1
|
DePaula-Silva AB. The Contribution of Microglia and Brain-Infiltrating Macrophages to the Pathogenesis of Neuroinflammatory and Neurodegenerative Diseases during TMEV Infection of the Central Nervous System. Viruses 2024; 16:119. [PMID: 38257819 PMCID: PMC10819099 DOI: 10.3390/v16010119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/06/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
The infection of the central nervous system (CNS) with neurotropic viruses induces neuroinflammation and is associated with the development of neuroinflammatory and neurodegenerative diseases, including multiple sclerosis and epilepsy. The activation of the innate and adaptive immune response, including microglial, macrophages, and T and B cells, while required for efficient viral control within the CNS, is also associated with neuropathology. Under healthy conditions, resident microglia play a pivotal role in maintaining CNS homeostasis. However, during pathological events, such as CNS viral infection, microglia become reactive, and immune cells from the periphery infiltrate into the brain, disrupting CNS homeostasis and contributing to disease development. Theiler's murine encephalomyelitis virus (TMEV), a neurotropic picornavirus, is used in two distinct mouse models: TMEV-induced demyelination disease (TMEV-IDD) and TMEV-induced seizures, representing mouse models of multiple sclerosis and epilepsy, respectively. These murine models have contributed substantially to our understanding of the pathophysiology of MS and seizures/epilepsy following viral infection, serving as critical tools for identifying pharmacological targetable pathways to modulate disease development. This review aims to discuss the host-pathogen interaction during a neurotropic picornavirus infection and to shed light on our current understanding of the multifaceted roles played by microglia and macrophages in the context of these two complexes viral-induced disease.
Collapse
Affiliation(s)
- Ana Beatriz DePaula-Silva
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
2
|
Tomatis C, León A, López Ortiz AO, Oneto P, Fuentes F, Ferrer MF, Carrera Silva EA, Scorticati C, Gómez RM. Theiler's Murine Encephalomyelitis Virus Replicates in Primary Neuron Cultures and Impairs Spine Density Formation. Neuroscience 2023; 529:162-171. [PMID: 37598833 DOI: 10.1016/j.neuroscience.2023.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/05/2023] [Accepted: 08/09/2023] [Indexed: 08/22/2023]
Abstract
In this study, we examined infection with the highly neurovirulent GDVII, the less neurovirulent DA strains, and with a mutant DA, which lacks the L* protein (L*-1) involved in viral persistence and demyelinating disease, to analyze the direct effects of Theiler's murine encephalomyelitis virus (TMEV) replication using primary cultures of mouse brain hippocampal neurons. All viruses replicate in cultured neurons, with GDVII having the highest titers and L*-1 the lowest. Accordingly, all were positive for viral antigen staining 3 days postinfection (dpi), and DA and L*-1 were also positive after 12 dpi. NeuN + immunostaining showed an early and almost complete absence of positive cells in cultures infected with GDVII, an approximately 50% reduction in cultures infected with DA, and fewer changes in L*-1 strains at 3 dpi. Accordingly, staining with chloromethyltetramethylrosamine orange (Mitotracker OrangeTM) as a parameter for cell viability showed similar results. Moreover, at 1 dpi, the strain DA induced higher transcript levels of neuroprotective genes such as IFN-Iβ, IRF7, and IRF8. At 3 dpi, strains GDVII and DA, but not the L*-1 mutant, showed lower PKR expression. In addition, confocal analysis showed that L*-1-infected neurons exhibited a decrease in spine density. Treatment with poly (I:C), which is structurally related to dsRNA and is known to trigger IFN type I synthesis, reduced spine density even more. These results confirmed the use of mouse hippocampal neuron cultures as a model to study neuronal responses after TMEV infection, particularly in the formation of spine density.
Collapse
Affiliation(s)
- Carla Tomatis
- Laboratorio de Patogénesis viral, Instituto de Biotecnología y Biología Molecular, CONICET-UNLP, La Plata, Argentina; Laboratorio de Trombosis Experimental, Instituto de Medicina Experimental, CONICET-ANM, CABA, Argentina
| | - Antonella León
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Buenos Aires 1650, Argentina; Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, San Martín, Buenos Aires 1650, Argentina
| | - Aída O López Ortiz
- Laboratorio de Patogénesis viral, Instituto de Biotecnología y Biología Molecular, CONICET-UNLP, La Plata, Argentina; Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Buenos Aires 1650, Argentina
| | - Paula Oneto
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Buenos Aires 1650, Argentina
| | - Federico Fuentes
- Laboratorio de Trombosis Experimental, Instituto de Medicina Experimental, CONICET-ANM, CABA, Argentina
| | - María F Ferrer
- Laboratorio de Patogénesis viral, Instituto de Biotecnología y Biología Molecular, CONICET-UNLP, La Plata, Argentina
| | - Eugenio A Carrera Silva
- Laboratorio de Trombosis Experimental, Instituto de Medicina Experimental, CONICET-ANM, CABA, Argentina
| | - Camila Scorticati
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Buenos Aires 1650, Argentina; Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, San Martín, Buenos Aires 1650, Argentina.
| | - Ricardo M Gómez
- Laboratorio de Patogénesis viral, Instituto de Biotecnología y Biología Molecular, CONICET-UNLP, La Plata, Argentina.
| |
Collapse
|
3
|
Ciurkiewicz M, Floess S, Beckstette M, Kummerfeld M, Baumgärtner W, Huehn J, Beineke A. Transcriptome analysis following neurotropic virus infection reveals faulty innate immunity and delayed antigen presentation in mice susceptible to virus-induced demyelination. Brain Pathol 2021; 31:e13000. [PMID: 34231271 PMCID: PMC8549031 DOI: 10.1111/bpa.13000] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 01/13/2023] Open
Abstract
Viral infections of the central nervous system cause acute or delayed neuropathology and clinical consequences ranging from asymptomatic courses to chronic, debilitating diseases. The outcome of viral encephalitis is partially determined by genetically programed immune response patterns of the host. Experimental infection of mice with Theiler's murine encephalomyelitis virus (TMEV) causes diverse neurologic diseases, including TMEV‐induced demyelinating disease (TMEV‐IDD), depending on the used mouse strain. The aim of the present study was to compare initial transcriptomic changes occurring in the brain of TMEV‐infected SJL (TMEV‐IDD susceptible) and C57BL/6 (TMEV‐IDD resistant) mice. Animals were infected with TMEV and sacrificed 4, 7, or 14 days post infection. RNA was isolated from brain tissue and analyzed by whole‐transcriptome sequencing. Selected differences were confirmed on a protein level by immunohistochemistry. In mock‐infected SJL and C57BL/6 mice, >200 differentially expressed genes (DEGs) were detected. Following TMEV‐infection, the number of DEGs increased to >700. Infected C57BL/6 mice showed a higher expression of transcripts related to antigen presentation via major histocompatibility complex (MHC) I, innate antiviral immune responses and cytotoxicity, compared with infected SJL animals. Expression of many of those genes was weaker or delayed in SJL mice, associated with a failure of viral clearance in this mouse strain. SJL mice showed prolonged elevation of MHC II and chemotactic genes compared with C57BL/6 mice, which presumably facilitates the induction of chronic demyelinating disease. In addition, elevated expression of several genes associated with immunomodulatory or –suppressive functions was observed in SJL mice. The exploratory study confirms previous observations in the model and provides an extensive list of new immunologic parameters potentially contributing to different outcomes of viral encephalitis in two mouse strains.
Collapse
Affiliation(s)
| | - Stefan Floess
- Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Michael Beckstette
- Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Maren Kummerfeld
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany.,Center for Systems Neuroscience, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Jochen Huehn
- Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Andreas Beineke
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany.,Center for Systems Neuroscience, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
4
|
Genotypic Regulation of Type I Interferon Induction Pathways by Frameshift (F) Proteins of Hepatitis C Virus. J Virol 2020; 94:JVI.00312-20. [PMID: 32434887 DOI: 10.1128/jvi.00312-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 05/14/2020] [Indexed: 02/07/2023] Open
Abstract
Hepatitis C virus (HCV) has evolved mechanisms to evade innate immunity that are leading to chronic infections. The immunological function of the HCV frameshift (F) protein, which is a frameshift product of core coding sequences, has not been well characterized. The HCV F protein is produced during natural HCV infections and is found most commonly in genotype 1 HCV. In this study, we investigated whether the F protein plays a role in type I interferon (IFN) induction pathways. We engineered F expression constructs from core coding sequences of 4 genotypes (1a, 2a, 3a, and 4a) of HCV as well as the sequences which would only be able to produce core proteins. The peptide lengths and amino acids sequences of F proteins are highly variable. We hypothesized that F proteins from different genotypes might control the type I IFN production and response differently. We found that both IFN-beta (IFN-β) promoter activities are significantly higher in genotype 1a F protein (F1a)-expressing cells. Conversely, the IFN-β promoter activities are lower in genotype 2a F (F2a) protein-expressing cells. We also used real-time PCR to confirm IFN-β mRNA expression levels. By generating chimera F proteins, we discovered that the effects of F proteins were determined by the amino acid sequence 40 to 57 of genotype 1a. The regulation of type I IFN induction pathway is related but not limited to the activity of F1a to interact with proteasome subunits and to disturb the proteasome activity. Further molecular mechanisms of how F proteins from different genotypes of HCV control these pathways differently remain to be investigated.IMPORTANCE Although naturally present in HCV infection patient serum, the virological or immunological functions of the HCV F protein, which is a frameshift product of core coding sequences, remain unclear. Here, we report the effects of the HCV F protein between genotypes and discuss a potential explanation for the differential responses to type I IFN-based therapy among patients infected with different genotypes of HCV. Our study provides one step forward to understanding the host response during HCV infection and new insights for the prediction of the outcome of IFN-based therapy in HCV patients.
Collapse
|
5
|
Rodríguez AM, Delpino MV, Miraglia MC, Giambartolomei GH. Immune Mediators of Pathology in Neurobrucellosis: From Blood to Central Nervous System. Neuroscience 2019; 410:264-273. [PMID: 31128159 DOI: 10.1016/j.neuroscience.2019.05.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 01/18/2023]
|
6
|
Bijalwan M, Young CR, Tingling J, Zhou XJ, Rimmelin AR, Leibowitz JL, Welsh CJ. Characterization of Plaque-Sized Variants of Daniel's (DA) Strain in Theiler's Virus-Induced Epilepsy. Sci Rep 2019; 9:3444. [PMID: 30837498 PMCID: PMC6401140 DOI: 10.1038/s41598-019-38967-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 01/09/2019] [Indexed: 12/20/2022] Open
Abstract
Epilepsy is a complex neurological disease characterized by recurrent seizures. Patients with viral encephalitis have a 16-fold increased risk of developing epilepsy, and this risk can persist for about 15 years after the occurrence of initial viral infection. Theiler's murine encephalomyelitis virus (TMEV) infection induces a well-characterized experimental model of epilepsy in C57BL/6 mice. In response to intracerebral (I.C.) injection of Daniel's (DA) strain of TMEV, there is vigorous immune response, which is detrimental to neurons and contributes to acute seizures, rendering mice susceptible to epilepsy. A comparative in vivo challenge study with either one of the two variants of the DA strain, small (DA-DS) or large (DA-CL) plaque forming variants, revealed differences in the diseases they induced in C57BL/6 mice. Compared to DA-CL-, DA-DS-infected mice exhibited significantly more seizures, higher clinical scores, neuroinflammation, and neuronal damage (mainly in the CA1-CA2 regions of hippocampus). Moreover, the brains of DA-DS infected mice contained approximately five-fold higher virus than those of DA-CL infected mice. A sequence comparison of the DA-CL and DA-DS genome sequences showed mutations in the leader (L) and L* proteins of DA-CL variant, which may be the cause of attenuating phenotype of DA-CL variant in the C57BL/6 mouse model of epilepsy.
Collapse
Affiliation(s)
- M Bijalwan
- Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, College Station, Texas, USA
| | - C R Young
- Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, College Station, Texas, USA
| | - J Tingling
- Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, College Station, Texas, USA
| | - X J Zhou
- Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, College Station, Texas, USA
- College Station High School, Texas A&M Health Science Center, College Station, Texas, USA
| | - A R Rimmelin
- Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, College Station, Texas, USA
| | - J L Leibowitz
- Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, College Station, Texas, USA
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, Texas, USA
| | - C J Welsh
- Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, College Station, Texas, USA.
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, Texas, USA.
- Women's Health in Neuroscience Program, Texas A&M Health Science Center, College Station, Texas, USA.
| |
Collapse
|
7
|
Drappier M, Jha BK, Stone S, Elliott R, Zhang R, Vertommen D, Weiss SR, Silverman RH, Michiels T. A novel mechanism of RNase L inhibition: Theiler's virus L* protein prevents 2-5A from binding to RNase L. PLoS Pathog 2018; 14:e1006989. [PMID: 29652922 PMCID: PMC5927464 DOI: 10.1371/journal.ppat.1006989] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 04/30/2018] [Accepted: 03/23/2018] [Indexed: 11/18/2022] Open
Abstract
The OAS/RNase L pathway is one of the best-characterized effector pathways of the IFN antiviral response. It inhibits the replication of many viruses and ultimately promotes apoptosis of infected cells, contributing to the control of virus spread. However, viruses have evolved a range of escape strategies that act against different steps in the pathway. Here we unraveled a novel escape strategy involving Theiler's murine encephalomyelitis virus (TMEV) L* protein. Previously we found that L* was the first viral protein binding directly RNase L. Our current data show that L* binds the ankyrin repeats R1 and R2 of RNase L and inhibits 2'-5' oligoadenylates (2-5A) binding to RNase L. Thereby, L* prevents dimerization and oligomerization of RNase L in response to 2-5A. Using chimeric mouse hepatitis virus (MHV) expressing TMEV L*, we showed that L* efficiently inhibits RNase L in vivo. Interestingly, those data show that L* can functionally substitute for the MHV-encoded phosphodiesterase ns2, which acts upstream of L* in the OAS/RNase L pathway, by degrading 2-5A.
Collapse
Affiliation(s)
- Melissa Drappier
- Université catholique de Louvain, de Duve Institute, Brussels, Belgium
| | - Babal Kant Jha
- Translational Hematology and Oncology Research, Taussig Cancer Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Sasha Stone
- Department of Microbiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Ruth Elliott
- Department of Microbiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Rong Zhang
- Department of Microbiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Didier Vertommen
- Université catholique de Louvain, de Duve Institute, Brussels, Belgium
| | - Susan R. Weiss
- Department of Microbiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Robert H. Silverman
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Thomas Michiels
- Université catholique de Louvain, de Duve Institute, Brussels, Belgium
| |
Collapse
|
8
|
Basta HA, Palmenberg AC. AMP-activated protein kinase phosphorylates EMCV, TMEV and SafV leader proteins at different sites. Virology 2014; 462-463:236-40. [PMID: 24999048 DOI: 10.1016/j.virol.2014.06.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 06/07/2014] [Accepted: 06/17/2014] [Indexed: 12/29/2022]
Abstract
Cardioviruses of the Encephalomyocarditis virus (EMCV) and Theilovirus species encode small, amino-terminal proteins called Leaders (L). Phosphorylation of the EMCV L (LE) at two distinct sites by CK2 and Syk kinases is important for virus-induced Nup phosphorylation and nucleocytoplasmic trafficking inhibition. Despite similar biological activities, the LE phosphorylation sites are not conserved in the Theiloviruses, Saffold virus (LS, SafV) or Theiler׳s murine encephalitis virus (LT, TMEV) sequences even though these proteins also become phosphorylated in cells and cell-free extracts. Site prediction algorithms, combined with panels of site-specific protein mutations now identify analogous, but not homologous phosphorylation sites in the Ser/Thr and Theilo protein domains of LT and LS, respectively. In both cases, recombinant AMP-activated kinase (AMPK) was reactive with the proteins at these sites, and also with LE, modifying the same residue recognized by CK2.
Collapse
Affiliation(s)
- Holly A Basta
- Institute for Molecular Virology and Department of Biochemistry, Robert M. Bock Laboratories, University of Wisconsin-Madison, 1525 Linden Dr., Madison, WI 53706, USA
| | - Ann C Palmenberg
- Institute for Molecular Virology and Department of Biochemistry, Robert M. Bock Laboratories, University of Wisconsin-Madison, 1525 Linden Dr., Madison, WI 53706, USA.
| |
Collapse
|
9
|
Mutation of the Theiler's virus leader protein zinc-finger domain impairs apoptotic activity in murine macrophages. Virus Res 2013; 177:222-5. [PMID: 24036175 DOI: 10.1016/j.virusres.2013.09.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Revised: 08/27/2013] [Accepted: 09/02/2013] [Indexed: 01/01/2023]
Abstract
The Theiler's murine encephalomyelitis virus (TMEV) leader (L) protein zinc-finger domain was mutated to study its role in cell death in infection of the murine macrophage cell line M1-D, revealing that an intact zinc-finger domain is required for full apoptotic activity. A functional L zinc-finger domain was also required for activation of p38 MAPK that results in phosphorylation and activation of p53, and in turn, alteration of the conformation of the anti-apoptotic proteins Puma and Mcl-1, leading to the release of pro-apoptotic Bax and apoptosis through the intrinsic pathway. TMEV infection also inhibits host protein synthesis, a stress shown by others to induce apoptosis. Since inhibition of host protein synthesis follows rather than precedes activation of MKK3/6 and p38, it seems less likely that it triggers apoptosis in infected cells. Finally, we showed that the levels of reactive oxygen species following infection were consistent with apoptotic rather than necrotic cell death. Thus, these experiments support an important role for the TMEV L protein zinc-finger domain in apoptosis in an infected murine macrophage line.
Collapse
|
10
|
Sorgeloos F, Jha BK, Silverman RH, Michiels T. Evasion of antiviral innate immunity by Theiler's virus L* protein through direct inhibition of RNase L. PLoS Pathog 2013; 9:e1003474. [PMID: 23825954 PMCID: PMC3694852 DOI: 10.1371/journal.ppat.1003474] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 05/17/2013] [Indexed: 01/08/2023] Open
Abstract
Theiler's virus is a neurotropic picornavirus responsible for chronic infections of the central nervous system. The establishment of a persistent infection and the subsequent demyelinating disease triggered by the virus depend on the expression of L*, a viral accessory protein encoded by an alternative open reading frame of the virus. We discovered that L* potently inhibits the interferon-inducible OAS/RNase L pathway. The antagonism of RNase L by L* was particularly prominent in macrophages where baseline oligoadenylate synthetase (OAS) and RNase L expression levels are elevated, but was detectable in fibroblasts after IFN pretreatment. L* mutations significantly affected Theiler's virus replication in primary macrophages derived from wild-type but not from RNase L-deficient mice. L* counteracted the OAS/RNase L pathway through direct interaction with the ankyrin domain of RNase L, resulting in the inhibition of this enzyme. Interestingly, RNase L inhibition was species-specific as Theiler's virus L* protein blocked murine RNase L but not human RNase L or RNase L of other mammals or birds. Direct RNase L inhibition by L* and species specificity were confirmed in an in vitro assay performed with purified proteins. These results demonstrate a novel viral mechanism to elude the antiviral OAS/RNase L pathway. By targeting the effector enzyme of this antiviral pathway, L* potently inhibits RNase L, underscoring the importance of this enzyme in innate immunity against Theiler's virus. Theiler's virus is a murine picornavirus (same family as poliovirus) which has a striking ability to establish persistent infections of the central nervous system. To do so, the virus has to counteract the immune response of the host and particularly the potent response mediated by interferon. We observed that a protein encoded by Theiler's virus, the L* protein, inhibited the RNase L pathway, one of the best-characterized pathways mediating the antiviral IFN response. In contrast to previously identified viral antagonists of this pathway, L* was found to act directly on RNase L, the effector enzyme of the pathway. L* activity was found to be species-specific as it inhibited murine but not human RNase L. We confirmed the species-specificity and the direct interaction between L* and RNase L in vitro, using purified proteins. Acting at the effector step in the pathway allows L* to block RNase L activity efficiently. This suggests that RNase L is particularly important to control Theiler's virus replication in vivo. Another virus, mouse hepatitis virus (MHV), was recently shown to interfere with RNase L activation. Theiler's virus and MHV share a marked tropism for macrophages which may suggest that the RNase L pathway is particularly important in this cell type.
Collapse
Affiliation(s)
| | - Babal Kant Jha
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio United States of America
| | - Robert H. Silverman
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio United States of America
| | - Thomas Michiels
- Université Catholique de Louvain, de Duve Institute, Brussels, Belgium
- * E-mail:
| |
Collapse
|
11
|
Sabath N, Wagner A, Karlin D. Evolution of viral proteins originated de novo by overprinting. Mol Biol Evol 2012; 29:3767-80. [PMID: 22821011 PMCID: PMC3494269 DOI: 10.1093/molbev/mss179] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
New protein-coding genes can originate either through modification of existing genes or de novo. Recently, the importance of de novo origination has been recognized in eukaryotes, although eukaryotic genes originated de novo are relatively rare and difficult to identify. In contrast, viruses contain many de novo genes, namely those in which an existing gene has been “overprinted” by a new open reading frame, a process that generates a new protein-coding gene overlapping the ancestral gene. We analyzed the evolution of 12 experimentally validated viral genes that originated de novo and estimated their relative ages. We found that young de novo genes have a different codon usage from the rest of the genome. They evolve rapidly and are under positive or weak purifying selection. Thus, young de novo genes might have strain-specific functions, or no function, and would be difficult to detect using current genome annotation methods that rely on the sequence signature of purifying selection. In contrast to young de novo genes, older de novo genes have a codon usage that is similar to the rest of the genome. They evolve slowly and are under stronger purifying selection. Some of the oldest de novo genes evolve under stronger selection pressure than the ancestral gene they overlap, suggesting an evolutionary tug of war between the ancestral and the de novo gene.
Collapse
Affiliation(s)
- Niv Sabath
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland.
| | | | | |
Collapse
|
12
|
Abstract
The L* protein encoded by Theiler's murine encephalomyelitis virus (TMEV) is a unique example of a picornaviral protein encoded by an alternative open reading frame. This protein is an important determinant of TMEV persistence in the mouse central nervous system. We showed that in infected cells, L* is partitioned between the cytosol and the mitochondria. In mitochondria, L* is anchored in the outer membrane and exposed to the cytosol. The targeting of L* to mitochondria is independent of other viral components and likely depends on a conformational signal. L* targeting to mitochondria might involve chaperones of the Hsp70 family, as these proteins are shown to interact.
Collapse
|
13
|
Himeda T, Okuwa T, Nojiri M, Muraki Y, Ohara Y. The anti-apoptotic protein L(*) of Theiler's murine encephalomyelitis virus (TMEV) contains a mitochondrial targeting signal. Virus Res 2010; 155:381-8. [PMID: 21130126 DOI: 10.1016/j.virusres.2010.11.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 11/16/2010] [Accepted: 11/19/2010] [Indexed: 11/17/2022]
Abstract
L(*) protein of TMEV is out-of-frame with the viral polyprotein from an alternative initiation codon AUG, 13 nucleotides downstream from the authentic polyprotein AUG. Anti-apoptotic activity of L(*) was demonstrated by both 'loss of function' and 'gain of function' experiments. However, the precise mechanism(s) of anti-apoptotic activity of L(*) remains to be clarified. In this study, L(*) was demonstrated to be localized to mitochondria. It was also shown by the GFP fusion protein that N-terminal sequence of L(*) may contain a mitochondrial targeting signal (MTS). Surprisingly, L(*)((5-70))-GFP and L(*)((41-70))-GFP were localized to mitochondria although L(*)((1-70))-GFP was distributed in the cytosol, suggesting L(*) has an MTS between amino acid (AA) positions 41 and 70, and that L(*)((1-4)) inhibits its mitochondrial targeting. Furthermore, L(*)((1-70))-GFP was localized to the mitochondria by co-expression of L(*)((65-156)), indicating that L(*)((65-156)) suppresses the inhibition of mitochondrial targeting by L(*)((1-4)). These results suggest that the intra- or inter-molecular interaction of L(*) regulates its mitochondrial localization. It is also suggested that L(*) may inhibit the intrinsic apoptosis through the localization to mitochondria.
Collapse
Affiliation(s)
- Toshiki Himeda
- Department of Microbiology, Kanazawa Medical University School of Medicine, 1-1 Uchinada, Ishikawa 920-0293, Japan
| | | | | | | | | |
Collapse
|
14
|
Abstract
Viral reproduction involves not only replication but also interactions with host defences. Although various viral proteins can take part in counteracting innate and adaptive immunity, many viruses possess a subset of proteins that are specifically dedicated to counter-defensive activities. These proteins are sometimes referred to as 'virulence factors', but here we argue that the term 'security proteins' is preferable, for several reasons. The concept of security proteins of RNA-containing viruses can be considered using the leader (L and L*) and 2A proteins of picornaviruses as examples. The picornaviruses are a large group of human and animal viruses that include important pathogens such as poliovirus, hepatitis A virus and foot-and-mouth disease virus. The genomes of different picornaviruses have a similar organization, in which the genes for L and 2A occupy fixed positions upstream and downstream of the capsid genes, respectively. Both L and 2A are extremely heterogeneous with respect to size, sequence and biochemical properties. The similarly named proteins can be completely unrelated to each other in different viral genera, and the variation can be striking even among members of the same genus. A subset of picornaviruses lacks L altogether. The properties and functions of L and 2A of many picornaviruses are unknown, but in those viruses that have been investigated sufficiently it has been found that these proteins can switch off various aspects of host macromolecular synthesis and specifically suppress mechanisms involved in innate immunity. Thus, notwithstanding their unrelatedness, the security proteins carry out similar biological functions. It is proposed that other picornavirus L and 2A proteins that have not yet been investigated should also be primarily involved in security activities. The L, L* and 2A proteins are dispensable for viral reproduction, but their elimination or inactivation usually renders the viruses less pathogenic. The phenotypic changes associated with inactivation of security proteins are much less pronounced in cells or organisms that have innate immunity deficiencies. In several examples, the decreased fitness of a virus in which a security protein has been inactivated could be rescued by the experimental introduction of an unrelated security protein. It can be argued that L and 2A were acquired by different picornaviruses independently, and possibly by exploiting different mechanisms, late in the evolution of this viral family. It is proposed that the concept of security proteins is of general relevance and can be applied to viruses other than picornaviruses. The hallmarks of security proteins are: structural and biochemical unrelatedness in related viruses or even absence in some of them; dispensability of the entire protein or its functional domains for viral viability; and, for mutated versions of the proteins, fewer detrimental effects on viral reproduction in immune-compromised hosts than in immune-competent hosts.
Viral security proteins are structurally and biochemically unrelated proteins that function to counteract host defences. Here, Agol and Gmyl consider the impact of the picornavirus security proteins on viral reproduction, pathogenicity and evolution. Interactions with host defences are key aspects of viral infection. Various viral proteins perform counter-defensive functions, but a distinct class, called security proteins, is dedicated specifically to counteracting host defences. Here, the properties of the picornavirus security proteins L and 2A are discussed. These proteins have well-defined positions in the viral polyprotein, flanking the capsid precursor, but they are structurally and biochemically unrelated. Here, we consider the impact of these two proteins, as well as that of a third security protein, L*, on viral reproduction, pathogenicity and evolution. The concept of security proteins could serve as a paradigm for the dedicated counter-defensive proteins of other viruses.
Collapse
Affiliation(s)
- Vadim I Agol
- M. P. Chumakov Institute of Poliomyelitis and Viral Encephalitides, Russian Academy of Medical Sciences, Moscow 142782, Russia.
| | | |
Collapse
|
15
|
|
16
|
Leader (L) of Theiler's murine encephalomyelitis virus (TMEV) is required for virus growth in a murine macrophage-like cell line. Virus Res 2010; 147:224-30. [DOI: 10.1016/j.virusres.2009.11.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Revised: 11/10/2009] [Accepted: 11/13/2009] [Indexed: 11/17/2022]
|
17
|
García Samartino C, Delpino MV, Pott Godoy C, Di Genaro MS, Pasquevich KA, Zwerdling A, Barrionuevo P, Mathieu P, Cassataro J, Pitossi F, Giambartolomei GH. Brucella abortus induces the secretion of proinflammatory mediators from glial cells leading to astrocyte apoptosis. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 176:1323-38. [PMID: 20093491 DOI: 10.2353/ajpath.2010.090503] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Central nervous system (CNS) invasion by bacteria of the genus Brucella results in an inflammatory disorder called neurobrucellosis. In this study we present in vivo and in vitro evidence that B. abortus and its lipoproteins activate the innate immunity of the CNS, eliciting an inflammatory response that leads to astrogliosis, a characteristic feature of neurobrucellosis. Intracranial injection of heat-killed B. abortus (HKBA) or outer membrane protein 19 (Omp19), a B. abortus lipoprotein model, induced astrogliosis in mouse striatum. Moreover, infection of astrocytes and microglia with B. abortus induced the secretion of interleukin (IL)-6, IL-1beta, tumor necrosis factor (TNF)-alpha, macrophage chemoattractant protein-1, and KC (CXCL1). HKBA also induced these inflammatory mediators, suggesting the involvement of a structural component of the bacterium. Accordingly, Omp19 induced the same cytokine and chemokine secretion pattern. B. abortus infection induced astrocyte, but not microglia, apoptosis. Indeed, HKBA and Omp19 elicited not only astrocyte apoptosis but also proliferation, two features observed during astrogliosis. Apoptosis induced by HKBA and L-Omp19 was completely suppressed in cells of TNF receptor p55-/- mice or when the general caspase inhibitor Z-VAD-FMK was added to cultures. Hence, TNF-alpha signaling via TNF receptor (TNFR) 1 through the coupling of caspases determines apoptosis. Our results provide proof of the principle that Brucella lipoproteins could be key virulence factors in neurobrucellosis and that astrogliosis might contribute to neurobrucellosis pathogenesis.
Collapse
Affiliation(s)
- Clara García Samartino
- Instituto de Estudios de la Inmunidad Humoral (IDEHU), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires. Junín 956 4 Piso. (1113) Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Theiler's murine encephalomyelitis virus L* amino acid position 93 is important for virus persistence and virus-induced demyelination. J Virol 2009; 84:1348-54. [PMID: 19923182 DOI: 10.1128/jvi.01585-09] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The DA strain and other members of the TO subgroup of Theiler's murine encephalomyelitis virus (TMEV) induce a persistent central nervous system infection associated with an inflammatory white matter demyelinating disease. TO subgroup strains synthesize an 18-kDa protein, L*, out of frame with the polyprotein from an initiation codon 13 nucleotides downstream from the polyprotein's AUG codon. We previously generated a mutant virus from our infectious DA full-length clone that has a change of the L* AUG codon to ACG (with no change in the polyprotein's amino acid sequence). Studies of this mutant virus showed that L* was key to the TO subgroup phenotype because the mutant had a decreased ability to persist and demyelinate. This work was initially called into question because a similar mutant derived from a different full-length DA infectious clone persisted and demyelinated similarly to wild-type DA virus (O. van Eyll and T. Michiels, J. Virol. 74:9071-9077, 2000). We now report that (i) the sequence of the L* coding region differs in the two infectious clones, resulting in a Ser or Leu as the predicted amino acid at position 93 of L* (with no change in the polyprotein's amino acid sequence), (ii) the difference in this amino acid is key to the phenotypic differences between the two mutants, and (iii) the change in amino acid 93 may affect L* phosphorylation. It is of interest that this amino acid only appears critical in determining the virus phenotype when L* is present in a significantly reduced amount (i.e., following translation from an ACG initiating codon).
Collapse
|
19
|
Vassilaki N, Mavromara P. The HCV ARFP/F/core+1 protein: production and functional analysis of an unconventional viral product. IUBMB Life 2009; 61:739-52. [PMID: 19548320 DOI: 10.1002/iub.201] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Hepatitis C virus (HCV) is an enveloped positive-strand RNA virus of the Flaviviridae family. It has a genome of about 9,600 nucleotides encoding a large polyprotein (about 3,000 amino acids) that is processed by cellular and viral proteases into at least 10 structural and nonstructural viral proteins. A novel HCV protein has also been identified by our laboratory and others. This protein--known as ARFP (alternative reading frame protein), F (for frameshift) or core+1 (to indicate the position) protein--is synthesized by an open reading frame overlapping the core gene at nucleotide +1 (core+1 ORF). However, almost 10 years after its discovery, we still know little of the biological role of the ARFP/F/core+1 protein. Abolishing core+1 protein production has no affect on HCV replication in cell culture or uPA-SCID mice, suggesting that core+1 protein is probably not important for the HCV reproductive cycle. However, the detection of specific anti-core+1 antibodies and T-cell responses in HCV-infected patients, as reported by many independent laboratories, provides strong evidence that this protein is produced in vivo. Furthermore, analyses of the HCV sequences isolated from patients with hepatocellular carcinoma and in vitro studies have provided strong preliminary evidence to suggest that core+1 protein plays a role in advanced liver disease and liver cancer. The available in vitro data also suggest that certain core function proteins may depend on production of the core+1 protein. We describe here the discovery of the various forms of the core+1 protein and what is currently known about the mechanisms of their production and their biochemical and functional properties. We also provide a detailed summary of the results of patient-based research.
Collapse
Affiliation(s)
- Niki Vassilaki
- Molecular Virology Laboratory, Hellenic Pasteur Institute, Athens, Greece.
| | | |
Collapse
|
20
|
Taniura N, Saito M, Okuwa T, Saito K, Ohara Y. Different subcellular localization of Theiler's murine encephalomyelitis virus leader proteins of GDVII and DA strains in BHK-21 cells. J Virol 2009; 83:6624-30. [PMID: 19386716 PMCID: PMC2698518 DOI: 10.1128/jvi.02385-08] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Accepted: 04/13/2009] [Indexed: 11/20/2022] Open
Abstract
The highly virulent GDVII strain of Theiler's murine encephalomyelitis virus causes acute and fatal encephalomyelitis, whereas the DA strain causes mild encephalomyelitis followed by a chronic inflammatory demyelinating disease with virus persistence. The differences in the amino acid sequences of the leader protein (L) of the DA and GDVII strains are greater than those for any other viral protein. We examined the subcellular distribution of DA L and GDVII L tagged with the FLAG epitope in BHK-21 cells. Wild-type GDVII L was localized predominantly in the cytoplasm, whereas wild-type DA L showed a nucleocytoplasmic distribution. A series of the L mutant experiments demonstrated that the zinc finger domain, acidic domain, and C-terminal region of L were necessary for the nuclear accumulation of DA L. A GDVII L mutant with a deletion of the serine/threonine (S/T)-rich domain showed a nucleocytoplasmic distribution, in contrast to the predominant cytoplasmic distribution of wild-type GDVII L. A chimeric DA/GDVII L, D/G, which encodes the N region of DA L including the zinc finger domain and acidic domain, followed by the GDVII L sequence including the S/T-rich domain, was distributed exclusively throughout the cytoplasm but not in the nucleus, as observed with wild-type GDVII L. Another chimeric L, G/D (which is the converse of the D/G construct), accumulated in the nucleus as well as the cytoplasm, as was observed for wild-type DA L. The findings suggest that the differential distribution of DA L and GDVII L is determined primarily by the S/T-rich domain. The S/T-rich domain may be important for the viral activity through the regulation of the subcellular distribution of L.
Collapse
Affiliation(s)
- Naoko Taniura
- Department of Microbiology, Kanazawa Medical University School of Medicine, Uchinada, Ishikawa 920-0293, Japan
| | | | | | | | | |
Collapse
|
21
|
Antiapoptotic activity of the cardiovirus leader protein, a viral "security" protein. J Virol 2009; 83:7273-84. [PMID: 19420082 DOI: 10.1128/jvi.00467-09] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Apoptosis is a common antiviral defensive mechanism that potentially limits viral reproduction and spread. Many viruses possess apoptosis-suppressing tools. Here, we show that the productive infection of HeLa cells with encephalomyocarditis virus (a cardiovirus) was not accompanied by full-fledged apoptosis (although the activation of caspases was detected late in infection) but rather elicited a strong antiapoptotic state, as evidenced by the resistance of infected cells to viral and nonviral apoptosis inducers. The development of the antiapoptotic state appeared to depend on a function(s) of the viral leader (L) protein, since its mutational inactivation resulted in the efflux of cytochrome c from mitochondria, the early activation of caspases, and the appearance of morphological and biochemical signs of apoptosis in a significant proportion of infected cells. Infection with both wild-type and L-deficient viruses induced the fragmentation of mitochondria, which in the former case was not accompanied with cytochrome c efflux. Although the exact nature of the antiapoptotic function(s) of cardioviruses remains obscure, our results suggested that it includes previously undescribed mechanisms operating upstream and possibly downstream of the mitochondrial level, and that L is involved in the control of these mechanisms. We propose that cardiovirus L belongs to a class of viral proteins, dubbed here security proteins, whose roles consist solely, or largely, in counteracting host antidefenses. Unrelated L proteins of other picornaviruses as well as their highly variable 2A proteins also may be security proteins. These proteins appear to be independent acquisitions in the evolution of picornaviruses, implying multiple cases of functional (though not structural) convergence.
Collapse
|
22
|
Theiler's murine encephalomyelitis virus leader protein is the only nonstructural protein tested that induces apoptosis when transfected into mammalian cells. J Virol 2009; 83:6546-53. [PMID: 19403676 DOI: 10.1128/jvi.00353-09] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Theiler's murine encephalomyelitis virus (TMEV) induces two distinct cell death programs, necrosis and apoptosis. The apoptotic pathway is of particular interest because TMEV persists in the central nervous system of mice, largely in infiltrating macrophages, which undergo apoptosis. Infection of murine macrophages in culture induces apoptosis that is Bax dependent through the intrinsic or mitochondrial pathway, restricting infectious-virus yields and raising the possibility that apoptosis represents a mechanism to attenuate TMEV yet promote macrophage-to-macrophage spread during persistent infection. To help define the cellular stressors and upstream signaling events leading to apoptosis during TMEV infection, we screened baby hamster kidney (BHK-21) cells transfected to express individual nonstructural genes (except 3B) of the low-neurovirulence BeAn virus strain for cell death. Only expression of the leader protein led to apoptosis, as assessed by fluorescence-activated cell sorting analysis of propidium iodide- and annexin V-stained transfected cells, immunoblot analysis of poly(ADP-ribose) polymerase and caspase cleavages, electron microscopy, and inhibition of apoptosis by the pancaspase inhibitor qVD-OPh. After transfection, Bak and not Bax expression increased, suggesting that the apical pathway leading to activation of these Bcl-2 multi-BH-domain proapoptotic proteins differs in BeAn virus infection versus L transfection. Mutation to remove the CHCC Zn finger motif from L, a motif required by L to mediate inhibition of nucleocytoplasmic trafficking, significantly reduced L-protein-induced apoptosis in both BHK-21 and M1-D macrophages.
Collapse
|
23
|
Ricour C, Delhaye S, Hato SV, Olenyik TD, Michel B, van Kuppeveld FJM, Gustin KE, Michiels T. Inhibition of mRNA export and dimerization of interferon regulatory factor 3 by Theiler's virus leader protein. J Gen Virol 2009; 90:177-86. [PMID: 19088287 DOI: 10.1099/vir.0.005678-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Theiler's murine encephalomyelitis virus (TMEV or Theiler's virus) is a neurotropic picornavirus that can persist lifelong in the central nervous system of infected mice, causing a chronic inflammatory demyelinating disease. The leader (L) protein of the virus is an important determinant of viral persistence and has been shown to inhibit transcription of type I interferon (IFN) genes and to cause nucleocytoplasmic redistribution of host proteins. In this study, it was shown that expression of the L protein shuts off synthesis of the reporter proteins green fluorescent protein and firefly luciferase, suggesting that it induces a global shut-off of host protein expression. The L protein did not inhibit transcription or translation of the reporter genes, but blocked cellular mRNA export from the nucleus. This activity correlated with the phosphorylation of nucleoporin 98 (Nup98), an essential component of the nuclear pore complex. In contrast, the data confirmed that the L protein inhibited IFN expression at the transcriptional level, and showed that transcription of other chemokine or cytokine genes was affected by the L protein. This transcriptional inhibition correlated with inhibition of interferon regulatory factor 3 (IRF-3) dimerization. Whether inhibition of IRF-3 dimerization and dysfunction of the nuclear pore complex are related phenomena remains an open question. In vivo, IFN antagonism appears to be an important role of the L protein early in infection, as a virus bearing a mutation in the zinc finger of the L protein replicated as efficiently as the wild-type virus in type I IFN receptor-deficient mice, but had impaired fitness in IFN-competent mice.
Collapse
Affiliation(s)
- Céline Ricour
- Université Catholique de Louvain, de Duve Institute, Brussels, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Cardioviruses are genetically diverse and cause common enteric infections in South Asian children. J Virol 2009; 83:4631-41. [PMID: 19193786 DOI: 10.1128/jvi.02085-08] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Cardioviruses cause enteric infections in mice and rats which when disseminated have been associated with myocarditis, type 1 diabetes, encephalitis, and multiple sclerosis-like symptoms. Cardioviruses have also been detected at lower frequencies in other mammals. The Cardiovirus genus within the Picornaviridae family is currently made up of two viral species, Theilovirus and Encephalomyocarditis virus. Until recently, only a single strain of cardioviruses (Vilyuisk virus within the Theilovirus species) associated with a geographically restricted and prevalent encephalitis-like condition had been reported to occur in humans. A second theilovirus-related cardiovirus (Saffold virus [SAFV]) was reported in 2007 and subsequently found in respiratory secretions from children with respiratory problems and in stools of both healthy and diarrheic children. Using viral metagenomics, we identified RNA fragments related to SAFV in the stools of Pakistani and Afghani children with nonpolio acute flaccid paralysis (AFP). We sequenced three near-full-length genomes, showing the presence of divergent strains of SAFV and preliminary evidence of a distant recombination event between the ancestors of the Theiler-like viruses of rats and those of human SAFV. Further VP1 sequencing showed the presence of five new SAFV genotypes, doubling the reported genetic diversity of human and animal theiloviruses combined. Both AFP patients and healthy children in Pakistan were found to be excreting SAFV at high frequencies of 9 and 12%, respectively. Further studies are needed to examine the roles of these highly common and diverse SAFV genotypes in nonpolio AFP and other human diseases.
Collapse
|
25
|
Ratinier M, Boulant S, Crussard S, McLauchlan J, Lavergne JP. Subcellular localizations of the hepatitis C virus alternate reading frame proteins. Virus Res 2008; 139:106-10. [PMID: 18996421 DOI: 10.1016/j.virusres.2008.09.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Revised: 09/16/2008] [Accepted: 09/19/2008] [Indexed: 12/28/2022]
Abstract
Alternate reading frame proteins (ARFPs) resulting either from frameshifting, from transcriptional slippage or from internal initiation in the +1 open reading frame (ORF) of hepatitis C virus (HCV) core protein coding sequence have been described in vitro. As an approach to study the roles of these proteins, we investigate the subcellular localization of ARFPs fused with the green fluorescent protein (GFP) either at their N- or C-terminus. Most GFP fusion products have a diffuse localization, as revealed by confocal microscopy. One GFP chimeric protein, arising from internal initiation at codon 26 in the +1 ORF (ARFP(26-161)), is specifically targeted to mitochondria. Mitochondrial localization was confirmed by immunoblot with an anti-ARFP antibody of a mitochondria-enriched cellular fraction. Mitochondrial targeting of ARFP(26-161) mostly involved the N-terminal portion of the protein as revealed by the cellular localization of truncated mutants. Interestingly, ARFP(26-161) from both genotypes 1a and 1b, but not the protein from the genotype 2a JFH1 infectious sequence, exhibit mitochondrial localization. These results are the first concerning the cellular localization and the role of this HCV ARFP; they may serve as a platform for further studies on its mitochondrial effects and their role in the virus life cycle and pathogenesis.
Collapse
Affiliation(s)
- Maxime Ratinier
- Institut de Biologie et Chimie des Protéines, UMR 5086 CNRS-Université de Lyon, IFR 128 Biosciences, 7 passage du Vercors, 69367 Lyon cedex 07, France
| | | | | | | | | |
Collapse
|
26
|
McDole J, Suidan G, Boespflug E, Cheng J, Chen Y, Pirko I, Johnson A. A translatable molecular approach to determining CD8 T-cell epitopes in TMEV infection. Hum Immunol 2008; 69:805-10. [PMID: 18817825 DOI: 10.1016/j.humimm.2008.08.293] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2008] [Revised: 08/16/2008] [Accepted: 08/18/2008] [Indexed: 11/19/2022]
Abstract
Defining the epitope specificity of CD8+ T cells is an important goal in autoimmune and immune-mediated disease research. We have developed a translational molecular approach to determine the epitope specificity of CD8+ T cells using the Theiler's murine encephalomyelitis virus (TMEV) model of multiple sclerosis (MS). TMEV-specific CD8+ T cells were isolated from brains and spleens of 7-day TMEV-infected C57BL/6J mice and stimulated by Cos-7 cells that were co-transfected with expression vectors encoding the D(b) class I molecule along with overlapping segments of the TMEV genome. Both brain-infiltrating and spleen-derived CD8+ T cells expressed IFN-gamma when Cos-7 cells were co-transfected with D(b) class I molecule and the TMEV genomic segment that encoded the immunodominant TMEV epitope. This demonstrated that peripheral and brain-infiltrating CD8+ T-cell responses were focused on peptide epitope(s) encoded by the same region of the TMEV genome. We propose that a similar molecular approach could also be used to determine the antigen specificity of suppressor CD8 T cells by the measurement of transforming growth factor-beta (TGF-beta) production. In addition, with a randomly generated library and peripheral blood or isolated CSF CD8+ T cells, this would be an effective method of predicting the epitope specificity of CD8+ T cells in human inflammatory CNS diseases, in animal models of MS or other organ-specific inflammatory diseases with a protective or pathogenic role of CD8 T cells.
Collapse
Affiliation(s)
- Jeremiah McDole
- Department of Neurology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Identification of cardioviruses related to Theiler's murine encephalomyelitis virus in human infections. Proc Natl Acad Sci U S A 2008; 105:14124-9. [PMID: 18768820 DOI: 10.1073/pnas.0805968105] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cardioviruses comprise a genus of picornaviruses that cause severe illnesses in rodents, but little is known about the prevalence, diversity, or spectrum of disease of such agents among humans. A single cardiovirus isolate, Saffold virus, was cultured in 1981 in stool from an infant with fever. Here, we describe the identification of a group of human cardioviruses that have been cloned directly from patient specimens, the first of which was detected using a pan-viral microarray in respiratory secretions from a child with influenza-like illness. Phylogenetic analysis of the nearly complete viral genome (7961 bp) revealed that this virus belongs to the Theiler's murine encephalomyelitis virus (TMEV) subgroup of cardioviruses and is most closely related to Saffold virus. Subsequent screening by RT-PCR of 719 additional respiratory specimens [637 (89%) from patients with acute respiratory illness] and 400 cerebrospinal fluid specimens from patients with neurological disease (aseptic meningitis, encephalitis, and multiple sclerosis) revealed no evidence of cardiovirus infection. However, screening of 751 stool specimens from 498 individuals in a gastroenteritis cohort resulted in the detection of 6 additional cardioviruses (1.2%). Although all 8 human cardioviruses (including Saffold virus) clustered together by phylogenetic analysis, significant sequence diversity was observed in the VP1 gene (66.9%-100% pairwise amino acid identities). These findings suggest that there exists a diverse group of novel human Theiler's murine encephalomyelitis virus-like cardioviruses that hitherto have gone largely undetected, are found primarily in the gastrointestinal tract, can be shed asymptomatically, and have potential links to enteric and extraintestinal disease.
Collapse
|
28
|
Asakura K, Murayama H, Himeda T, Ohara Y. Expression of L* protein of Theiler's murine encephalomyelitis virus in the chronic phase of infection. J Gen Virol 2007; 88:2268-2274. [PMID: 17622631 DOI: 10.1099/vir.0.82381-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The DA strain and other members of the TO subgroup of Theiler's murine encephalomyelitis virus synthesize the L* protein from an alternative initiation codon. L* is considered to play a key role in viral persistence and demyelination in susceptible strains of mice, although this hypothesis is still controversial. By using a mutant virus that expresses FLAG epitope-tagged L*, it was demonstrated previously that L* is expressed exclusively in neurons in vivo in the acute phase of infection in the central nervous system (CNS). However, in the mutant virus, the C-H-C-C zinc-binding motif in the leader protein (L) was disrupted by the insertion of the FLAG epitope, resulting in clearance of the virus from the CNS. Therefore, a further two mutant viruses were newly generated, expressing FLAG epitope-tagged L* in which the C-H-C-C zinc-binding motif within L is spared. Both mutant viruses caused persistence and demyelination successfully in spinal cords and enabled us to identify L* immunohistochemically in the demyelinating lesions.
Collapse
Affiliation(s)
- Kunihiko Asakura
- Department of Microbiology, Kanazawa Medical University, Ishikawa 920-0293, Japan
| | | | - Toshiki Himeda
- Department of Microbiology, Kanazawa Medical University, Ishikawa 920-0293, Japan
| | - Yoshiro Ohara
- Department of Microbiology, Kanazawa Medical University, Ishikawa 920-0293, Japan
| |
Collapse
|
29
|
Takano-Maruyama M, Ohara Y, Asakura K, Okuwa T. Leader (L) and L* proteins of Theiler's murine encephalomyelitis virus (TMEV) and their regulation of the virus' biological activities. J Neuroinflammation 2006; 3:19. [PMID: 16911804 PMCID: PMC1560116 DOI: 10.1186/1742-2094-3-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2006] [Accepted: 08/16/2006] [Indexed: 11/10/2022] Open
Abstract
Theiler's murine encephalomyelitis virus (TMEV) is divided into two subgroups on the basis of their different biological activities. GDVII subgroup strains produce fatal poliomyelitis in mice without virus persistence or demyelination. In contrast, TO subgroup strains induce demyelinating disease with virus persistence in the spinal cords of weanling mice. Two proteins, whose open reading frames are located in the N-terminus of the polyprotein, recently have been reported to be important for TMEV biological activities. One is leader (L) protein and is processed from the most N-terminus of the polyprotein; its function is still unknown. Although the homology of capsid proteins between DA (a representative strain of TO subgroup) and GDVII strains is over 94% at the amino acid level, that of L shows only 85%. Therefore, L is thought to be a key protein for the subgroup-specific biological activities of TMEV. Various studies have demonstrated that L plays important roles in the escape of virus from host immune defenses in the early stage of infection. The second protein is a 17–18 kDa protein, L*, which is synthesized out-of-frame with the polyprotein. Only TO subgroup strains produce L* since GDVII subgroup strains have an ACG rather than AUG at the initiation site and therefore do not synthesize L*. 'Loss and gain of function' experiments demonstrate that L* is essential for virus growth in macrophages, a target cell for TMEV persistence. L* also has been demonstrated to be necessary for TMEV persistence and demyelination. Further analysis of L and L* will help elucidate the pathomechanism(s) of TMEV-induced demyelinating disease.
Collapse
Affiliation(s)
- Masumi Takano-Maruyama
- Department of Microbiology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan
| | - Yoshiro Ohara
- Department of Microbiology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan
| | - Kunihiko Asakura
- Department of Microbiology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan
| | - Takako Okuwa
- Department of Microbiology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan
| |
Collapse
|
30
|
Paul S, Michiels T. Cardiovirus leader proteins are functionally interchangeable and have evolved to adapt to virus replication fitness. J Gen Virol 2006; 87:1237-1246. [PMID: 16603526 DOI: 10.1099/vir.0.81642-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The leader (L) proteins encoded by picornaviruses of the genus Cardiovirus [Theiler's murine encephalomyelitis virus (TMEV) and Encephalomyocarditis virus (EMCV)] are small proteins thought to exert important functions in virus-host interactions. The L protein of persistent TMEV strains was shown to be dispensable for virus replication in vitro, but crucial for long-term persistence of the virus in the central nervous system of the mouse. The phenotype of chimeric viruses generated by exchanging the L-coding regions was analysed and it was shown that the L proteins of neurovirulent and persistent TMEV strains are functionally interchangeable in vitro and in vivo, despite the fact that L is the second most divergent protein encoded by these viruses after the L* protein. The L protein encoded by EMCV and Mengo virus (an EMCV strain) shares about 35 % amino acid identity with that of TMEV. It differs from the latter by lacking a serine/threonine-rich C-terminal domain and by carrying phosphorylated residues not conserved in the TMEV L protein. Our data show that, in spite of these differences, the L protein of Mengo virus shares, with that of TMEV, the ability to inhibit the transcription of type I interferon, cytokine and chemokine genes and to interfere with nucleocytoplasmic trafficking of host-cell proteins. Interestingly, analysis of viral RNA replication of the recombinant viruses raised the hypothesis that L proteins of TMEV and EMCV diverged during evolution to adapt to the different replication fitness of these viruses.
Collapse
Affiliation(s)
- Sophie Paul
- Université catholique de Louvain, Christian de Duve Institute of Cellular Pathology, Microbial Pathogenesis Unit, MIPA-VIRO 74-49, 74 avenue Hippocrate, B-1200 Brussels, Belgium
| | - Thomas Michiels
- Université catholique de Louvain, Christian de Duve Institute of Cellular Pathology, Microbial Pathogenesis Unit, MIPA-VIRO 74-49, 74 avenue Hippocrate, B-1200 Brussels, Belgium
| |
Collapse
|
31
|
Brahic M, Bureau JF, Michiels T. The genetics of the persistent infection and demyelinating disease caused by Theiler's virus. Annu Rev Microbiol 2006; 59:279-98. [PMID: 16153171 DOI: 10.1146/annurev.micro.59.030804.121242] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Theiler's virus causes a persistent and demyelinating infection of the central nervous system of the mouse, which is one of the best animal models to study multiple sclerosis. This review focuses on the mechanism of persistence. The virus infects neurons for a few weeks and then shifts to white matter, where it persists in glial cells and macrophages. Oligodendrocytes are crucial host cells, as shown by the resistance to persistent infection of mice bearing myelin mutations. Two viral proteins, L and L*, contribute to persistence by interfering with host defenses. L, a small zinc-finger protein, restricts the production of interferon. L*, a unique example of a picornaviral protein translated from an overlapping open reading frame, facilitates the infection of macrophages. Susceptibility to persistent infection, which varies among inbred mouse strains, is multigenic. H2 class I genes have a major effect on susceptibility. Among several non-H2 susceptibility loci, Tmevp3 appears to regulate the expression of important cytokines.
Collapse
Affiliation(s)
- Michel Brahic
- Unité des Virus Lents, URA CNRS 1930, Institut Pasteur, 75724 Paris Cedex 15, France.
| | | | | |
Collapse
|
32
|
Buenz EJ, Howe CL. Picornaviruses and cell death. Trends Microbiol 2005; 14:28-36. [PMID: 16337385 DOI: 10.1016/j.tim.2005.11.003] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2005] [Revised: 10/07/2005] [Accepted: 11/21/2005] [Indexed: 11/21/2022]
Abstract
Members of the picornavirus family, including poliovirus and foot-and-mouth disease virus, are widespread pathogens of humans and domestic animals. Recent global developments in the resurgence of poliovirus infection and in the control of foot-and-mouth disease infection highlight the problems caused by the ability of picornaviruses to alter the apoptotic machinery of host cells and establish persistent infections. Despite the medical, economic and social impact of this family of viruses, little information exists that integrates the mechanisms of cell death and damage induced by related family members. Fortunately, examination of the reported roles and functions of individual viral proteins from multiple picornaviruses makes it possible to surmise canonical functions for these proteins. This review analyzes the canonical function of picornavirus proteins involved in the alteration of apoptotic homeostasis in infected host cells.
Collapse
Affiliation(s)
- Eric J Buenz
- Molecular Neuroscience Program, Department of Neurology, Department of Neuroscience, RO_GU_04_12_NR, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA
| | | |
Collapse
|
33
|
Whitton JL, Cornell CT, Feuer R. Host and virus determinants of picornavirus pathogenesis and tropism. Nat Rev Microbiol 2005; 3:765-76. [PMID: 16205710 DOI: 10.1038/nrmicro1284] [Citation(s) in RCA: 196] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The family Picornaviridae contains some notable members, including rhinovirus, which infects humans more frequently than any other virus; poliovirus, which has paralysed or killed millions over the years; and foot-and-mouth-disease virus, which led to the creation of dedicated institutes throughout the world. Despite their profound impact on human and animal health, the factors that regulate pathogenesis and tissue tropism are poorly understood. In this article, we review the clinical and economic challenges that these agents pose, summarize current knowledge of host-pathogen interactions and highlight a few of the many outstanding questions that remain to be answered.
Collapse
Affiliation(s)
- J Lindsay Whitton
- Department of Neuropharmacology, CVN-9, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA.
| | | | | |
Collapse
|
34
|
Pozner RG, Berría MI, Negrotto S, Schattner M, Gómez RM. Differential astrocyte response to Theiler's murine encephalomyelitis virus infection. Intervirology 2005; 48:279-84. [PMID: 15956794 DOI: 10.1159/000085095] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2004] [Accepted: 11/10/2004] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES We aimed to address if selective astrocyte apoptosis is involved in the lack of murine demyelinating disease following infection by the L*-1 variant of Theiler's virus. In addition, we investigated whether L*-1-infected astrocytes were able to selectively express molecules whose effects would play a role as pathogenic factors. METHODS Murine cultured astrocytes were infected with two Theiler viruses, the DA strain and the mutated DA variant L*-1, which does not synthesize the out of frame L* protein. RESULTS Neither DA nor L*-1 provoked apoptosis, although they replicated in astrocytes inducing GFAP and iNOS expression, as well as subsequent nitric oxide production. In addition, both viruses caused an enhanced expression of ICAM-1, VCAM-1 and decay accelerating factor (DAF). In this connection, values of VCAM-1 and DAF induced by L*-1 were higher and lower, respectively, than those induced by DA. CONCLUSIONS Since no apoptosis was found, such mechanism would not be involved in the lack of TMEV-induced demyelinating disease by L*-1. In contrast, selective expression of VCAM-1 and DAF molecules induced by L*-1 could have a role in virus clearance from the central nervous system.
Collapse
Affiliation(s)
- Roberto G Pozner
- Department of Thrombosis and Haemostasis, Hematological Research Institute, National Academy of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
35
|
Lipton HL, Kumar ASM, Trottier M. Theiler's virus persistence in the central nervous system of mice is associated with continuous viral replication and a difference in outcome of infection of infiltrating macrophages versus oligodendrocytes. Virus Res 2005; 111:214-23. [PMID: 15893838 DOI: 10.1016/j.virusres.2005.04.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Theiler's murine encephalomyelitis virus (TMEV) infection of mice, in which persistent central nervous system (CNS) infection induces Th1 CD4+ T cell responses to both virus and myelin proteins, provides a relevant experimental animal model for MS. During persistence, >10(9) TMEV genome equivalents per spinal cord are detectable by real-time reverse transcription-polymerase chain reaction (RT-PCR). Because of the short half-life of TMEV (<1 day), continual viral replication is needed to sustain these very high TMEV copy numbers. An essential role for macrophages in TMEV persistence has been documented and, although limited by host anti-viral immune responses, TMEV nonetheless spreads during persistence to infect other cells, particularly oligodendrocytes, in which the infection is productive and lytic. Virus factors influencing persistence of TMEV are expression of the out-of-frame L* protein and use of sialic acid co-receptors.
Collapse
Affiliation(s)
- Howard L Lipton
- Department of Neurology, Evanston Hospital, Evanston, IL 60201, USA.
| | | | | |
Collapse
|
36
|
Himeda T, Ohara Y, Asakura K, Kontani Y, Murakami M, Suzuki H, Sawada M. A lentiviral expression system demonstrates that L* protein of Theiler's murine encephalomyelitis virus (TMEV) is essential for virus growth in a murine macrophage-like cell line. Virus Res 2005; 108:23-8. [PMID: 15681051 DOI: 10.1016/j.virusres.2004.07.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2004] [Revised: 07/14/2004] [Accepted: 07/19/2004] [Indexed: 10/26/2022]
Abstract
The DA subgroup strains of Theiler's murine encephalomyelitis virus (TMEV) synthesize L* protein, which is translated out of frame with the polyprotein from an alternative AUG, 13 nucleotides downstream from the authentic polyprotein AUG. By a 'loss of function' experiment using a mutant virus, DAL*-1, in which the L* AUG is mutated to an ACG, L* protein is shown to play an important role in virus persistence, TMEV-induced demyelination, and virus growth in macrophages. In the present study, we established an L* protein-expressed macrophage-like cell line and confirmed the importance of L* protein in virus growth in this cell line.
Collapse
Affiliation(s)
- Toshiki Himeda
- Department of Microbiology, Kanazawa Medical University, 1-1 Uchinada, Ishikawa 920 0293, Japan
| | | | | | | | | | | | | |
Collapse
|
37
|
Himeda T, Ohara Y, Asakura K, Kontani Y, Sawada M. A lentiviral expression system demonstrates that L* protein of Theiler's murine encephalomyelitis virus (TMEV) has an anti-apoptotic effect in a macrophage cell line. Microb Pathog 2005; 38:201-7. [PMID: 15925271 DOI: 10.1016/j.micpath.2005.01.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2004] [Accepted: 01/14/2005] [Indexed: 11/30/2022]
Abstract
DA subgroup strains of TMEV persist in the CNS of infected mice and induce demyelination. The mechanism(s) of virus persistence and demyelination remains unknown. DA subgroup strains synthesize a 17-kDa protein, called L*, from an initiation site out-of-frame with the polyprotein. The previous study using a mutant virus, DAL*-1 (in which the L* AUG is substituted by an ACG) showed that L* has an anti-apoptotic effect in a macrophage cell line, P388D1. Therefore, we established P388D1 cells that continuatively express L*, in order to confirm its role in TMEV-induced apoptosis. The anti-apoptotic activity of L* may be important in TMEV pathogenesis.
Collapse
Affiliation(s)
- Toshiki Himeda
- Department of Microbiology, Kanazawa Medical University, 1-1 Uchinada, Ishikawa 920-0293, Japan
| | | | | | | | | |
Collapse
|
38
|
Ku BK, Kim SB, Moon OK, Lee SJ, Lee JH, Lyoo YS, Kim HJ, Sur JH. Role of Apoptosis in the Pathogenesis of Asian and South American Foot-and-Mouth Disease Viruses in Swine. J Vet Med Sci 2005; 67:1081-8. [PMID: 16327217 DOI: 10.1292/jvms.67.1081] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In this study, we performed experiments to evaluate the extend of the process of apoptotic cell death by foot-and-mouth disease virus (FMDV). Apoptosis can also occur in some virus-infected cells, and ability of viruses to either inhibit or promote apoptosis may influence the pathologic outcome of infection. In this study, to determine if apoptosis plays a role in the outcome of FMDV infection in swine, we evaluated apoptosis in diseased tissues collected from pigs inoculated with two different stains of FMDV (O1 Campos and O Taiwan). And host cell DNA fragmentation in diseased tissue from animals which were infected with either virus was evaluated by occurrence of a laddering pattern characteristic of apoptosis. Infection of cultured keratinocytes from swine tongue failed to demonstrate apoptosis in the first few hours of infection, suggesting that cell-to-cell correlation between viral antigen and apoptotic changes, e.g. cytokine secretions by immune system cells, could be critical to initiating apoptosis. Consistent with this finding, we were able to detect the pro-inflammatory cytokine TNF-alpha in diseased tissues. A clear difference in the pathogenicity of the two different FMDV isolates to pigs was not demonstrated in our study.
Collapse
Affiliation(s)
- Bok-Kyung Ku
- National Veterinary Research and Quarantine Service, Busan, and Gyeongsang National University, Department of Veterinary Medicine, Jinju, Korea
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Romanova LI, Belov GA, Lidsky PV, Tolskaya EA, Kolesnikova MS, Evstafieva AG, Vartapetian AB, Egger D, Bienz K, Agol VI. Variability in apoptotic response to poliovirus infection. Virology 2005; 331:292-306. [PMID: 15629772 DOI: 10.1016/j.virol.2004.10.038] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2004] [Revised: 08/25/2004] [Accepted: 10/21/2004] [Indexed: 12/26/2022]
Abstract
In several cell types, poliovirus activates the apoptotic program, implementation of which is suppressed by viral antiapoptotic functions. In such cells, productive infection leads to a necrotic cytopathic effect (CPE), while abortive reproduction, associated with inadequate viral antiapoptotic functions, results in apoptosis. Here, we describe two other types of cell response to poliovirus infection. Murine L20B cells expressing human poliovirus receptor responded to the infection by both CPE and apoptosis concurrently. Interruption of productive infection decreased rather than increased the proportion of apoptotic cells. Productive infection was accompanied by the early efflux of cytochrome c from the mitochondria in a proportion of cells and by activation of DEVD-specific caspases. Inactivation of caspase-9 resulted in a marked, but incomplete, prevention of the apoptotic response of these cells to viral infection. Thus, the poliovirus-triggered apoptotic program in L20B cells was not completely suppressed by the viral antiapoptotic functions. In contrast, human rhabdomyosarcoma RD cells did not develop appreciable apoptosis during productive or abortive infection, exhibiting inefficient efflux of cytochrome c from mitochondria and no marked activation of DEVD-specific caspases. The cells were also refractory to several nonviral apoptosis inducers. Nevertheless, typical caspase-dependent signs of apoptosis in a proportion of RD cells were observed after cessation of viral reproduction. Such "late" apoptosis was also observed in productively infected HeLa cells. In addition, a tiny proportion of all studied cells were TUNEL positive even in the presence of a caspase inhibitor. Degradation of DNA in such cells appeared to be a postmortem phenomenon. Biological relevance of variable host responses to viral infection is discussed.
Collapse
Affiliation(s)
- Lyudmila I Romanova
- M.P. Chumakov Institute of Poliomyelitis and Viral Encephalitides, Russian Academy of Medical Sciences, Moscow Region 142782, Russia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Calandria C, Irurzun A, Barco A, Carrasco L. Individual expression of poliovirus 2Apro and 3Cpro induces activation of caspase-3 and PARP cleavage in HeLa cells. Virus Res 2004; 104:39-49. [PMID: 15177891 DOI: 10.1016/j.virusres.2004.02.042] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2003] [Revised: 02/27/2004] [Accepted: 02/27/2004] [Indexed: 11/24/2022]
Abstract
The expression of individual viral genes enables the study of their effects on cellular functions. Our group previously generated stable HeLa cell lines that efficiently express poliovirus proteases 2A (clone 2A7d) and 3C (clone 3C7) under the control of tetracycline [Virology 266 (2000a) 352; J. Virol. 74 (2000b) 2383]. Upon induction of these proteases, the cells undergo drastic morphological alterations and eventually die. The present paper characterizes, in detail, the cellular and molecular events that lead to cell death in these lines. Several signs of apoptosis were observed in both 2A7d- and 3C7-induced cells, such as nuclear fragmentation, DNA breakdown (as determined by TUNEL), and phosphatidylserine translocation. Protease 2A induces the cleavage of poly-ADP-ribose-polymerase (PARP). This is blocked by the caspase-3 inhibitor DEVD in both 2A7d-On and 3C7-On cells suggesting that this enzyme might account for PARP cleavage in both cell lines. The results indicate that both poliovirus proteases induce apoptosis by mechanisms involving caspase activation, although the kinetics of apoptosis differs.
Collapse
Affiliation(s)
- Carlos Calandria
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain.
| | | | | | | |
Collapse
|
41
|
Experimental Models of Virus-Induced Demyelination. MYELIN BIOLOGY AND DISORDERS 2004. [PMCID: PMC7155523 DOI: 10.1016/b978-012439510-7/50097-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This chapter reviews two of the most widely studied animal models of virus-induced demyelinating disease. These are Theiler's murine encephalomyelitis virus and murine hepatitis virus. Both viruses produce acute inflammatory encephalitis that is followed by chronic central-nervous-system (CNS) demyelinating disease. The clinical and pathologic correlates of virus-induced demyelination are largely immune mediated. Furthermore, several pathologic mechanisms have been proposed to explain the development of myelin damage and neurologic deficits, and each of the proposed mechanisms may play a role in disease progression depending on the genetic constitution of the infected animal. The induction of demyelinating disease by virus may be directly relevant to human MS. Several viruses are known to cause demyelination in humans and viral infection is an epidemiologic factor that is consistently associated with clinical exacerbation of MS. It is suggested that viral infection may be a cause of MS, although no specific virus has been identified as a causative agent.
Collapse
|
42
|
Asakura K, Murayama H, Himeda T, Ohara Y. Epitope-tagged L* protein of Theiler's murine encephalomyelitis virus is expressed in the central nervous system in the acute phase of infection. J Virol 2002; 76:13049-54. [PMID: 12438631 PMCID: PMC136715 DOI: 10.1128/jvi.76.24.13049-13054.2002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
TO subgroup strains of Theiler's murine encephalomyelitis virus (TMEV) synthesize L* protein from an alternative initiation codon. We first demonstrated L* expression in the central nervous system (CNS) of TMEV-infected mice during the acute phase of infection by immunoprecipitation and immunoblotting with anti-L* antibody. In addition, we generated mutant viruses which synthesize FLAG or 3xFLAG epitope-tagged L* protein. With a mutant virus expressing 3xFLAG epitope-tagged L*, designated DA/3xFLAGL*, we investigated L* in the CNS in the acute phase of infection. DA/3xFLAGL* did not change the virus tropism in comparison with wild-type virus, and L* was clearly identified in the CNS in both susceptible and resistant strains of mice. Double immunolabeling studies showed that L* is colocalized with TMEV polyprotein and exclusively expressed in neurons.
Collapse
Affiliation(s)
- Kunihiko Asakura
- Department of Microbiology, Kanazawa Medical University, 1-1 Uchinada, Ishikawa 920-0293, Japan.
| | | | | | | |
Collapse
|
43
|
van Eyll O, Michiels T. Non-AUG-initiated internal translation of the L* protein of Theiler's virus and importance of this protein for viral persistence. J Virol 2002; 76:10665-73. [PMID: 12368308 PMCID: PMC136592 DOI: 10.1128/jvi.76.21.10665-10673.2002] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Theiler's virus is a neurotropic murine picornavirus which, depending on the strain, causes either acute encephalitis or persistent demyelinating disease. Persistent strains of Theiler's virus (such as DA) produce an 18-kDa protein called L* from an open reading frame overlapping that encoding the viral polyprotein. Neurovirulent strains (such as GDVII) are thought not to produce the L* protein, as the alternative open reading frame of these strains starts with an ACG codon instead of an AUG codon. However, we observed that both persistent and neurovirulent strain derivatives can produce two forms of the L* protein through unusual type II internal ribosome entry site-mediated translation. A full-length 18-kDa protein can be expressed from an ACG or an AUG initiation codon, whereas an N-terminally truncated 15-kDa product can be translated from a downstream AUG initiation codon. The expression of the 18-kDa form is required for efficient persistence of DA virus derivatives in the central nervous system.
Collapse
Affiliation(s)
- Olivier van Eyll
- Christian de Duve Institute of Cellular Pathology, University of Louvain, B-1200 Brussels, Belgium
| | | |
Collapse
|
44
|
Ohara Y, Himeda T, Asakura K, Sawada M. Distinct cell death mechanisms by Theiler's murine encephalomyelitis virus (TMEV) infection in microglia and macrophage. Neurosci Lett 2002; 327:41-4. [PMID: 12098496 DOI: 10.1016/s0304-3940(02)00376-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
DA strain of Theiler's murine encephalomyelitis virus (TMEV) persists in the mouse central nervous system (CNS) and induces demyelination while GDVII strain fails to persist or demyelinate. L* protein, which is synthesized only in DA but not GDVII, is believed important in virus persistence and demyelination. Because a major reservoir for DA persistence is infiltrated macrophages or microglia, a resident macrophage of the CNS, we investigated TMEV infection of Ra2 cells, a murine microglial cell line. We found that DA strain grew well in Ra2 cells, but not GDVII strain or DAL*-1 virus (which fails to synthesize L* protein), suggesting that L* protein plays an important role in virus growth in microglia. Interestingly, in contrast to virus growth, most Ra2 cells infected with DA strain survived with no evidence of virus-induced apoptosis. These results may be important in clarifying the pathogenesis of DA-induced demyelinating disease.
Collapse
Affiliation(s)
- Yoshiro Ohara
- Department of Microbiology, Kanazawa Medical University, Uchinada, Kahoku-gun, Ishikawa 920-0293, Japan.
| | | | | | | |
Collapse
|
45
|
Obuchi M, Odagiri T, Asakura K, Ohara Y. Association of L* protein of Theiler's murine encephalomyelitis virus with microtubules in infected cells. Virology 2001; 289:95-102. [PMID: 11601921 DOI: 10.1006/viro.2001.1101] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We used an antibody raised against a synthetic peptide corresponding to amino acid residues 70-88 for characterizing the L* protein of Theiler's murine encephalomyelitis virus (TMEV), which is only synthesized in DA subgroup strains from an alternative AUG and is out of frame with the viral polyprotein; evidence suggests that L* protein is critical to viral persistence, demyelination, and growth in murine macrophage cell lines. It was synthesized with kinetics similar to that of other viral proteins, although less in amount. After synthesis, it remained stable in the cytoplasm and was not incorporated into virions. Immunofluorescent staining and immunoblotting of microtubule preparations demonstrated that it is associated with microtubules. Expression of L* protein also demonstrated that the 5' one third of the coding region may be responsible for the association. The association of L* protein with microtubules may be important in the disease-inducing and in vitro characters of L* protein.
Collapse
Affiliation(s)
- M Obuchi
- Department of Microbiology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan
| | | | | | | |
Collapse
|
46
|
van Eyll O, Michiels T. Influence of the Theiler's virus L* protein on macrophage infection, viral persistence, and neurovirulence. J Virol 2000; 74:9071-7. [PMID: 10982352 PMCID: PMC102104 DOI: 10.1128/jvi.74.19.9071-9077.2000] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genome of picornaviruses contains a large open reading frame (ORF) translated as a precursor polypeptide that is processed to yield all the proteins necessary for the viral life cycle. In persistent but not in neurovirulent strains of Theiler's virus, an overlapping ORF encodes an additional 18-kDa protein called L*. We confirmed previous work showing that the L* ORF of persistent strains facilitates the infection of macrophage cell lines, and we present evidence that this effect is due to the L* protein itself rather than to competition for the translation of the two overlapping ORFs. The introduction of an AUG codon to restore the L* ORF of the neurovirulent GDVII strain also enhanced the infection of macrophages, in spite of the divergent evolution of this protein. The presence or the absence of the L* AUG initiation codon had only a weak influence on the neurovirulence of the GDVII strain and on the persistence of the DA1 strain. The results obtained with DA1 in vivo contrast with the results reported previously for DAFL3, another molecular clone of the same virus strain, where the AUG-to-ACG mutation of the L* initiation codon totally blocked viral persistence (G. D. Ghadge, L. Ma, S. Sato, J. Kim, and R. P. Roos, J. Virol. 72:8605-8612, 1998). Thus, a factor that is critical for the persistence of a given clone of Theiler's virus is dispensable for the persistence of a closely related clone, indicating that different adjustments in the expression of persistence determinants occur in related viral strains.
Collapse
Affiliation(s)
- O van Eyll
- Christian de Duve Institute of Cellular Pathology, Université Catholique de Louvain, B-1200 Brussels, Belgium
| | | |
Collapse
|
47
|
Anderson R, Harting E, Frey MS, Leibowitz JL, Miranda RC. Theiler's murine encephalomyelitis virus induces rapid necrosis and delayed apoptosis in myelinated mouse cerebellar explant cultures. Brain Res 2000; 868:259-67. [PMID: 10854578 DOI: 10.1016/s0006-8993(00)02338-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Infection with the Daniel strain of Theiler's murine encephalomyelitis (TMEV-DA) virus induces persistent demyelinating lesions in mice and serves as a model for multiple sclerosis. During the acute phase of the disease, however, viral infection leads to cell death in vivo. Viral-induced death may result directly from viral infection of neural cells, or indirectly, by activation of the immune system. To examine the direct effects of TMEV infection on neural cells, myelinated explant cultures of the murine cerebellum were infected with 10(5) pfu of TMEV-DA for periods ranging from 1 to 72 h. Our results indicate that TMEV-DA replicates in cultured neural tissue. Initially, viral antigen is localized to a few isolated neural cells. However, within 72 h antigen was observed in multiple foci that included damaged cells and extracellular debris. Viral infection led to a rapid and cyclical induction of necrosis with a time period that was consistent with the lytic phase of the viral life-cycle. Simultaneously, we observed an increase in apoptosis 48 h post-infection. Electron micrographic analysis indicated that viral-infected cultures contained cells with fragmented nuclei and condensed cytoplasm, characteristic of apoptosis. The localization of apoptosis to the cerebellar granule cell layer, identified these cells as presumptive granule neurons. Viral infection, however, did not lead to myelin damage, though damaged axons were visible in TMEV-infected cultures. These results suggest that during the acute phase of infection, TMEV targets neural cells for apoptosis without directly disrupting myelin. Myelin damage may therefore result from the activation of the immune system.
Collapse
Affiliation(s)
- R Anderson
- Department of Human Anatomy, Texas A&M University Health Science Center, 228 Reynolds Medical Bldg., College Station, TX 77843-1114, USA
| | | | | | | | | |
Collapse
|
48
|
Agol VI, Belov GA, Bienz K, Egger D, Kolesnikova MS, Romanova LI, Sladkova LV, Tolskaya EA. Competing death programs in poliovirus-infected cells: commitment switch in the middle of the infectious cycle. J Virol 2000; 74:5534-41. [PMID: 10823859 PMCID: PMC112039 DOI: 10.1128/jvi.74.12.5534-5541.2000] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Productive poliovirus infection of HeLa cells leads to the canonical cytopathic effect (CPE), whereas certain types of abortive infection result in apoptosis. To define the time course of commitment to the different types of poliovirus-induced death, inhibitors of viral replication (guanidine HCl) or translation (cycloheximide) were added at different times postinfection (p.i.). Early in the infection (during the first approximately 2 h p.i.), predominantly proapoptotic viral function was expressed, rendering the cells committed to apoptosis, which developed several hours after viral expression was arrested. In the middle of infection, concomitantly with the onset of fast generation of viral progeny, the implementation of the viral apoptotic program was abruptly interrupted. In particular, activation of an Asp-Glu-Val-Asp (DEVD)-specific caspase(s) occurring in the apoptosis-committed cells was prevented by the ongoing productive infection. Simultaneously, the cells retaining normal or nearly normal morphology became committed to CPE, which eventually developed regardless of whether or not further viral expression was allowed to proceed. The implementation of the poliovirus-induced apoptotic program was suppressed in HeLa cells overexpressing the Bcl-2 protein, indicating that the fate of poliovirus-infected cells depends on the balance of host and viral pro- and antiapoptotic factors.
Collapse
Affiliation(s)
- V I Agol
- M. P. Chumakov Institute of Poliomyelitis and Viral Encephalitides, Russian Academy of Medical Sciences, Moscow Region 142782, Russia.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Obuchi M, Yamamoto J, Odagiri T, Uddin MN, Iizuka H, Ohara Y. L* protein of Theiler's murine encephalomyelitis virus is required for virus growth in a murine macrophage-like cell line. J Virol 2000; 74:4898-901. [PMID: 10775632 PMCID: PMC112016 DOI: 10.1128/jvi.74.10.4898-4901.2000] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We sought to confirm the importance of L* protein for growth of Theiler's murine encephalomyelitis virus (TMEV) in a macrophage-like cell line, J774-1. The protein is out of frame with the polyprotein and synthesized in DA but not GDVII subgroup strains of TMEV. A recombinant virus, DANCL*/GD, which substitutes the DA 5' noncoding and L* coding regions for the corresponding regions of GDVII and synthesizes L* protein, grew with little restriction in J774-1 cells. In contrast, another recombinant virus, DANCL*-1/GD, which has an ACG rather than an AUG as the starting codon of L* protein at nucleotide 1079, resulting in no synthesis of L* protein, did not grow well. No significant difference between the rates of adsorption to J774-1 cells of these viruses was observed. RNase protection assay demonstrated that DANCL*/GD viral RNA significantly increased, whereas only a minimal increase was observed for DANCL*-1/GD. The present study suggests that L* protein is required for virus growth in macrophages.
Collapse
Affiliation(s)
- M Obuchi
- Departments of Microbiology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan
| | | | | | | | | | | |
Collapse
|
50
|
Abstract
The tetracycline-based Tet-Off expression system has been used to analyze the effects of poliovirus protease 3C(pro) on human cells. Stable HeLa cell clones that express this poliovirus protease under the control of an inducible, tightly regulated promoter were obtained. Tetracycline removal induces synthesis of 3C protease, followed by drastic morphological alterations and cellular death. Degradation of cellular DNA in nucleosomes and generation of apoptotic bodies are observed from the second day after 3C(pro) induction. The cleavage of poly(ADP-ribose) polymerase, an enzyme involved in DNA repair, occurs after induction of 3C(pro), indicating caspase activation by this poliovirus protease. The 3C(pro)-induced apoptosis is blocked by the caspase inhibitor z-VAD-fmk. Our findings suggest that the protease 3C is responsible for triggering apoptosis in poliovirus-infected cells by a mechanism that involves caspase activation.
Collapse
Affiliation(s)
- A Barco
- Centro de Biología Molecular (CSIC-UAM), Universidad Autónoma de Madrid, Cantoblanco, Madrid, 28049, Spain
| | | | | |
Collapse
|