1
|
Chen HW, Zaruba M, Dawood A, Düsterhöft S, Lamp B, Ruemenapf T, Riedel C. Modulation of ADAM17 Levels by Pestiviruses Is Species-Specific. Viruses 2024; 16:1564. [PMID: 39459898 PMCID: PMC11512297 DOI: 10.3390/v16101564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/25/2024] [Accepted: 09/28/2024] [Indexed: 10/28/2024] Open
Abstract
Upon host cell infection, viruses modulate their host cells to better suit their needs, including the downregulation of virus entry receptors. ADAM17, a cell surface sheddase, is an essential factor for infection of bovine cells with several pestiviruses. To assess the effect of pestivirus infection on ADAM17, the amounts of cellular ADAM17 and its presence at the cell surface were determined. Mature ADAM17 levels were reduced upon infection with a cytopathic pestivirus bovis (bovine viral diarrhea virus, cpBVDV), pestivirus suis (classical swine fever virus, CSFV) or pestivirus giraffae (strain giraffe), but not negatively affected by pestivirus L (Linda virus, LindaV). A comparable reduction of ADAM17 surface levels, which represents the bioactive form, could be observed in the presence of E2 of BVDV and CSFV, but not LindaV or atypical porcine pestivirus (pestivirus scrofae) E2. Superinfection exclusion in BVDV infection is caused by at least two proteins, glycoprotein E2 and protease/helicase NS3. To evaluate whether the lowered ADAM17 levels could be involved in superinfection exclusion, persistently CSFV- or LindaV-infected cells were challenged with different pestiviruses. Persistently LindaV-infected cells were significantly more susceptible to cpBVDV infection than persistently CSFV-infected cells, whilst the other pestiviruses tested were not or only hardly able to infect the persistently infected cells. These results provide evidence of a pestivirus species-specific effect on ADAM17 levels and hints at the possibility of its involvement in superinfection exclusion.
Collapse
Affiliation(s)
- Hann-Wei Chen
- Institute of Virology, Department of Pathobiology, University of Veterinary Medicine, 1210 Vienna, Austria; (H.-W.C.); (M.Z.); (A.D.)
| | - Marianne Zaruba
- Institute of Virology, Department of Pathobiology, University of Veterinary Medicine, 1210 Vienna, Austria; (H.-W.C.); (M.Z.); (A.D.)
| | - Aroosa Dawood
- Institute of Virology, Department of Pathobiology, University of Veterinary Medicine, 1210 Vienna, Austria; (H.-W.C.); (M.Z.); (A.D.)
| | - Stefan Düsterhöft
- Institute for Molecular Pharmacology, RWTH Aachen University, 52062 Aachen, Germany;
| | - Benjamin Lamp
- Institute of Virology, Faculty of Veterinary Medicine, Justus-Liebig-University Giessen, Schubertstrasse 81, 35392 Giessen, Germany;
| | - Till Ruemenapf
- Institute of Virology, Department of Pathobiology, University of Veterinary Medicine, 1210 Vienna, Austria; (H.-W.C.); (M.Z.); (A.D.)
| | - Christiane Riedel
- CIRI—Centre International de Recherche en Infectiologie, University Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, 46 Allée d’Italie, 69007 Lyon, France
| |
Collapse
|
2
|
Tong C, Mundt A, Meindl-Boehmer A, Haist V, Gallei A, Chen N. Safety and DIVA Capability of Novel Live Attenuated Classical Swine Fever Marker Vaccine Candidates in Pregnant Sows. Viruses 2024; 16:1043. [PMID: 39066207 PMCID: PMC11281586 DOI: 10.3390/v16071043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 07/28/2024] Open
Abstract
Classical Swine Fever (CSF), a highly contagious viral disease affecting pigs and wild boar, results in significant economic losses in the swine industry. In endemic regions, prophylactic vaccination and stamping-out strategies are used to control CSF outbreaks. However, sporadic outbreaks and persistent infections continue to be reported. Although the conventional attenuated CSF vaccines protect pigs against the disease, they do not allow for the differentiation of infected from vaccinated animals (DIVA), limiting their use as an eradication tool. In this study, three targeted attenuation strategies were employed to generate vaccine candidates based on the current prevalent CSFV group 2 strains GD18 and QZ07: a single deletion of H79 in Erns (QZ07-sdErnsH-KARD), double deletion of H79 and C171 in Erns (GD18-ddErnsHC-KARD and QZ07-ddErnsHC-KARD), and deletion of H79 in Erns combined with a 5-168 amino acids deletion of Npro (GD18-ddNpro-ErnsH-KARD). Additionally, a negative serological marker with four substitutions in a highly conserved epitope in E2 recognized by the monoclonal antibody 6B8 was introduced in each candidate for DIVA purposes. The safety of these four resulting vaccine candidates was evaluated in pregnant sows. Two candidates, GD18-ddErnsHC-KARD and QZ07-sdErnsH-KARD were found to be safe for pregnant sows and unlikely to cause vertical transmission. Both candidates also demonstrated potential to be used as DIVA vaccines, as was shown using a proprietary blocking ELISA based on the 6B8 monoclonal antibody. These results, together with our previous work, constitute a proof-of-concept for the rational design of CSF antigenically marked modified live virus vaccine candidates.
Collapse
MESH Headings
- Animals
- Classical Swine Fever/prevention & control
- Classical Swine Fever/virology
- Classical Swine Fever/immunology
- Swine
- Female
- Vaccines, Attenuated/immunology
- Vaccines, Attenuated/administration & dosage
- Vaccines, Attenuated/genetics
- Vaccines, Attenuated/adverse effects
- Classical Swine Fever Virus/immunology
- Classical Swine Fever Virus/genetics
- Viral Vaccines/immunology
- Viral Vaccines/genetics
- Viral Vaccines/administration & dosage
- Viral Vaccines/adverse effects
- Pregnancy
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Vaccines, Marker/immunology
- Vaccines, Marker/administration & dosage
- Vaccines, Marker/genetics
- Vaccination/veterinary
- Antibodies, Neutralizing/blood
- Antibodies, Neutralizing/immunology
Collapse
Affiliation(s)
- Chao Tong
- Boehringer Ingelheim Vetmedica (China) Co., Ltd., No. 299, Xiangtai Road, Taizhou 225300, China;
| | - Alice Mundt
- Boehringer Ingelheim Vetmedica GmbH, Binger Str. 173, 55216 Ingelheim am Rhein, Germany; (A.M.); (A.M.-B.); (V.H.); (A.G.)
| | - Alexandra Meindl-Boehmer
- Boehringer Ingelheim Vetmedica GmbH, Binger Str. 173, 55216 Ingelheim am Rhein, Germany; (A.M.); (A.M.-B.); (V.H.); (A.G.)
| | - Verena Haist
- Boehringer Ingelheim Vetmedica GmbH, Binger Str. 173, 55216 Ingelheim am Rhein, Germany; (A.M.); (A.M.-B.); (V.H.); (A.G.)
| | - Andreas Gallei
- Boehringer Ingelheim Vetmedica GmbH, Binger Str. 173, 55216 Ingelheim am Rhein, Germany; (A.M.); (A.M.-B.); (V.H.); (A.G.)
| | - Ning Chen
- Boehringer Ingelheim Vetmedica (China) Co., Ltd., No. 299, Xiangtai Road, Taizhou 225300, China;
| |
Collapse
|
3
|
HoBi-like Pestivirus Is Highly Prevalent in Cattle Herds in the Amazon Region (Northern Brazil). Viruses 2023; 15:v15020453. [PMID: 36851667 PMCID: PMC9965828 DOI: 10.3390/v15020453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/23/2023] [Accepted: 01/30/2023] [Indexed: 02/09/2023] Open
Abstract
Pestiviruses are globally distributed and cause substantial economic losses to the cattle industry. In Brazil, the country with the world's largest cattle population, pestivirus infections are well described in some regions, such as in the south, where a high frequency of BVDV-2 is described and contrasts with the high prevalence of HoBi-like pestivirus (HoBiPeV) in the northeast. However, there is a lack of information about pestiviruses in the Amazon Region, in northern Brazil, with a cattle population estimated at 55.7 million head, which has a significant impact on the international livestock market. Therefore, this study investigated the seroprevalence and genetic variability of ruminant pestiviruses in 944 bovine serum samples from four states in northern Brazil: Pará (PA), Amapá (AP), Roraima (RR), and Amazonas (AM). Our results showed that 45.4% of the samples were seropositive (19.8% for BVDV-1, 14.1% for BVDV-2, and 20.9% for HoBiPeV). All samples were tested by RT-qPCR, and three were positive and classified as HoBiPeV in a phylogenetic analysis. These serological and molecular results contrast with those from other regions of the world, suggesting that the northern Brazilian states have a high prevalence of all bovine pestiviruses including HoBiPeV.
Collapse
|
4
|
Comparative Analysis of Tunisian Sheep-like Virus, Bungowannah Virus and Border Disease Virus Infection in the Porcine Host. Viruses 2021; 13:v13081539. [PMID: 34452404 PMCID: PMC8402848 DOI: 10.3390/v13081539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/30/2021] [Accepted: 08/01/2021] [Indexed: 02/07/2023] Open
Abstract
Apart from the established pestivirus species Pestivirus A to Pestivirus K novel species emerged. Pigs represent not only hosts for porcine pestiviruses, but are also susceptible to bovine viral diarrhea virus, border disease virus (BDV) and other ruminant pestiviruses. The present study focused on the characterization of the ovine Tunisian sheep-like virus (TSV) as well as Bungowannah virus (BuPV) and BDV strain Frijters, which were isolated from pigs. For this purpose, we performed genetic characterization based on complete coding sequences, studies on virus replication in cell culture and in domestic pigs, and cross-neutralization assays using experimentally derived sera. TSV forms a distinct phylogenetic group more closely related to Pestivirus C (classical swine fever virus, CSFV) than to Pestivirus D (BDV). In contrast to BDV and BuPV, TSV replicates by far more efficiently on ovine than on porcine cells. Nevertheless, pigs were susceptible to TSV. As a consequence of close antigenic relatedness of TSV to CSFV, cross-reactivity was detected in CSFV-specific antibody assays. In conclusion, TSV is genetically closely related to CSFV and can replicate in domestic pigs. Due to close antigenic relatedness, field infections of pigs with TSV and other ruminant pestiviruses can interfere with serological diagnosis of classical swine fever.
Collapse
|
5
|
Righi C, Petrini S, Pierini I, Giammarioli M, De Mia GM. Global Distribution and Genetic Heterogeneity of Border Disease Virus. Viruses 2021; 13:950. [PMID: 34064016 PMCID: PMC8223970 DOI: 10.3390/v13060950] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 12/24/2022] Open
Abstract
Border disease virus (BDV) belongs to the genus Pestivirus of the family Flaviviridae. Interspecies transmission of BDV between sheep, cattle, and pigs occurs regularly, sometimes making diagnosis a challenge. BDV can yield substantial economic losses, including prenatal and postnatal infections in lambs, which are the primary source of infection and maintenance of the virus in the population. Since BDV is antigenically and genetically related to bovine viral diarrhea virus (BVDV), it might pose a significant risk to cattle, influencing BVDV eradication campaigns. Similarly, the presence of BDV in swine herds due to pestivirus spillover between small ruminants and pigs might cause uncertainty in classical swine fever virus (CSFV) diagnostics. Therefore, knowledge of BDV epidemiology in different geographical regions will help prevent its spread and optimize control measures. Previous epidemiological studies have shown that various BDV genotypes are predominant in different countries. This review provides an overview of the spread of BDV world-wide in different host species.
Collapse
Affiliation(s)
| | | | | | | | - Gian Mario De Mia
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, 06126 Perugia, Italy; (C.R.); (S.P.); (I.P.); (M.G.)
| |
Collapse
|
6
|
Riedel C, Aitkenhead H, El Omari K, Rümenapf T. Atypical Porcine Pestiviruses: Relationships and Conserved Structural Features. Viruses 2021; 13:v13050760. [PMID: 33926056 PMCID: PMC8146772 DOI: 10.3390/v13050760] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/23/2021] [Accepted: 04/23/2021] [Indexed: 01/22/2023] Open
Abstract
For two decades, the genus pestivirus has been expanding and the host range now extends to rodents, bats and marine mammals. In this review, we focus on one of the most diverse pestiviruses, atypical porcine pestivirus or pestivirus K, comparing its special traits to what is already known at the structural and functional level from other pestiviruses.
Collapse
Affiliation(s)
- Christiane Riedel
- Institute of Virology, Department of Pathobiology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria;
- Correspondence:
| | - Hazel Aitkenhead
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK; (H.A.); (K.E.O.)
- Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot OX11 0FA, UK
| | - Kamel El Omari
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK; (H.A.); (K.E.O.)
- Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot OX11 0FA, UK
| | - Till Rümenapf
- Institute of Virology, Department of Pathobiology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria;
| |
Collapse
|
7
|
Zheng F, Yi W, Liu W, Zhu H, Gong P, Pan Z. A positively charged surface patch on the pestivirus NS3 protease module plays an important role in modulating NS3 helicase activity and virus production. Arch Virol 2021; 166:1633-1642. [PMID: 33787991 DOI: 10.1007/s00705-021-05055-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 02/08/2021] [Indexed: 10/21/2022]
Abstract
Pestivirus nonstructural protein 3 (NS3) is a multifunctional protein with protease and helicase activities that are essential for virus replication. In this study, we used a combination of biochemical and genetic approaches to investigate the relationship between a positively charged patch on the protease module and NS3 function. The surface patch is composed of four basic residues, R50, K74 and K94 in the NS3 protease domain and H24 in the structurally integrated cofactor NS4APCS. Single-residue or simultaneous four-residue substitutions in the patch to alanine or aspartic acid had little effect on ATPase activity. However, single substitutions of R50, K94 or H24 or a simultaneous four-residue substitution resulted in apparent changes in the helicase activity and RNA-binding ability of NS3. When these mutations were introduced into a classical swine fever virus (CSFV) cDNA clone, a single substitution at K94 or a simultaneous four-residue substitution (Qua_A or Qua_D) impaired the production of infectious virus. Furthermore, the replication efficiency of the CSFV variants was partially correlated with the helicase activity of NS3 in vitro. Our results suggest that the conserved positively charged patch on NS3 plays an important role in modulating the NS3 helicase activity in vitro and CSFV production.
Collapse
Affiliation(s)
- Fengwei Zheng
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Weicheng Yi
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Weichi Liu
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Hongchang Zhu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Peng Gong
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.
| | - Zishu Pan
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
8
|
Autonomously Replicating RNAs of Bungowannah Pestivirus: E RNS Is Not Essential for the Generation of Infectious Particles. J Virol 2020; 94:JVI.00436-20. [PMID: 32404522 DOI: 10.1128/jvi.00436-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 05/04/2020] [Indexed: 12/31/2022] Open
Abstract
Autonomously replicating subgenomic Bungowannah virus (BuPV) RNAs (BuPV replicons) with deletions of the genome regions encoding the structural proteins C, ERNS, E1, and E2 were constructed on the basis of an infectious cDNA clone of BuPV. Nanoluciferase (Nluc) insertion was used to compare the replication efficiencies of all constructs after electroporation of in vitro-transcribed RNA from the different clones. Deletion of C, E1, E2, or the complete structural protein genome region (C-ERNS-E1-E2) prevented the production of infectious progeny virus, whereas deletion of ERNS still allowed the generation of infectious particles. However, those ΔERNS viral particles were defective in virus assembly and/or egress and could not be further propagated for more than three additional passages in porcine SK-6 cells. These "defective-in-third-cycle" BuPV ΔERNS mutants were subsequently used to express the classical swine fever virus envelope protein E2, the N-terminal domain of the Schmallenberg virus Gc protein, and the receptor binding domain of the Middle East respiratory syndrome coronavirus spike protein. The constructs could be efficiently complemented and further passaged in SK-6 cells constitutively expressing the BuPV ERNS protein. Importantly, BuPVs are able to infect a wide variety of target cell lines, allowing expression in a very wide host spectrum. Therefore, we suggest that packaged BuPV ΔERNS replicon particles have potential as broad-spectrum viral vectors.IMPORTANCE The proteins NPRO and ERNS are unique for the genus Pestivirus, but only NPRO has been demonstrated to be nonessential for in vitro growth. While this was also speculated for ERNS, it has always been previously shown that pestivirus replicons with deletions of the structural proteins ERNS, E1, or E2 did not produce any infectious progeny virus in susceptible host cells. Here, we demonstrated for the first time that BuPV ERNS is dispensable for the generation of infectious virus particles but still important for efficient passaging. The ERNS-defective BuPV particles showed clearly limited growth in cell culture but were capable of several rounds of infection, expression of foreign genes, and highly efficient trans-complementation to rescue virus replicon particles (VRPs). The noncytopathic characteristics and the absence of preexisting immunity to BuPV in human populations and livestock also provide a significant benefit for a possible use, e.g., as a vector vaccine platform.
Collapse
|
9
|
Tran HTT, Truong DA, Ly VD, Vu HT, Hoang TV, Nguyen CT, Chu NT, Nguyen VT, Nguyen DT, Miyazawa K, Kokuho T, Dang HV. The potential efficacy of the E2-subunit vaccine to protect pigs against different genotypes of classical swine fever virus circulating in Vietnam. Clin Exp Vaccine Res 2020; 9:26-39. [PMID: 32095438 PMCID: PMC7024730 DOI: 10.7774/cevr.2020.9.1.26] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 01/19/2020] [Accepted: 01/21/2020] [Indexed: 11/15/2022] Open
Abstract
Purpose To date, many kinds of classical swine fever (CSF) vaccines have been developed to protect against this disease. However, the efficacy of these vaccines to protect the pig against field CSF strains needs to be considered, based on circulating strains of classical swine fever virus (CSFV). Materials and Methods Recombinant E2-CSFV protein produced by baculovirus/insect cell system was analyzed by western blots and immunoperoxidase monolayer assay. The effect of CSFV-E2 subunit vaccines was evaluated in experimental pigs with three genotypes of CSFV challenge. Anti-E2 specific and neutralizing antibodies in experimental pigs were analyzed by blocking enzyme-linked immunosorbent assay and neutralization peroxidize-linked assay. Results The data showed that CSFV VN91-E2 subunit vaccine provided clinical protection in pigs against three different genotypes of CSFV without noticeable clinical signs, symptoms, and mortality. In addition, no CSFV was isolated from the spleen of the vaccinated pigs. However, the unvaccinated pigs exhibited high clinical scores and the successful virus isolation from spleen. These results showed that the E2-specific and neutralizing antibodies induced by VN91-E2 antigen appeared at day 24 after first boost and a significant increase was observed at day 28 (p<0.01). This response reached a peak at day 35 and continued until day 63 when compared to controls. Importantly, VN91-E2 induced E2-specific and neutralizing antibodies protected experimental pigs against high virulence of CSFVs circulating in Vietnam, including genotype 1.1, 2.1, and 2.2. Conclusion These findings also suggested that CSFV VN91-E2 subunit vaccine could be a promising vaccine candidate for the control and prevention of CSFV in Vietnam.
Collapse
Affiliation(s)
- Ha Thi Thanh Tran
- Department of Biochemistry and Immunology, National Institute of Veterinary Research (NIVR), Hanoi, Vietnam
| | - Duc Anh Truong
- Department of Biochemistry and Immunology, National Institute of Veterinary Research (NIVR), Hanoi, Vietnam
| | - Viet Duc Ly
- Department of Biochemistry and Immunology, National Institute of Veterinary Research (NIVR), Hanoi, Vietnam
| | - Hao Thi Vu
- Department of Biochemistry and Immunology, National Institute of Veterinary Research (NIVR), Hanoi, Vietnam
| | - Tuan Van Hoang
- Department of Biochemistry and Immunology, National Institute of Veterinary Research (NIVR), Hanoi, Vietnam
| | - Chinh Thi Nguyen
- Department of Biochemistry and Immunology, National Institute of Veterinary Research (NIVR), Hanoi, Vietnam
| | - Nhu Thi Chu
- Department of Biochemistry and Immunology, National Institute of Veterinary Research (NIVR), Hanoi, Vietnam
| | - Vinh The Nguyen
- Department of Biochemistry and Immunology, National Institute of Veterinary Research (NIVR), Hanoi, Vietnam
| | - Duyen Thuy Nguyen
- Department of Biochemistry and Immunology, National Institute of Veterinary Research (NIVR), Hanoi, Vietnam
| | - Kohtaro Miyazawa
- National Institute of Animal Health, The National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Takehiro Kokuho
- National Institute of Animal Health, The National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Hoang Vu Dang
- Department of Biochemistry and Immunology, National Institute of Veterinary Research (NIVR), Hanoi, Vietnam
| |
Collapse
|
10
|
Deng M, Chen N, Guidarini C, Xu Z, Zhang J, Cai L, Yuan S, Sun Y, Metcalfe L. Prevalence and genetic diversity of bovine viral diarrhea virus in dairy herds of China. Vet Microbiol 2019; 242:108565. [PMID: 32122580 DOI: 10.1016/j.vetmic.2019.108565] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 12/13/2019] [Accepted: 12/19/2019] [Indexed: 11/24/2022]
Abstract
To determine the nationwide prevalence and genetic diversity of bovine viral diarrhea virus (BVDV) in China, 92 dairy farms with more than 500 animals in 19 provinces of China were surveyed in 2017. At each farm, ear notch samples from calves less than six months old and bulk tank milk (BTM) samples were collected. A total of 901 ear notch samples and 329 BTM samples from 183 tanks were sampled. A total of 20 (20/901, 2.22 %) ear notch samples from 10 (10/92, 10.86 %) farms tested positive for BVDV by IDEXX Antigen Point-of-Care (POC) Test kit and real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR). In addition, 80 of 183 (80/183, 43.7 %) BTM samples from 43 (43/92, 46.7 %) farms were identified as positive by qRT-PCR. The RNA of positive and suspect samples identified by qRT-PCR was subjected to 5'- untranslated region (UTR) amplification by nested RT-PCR and then sequenced. A total of 119 sequences were obtained and phylogenetic analysis of these 5'-UTR sequences revealed the presence of eight different subgenotypes of BVDV-1 including 1a (n = 37, 31.09 %), 1b (n = 5, 4.20 %), 1c (n = 34, 28.57 %), 1d (n = 2, 1.68 %), 1m (n = 25, 21.01 %), 1q (n = 6, 5.04 %), and two unknown subgenotypes which were tentatively typed as "BVDV-1v" (n = 8, 6.72 %) and "BVDV-1w" (n = 2, 1.68 %), respectively. BVDV-1a, 1c, and 1m were the dominant strains, collectively accounting for 80.67 % (96/119) of all sequences. Phylogenetic analysis based on selected N-terminal autoprotease (Npro) sequences confirmed the classification of the 5'-UTR sequences. In conclusion, the prevalence of BVDV persistent infection in dairy cattle was high and genetic diversity was high and increasing, revealing a serious threat to the health of cattle in China and highlighting the need for BVDV control.
Collapse
Affiliation(s)
- Mingliang Deng
- Asian Veterinary Research and Development Center, Boehringer Ingelheim Vetmedica (China) Co., Ltd., Pudong District, Shanghai, 201203, China.
| | - Ning Chen
- Asian Veterinary Research and Development Center, Boehringer Ingelheim Vetmedica (China) Co., Ltd., Pudong District, Shanghai, 201203, China
| | - Christian Guidarini
- Boehringer Ingelheim Vetmedica GmbH, Binger Straße 173, 55216 Ingelheim am Rhein, Germany
| | - Zhihua Xu
- Boehringer Ingelheim Int'l Trading (Shanghai) Co. Ltd, Shanghai, 200040 China
| | - Junjie Zhang
- Boehringer Ingelheim Int'l Trading (Shanghai) Co. Ltd, Shanghai, 200040 China
| | - Lingjie Cai
- Boehringer Ingelheim Int'l Trading (Shanghai) Co. Ltd, Shanghai, 200040 China
| | - Shishan Yuan
- Asian Veterinary Research and Development Center, Boehringer Ingelheim Vetmedica (China) Co., Ltd., Pudong District, Shanghai, 201203, China
| | - Yanyong Sun
- Asian Veterinary Research and Development Center, Boehringer Ingelheim Vetmedica (China) Co., Ltd., Pudong District, Shanghai, 201203, China
| | - Lucy Metcalfe
- Boehringer Ingelheim Vetmedica GmbH, Binger Straße 173, 55216 Ingelheim am Rhein, Germany
| |
Collapse
|
11
|
Ricci S, Bartolini S, Morandi F, Cuteri V, Preziuso S. Genotyping of Pestivirus A (Bovine Viral Diarrhea Virus 1) detected in faeces and in other specimens of domestic and wild ruminants at the wildlife-livestock interface. Vet Microbiol 2019; 235:180-187. [PMID: 31383300 DOI: 10.1016/j.vetmic.2019.07.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/04/2019] [Accepted: 07/06/2019] [Indexed: 11/19/2022]
Abstract
Pestiviruses are widespread in the world among ungulates and infect both domestic and wild animals causing severe economic losses in livestock. Bovine Viral Diarrhea Virus type 1 (BVDV-1), now re-designated as Pestivirus A, causes diseases mainly in cattle, while few data are available about infection in wild ruminants and about the role of these animals in viral maintenance and spread. In order to investigate BVDV-1 infection in domestic and wild ruminants, especially at the wildlife/livestock interface, bulk tank milk from dairy cattle and sheep and spleen from red deer, roe deer and fallow deer were analysed. Furthermore, faecal samples from Apennine chamois and from wild deer were evaluated as a suitable sample for detecting and genotyping pestiviruses. BVDV-1 RNA was found in all animal species tested but not sheep. Genotyping based on partial 5'UTR and Npro sequences detected BVDV-1a in samples from Apennine chamois, red deer, roe deer and pasture-raised cattle, while BVDV-1c was found in a faecal sample from Apennine chamois and in a spleen sample from roe deer. For the first time BVDV-1 RNA was found and genotyped from faecal samples of wild ruminants and of cattle. BVDV-1a detection in Apennine chamois, red deer, roe deer and pasture-raised cattle suggests that the eventuality of viral transmission at the wildlife/livestock interface should be carefully evaluated. BVDV subgenotype 1c was found for the first time in roe deer and Apennine chamois in Central Italy, therefore the epidemiological role of these animals and the viral ecology should be further investigated.
Collapse
Affiliation(s)
- Sara Ricci
- School of Biosciences and Veterinary Medicine, University of Camerino, Italy
| | - Sofia Bartolini
- School of Biosciences and Veterinary Medicine, University of Camerino, Italy
| | | | - Vincenzo Cuteri
- School of Biosciences and Veterinary Medicine, University of Camerino, Italy
| | - Silvia Preziuso
- School of Biosciences and Veterinary Medicine, University of Camerino, Italy.
| |
Collapse
|
12
|
Brussel A, Brack K, Muth E, Zirwes R, Cheval J, Hebert C, Charpin JM, Marinaci A, Flan B, Ruppach H, Beurdeley P, Eloit M. Use of a new RNA next generation sequencing approach for the specific detection of virus infection in cells. Biologicals 2019; 59:29-36. [PMID: 30992161 DOI: 10.1016/j.biologicals.2019.03.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/15/2019] [Accepted: 03/31/2019] [Indexed: 01/22/2023] Open
Abstract
The utilization of the current combination of in vitro, in vivo and PCR assays for the identification of adventitious viruses in production cells has a limited range of detection. While Next Generation Sequencing (NGS) has a broader breadth of detection, it is unable to differentiate sequences from replicating viruses versus background inert sequences. In order to improve NGS specificity, we have designed a new NGS approach which targets subsets of viral RNAs only synthesized during cell infection. In order to evaluate the performance of this approach for detecting low levels of adventitious viruses, we selected two difficult virus/cell systems. This included B95-8 cells persistently infected by Human herpesvirus 4 (HHV-4) and serially diluted into HHV-4 negative Ramos cells and Madin-Darby bovine kidney cells with an early infection produced via a low dose of Bovine viral diarrhea virus. We demonstrated that the sensitivity of our RNA NGS approach was equivalent to targeted PCR with an increased specificity for the detection of viral infection. We were also able to identify a previously undetected Murine Leukemia Virus contaminant in Ramos cells. Based on these results, we conclude that this new RNA NGS approach is suitable for conducting viral safety evaluations of cells.
Collapse
Affiliation(s)
| | - Kerstin Brack
- Charles River Laboratories Germany GmbH, Erkrath, Germany
| | | | | | | | | | | | - Alice Marinaci
- Charles River Laboratories Germany GmbH, Erkrath, Germany
| | | | - Horst Ruppach
- Charles River Laboratories Germany GmbH, Erkrath, Germany
| | | | - Marc Eloit
- PathoQuest, Paris, France; National Veterinary School of Alfort, Paris-Est University, Maisons-Alfort, France; Pathogen Discovery Laboratory, Biology of Infection Unit, Institut Pasteur, Paris, France.
| |
Collapse
|
13
|
El Bahgy HEK, Abdelmegeed HK, Marawan MA. Epidemiological surveillance of bovine viral diarrhea and rift valley fever infections in camel. Vet World 2018; 11:1331-1337. [PMID: 30410242 PMCID: PMC6200573 DOI: 10.14202/vetworld.2018.1331-1337] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 08/06/2018] [Indexed: 11/25/2022] Open
Abstract
Aim: This study was designed to investigate the current epidemiological situation of bovine viral diarrhea virus (BVDV) and rift valley fever virus (RVFV) infection of camels originating from Sudan “smuggler” and Egypt as part of our future plan for a national surveillance program in Egyptian provinces, which will aid in establishment of control strategy for animal diseases. Materials and Methods: This investigation was accomplished using serological diagnostic and molecular biology techniques. A total number of 200 blood samples were collected from camel (120 originated from Sudan “smuggler” and 80 from local breed) and were subjected for testing both BVDV and RVFV occurrence with different age and sex. Results: Sixty-six of the 200 camels (33%) were positive for BVDV antibodies, and 44 (22%) for BVDV antigen (Ag), and 27 of the 200 camels (13.5%) were positive for RVFV immunoglobulin G (IgG) antibodies. On the other hand, the seroprevalence of BVDV for antibodies (47.5%), Ag (31.6%), and RVFV IgG antibodies (16.6%) was higher in camel originated from Sudan “smuggler” than of local breed which was 11.2% for BVDV antibodies and 7.5% for BVDV Ag, while it was 8.7% for RVFV IgG antibodies. The incidence of BVDV antibodies, Ag, and RVFV IgG antibodies was the highest in male, up to 9 years of age. The frequency of positive cases was significantly different according to the origin of samples and sex and age of camel for BVDV and RVFV. In addition, seven serologically positive samples for BVDV and five serologically positive samples for RVFV were submitted as a buffy coat for molecular detection by one-step – reverse transcription polymerase chain reaction (RT-PCR). The results demonstrated that three samples were positive for BVDV of camel originated from Sudan (smuggler), while no RVFV Ag was detected in all five samples. Sequencing and phylogenetic analysis of the amplicons obtained from positive RT-PCR samples (three samples) indicated 100% nucleotide homology with Sudan strain 2015 except only one (missense point mutation) by substitution of A to T at position 345 that changed the coded amino acids from T (Threonine) to S (Serine) at residue 115. Conclusion: Camels act as risk animals for the introduction of many infectious diseases from Sudan to Egypt, especially transboundary animal diseases, so strict quarantine measures should be taken during importation of live animals from Sudan to prevent the spread of such diseases.
Collapse
Affiliation(s)
- Halla E K El Bahgy
- Department of Hygiene and Veterinary Care, Faculty of Veterinary Medicine, Benha University, Qualyobia, Egypt
| | - Hala K Abdelmegeed
- Department of Virology, Animal Health Research Institute, Doki, Giza, Egypt
| | - Marawan A Marawan
- Department of Animal Medicine (Infectious Diseases) Faculty of Veterinary Medicine, Benha University, Qualyobia, Egypt
| |
Collapse
|
14
|
Complete Genome Sequencing of a Classical Swine Fever Virus Strain Endemic in Vietnam. GENOME ANNOUNCEMENTS 2018; 6:6/18/e00307-18. [PMID: 29724831 PMCID: PMC5940935 DOI: 10.1128/genomea.00307-18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A Vietnamese strain of classical swine fever virus, VN91, was isolated in Hung Yen in 1991. While VN91 has been used as a challenge strain in efficacy tests of vaccines, its genetic background has never been described. Here, we report the genome sequence of the strain circulating in Vietnam.
Collapse
|
15
|
Uncoupling of Protease trans-Cleavage and Helicase Activities in Pestivirus NS3. J Virol 2017; 91:JVI.01094-17. [PMID: 28835495 DOI: 10.1128/jvi.01094-17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 08/07/2017] [Indexed: 01/25/2023] Open
Abstract
The nonstructural protein NS3 from the Flaviviridae family is a multifunctional protein that contains an N-terminal protease and a C-terminal helicase, playing essential roles in viral polyprotein processing and genome replication. Here we report a full-length crystal structure of the classical swine fever virus (CSFV) NS3 in complex with its NS4A protease cofactor segment (PCS) at a 2.35-Å resolution. The structure reveals a previously unidentified ∼2,200-Å2 intramolecular protease-helicase interface comprising three clusters of interactions, representing a "closed" global conformation related to the NS3-NS4A cis-cleavage event. Although this conformation is incompatible with protease trans-cleavage, it appears to be functionally important and beneficial to the helicase activity, as the mutations designed to perturb this conformation impaired both the helicase activities in vitro and virus production in vivo Our work reveals important features of protease-helicase coordination in pestivirus NS3 and provides a key basis for how different conformational states may explicitly contribute to certain functions of this natural protease-helicase fusion protein.IMPORTANCE Many RNA viruses encode helicases to aid their RNA genome replication and transcription by unwinding structured RNA. Being naturally fused to a protease participating in viral polyprotein processing, the NS3 helicases encoded by the Flaviviridae family viruses are unique. Therefore, how these two enzyme modules coordinate in a single polypeptide is of particular interest. Here we report a previously unidentified conformation of pestivirus NS3 in complex with its NS4A protease cofactor segment (PCS). This conformational state is related to the protease cis-cleavage event and is optimal for the function of helicase. This work provides an important basis to understand how different enzymatic activities of NS3 may be achieved by the coordination between the protease and helicase through different conformational states.
Collapse
|
16
|
Kleine Büning M, Meyer D, Austermann-Busch S, Roman-Sosa G, Rümenapf T, Becher P. Nonreplicative RNA Recombination of an Animal Plus-Strand RNA Virus in the Absence of Efficient Translation of Viral Proteins. Genome Biol Evol 2017; 9:817-829. [PMID: 28338950 PMCID: PMC5381556 DOI: 10.1093/gbe/evx046] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2017] [Indexed: 12/27/2022] Open
Abstract
RNA recombination is a major driving force for the evolution of RNA viruses and is significantly implicated in the adaptation of viruses to new hosts, changes of virulence, as well as in the emergence of new viruses including drug-resistant and escape mutants. However, the molecular details of recombination in animal RNA viruses are only poorly understood. In order to determine whether viral RNA recombination depends on translation of viral proteins, a nonreplicative recombination system was established which is based on cotransfection of cells with synthetic bovine viral diarrhea virus (family Flaviviridae) RNA genome fragments either lacking the internal ribosome entry site required for cap-independent translation or lacking almost the complete polyprotein coding region. The emergence of a number of recombinant viruses demonstrated that IRES-mediated translation of viral proteins is dispensable for efficient recombination and suggests that RNA recombination can occur in the absence of viral proteins. Analyses of 58 independently emerged viruses led to the detection of recombinant genomes with duplications, deletions and insertions in the 5′ terminal region of the open reading frame, leading to enlarged core fusion proteins detectable by Western blot analysis. This demonstrates a remarkable flexibility of the pestivirus core protein. Further experiments with capped and uncapped genome fragments containing a luciferase gene for monitoring the level of protein translation revealed that even a ∼1,000-fold enhancement of translation of viral proteins did not increase the frequency of RNA recombination. Taken together, this study highlights that nonreplicative RNA recombination does not require translation of viral proteins.
Collapse
Affiliation(s)
- Maximiliane Kleine Büning
- Department of Infectious Diseases, Institute of Virology, University of Veterinary Medicine Hannover, Germany
| | - Denise Meyer
- Department of Infectious Diseases, Institute of Virology, University of Veterinary Medicine Hannover, Germany
| | - Sophia Austermann-Busch
- Department of Infectious Diseases, Institute of Virology, University of Veterinary Medicine Hannover, Germany
| | | | - Tillmann Rümenapf
- Department of Pathobiology, Institute of Virology, University of Veterinary Medicine Vienna, Austria
| | - Paul Becher
- Department of Infectious Diseases, Institute of Virology, University of Veterinary Medicine Hannover, Germany
| |
Collapse
|
17
|
Recent emergence of a novel porcine pestivirus: interference with classical swine fever diagnosis? Emerg Microbes Infect 2017; 6:e19. [PMID: 28400592 PMCID: PMC5457672 DOI: 10.1038/emi.2017.5] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 12/14/2016] [Accepted: 01/11/2017] [Indexed: 01/31/2023]
|
18
|
Kumar R, Rajak KK, Chandra T, Muthuchelvan D, Saxena A, Chaudhary D, Kumar A, Pandey AB. Sequence-based comparative study of classical swine fever virus genogroup 2.2 isolate with pestivirus reference strains. Vet World 2016; 8:1059-62. [PMID: 27047198 PMCID: PMC4774772 DOI: 10.14202/vetworld.2015.1059-1062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 07/31/2015] [Accepted: 08/08/2015] [Indexed: 12/03/2022] Open
Abstract
Aim: This study was undertaken with the aim to compare and establish the genetic relatedness between classical swine fever virus (CSFV) genogroup 2.2 isolate and pestivirus reference strains. Materials and Methods: The available complete genome sequences of CSFV/IND/UK/LAL-290 strain and other pestivirus reference strains were retrieved from GenBank. The complete genome sequence, complete open reading frame, 5’ and 3’ non-coding region (NCR) sequences were analyzed and compared with reference pestiviruses strains. Clustal W model in MegAlign program of Lasergene 6.0 software was used for analysis of genetic heterogeneity. Phylogenetic analysis was carried out using MEGA 6.06 software package. Results: The complete genome sequence alignment of CSFV/IND/UK/LAL-290 isolate and reference pestivirus strains showed 58.9-72% identities at the nucleotide level and 50.3-76.9% at amino acid level. Sequence homology of 5’ and 3’ NCRs was found to be 64.1-82.3% and 22.9-71.4%, respectively. In phylogenetic analysis, overall tree topology was found similar irrespective of sequences used in this study; however, whole genome phylogeny of pestivirus formed two main clusters, which further distinguished into the monophyletic clade of each pestivirus species. CSFV/IND/UK/LAL-290 isolate placed with the CSFV Eystrup strain in the same clade with close proximity to border disease virus and Aydin strains. Conclusion: CSFV/IND/UK/LAL-290 exhibited the analogous genomic organization to those of all reference pestivirus strains. Based on sequence identity and phylogenetic analysis, the isolate showed close homology to Aydin/04-TR virus and distantly related to Bungowannah virus.
Collapse
Affiliation(s)
- Ravi Kumar
- Division of Virology, Indian Veterinary Research Institute, Mukteswar, Nainital, Uttarakhand, India; Department of Biotechnology, Graphic Era University, Dehradun, Uttarakhand, India
| | - Kaushal Kishor Rajak
- Division of Virology, Indian Veterinary Research Institute, Mukteswar, Nainital, Uttarakhand, India
| | - Tribhuwan Chandra
- Department of Biotechnology, Graphic Era University, Dehradun, Uttarakhand, India
| | - Dhanavelu Muthuchelvan
- Division of Virology, Indian Veterinary Research Institute, Mukteswar, Nainital, Uttarakhand, India
| | - Arpit Saxena
- Division of Virology, Indian Veterinary Research Institute, Mukteswar, Nainital, Uttarakhand, India
| | - Dheeraj Chaudhary
- Division of Virology, Indian Veterinary Research Institute, Mukteswar, Nainital, Uttarakhand, India
| | - Ajay Kumar
- Division of Virology, Indian Veterinary Research Institute, Mukteswar, Nainital, Uttarakhand, India
| | - Awadh Bihari Pandey
- Division of Virology, Indian Veterinary Research Institute, Mukteswar, Nainital, Uttarakhand, India
| |
Collapse
|
19
|
Mao L, Li W, Liu X, Hao F, Yang L, Deng J, Zhang W, Wei J, Jiang J. Chinese border disease virus strain JSLS12-01 infects piglets and down-regulates the antibody responses of classical swine fever virus C strain vaccination. Vaccine 2015; 33:3918-22. [DOI: 10.1016/j.vaccine.2015.06.059] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 06/08/2015] [Accepted: 06/12/2015] [Indexed: 01/21/2023]
|
20
|
Genetic and antigenic characterization of Bungowannah virus, a novel pestivirus. Vet Microbiol 2015; 178:252-9. [PMID: 26049593 DOI: 10.1016/j.vetmic.2015.05.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Revised: 05/08/2015] [Accepted: 05/21/2015] [Indexed: 01/15/2023]
Abstract
Bungowannah virus, a possible new species within the genus Pestivirus, has been associated with a disease syndrome in pigs characterized by myocarditis with a high incidence of stillbirths. The current analysis of the whole-genome and antigenic properties of this virus confirms its unique identity, and further suggests that this virus is both genetically and antigenically remote from previously recognized pestiviruses. There was no evidence of reactivity with monoclonal antibodies (mAbs) that are generally considered to be pan-reactive with other viruses in the genus, and there was little cross reactivity with polyclonal sera. Subsequently, a set of novel mAbs has been generated which allow detection of Bungowannah virus. The combined data provide convincing evidence that Bungowannah virus is a member of the genus Pestivirus and should be officially recognized as a novel virus species.
Collapse
|
21
|
Abstract
Pestiviruses are among the economically most important pathogens of livestock. The biology of these viruses is characterized by unique and interesting features that are both crucial for their success as pathogens and challenging from a scientific point of view. Elucidation of these features at the molecular level has made striking progress during recent years. The analyses revealed that major aspects of pestivirus biology show significant similarity to the biology of human hepatitis C virus (HCV). The detailed molecular analyses conducted for pestiviruses and HCV supported and complemented each other during the last three decades resulting in elucidation of the functions of viral proteins and RNA elements in replication and virus-host interaction. For pestiviruses, the analyses also helped to shed light on the molecular basis of persistent infection, a special strategy these viruses have evolved to be maintained within their host population. The results of these investigations are summarized in this chapter.
Collapse
Affiliation(s)
- Norbert Tautz
- Institute for Virology and Cell Biology, University of Lübeck, Lübeck, Germany
| | - Birke Andrea Tews
- Institut für Immunologie, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Gregor Meyers
- Institut für Immunologie, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany.
| |
Collapse
|
22
|
Mao L, Liu X, Li W, Yang L, Zhang W, Jiang J. Characterization of one sheep border disease virus in China. Virol J 2015; 12:15. [PMID: 25890073 PMCID: PMC4329205 DOI: 10.1186/s12985-014-0217-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 11/27/2014] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Border disease virus (BDV) causes border disease (BD) affecting mainly sheep and goats worldwide. BDV in goat herds suffering diarrhea was recently reported in China, however, infection in sheep was undetermined. Here, BDV infections of sheep herds in Jiangsu, China were screened; a BDV strain was isolated and identified from the sheep flocks in China. The genomic characteristics and pathogenesis of this new isolate were studied. RESULTS In 2012, samples from 160 animals in 5 regions of Jiangsu province of China were screened for the presence of BDV genomic RNA and antibody by RT-PCR and ELISA, respectively. 44.4% of the sera were detected positively, and one slowly grown sheep was analyzed to be pestivirus RNA positive and antibody-negative. The sheep kept virus positive and antibody negative in the next 6 months of whole fattening period, and was defined as persistent infection (PI). The virus was isolated in MDBK cells without cytopathic effect (CPE) and named as JSLS12-01. Near-full-length genome sequenced was 12,227 nucleotides (nt). Phylogenetic analysis based on 5'-UTR and N(pro) fragments showed that the strain belonged to genotype 3, and shared varied homology with the other 3 BDV strains previously isolated from Chinese goats. The genome sequence of JSLS12-01 also had the highest homology with genotype BDV-3 (the strain Gifhorn). Experimental infections of sheep had mild clinical signs as depression and short-period mild fever (5 days). Viremia was detected in 1-7 days post-infection (dpi), and seroconversion began after 14 dpi. CONCLUSIONS This study reported the genomic and pathogenesis characterizations of one sheep BDV strain, which confirmed the occurrence of BDV infection in Chinese sheep. This sheep derived BDV strain was classified as BDV-3, together with the goat derived strains in China. These results might be helpful for further understanding of BDV infection in China and useful for prevention and control of BDV infections in the future.
Collapse
Affiliation(s)
- Li Mao
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences; Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture; National Center for Engineering Research of Veterinary Bio-products, Nanjing, 210014, China.
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| | - Xia Liu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences; Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture; National Center for Engineering Research of Veterinary Bio-products, Nanjing, 210014, China.
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| | - Wenliang Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences; Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture; National Center for Engineering Research of Veterinary Bio-products, Nanjing, 210014, China.
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| | - Leilei Yang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences; Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture; National Center for Engineering Research of Veterinary Bio-products, Nanjing, 210014, China.
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| | - Wenwen Zhang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences; Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture; National Center for Engineering Research of Veterinary Bio-products, Nanjing, 210014, China.
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| | - Jieyuan Jiang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences; Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture; National Center for Engineering Research of Veterinary Bio-products, Nanjing, 210014, China.
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| |
Collapse
|
23
|
Gebauer M, Behrens M, König M, Behrens SE. A bi-cistronic, reporter-encoding bovine viral diarrhea virus applied in a new, effective diagnostic test. J Gen Virol 2014; 95:1522-1531. [PMID: 24760759 DOI: 10.1099/vir.0.063800-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Infections with bovine viral diarrhea virus (BVDV) have a huge economic impact on cattle production and reproduction worldwide. A key factor for BVDV surveillance and eventual eradication is to efficiently detect infections and to monitor herd immunity. In this study, we generated a stable, bi-cistronic BVDV that encoded EGFP in addition to the viral proteins. Applying this recombinant virus, a new flow-cytometry-based virus neutralization test was established that enabled accurate and reliable detection of field-virus-infected and vaccinated animals. The test, which is simple and fast, is expected to support novel, effective screening procedures in eradication and vaccination programmes.
Collapse
Affiliation(s)
- Mandy Gebauer
- Institute of Biochemistry and Biotechnology, Faculty of Life Sciences (NFI), Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Martina Behrens
- Institute of Biochemistry and Biotechnology, Faculty of Life Sciences (NFI), Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Matthias König
- Institue of Virology, Faculty of Veterinary Medicine, Justus-Liebig-University Giessen, Giessen, Germany
| | - Sven-Erik Behrens
- Institute of Biochemistry and Biotechnology, Faculty of Life Sciences (NFI), Martin Luther University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
24
|
Vilcek S, Leskova V, Meyer D, Postel A, Becher P. Molecular characterization of border disease virus strain Aveyron. Vet Microbiol 2014; 171:87-92. [PMID: 24742950 DOI: 10.1016/j.vetmic.2014.03.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 03/21/2014] [Accepted: 03/22/2014] [Indexed: 11/17/2022]
Abstract
For the pestivirus border disease virus (BDV) at least seven major genotypes have been described (BDV-1-BDV-7). So far, complete genomic sequences have been reported for four BDV genotypes (BDV-1-BDV-4). In this study we report the entire genomic sequence of the noncytopathogenic (ncp) BDV-5 reference strain Aveyron. The viral genome encompasses 12,284 nucleotides (nt) and contains one large open reading frame (11,700 nt) flanked by a 370 nt long 5'-untranslated region (UTR) and a 214 nt long 3'-UTR. The genome organization as well as the lengths of the viral polyprotein (3899 amino acids) and the 5'-UTR are very similar to the ones of other BDV strains, while the 3'-UTR of BDV Aveyron is considerably shorter when compared to other BDV strains. Comparative analysis of complete coding sequences revealed that BDV Aveyron shares nucleotide sequence identities of 76.9% to 79.0% with the other BDV strains, and less than 72% identity with other pestiviruses. In contrast to other BDV strains, a unique insertion of four amino acids (KAPD) of unknown origin is present in the C-terminal part of the viral autoprotease NS2 encoded by BDV Aveyron. Immunoblot analysis revealed that infection of cells with the ncp BDV strain Aveyron comprising this unique insertion in NS2 resulted in the expression of high amounts of NS3 and thereby showed that BDV Aveyron significantly differs from other ncp BDV strains in terms of NS2-3 processing and production of NS3.
Collapse
Affiliation(s)
- Stefan Vilcek
- University of Veterinary Medicine and Pharmacy, SK 041 81 Kosice, Slovakia
| | - Valeria Leskova
- University of Veterinary Medicine and Pharmacy, SK 041 81 Kosice, Slovakia
| | - Denise Meyer
- Institute of Virology, Department of Infectious Diseases, University of Veterinary Medicine, D-30559 Hannover, Germany
| | - Alexander Postel
- Institute of Virology, Department of Infectious Diseases, University of Veterinary Medicine, D-30559 Hannover, Germany
| | - Paul Becher
- Institute of Virology, Department of Infectious Diseases, University of Veterinary Medicine, D-30559 Hannover, Germany.
| |
Collapse
|
25
|
Gritsun DJ, Jones IM, Gould EA, Gritsun TS. Molecular archaeology of Flaviviridae untranslated regions: duplicated RNA structures in the replication enhancer of flaviviruses and pestiviruses emerged via convergent evolution. PLoS One 2014; 9:e92056. [PMID: 24647143 PMCID: PMC3960163 DOI: 10.1371/journal.pone.0092056] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 02/17/2014] [Indexed: 12/29/2022] Open
Abstract
RNA secondary structures in the 3'untranslated regions (3'UTR) of the viruses of the family Flaviviridae, previously identified as essential (promoters) or beneficial (enhancers) for replication, have been analysed. Duplicated enhancer elements are revealed as a global feature in the evolution of the 3'UTR of distantly related viruses within the genera Flavivirus and Pestivirus. For the flaviviruses, duplicated structures occur in the 3'UTR of all four distantly related ecological virus subgroups (tick-borne, mosquito-borne, no known vector and insect-specific flaviviruses (ISFV). RNA structural differences distinguish tick-borne flaviviruses with discrete pathogenetic characteristics. For Aedes- and Culex-associated ISFV, secondary RNA structures with different conformations display numerous short ssRNA direct repeats, exposed as loops and bulges. Long quadruplicate regions comprise almost the entire 3'UTR of Culex-associated ISFV. Extended duplicated sequence and associated RNA structures were also discovered in the 3'UTR of pestiviruses. In both the Flavivirus and Pestivirus genera, duplicated RNA structures were localized to the enhancer regions of the 3'UTR suggesting an adaptive role predominantly in wild-type viruses. We propose sequence reiteration might act as a scaffold for dimerization of proteins involved in assembly of viral replicase complexes. Numerous nucleotide repeats exposed as loops/bulges might also interfere with host immune responses acting as a molecular sponge to sequester key host proteins or microRNAs.
Collapse
Affiliation(s)
- Dmitri J. Gritsun
- School of Biological Sciences, University of Reading, Whiteknights, Reading, United Kingdom
| | - Ian M. Jones
- School of Biological Sciences, University of Reading, Whiteknights, Reading, United Kingdom
| | - Ernest A. Gould
- Unité des Virus Emergents, Faculté de Médecine Timone, Marseille, France
| | - Tamara S. Gritsun
- School of Biological Sciences, University of Reading, Whiteknights, Reading, United Kingdom
| |
Collapse
|
26
|
Pruvot M, Kutz S, van der Meer F, Musiani M, Barkema HW, Orsel K. Pathogens at the livestock-wildlife interface in Western Alberta: does transmission route matter? Vet Res 2014; 45:18. [PMID: 24517283 PMCID: PMC3937035 DOI: 10.1186/1297-9716-45-18] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 01/31/2014] [Indexed: 11/17/2022] Open
Abstract
In southwestern Alberta, interactions between beef cattle and free-ranging elk (Cervus elaphus) may provide opportunities for pathogen transmission. To assess the importance of the transmission route on the potential for interspecies transmission, we conducted a cross-sectional study on four endemic livestock pathogens with three different transmission routes: Bovine Viral Diarrhea Virus and Bovine Herpesvirus 1 (predominantly direct transmission), Mycobacterium avium subsp. paratuberculosis (MAP) (indirect fecal-oral transmission), Neospora caninum (indirect transmission with definitive host). We assessed the occurrence of these pathogens in 28 cow-calf operations exposed or non-exposed to elk, and in 10 elk herds exposed or not to cattle. We characterized the effect of species commingling as a risk factor of pathogen exposure and documented the perceived risk of pathogen transmission at this wildlife-livestock interface in the rural community. Herpesviruses found in elk were elk-specific gamma-herpesviruses unrelated to cattle viruses. Pestivirus exposure in elk could not be ascertained to be of livestock origin. Evidence of MAP circulation was found in both elk and cattle, but there was no statistical effect of the species commingling. Finally, N. caninum was more frequently detected in elk exposed to cattle and this association was still significant after adjustment for herd and sampling year clustering, and individual elk age and sex. Only indirectly transmitted pathogens co-occurred in cattle and elk, indicating the potential importance of the transmission route in assessing the risk of pathogen transmission in multi-species grazing systems.
Collapse
Affiliation(s)
- Mathieu Pruvot
- Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive, Calgary, NW, Alberta T2N 4N1, Canada
| | - Susan Kutz
- Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive, Calgary, NW, Alberta T2N 4N1, Canada
| | - Frank van der Meer
- Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive, Calgary, NW, Alberta T2N 4N1, Canada
| | - Marco Musiani
- Faculty of Environmental Design, University of Calgary, 2500 University Drive, NW, Calgary, AB T2N 1N4, Canada
| | - Herman W Barkema
- Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive, Calgary, NW, Alberta T2N 4N1, Canada
| | - Karin Orsel
- Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive, Calgary, NW, Alberta T2N 4N1, Canada
| |
Collapse
|
27
|
Complete genome sequence of border disease virus genotype 3 strain gifhorn. GENOME ANNOUNCEMENTS 2014; 2:2/1/e01142-13. [PMID: 24435861 PMCID: PMC3894275 DOI: 10.1128/genomea.01142-13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The complete genome sequence of the genotype 3 border disease virus strain Gifhorn has been determined; this strain was originally isolated from pigs. This represents the consensus sequence for the virus used to produce the bacterial artificial chromosome (BAC) cDNA clone pBeloGif3, which yields a virus that is severely attenuated in cell culture.
Collapse
|
28
|
Fu Q, Shi H, Zhang H, Ren Y, Guo F, Qiao J, Jia B, Wang P, Chen C. Autophagy during early stages contributes to bovine viral diarrhea virus replication in MDBK cells. J Basic Microbiol 2013; 54:1044-52. [PMID: 24347372 DOI: 10.1002/jobm.201300750] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 11/16/2013] [Indexed: 12/18/2022]
Abstract
Autophagy (or autophagocytosis) is an essential and precise control process by which cells degrade unnecessary or dysfunctional cellular components or organelles in the cytoplasm in response to nutrient depletion, exogenous pathogens, or other stimuli. This process results in the removal of damaged or surplus organelles and macromolecular complexes via a lysosome-dependent mechanism. Bovine viral diarrhea virus (BVDV) is a ssRNA virus of the Flaviviridae family (genus Pestivirus). BVDV infection results in major economic losses due to poor reproductive performance and poor calf performance in cattle herds. In our previous studies, we have shown that BVDV NADL infection significantly increases autophagy in MDBK cells. To further define the interactions between autophagy and BVDV infection, we investigated the effects of autophagy on the replication of BVDV NADL. The findings showed that autophagy was inhibited by treatment with 3-methyladenine (3-MA) or wortmannin and that the knockdown of LC3 and Beclin1 using lentivirus-mediated RNA interference (RNAi) suppressed BVDV NADL replication. In contrast, the findings showed the replication of BVDV NADL was significantly increased by treatment with the autophagy inducer rapamycin within 18 h post-infection (pi). However, the mRNA levels of BVDV NADL 5'UTRs showed a downward trend after 18 h pi, and this effect was reversed by chloroquine treatment. Therefore, we inferred that infection with BVDV NADL increases autophagy, which in turn favors BVDV NADL replication at early stages.
Collapse
Affiliation(s)
- Qiang Fu
- College of Animal Science and Technology, Shihezi University, Shihezi, 832003, Xinjiang, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Newcomer BW, Givens MD. Approved and experimental countermeasures against pestiviral diseases: Bovine viral diarrhea, classical swine fever and border disease. Antiviral Res 2013; 100:133-50. [DOI: 10.1016/j.antiviral.2013.07.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 07/01/2013] [Accepted: 07/27/2013] [Indexed: 01/13/2023]
|
30
|
Autocatalytic cleavage within classical swine fever virus NS3 leads to a functional separation of protease and helicase. J Virol 2013; 87:11872-83. [PMID: 23986594 DOI: 10.1128/jvi.00754-13] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Classical swine fever virus (CSFV) is a positive-stranded RNA virus belonging to the genus Pestivirus within the Flaviviridae family. Pivotal for processing of a large portion of the viral polyprotein is a serine protease activity within nonstructural protein 3 (NS3) that also harbors helicase and NTPase activities essential for RNA replication. In CSFV-infected cells, NS3 appears as two forms, a fully processed NS3 of 80 kDa and the precursor molecule NS2-3 of 120 kDa. Here we report the identification and mapping of additional autocatalytic intramolecular cleavages. One cleavable peptide bond occurs between Leu1781 and Met1782, giving rise to a helicase subunit of 55 kDa and, depending on the substrate, a NS2-3 fragment of 78 kDa (NS2-3p) or a NS3 protease subunit of 26 kDa (NS3p). In trans-cleavage assays using NS4-5 as a substrate, NS3p acts as a fully functional protease that is able to process the polyprotein. NS3p comprises the minimal essential protease, as deletion of Leu1781 results in inactivation. A second intramolecular cleavage was mapped to the Leu1748/Lys1749 peptide bond that yields a proteolytically inactive NS3 fragment. Deletion of either of the cleavage site residues resulted in a loss of RNA infectivity, indicating the functional importance of amino acid identity at the respective positions. Our data suggest that internal cleavage within the NS3 moiety is a common process that further extends the functional repertoires of the multifunctional NS2-3 or NS3 and represents another level of the complex polyprotein processing of Flaviviridae.
Collapse
|
31
|
Li W, Mao L, Zhao Y, Sun Y, He K, Jiang J. Detection of border disease virus (BDV) in goat herds suffering diarrhea in eastern China. Virol J 2013; 10:80. [PMID: 23497341 PMCID: PMC3602100 DOI: 10.1186/1743-422x-10-80] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 03/04/2013] [Indexed: 01/16/2023] Open
Abstract
Background Border disease virus (BDV) is an important pathogen in sheep and goat production. Neither epidemiological investigation nor any reports of BDV infection was available in China. During Jan to Apr, 2012, several herd goats in Anhui and Jiangsu provinces in eastern China suffered unremitting diarrhea, with morbidity and mortality of about 28-37% and 10-15%, respectively. In the present study, sera and tissue samples from diseased goats of four farms were taken for BDV detection, isolation and identification. Results Panpesti generic primers and border disease virus (BDV)-specific primers targeting the 5’-UTR region produced RT-PCR positive bands for sera (24/28) and tissue samples (7/30). Twenty positive sera and tissue samples were inoculated onto Madin-Darby bovine kidney (MDBK) cells for virus isolation. Finally, three different strains of BDV, named AH12-01, AH12-02 and JS12/04, were successfully isolated as identified by RT-PCR using 5’-UTR and Npro gene primers, sequencing and electron microscopy. Sequences of 5’-UTR and Npro genes of them were used for phylogenetic analysis and comparison to other reference sequences available in GenBank. The results indicated AH12-01, AH12-02 and JS12/04 possess high relationship with the BDV 3 group viruses and differed with each other. Conclusion This is the first detection of BDV from goats with diarrhea and confirmation of BDV infection in China.
Collapse
Affiliation(s)
- Wenliang Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | | | | | | | | | | |
Collapse
|
32
|
Shen HY, Wang JY, Dong XY, Zhao MQ, Kang Y, Li YG, Pei JJ, Liao M, Ju CM, Yi L, Hu Y, Chen JD. Genome and molecular characterization of a CSFV strain isolated from a CSF outbreak in South China. Intervirology 2013; 56:122-33. [PMID: 23296074 DOI: 10.1159/000343917] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 09/26/2012] [Indexed: 12/25/2022] Open
Abstract
In the present study, the full-length nucleotide sequences of the CSFV-GZ-2009 strain of classical swine fever virus (CSFV) isolated from a hog pen in Guangdong province in China was determined. Results demonstrated that the genome of CSFV-GZ-2009 is 12,298 nucleotides (nt) in length, is composed of a 373-nt 5'-untranslated region (UTR), has an 11,697-nt open reading frame encoding a polyprotein of 3,898 amino acids, and has a 228-nt 3'-UTR. Genome comparison of the CSFV-GZ-2009 isolate (GenBank accession No. HQ380231) with other CSFV strains was also analyzed. Gene regions from CSFV-GZ-2009 and other known strains were shown to share 92.7-96.7% identity at the nucleotide level and 94.7-99.2% identity at the amino acid level. Phylogenetic analysis of the full-length genome and the following regions E(rns), E2 and NS5B revealed that the CSFV-GZ-2009 isolate was classified within subgroup 1.1 of group I and closely related to the highly virulent strain JL1 (06), cF114, Shimen and SWH with pairwise distances of 0.0037, 0.0043, 0.0058 and 0.0107, respectively. Analysis of recombination with the SimPlot program demonstrated that strain CSFV-GZ-2009 was not a naturally homologous recombinant. Furthermore, the change of clinical signs of pigs after infection of CSFV-GZ-2009 isolates showed typical symptoms such as diarrhea, persistent fever, and mononuclear lymphocytopenia after CSFV infection. Based on phylogenetic analysis and an animal infection test, we could conclude that the CSFV-GZ-2009 isolate belonged to subgroup 1.1 of group I and was of high virulence.
Collapse
Affiliation(s)
- Hai-Yan Shen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
We report here the complete genome sequence of pestivirus strain Aydin/04-TR, which is the prototype of a group of similar viruses currently present in sheep and goats in Turkey. Sequence data from this virus showed that it clusters separately from the established and previously proposed tentative pestivirus species.
Collapse
|
34
|
Park SM, Paek KY, Hong KY, Jang CJ, Cho S, Park JH, Kim JH, Jan E, Jang SK. Translation-competent 48S complex formation on HCV IRES requires the RNA-binding protein NSAP1. Nucleic Acids Res 2011; 39:7791-802. [PMID: 21715376 PMCID: PMC3177222 DOI: 10.1093/nar/gkr509] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Translation of many cellular and viral mRNAs is directed by internal ribosomal entry sites (IRESs). Several proteins that enhance IRES activity through interactions with IRES elements have been discovered. However, the molecular basis for the IRES-activating function of the IRES-binding proteins remains unknown. Here, we report that NS1-associated protein 1 (NSAP1), which augments several cellular and viral IRES activities, enhances hepatitis C viral (HCV) IRES function by facilitating the formation of translation-competent 48S ribosome-mRNA complex. NSAP1, which is associated with the solvent side of the 40S ribosomal subunit, enhances 80S complex formation through correct positioning of HCV mRNA on the 40S ribosomal subunit. NSAP1 seems to accomplish this positioning function by directly binding to both a specific site in the mRNA downstream of the initiation codon and a 40S ribosomal protein (or proteins).
Collapse
Affiliation(s)
- Sung Mi Park
- Department of Life Science, Pohang University of Science and Technology, Pohang, Kyungbuk, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Giammarioli M, La Rocca SA, Steinbach F, Casciari C, De Mia GM. Genetic and antigenic typing of border disease virus (BDV) isolates from Italy reveals the existence of a novel BDV group. Vet Microbiol 2011; 147:231-6. [DOI: 10.1016/j.vetmic.2010.06.027] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Revised: 06/16/2010] [Accepted: 06/29/2010] [Indexed: 11/24/2022]
|
36
|
Behera SP, Mishra N, Vilcek S, Rajukumar K, Nema RK, Prakash A, Kalaiyarasu S, Dubey SC. Genetic and antigenic characterization of bovine viral diarrhoea virus type 2 isolated from cattle in India. Comp Immunol Microbiol Infect Dis 2010; 34:189-96. [PMID: 21112633 DOI: 10.1016/j.cimid.2010.11.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Accepted: 11/03/2010] [Indexed: 11/17/2022]
Abstract
Previous studies have shown that bovine viral diarrhoea virus type 1 (BVDV-1) subtype b is predominantly circulating in Indian cattle. During testing for exotic pestiviruses between 2007 and 2010, BVDV-2 was identified by real time RT-PCR in two of 1446 cattle blood samples originating from thirteen states of India. The genetic analysis of the isolated virus in 5' UTR, N(pro), entire structural genes (C, E(rns), E1 and E2), nonstructural genes NS2-3 besides 3' UTR demonstrated that the nucleotide and amino acid sequences showed highest similarity with BVDV-2. The entire 5' and 3' UTR consisted of 387 and 204 nucleotides, respectively, and an eight nucleotide repeat motif was found twice within the variable part of 3' UTR that may be considered as a characteristic of BVDV-2. The phylogenetic analysis revealed that the cattle isolate and earlier reported goat BVDV-2 isolate fall into separate clades within BVDV-2a subtype. Antigenic typing with monoclonal antibodies verified the cattle isolate also as BVDV-2. In addition, cross-neutralization tests using antisera raised against Indian BVDV strains circulating in ruminants (cattle, sheep, goat and yak) displayed significant antigenic differences only between BVDV-1 and BVDV-2 strains. This is the first identification of BVDV-2 in Indian cattle that may have important implications for immunization strategies and molecular epidemiology of BVD.
Collapse
Affiliation(s)
- Sthita Pragnya Behera
- High Security Animal Disease Laboratory, Indian Veterinary Research Institute, Anand Nagar, Bhopal, Madhya Pradesh 462021, India
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Comparison of hematological and biochemical parameters in sheep naturally and persistently infected with a border disease virus. Trop Anim Health Prod 2010; 43:553-6. [DOI: 10.1007/s11250-010-9754-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2010] [Indexed: 10/18/2022]
|
38
|
Vilcek S, Willoughby K, Nettleton P, Becher P. Complete genomic sequence of a border disease virus isolated from Pyrenean chamois. Virus Res 2010; 152:164-8. [PMID: 20638945 DOI: 10.1016/j.virusres.2010.05.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Revised: 05/26/2010] [Accepted: 05/27/2010] [Indexed: 11/25/2022]
Abstract
This report describes the full-length genome sequence of the pestivirus strain H2121 which was recently isolated from Pyrenean chamois and typed as Border disease virus (BDV) genotype 4. Comparison with full-length genomic sequences of the approved pestivirus species Bovine viral diarrhea virus-1 (BVDV-1), BVDV-2, BDV, and Classical swine fever virus, the tentative species represented by strain Giraffe-1, as well as the atypical pestivirus strain Th/04_KhonKaen confirmed that the chamois pestivirus strain is most similar to BDV. The viral genome of H2121 is 12,305 nucleotides long and contains one large open reading frame. The latter encodes a polyprotein consisting of 3899 amino acids and is flanked with 376 nucleotides long 5' untranslated region (UTR) and 229 nt long 3' UTR. The genome organization of the chamois virus is reminiscent to that of other pestiviruses. Compared to other BDV strains including BDV-1 strain X818 and BDV-2 strain Reindeer-1, the 5' UTR and ORF of the chamois virus are very similar in length, while the 3' UTR of H2121 is 31-44 nucleotides shorter. In contrast to other BDV strains, the genome of the chamois virus contains a unique four amino acid insertion at the N-terminus of NS2.
Collapse
Affiliation(s)
- Stefan Vilcek
- University of Veterinary Medicine and Pharmacy, Dept. of Epizootiology and Parasitology, Komensky 73, Kosice, Slovakia.
| | | | | | | |
Collapse
|
39
|
Pankraz A, Preis S, Thiel HJ, Gallei A, Becher P. A single point mutation in nonstructural protein NS2 of bovine viral diarrhea virus results in temperature-sensitive attenuation of viral cytopathogenicity. J Virol 2009; 83:12415-23. [PMID: 19776121 PMCID: PMC2786742 DOI: 10.1128/jvi.01487-09] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Accepted: 09/15/2009] [Indexed: 11/20/2022] Open
Abstract
For Bovine viral diarrhea virus (BVDV), the type species of the genus Pestivirus in the family Flaviviridae, cytopathogenic (cp) and noncytopathogenic (ncp) viruses are distinguished according to their effect on cultured cells. It has been established that cytopathogenicity of BVDV correlates with efficient production of viral nonstructural protein NS3 and with enhanced viral RNA synthesis. Here, we describe generation and characterization of a temperature-sensitive (ts) mutant of cp BVDV strain CP7, termed TS2.7. Infection of bovine cells with TS2.7 and the parent CP7 at 33 degrees C resulted in efficient viral replication and a cytopathic effect. In contrast, the ability of TS2.7 to cause cytopathogenicity at 39.5 degrees C was drastically reduced despite production of high titers of infectious virus. Further experiments, including nucleotide sequencing of the TS2.7 genome and reverse genetics, showed that a Y1338H substitution at residue 193 of NS2 resulted in the temperature-dependent attenuation of cytopathogenicity despite high levels of infectious virus production. Interestingly, TS2.7 and the reconstructed mutant CP7-Y1338H produced NS3 in addition to NS2-3 throughout infection. Compared to the parent CP7, NS2-3 processing was slightly decreased at both temperatures. Quantification of viral RNAs that were accumulated at 10 h postinfection demonstrated that attenuation of the cytopathogenicity of the ts mutants at 39.5 degrees C correlated with reduced amounts of viral RNA, while the efficiency of viral RNA synthesis at 33 degrees C was not affected. Taken together, the results of this study show that a mutation in BVDV NS2 attenuates viral RNA replication and suppresses viral cytopathogenicity at high temperature without altering NS3 expression and infectious virus production in a temperature-dependent manner.
Collapse
Affiliation(s)
- Alexander Pankraz
- Institute of Virology, Justus-Liebig University, D-35392 Giessen, Germany, Institute of Virology, Department of Infectious Diseases, University of Veterinary Medicine, D-30559 Hannover, Germany
| | - Simone Preis
- Institute of Virology, Justus-Liebig University, D-35392 Giessen, Germany, Institute of Virology, Department of Infectious Diseases, University of Veterinary Medicine, D-30559 Hannover, Germany
| | - Heinz-Jürgen Thiel
- Institute of Virology, Justus-Liebig University, D-35392 Giessen, Germany, Institute of Virology, Department of Infectious Diseases, University of Veterinary Medicine, D-30559 Hannover, Germany
| | - Andreas Gallei
- Institute of Virology, Justus-Liebig University, D-35392 Giessen, Germany, Institute of Virology, Department of Infectious Diseases, University of Veterinary Medicine, D-30559 Hannover, Germany
| | - Paul Becher
- Institute of Virology, Justus-Liebig University, D-35392 Giessen, Germany, Institute of Virology, Department of Infectious Diseases, University of Veterinary Medicine, D-30559 Hannover, Germany
| |
Collapse
|
40
|
Martucciello A, De Mia GM, Giammarioli M, De Donato I, Iovane G, Galiero G. Detection of Bovine Viral Diarrhea Virus from Three Water Buffalo Fetuses (Bubalus Bubalis) in Southern Italy. J Vet Diagn Invest 2009; 21:137-40. [DOI: 10.1177/104063870902100123] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Bovine viral diarrhea virus (BVDV) is an important pathogen that primarily infects ruminants, leading to several clinical problems including abortion. BVDV-specific antibodies were reported in a wide range of hosts within domestic and wildlife animal populations, and serological studies also indicated BVDV infection in buffaloes. The purpose of this study was to analyze the presence of BVDV in 2 water buffalo ( Bubalus bubalis) herds with a history of abortion. Virus isolation from aborted fetuses and from maternal buffy coat and the molecular characterization of the isolates confirmed the presence of BVDV in these animals. The sequence analysis based on the 5′ UTR and Npro coding regions of the Pestivirus genome revealed that the isolates belong to subgenotype 1b of BVDV. The findings of this study also suggest a possible role of BVDV in causing congenital infection in water buffalo. Its presence in fetal tissues as well as in maternal blood raises questions about the possible development of clinical disease or its influence in abortions in water buffalo.
Collapse
Affiliation(s)
| | - Gian Mario De Mia
- the Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche, Perugia, Italy
| | - Monica Giammarioli
- the Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche, Perugia, Italy
| | | | - Giuseppe Iovane
- the Istituto Zooprofilattico Sperimentale del Mezzogiorno, Portici, Italy
| | - Giorgio Galiero
- From the Istituto Zooprofilattico Sperimentale del Mezzogiorno, Salerno, Italy
| |
Collapse
|
41
|
Giammarioli M, Pellegrini C, Casciari C, Rossi E, De Mario GM. Genetic Diversity of Bovine Viral Diarrhea Virus 1: Italian Isolates Clustered in at Least Seven Subgenotypes. J Vet Diagn Invest 2008; 20:783-8. [DOI: 10.1177/104063870802000611] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Bovine viral diarrhea virus (BVDV) is an economically important pathogen of cattle. Two approved species are recognized, namely BVDV-1 and BVDV-2. To date, only 4 subgenotypes of BVDV-2 are known, and at least 11 distinct subgenotypes have been detected for BVDV-1. In a previous study, the genetic characteristics of 38 field isolates of BVDV from northern Italy were investigated, and all 38 isolates were classified as BVDV-1 and could be assigned to 5 different subgenotypes, namely BVDV-1b, BVDV-1d, BVDV-1e, BVDV-1h, and BVDV-1f. However, the circulation of BVDV-2 has been reported in Italy as well. The aim of the current study was to type 88 BVD viruses found throughout Italy. Genetic study was based on the 5′-UTR, supported by select comparison within the Npro coding region. Phylogenetic analysis showed that 5 isolates could be typed as BVDV-2a. The remaining 83 isolates were typed as BVDV-1 and were found to belong to 7 distinct subgenotypes, namely BVDV-1a ( n = 8), BVDV-1b ( n = 37), BVDV-1d ( n = 3), BVDV-1e ( n = 22), BVDV-1f ( n = 4), BVDV-1g ( n = 4), and BVDV-1h ( n = 5). The majority of cattle farms in the current study were predominately infected by BVDV-1b and BVDV-1e isolates, whereas the other BVDV subgenotypes occurred only sporadically. The results also provided evidence for circulation of additional subgenotypes BVDV-1a and BVDV-1g. The occurrence of BVDV-2 was also reconfirmed.
Collapse
Affiliation(s)
- Monica Giammarioli
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche, Perugia, Italy
| | - Claudia Pellegrini
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche, Perugia, Italy
| | - Cristina Casciari
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche, Perugia, Italy
| | - Elisabetta Rossi
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche, Perugia, Italy
| | - Gian Mia De Mario
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche, Perugia, Italy
| |
Collapse
|
42
|
Couvreur B, Letellier C, Olivier F, Dehan P, Elouahabi A, Vandenbranden M, Ruysschaert JM, Hamers C, Pastoret PP, Kerkhofs P. Sequence-optimised E2 constructs from BVDV-1b and BVDV-2 for DNA immunisation in cattle. Vet Res 2007; 38:819-34. [PMID: 17727807 DOI: 10.1051/vetres:2007037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2006] [Accepted: 05/14/2007] [Indexed: 11/14/2022] Open
Abstract
We report DNA immunisation experiments in cattle using plasmid constructs that encoded glycoprotein E2 from bovine viral diarrhoea virus (BVDV)-1 (E2.1) and BVDV-2 (E2.2). The coding sequences were optimised for efficient expression in mammalian cells. A modified leader peptide sequence from protein gD of BoHV1 was inserted upstream of the E2 coding sequences for efficient membrane export of the proteins. Recombinant E2 were efficiently expressed in COS7 cells and they presented the native viral epitopes as judged by differential recognition by antisera from cattle infected with BVDV-1 or BVDV-2. Inoculation of pooled plasmid DNA in young cattle elicited antibodies capable of neutralising viral strains representing the major circulating BVDV genotypes.
Collapse
Affiliation(s)
- Bernard Couvreur
- Department of Virology, Veterinary and Agrochemical Research Centre, Bruxelles, Belgium.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Lin YJ, Chien MS, Deng MC, Huang CC. Complete sequence of a subgroup 3.4 strain of classical swine fever virus from Taiwan. Virus Genes 2007; 35:737-44. [PMID: 17721814 DOI: 10.1007/s11262-007-0154-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2007] [Accepted: 07/25/2007] [Indexed: 01/01/2023]
Abstract
Classical swine fever viruses from Taiwan have been classified into two subgroups (3.4 and 2.1). Outbreaks caused by 3.4 viruses were reported in Taiwan prior to 1996 and which mainly distributed in the geographic range from southern Japan to Taiwan. We have determined the complete sequence of a reference strain, 94.4/IL/94/TWN. The genome contains 12,296 nucleotides, encoding 3,898 amino acids flanked by a 372-nt region at the 5' untranslated region (UTR) and a 227-nt region at the 3'-UTR. Similarities of nucleotides among 3.4 viruses isolated from Taiwan and Japan (Kanagawa/74; Okinawa/86) maintained in 94.2-97.5%; however, comparing to subgroup 1.1 (ALD/64/Jap) and 2.1 (TD/96/TWN) only showed about 72.5-80.8%, respectively. Phylogenetic analysis based on positioning from 11,157 to 11,565 nt (NS5B region) revealed that CSFVs were divided into three major lineages and their sublineages. Strain 94.4/IL/94/TWN is the first completely genomic sequence of subgroup 3.4 viruses.
Collapse
Affiliation(s)
- Yu-Ju Lin
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung-Hsing University, 250 Kou-Kwang Road, Taichung 402, Taiwan
| | | | | | | |
Collapse
|
44
|
Vilcek S, Kolesárová M, Jacková A. Genetic variability of bovine viral diarrhoea virus subtypes at 3'-nontranslated region. Virus Genes 2006; 34:31-5. [PMID: 16917738 DOI: 10.1007/s11262-006-0006-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2006] [Accepted: 03/28/2006] [Indexed: 10/24/2022]
Abstract
Ten isolates belonging to different BVDV-1 subtypes and three BVDV-2 isolates were studied in 3'-nontranslated region (3'-NTR) by sequencing of PCR products and comparative computer-assisted nucleotide sequence analysis. The alignment of nucleotide sequences revealed that all BVDV-1 isolates except BVDV-1a isolates represented by NADL strain were characterised with a deletion of 38 nucleotides in the variable region located after the stop codon. For all BVDV-1 subtypes, a constant region at the end of viral genome was highly conserved. The variable and constant regions with no significant insertions or deletions were also identified in BVDV-2 isolates. The poly AT reach region was situated at different locations in both pestiviruses.
Collapse
Affiliation(s)
- S Vilcek
- Department of Infectious Diseases and Parasitology, University of Veterinary Medicine, Komenskeho 73, 041 81, Kosice, Slovakia.
| | | | | |
Collapse
|
45
|
Valdazo-González B, Alvarez-Martínez M, Greiser-Wilke I. Genetic typing and prevalence of Border disease virus (BDV) in small ruminant flocks in Spain. Vet Microbiol 2006; 117:141-53. [PMID: 16857326 DOI: 10.1016/j.vetmic.2006.06.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2006] [Revised: 05/18/2006] [Accepted: 06/12/2006] [Indexed: 11/28/2022]
Abstract
Between 2001 and 2002, samples from 1,413 animals in 21 Spanish small ruminant flocks, most of them with animals showing clinical signs compatible with Border disease (BD), were screened for the presence of Pestivirus antigen and antibodies by an indirect peroxidase monolayer assay (IPMA) and the virus neutralization test (VNT), respectively. Although all flocks harboured seropositive animals, virus could only be isolated from animals in five of the flocks. Between 4 and 11 months later all animals older than 6 months in three of the flocks were resampled. At this time, 51-83% of them had neutralizing antibodies. The prevalence of persistently infected (PI) animals within two of the flocks was 0.3 and 0.6%, respectively. The third flock presumably had eliminated all the PI animals. Fourteen virus isolates were obtained. The 5' untranslated region (5'UTR) was amplified by RT-PCR and directly sequenced. Phylogenetic analyses classified them as a group of Border disease viruses (BDV), separated from BDV-1, but showing a relatively low bootstrap value. Three of the 14 isolates were in the same subgroup as a set of formerly characterised Spanish isolates from the Basque Country, which were allocated to subgroup BDV-C. In addition, they were in the group with an isolate from chamois, which is currently allocated in group BDV-4. Because of its close relation to the chamois isolate, these isolates were tentatively reallocated in a subgroup BDV-4a. The remaining isolates generated a new subgroup, related but not in the same cluster as the chamois isolate, and was therefore tentatively assigned to a new subgroup BDV-4b. Our results show that classification and nomenclature of BDV needs to be harmonised.
Collapse
Affiliation(s)
- B Valdazo-González
- Departamento de Patología Animal, Sanidad Animal, Facultad de Veterinaria, Universidad de León, León, Spain
| | | | | |
Collapse
|
46
|
Xu X, Zhang Q, Yu X, Liang L, Xiao C, Xiang H, Tu C. Sequencing and comparative analysis of a pig bovine viral diarrhea virus genome. Virus Res 2006; 122:164-70. [PMID: 16854490 DOI: 10.1016/j.virusres.2006.05.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2006] [Revised: 05/09/2006] [Accepted: 05/21/2006] [Indexed: 10/24/2022]
Abstract
In present study, we report the first complete genomic sequence of pig bovine viral diarrhea (BVD) virus, that of strain ZM-95, which is 12,220 nucleotides long and contains short 5' and 3' non-coding regions and one open reading frame encoding a large polyprotein with 28 potential N-glycosylation sites (Asn-X-Ser or Asn-X-Thr). Within the non-structural protein encoding region, no foreign nucleotide insertions was found as those usually observed for cytopathogenic BVDV-1, but close to the 3'-terminal of the capsid protein (1119-1124bp) it contains a short insertion of a six nucleotide sequence (CTCACA). Three hypervariable regions were identified in the polyprotein-encoding region, with one of them comprising a sequence motif encoding a unique five amino acid peptide HYKKK in glycoprotein E2 gene. The genomic comparison and phylogenetic analyses showed that ZM-95 should be classified into BVDV-1, but was genetically divergent from other pestiviruses sequenced to date since its highest genetic similarity was only 76.6% (with SD-1), therefore, placed as a novel subgroup of BVDV-1.
Collapse
Affiliation(s)
- Xingran Xu
- Institute of Military Veterinary, Academy of Military Medical Sciences, 1068 Qinglong Road, Changchun 130062, China
| | | | | | | | | | | | | |
Collapse
|
47
|
Pankraz A, Thiel HJ, Becher P. Essential and nonessential elements in the 3' nontranslated region of Bovine viral diarrhea virus. J Virol 2005; 79:9119-27. [PMID: 15994806 PMCID: PMC1168729 DOI: 10.1128/jvi.79.14.9119-9127.2005] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The 3' nontranslated region (NTR) of the pestivirus Bovine viral diarrhea virus (BVDV), a close relative of human Hepatitis C virus, consists of three stem-loops which are separated by two single-stranded regions. As in other positive-stranded RNA viruses, the 3' NTR of pestiviruses is involved in crucial processes of the viral life cycle. While several studies characterized cis-acting elements within the 3' NTR of a BVDV replicon, there are no studies addressing the significance of these elements in the context of a replicating virus. To examine the functional importance of 3' NTR elements, a set of 4-base deletions and deletions of each of the three stem-loops were introduced into an infectious BVDV cDNA clone. Emerging mutant viruses were characterized with regard to plaque phenotype, growth kinetics, and synthesis of viral RNA. The results indicated that presence of stem-loop (SL) I and the 3'-terminal part of the single-stranded region between stem-loops I and II are indispensable for pestiviral replication. In contrast, deletions within SL II and SL III as well as absence of either SL II or SL III still allowed efficient viral replication; however, a mutant RNA lacking both SL II and SL III was not infectious. The results of this study provide a detailed map of the essential and nonessential elements within the 3' NTR of BVDV and contribute to our understanding of sequence and structural elements important for efficient viral replication of pestiviruses in natural host cells.
Collapse
Affiliation(s)
- Alexander Pankraz
- Institut für Virologie (FB Veterinärmedizin), Justus-Liebig-Universität Giessen, Frankfurter Str. 107, D-35392 Giessen, Germany
| | | | | |
Collapse
|
48
|
De Mia GM, Greiser-Wilke I, Feliziani F, Giammarioli M, De Giuseppe A. Genetic Characterization of a Caprine Pestivirus as the First Member of a Putative Novel Pestivirus Subgroup. ACTA ACUST UNITED AC 2005; 52:206-10. [PMID: 16115092 DOI: 10.1111/j.1439-0450.2005.00850.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Currently, the genus Pestivirus comprises four approved species, namely bovine viral diarrhoea viruses 1 and 2 (BVDV-1, BVDV-2), classical swine fever virus and border disease virus (BDV). Recently, three major genotypes have been identified within the species BDV and termed as subgroups BDV-1, BDV-2 and BDV-3. Here, an isolate from animals in a herd showing BD-like syndromes, which occurred in central Italy was analysed. A reverse transcriptase polymerase chain reaction was performed using primers that specifically amplify a fragment of the 5'-non-coding region (5'-NCR) from BDV. Both the 5'-NCR fragment and the entire Npro gene were sequenced and used for genetic typing. The 5'-NCR sequence revealed that the newly isolated Pestivirus could be allocated to the BDV species. Interestingly, the Npro sequence of this virus isolate significantly differed from all the ovine pestiviruses previously described, providing evidence for the presence of an additional subgroup within the species BDV.
Collapse
Affiliation(s)
- G M De Mia
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche, Perugia, Italy.
| | | | | | | | | |
Collapse
|
49
|
Vilcek S, Ridpath JF, Van Campen H, Cavender JL, Warg J. Characterization of a novel pestivirus originating from a pronghorn antelope. Virus Res 2005; 108:187-93. [PMID: 15681069 DOI: 10.1016/j.virusres.2004.09.010] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2003] [Revised: 09/22/2004] [Accepted: 09/22/2004] [Indexed: 11/16/2022]
Abstract
A unique pestivirus, isolated from a pronghorn antelope (Antilocopra americana), was characterized. Serum neutralization studies suggested that this virus was antigenically related to pestiviruses. Genomic characteristics, unique to pestiviruses, indicated that this virus belongs to the Pestivirus genus. These characteristics included the organization of the 5' untranslated region (5'-UTR), the presence and length of a viral Npro coding region, conservation of cysteine residues in Npro, conservation of predicted amino acid sequences flanking the cleavage sites between viral polypeptides Npro and C and between C and Erns and conservation of predicted hydrophobicity plots of Npro protein. While this data indicated the virus belongs to the Pestivirus genus, phylogenetic analysis in 5'-UTR, Npro and E2 regions suggested that it is the most divergent of the pestiviruses identified to date. This conclusion was also supported by the amino acid identity in coding regions. The corresponding values were much lower for the comparison of pronghorn pestivirus to other pestivirus genotypes than only between previous recognized genotypes. These results suggest the virus isolated from pronghorn antelope represents a new pestivirus genotype. It also represents the only pestivirus genotype first isolated from New World wildlife.
Collapse
Affiliation(s)
- S Vilcek
- University of Veterinary Medicine, Department of Parasitology and Infectious Diseases, Komenskeho 73, 04181 Kosice, Slovakia.
| | | | | | | | | |
Collapse
|
50
|
Schirrmeier H, Strebelow G, Depner K, Hoffmann B, Beer M. Genetic and antigenic characterization of an atypical pestivirus isolate, a putative member of a novel pestivirus species. J Gen Virol 2004; 85:3647-3652. [PMID: 15557237 DOI: 10.1099/vir.0.80238-0] [Citation(s) in RCA: 188] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The genus Pestivirus within the family Flaviviridae currently consists of four different main species: Classical swine fever virus, Bovine viral diarrhea virus types 1 and 2 and Border disease virus. A fifth tentative species is represented by an isolate from a giraffe. In this study, a completely new pestivirus, isolated from a batch of fetal calf serum that was collected in Brazil, is described. It is proposed that the isolate D32/00_'HoBi' may constitute a novel sixth pestivirus species, because it is genetically, as well as antigenically, markedly different from all other pestiviruses. Based on the entire N(pro)- and E2-encoding sequences, identities of <70 % to all other pestivirus species were determined. Similarly, cross-neutralization and binding studies using antisera and mAbs revealed marked antigenic differences between D32/00_'HoBi' and all other pestiviruses.
Collapse
Affiliation(s)
- Horst Schirrmeier
- Friedrich-Loeffler-Institut, Institute of Diagnostic Virology, Boddenblick 5a, 17493 Greifswald-Insel Riems, Germany
| | - Günther Strebelow
- Friedrich-Loeffler-Institut, Institute of Diagnostic Virology, Boddenblick 5a, 17493 Greifswald-Insel Riems, Germany
| | - Klaus Depner
- Friedrich-Loeffler-Institut, Institute of Diagnostic Virology, Boddenblick 5a, 17493 Greifswald-Insel Riems, Germany
| | - Bernd Hoffmann
- Friedrich-Loeffler-Institut, Institute of Diagnostic Virology, Boddenblick 5a, 17493 Greifswald-Insel Riems, Germany
| | - Martin Beer
- Friedrich-Loeffler-Institut, Institute of Diagnostic Virology, Boddenblick 5a, 17493 Greifswald-Insel Riems, Germany
| |
Collapse
|