1
|
Duan Y, Liu Z, Zang N, Cong B, Shi Y, Xu L, Jiang M, Wang P, Zou J, Zhang H, Feng Z, Feng L, Ren L, Liu E, Li Y, Zhang Y, Xie Z. Landscape of respiratory syncytial virus. Chin Med J (Engl) 2024; 137:2953-2978. [PMID: 39501814 PMCID: PMC11706595 DOI: 10.1097/cm9.0000000000003354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Indexed: 01/11/2025] Open
Abstract
ABSTRACT Respiratory syncytial virus (RSV) is an enveloped, negative-sense, single-stranded RNA virus of the Orthopneumovirus genus of the Pneumoviridae family in the order Mononegavirales. RSV can cause acute upper and lower respiratory tract infections, sometimes with extrapulmonary complications. The disease burden of RSV infection is enormous, mainly affecting infants and older adults aged 75 years or above. Currently, treatment options for RSV are largely supportive. Prevention strategies remain a critical focus, with efforts centered on vaccine development and the use of prophylactic monoclonal antibodies. To date, three RSV vaccines have been approved for active immunization among individuals aged 60 years and above. For children who are not eligible for these vaccines, passive immunization is recommended. A newly approved prophylactic monoclonal antibody, Nirsevimab, which offers enhanced neutralizing activity and an extended half-life, provides exceptional protection for high-risk infants and young children. This review provides a comprehensive and detailed exploration of RSV's virology, immunology, pathogenesis, epidemiology, clinical manifestations, treatment options, and prevention strategies.
Collapse
Affiliation(s)
- Yuping Duan
- School of Population Medicine and Public Health, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
- State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100029, China
| | - Zimeng Liu
- National Health Commission Key Laboratory of Systems Biology of Pathogen, Christophe Mérieux Laboratory, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 102629, China
| | - Na Zang
- Department of Respiratory Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, China
- Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Key Laboratory of Children’s Important Organ Development and Diseases of Chongqing Municipal Health Commission, Chongqing 400014, China
| | - Bingbing Cong
- Department of Epidemiology, National Vaccine Innovation Platform, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yuqing Shi
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, NHC Key Laboratory of Medical Virology and Viral Disease, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Lili Xu
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences (2019RU016), Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health,Beijing 100045, China
| | - Mingyue Jiang
- School of Population Medicine and Public Health, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
- State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100029, China
| | - Peixin Wang
- National Health Commission Key Laboratory of Systems Biology of Pathogen, Christophe Mérieux Laboratory, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 102629, China
| | - Jing Zou
- Department of Epidemiology, National Vaccine Innovation Platform, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Han Zhang
- Department of Epidemiology, National Vaccine Innovation Platform, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Ziheng Feng
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences (2019RU016), Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health,Beijing 100045, China
| | - Luzhao Feng
- School of Population Medicine and Public Health, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
- State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100029, China
| | - Lili Ren
- State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100029, China
- National Health Commission Key Laboratory of Systems Biology of Pathogen, Christophe Mérieux Laboratory, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 102629, China
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Enmei Liu
- Department of Respiratory Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, China
- Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Key Laboratory of Children’s Important Organ Development and Diseases of Chongqing Municipal Health Commission, Chongqing 400014, China
| | - You Li
- Department of Epidemiology, National Vaccine Innovation Platform, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Centre for Global Health, Usher Institute, University of Edinburgh, Edinburgh EH8 9AG, UK
- Changzhou Third People’s Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu 213000, China
| | - Yan Zhang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, NHC Key Laboratory of Medical Virology and Viral Disease, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Zhengde Xie
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences (2019RU016), Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health,Beijing 100045, China
| |
Collapse
|
2
|
Peng Q, Dong Y, Jia M, Liu Q, Bi Y, Qi J, Shi Y. Cryo-EM structure of Nipah virus L-P polymerase complex. Nat Commun 2024; 15:10524. [PMID: 39627254 PMCID: PMC11615333 DOI: 10.1038/s41467-024-54994-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 11/27/2024] [Indexed: 12/06/2024] Open
Abstract
Nipah virus (NiV) is a non-segmented, negative-strand (NNS) RNA virus, belonging to Paramyxoviridae. The RNA polymerase complex, composed of large (L) protein and tetrameric phosphoprotein (P), is responsible for genome transcription and replication by catalyzing NTP polymerization, mRNA capping and cap methylation. Here, we determine the cryo-electron microscopy (cryo-EM) structure of fully bioactive NiV L-P polymerase complex at a resolution of 3.19 Å. The L-P complex displays a conserved architecture like other NNS RNA virus polymerases and L interacts with the oligomerization domain and the extreme C-terminus region of P tetramer. Moreover, we elucidate that NiV is naturally resistant to the allosteric L-targeting inhibitor GHP-88309 due to the conformational change in the drug binding site. We also find that the non-nucleotide drug suramin can inhibit the NiV L-P polymerase activity at both the enzymatic and cellular levels. Our findings have greatly enhanced the molecular understanding of NiV genome replication and transcription and provided the rationale for broad-spectrum polymerase-targeted drug design.
Collapse
Affiliation(s)
- Qi Peng
- Beijing Life Science Academy, Beijing, China
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yingying Dong
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Shandong First Medical University, Jinan, China
| | - Mingzhu Jia
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Qiannv Liu
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Yuhai Bi
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Jianxun Qi
- Beijing Life Science Academy, Beijing, China
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Yi Shi
- Beijing Life Science Academy, Beijing, China.
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
- Medical School, University of Chinese Academy of Sciences, Beijing, China.
- Health Science Center, Ningbo University, Ningbo, China.
| |
Collapse
|
3
|
Wignall-Fleming EB, Carlos TS, Randall RE. Liquid-liquid phase inclusion bodies in acute and persistent parainfluenaza virus type 5 infections. J Gen Virol 2024; 105. [PMID: 39264707 PMCID: PMC11392044 DOI: 10.1099/jgv.0.002021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024] Open
Abstract
Cytoplasmic inclusion bodies (IBs) are a common feature of single-stranded, non-segmented, negative-strand RNA virus (Mononegavirales) infections and are thought to be regions of active virus transcription and replication. Here we followed the dynamics of IB formation and maintenance in cells infected with persistent and lytic/acute variants of the paramyxovirus, parainfluenza virus type 5 (PIV5). We show that there is a rapid increase in the number of small inclusions bodies up until approximately 12 h post-infection. Thereafter the number of inclusion bodies decreases but they increase in size, presumably due to the fusion of these liquid organelles that can be disrupted by osmotically shocking cells. No obvious differences were observed at these times between inclusion body formation in cells infected with lytic/acute and persistent viruses. IBs are also readily detected in cells persistently infected with PIV5, including in cells in which there is little or no ongoing virus transcription or replication. In situ hybridization shows that genomic RNA is primarily located in IBs, whilst viral mRNA is more diffusely distributed throughout the cytoplasm. Some, but not all, IBs show incorporation of 5-ethynyl-uridine (5EU), which is integrated into newly synthesized RNA, at early times post-infection. These results strongly suggest that, although genomic RNA is present in all IBs, IBs are not continuously active sites of virus transcription and replication. Disruption of IBs by osmotically shocking persistently infected cells does not increase virus protein synthesis, suggesting that in persistently infected cells most of the virus genomes are in a repressed state. The role of IBs in PIV5 replication and the establishment and maintenance of persistence is discussed.
Collapse
Affiliation(s)
- E B Wignall-Fleming
- School of Biology, Centre for Biomolecular Sciences, BMS Building, North Haugh, University of St. Andrews, St. Andrews, Fife, KY16 9ST, UK
| | - T S Carlos
- School of Biology, Centre for Biomolecular Sciences, BMS Building, North Haugh, University of St. Andrews, St. Andrews, Fife, KY16 9ST, UK
- Present address: Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - R E Randall
- School of Biology, Centre for Biomolecular Sciences, BMS Building, North Haugh, University of St. Andrews, St. Andrews, Fife, KY16 9ST, UK
| |
Collapse
|
4
|
Gao Y, Raghavan A, Espinosa Garcia SA, Deng B, Hurtado de Mendoza D, Liang B. In vitro higher-order oligomeric assembly of the respiratory syncytial virus M2-1 protein with longer RNAs. J Virol 2024; 98:e0104624. [PMID: 39016557 PMCID: PMC11334520 DOI: 10.1128/jvi.01046-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 06/24/2024] [Indexed: 07/18/2024] Open
Abstract
The respiratory syncytial virus (RSV) M2-1 protein is a transcriptional antitermination factor crucial for efficiently synthesizing multiple full-length viral mRNAs. During RSV infection, M2-1 exists in a complex with mRNA within cytoplasmic compartments called inclusion body-associated granules (IBAGs). Prior studies showed that M2-1 can bind along the entire length of viral mRNAs instead of just gene-end (GE) sequences, suggesting that M2-1 has more sophisticated RNA recognition and binding characteristics. Here, we analyzed the higher oligomeric complexes formed by M2-1 and RNAs in vitro using size exclusion chromatography (SEC), electrophoretic mobility shift assays (EMSA), negative stain electron microscopy (EM), and mutagenesis. We observed that the minimal RNA length for such higher oligomeric assembly is about 14 nucleotides for polyadenine sequences, and longer RNAs exhibit distinct RNA-induced binding modality to M2-1, leading to enhanced particle formation frequency and particle homogeneity as the local RNA concentration increases. We showed that particular cysteine residues of the M2-1 cysteine-cysteine-cystine-histidine (CCCH) zinc-binding motif are essential for higher oligomeric assembly. Furthermore, complexes assembled with long polyadenine sequences remain unaffected when co-incubated with ribonucleases or a zinc chelation agent. Our study provided new insights into the higher oligomeric assembly of M2-1 with longer RNA.IMPORTANCERespiratory syncytial virus (RSV) causes significant respiratory infections in infants, the elderly, and immunocompromised individuals. The virus forms specialized compartments to produce genetic material, with the M2-1 protein playing a pivotal role. M2-1 acts as an anti-terminator in viral transcription, ensuring the creation of complete viral mRNA and associating with both viral and cellular mRNA. Our research focuses on understanding M2-1's function in viral mRNA synthesis by modeling interactions in a controlled environment. This approach is crucial due to the challenges of studying these compartments in vivo. Reconstructing the system in vitro uncovers structural and biochemical aspects and reveals the potential functions of M2-1 and its homologs in related viruses. Our work may contribute to identifying targets for antiviral inhibitors and advancing RSV infection treatment.
Collapse
Affiliation(s)
- Yunrong Gao
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Anirudh Raghavan
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | - Bowei Deng
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | - Bo Liang
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
5
|
Kleiner VA, Fearns R. How does the polymerase of non-segmented negative strand RNA viruses commit to transcription or genome replication? J Virol 2024; 98:e0033224. [PMID: 39078194 PMCID: PMC11334523 DOI: 10.1128/jvi.00332-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024] Open
Abstract
The Mononegavirales, or non-segmented negative-sense RNA viruses (nsNSVs), includes significant human pathogens, such as respiratory syncytial virus, parainfluenza virus, measles virus, Ebola virus, and rabies virus. Although these viruses differ widely in their pathogenic properties, they are united by each having a genome consisting of a single strand of negative-sense RNA. Consistent with their shared genome structure, the nsNSVs have evolved similar ways to transcribe their genome into mRNAs and replicate it to produce new genomes. Importantly, both mRNA transcription and genome replication are performed by a single virus-encoded polymerase. A fundamental and intriguing question is: how does the nsNSV polymerase commit to being either an mRNA transcriptase or a replicase? The polymerase must become committed to one process or the other either before it interacts with the genome template or in its initial interactions with the promoter sequence at the 3´ end of the genomic RNA. This review examines the biochemical, molecular biology, and structural biology data regarding the first steps of transcription and RNA replication that have been gathered over several decades for different families of nsNSVs. These findings are discussed in relation to possible models that could explain how an nsNSV polymerase initiates and commits to either transcription or genome replication.
Collapse
Affiliation(s)
- Victoria A. Kleiner
- Department of Virology, Immunology & Microbiology, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Rachel Fearns
- Department of Virology, Immunology & Microbiology, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
6
|
McCarty TC, Vaisman II. Respiratory Syncytial Virus Vaccine Design Using Structure-Based Machine-Learning Models. Viruses 2024; 16:821. [PMID: 38932114 PMCID: PMC11209532 DOI: 10.3390/v16060821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/26/2024] [Accepted: 05/17/2024] [Indexed: 06/28/2024] Open
Abstract
When designing live-attenuated respiratory syncytial virus (RSV) vaccine candidates, attenuating mutations can be developed through biologic selection or reverse-genetic manipulation and may include point mutations, codon and gene deletions, and genome rearrangements. Attenuation typically involves the reduction in virus replication, due to direct effects on viral structural and replicative machinery or viral factors that antagonize host defense or cause disease. However, attenuation must balance reduced replication and immunogenic antigen expression. In the present study, we explored a new approach in order to discover attenuating mutations. Specifically, we used protein structure modeling and computational methods to identify amino acid substitutions in the RSV nonstructural protein 1 (NS1) predicted to cause various levels of structural perturbation. Twelve different mutations predicted to alter the NS1 protein structure were introduced into infectious virus and analyzed in cell culture for effects on viral mRNA and protein expression, interferon and cytokine expression, and caspase activation. We found the use of structure-based machine learning to predict amino acid substitutions that reduce the thermodynamic stability of NS1 resulted in various levels of loss of NS1 function, exemplified by effects including reduced multi-cycle viral replication in cells competent for type I interferon, reduced expression of viral mRNAs and proteins, and increased interferon and apoptosis responses.
Collapse
Affiliation(s)
- Thomas C. McCarty
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA;
| | - Iosif I. Vaisman
- School of Systems Biology, George Mason University, Manassas, VA 20110, USA
| |
Collapse
|
7
|
Levy M, Chen JW, Kaiser JA, Park HS, Liu X, Yang L, Santos C, Buchholz UJ, Le Nouën C. Intranasal respiratory syncytial virus vaccine attenuated by codon-pair deoptimization of seven open reading frames is genetically stable and elicits mucosal and systemic immunity and protection against challenge virus replication in hamsters. PLoS Pathog 2024; 20:e1012198. [PMID: 38739647 PMCID: PMC11115275 DOI: 10.1371/journal.ppat.1012198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 05/23/2024] [Accepted: 04/16/2024] [Indexed: 05/16/2024] Open
Abstract
Respiratory syncytial virus (RSV) is the most important viral agent of severe pediatric respiratory illness worldwide, but there is no approved pediatric vaccine. Here, we describe the development of the live-attenuated RSV vaccine candidate Min AL as well as engineered derivatives. Min AL was attenuated by codon-pair deoptimization (CPD) of seven of the 11 RSV open reading frames (ORFs) (NS1, NS2, N, P, M, SH and L; 2,073 silent nucleotide substitutions in total). Min AL replicated efficiently in vitro at the permissive temperature of 32°C but was highly temperature sensitive (shut-off temperature of 36°C). When serially passaged at increasing temperatures, Min AL retained greater temperature sensitivity compared to previous candidates with fewer CPD ORFs. However, whole-genome deep-sequencing of passaged Min AL revealed mutations throughout its genome, most commonly missense mutations in the polymerase cofactor P and anti-termination transcription factor M2-1 (the latter was not CPD). Reintroduction of selected mutations into Min AL partially rescued its replication in vitro at temperatures up to 40°C, confirming their compensatory effect. These mutations restored the accumulation of positive-sense RNAs to wild-type (wt) RSV levels, suggesting increased activity by the viral transcriptase, whereas viral protein expression, RNA replication, and virus production were only partly rescued. In hamsters, Min AL and derivatives remained highly restricted in replication in the upper and lower airways, but induced serum IgG and IgA responses to the prefusion form of F (pre F) that were comparable to those induced by wt RSV, as well as robust mucosal and systemic IgG and IgA responses against RSV G. Min AL and derivatives were fully protective against challenge virus replication. The derivatives had increased genetic stability compared to Min AL. Thus, Min AL and derivatives with selected mutations are stable, attenuated, yet highly-immunogenic RSV vaccine candidates that are available for further evaluation.
Collapse
Affiliation(s)
- Megan Levy
- RNA Viruses Section, Laboratory of Infectious Diseases, NIAID, NIH, Bethesda, Maryland, United States of America
| | - Jessica W. Chen
- RNA Viruses Section, Laboratory of Infectious Diseases, NIAID, NIH, Bethesda, Maryland, United States of America
| | - Jaclyn A. Kaiser
- RNA Viruses Section, Laboratory of Infectious Diseases, NIAID, NIH, Bethesda, Maryland, United States of America
| | - Hong-Su Park
- RNA Viruses Section, Laboratory of Infectious Diseases, NIAID, NIH, Bethesda, Maryland, United States of America
| | - Xueqiao Liu
- RNA Viruses Section, Laboratory of Infectious Diseases, NIAID, NIH, Bethesda, Maryland, United States of America
| | - Lijuan Yang
- RNA Viruses Section, Laboratory of Infectious Diseases, NIAID, NIH, Bethesda, Maryland, United States of America
| | - Celia Santos
- RNA Viruses Section, Laboratory of Infectious Diseases, NIAID, NIH, Bethesda, Maryland, United States of America
| | - Ursula J. Buchholz
- RNA Viruses Section, Laboratory of Infectious Diseases, NIAID, NIH, Bethesda, Maryland, United States of America
| | - Cyril Le Nouën
- RNA Viruses Section, Laboratory of Infectious Diseases, NIAID, NIH, Bethesda, Maryland, United States of America
| |
Collapse
|
8
|
Risso-Ballester J, Rameix-Welti MA. Spatial resolution of virus replication: RSV and cytoplasmic inclusion bodies. Adv Virus Res 2023; 116:1-43. [PMID: 37524479 DOI: 10.1016/bs.aivir.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Respiratory Syncytial Virus (RSV) is a major cause of respiratory illness in young children, elderly and immunocompromised individuals worldwide representing a severe burden for health systems. The urgent development of vaccines or specific antivirals against RSV is impaired by the lack of knowledge regarding its replication mechanisms. RSV is a negative-sense single-stranded RNA (ssRNA) virus belonging to the Mononegavirales order (MNV) which includes other viruses pathogenic to humans as Rabies (RabV), Ebola (EBOV), or measles (MeV) viruses. Transcription and replication of viral genomes occur within cytoplasmatic virus-induced spherical inclusions, commonly referred as inclusion bodies (IBs). Recently IBs were shown to exhibit properties of membrane-less organelles (MLO) arising by liquid-liquid phase separation (LLPS). Compartmentalization of viral RNA synthesis steps in viral-induced MLO is indeed a common feature of MNV. Strikingly these key compartments still remain mysterious. Most of our current knowledge on IBs relies on the use of fluorescence microscopy. The ability to fluorescently label IBs in cells has been key to uncover their dynamics and nature. The generation of recombinant viruses expressing a fluorescently-labeled viral protein and the immunolabeling or the expression of viral fusion proteins known to be recruited in IBs are some of the tools used to visualize IBs in infected cells. In this chapter, microscope techniques and the most relevant studies that have shed light on RSV IBs fundamental aspects, including biogenesis, organization and dynamics are being discussed and brought to light with the investigations carried out on other MNV.
Collapse
Affiliation(s)
| | - Marie-Anne Rameix-Welti
- Institut Pasteur, Université Paris-Saclay, Université de Versailles St. Quentin, UMR 1173 (2I), INSERM, Paris, France; Assistance Publique des Hôpitaux de Paris, Hôpital Ambroise Paré, Laboratoire de Microbiologie, DMU15, Paris, France.
| |
Collapse
|
9
|
Sutto-Ortiz P, Eléouët JF, Ferron F, Decroly E. Biochemistry of the Respiratory Syncytial Virus L Protein Embedding RNA Polymerase and Capping Activities. Viruses 2023; 15:v15020341. [PMID: 36851554 PMCID: PMC9960070 DOI: 10.3390/v15020341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/12/2023] [Accepted: 01/21/2023] [Indexed: 01/27/2023] Open
Abstract
The human respiratory syncytial virus (RSV) is a negative-sense, single-stranded RNA virus. It is the major cause of severe acute lower respiratory tract infection in infants, the elderly population, and immunocompromised individuals. There is still no approved vaccine or antiviral treatment against RSV disease, but new monoclonal prophylactic antibodies are yet to be commercialized, and clinical trials are in progress. Hence, urgent efforts are needed to develop efficient therapeutic treatments. RSV RNA synthesis comprises viral transcription and replication that are catalyzed by the large protein (L) in coordination with the phosphoprotein polymerase cofactor (P), the nucleoprotein (N), and the M2-1 transcription factor. The replication/transcription is orchestrated by the L protein, which contains three conserved enzymatic domains: the RNA-dependent RNA polymerase (RdRp), the polyribonucleotidyl transferase (PRNTase or capping), and the methyltransferase (MTase) domain. These activities are essential for the RSV replicative cycle and are thus considered as attractive targets for the development of therapeutic agents. In this review, we summarize recent findings about RSV L domains structure that highlight how the enzymatic activities of RSV L domains are interconnected, discuss the most relevant and recent antivirals developments that target the replication/transcription complex, and conclude with a perspective on identified knowledge gaps that enable new research directions.
Collapse
Affiliation(s)
| | - Jean-François Eléouët
- Unité de Virologie et Immunologie Moléculaires, INRAE, Université Paris Saclay, F78350 Jouy en Josas, France
| | - François Ferron
- Aix Marseille Université, CNRS, AFMB, UMR, 7257 Marseille, France
- European Virus Bioinformatics Center, Leutragraben 1, 07743 Jena, Germany
| | - Etienne Decroly
- Aix Marseille Université, CNRS, AFMB, UMR, 7257 Marseille, France
- Correspondence:
| |
Collapse
|
10
|
Piedra FA, Henke D, Rajan A, Muzny DM, Doddapaneni H, Menon VK, Hoffman KL, Ross MC, Javornik Cregeen SJ, Metcalf G, Gibbs RA, Petrosino JF, Avadhanula V, Piedra PA. Modeling nonsegmented negative-strand RNA virus (NNSV) transcription with ejective polymerase collisions and biased diffusion. Front Mol Biosci 2023; 9:1095193. [PMID: 36699700 PMCID: PMC9868645 DOI: 10.3389/fmolb.2022.1095193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023] Open
Abstract
Infections by non-segmented negative-strand RNA viruses (NNSV) are widely thought to entail gradient gene expression from the well-established existence of a single promoter at the 3' end of the viral genome and the assumption of constant transcriptional attenuation between genes. But multiple recent studies show viral mRNA levels in infections by respiratory syncytial virus (RSV), a major human pathogen and member of NNSV, that are inconsistent with a simple gradient. Here we integrate known and newly predicted phenomena into a biophysically reasonable model of NNSV transcription. Our model succeeds in capturing published observations of respiratory syncytial virus and vesicular stomatitis virus (VSV) mRNA levels. We therefore propose a novel understanding of NNSV transcription based on the possibility of ejective polymerase-polymerase collisions and, in the case of RSV, biased polymerase diffusion.
Collapse
Affiliation(s)
- Felipe-Andrés Piedra
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, Unites States
| | - David Henke
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, Unites States
| | - Anubama Rajan
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, Unites States
| | - Donna M. Muzny
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, Unites States
| | - Harsha Doddapaneni
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, Unites States
| | - Vipin K. Menon
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, Unites States
| | - Kristi L. Hoffman
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, Unites States
| | - Matthew C. Ross
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, Unites States
| | - Sara J. Javornik Cregeen
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, Unites States
| | - Ginger Metcalf
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, Unites States
| | - Richard A. Gibbs
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, Unites States
| | - Joseph F. Petrosino
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, Unites States
| | - Vasanthi Avadhanula
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, Unites States
| | - Pedro A. Piedra
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, Unites States
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, Unites States
| |
Collapse
|
11
|
Donovan-Banfield I, Milligan R, Hall S, Gao T, Murphy E, Li J, Shawli GT, Hiscox J, Zhuang X, McKeating JA, Fearns R, Matthews DA. Direct RNA sequencing of respiratory syncytial virus infected human cells generates a detailed overview of RSV polycistronic mRNA and transcript abundance. PLoS One 2022; 17:e0276697. [PMID: 36355791 PMCID: PMC9648745 DOI: 10.1371/journal.pone.0276697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 10/11/2022] [Indexed: 11/12/2022] Open
Abstract
To characterize species of viral mRNA transcripts generated during respiratory syncytial virus (RSV) infection, human fibroblast-like MRC-5 lung cells were infected with subgroup A RSV for 6, 16 and 24 hours. In addition, we characterised the viral transcriptome in infected Calu-3 lung epithelial cells at 48 hours post infection. Total RNA was harvested and polyadenylated mRNA was enriched and sequenced by direct RNA sequencing using an Oxford nanopore device. This platform yielded over 450,000 direct mRNA transcript reads which were mapped to the viral genome and analysed to determine the relative mRNA levels of viral genes using our in-house ORF-centric pipeline. We examined the frequency of polycistronic readthrough mRNAs were generated and assessed the length of the polyadenylated tails for each group of transcripts. We show a general but non-linear decline in gene transcript abundance across the viral genome, as predicted by the model of RSV gene transcription. However, the decline in transcript abundance is not uniform. The polyadenylate tails generated by the viral polymerase are similar in length to those generated by the host polyadenylation machinery and broadly declined in length for most transcripts as the infection progressed. Finally, we observed that the steady state abundance of transcripts with very short polyadenylate tails less than 20 nucleotides is less for N, SH and G transcripts in both cell lines compared to NS1, NS2, P, M, F and M2 which may reflect differences in mRNA stability and/or translation rates within and between the cell lines.
Collapse
Affiliation(s)
- I’ah Donovan-Banfield
- School of Cellular and Molecular Medicine, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
- Department of Infection Biology and Microbiome, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Rachel Milligan
- School of Cellular and Molecular Medicine, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
| | - Sophie Hall
- School of Cellular and Molecular Medicine, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
| | - Tianyi Gao
- School of Cellular and Molecular Medicine, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
| | - Eleanor Murphy
- School of Cellular and Molecular Medicine, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
| | - Jack Li
- School of Cellular and Molecular Medicine, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
| | - Ghada T. Shawli
- Department of Infection Biology and Microbiome, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Julian Hiscox
- Department of Infection Biology and Microbiome, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Xiaodong Zhuang
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Jane A. McKeating
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, United Kingdom
| | - Rachel Fearns
- Department of Microbiology, National Emerging Infectious Diseases Laboratories, Boston University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail: (DAM); (RF)
| | - David A. Matthews
- School of Cellular and Molecular Medicine, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
- * E-mail: (DAM); (RF)
| |
Collapse
|
12
|
Multiple Respiratory Syncytial Virus (RSV) Strains Infecting HEp-2 and A549 Cells Reveal Cell Line-Dependent Differences in Resistance to RSV Infection. J Virol 2022; 96:e0190421. [PMID: 35285685 PMCID: PMC9006923 DOI: 10.1128/jvi.01904-21] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Respiratory syncytial virus (RSV) is a leading cause of pediatric acute respiratory infection worldwide. There are currently no approved vaccines or antivirals to combat RSV disease. A few transformed cell lines and two historic strains have been extensively used to study RSV. Here, we reported a thorough molecular and cell biological characterization of HEp-2 and A549 cells infected with one of four strains of RSV representing both major subgroups as well as historic and more contemporary genotypes (RSV/A/Tracy [GA1], RSV/A/Ontario [ON], RSV/B/18537 [GB1], and RSV/B/Buenos Aires [BA]) via measurements of viral replication kinetics and viral gene expression, immunofluorescence-based imaging of gross cellular morphology and cell-associated RSV, and measurements of host response, including transcriptional changes and levels of secreted cytokines and growth factors. IMPORTANCE Infection with the respiratory syncytial virus (RSV) early in life is essentially guaranteed and can lead to severe disease. Most RSV studies have involved either of two historic RSV/A strains infecting one of two cell lines, HEp-2 or A549 cells. However, RSV contains ample variation within two evolving subgroups (A and B), and HEp-2 and A549 cell lines are genetically distinct. Here, we measured viral action and host response in both HEp-2 and A549 cells infected with four RSV strains from both subgroups and representing both historic and more contemporary strains. We discovered a subgroup-dependent difference in viral gene expression and found A549 cells were more potently antiviral and more sensitive, albeit subtly, to viral variation. Our findings revealed important differences between RSV subgroups and two widely used cell lines and provided baseline data for experiments with model systems better representative of natural RSV infection.
Collapse
|
13
|
Chen JW, Yang L, Santos C, Hassan SA, Collins PL, Buchholz UJ, Le Nouën C. Reversion mutations in phosphoprotein P of a codon-pair-deoptimized human respiratory syncytial virus confer increased transcription, immunogenicity, and genetic stability without loss of attenuation. PLoS Pathog 2021; 17:e1010191. [PMID: 34965283 PMCID: PMC8751989 DOI: 10.1371/journal.ppat.1010191] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 01/11/2022] [Accepted: 12/09/2021] [Indexed: 11/18/2022] Open
Abstract
Recoding viral genomes by introducing numerous synonymous nucleotide substitutions that create suboptimal codon pairs provides new live-attenuated vaccine candidates. Because recoding typically involves a large number of nucleotide substitutions, the risk of de-attenuation is presumed to be low. However, this has not been thoroughly studied. We previously generated human respiratory syncytial virus (RSV) in which the NS1, NS2, N, P, M and SH ORFs were codon-pair deoptimized (CPD) by 695 synonymous nucleotide changes (Min A virus). Min A exhibited a global reduction in transcription and protein synthesis, was restricted for replication in vitro and in vivo, and exhibited moderate temperature sensitivity. Here, we show that under selective pressure by serial passage at progressively increasing temperatures, Min A regained replication fitness and lost its temperature sensitivity. Whole-genome deep sequencing identified numerous missense mutations in several genes, in particular ones accumulating between codons 25 and 34 of the phosphoprotein (P), a polymerase cofactor and chaperone. When re-introduced into Min A, these P mutations restored viral transcription to wt level, resulting in increased protein expression and RNA replication. Molecular dynamic simulations suggested that these P mutations increased the flexibility of the N-terminal domain of P, which might facilitate its interaction with the nucleoprotein N, and increase the functional efficiency of the RSV transcription/replication complex. Finally, we evaluated the effect of the P mutations on Min A replication and immunogenicity in hamsters. Mutation P[F28V] paradoxically reduced Min A replication but not its immunogenicity. The further addition of one missense mutation each in M and L generated a version of Min A with increased genetic stability. Thus, this study provides further insight into the adaptability of large-scale recoded RNA viruses under selective pressure and identified an improved CPD RSV vaccine candidate. Synonymous recoding of viral genomes by codon-pair deoptimization (CPD) generates live-attenuated vaccines presumed to be genetically stable due to the high number of nucleotide substitutions. However, their actual genetic stability under selective pressure was largely unknown. In a recoded human respiratory syncytial virus (RSV) mutant called Min A, six of 11 ORFs were CPD, reducing protein expression and inducing moderate temperature sensitivity and attenuation. When passaged in vitro under selective pressure, Min A lost its temperature-sensitive phenotype and regained fitness by the acquisition of numerous mutations, in particular missense mutations in the viral phosphoprotein (P), a polymerase cofactor and a chaperone for soluble nucleoprotein. These P mutations increased RSV gene transcription globally, thereby increasing RSV protein expression, RNA replication, and virus particle production. Thus, the P mutations increased the efficiency of the RSV transcription/replication complex, compensating for the reduced protein expression due to CPD. In addition, introduction of the P mutations into Min A generated a live-attenuated vaccine candidate with increased genetic stability. Surprisingly, this vaccine candidate exhibited increased attenuation and, paradoxically, exhibited increased immunogenicity per plaque-forming unit in hamsters. This study provides insights into the adaptability of large-scale recoded RNA viruses and identified an improved CPD RSV vaccine candidate.
Collapse
Affiliation(s)
- Jessica W. Chen
- RNA Viruses Section, Laboratory of Infectious Diseases, NIAID, NIH, Bethesda, Maryland, United States of America
| | - Lijuan Yang
- RNA Viruses Section, Laboratory of Infectious Diseases, NIAID, NIH, Bethesda, Maryland, United States of America
| | - Celia Santos
- RNA Viruses Section, Laboratory of Infectious Diseases, NIAID, NIH, Bethesda, Maryland, United States of America
| | - Sergio A. Hassan
- Bioinformatics and Computational Biosciences Branch, NIAID, NIH, Bethesda, Maryland, United States of America
| | - Peter L. Collins
- RNA Viruses Section, Laboratory of Infectious Diseases, NIAID, NIH, Bethesda, Maryland, United States of America
| | - Ursula J. Buchholz
- RNA Viruses Section, Laboratory of Infectious Diseases, NIAID, NIH, Bethesda, Maryland, United States of America
| | - Cyril Le Nouën
- RNA Viruses Section, Laboratory of Infectious Diseases, NIAID, NIH, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
14
|
Braun MR, Noton SL, Blanchard EL, Shareef A, Santangelo PJ, Johnson WE, Fearns R. Respiratory syncytial virus M2-1 protein associates non-specifically with viral messenger RNA and with specific cellular messenger RNA transcripts. PLoS Pathog 2021; 17:e1009589. [PMID: 34003848 PMCID: PMC8162694 DOI: 10.1371/journal.ppat.1009589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 05/28/2021] [Accepted: 04/26/2021] [Indexed: 11/18/2022] Open
Abstract
Respiratory syncytial virus (RSV) is a major cause of respiratory disease in infants and the elderly. RSV is a non-segmented negative strand RNA virus. The viral M2-1 protein plays a key role in viral transcription, serving as an elongation factor to enable synthesis of full-length mRNAs. M2-1 contains an unusual CCCH zinc-finger motif that is conserved in the related human metapneumovirus M2-1 protein and filovirus VP30 proteins. Previous biochemical studies have suggested that RSV M2-1 might bind to specific virus RNA sequences, such as the transcription gene end signals or poly A tails, but there was no clear consensus on what RSV sequences it binds. To determine if M2-1 binds to specific RSV RNA sequences during infection, we mapped points of M2-1:RNA interactions in RSV-infected cells at 8 and 18 hours post infection using crosslinking immunoprecipitation with RNA sequencing (CLIP-Seq). This analysis revealed that M2-1 interacts specifically with positive sense RSV RNA, but not negative sense genome RNA. It also showed that M2-1 makes contacts along the length of each viral mRNA, indicating that M2-1 functions as a component of the transcriptase complex, transiently associating with nascent mRNA being extruded from the polymerase. In addition, we found that M2-1 binds specific cellular mRNAs. In contrast to the situation with RSV mRNA, M2-1 binds discrete sites within cellular mRNAs, with a preference for A/U rich sequences. These results suggest that in addition to its previously described role in transcription elongation, M2-1 might have an additional role involving cellular RNA interactions.
Collapse
Affiliation(s)
- Molly R. Braun
- Department of Microbiology, Boston University School of Medicine; National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, United States of America
| | - Sarah L. Noton
- Department of Microbiology, Boston University School of Medicine; National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, United States of America
| | - Emmeline L. Blanchard
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, United States of America
| | - Afzaal Shareef
- Department of Microbiology, Boston University School of Medicine; National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, United States of America
| | - Philip J. Santangelo
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, United States of America
| | - W. Evan Johnson
- Division of Computational Biomedicine and Bioinformatics Program and Department of Biostatistics, Boston University, Boston, Massachusetts, United States of America
| | - Rachel Fearns
- Department of Microbiology, Boston University School of Medicine; National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, United States of America
| |
Collapse
|
15
|
A Respiratory Syncytial Virus Attachment Gene Variant Associated with More Severe Disease in Infants Decreases Fusion Protein Expression, Which May Facilitate Immune Evasion. J Virol 2020; 95:JVI.01201-20. [PMID: 33115881 DOI: 10.1128/jvi.01201-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 09/18/2020] [Indexed: 02/07/2023] Open
Abstract
This study identified a genotype of respiratory syncytial virus (RSV) associated with increased acute respiratory disease severity in a cohort of previously healthy term infants. The genotype (2stop+A4G) consists of two components. The A4G component is a prevalent point mutation in the 4th position of the gene end transcription termination signal of the G gene of currently circulating RSV strains. The 2stop component is two tandem stop codons at the G gene terminus, preceding the gene end transcription termination signal. To investigate the biological role of these RSV G gene mutations, recombinant RSV strains harboring either a wild-type A2 strain G gene (one stop codon preceding a wild-type gene end signal), an A4G gene end signal preceded by one stop codon, or the 2stop+A4G virulence-associated combination were generated and characterized. Infection with the recombinant A4G (rA4G) RSV mutant resulted in transcriptional readthrough and lower G and fusion (F) protein levels than for the wild type. Addition of a second stop codon preceding the A4G point mutation (2stop+A4G) restored G protein expression but retained lower F protein levels. These data suggest that RSV G and F glycoprotein expression is regulated by transcriptional and translational readthrough. Notably, while rA4G and r2stop+A4G RSV were attenuated in cells and in naive BALB/c mice compared to that for wild-type RSV, the r2stop+A4G RSV was better able to infect BALB/c mice in the presence of preexisting immunity than rA4G RSV. Together, these factors may contribute to the maintenance and virulence of the 2stop+A4G genotype in currently circulating RSV-A strains.IMPORTANCE Strain-specific differences in respiratory syncytial virus (RSV) isolates are associated with differential pathogenesis in mice. However, the role of RSV genotypes in human infection is incompletely understood. This work demonstrates that one such genotype, 2stop+A4G, present in the RSV attachment (G) gene terminus is associated with greater infant disease severity. The genotype consists of two tandem stop codons preceding an A-to-G point mutation in the 4th position of the G gene end transcription termination signal. Virologically, the 2stop+A4G RSV genotype results in reduced levels of the RSV fusion (F) glycoprotein. A recombinant 2stop+A4G RSV was better able to establish infection in the presence of existing RSV immunity than a virus harboring the common A4G mutation. These data suggest that regulation of G and F expression has implications for virulence and, potentially, immune evasion.
Collapse
|
16
|
Abstract
Mononegavirales, known as nonsegmented negative-sense (NNS) RNA viruses, are a class of pathogenic and sometimes deadly viruses that include rabies virus (RABV), human respiratory syncytial virus (HRSV), and Ebola virus (EBOV). Unfortunately, no effective vaccines and antiviral therapeutics against many Mononegavirales are currently available. Viral polymerases have been attractive and major antiviral therapeutic targets. Therefore, Mononegavirales polymerases have been extensively investigated for their structures and functions. Mononegavirales, known as nonsegmented negative-sense (NNS) RNA viruses, are a class of pathogenic and sometimes deadly viruses that include rabies virus (RABV), human respiratory syncytial virus (HRSV), and Ebola virus (EBOV). Unfortunately, no effective vaccines and antiviral therapeutics against many Mononegavirales are currently available. Viral polymerases have been attractive and major antiviral therapeutic targets. Therefore, Mononegavirales polymerases have been extensively investigated for their structures and functions. Mononegavirales mimic RNA synthesis of their eukaryotic counterparts by utilizing multifunctional RNA polymerases to replicate entire viral genomes and transcribe viral mRNAs from individual viral genes as well as synthesize 5′ methylated cap and 3′ poly(A) tail of the transcribed viral mRNAs. The catalytic subunit large protein (L) and cofactor phosphoprotein (P) constitute the Mononegavirales polymerases. In this review, we discuss the shared and unique features of RNA synthesis, the monomeric multifunctional enzyme L, and the oligomeric multimodular adapter P of Mononegavirales. We outline the structural analyses of the Mononegavirales polymerases since the first structure of the vesicular stomatitis virus (VSV) L protein determined in 2015 and highlight multiple high-resolution cryo-electron microscopy (cryo-EM) structures of the polymerases of Mononegavirales, namely, VSV, RABV, HRSV, human metapneumovirus (HMPV), and human parainfluenza virus (HPIV), that have been reported in recent months (2019 to 2020). We compare the structures of those polymerases grouped by virus family, illustrate the similarities and differences among those polymerases, and reveal the potential RNA synthesis mechanisms and models of highly conserved Mononegavirales. We conclude by the discussion of remaining questions, evolutionary perspectives, and future directions.
Collapse
|
17
|
Thornhill EM, Verhoeven D. Respiratory Syncytial Virus's Non-structural Proteins: Masters of Interference. Front Cell Infect Microbiol 2020; 10:225. [PMID: 32509597 PMCID: PMC7248305 DOI: 10.3389/fcimb.2020.00225] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 04/22/2020] [Indexed: 01/12/2023] Open
Abstract
Respiratory Syncytial Virus (RSV) is a highly prevalent virus that affects the majority of the population. The virus can cause severe disease in vulnerable populations leading to high hospitalization rates from bronchiolitis or secondary bacterial infections leading to pneumonia. Two early and non-structural proteins (Ns1 and Ns2), strongly over-ride the antiviral innate system but also diminish the adaptive response as well. This review will cover interactions of Ns1 and Ns2 with the host antiviral response with a focus on alterations to signaling pathways, cytokine gene expression, and effects of the Ns proteins on mitochondria.
Collapse
Affiliation(s)
| | - David Verhoeven
- Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States
| |
Collapse
|
18
|
Cao D, Liang B. Cryo-Electron Microscopy Structures of the Pneumoviridae Polymerases. Viral Immunol 2020; 34:18-26. [PMID: 32429800 DOI: 10.1089/vim.2020.0018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The resolution revolution of cryo-electron microscopy (cryo-EM) has made a significant impact on the structural analysis of the Pneumoviridae multifunctional RNA polymerases. In recent months, several high-resolution structures of apo RNA polymerases of Pneumoviridae, which includes the human respiratory syncytial virus (HRSV) and human metapneumovirus (HMPV), have been determined by single-particle cryo-EM. These structures illustrated high similarities and minor differences between the Pneumoviridae polymerases and revealed the potential mechanisms of the Pneumoviridae RNA synthesis.
Collapse
Affiliation(s)
- Dongdong Cao
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Bo Liang
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
19
|
Piedra FA, Qiu X, Teng MN, Avadhanula V, Machado AA, Kim DK, Hixson J, Bahl J, Piedra PA. Non-gradient and genotype-dependent patterns of RSV gene expression. PLoS One 2020; 15:e0227558. [PMID: 31923213 PMCID: PMC6953876 DOI: 10.1371/journal.pone.0227558] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 12/20/2019] [Indexed: 01/14/2023] Open
Abstract
Respiratory syncytial virus (RSV) is a nonsegmented negative-strand RNA virus (NSV) and a leading cause of severe lower respiratory tract illness in infants and the elderly. Transcription of the ten RSV genes proceeds sequentially from the 3’ promoter and requires conserved gene start (GS) and gene end (GE) signals. Previous studies using the prototypical GA1 genotype Long and A2 strains have indicated a gradient of gene transcription extending across the genome, with the highest level of mRNA coming from the most promoter-proximal gene, the first nonstructural (NS1) gene, and mRNA levels from subsequent genes dropping until reaching a minimum at the most promoter-distal gene, the polymerase (L) gene. However, recent reports show non-gradient levels of mRNA, with higher than expected levels from the attachment (G) gene. It is unknown to what extent different transcript stabilities might shape measured mRNA levels. It is also unclear whether patterns of RSV gene expression vary, or show strain- or genotype-dependence. To address this, mRNA abundances from five RSV genes were measured by quantitative real-time PCR (qPCR) in three cell lines and in cotton rats infected with RSV isolates belonging to four genotypes (GA1, ON, GB1, BA). Relative mRNA levels reached steady-state between four and 24 hours post-infection. Steady-state patterns were non-gradient and genotype-specific, where mRNA levels from the G gene exceeded those from the more promoter-proximal nucleocapsid (N) gene across isolates. Transcript stabilities could not account for the non-gradient patterns observed, indicating that relative mRNA levels more strongly reflect transcription than decay. Our results indicate that gene expression from a small but diverse set of RSV genotypes is non-gradient and genotype-dependent. We propose novel models of RSV transcription that can account for non-gradient transcription.
Collapse
Affiliation(s)
- Felipe-Andrés Piedra
- Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, TX, United States of America
- * E-mail:
| | - Xueting Qiu
- Center for the Ecology of Infectious Diseases, Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States of America
| | - Michael N. Teng
- Division of Allergy and Immunology, Department of Internal Medicine, University of South Florida Morsani College of Medicine, Tampa, FL, United States of America
| | - Vasanthi Avadhanula
- Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, TX, United States of America
| | - Annette A. Machado
- Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, TX, United States of America
| | - Do-Kyun Kim
- Human Genetics Center, School of Public Health, University of Texas Health Science Center, Houston, TX, United States of America
| | - James Hixson
- Human Genetics Center, School of Public Health, University of Texas Health Science Center, Houston, TX, United States of America
| | - Justin Bahl
- Center for the Ecology of Infectious Diseases, Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States of America
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Graduate Medical School, Singapore
| | - Pedro A. Piedra
- Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, TX, United States of America
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States of America
| |
Collapse
|
20
|
Cressey TN, Noton SL, Nagendra K, Braun MR, Fearns R. Mechanism for de novo initiation at two sites in the respiratory syncytial virus promoter. Nucleic Acids Res 2019; 46:6785-6796. [PMID: 29873775 PMCID: PMC6061868 DOI: 10.1093/nar/gky480] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 05/17/2018] [Indexed: 12/18/2022] Open
Abstract
The respiratory syncytial virus (RSV) RNA dependent RNA polymerase (RdRp) initiates two RNA synthesis processes from the viral promoter: genome replication from position 1U and mRNA transcription from position 3C. Here, we examined the mechanism by which a single promoter can direct initiation from two sites. We show that initiation at 1U and 3C occurred independently of each other, and that the same RdRp was capable of precisely selecting the two sites. The RdRp preferred to initiate at 3C, but initiation site selection could be modulated by the relative concentrations of ATP versus GTP. Analysis of template mutations indicated that the RdRp could bind ATP and CTP, or GTP, independently of template nucleotides. The data suggest a model in which innate affinity of the RdRp for particular NTPs, coupled with a repeating element within the promoter, allows precise initiation of replication at 1U or transcription at 3C.
Collapse
Affiliation(s)
- Tessa N Cressey
- Department of Microbiology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Sarah L Noton
- Department of Microbiology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Kartikeya Nagendra
- Department of Microbiology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Molly R Braun
- Department of Microbiology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Rachel Fearns
- Department of Microbiology, Boston University School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
21
|
Sun Y, Kim EJ, Felt SA, Taylor LJ, Agarwal D, Grant GR, López CB. A specific sequence in the genome of respiratory syncytial virus regulates the generation of copy-back defective viral genomes. PLoS Pathog 2019; 15:e1007707. [PMID: 30995283 PMCID: PMC6504078 DOI: 10.1371/journal.ppat.1007707] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 05/07/2019] [Accepted: 03/15/2019] [Indexed: 01/12/2023] Open
Abstract
Defective viral genomes of the copy-back type (cbDVGs) are the primary initiators of the antiviral immune response during infection with respiratory syncytial virus (RSV) both in vitro and in vivo. However, the mechanism governing cbDVG generation remains unknown, thereby limiting our ability to manipulate cbDVG content in order to modulate the host response to infection. Here we report a specific genomic signal that mediates the generation of a subset of RSV cbDVG species. Using a customized bioinformatics tool, we identified regions in the RSV genome frequently used to generate cbDVGs during infection. We then created a minigenome system to validate the function of one of these sequences and to determine if specific nucleotides were essential for cbDVG generation at that position. Further, we created a recombinant virus unable to produce a subset of cbDVGs due to mutations introduced in this sequence. The identified sequence was also found as a site for cbDVG generation during natural RSV infections, and common cbDVGs originated at this sequence were found among samples from various infected patients. These data demonstrate that sequences encoded in the viral genome determine the location of cbDVG formation and, therefore, the generation of cbDVGs is not a stochastic process. These findings open the possibility of genetically manipulating cbDVG formation to modulate infection outcome.
Collapse
Affiliation(s)
- Yan Sun
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Eun Ji Kim
- Institute of Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Sébastien A. Felt
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Louis J. Taylor
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Divyansh Agarwal
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Gregory R. Grant
- Institute of Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Carolina B. López
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
22
|
Noton SL, Tremaglio CZ, Fearns R. Killing two birds with one stone: How the respiratory syncytial virus polymerase initiates transcription and replication. PLoS Pathog 2019; 15:e1007548. [PMID: 30817806 PMCID: PMC6394897 DOI: 10.1371/journal.ppat.1007548] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Affiliation(s)
- Sarah L. Noton
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Chadene Z. Tremaglio
- Department of Biology, University of Saint Joseph, West Hartford, Connecticut, United States of America
| | - Rachel Fearns
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
23
|
Braun MR, Deflubé LR, Noton SL, Mawhorter ME, Tremaglio CZ, Fearns R. RNA elongation by respiratory syncytial virus polymerase is calibrated by conserved region V. PLoS Pathog 2017; 13:e1006803. [PMID: 29281742 PMCID: PMC5760109 DOI: 10.1371/journal.ppat.1006803] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 01/09/2018] [Accepted: 12/11/2017] [Indexed: 02/06/2023] Open
Abstract
The large polymerase subunit (L) of non-segmented negative strand RNA viruses transcribes viral mRNAs and replicates the viral genome. Studies with VSV have shown that conserved region V (CRV) of the L protein is part of the capping domain. However, CRV folds over and protrudes into the polymerization domain, suggesting that it might also have a role in RNA synthesis. In this study, the role of respiratory syncytial virus (RSV) CRV was evaluated using single amino acid substitutions and a small molecule inhibitor called BI-D. Effects were analyzed using cell-based minigenome and in vitro biochemical assays. Several amino acid substitutions inhibited production of capped, full-length mRNA and instead resulted in accumulation of short transcripts of approximately 40 nucleotides in length, confirming that RSV CRV has a role in capping. In addition, all six variants tested were either partially or completely defective in RNA replication. This was due to an inability of the polymerase to efficiently elongate the RNA within the promoter region. BI-D also inhibited transcription and replication. In this case, polymerase elongation activity within the promoter region was enhanced, such that the small RNA transcribed from the promoter was not released and instead was elongated past the first gene start signal. This was accompanied by a decrease in mRNA initiation at the first gene start signal and accumulation of aberrant RNAs of varying length. Thus, in addition to its function in mRNA capping, conserved region V modulates the elongation properties of the polymerase to enable productive transcription and replication to occur.
Collapse
MESH Headings
- Amino Acid Sequence
- Amino Acid Substitution
- Antiviral Agents/pharmacology
- Cell Line
- Conserved Sequence
- Drug Discovery
- Genes, Viral
- Humans
- Models, Molecular
- Promoter Regions, Genetic
- RNA Caps/genetics
- RNA Caps/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Viral/genetics
- RNA, Viral/metabolism
- RNA-Dependent RNA Polymerase/chemistry
- RNA-Dependent RNA Polymerase/genetics
- RNA-Dependent RNA Polymerase/metabolism
- Respiratory Syncytial Virus Infections/drug therapy
- Respiratory Syncytial Virus Infections/virology
- Respiratory Syncytial Virus, Human/genetics
- Respiratory Syncytial Virus, Human/metabolism
- Respiratory Syncytial Virus, Human/pathogenicity
- Transcription Elongation, Genetic
- Viral Proteins/chemistry
- Viral Proteins/genetics
- Viral Proteins/metabolism
Collapse
Affiliation(s)
- Molly R. Braun
- Department of Microbiology, Boston University School of Medicine, Boston, MA, United States of America
| | - Laure R. Deflubé
- Department of Microbiology, Boston University School of Medicine, Boston, MA, United States of America
| | - Sarah L. Noton
- Department of Microbiology, Boston University School of Medicine, Boston, MA, United States of America
| | - Michael E. Mawhorter
- Department of Microbiology, Boston University School of Medicine, Boston, MA, United States of America
| | - Chadene Z. Tremaglio
- Department of Microbiology, Boston University School of Medicine, Boston, MA, United States of America
| | - Rachel Fearns
- Department of Microbiology, Boston University School of Medicine, Boston, MA, United States of America
- * E-mail:
| |
Collapse
|
24
|
Harwig A, Landick R, Berkhout B. The Battle of RNA Synthesis: Virus versus Host. Viruses 2017; 9:v9100309. [PMID: 29065472 PMCID: PMC5691660 DOI: 10.3390/v9100309] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 10/19/2017] [Accepted: 10/20/2017] [Indexed: 12/13/2022] Open
Abstract
Transcription control is the foundation of gene regulation. Whereas a cell is fully equipped for this task, viruses often depend on the host to supply tools for their transcription program. Over the course of evolution and adaptation, viruses have found diverse ways to optimally exploit cellular host processes such as transcription to their own benefit. Just as cells are increasingly understood to employ nascent RNAs in transcription regulation, recent discoveries are revealing how viruses use nascent RNAs to benefit their own gene expression. In this review, we first outline the two different transcription programs used by viruses, i.e., transcription (DNA-dependent) and RNA-dependent RNA synthesis. Subsequently, we use the distinct stages (initiation, elongation, termination) to describe the latest insights into nascent RNA-mediated regulation in the context of each relevant stage.
Collapse
Affiliation(s)
- Alex Harwig
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Robert Landick
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands.
| |
Collapse
|
25
|
Shahriari S, Gordon J, Ghildyal R. Host cytoskeleton in respiratory syncytial virus assembly and budding. Virol J 2016; 13:161. [PMID: 27670781 PMCID: PMC5037899 DOI: 10.1186/s12985-016-0618-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 09/17/2016] [Indexed: 12/02/2022] Open
Abstract
Respiratory syncytial virus (RSV) is one of the major pathogens responsible for lower respiratory tract infections (LRTI) in young children, the elderly, and the immunosuppressed. Currently, there are no antiviral drugs or vaccines available that effectively target RSV infections, proving a significant challenge in regards to prevention and treatment. An in-depth understanding of the host-virus interactions that underlie assembly and budding would inform new targets for antiviral development.Current research suggests that the polymerised form of actin, the filamentous or F-actin, plays a role in RSV assembly and budding. Treatment with cytochalasin D, which disrupts F-actin, has been shown to inhibit virus release. In addition, the actin cytoskeleton has been shown to interact with the RSV matrix (M) protein, which plays a central role in RSV assembly. For this reason, the interaction between these two components is hypothesised to facilitate the movement of viral components in the cytoplasm and to the budding site. Despite increases in our knowledge of RSV assembly and budding, M-actin interactions are not well understood. In this review, we discuss the current literature on the role of actin cytoskeleton during assembly and budding of RSV with the aim to integrate disparate studies to build a hypothetical model of the various molecular interactions between actin and RSV M protein that facilitate RSV assembly and budding.
Collapse
Affiliation(s)
- Shadi Shahriari
- Respiratory Virology Group, Health Research Institute, Faculty of Education, Science, Technology and Mathematics, University of Canberra, Canberra, 2617, Australia
| | - James Gordon
- Respiratory Virology Group, Health Research Institute, Faculty of Education, Science, Technology and Mathematics, University of Canberra, Canberra, 2617, Australia
| | - Reena Ghildyal
- Respiratory Virology Group, Health Research Institute, Faculty of Education, Science, Technology and Mathematics, University of Canberra, Canberra, 2617, Australia.
| |
Collapse
|
26
|
Fearns R, Deval J. New antiviral approaches for respiratory syncytial virus and other mononegaviruses: Inhibiting the RNA polymerase. Antiviral Res 2016; 134:63-76. [PMID: 27575793 DOI: 10.1016/j.antiviral.2016.08.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 07/27/2016] [Accepted: 08/07/2016] [Indexed: 11/16/2022]
Abstract
Worldwide, respiratory syncytial virus (RSV) causes severe disease in infants, the elderly, and immunocompromised people. No vaccine or effective antiviral treatment is available. RSV is a member of the non-segmented, negative-strand (NNS) group of RNA viruses and relies on its RNA-dependent RNA polymerase to transcribe and replicate its genome. Because of its essential nature and unique properties, the RSV polymerase has proven to be a good target for antiviral drugs, with one compound, ALS-8176, having already achieved clinical proof-of-concept efficacy in a human challenge study. In this article, we first provide an overview of the role of the RSV polymerase in viral mRNA transcription and genome replication. We then review past and current approaches to inhibiting the RSV polymerase, including use of nucleoside analogs and non-nucleoside inhibitors. Finally, we consider polymerase inhibitors that hold promise for treating infections with other NNS RNA viruses, including measles and Ebola.
Collapse
Affiliation(s)
- Rachel Fearns
- Department of Microbiology, Boston University School of Medicine, Boston, MA, USA.
| | - Jerome Deval
- Alios BioPharma, Inc., Part of the Janssen Pharmaceutical Companies, South San Francisco, CA, USA.
| |
Collapse
|
27
|
Barik S. What Really Rigs Up RIG-I? J Innate Immun 2016; 8:429-36. [PMID: 27438016 PMCID: PMC6738806 DOI: 10.1159/000447947] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 06/23/2016] [Accepted: 06/23/2016] [Indexed: 12/24/2022] Open
Abstract
RIG-I (retinoic acid-inducible gene 1) is an archetypal member of the cytoplasmic DEAD-box dsRNA helicase family (RIG-I-like receptors or RLRs), the members of which play essential roles in the innate immune response of the metazoan cell. RIG-I functions as a pattern recognition receptor that detects nonself RNA as a pathogen-associated molecular pattern (PAMP). However, the exact molecular nature of the viral RNAs that act as a RIG-I ligand has remained a mystery and a matter of debate. In this article, we offer a critical review of the actual viral RNAs that act as PAMPs to activate RIG-I, as seen from the perspective of a virologist, including a recent report that the viral Leader-read-through transcript is a novel and effective RIG-I ligand.
Collapse
Affiliation(s)
- Sailen Barik
- Department of Biological, Geological and Environmental Sciences, and Center for Gene Regulation in Health and Disease, Cleveland State University, Cleveland, Ohio, USA
| |
Collapse
|
28
|
Do LAH, Wilm A, van Doorn HR, Lam HM, Sim S, Sukumaran R, Tran AT, Nguyen BH, Tran TTL, Tran QH, Vo QB, Dac NAT, Trinh HN, Nguyen TTH, Binh BTL, Le K, Nguyen MT, Thai QT, Vo TV, Ngo NQM, Dang TKH, Cao NH, Tran TV, Ho LV, Farrar J, de Jong M, Chen S, Nagarajan N, Bryant JE, Hibberd ML. Direct whole-genome deep-sequencing of human respiratory syncytial virus A and B from Vietnamese children identifies distinct patterns of inter- and intra-host evolution. J Gen Virol 2016; 96:3470-3483. [PMID: 26407694 DOI: 10.1099/jgv.0.000298] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Human respiratory syncytial virus (RSV) is the major cause of lower respiratory tract infections in children ,2 years of age. Little is known about RSV intra-host genetic diversity over the course of infection or about the immune pressures that drive RSV molecular evolution. We performed whole-genome deep-sequencing on 53 RSV-positive samples (37 RSV subgroup A and 16 RSV subgroup B) collected from the upper airways of hospitalized children in southern Vietnam over two consecutive seasons. RSV A NA1 and RSV B BA9 were the predominant genotypes found in our samples, consistent with other reports on global RSV circulation during the same period. For both RSV A and B, the M gene was the most conserved, confirming its potential as a target for novel therapeutics. The G gene was the most variable and was the only gene under detectable positive selection. Further, positively selected sites inG were found in close proximity to and in some cases overlapped with predicted glycosylation motifs, suggesting that selection on amino acid glycosylation may drive viral genetic diversity. We further identified hotspots and coldspots of intra-host genetic diversity in the RSV genome, some of which may highlight previously unknown regions of functional importance.
Collapse
Affiliation(s)
- Lien Anh Ha Do
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Program, Ho Chi Minh City, Vietnam
| | - Andreas Wilm
- Genome Institute of Singapore, Genome Building, 138672 Singapore
| | - H Rogier van Doorn
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Program, Ho Chi Minh City, Vietnam.,Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Ha Minh Lam
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Program, Ho Chi Minh City, Vietnam
| | - Shuzhen Sim
- Genome Institute of Singapore, Genome Building, 138672 Singapore
| | - Rashmi Sukumaran
- Genome Institute of Singapore, Genome Building, 138672 Singapore
| | - Anh Tuan Tran
- Children's Hospital 1, Ward 10, District 10, Ho Chi Minh City, Vietnam
| | - Bach Hue Nguyen
- Children's Hospital 1, Ward 10, District 10, Ho Chi Minh City, Vietnam
| | - Thi Thu Loan Tran
- Children's Hospital 2, Ben Nghe Ward, District 1, Ho Chi Minh City, Vietnam
| | - Quynh Huong Tran
- Children's Hospital 2, Ben Nghe Ward, District 1, Ho Chi Minh City, Vietnam
| | - Quoc Bao Vo
- Children's Hospital 2, Ben Nghe Ward, District 1, Ho Chi Minh City, Vietnam
| | | | - Hong Nhien Trinh
- Children's Hospital 1, Ward 10, District 10, Ho Chi Minh City, Vietnam
| | | | - Bao Tinh Le Binh
- Children's Hospital 1, Ward 10, District 10, Ho Chi Minh City, Vietnam
| | - Khanh Le
- Children's Hospital 1, Ward 10, District 10, Ho Chi Minh City, Vietnam
| | - Minh Tien Nguyen
- Children's Hospital 1, Ward 10, District 10, Ho Chi Minh City, Vietnam
| | - Quang Tung Thai
- Children's Hospital 1, Ward 10, District 10, Ho Chi Minh City, Vietnam
| | - Thanh Vu Vo
- Children's Hospital 1, Ward 10, District 10, Ho Chi Minh City, Vietnam
| | | | - Thi Kim Huyen Dang
- Children's Hospital 2, Ben Nghe Ward, District 1, Ho Chi Minh City, Vietnam
| | - Ngoc Huong Cao
- Children's Hospital 2, Ben Nghe Ward, District 1, Ho Chi Minh City, Vietnam
| | - Thu Van Tran
- Children's Hospital 2, Ben Nghe Ward, District 1, Ho Chi Minh City, Vietnam
| | - Lu Viet Ho
- Children's Hospital 2, Ben Nghe Ward, District 1, Ho Chi Minh City, Vietnam
| | - Jeremy Farrar
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Program, Ho Chi Minh City, Vietnam
| | - Menno de Jong
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Program, Ho Chi Minh City, Vietnam.,Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK.,Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Swaine Chen
- Genome Institute of Singapore, Genome Building, 138672 Singapore
| | | | - Juliet E Bryant
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Program, Ho Chi Minh City, Vietnam.,Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Martin L Hibberd
- Genome Institute of Singapore, Genome Building, 138672 Singapore
| |
Collapse
|
29
|
Sequencing and analysis of globally obtained human respiratory syncytial virus A and B genomes. PLoS One 2015; 10:e0120098. [PMID: 25793751 PMCID: PMC4368745 DOI: 10.1371/journal.pone.0120098] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 01/19/2015] [Indexed: 11/19/2022] Open
Abstract
Background Human respiratory syncytial virus (RSV) is the leading cause of respiratory tract infections in children globally, with nearly all children experiencing at least one infection by the age of two. Partial sequencing of the attachment glycoprotein gene is conducted routinely for genotyping, but relatively few whole genome sequences are available for RSV. The goal of our study was to sequence the genomes of RSV strains collected from multiple countries to further understand the global diversity of RSV at a whole-genome level. Methods We collected RSV samples and isolates from Mexico, Argentina, Belgium, Italy, Germany, Australia, South Africa, and the USA from the years 1998-2010. Both Sanger and next-generation sequencing with the Illumina and 454 platforms were used to sequence the whole genomes of RSV A and B. Phylogenetic analyses were performed using the Bayesian and maximum likelihood methods of phylogenetic inference. Results We sequenced the genomes of 34 RSVA and 23 RSVB viruses. Phylogenetic analysis showed that the RSVA genome evolves at an estimated rate of 6.72 × 10-4 substitutions/site/year (95% HPD 5.61 × 10-4 to 7.6 × 10-4) and for RSVB the evolutionary rate was 7.69 × 10-4 substitutions/site/year (95% HPD 6.81 × 10-4 to 8.62 × 10-4). We found multiple clades co-circulating globally for both RSV A and B. The predominant clades were GA2 and GA5 for RSVA and BA for RSVB. Conclusions Our analyses showed that RSV circulates on a global scale with the same predominant clades of viruses being found in countries around the world. However, the distribution of clades can change rapidly as new strains emerge. We did not observe a strong spatial structure in our trees, with the same three main clades of RSV co-circulating globally, suggesting that the evolution of RSV is not strongly regionalized.
Collapse
|
30
|
Yin Y, Liu C, Liu P, Yao H, Wei Z, Lu J, Tong G, Gao F, Yuan S. Conserved nucleotides in the terminus of the 3' UTR region are important for the replication and infectivity of porcine reproductive and respiratory syndrome virus. Arch Virol 2013; 158:1719-32. [PMID: 23512575 DOI: 10.1007/s00705-013-1661-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 02/03/2013] [Indexed: 12/11/2022]
Abstract
The 3' untranslated region (3' UTR), including the poly (A) tail, reportedly plays an important role in arterivirus replication, but the roles of the cis-acting elements present in the 3' UTR of porcine reproductive and respiratory syndrome virus (PRRSV) remain largely unknown. In the present study, PCR-based mutagenic analysis was conducted on the 3' UTR of PRRSV infectious full-length cDNA clone pAPRRS to investigate the structure and function of the conserved terminal nucleotides between the poly (A) tail and the 3' UTR region. Our findings indicated that the conservation of the primary sequence of the 3' terminal nucleotides, rather than the surrounding secondary structure, was vital for viral replication and infectivity. Four nucleotides (nt) (5'-(15517)AAUU(15520)-3') at the 3' proximal end of the 3' UTR and the dinucleotide 5'-AU-3' exerted an important regulatory effect on viral viability. Of the five 3'-terminal nucleotides of the 3' UTR (5'-(15503)AACCA(15507)-3'), at least three, including the last dinucleotide (5'-CA-3'), were essential for maintaining viral infectivity. Taken together, the 3'-terminal conserved sequence plays a critical role in PRRSV replication and may function as a contact site for specific assembly of the replication complex.
Collapse
Affiliation(s)
- Yang Yin
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 518, Ziyue Road, Minhang District, Shanghai 200241, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Respiratory syncytial virus polymerase can initiate transcription from position 3 of the leader promoter. J Virol 2013; 87:3196-207. [PMID: 23283954 DOI: 10.1128/jvi.02862-12] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mechanisms by which the respiratory syncytial virus (RSV) RNA-dependent RNA polymerase (RdRp) initiates mRNA transcription and RNA replication are poorly understood. A previous study, using an RSV minigenome, suggested that the leader (Le) promoter region at the 3' end of the genome has two initiation sites, one at position +1, opposite the 3' terminal nucleotide of the genome, and a second site at position +3, at a sequence that closely resembles the gene start (GS) signal of the RSV L gene. In this study, we show that the +3 initiation site of the Le is utilized with apparently high frequency in RSV-infected cells and yields small RNA transcripts that are heterogeneous in length but mostly approximately 25 nucleotides (nt) long. Experiments with an in vitro assay in which RSV RNA synthesis was reconstituted using purified RdRp and an RNA oligonucleotide showed that nt 1 to 14 of the Le promoter were sufficient to signal initiation from +3 and that the RdRp could access the +3 initiation site without prior initiation at +1. In a minigenome assay, nucleotide substitutions within the Le to increase its similarity to a GS signal resulted in more-efficient elongation of the RNA initiated from position +3 and a reduction in RNA initiated from the NS1 gene start signal at +45. Taken together, these data suggest a new model for initiation of sequential transcription of the RSV genes, whereby the RdRp initiates the process from a gene start-like sequence at position +3 of the Le.
Collapse
|
32
|
Respiratory syncytial virus: virology, reverse genetics, and pathogenesis of disease. Curr Top Microbiol Immunol 2013; 372:3-38. [PMID: 24362682 DOI: 10.1007/978-3-642-38919-1_1] [Citation(s) in RCA: 151] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Human respiratory syncytial virus (RSV) is an enveloped, nonsegmented negative-strand RNA virus of family Paramyxoviridae. RSV is the most complex member of the family in terms of the number of genes and proteins. It is also relatively divergent and distinct from the prototype members of the family. In the past 30 years, we have seen a tremendous increase in our understanding of the molecular biology of RSV based on a succession of advances involving molecular cloning, reverse genetics, and detailed studies of protein function and structure. Much remains to be learned. RSV disease is complex and variable, and the host and viral factors that determine tropism and disease are poorly understood. RSV is notable for a historic vaccine failure in the 1960s involving a formalin-inactivated vaccine that primed for enhanced disease in RSV naïve recipients. Live vaccine candidates have been shown to be free of this complication. However, development of subunit or other protein-based vaccines for pediatric use is hampered by the possibility of enhanced disease and the difficulty of reliably demonstrating its absence in preclinical studies.
Collapse
|
33
|
Collins PL, Melero JA. Progress in understanding and controlling respiratory syncytial virus: still crazy after all these years. Virus Res 2011; 162:80-99. [PMID: 21963675 PMCID: PMC3221877 DOI: 10.1016/j.virusres.2011.09.020] [Citation(s) in RCA: 338] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2011] [Revised: 09/13/2011] [Accepted: 09/14/2011] [Indexed: 01/25/2023]
Abstract
Human respiratory syncytial virus (RSV) is a ubiquitous pathogen that infects everyone worldwide early in life and is a leading cause of severe lower respiratory tract disease in the pediatric population as well as in the elderly and in profoundly immunosuppressed individuals. RSV is an enveloped, nonsegmented negative-sense RNA virus that is classified in Family Paramyxoviridae and is one of its more complex members. Although the replicative cycle of RSV follows the general pattern of the Paramyxoviridae, it encodes additional proteins. Two of these (NS1 and NS2) inhibit the host type I and type III interferon (IFN) responses, among other functions, and another gene encodes two novel RNA synthesis factors (M2-1 and M2-2). The attachment (G) glycoprotein also exhibits unusual features, such as high sequence variability, extensive glycosylation, cytokine mimicry, and a shed form that helps the virus evade neutralizing antibodies. RSV is notable for being able to efficiently infect early in life, with the peak of hospitalization at 2-3 months of age. It also is notable for the ability to reinfect symptomatically throughout life without need for significant antigenic change, although immunity from prior infection reduces disease. It is widely thought that re-infection is due to an ability of RSV to inhibit or subvert the host immune response. Mechanisms of viral pathogenesis remain controversial. RSV is notable for a historic, tragic pediatric vaccine failure involving a formalin-inactivated virus preparation that was evaluated in the 1960s and that was poorly protective and paradoxically primed for enhanced RSV disease. RSV also is notable for the development of a successful strategy for passive immunoprophylaxis of high-risk infants using RSV-neutralizing antibodies. Vaccines and new antiviral drugs are in pre-clinical and clinical development, but controlling RSV remains a formidable challenge.
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- Antibodies, Neutralizing/administration & dosage
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/genetics
- Antibodies, Viral/immunology
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- Antiviral Agents/administration & dosage
- Child
- Communicable Disease Control/organization & administration
- Cytokines/immunology
- Humans
- Immunity, Innate
- Infant
- RNA, Viral/genetics
- RNA, Viral/immunology
- Respiratory Syncytial Virus Infections/drug therapy
- Respiratory Syncytial Virus Infections/immunology
- Respiratory Syncytial Virus Infections/prevention & control
- Respiratory Syncytial Virus Infections/virology
- Respiratory Syncytial Virus Vaccines/administration & dosage
- Respiratory Syncytial Virus, Human/genetics
- Respiratory Syncytial Virus, Human/immunology
- Vaccination
- Vaccines, Attenuated/administration & dosage
- Viral Proteins/chemistry
- Viral Proteins/genetics
- Viral Proteins/immunology
- Virus Replication/genetics
- Virus Replication/immunology
Collapse
Affiliation(s)
- Peter L. Collins
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - José A. Melero
- Centro Nacional de Microbiología and CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
| |
Collapse
|
34
|
Whole genome sequencing and evolutionary analysis of human respiratory syncytial virus A and B from Milwaukee, WI 1998-2010. PLoS One 2011; 6:e25468. [PMID: 21998661 PMCID: PMC3188560 DOI: 10.1371/journal.pone.0025468] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Accepted: 09/05/2011] [Indexed: 01/24/2023] Open
Abstract
Background Respiratory Syncytial Virus (RSV) is the leading cause of lower respiratory-tract infections in infants and young children worldwide. Despite this, only six complete genome sequences of original strains have been previously published, the most recent of which dates back 35 and 26 years for RSV group A and group B respectively. Methodology/Principal Findings We present a semi-automated sequencing method allowing for the sequencing of four RSV whole genomes simultaneously. We were able to sequence the complete coding sequences of 13 RSV A and 4 RSV B strains from Milwaukee collected from 1998–2010. Another 12 RSV A and 5 RSV B strains sequenced in this study cover the majority of the genome. All RSV A and RSV B sequences were analyzed by neighbor-joining, maximum parsimony and Bayesian phylogeny methods. Genetic diversity was high among RSV A viruses in Milwaukee including the circulation of multiple genotypes (GA1, GA2, GA5, GA7) with GA2 persisting throughout the 13 years of the study. However, RSV B genomes showed little variation with all belonging to the BA genotype. For RSV A, the same evolutionary patterns and clades were seen consistently across the whole genome including all intergenic, coding, and non-coding regions sequences. Conclusions/Significance The sequencing strategy presented in this work allows for RSV A and B genomes to be sequenced simultaneously in two working days and with a low cost. We have significantly increased the amount of genomic data that is available for both RSV A and B, providing the basic molecular characteristics of RSV strains circulating in Milwaukee over the last 13 years. This information can be used for comparative analysis with strains circulating in other communities around the world which should also help with the development of new strategies for control of RSV, specifically vaccine development and improvement of RSV diagnostics.
Collapse
|
35
|
Kumaria R, Iyer LR, Hibberd ML, Simões EAF, Sugrue RJ. Whole genome characterization of non-tissue culture adapted HRSV strains in severely infected children. Virol J 2011; 8:372. [PMID: 21794174 PMCID: PMC3166936 DOI: 10.1186/1743-422x-8-372] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Accepted: 07/28/2011] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Human respiratory syncytial virus (HRSV) is the most important virus causing lower respiratory infection in young children. The complete genetic characterization of RSV clinical strains is a prerequisite for understanding HRSV infection in the clinical context. Current information about the genetic structure of the HRSV genome has largely been obtained using tissue culture adapted viruses. During tissue culture adaptation genetic changes can be introduced into the virus genome, which may obscure subtle variations in the genetic structure of different RSV strains. METHODS In this study we describe a novel Sanger sequencing strategy which allowed the complete genetic characterisation of 14 clinical HRSV strains. The viruses were sequenced directly in the nasal washes of severely hospitalized children, and without prior passage of the viruses in tissue culture. RESULTS The analysis of nucleotide sequences suggested that vRNA length is a variable factor among primary strains, while the phylogenetic analysis suggests selective pressure for change. The G gene showed the greatest sequence variation (2-6.4%), while small hydrophobic protein and matrix genes were completely conserved across all clinical strains studied. A number of sequence changes in the F, L, M2-1 and M2-2 genes were observed that have not been described in laboratory isolates. The gene junction regions showed more sequence variability, and in particular the intergenic regions showed a highest level of sequence variation. Although the clinical strains grew slower than the HRSVA2 virus isolate in tissue culture, the HRSVA2 isolate and clinical strains formed similar virus structures such as virus filaments and inclusion bodies in infected cells; supporting the clinical relevance of these virus structures. CONCLUSION This is the first report to describe the complete genetic characterization of HRSV clinical strains that have been sequenced directly from clinical material. The presence of novel substitutions and deletions in the vRNA of clinical strains emphasize the importance of genomic characterization of non-tissue culture adapted primary strains.
Collapse
Affiliation(s)
- Rajni Kumaria
- Singapore-MIT Alliance for Research and Technology, Centre for Life Sciences, #05-06M, 28 Medical Drive, 117456, Singapore
| | - Laxmi Ravi Iyer
- Division of Molecular and Cell biology, School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 639798, Singapore
| | - Martin L Hibberd
- Singapore-MIT Alliance for Research and Technology, Centre for Life Sciences, #05-06M, 28 Medical Drive, 117456, Singapore
- Genome Institute of Singapore, #02-01, Genome Building, 60 Biopolis Street, 138672, Singapore
| | - Eric AF Simões
- University of Colorado, Denver and The Division of Infectious Diseases, The Children's Hospital, 13123 East 16th Avenue, Aurora, CO 80045, USA
| | - Richard J Sugrue
- Singapore-MIT Alliance for Research and Technology, Centre for Life Sciences, #05-06M, 28 Medical Drive, 117456, Singapore
- Division of Molecular and Cell biology, School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 639798, Singapore
| |
Collapse
|
36
|
Genomic analysis of a pneumovirus isolated from dogs with acute respiratory disease. Vet Microbiol 2011; 150:88-95. [PMID: 21324612 DOI: 10.1016/j.vetmic.2011.01.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Revised: 01/04/2011] [Accepted: 01/10/2011] [Indexed: 11/23/2022]
Abstract
A previously unrecognized virus belonging to the subfamily Pneumovirinae and most closely related to murine pneumovirus (MPV) was identified in domestic dogs in 2 related animal shelters. Additional diagnostic testing yielded 3 new viral isolates and identified 6 additional PCR positive dogs from other USA locations indicating that its distribution is not geographically limited. Nucleotide sequences encompassing 9 of the 10 genes were compared to the only 2 available MPV strains, 15 and J3666. Several features distinguished the canine pneumovirus (CnPnV) from the murine strains. Two regions of diversity were identified in the amino-proximal region of P and the overlapping P2 ORF was only 54 amino acids (aa) compared to 137aa in MPV. The G protein had an amino-terminal cytoplasmic tail 18aa longer than in the MPV strains. The CnPnV SH protein showed the highest divergence with only 90.2% aa identity when compared to MPV strain 15. Like strain 15, the CnPnV SH ORF coded for a protein of 92aa while J3666 has a 114aa variant. Comparison of CnPnV isolates at culture passages 4 and 17 revealed 7nt differences within the 8598nt sequenced. Of note was a substitution at nt 364 in G resulting in a termination codon that would produce a truncated G protein of 122aa. Analysis of early passage and ex vivo samples showed the termination codon in G to be predominant after 6 days in culture indicating rapid selection of the mutation in A72 cells.
Collapse
|
37
|
Evidence that the polymerase of respiratory syncytial virus initiates RNA replication in a nontemplated fashion. Proc Natl Acad Sci U S A 2010; 107:10226-31. [PMID: 20479224 DOI: 10.1073/pnas.0913065107] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
RNA virus polymerases must initiate replicative RNA synthesis with extremely high accuracy to maintain their genome termini and to avoid generating defective genomes. For the single-stranded negative-sense RNA viruses, it is not known how this accuracy is achieved. To investigate this question, mutations were introduced into the 3' terminal base of a respiratory syncytial virus (RSV) template, and the RNA products were examined to determine the impact of the mutation. To perform the assay, RNA replication was reconstituted using a modified minireplicon system in which replication was limited to a single step. Importantly, this system allowed analysis of RSV RNA generated intracellularly, but from a defined template that was not subject to selection by replication. Sequence analysis of RNA products generated from templates containing 1U-C and 1U-A substitutions showed that, in both cases, replication products were initiated with a nontemplated, WT A residue, rather than a templated G or U residue, indicating that the polymerase selects the terminal NTP independently of the template. Examination of a template in which the position 1 nucleotide was deleted supported these findings. This mutant directed efficient replication at approximately 60% of WT levels, and its product was found to be initiated at the WT position (-1 relative to the template) with a WT A residue. These findings show that the RSV replicase selects ATP and initiates at the correct position, independently of the first nucleotide of the template, suggesting a mechanism by which highly accurate replication initiation is achieved.
Collapse
|
38
|
Minet C, Yami M, Egzabhier B, Gil P, Tangy F, Brémont M, Libeau G, Diallo A, Albina E. Sequence analysis of the large (L) polymerase gene and trailer of the peste des petits ruminants virus vaccine strain Nigeria 75/1: Expression and use of the L protein in reverse genetics. Virus Res 2009; 145:9-17. [DOI: 10.1016/j.virusres.2009.06.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2008] [Revised: 06/04/2009] [Accepted: 06/05/2009] [Indexed: 10/20/2022]
|
39
|
A chimeric A2 strain of respiratory syncytial virus (RSV) with the fusion protein of RSV strain line 19 exhibits enhanced viral load, mucus, and airway dysfunction. J Virol 2009; 83:4185-94. [PMID: 19211758 DOI: 10.1128/jvi.01853-08] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Respiratory syncytial virus (RSV) is the leading cause of respiratory failure and viral death in infants. Abundant airway mucus contributes to airway obstruction in RSV disease. Interleukin-13 (IL-13) is a mediator of pulmonary mucus secretion. It has been shown that infection of BALB/c mice with the RSV line 19 strain but not with the RSV A2 laboratory strain results in lung IL-13 and mucus expression. Here, we sequenced the RSV line 19 genome and compared it to the commonly used A2 and Long strains. There were six amino acid differences between the line 19 strain and both the A2 and Long RSV strains, five of which are in the fusion (F) protein. The Long strain, like the A2 strain, did not induce lung IL-13 and mucus expression in BALB/c mice. We hypothesized that the F protein of RSV line 19 is more mucogenic than the F proteins of A2 and Long. We generated recombinant, F-chimeric RSVs by replacing the F gene of A2 with the F gene of either line 19 or Long. Infection of BALB/c mice with RSV rA2 line 19F resulted in lower alpha interferon lung levels 24 h postinfection, higher lung viral load, higher lung IL-13 levels, greater airway mucin expression levels, and greater airway hyperresponsiveness than infection with rA2-A2F or rA2-LongF. We identified the F protein of RSV line 19 as a factor that plays a role in pulmonary mucin expression in the setting of RSV infection.
Collapse
|
40
|
Nonstructural proteins 1 and 2 of respiratory syncytial virus suppress maturation of human dendritic cells. J Virol 2008; 82:8780-96. [PMID: 18562519 DOI: 10.1128/jvi.00630-08] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Human respiratory syncytial virus (RSV) is the most important agent of serious pediatric respiratory tract disease worldwide. One of the main characteristics of RSV is that it readily reinfects and causes disease throughout life without the need for significant antigenic change. The virus encodes nonstructural protein 1 (NS1) and NS2, which are known to suppress type I interferon (IFN) production and signaling. In the present study, we monitored the maturation of human monocyte-derived myeloid dendritic cells (DC) following inoculation with recombinant RSVs bearing deletions of the NS1 and/or NS2 proteins and expressing enhanced green fluorescent protein. Deletion of the NS1 protein resulted in increased expression of cell surface markers of DC maturation and an increase in the expression of multiple cytokines and chemokines. This effect was enhanced somewhat by further deletion of the NS2 protein, although deletion of NS2 alone did not have a significant effect. The upregulation was largely inhibited by pretreatment with a blocking antibody against the type I IFN receptor, suggesting that suppression of DC maturation by NS1/2 is, at least in part, a result of IFN antagonism mediated by these proteins. Therefore, this study identified another effect of the NS1 and NS2 proteins. The observed suppression of DC maturation may result in decreased antigen presentation and T-lymphocyte activation, leading to incomplete and/or weak immune responses that might contribute to RSV reinfection.
Collapse
|
41
|
Rennick LJ, Duprex WP, Rima BK. Measles virus minigenomes encoding two autofluorescent proteins reveal cell-to-cell variation in reporter expression dependent on viral sequences between the transcription units. J Gen Virol 2007; 88:2710-2718. [PMID: 17872523 DOI: 10.1099/vir.0.83106-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Transcription from morbillivirus genomes commences at a single promoter in the 3′ non-coding terminus, with the six genes being transcribed sequentially. The 3′ and 5′ untranslated regions (UTRs) of the genes (mRNA sense), together with the intergenic trinucleotide spacer, comprise the non-coding sequences (NCS) of the virus and contain the conserved gene end and gene start signals, respectively. Bicistronic minigenomes containing transcription units (TUs) encoding autofluorescent reporter proteins separated by measles virus (MV) NCS were used to give a direct estimation of gene expression in single, living cells by assessing the relative amounts of each fluorescent protein in each cell. Initially, five minigenomes containing each of the MV NCS were generated. Assays were developed to determine the amount of each fluorescent protein in cells at both cell population and single-cell levels. This revealed significant variations in gene expression between cells expressing the same NCS-containing minigenome. The minigenome containing the M/F NCS produced significantly lower amounts of fluorescent protein from the second TU (TU2), compared with the other minigenomes. A minigenome with a truncated F 5′ UTR had increased expression from TU2. This UTR is 524 nt longer than the other MV 5′ UTRs. Insertions into the 5′ UTR of the enhanced green fluorescent protein gene in the minigenome containing the N/P NCS showed that specific sequences, rather than just the additional length of F 5′ UTR, govern this decreased expression from TU2.
Collapse
Affiliation(s)
- Linda J Rennick
- Centre for Cancer Research and Cell Biology, School of Biomedical Sciences, The Queen's University of Belfast, Belfast BT9 7BL, Northern Ireland, UK
| | - W Paul Duprex
- Centre for Cancer Research and Cell Biology, School of Biomedical Sciences, The Queen's University of Belfast, Belfast BT9 7BL, Northern Ireland, UK
| | - Bert K Rima
- Centre for Cancer Research and Cell Biology, School of Biomedical Sciences, The Queen's University of Belfast, Belfast BT9 7BL, Northern Ireland, UK
| |
Collapse
|
42
|
Wang JT, McElvain LE, Whelan SPJ. Vesicular stomatitis virus mRNA capping machinery requires specific cis-acting signals in the RNA. J Virol 2007; 81:11499-506. [PMID: 17686869 PMCID: PMC2045530 DOI: 10.1128/jvi.01057-07] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Many viruses of eukaryotes that use mRNA cap-dependent translation strategies have evolved alternate mechanisms to generate the mRNA cap compared to their hosts. The most divergent of these mechanisms are those used by nonsegmented negative-sense (NNS) RNA viruses, which evolved a capping enzyme that transfers RNA onto GDP, rather than GMP onto the 5' end of the RNA. Working with vesicular stomatitis virus (VSV), a prototype of the NNS RNA viruses, we show that mRNA cap formation is further distinct, requiring a specific cis-acting signal in the RNA. Using recombinant VSV, we determined the function of the eight conserved positions of the gene-start sequence in mRNA initiation and cap formation. Alterations to this sequence compromised mRNA initiation and separately formation of the GpppA cap structure. These studies provide genetic and biochemical evidence that the mRNA capping apparatus of VSV evolved an RNA capping machinery that functions in a sequence-specific manner.
Collapse
Affiliation(s)
- Jennifer T Wang
- Department of Microbiology and Molecular Genetics, Harvard Medical School, 200 Longwood Ave., Boston, MA 02115, USA
| | | | | |
Collapse
|
43
|
Dibben O, Easton AJ. Mutational analysis of the gene start sequences of pneumonia virus of mice. Virus Res 2007; 130:303-9. [PMID: 17658649 DOI: 10.1016/j.virusres.2007.06.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2007] [Revised: 05/28/2007] [Accepted: 06/11/2007] [Indexed: 11/18/2022]
Abstract
The transcriptional start sequence of pneumonia virus of mice is more variable than that of the other pneumoviruses, with five different nine-base gene start (GS) sequences found in the PVM genome. The sequence requirements of the PVM gene start signal, and the efficiency of transcriptional initiation of the different virus genes, was investigated using a reverse genetics approach with a minigenome construct containing two reporter genes. A series of GS mutants were created, where each of the nine bases of the gene start consensus sequence of a reporter gene was changed to every other possible base, and the resulting effect on initiation of transcription was assayed. Nucleotide positions 1, 2 and 7 were found to be most sensitive to mutation whilst positions 4, 5 and 9 were relatively insensitive. The L gene GS sequence was found to have only 20% of the activity of the consensus sequence whilst the published M2 gene start sequence was found to be non-functional. A minigenome construct in which the two reporter genes were separated by the F-M2 gene junction of PVM was used to confirm the presence of two alternative, functional, GS sequences that could both drive the transcription of the PVM M2 gene.
Collapse
Affiliation(s)
- Oliver Dibben
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK.
| | | |
Collapse
|
44
|
Beerens N, Selisko B, Ricagno S, Imbert I, van der Zanden L, Snijder EJ, Canard B. De novo initiation of RNA synthesis by the arterivirus RNA-dependent RNA polymerase. J Virol 2007; 81:8384-95. [PMID: 17537850 PMCID: PMC1951334 DOI: 10.1128/jvi.00564-07] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
All plus-strand RNA viruses encode an RNA-dependent RNA polymerase (RdRp) that functions as the catalytic subunit of the viral replication/transcription complex, directing viral RNA synthesis in concert with other viral proteins and, sometimes, host proteins. RNA synthesis essentially can be initiated by two different mechanisms, de novo initiation and primer-dependent initiation. Most viral RdRps have been identified solely on the basis of comparative sequence analysis, and for many viruses the mechanism of initiation is unknown. In this study, using the family prototype equine arteritis virus (EAV), we address the mechanism of initiation of RNA synthesis in arteriviruses. The RdRp domains of the members of the arterivirus family, which are part of replicase subunit nsp9, were compared to coronavirus RdRps that belong to the same order of Nidovirales, as well as to other RdRps with known initiation mechanisms and three-dimensional structures. We report here the first successful expression and purification of an arterivirus RdRp that is catalytically active in the absence of other viral or cellular proteins. The EAV nsp9/RdRp initiates RNA synthesis by a de novo mechanism on homopolymeric templates in a template-specific manner. In addition, the requirements for initiation of RNA synthesis from the 3' end of the viral genome were studied in vivo using a reverse genetics approach. These studies suggest that the 3'-terminal nucleotides of the EAV genome play a critical role in viral RNA synthesis.
Collapse
Affiliation(s)
- Nancy Beerens
- Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, LUMC P4-26, 2300 RC Leiden, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
45
|
Valarcher JF, Taylor G. Bovine respiratory syncytial virus infection. Vet Res 2007; 38:153-80. [PMID: 17257568 DOI: 10.1051/vetres:2006053] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2006] [Accepted: 07/18/2006] [Indexed: 11/14/2022] Open
Abstract
Bovine respiratory syncytial virus (BRSV) belongs to the pneumovirus genus within the family Paramyxoviridae and is a major cause of respiratory disease in young calves. BRSV is enveloped and contains a negative sense, single-stranded RNA genome encoding 11 proteins. The virus replicates predominantly in ciliated respiratory epithelial cells but also in type II pneumocytes. It appears to cause little or no cytopathology in ciliated epithelial cell cultures in vitro, suggesting that much of the pathology is due to the host's response to virus infection. RSV infection induces an array of pro-inflammatory chemokines and cytokines that recruit neutrophils, macrophages and lymphocytes to the respiratory tract resulting in respiratory disease. Although the mechanisms responsible for induction of these chemokines and cytokines are unclear, studies on the closely related human (H)RSV suggest that activation of NF-kappaB via TLR4 and TLR3 signalling pathways is involved. An understanding of the mechanisms by which BRSV is able to establish infection and induce an inflammatory response has been facilitated by advances in reverse genetics, which have enabled manipulation of the virus genome. These studies have demonstrated an important role for the non-structural proteins in anti-interferon activity, a role for a virokinin, released during proteolytic cleavage of the fusion protein, in the inflammatory response and a role for the SH and the secreted form of the G protein in establishing pulmonary infection. Knowledge gained from these studies has also provided the opportunity to develop safe, stable, live attenuated virus vaccine candidates.
Collapse
|
46
|
Ghildyal R, Ho A, Jans DA. Central role of the respiratory syncytial virus matrix protein in infection. FEMS Microbiol Rev 2006; 30:692-705. [PMID: 16911040 DOI: 10.1111/j.1574-6976.2006.00025.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Respiratory syncytial virus is the major respiratory pathogen of infants and children worldwide, with no effective treatment or vaccine available. Steady progress has been made in understanding the respiratory syncytial virus life cycle and the consequences of infection, but many areas of respiratory syncytial virus biology remain poorly understood, including the role of subcellular localisation of respiratory syncytial virus gene products such as the matrix protein in the infected host cell. The matrix protein plays a central role in viral assembly and, intriguingly, has been observed to traffic into and out of the nucleus at specific times during the respiratory syncytial virus infectious cycle. Further, the matrix protein has been shown to be able to inhibit transcription, which may be a key to respiratory syncytial virus pathogenesis. This review will focus on the role of the matrix protein in respiratory syncytial virus infection and what is known of its nucleocytoplasmic trafficking, the understanding of which may lead to new therapeutic approaches to combat respiratory syncytial virus, and/or vaccine development.
Collapse
Affiliation(s)
- Reena Ghildyal
- Department of Respiratory and Sleep Medicine, Monash Medical Centre, Clayton, Australia
| | | | | |
Collapse
|
47
|
Cowton VM, McGivern DR, Fearns R. Unravelling the complexities of respiratory syncytial virus RNA synthesis. J Gen Virol 2006; 87:1805-1821. [PMID: 16760383 DOI: 10.1099/vir.0.81786-0] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Human respiratory syncytial virus (RSV) is the leading cause of paediatric respiratory disease and is the focus of antiviral- and vaccine-development programmes. These goals have been aided by an understanding of the virus genome architecture and the mechanisms by which it is expressed and replicated. RSV is a member of the order Mononegavirales and, as such, has a genome consisting of a single strand of negative-sense RNA. At first glance, transcription and genome replication appear straightforward, requiring self-contained promoter regions at the 3' ends of the genome and antigenome RNAs, short cis-acting elements flanking each of the genes and one polymerase. However, from these minimal elements, the virus is able to generate an array of capped, methylated and polyadenylated mRNAs and encapsidated antigenome and genome RNAs, all in the appropriate ratios to facilitate virus replication. The apparent simplicity of genome expression and replication is a consequence of considerable complexity in the polymerase structure and its cognate cis-acting sequences; here, our understanding of mechanisms by which the RSV polymerase proteins interact with signals in the RNA template to produce different RNA products is reviewed.
Collapse
MESH Headings
- Base Sequence
- DNA-Directed RNA Polymerases/metabolism
- Genome, Viral
- Humans
- Models, Biological
- Molecular Sequence Data
- Mononegavirales/genetics
- Mononegavirales/physiology
- Nucleocapsid/biosynthesis
- Nucleocapsid/genetics
- RNA, Antisense/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Viral/biosynthesis
- RNA, Viral/genetics
- Respiratory Syncytial Virus, Human/genetics
- Respiratory Syncytial Virus, Human/pathogenicity
- Respiratory Syncytial Virus, Human/physiology
- Transcription, Genetic
- Viral Proteins/metabolism
- Virus Replication
Collapse
Affiliation(s)
- Vanessa M Cowton
- Division of Pathology and Neuroscience, University of Dundee Medical School, Dundee DD1 9SY, UK
| | - David R McGivern
- Division of Pathology and Neuroscience, University of Dundee Medical School, Dundee DD1 9SY, UK
| | - Rachel Fearns
- Division of Pathology and Neuroscience, University of Dundee Medical School, Dundee DD1 9SY, UK
| |
Collapse
|
48
|
Xie YY, Zhao XD, Jiang LP, Liu HL, Wang LJ, Fang P, Shen KL, Xie ZD, Wu YP, Yang XQ. Inhibition of respiratory syncytial virus in cultured cells by nucleocapsid gene targeted deoxyribozyme (DNAzyme). Antiviral Res 2006; 71:31-41. [PMID: 16687180 DOI: 10.1016/j.antiviral.2006.02.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2005] [Revised: 02/27/2006] [Accepted: 02/27/2006] [Indexed: 11/18/2022]
Abstract
Respiratory syncytial virus (RSV), which presents the primary cause of bronchiolitis and pneumonia among infants and causes significant morbidity and mortality in immunodeficient patients, remains a health problem worldwide. Unfortunately, an effective vaccine is currently unavailable and pharmacologic treatment needs further optimization for RSV disease. Because RSV is a non-segmented negative-strand RNA virus, it may be sensitive to the genome RNA cleaving by DNAzyme, an artificial nucleic acids molecule with high catalytic capability of cleaving complementary RNA molecules. Thus, RSV-targeted DNAzymes potentially present as a therapeutic candidate of RSV diseases. In this study, DNAzymes targeting the RSV genomic RNA or mRNA were designed and synthesized, one of which (DZn1133) did cleave RSV RNA in vitro, inhibit the transcription and expression of F viral gene, reduce the RSV yield by about 7 logs and protect more than 90% RSV-infected Hep-2 cells from a cytopathic effect at 8 microM. Moreover, 10 wild RSV strains isolated from clinic patients including both subgroups A and B were all suppressed by DZn1133 with greater anti-RSV activity than antisense DNA or ribavirin.
Collapse
MESH Headings
- Base Sequence
- Cell Line, Tumor
- Cell Survival/drug effects
- Cytopathogenic Effect, Viral/drug effects
- DNA, Catalytic/chemical synthesis
- DNA, Catalytic/pharmacology
- Dose-Response Relationship, Drug
- Enzyme-Linked Immunosorbent Assay
- Formazans/chemistry
- Humans
- Molecular Sequence Data
- Nucleocapsid Proteins/genetics
- RNA, Messenger/metabolism
- RNA, Viral/metabolism
- Respiratory Syncytial Virus Infections/drug therapy
- Respiratory Syncytial Virus, Human/genetics
- Respiratory Syncytial Virus, Human/physiology
- Tetrazolium Salts/chemistry
- Transcription, Genetic/drug effects
- Viral Matrix Proteins/genetics
- Virus Replication/drug effects
Collapse
Affiliation(s)
- Yuan-Yuan Xie
- Division of Immunology, Children's Hospital, Chongqing University of Medical Sciences, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Melero JA. Molecular Biology of Human Respiratory Syncytial Virus. RESPIRATORY SYNCYTIAL VIRUS 2006. [DOI: 10.1016/s0168-7069(06)14001-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
50
|
Edworthy NL, Easton AJ. Mutational analysis of the avian pneumovirus conserved transcriptional gene start sequence identifying critical residues. J Gen Virol 2005; 86:3343-3347. [PMID: 16298980 DOI: 10.1099/vir.0.81352-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Seven of the eight genes in the avian pneumovirus (APV) genome contain a conserved 9 nt transcriptional start sequence with the virus large (L) polymerase gene differing from the consensus at three positions. The sequence requirements of the APV transcriptional gene start sequence were investigated by generating a series of mutations in which each of the nine conserved bases was mutated to each of the other three possible nucleotides in a minigenome containing two reporter genes. The effect of each mutation was assessed by measuring the relative levels of expression from the altered and unaltered gene start sequences. Mutations at positions 2, 7 and 9 significantly reduced transcription levels while alterations to position 5 had little effect. The L gene start sequence directed transcription at levels approximately 50 % below that of the consensus gene start sequence. These data suggest that there are common features in pneumovirus transcriptional control sequences.
Collapse
Affiliation(s)
- Nicole L Edworthy
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Andrew J Easton
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|