1
|
Calcraft T, Stanke-Scheffler N, Nans A, Lindemann D, Taylor IA, Rosenthal PB. Integrated cryoEM structure of a spumaretrovirus reveals cross-kingdom evolutionary relationships and the molecular basis for assembly and virus entry. Cell 2024; 187:4213-4230.e19. [PMID: 39013471 DOI: 10.1016/j.cell.2024.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/26/2024] [Accepted: 06/11/2024] [Indexed: 07/18/2024]
Abstract
Foamy viruses (FVs) are an ancient lineage of retroviruses, with an evolutionary history spanning over 450 million years. Vector systems based on Prototype Foamy Virus (PFV) are promising candidates for gene and oncolytic therapies. Structural studies of PFV contribute to the understanding of the mechanisms of FV replication, cell entry and infection, and retroviral evolution. Here we combine cryoEM and cryoET to determine high-resolution in situ structures of the PFV icosahedral capsid (CA) and envelope glycoprotein (Env), including its type III transmembrane anchor and membrane-proximal external region (MPER), and show how they are organized in an integrated structure of assembled PFV particles. The atomic models reveal an ancient retroviral capsid architecture and an unexpected relationship between Env and other class 1 fusion proteins of the Mononegavirales. Our results represent the de novo structure determination of an assembled retrovirus particle.
Collapse
Affiliation(s)
- Thomas Calcraft
- Structural Biology of Cells and Viruses Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Nicole Stanke-Scheffler
- Institute of Medical Microbiology and Virology, University Hospital and Medical Faculty "Carl Gustav Carus", Technische Universität Dresden, Fetscherstr. 74, 01307 Dresden, Germany; Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, 01307 Dresden, Germany
| | - Andrea Nans
- Structural Biology Science Technology Platform, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Dirk Lindemann
- Institute of Medical Microbiology and Virology, University Hospital and Medical Faculty "Carl Gustav Carus", Technische Universität Dresden, Fetscherstr. 74, 01307 Dresden, Germany; Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, 01307 Dresden, Germany.
| | - Ian A Taylor
- Macromolecular Structure Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| | - Peter B Rosenthal
- Structural Biology of Cells and Viruses Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
2
|
Materniak-Kornas M, Tan J, Heit-Mondrzyk A, Hotz-Wagenblatt A, Löchelt M. Bovine Foamy Virus: Shared and Unique Molecular Features In Vitro and In Vivo. Viruses 2019; 11:E1084. [PMID: 31766538 PMCID: PMC6950176 DOI: 10.3390/v11121084] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/18/2019] [Accepted: 11/19/2019] [Indexed: 12/18/2022] Open
Abstract
The retroviral subfamily of Spumaretrovirinae consists of five genera of foamy (spuma) viruses (FVs) that are endemic in some mammalian hosts [1]. Closely related species may be susceptible to the same or highly related FVs. FVs are not known to induce overt disease and thus do not pose medical problems to humans and livestock or companion animals. A robust lab animal model is not available or is a lab animal a natural host of a FV. Due to this, research is limited and often focused on the simian FVs with their well-established zoonotic potential. The authors of this review and their groups have conducted several studies on bovine FV (BFV) in the past with the intention of (i) exploring the risk of zoonotic infection via beef and raw cattle products, (ii) studying a co-factorial role of BFV in different cattle diseases with unclear etiology, (iii) exploring unique features of FV molecular biology and replication strategies in non-simian FVs, and (iv) conducting animal studies and functional virology in BFV-infected calves as a model for corresponding studies in primates or small lab animals. These studies gained new insights into FV-host interactions, mechanisms of gene expression, and transcriptional regulation, including miRNA biology, host-directed restriction of FV replication, spread and distribution in the infected animal, and at the population level. The current review attempts to summarize these findings in BFV and tries to connect them to findings from other FVs.
Collapse
Affiliation(s)
| | - Juan Tan
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China;
| | - Anke Heit-Mondrzyk
- German Cancer Research Center DKFZ, Core Facility Omics IT and Data Management, 69120 Heidelberg, Germany; (A.H.-M.); (A.H.-W.)
| | - Agnes Hotz-Wagenblatt
- German Cancer Research Center DKFZ, Core Facility Omics IT and Data Management, 69120 Heidelberg, Germany; (A.H.-M.); (A.H.-W.)
| | - Martin Löchelt
- German Cancer Research Center DKFZ, Program Infection, Inflammation and Cancer, Div. Viral Transformation Mechanisms, 69120 Heidelberg, Germany
| |
Collapse
|
3
|
Abstract
Despite its small genome size, the Human Immunodeficiency Virus 1 (HIV-1) is one of the most successful pathogens and has infected more than 70 million people worldwide within the last decades. In total, HIV-1 expresses 16 canonical proteins from only nine genes within its 10 kb genome. Expression of the structural genes gag, pol, and env, the regulatory genes rev and tat and the accessory genes vpu, nef, vpr, and vif enables assembly of the viral particle, regulates viral gene transcription, and equips the virus to evade or counteract host immune responses. In addition to the canonically expressed proteins, a growing number of publications describe the existence of non-canonical fusion proteins in HIV-1 infected cells. Most of them are encoded by the tat-env-rev locus. While the majority of these fusion proteins (e.g., TNV/p28 tev , p186Drev, Tat1-Rev2, Tat^8c, p17tev, or Ref) are the result of alternative splicing events, Tat-T/Vpt is produced upon programmed ribosomal frameshifting, and a Rev1-Vpu fusion protein is expressed due to a nucleotide polymorphism that is unique to certain HIV-1 clade A and C strains. A better understanding of the expression and activity of these non-canonical viral proteins will help to dissect their potential role in viral replication and reveal how HIV-1 optimized the coding potential of its genes. The goal of this review is to provide an overview of previously described HIV-1 fusion proteins and to summarize our current knowledge of their expression patterns and putative functions.
Collapse
Affiliation(s)
- Simon Langer
- Institute of Molecular Virology, Ulm University Medical Center Ulm, Germany
| | - Daniel Sauter
- Institute of Molecular Virology, Ulm University Medical Center Ulm, Germany
| |
Collapse
|
4
|
Bing T, Wu K, Cui X, Shao P, Zhang Q, Bai X, Tan J, Qiao W. Identification and functional characterization of Bet protein as a negative regulator of BFV3026 replication. Virus Genes 2014; 48:464-73. [PMID: 24615636 DOI: 10.1007/s11262-014-1052-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Accepted: 02/23/2014] [Indexed: 11/26/2022]
Abstract
Foamy virus (FV) establishes persistent infection in the host without causing apparent disease. Besides the transactivator Tas protein, another auxiliary protein--Bet--has been reported in prototype foamy virus, equine foamy virus, and feline foamy virus. Here, we found the putative bbet gene in clone C74 from a cDNA library of bovine foamy virus strain 3026 (BFV3026) by comparison of gene localization, composition, and splicing features with other known bet genes. Subsequently, BBet protein was detected in BFV3026-infected cells by Western blot and immunofluorescence analyses. Analysis of the BBet mutant infectious clone (pBS-BFVdelBBet) revealed that BBet could inhibit BFV3026 replication. Consistent with this result, overexpression of BBet in Cf2Th cells reduced BFV replication by approximately threefold. Furthermore, virus replication levels similarly were reduced by approximately threefold in pBS-BFV-transfected and BFV3026-infected Cf2Th cells stably expressing BBet compared with control cells. After three passages, BFV3026 replicated more slowly in BBet-expressing cells. This study implicates BBet as a negative regulator of BFV replication and provides a resource for future studies on the function of this protein in the virus lifecycle.
Collapse
Affiliation(s)
- Tiejun Bing
- Key Laboratory of Molecular Microbiology and Biotechnology (Ministry of Education) and Key Laboratory of Microbial Functional Genomics (Tianjin), College of Life Sciences, Nankai University, Tianjin, 300071, China
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Mühle M, Hoffmann K, Löchelt M, Denner J. Construction and characterisation of replicating foamy viral vectors expressing HIV-1 epitopes recognised by broadly neutralising antibodies. Antiviral Res 2013; 100:314-20. [PMID: 24055836 DOI: 10.1016/j.antiviral.2013.09.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 08/26/2013] [Accepted: 09/10/2013] [Indexed: 10/26/2022]
Abstract
With the aim to develop a replicating vector system for the delivery of HIV-1 antigens on the basis of an apathogenic foamy virus we recently showed that immunisation with purified recombinant hybrid antigens composed of the feline foamy virus Bet protein and parts of the transmembrane envelope protein of HIV-1 induced antibodies with an epitope specificity identical to that of the broadly neutralising antibody 2F5 (Mühle et al., Immunol Res., 2013, 56:61-72). Here we set out to further improve the HIV-1 inserts consisting of the membrane proximal external region (MPER) and the fusion peptide proximal region (FPPR) by stepwise shortening distinct linker residues between both domains. In a subset of these antigens, enhanced recognition by 2F5 and 4E10 was observed, indicating that a specific positioning of FPPR and MPER domains is critical for improved antibody binding. Introduction of these optimised inserts as well as of the MPER domain alone into the feline foamy virus backbone was compatible with virus replication, giving viral titres similar to wild-type virus after extended passaging. Most importantly, expression of the HIV-1 transgenes in infected feline CRFK cells remained stable in three out of four constructs and was detectable after serial passages for several weeks. These data encourage further testing of these vectors in vivo, which may allow insights into the necessity of affinity maturation for the induction of broadly reactive HIV-1 antibodies.
Collapse
Affiliation(s)
- Michael Mühle
- Robert Koch Institute, Nordufer 20, 13353 Berlin, Germany
| | | | | | | |
Collapse
|
6
|
Liu W, Lei J, Liu Y, Slavkovic Lukic D, Räthe AM, Bao Q, Kehl T, Bleiholder A, Hechler T, Löchelt M. Feline foamy virus-based vectors: advantages of an authentic animal model. Viruses 2013; 5:1702-18. [PMID: 23857307 PMCID: PMC3738957 DOI: 10.3390/v5071702] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 06/13/2013] [Accepted: 06/25/2013] [Indexed: 02/07/2023] Open
Abstract
New-generation retroviral vectors have potential applications in vaccination and gene therapy. Foamy viruses are particularly interesting as vectors, because they are not associated to any disease. Vector research is mainly based on primate foamy viruses (PFV), but cats are an alternative animal model, due to their smaller size and the existence of a cognate feline foamy virus (FFV). The potential of replication-competent (RC) FFV vectors for vaccination and replication-deficient (RD) FFV-based vectors for gene delivery purposes has been studied over the past years. In this review, the key achievements and functional evaluation of the existing vectors from in vitro cell culture systems to out-bred cats will be described. The data presented here demonstrate the broad application spectrum of FFV-based vectors, especially in pathogen-specific prophylactic and therapeutic vaccination using RD vectors in cats and in classical gene delivery. In the cat-based system, FFV-based vectors provide an advantageous platform to evaluate and optimize the applicability, efficacy and safety of foamy virus (FV) vectors, especially the understudied aspect of FV cell and organ tropism.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Martin Löchelt
- Department of Genome Modifications, Research Program Infection and Cancer, German Cancer Research Center, Im Neuenheimer Feld 242, 69120 Heidelberg, Germany; E-Mails: (W.L.); (J.L.); (Y.L.); (D.S.L.); (A.-M.R.); (Q.B.); (T.K.); (A.B.); (T.H.)
| |
Collapse
|
7
|
Khattak S, Sandoval-Guzmán T, Stanke N, Protze S, Tanaka EM, Lindemann D. Foamy virus for efficient gene transfer in regeneration studies. BMC DEVELOPMENTAL BIOLOGY 2013; 13:17. [PMID: 23641815 PMCID: PMC3655922 DOI: 10.1186/1471-213x-13-17] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 04/26/2013] [Indexed: 11/10/2022]
Abstract
BACKGROUND Molecular studies of appendage regeneration have been hindered by the lack of a stable and efficient means of transferring exogenous genes. We therefore sought an efficient integrating virus system that could be used to study limb and tail regeneration in salamanders. RESULTS We show that replication-deficient foamy virus (FV) vectors efficiently transduce cells in two different regeneration models in cell culture and in vivo. Injection of EGFP-expressing FV but not lentivirus vector particles into regenerating limbs and tail resulted in widespread expression that persisted throughout regeneration and reamputation pointing to the utility of FV for analyzing adult phenotypes in non-mammalian models. Furthermore, tissue specific transgene expression is achieved using FV vectors during limb regeneration. CONCLUSIONS FV vectors are efficient mean of transferring genes into axolotl limb/tail and infection persists throughout regeneration and reamputation. This is a nontoxic method of delivering genes into axolotls in vivo/ in vitro and can potentially be applied to other salamander species.
Collapse
Affiliation(s)
- Shahryar Khattak
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr 108, 01307 Dresden, Germany
| | | | | | | | | | | |
Collapse
|
8
|
Abstract
Simian foamy viruses (SFVs) are retroviruses that are widespread among nonhuman primates (NHPs). SFVs actively replicate in their oral cavity and can be transmitted to humans after NHP bites, giving rise to a persistent infection even decades after primary infection. Very few data on the genetic structure of such SFVs found in humans are available. In the framework of ongoing studies searching for SFV-infected humans in south Cameroon rainforest villages, we studied 38 SFV-infected hunters whose times of infection had presumably been determined. By long-term cocultures of peripheral blood mononuclear cells with BHK-21 cells, we isolated five new SFV strains and obtained complete genomes of SFV strains from chimpanzee (Pan troglodytes troglodytes; strains BAD327 and AG15), monkey (Cercopithecus nictitans; strain AG16), and gorilla (Gorilla gorilla; strains BAK74 and BAD468). These zoonotic strains share a very high degree of similarity with their NHP counterparts and have a high degree of conservation of the genetic elements important for viral replication. Interestingly, analysis of FV DNA sequences obtained before cultivation revealed variants with deletions in both the U3 region and tas that may correlate with in vivo chronicity in humans. Genomic changes in bet (a premature stop codon) and gag were also observed. To determine if such changes were specific to zoonotic strains, we studied local SFV-infected chimpanzees and found the same genomic changes. Our study reveals that natural polymorphism of SFV strains does exist at both the intersubspecies level (gag, bet) and the intrasubspecies (U3, tas) levels but does not seem to reflect a viral adaptation specific to zoonotic SFV strains.
Collapse
|
9
|
Stirnnagel K, Schupp D, Dupont A, Kudryavtsev V, Reh J, Müllers E, Lamb DC, Lindemann D. Differential pH-dependent cellular uptake pathways among foamy viruses elucidated using dual-colored fluorescent particles. Retrovirology 2012; 9:71. [PMID: 22935135 PMCID: PMC3495412 DOI: 10.1186/1742-4690-9-71] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2012] [Accepted: 08/13/2012] [Indexed: 11/30/2022] Open
Abstract
Background It is thought that foamy viruses (FVs) enter host cells via endocytosis because all FV glycoproteins examined display pH-dependent fusion activities. Only the prototype FV (PFV) glycoprotein has also significant fusion activity at neutral pH, suggesting that its uptake mechanism may deviate from other FVs. To gain new insights into the uptake processes of FV in individual live host cells, we developed fluorescently labeled infectious FVs. Results N-terminal tagging of the FV envelope leader peptide domain with a fluorescent protein resulted in efficient incorporation of the fluorescently labeled glycoprotein into secreted virions without interfering with their infectivity. Double-tagged viruses consisting of an eGFP-tagged PFV capsid (Gag-eGFP) and mCherry-tagged Env (Ch-Env) from either PFV or macaque simian FV (SFVmac) were observed during early stages of the infection pathway. PFV Env, but not SFVmac Env, containing particles induced strong syncytia formation on target cells. Both virus types showed trafficking of double-tagged virions towards the cell center. Upon fusion and subsequent capsid release into the cytosol, accumulation of naked capsid proteins was observed within four hours in the perinuclear region, presumably representing the centrosomes. Interestingly, virions harboring fusion-defective glycoproteins still promoted virus attachment and uptake, but failed to show syncytia formation and perinuclear capsid accumulation. Biochemical and initial imaging analysis indicated that productive fusion events occur predominantly within 4–6 h after virus attachment. Non-fused or non-fusogenic viruses are rapidly cleared from the cells by putative lysosomal degradation. Quantitative monitoring of the fraction of individual viruses containing both Env and capsid signals as a function of time demonstrated that PFV virions fused within the first few minutes, whereas fusion of SFVmac virions was less pronounced and observed over the entire 90 minutes measured. Conclusions The characterized double-labeled FVs described here provide new mechanistic insights into FV early entry steps, demonstrating that productive viral fusion occurs early after target cell attachment and uptake. The analysis highlights apparent differences in the uptake pathways of individual FV species. Furthermore, the infectious double-labeled FVs promise to provide important tools for future detailed analyses on individual FV fusion events in real time using advanced imaging techniques.
Collapse
Affiliation(s)
- Kristin Stirnnagel
- Institute of Virology, Medizinische Fakultät "Carl Gustav Carus", Technische Universität Dresden, Fetscherstr, 74, 01307 Dresden, Germany
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
Foamy viruses (FVs) are distinct members of the retrovirus (RV) family. In this chapter, the molecular regulation of foamy viral transcription, splicing, polyadenylation, and RNA export will be compared in detail to the orthoretroviruses. Foamy viral transcription is regulated in early and late phases, which are separated by the usage of two promoters. The viral transactivator protein Tas activates both promoters. The nature of this early-late switch and the molecular mechanism used by Tas are unique among RVs. RVs duplicate the long terminal repeats (LTRs) during reverse transcription. These LTRs carry both a promoter region and functional poly(A) sites. In order to express full-length transcripts, RVs have to silence the poly(A) signal in the 5' LTR and to activate it in the 3' LTR. FVs have a unique R-region within these LTRs with a major splice donor (MSD) at +51 followed by a poly(A) signal. FVs use a MSD-dependent mechanism to inactivate the polyadenylation. Most RVs express all their genes from a single primary transcript. In order to allow expression of more than one gene from this RNA, differential splicing is extensively used in complex RVs. The splicing pattern of FV is highly complex. In contrast to orthoretroviruses, FVs synthesize the Pol precursor protein from a specific and spliced transcript. The LTR and IP-derived primary transcripts are spliced into more than 15 different mRNA species. Since the RNA ratios have to be balanced, a tight regulation of splicing is required. Cellular quality control mechanisms retain and degrade unspliced or partially spliced RNAs in the nucleus. In this review, I compare the RNA export pathways used by orthoretroviruses with the distinct RNA export pathway used by FV. All these steps are highly regulated by host and viral factors and set FVs apart from all other RVs.
Collapse
Affiliation(s)
- Jochen Bodem
- Institute of Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
11
|
Swiersy A, Wiek C, Reh J, Zentgraf H, Lindemann D. Orthoretroviral-like prototype foamy virus Gag-Pol expression is compatible with viral replication. Retrovirology 2011; 8:66. [PMID: 21843316 PMCID: PMC3196705 DOI: 10.1186/1742-4690-8-66] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Accepted: 08/15/2011] [Indexed: 01/31/2023] Open
Abstract
Background Foamy viruses (FVs) unlike orthoretroviruses express Pol as a separate precursor protein and not as a Gag-Pol fusion protein. A unique packaging strategy, involving recognition of briding viral RNA by both Pol precursor and Gag as well as potential Gag-Pol protein interactions, ensures Pol particle encapsidation. Results Several Prototype FV (PFV) Gag-Pol fusion protein constructs were generated to examine whether PFV replication is compatible with an orthoretroviral-like Pol expression. During their analysis, non-particle-associated secreted Pol precursor protein was discovered in extracellular wild type PFV particle preparations of different origin, copurifying in simple virion enrichment protocols. Different analysis methods suggest that extracellular wild type PFV particles contain predominantly mature p85PR-RT and p40IN Pol subunits. Characterization of various PFV Gag-Pol fusion constructs revealed that PFV Pol expression in an orthoretroviral manner is compatible with PFV replication as long as a proteolytic processing between Gag and Pol proteins is possible. PFV Gag-Pol translation by a HIV-1 like ribosomal frameshift signal resulted in production of replication-competent virions, although cell- and particle-associated Pol levels were reduced in comparison to wild type. In-frame fusion of PFV Gag and Pol ORFs led to increased cellular Pol levels, but particle incorporation was only marginally elevated. Unlike that reported for similar orthoretroviral constructs, a full-length in-frame PFV Gag-Pol fusion construct showed wildtype-like particle release and infectivity characteristics. In contrast, in-frame PFV Gag-Pol fusion with C-terminal Gag ORF truncations or non-removable Gag peptide addition to Pol displayed wildtype particle release, but reduced particle infectivity. PFV Gag-Pol precursor fusion proteins with inactivated protease were highly deficient in regular particle release, although coexpression of p71Gag resulted in a significant copackaging of these proteins. Conclusions Non-particle associated PFV Pol appears to be naturally released from infected cells by a yet unknown mechanism. The absence of particle-associated Pol precursor suggests its rapid processing upon particle incorporation. Analysis of different PFV Gag-Pol fusion constructs demonstrates that orthoretroviral-like Pol expression is compatible with FV replication in principal as long as fusion protein processing is possible. Furthermore, unlike orthoretroviruses, PFV particle release and infectivity tolerate larger differences in relative cellular Gag/Pol levels.
Collapse
Affiliation(s)
- Anka Swiersy
- Institut für Virologie, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | | | | | | | | |
Collapse
|
12
|
Prototype foamy virus gag nuclear localization: a novel pathway among retroviruses. J Virol 2011; 85:9276-85. [PMID: 21715475 DOI: 10.1128/jvi.00663-11] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gag nuclear localization has long been recognized as a hallmark of foamy virus (FV) infection. Two required motifs, a chromatin-binding site (CBS) and a nuclear localization signal (NLS), both located in glycine-arginine-rich box II (GRII), have been described. However, the underlying mechanisms of Gag nuclear translocation are largely unknown. We analyzed prototype FV (PFV) Gag nuclear localization using a novel live-cell fluorescence microscopy assay. Furthermore, we characterized the nuclear localization route of Gag mutants tagged with the simian vacuolating virus 40-NLS (SV40-NLS) and also dissected the respective contributions of the CBS and the NLS. We found that PFV Gag does not translocate to the nucleus of interphase cells by NLS-mediated nuclear import and does not possess a functional NLS. PFV Gag nuclear localization occurred only by tethering to chromatin during mitosis. This mechanism was found for endogenously expressed Gag as well as for Gag delivered by infecting viral particles. Thereby, the CBS was absolutely essential, while the NLS was dispensable. Gag CBS-dependent nuclear localization was neither essential for infectivity nor necessary for Pol encapsidation. Interestingly, Gag localization was independent of the presence of Pol, Env, and viral RNA. The addition of a heterologous SV40-NLS resulted in the nuclear import of PFV Gag in interphase cells, rescued the nuclear localization deficiency but not the infectivity defect of a PFV Gag ΔGRII mutant, and did not enhance FV's ability to infect G(1)/S-phase-arrested cells. Thus, PFV Gag nuclear localization follows a novel pathway among orthoretroviral Gag proteins.
Collapse
|
13
|
Novel functions of prototype foamy virus Gag glycine- arginine-rich boxes in reverse transcription and particle morphogenesis. J Virol 2010; 85:1452-63. [PMID: 21106749 DOI: 10.1128/jvi.01731-10] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Prototype foamy virus (PFV) Gag lacks the characteristic orthoretroviral Cys-His motifs that are essential for various steps of the orthoretroviral replication cycle, such as RNA packaging, reverse transcription, infectivity, integration, and viral assembly. Instead, it contains three glycine-arginine-rich boxes (GR boxes) in its C terminus that putatively represent a functional equivalent. We used a four-plasmid replication-deficient PFV vector system, with uncoupled RNA genome packaging and structural protein translation, to analyze the effects of deletion and various substitution mutations within each GR box on particle release, particle-associated protein composition, RNA packaging, DNA content, infectivity, particle morphology, and intracellular localization. The degree of viral particle release by all mutants was similar to that of the wild type. Only minimal effects on Pol encapsidation, exogenous reverse transcriptase (RT) activity, and genomic viral RNA packaging were observed. In contrast, particle-associated DNA content and infectivity were drastically reduced for all deletion mutants and were undetectable for all alanine substitution mutants. Furthermore, GR box I mutants had significant changes in particle morphology, and GR box II mutants lacked the typical nuclear localization pattern of PFV Gag. Finally, it could be shown that GR boxes I and III, but not GR box II, can functionally complement each other. It therefore appears that, similar to the orthoretroviral Cys-His motifs, the PFV Gag GR boxes are important for RNA encapsidation, genome reverse transcription, and virion infectivity as well as for particle morphogenesis.
Collapse
|
14
|
Stirnnagel K, Lüftenegger D, Stange A, Swiersy A, Müllers E, Reh J, Stanke N, Grosse A, Chiantia S, Keller H, Schwille P, Hanenberg H, Zentgraf H, Lindemann D. Analysis of prototype foamy virus particle-host cell interaction with autofluorescent retroviral particles. Retrovirology 2010; 7:45. [PMID: 20478027 PMCID: PMC2887381 DOI: 10.1186/1742-4690-7-45] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Accepted: 05/17/2010] [Indexed: 11/21/2022] Open
Abstract
Background The foamy virus (FV) replication cycle displays several unique features, which set them apart from orthoretroviruses. First, like other B/D type orthoretroviruses, FV capsids preassemble at the centrosome, but more similar to hepadnaviruses, FV budding is strictly dependent on cognate viral glycoprotein coexpression. Second, the unusually broad host range of FV is thought to be due to use of a very common entry receptor present on host cell plasma membranes, because all cell lines tested in vitro so far are permissive. Results In order to take advantage of modern fluorescent microscopy techniques to study FV replication, we have created FV Gag proteins bearing a variety of protein tags and evaluated these for their ability to support various steps of FV replication. Addition of even small N-terminal HA-tags to FV Gag severely impaired FV particle release. For example, release was completely abrogated by an N-terminal autofluorescent protein (AFP) fusion, despite apparently normal intracellular capsid assembly. In contrast, C-terminal Gag-tags had only minor effects on particle assembly, egress and particle morphogenesis. The infectivity of C-terminal capsid-tagged FV vector particles was reduced up to 100-fold in comparison to wild type; however, infectivity was rescued by coexpression of wild type Gag and assembly of mixed particles. Specific dose-dependent binding of fluorescent FV particles to target cells was demonstrated in an Env-dependent manner, but not binding to target cell-extracted- or synthetic- lipids. Screening of target cells of various origins resulted in the identification of two cell lines, a human erythroid precursor- and a zebrafish- cell line, resistant to FV Env-mediated FV- and HIV-vector transduction. Conclusions We have established functional, autofluorescent foamy viral particles as a valuable new tool to study FV - host cell interactions using modern fluorescent imaging techniques. Furthermore, we succeeded for the first time in identifying two cell lines resistant to Prototype Foamy Virus Env-mediated gene transfer. Interestingly, both cell lines still displayed FV Env-dependent attachment of fluorescent retroviral particles, implying a post-binding block potentially due to lack of putative FV entry cofactors. These cell lines might ultimately lead to the identification of the currently unknown ubiquitous cellular entry receptor(s) of FVs.
Collapse
Affiliation(s)
- Kristin Stirnnagel
- Institut für Virologie, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
Glycoproteins of several viruses have the capacity to induce release of noninfectious, capsidless particulate structures containing only the viral glycoprotein. Such structures are often called subviral particles (SVP). Foamy viruses (FVs), a special type of retroviruses with a replication strategy combining features of both orthoretroviruses and hepadnaviruses, express a glycoprotein (Env) which has the ability to induce SVP release. However, unlike human hepatitis B virus, prototype FV (PFV) naturally secretes only small amounts of SVPs, because ubiquitination of the Env protein seems to suppress the intrinsic capacity for induction of SVP release. In this study, we characterized the structural determinants influencing PFV SVP release, examined the role of specific Env ubiquitination sites in the regulation of this process, and analyzed the requirement of the cellular vacuolar protein sorting (VPS) machinery for SVP egress. We observed that the cytoplasmic and membrane-spanning domains of both the leader peptide (LP) and the transmembrane (TM) subunit harbor essential as well as inhibitory domains. Furthermore, only ubiquitination at the most N-terminal lysine residues (K(14) and K(15)) in LP reduced cell surface expression and suppressed SVP release to wild-type levels. This suggests that interaction of Env with cellular components required for SVP release suppression is effective only when Env is ubiquitinated at these lysine residues but not at others. Finally, SVP release was sensitive to dominant-negative mutants of late components, but not early components, of the cellular VPS machinery. PFV therefore differs from hepatitis B virus in using the same cellular pathway for egress of both virions and SVPs.
Collapse
|
16
|
Arnoys EJ, Wang JL. Dual localization: proteins in extracellular and intracellular compartments. Acta Histochem 2007; 109:89-110. [PMID: 17257660 DOI: 10.1016/j.acthis.2006.10.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2006] [Revised: 10/01/2006] [Accepted: 10/09/2006] [Indexed: 12/24/2022]
Abstract
The goal of this article is to provide a comprehensive catalog of those proteins documented to exhibit dual localization, being found in both the extracellular compartment (cell surface and extracellular medium) as well as the intracellular compartment (cytosol and nucleus). A large subset of these proteins that show dual localization is found both in the nucleus and outside of cells. Proteins destined to be secreted out of the cell or to be expressed at the cell surface usually enter the endomembrane pathway on the basis of a signal sequence that targets them into the endoplasmic reticulum. Proteins destined for import into the nucleus, on the other hand, usually carry a nuclear localization signal. We have organized our catalog in terms of the presence and absence of these trafficking signals: (a) proteins that contain a signal sequence but no nuclear localization signal; (b) proteins that contain both a signal sequence as well as a nuclear localization signal; (c) proteins that contain a nuclear localization signal but lack a signal sequence; and (d) proteins containing neither a signal sequence nor a nuclear localization signal. Novel insights regarding the activities of several classes of proteins exhibiting dual localization can be derived when one targeting signal is experimentally abrogated. For example, the mitogenic activity of both fibroblasts growth factor-1 and schwannoma-derived growth factor clearly requires nuclear localization, independent of the activation of the receptor tyrosine kinase signaling pathway. In addition, there is a growing list of integral membrane receptors that undergo translocation to the nucleus, with bona fide nuclear localization signals and transcription activation activity. The information provided in this descriptive catalog will, hopefully, stimulate investigations into the pathways and mechanisms of transport between these compartments and the physiological significance of dual localization.
Collapse
Affiliation(s)
- Eric J Arnoys
- Department of Chemistry and Biochemistry, Calvin College, Grand Rapids, MI 49546, USA
| | | |
Collapse
|
17
|
Mannigel I, Stange A, Zentgraf H, Lindemann D. Correct capsid assembly mediated by a conserved YXXLGL motif in prototype foamy virus Gag is essential for infectivity and reverse transcription of the viral genome. J Virol 2007; 81:3317-26. [PMID: 17229703 PMCID: PMC1866044 DOI: 10.1128/jvi.01866-06] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Unlike other retrovirus Gag proteins, the prototype foamy virus (PFV) p71(g)(ag) protein is not processed into mature matrix (MA), capsid (CA), and nucleocapsid (NC) subunits. Little information about sequence motifs involved in FV capsid assembly and release is available. The recent analysis of candidate L-domain motifs in PFV Gag identified an evolutionarily conserved YXXL sequence motif with a potential function in capsid assembly. Here we provide support for the hypothesis that this motif does not function like a conventional L domain, by demonstrating that, unlike the PFV Gag PSAP L-domain motif, it cannot be functionally replaced by heterologous L-domain sequences. Furthermore, mutation of individual amino acids Y(464), I(466), L(467), and L(469), but not E(465), to alanine led to reduced particle release and production of noninfectious, aberrant capsid structures, although relative structural protein incorporation and processing were not affected. In contrast, mutation of G(468) to alanine resulted in an intermediate, temperature-sensitive phenotype characterized by reduced particle release and reduced infectivity. Despite similar relative RNA genome incorporation for all mutants, analysis and quantification of particle-associated viral nucleic acids demonstrated defects in genomic reverse transcription for all the noninfectious mutants, a process that, unlike that of orthoretroviruses, in the case of FVs takes place in the virus-producing cell. In correlation with the reduced infectivity, the G(468)A mutant displayed an intermediate level of genomic reverse transcription. Taken together, these results demonstrate that the conserved YXXLGL motif in PFV Gag is involved in correct capsid assembly, which in turn is essential for reverse transcription of the FV genome.
Collapse
Affiliation(s)
- Ingrid Mannigel
- Institut für Virologie, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | | | | | | |
Collapse
|
18
|
Stanke N, Stange A, Lüftenegger D, Zentgraf H, Lindemann D. Ubiquitination of the prototype foamy virus envelope glycoprotein leader peptide regulates subviral particle release. J Virol 2006; 79:15074-83. [PMID: 16306578 PMCID: PMC1316034 DOI: 10.1128/jvi.79.24.15074-15083.2005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Foamy virus (FV) particle egress is unique among retroviruses because of its essential requirement for Gag and Env coexpression for budding and particle release. The FV glycoprotein undergoes a highly unusual biosynthesis resulting in the generation of three particle-associated, mature subunits, leader peptide (LP), surface (SU), and transmembrane (TM), derived from a precursor protein by posttranslational proteolysis mediated by furin or furinlike proteases. Previously at least three LP products of different molecular weights were detected in purified FV particles. Here we demonstrate that the higher-molecular-weight forms gp28LP and gp38LP are ubiquitinated variants of the major gp18LP cleavage product, which has a type II membrane topology. Furthermore, we show that all five lysine residues located within the N-terminal 60-amino-acid cytoplasmic domain of gp18LP can potentially be ubiquitinated, however, there seems to be a preference for using the first three. Inactivation of ubiquitination sites individually resulted in no obvious phenotype. However, simultaneous inactivation of the first three or all five ubiquitination sites in gp18LP led to a massive increase in subviral particles released by these mutant glycoproteins that were readily detectable by electron microscopy analysis upon expression of the ubiquitination-deficient glycoprotein by itself or in a proviral context. Surprisingly, only the quintuple ubiquitination mutant showed a two- to threefold increase in single-cycle infectivity assays, whereas all other mutants displayed infectivities similar to that of the wild type. Taken together, these data suggest that the balance between viral and subviral particle release of FVs is regulated by ubiquitination of the glycoprotein LP.
Collapse
Affiliation(s)
- Nicole Stanke
- Institut für Virologie, Medizinische Fakultät "Carl Gustav Carus," Technische Universität Dresden, Fetscherstr. 74, 01307 Dresden, Germany
| | | | | | | | | |
Collapse
|
19
|
Delebecque F, Suspène R, Calattini S, Casartelli N, Saïb A, Froment A, Wain-Hobson S, Gessain A, Vartanian JP, Schwartz O. Restriction of foamy viruses by APOBEC cytidine deaminases. J Virol 2006; 80:605-14. [PMID: 16378963 PMCID: PMC1346872 DOI: 10.1128/jvi.80.2.605-614.2006] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Foamy viruses (FVs) are nonpathogenic retroviruses infecting many species of mammals, notably primates, cattle, and cats. We have examined whether members of the apolipoprotein B-editing catalytic polypeptide-like subunit (APOBEC) family of antiviral cytidine deaminases restrict replication of simian FV. We show that human APOBEC3G is a potent inhibitor of FV infectivity in cell culture experiments. This antiviral activity is associated with cytidine editing of the viral genome. Both molecular FV clones and primary uncloned viruses were susceptible to APOBEC3G, and viral infectivity was also inhibited by murine and simian APOBEC3G homologues, as well as by human APOBEC3F. Wild-type and bet-deleted viruses were similarly sensitive to this antiviral activity, suggesting that Bet does not significantly counteract APOBEC proteins. Moreover, we did not detect FV sequences that may have been targeted by APOBEC in naturally infected macaques, but we observed a few G-to-A substitutions in humans that have been accidentally contaminated by simian FV. In infected hosts, the persistence strategy employed by FV might be based on low levels of replication, as well as avoidance of cells expressing large amounts of active cytidine deaminases.
Collapse
Affiliation(s)
- Frédéric Delebecque
- Virus and Immunity Group, URA CNRS 1930, Institut Pasteur, 75724 Paris cedex 15, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Cartellieri M, Herchenröder O, Rudolph W, Heinkelein M, Lindemann D, Zentgraf H, Rethwilm A. N-terminal Gag domain required for foamy virus particle assembly and export. J Virol 2005; 79:12464-76. [PMID: 16160174 PMCID: PMC1211529 DOI: 10.1128/jvi.79.19.12464-12476.2005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Among the Retroviridae, foamy viruses (FVs) exhibit an unusual way of particle assembly and a highly specific incorporation of envelope protein into progeny virions. We have analyzed deletions and point mutants of the prototypic FV gag gene for capsid assembly and egress, envelope protein incorporation, infectivity, and ultrastructure. Deletions introduced at the 3' end of gag revealed the first 297 amino acids (aa) to be sufficient for specific Env incorporation and export of particulate material. Deletions introduced at the 5' end showed the region between aa 6 and 200 to be dispensable for virus capsid assembly but required for the incorporation of Env and particle egress. Point mutations were introduced in the 5' region of gag to target residues conserved among FVs from different species. Alanine substitutions of residues in a region between aa 40 and 60 resulted in severe alterations in particle morphology. Furthermore, at position 50, this region harbors the conserved arginine that is presumably at the center of a signal sequence directing FV Gag proteins to a cytoplasmic assembly site.
Collapse
Affiliation(s)
- Marc Cartellieri
- Institut für Virologie, Medizinische Fakultät, Technische Universität Dresden, Germany
| | | | | | | | | | | | | |
Collapse
|
21
|
Lüftenegger D, Picard-Maureau M, Stanke N, Rethwilm A, Lindemann D. Analysis and function of prototype foamy virus envelope N glycosylation. J Virol 2005; 79:7664-72. [PMID: 15919919 PMCID: PMC1143653 DOI: 10.1128/jvi.79.12.7664-7672.2005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The prototype foamy virus (PFV) glycoprotein, which is essential for PFV particle release, displays a highly unusual biosynthesis, resulting in posttranslational cleavage of the precursor protein into three particle-associated subunits, i.e., leader peptide (LP), surface (SU), and transmembrane (TM). Glycosidase digestion of metabolically labeled PFV particles revealed the presence of N-linked carbohydrates on all subunits. The differential sensitivity to specific glycosidases indicated that all oligosaccharides on LP and TM are of the high-mannose or hybrid type, whereas most of those attached to SU, which contribute to about 50% of its molecular weight, are of the complex type. Individual inactivation of all 15 potential N-glycosylation sites in PFV Env demonstrated that 14 are used, i.e., 1 out of 2 in LP, 10 in SU, and 3 in TM. Analysis of the individual altered glycoproteins revealed defects in intracellular processing, support of particle release, and infectivity for three mutants, having the evolutionarily conserved glycosylation sites N8 in SU or N13 and N15 in the cysteine-rich central "sheets-and-loops" region of TM inactivated. Examination of alternative mutants with mutations affecting glycosylation or surrounding sequences at these sites indicated that inhibition of glycosylation at N8 and N13 most likely is responsible for the observed replication defects, whereas for N15 surrounding sequences seem to contribute to a temperature-sensitive phenotype. Taken together these data demonstrate that PFV Env and in particular the SU subunit are heavily N glycosylated and suggest that although most carbohydrates are dispensable individually, some evolutionarily conserved sites are important for normal Env function of FV isolates from different species.
Collapse
Affiliation(s)
- Daniel Lüftenegger
- Institut für Virologie, Medizinische Fakultät "Carl Gustav Carus," Technische Universität Dresden, Fetscherstr. 74, 01307 Dresden, Germany
| | | | | | | | | |
Collapse
|
22
|
Stange A, Mannigel I, Peters K, Heinkelein M, Stanke N, Cartellieri M, Göttlinger H, Rethwilm A, Zentgraf H, Lindemann D. Characterization of prototype foamy virus gag late assembly domain motifs and their role in particle egress and infectivity. J Virol 2005; 79:5466-76. [PMID: 15827161 PMCID: PMC1082757 DOI: 10.1128/jvi.79.9.5466-5476.2005] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Foamy viruses (FV) are unusual among retroviruses since they require both Gag and Env structural proteins for particle egress. Recently significant progress has been made towards the mechanistic understanding of the viral release process, in particular that of retroviruses, and the viral domains and cellular pathways involved. However little is currently known about domains of FV structural proteins and cellular proteins engaged in this process. By mutational analysis of sequence motifs in prototype FV (PFV) Gag, bearing homology to known late assembly (L) domains, a PSAP motif with L domain function that was functionally interchangeable by heterologous L domains was identified. In contrast the inactivation of a PPPI motif had no significant influence on PFV particle release, although mutant viral particles displayed reduced infectivity. Similarly mutation of an evolutionary conserved YXXL motif revealed no classical L-domain function but resulted in release of noninfectious viruslike particles. Biochemical and electron microscopy analysis demonstrated that these mutant particles incorporated all viral structural proteins but contained aberrantly capsid structures, suggesting a role in capsid assembly for this PFV Gag sequence motif. In line with the mutational analysis, overexpression of dominant negative (DN) mutants and wild-type TSG101 but not the DN mutant of AIP-1/ALIX reduced PFV particle release and infectivity. Furthermore, DN mutants of Vps4A, Vps4B, and CHMP3 inhibited PFV egress and infectivity. Taken together these results demonstrate that PFV, like other viruses, requires components of the vacuolar protein sorting (VPS) machinery for egress and enters the VPS pathway through interaction with TSG101.
Collapse
Affiliation(s)
- Annett Stange
- Institut für Virologie, Medizinische Fakultät "Carl Gustav Carus," Technische Universität Dresden, Fetscherstr. 74, 01307 Dresden, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Duda A, Stange A, Lüftenegger D, Stanke N, Westphal D, Pietschmann T, Eastman SW, Linial ML, Rethwilm A, Lindemann D. Prototype foamy virus envelope glycoprotein leader peptide processing is mediated by a furin-like cellular protease, but cleavage is not essential for viral infectivity. J Virol 2004; 78:13865-70. [PMID: 15564494 PMCID: PMC533949 DOI: 10.1128/jvi.78.24.13865-13870.2004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Analogous to cellular glycoproteins, viral envelope proteins contain N-terminal signal sequences responsible for targeting them to the secretory pathway. The prototype foamy virus (PFV) envelope (Env) shows a highly unusual biosynthesis. Its precursor protein has a type III membrane topology with both the N and C terminus located in the cytoplasm. Coexpression of FV glycoprotein and interaction of its leader peptide (LP) with the viral capsid is essential for viral particle budding and egress. Processing of PFV Env into the particle-associated LP, surface (SU), and transmembrane (TM) subunits occur posttranslationally during transport to the cell surface by yet-unidentified cellular proteases. Here we provide strong evidence that furin itself or a furin-like protease and not the signal peptidase complex is responsible for both processing events. N-terminal protein sequencing of the SU and TM subunits of purified PFV Env-immunoglobulin G immunoadhesin identified furin consensus sequences upstream of both cleavage sites. Mutagenesis analysis of two overlapping furin consensus sequences at the PFV LP/SU cleavage site in the wild-type protein confirmed the sequencing data and demonstrated utilization of only the first site. Fully processed SU was almost completely absent in viral particles of mutants having conserved arginine residues replaced by alanines in the first furin consensus sequence, but normal processing was observed upon mutation of the second motif. Although these mutants displayed a significant loss in infectivity as a result of reduced particle release, no correlation to processing inhibition was observed, since another mutant having normal LP/SU processing had a similar defect.
Collapse
Affiliation(s)
- Anja Duda
- Institut für Virologie, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, 01307 Dresden, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Heinkelein M, Rammling M, Juretzek T, Lindemann D, Rethwilm A. Retrotransposition and cell-to-cell transfer of foamy viruses. J Virol 2003; 77:11855-8. [PMID: 14557671 PMCID: PMC229254 DOI: 10.1128/jvi.77.21.11855-11858.2003] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A remarkable feature of the prototype foamy virus (PFV) replication pathway has been reported to consist of the ability to retrotranspose intracellularly with high efficiency (M. Heinkelein, T. Pietschmann, G. Jármy, M. Dressler, H. Imrich, J. Thurow, D. Lindemann, M. Bock, A. Moebes, J. Roy, O. Herchenröder, and A. Rethwilm, EMBO J. 19:3436-3345, 2000). PFV intracellular retrotransposition (IRT) was reported to be enhanced by coexpression of fusion-defective envelope protein. To investigate the possibility of cell-to-cell transfer of PFV genomes, which could mimic IRT, we performed cocultivation experiments with cells transfected with an IRT-competent and marker gene-expressing PFV vector together with cells expressing a different marker and measured cells positive for both markers. The findings corroborated the initial report on IRT of Env-deficient PFV. Furthermore, they indicated that viral cores that have incorporated fusion-deficient Env can be transferred from cell to cell in a cell type-specific manor. One possible explanation consists of a minor alternative cleavage site in Env that can be used to expose the fusion peptide of the Env transmembrane protein, which appears to be required for virus uptake.
Collapse
Affiliation(s)
- Martin Heinkelein
- Institut für Virologie, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | | | | | | | | |
Collapse
|
25
|
Berg A, Pietschmann T, Rethwilm A, Lindemann D. Determinants of foamy virus envelope glycoprotein mediated resistance to superinfection. Virology 2003; 314:243-52. [PMID: 14517077 DOI: 10.1016/s0042-6822(03)00401-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Little is known about the nature of foamy virus (FV) receptor molecules on target cells and their interaction with the viral glycoproteins. Similar to other viruses, cellular expression of the FV Env protein is sufficient to induce resistance to exogenous FV, a phenomenon called superinfection resistance (SIR). In this study we define determinants of the FV Env protein essential for mediating SIR. FV Env requires the extracellular domains of the SU and the TM subunits as well as membrane anchorage, efficient cell surface transport, and most probably correct subunit processing. This is in contrast to murine leukemia virus where secreted proteins comprising the receptor-binding domain in SU are sufficient to induce SIR. Furthermore, we demonstrate that cellular expression of the prototype FV envelope proteins induces SIR against pseudotypes with glycoproteins of other FV species, including of simian, feline, bovine, and equine origin. This implies that all of them use the same receptor molecules for viral entry.
Collapse
Affiliation(s)
- Angelika Berg
- Institut für Virologie und Immunbiologie, Universität Würzburg, 97078 Würzburg, Germany
| | | | | | | |
Collapse
|
26
|
Abstract
An overview of the pattern and mechanisms of spuma or foamy virus (FV) gene expression is presented. FVs are complex retroviruses with respect to their genetic outfit and the elements used to control and regulate expression of the viral genome. The increased insight into transcriptional and posttranscriptional mechanisms has revealed that the FVs are distinct, unconventional retroviruses clearly apart from the orthoretroviruses. Although less characterized than the orthoretroviruses, FVs have several unique features that are important for construction and assembly of FV-based vectors for targeted gene delivery and vaccination purposes. Some of these distinguishing features are directly related to the FV-specific mechanisms of gene expression and include (1) the presence of an internal, functional active second transcription unit for expression of the nonstructural genes, (2) the utilization of a subgenomic, spliced transcript for Pol protein expression, and (3) distinct but not yet understood mechanisms for the nuclear exit of defined transcripts and thus an additional level of posttranscriptional control of gene expression. Finally, the interactions of the viral transactivator not only with both viral promoters but also with regulatory elements controlling the expression of defined cellular genes are an important issue with respect to vector development and the apparent apathogenicity of FVs in their natural hosts.
Collapse
Affiliation(s)
- M Löchelt
- Abteilung Retrovirale Genexpression, Angewandte Tumorvirologie, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 242, 69009 Heidelberg, Germany.
| |
Collapse
|
27
|
Abstract
The main functions of retroviral glycoproteins are recognition and binding to the cellular virus receptor as well as fusion of viral and cellular lipid membranes to release the viral particle into the cytoplasm of the host cell. Foamy viruses (FVs) are a special group of retroviruses with a very broad host range that use a currently unknown cellular receptor for entry. Nevertheless, many functions of the FV envelope glycoproteins in the viral replication cycle have been characterized in detail over the last years. Several unique features not found for any other retrovirus were identified. These include the presence of two types of FV Env proteins, gp170(Env-Bet) and gp130Env, and the strict requirement of gp130Env coexpression for the FV budding and particle release process, a function that cannot be compensated for by any other viral glycoprotein tested so far. Furthermore, domains in gp130Env could be characterized that influence its intracellular distribution, cell surface transport, and its specific interaction with the viral capsid during particle egress. In addition, it has recently been shown that gp130Env expression alone induces release of subviral particles from cells. This review summarizes the current knowledge about the nature of the FV Env proteins and their function in the viral replication cycle.
Collapse
Affiliation(s)
- D Lindemann
- Institut für Virologie, Medizinische Fakultät Carl-Gustav-Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany.
| | | |
Collapse
|
28
|
Shikova-Lekova E, Lindemann D, Pietschmann T, Juretzek T, Rudolph W, Herchenröder O, Gelderblom HR, Rethwilm A. Replication-competent hybrids between murine leukemia virus and foamy virus. J Virol 2003; 77:7677-81. [PMID: 12805469 PMCID: PMC164821 DOI: 10.1128/jvi.77.13.7677-7681.2003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2002] [Accepted: 04/02/2003] [Indexed: 11/20/2022] Open
Abstract
Replication-competent chimeric retroviruses constructed of members of the two subfamilies of Retroviridae, orthoretroviruses and spumaretroviruses, specifically murine leukemia viruses (MuLV) bearing hybrid MuLV-foamy virus (FV) envelope (env) genes, were characterized. All viruses had the cytoplasmic tail of the MuLV transmembrane protein. In ESL-1, a truncated MuLV leader peptide (LP) was fused to the complete extracellular portion of FV Env, and ESL-2 to -4 contained the complete MuLV-LP followed by N-terminally truncated FV Env decreasing in size. ESL-1 to -4 had an extended host cell range compared to MuLV, induced a cytopathology reminiscent of FVs, and exhibited an ultrastructure that combined the features of the condensed core of MuLV with the prominent surface knobs of FVs. Replication of ESL-2 to -4 resulted in the acquisition of a stop codon at the N terminus of the chimeric Env proteins. This mutation rendered the MuLV-LP nonfunctional and indicated that the truncated FV-LP was sufficient to direct Env synthesis into the secretory pathway. Compared to the parental viruses, the chimeras replicated with only moderate cell-free titers.
Collapse
Affiliation(s)
- Evelina Shikova-Lekova
- Institut für Virologie, Medizinische Fakultät, Technische Universität Dresden, Dresden, Germany
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Leurs C, Jansen M, Pollok KE, Heinkelein M, Schmidt M, Wissler M, Lindemann D, Von Kalle C, Rethwilm A, Williams DA, Hanenberg H. Comparison of three retroviral vector systems for transduction of nonobese diabetic/severe combined immunodeficiency mice repopulating human CD34+ cord blood cells. Hum Gene Ther 2003; 14:509-19. [PMID: 12718762 DOI: 10.1089/104303403764539305] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The use of recombinant vectors based on wild-type viruses that are absent in humans and are not associated with any disease in their natural animal hosts or in accidentally infected humans would add an additional level of safety for human somatic gene therapy approaches. These criteria are fulfilled by foamy viruses (FVs), a family of complex retroviruses whose members are widely found among mammals and are apathogenic in all hosts. Here, we show by comparison of identically designed vector constructs that recombinant retroviral vectors based on FVs were as efficient as lentiviral vectors in transducing nonobese diabetic/severe combined immunodeficiency (NOD/SCID) mice repopulating human CD34(+) cord blood (CB) cells. The FV vector was able to achieve gene transfer levels up to 84% of engrafted human cells in a short overnight transduction protocol. In contrast, without prestimulation of the target cells, a human immunodeficiency virus type 1 (HIV-1)-based lentiviral vector pseudotyped with gibbon ape leukemia virus envelope (GALV Env) was nearly as inefficient as murine leukemia virus (MLV)-based oncoretroviral vectors in transducing NOD/SCID repopulating cells. The same HIV vector pseudotyped with the vesicular stomatitis virus glycoprotein G (VSV-G) achieved high marking efficiency. Clonality analysis of bone marrow samples showed oligoclonal hematopoiesis with single to multiple insertions per cell, both for FV and HIV vectors. These data demonstrate that vectors based on FVs warrant further investigation and development for medical use.
Collapse
Affiliation(s)
- Cordula Leurs
- Klinik für Pädiatrische Hämatologie und Onkologie, Zentrum für Kinderheilkunde, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Picard-Maureau M, Jarmy G, Berg A, Rethwilm A, Lindemann D. Foamy virus envelope glycoprotein-mediated entry involves a pH-dependent fusion process. J Virol 2003; 77:4722-30. [PMID: 12663779 PMCID: PMC152125 DOI: 10.1128/jvi.77.8.4722-4730.2003] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2002] [Accepted: 01/16/2003] [Indexed: 11/20/2022] Open
Abstract
In general, enveloped viruses use two different entry strategies and are classified accordingly into pH-dependent and pH-independent viruses. Different members of the retrovirus family use one or the other strategy. Little is known about the uptake of foamy viruses (FV), a special group of retroviruses, into the target cells. In this study, we examined the pH dependence of FV entry by analyzing FV envelope glycoprotein (Env)-mediated infection of target cells with murine leukemia virus or FV vector pseudotypes in the presence of various lysosomotropic agents. Similar to vesicular stomatitis virus glycoprotein G (VSV-G)-mediated uptake, FV Env-mediated entry was inhibited by various lysosomotropic agents, suggesting a pH-dependent endocytic pathway. However, in contrast to its effect on VSV-G pseudotypes, chloroquine failed to reduce the infectivity of FV Env pseudotypes, implying that the pathway is different from that of VSV-G. Glycoproteins of various other FV species showed inhibition profiles similar to that of the prototype FV (PFV) Env. Analysis of the pH dependence of the FV Env-mediated fusion process in a cell-to-cell fusion assay revealed an induction of syncytium formation by a short exposure to acidic pH, peaking around pH 5.5. Interestingly, of all FV Env species analyzed, only the PFV Env had a significant fusion activity at neutral pH. Taken together, these data suggest a pH-dependent endocytic pathway for infection of target cells by FV.
Collapse
|
31
|
Meiering CD, Linial ML. Reactivation of a complex retrovirus is controlled by a molecular switch and is inhibited by a viral protein. Proc Natl Acad Sci U S A 2002; 99:15130-5. [PMID: 12415120 PMCID: PMC137555 DOI: 10.1073/pnas.242491999] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Spumaviruses, commonly called foamy viruses (FV), are complex retroviruses that establish lifelong persistent infections without any accompanying pathologies. In tissue culture, cells can be either lytically or latently infected, depending on cell type. Regulation of FV replication is controlled by two promoters: the LTR and a second promoter within the env gene termed the internal promoter (IP). The IP directs expression of the transcriptional activator, Tas, and a second accessory protein, Bet, whose function has been elusive. In this study, we report that expression of exogenous Tas is sufficient to initiate a switch from latent to lytic replication. We also show that treatment with the phorbol ester phorbol 12-myristate 13-acetate (PMA) can lead to an increase in transcription from the IP, and that Bet protein expression abrogates this effect. Finally, we demonstrate that Bet expression severely limits the ability of PMA to activate transcription of latent FV genomes, and that replication of a Bet(-) virus is more easily activated than wild-type FV. Taken together, these data suggest that viral transcription is regulated by a sensitive switch, and that Bet functions as a negative regulator of basal IP activity.
Collapse
Affiliation(s)
- Christopher D Meiering
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | |
Collapse
|
32
|
Lecellier CH, Neves M, Giron ML, Tobaly-Tapiero J, Saïb A. Further characterization of equine foamy virus reveals unusual features among the foamy viruses. J Virol 2002; 76:7220-7. [PMID: 12072521 PMCID: PMC136322 DOI: 10.1128/jvi.76.14.7220-7227.2002] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Foamy viruses (FVs) are nonpathogenic, widely spread complex retroviruses which have been isolated in nonhuman primates, cattle, cats, and more recently in horses. The equine foamy virus (EFV) was isolated from healthy horses and was characterized by molecular cloning and nucleotide sequence analysis. Here, to further characterize this new FV isolate, the location of the transcriptional cap and poly(A) addition sites as well as the main splice donor and acceptor sites were determined, demonstrating the existence of the specific subgenomic pol mRNA, one specific feature of FVs. Moreover, similar to what has been described for the human foamy virus (HFV), the prototype of FVs, a replication-defective EFV genome was identified during persistent infection. At the protein level, the use of specific antibodies allowed us to determine the size and the subcellular localization of EFV Gag, Env, and Tas, the viral transactivators. While EFV Gag was detected in both the cytoplasm and the nucleus, EFV Env mainly localized in the Golgi complex, in contrast to HFV Env, which is sequestered in the endoplasmic reticulum. In addition, electron microscopy analysis demonstrated that EFV budding occurs at the plasma membrane and not intracellularly, as is the case for primate FVs. Interestingly, EFV Tas was detected both in the nucleus and the cytoplasm of Tas-transfected cells, in contrast to the strict nuclear localization of other FV Tas but similar to the equine infectious anemia virus Tat gene product. Taken together, our results reveal that this new FV isolate exhibits remarkable features among FVs, bringing new insights into the biology of these unconventional retroviruses.
Collapse
|
33
|
Lecellier CH, Vermeulen W, Bachelerie F, Giron ML, Saïb A. Intra- and intercellular trafficking of the foamy virus auxiliary bet protein. J Virol 2002; 76:3388-94. [PMID: 11884565 PMCID: PMC136056 DOI: 10.1128/jvi.76.7.3388-3394.2002] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Bet protein of foamy viruses (FVs) is an auxiliary protein encoded by the 3' end of the viral genome. Although its function during the viral replication cycle is still unknown, Bet seems to play a key role in the establishment and/or maintenance of viral persistence, representing the predominant viral protein detected during chronic infection. To clarify the function of this viral protein, the subcellular distribution of Bet from the prototypic human foamy virus (HFV) was examined. We report here that this protein is distributed in both the cytoplasm and the nucleus of HFV-infected or Bet-transfected cells. The nuclear targeting results from the presence of a bipartite nuclear localization signal at the C-terminal region, sufficient to direct heterologous reporter proteins to the nucleus. Since HFV Bet spreads between cells, we show here that the secreted protein targets the nuclei of recipient cells. HFV Bet follows an unconventional route to exit the cell since its secretion is not affected by brefeldin A, a drug which disrupts the trafficking between the endoplasmic reticulum and the Golgi complex. Finally, these inter- and intracellular movements were also observed for the equine foamy virus Bet protein, strongly suggesting that these remarkable features are conserved among FVs.
Collapse
|
34
|
Lindemann D, Pietschmann T, Picard-Maureau M, Berg A, Heinkelein M, Thurow J, Knaus P, Zentgraf H, Rethwilm A. A particle-associated glycoprotein signal peptide essential for virus maturation and infectivity. J Virol 2001; 75:5762-71. [PMID: 11390578 PMCID: PMC114292 DOI: 10.1128/jvi.75.13.5762-5771.2001] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Signal peptides (SP) are key determinants for targeting glycoproteins to the secretory pathway. Here we describe the involvement in particle maturation as an additional function of a viral glycoprotein SP. The SP of foamy virus (FV) envelope glycoprotein is predicted to be unusually long. Using an SP-specific antiserum, we demonstrate that its proteolytic removal occurs posttranslationally by a cellular protease and that the major N-terminal cleavage product, gp18, is found in purified viral particles. Analysis of mutants in proposed signal peptidase cleavage positions and N-glycosylation sites revealed an SP about 148 amino acids (aa) in length. FV particle release from infected cells requires the presence of cognate envelope protein and cleavage of its SP sequence. An N-terminal 15-aa SP domain with two conserved tryptophan residues was found to be essential for the egress of FV particles. While the SP N terminus was found to mediate the specificity of FV Env to interact with FV capsids, it was dispensable for Env targeting to the secretory pathway and FV envelope-mediated infectivity of murine leukemia virus pseudotypes.
Collapse
Affiliation(s)
- D Lindemann
- Institut für Virologie und Immunbiologie, Universität Würzburg, Versbacher Str. 7, 97078 Würzburg, 01307 Dresden, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
The foamy virus (FV) genome contains two promoters, the canonical long terminal repeat (LTR) promoter, containing three consensus AP-1 binding sites, and an internal promoter (IP) within the env gene. We investigated the regulation of the two promoters in lytic and persistent infections and found that in the presence of a constitutive source of the viral transactivator protein Tas, transactivation of the LTR promoter and that of the IP differ. In lytic infections, both the LTR promoter and the IP are efficiently transactivated by Tas, while in persistent infections, the IP is efficiently transactivated by Tas, but the LTR promoter is not. Analysis of proteins expressed from the LTR promoter and the IP during infection indicated that IP transcription is more robust than that of the LTR promoter in persistently infected cells, while the opposite is true for lytically infected cells. Coculture experiments also showed that LTR promoter transcription is greatest in cells which support lytic replication. Replacement of much of the LTR promoter with the IP leads to increased viral replication in persistent but not lytic infections. We also found that the induction of persistently infected cells with phorbol 12-myristate 13-acetate (PMA) greatly enhanced viral replication and transcription from the SFVcpz(hu) (new name for human FV) LTR promoter. However, mutation of three consensus AP-1 binding sites in the FV LTR promoter did not affect viral replication in lytically or persistently infected cells, nor did the same mutations affect LTR promoter transactivation by Tas in PMA-treated cells. Our data indicate that differential regulation of transcription is important in the outcome of FV infection but is unlikely to depend on AP-1.
Collapse
Affiliation(s)
- C D Meiering
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave., Seattle, Washington 98109, USA
| | | | | | | |
Collapse
|
36
|
Heinkelein M, Pietschmann T, Jármy G, Dressler M, Imrich H, Thurow J, Lindemann D, Bock M, Moebes A, Roy J, Herchenröder O, Rethwilm A. Efficient intracellular retrotransposition of an exogenous primate retrovirus genome. EMBO J 2000; 19:3436-45. [PMID: 10880456 PMCID: PMC313934 DOI: 10.1093/emboj/19.13.3436] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The foamy virus (FV) subgroup of Retroviridae reverse transcribe their RNA (pre-)genome late in the replication cycle before leaving an infected cell. We studied whether a marker gene-transducing FV vector is able to shuttle to the nucleus and integrate into host cell genomic DNA. While a potential intracellular retrotransposition of vectors derived from other retroviruses was below the detection limit of our assay, we found that up to 5% of cells transfected with the FV vector were stably transduced, harboring 1 to approximately 10 vector integrants. Generation of the integrants depended on expression of functional capsid, reverse transcriptase and integrase proteins, and did not involve an extracellular step. PCR analysis of the U3 region of the 5' long terminal repeat and determination of proviral integration sites showed that a reverse transcription step had taken place to generate the integrants. Co-expression of a mutated envelope allowing particle egress and avoiding extracellular infection resulted in a significantly increased rescue of cells harboring integrants, suggesting that accumulation of proviruses via intracellular retrotransposition represents an integral part of the FV replication strategy.
Collapse
Affiliation(s)
- M Heinkelein
- Institut für Virologie und Immunbiologie, Universität Würzburg and Institut für Virologie, Medizinische Fakultät 'Carl Gustav Carus', Technische Universität Dresden, Gerichtsstrasse 5, 01069 Dresden, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Foamy viruses are complex retroviruses that lead to either highly cytopathic or persistent infections in vitro, but to non-pathogenic lifelong infections in naturally or accidentally infected hosts. Factors that could contribute to these benign persistent infections include regulated transcription from the two viral promoters, the functions of the Bet accessory protein and the host immune response.
Collapse
Affiliation(s)
- M Linial
- Divn. of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N., Seattle WA 98019, USA.
| |
Collapse
|
38
|
Affiliation(s)
- C H Lecellier
- CNRS UPR9051, Université Paris 7, Hôpital Saint-Louis, Paris Cedex 10, 75475, France
| | | |
Collapse
|
39
|
Pietschmann T, Zentgraf H, Rethwilm A, Lindemann D. An evolutionarily conserved positively charged amino acid in the putative membrane-spanning domain of the foamy virus envelope protein controls fusion activity. J Virol 2000; 74:4474-82. [PMID: 10775583 PMCID: PMC111968 DOI: 10.1128/jvi.74.10.4474-4482.2000] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Foamy viruses (FVs) are highly fusogenic, and their replication induces massive syncytium formation in infected cell cultures which is believed to be mediated by expression of the envelope (Env) protein. The FV Env is essential for virus particle egress. The unusually long putative membrane-spanning domain (MSD) of the transmembrane subunit carries dispersed charged amino acids and has an important function for particle envelopment. To better understand the capsid-envelope interaction and Env-mediated cell fusion, we generated a variety of FV MSD mutations. C-terminal deletions revealed the cytoplasmic domain to be dispensable but the full-length MSD to be required for fusogenic activity. The N-terminal 15 amino acids of the MSD were found to be sufficient for membrane anchorage and promotion of FV particle release. Expression of wild-type Env protein rarely induced syncytia due to intracellular retention. Coexpression with FV Gag-Pol resulted in particle export and a dramatic increase in fusion activity. A nonconservative mutation of K(959) in the middle of the putative MSD resulted in increased fusogenic activity of Env in the absence of Gag-Pol due to enhanced cell surface expression as well as structural changes in the mutant proteins. Coexpression with Gag-Pol resulted in a further increase in the fusion activity of mutant FV Env proteins. Our results suggest that an interaction between the viral capsid and Env is required for FV-induced giant-cell formation and that the positive charge in the MSD is an important determinant controlling intracellular transport and fusogenic activity of the FV Env protein.
Collapse
Affiliation(s)
- T Pietschmann
- Institut für Virologie und Immunbiologie, Universität Würzburg, Würzburg, Germany
| | | | | | | |
Collapse
|
40
|
Tobaly-Tapiero J, Bittoun P, Neves M, Guillemin MC, Lecellier CH, Puvion-Dutilleul F, Gicquel B, Zientara S, Giron ML, de Thé H, Saïb A. Isolation and characterization of an equine foamy virus. J Virol 2000; 74:4064-73. [PMID: 10756018 PMCID: PMC111920 DOI: 10.1128/jvi.74.9.4064-4073.2000] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Foamy viruses (FVs) are complex retroviruses which have been isolated from different animal species including nonhuman primates, cattle, and cats. Here, we report the isolation and characterization of a new FV isolated from blood samples of horses. Similar to other FVs, the equine foamy virus (EFV) exhibits a highly characteristic ultrastructure and induces syncytium formation and subsequent cell lysis on a large number of cell lines. Molecular cloning of EFV reveals that the general organization is that of other known FVs, whereas sequence similarity with its bovine FV counterpart is only 40%. Interestingly, EFV buds exclusively from the plasma membrane and not from the endoplasmic reticulum (ER), as previously shown for other FVs. The absence of the ER retrieval dilysine motif in EFV Env is likely responsible for this unexpected sorting pathway.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Antigens, Viral/immunology
- Base Sequence
- Blotting, Southern
- COS Cells
- Cats
- Cattle
- Cloning, Molecular
- Cricetinae
- DNA, Viral/analysis
- Genes, env
- Genes, gag
- Genes, pol
- Horse Diseases/blood
- Horse Diseases/immunology
- Horse Diseases/virology
- Horses
- Humans
- Molecular Sequence Data
- Proviruses/genetics
- Rabbits
- Retroviridae Infections/blood
- Retroviridae Infections/immunology
- Retroviridae Infections/veterinary
- Retroviridae Infections/virology
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Spumavirus/genetics
- Spumavirus/immunology
- Spumavirus/isolation & purification
- Terminal Repeat Sequences
- Transcriptional Activation
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- J Tobaly-Tapiero
- CNRS UPR9051, Université Paris 7, Hôpital Saint-Louis, 75475 Paris Cedex 10, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Heinkelein M, Thurow J, Dressler M, Imrich H, Neumann-Haefelin D, McClure MO, Rethwilm A. Complex effects of deletions in the 5' untranslated region of primate foamy virus on viral gene expression and RNA packaging. J Virol 2000; 74:3141-8. [PMID: 10708430 PMCID: PMC111814 DOI: 10.1128/jvi.74.7.3141-3148.2000] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Due to various advantageous features there is current interest in retroviral vectors derived from primate foamy viruses (PFVs). Two PFV cis-acting sequences have been mapped in the 5' region of the RNA (pre-)genome and in the 3' pol genomic region. In order to genetically separate PFV packaging constructs from vector constructs, we investigated the effect of deletions in the 5' untranslated region (UTR) of PFV packaging constructs and vectors on gene expression and RNA incorporation into viral particles. Our results indicate that the 5' UTR serves different previously unknown functions. First, the R region of the long terminal repeat was found to be required for PFV gag gene expression. This regulation of gene expression appeared to be mainly posttranscriptional. Second, constructs with sequence deletions between the R region and the gag gene start codon packaged as much viral mRNA into particles as the undeleted construct, and RNA from such a 5'-UTR-deleted packaging construct was copackaged into vector-virus particles, together with vector RNA which was preferentially packaged. Finally, in the U5 region a sequence was identified that was required to allow cleavage of the Gag precursor protein by the pol gene-encoded protease, suggesting a role of RNA in PFV particle formation. Taken together, the results indicate that complex interactions of the viral RNA, capsid, and polymerase proteins take place during PFV particle formation and that a clear separation of PFV vector and packaging construct sequences may be difficult to achieve.
Collapse
Affiliation(s)
- M Heinkelein
- Institut für Virologie und Immunbiologie, Universität Würzburg, Wurzburg, Germany
| | | | | | | | | | | | | |
Collapse
|
42
|
Bansal A, Shaw KL, Edwards BH, Goepfert PA, Mulligan MJ. Characterization of the R572T point mutant of a putative cleavage site in human foamy virus Env. J Virol 2000; 74:2949-54. [PMID: 10684317 PMCID: PMC111791 DOI: 10.1128/jvi.74.6.2949-2954.2000] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A putative cleavage site of the human foamy virus (HFV) envelope glycoprotein (Env) was altered. Transient env expression revealed that the R572T mutant Env was normally expressed and modified by asparagine-linked oligosaccharide chains. However, this single-amino-acid substitution was sufficient to abolish all detectable cleavage of the gp130 precursor polyprotein. Cell surface biotinylation demonstrated that the uncleaved mutant gp130 was transported to the plasma membrane. The uncleaved mutant protein was incapable of syncytium formation. Glycoprotein-driven virion budding, a unique aspect of HFV assembly, occurred despite the absence of Env cleavage. We then substituted the R572T mutant env into a replication-competent HFV molecular clone. Transfection of the mutant viral DNA into BHK-21 cells followed by viral titration with the FAB (foamy virus-activated beta-galactosidase expression) assay revealed that proteolysis of the HFV Env was essential for viral infectivity. Wild-type HFV Env partially complemented the defective virus phenotype. Taken together, these experimental results established the location of the HFV Env proteolytic site; the effects of cleavage on Env transport, processing, and function; and the importance of Env proteolysis for virus maturation and infectivity.
Collapse
Affiliation(s)
- A Bansal
- Departments of Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294-2170, USA
| | | | | | | | | |
Collapse
|
43
|
Pietschmann T, Heinkelein M, Heldmann M, Zentgraf H, Rethwilm A, Lindemann D. Foamy virus capsids require the cognate envelope protein for particle export. J Virol 1999; 73:2613-21. [PMID: 10074106 PMCID: PMC104016 DOI: 10.1128/jvi.73.4.2613-2621.1999] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Unlike other subclasses of the Retroviridae the Spumavirinae, its prototype member being the so-called human foamy virus (HFV), require the expression of the envelope (Env) glycoprotein for viral particle egress. Both the murine leukemia virus (MuLV) Env and the vesicular stomatitis virus G protein, which efficiently pseudotype other retrovirus capsids, were not able to support export of HFV particles. Analysis of deletion and point mutants of the HFV Env protein revealed that the HFV Env cytoplasmic domain (CyD) is dispensable for HFV particle envelopment, release, and infectivity, whereas deletion of the membrane-spanning-domain (MSD) led to an accumulation of naked capsids in the cytoplasm. Neither alternative membrane association of HFV Env deletion mutants lacking the MSD and CyD via phosphoglycolipid anchor nor domain swapping mutants, with the MSD or CyD of MuLV Env and VSV-G exchanged against the corresponding HFV domains, could restore particle envelopment and the release defect of pseudotypes. However, replacement of the HFV MSD with that of MuLV led to budding of HFV capsids at the intracellular membranes. These virions were of apparently wild-type morphology but were not naturally released into the supernatant and they were noninfectious.
Collapse
|
44
|
Herchenröder O, Moosmayer D, Bock M, Pietschmann T, Rethwilm A, Bieniasz PD, McClure MO, Weis R, Schneider J. Specific binding of recombinant foamy virus envelope protein to host cells correlates with susceptibility to infection. Virology 1999; 255:228-36. [PMID: 10069948 DOI: 10.1006/viro.1998.9570] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The interaction of simian foamy viruses (FVs) with their putative cellular receptor(s) was studied with two types of recombinant envelope protein (Env). Transient expression of full-length Env in BHK-21 cells induced syncytia formation. However, selected stable transfectants fused with naive cells but not with each other. A soluble fusion protein of the Env surface domain with the Fc fragment of a human IgG1 heavy chain (EnvSU-Ig) was produced in the baculovirus expression system, purified to homogeneity, and used for binding and competition analyses. EnvSU-Ig but not unrelated Ig fusion proteins bound to cells specifically. Neutralizing serum blocked binding of EnvSU-Ig and, vice versa, serum-mediated neutralization was abrogated by the chimeric protein. Concomitant reduction of EnvSU-Ig binding and FV susceptibility was seen in Env-expressing target cells. Although EnvSU-Ig did not inhibit FV infection, very likely due to its displacement by multivalent virus-cell interactions, this divalent ligand should help to characterize functionally and to identify the ubiquitous FV receptor.
Collapse
Affiliation(s)
- O Herchenröder
- Abteilung Virologie, Institut für Medizinische Mikrobiologie und Hygiene, University of Freiburg, Freiburg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Affiliation(s)
- M L Linial
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| |
Collapse
|
46
|
Bock M, Heinkelein M, Lindemann D, Rethwilm A. Cells expressing the human foamy virus (HFV) accessory Bet protein are resistant to productive HFV superinfection. Virology 1998; 250:194-204. [PMID: 9770433 DOI: 10.1006/viro.1998.9362] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bet is a foamy virus (FV) accessory protein not required for virus replication. The function of Bet is not understood. We report on the generation of cell lines stably expressing the HFV Bet protein. In Bet+ cells, HFV replication was reduced by approximately 3-4 orders of magnitude compared with control cells. The HFV Bet-expressing cells only partially resisted infection by the distantly related feline FV (FFV). Pseudotyping experiments, using murine retroviral vectors with an HFV envelope, revealed that the resistance was not due to downregulation of the unknown HFV receptor. In transfection experiments, using proviral reporter gene constructs and infectious proviruses, no significant differences were detected between Bet+ and control cells. In infection experiments, HFV vectors expressing an indicator gene under control of the HFV promoters showed no activity in Bet+ cells. The results are best compatible with the hypothesis that the main block to productive superinfection of Bet+ cells occurs at an early stage of replication between virus entry and provirus establishment. We suggest that inhibition of provirus integration by Bet protein may serve a distinct function in the unique foamy virus replication cycle.
Collapse
Affiliation(s)
- M Bock
- Institut für Virologie und Immunbiologie, Universität Würzburg, Versbacher Str.7, Würzburg, 97078, Germany
| | | | | | | |
Collapse
|
47
|
Heinkelein M, Schmidt M, Fischer N, Moebes A, Lindemann D, Enssle J, Rethwilm A. Characterization of a cis-acting sequence in the Pol region required to transfer human foamy virus vectors. J Virol 1998; 72:6307-14. [PMID: 9658069 PMCID: PMC109769 DOI: 10.1128/jvi.72.8.6307-6314.1998] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
To identify cis-acting elements in the foamy virus (FV) RNA pregenome, we developed a transient-vector-production system based on cotransfection of indicator gene-bearing vector and gag-pol and env expression plasmids. Two elements which were critical for vector transfer were found and mapped approximately. The first element was located in the RU5 leader and the 5' gag region (approximately up to position 650 of the viral RNA). The second element was located in an approximately 2-kb sequence in the 3' pol region. Although small 5' and 3' deletions, as well as internal deletions of the latter element, were tolerated, both elements were found to be absolutely required for vector transfer. The functional characterization of the pol region-located cis-acting element revealed that it is essential for efficient incorporation or the stability of particle-associated virion RNA. Furthermore, virions derived from a vector lacking this sequence were found to be deficient in the cleavage of the Gag protein by the Pol precursor protease. Our results suggest that during the formation of infectious virions, complex interactions between FV Gag and Pol and the viral RNA take place.
Collapse
Affiliation(s)
- M Heinkelein
- Institut für Virologie und Immunbiologie, Universität Würzburg, Würzburg, Germany
| | | | | | | | | | | | | |
Collapse
|
48
|
Fischer N, Heinkelein M, Lindemann D, Enssle J, Baum C, Werder E, Zentgraf H, Müller JG, Rethwilm A. Foamy virus particle formation. J Virol 1998; 72:1610-5. [PMID: 9445065 PMCID: PMC124643 DOI: 10.1128/jvi.72.2.1610-1615.1998] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Subgenomic expression plasmids for the so-called human foamy virus (HFV) structural gag, gag/pol, and env genes were constructed and used to analyze foamy virus particle formation by electron microscopy. Expression of an R-U5-gag-pol construct under control of the human cytomegalovirus immediate-early enhancer-promoter resulted in the formation of viral cores with a homogeneous size of approximately 50 nm located in the cytoplasm. Upon coexpression of an envelope construct, particles were observed budding into cytoplasmic vesicles and from the plasma membrane. Expression of the Gag protein precursor pr74 alone led to aberrantly formed viral particles of heterogeneous size and with open cores. Normal-shaped cores were seen after transfection of a construct expressing the p70gag cleavage product, indicating that p70gag is able to assemble into capsids. Coexpression of p70gag and Env resulted in budding virions, ruling out a requirement of the reverse transcriptase for capsid or virion formation. In sharp contrast to other retroviruses, the HFV cores did not spontaneously bud from cellular membranes. Radiochemical labeling followed by protein gel electrophoresis also revealed the intracellular retention of Env-deprived HFV capsids.
Collapse
Affiliation(s)
- N Fischer
- Institut für Virologie und Immunbiologie, Universität Würzburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|