccine survived the lethal NIA-3 challenge without showing severe clinical signs. In contrast, five of six animals immunized with the inactivated vaccine died, as did two non-vaccinated controls. In this test, three of six animals vaccinated with the DNA vaccine survived without severe clinical signs, whereas three succumbed to the disease. Comparing weight reduction and virus excretion, the DNA vaccine also ranged between the inactivated and modified-live vaccines. Thus, administration of DNA constructs expressing different PrV glycoproteins was superior to an adjuvanted inactivated vaccine but less effective than an attenuated live vaccine in protection of pigs against PrV infection. Our data suggest a potential use of DNA vaccination in circumstances which do not allow administration of live attenuated vaccines.
Collapse
Affiliation(s)
- V Gerdts
- Institute of Molecular and Cellular Virology, Friedrich-Loeffler-Institutes, Federal Research Centre for Virus Diseases of Animals, Insel Riems, Germany
| | | | | |
Collapse
|