1
|
Sanchez-Martinez ZV, Alpuche-Lazcano SP, Stuible M, Akache B, Renner TM, Deschatelets L, Dudani R, Harrison BA, McCluskie MJ, Hrapovic S, Blouin J, Wang X, Schuller M, Cui K, Cho JY, Durocher Y. SARS-CoV-2 spike-based virus-like particles incorporate influenza H1/N1 antigens and induce dual immunity in mice. Vaccine 2024; 42:126463. [PMID: 39481241 DOI: 10.1016/j.vaccine.2024.126463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/11/2024] [Accepted: 10/14/2024] [Indexed: 11/02/2024]
Abstract
A vaccine effective against both SARS-CoV-2 and influenza A (IAV) viruses could represent a cost-effective strategy to reduce their combined public health burden as well as potential complications arising from co-infection. Based on previous findings that full-length SARS-CoV-2 spike (S) expression can induce high-level, enveloped VLP (eVLP) production in CHO cells, we tested whether IAV H1N1 hemagglutinin (H1) and neuraminidase (N1) could also be displayed on these particles. We found that co-incorporation of the IAV surface antigens in spike VLPs (S-VLPs) was highly efficient: upon transient co-expression of S + H1 or S + H1 + N1 in CHO cells, the resulting VLPs contained similar amounts of the SARS-CoV-2 S and IAV antigens. The self-assembled bivalent (S/H1) and trivalent (S/H1/N1) VLPs released into the culture media were purified by single-step chromatography using a S-VLP affinity resin. Western blot analysis and immuno‑gold labeling transmission electron microscopy (TEM) of purified VLPs confirmed the coexistence of S, H1 and N1 antigens in the same particles. Finally, we demonstrated that two doses of adjuvanted bivalent and trivalent VLPs elicit specific functional antibodies and cellular immunity in a mouse model, suggesting potential for combined SARS-CoV-2/IAV vaccine development.
Collapse
MESH Headings
- Animals
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/genetics
- Mice
- Vaccines, Virus-Like Particle/immunology
- Vaccines, Virus-Like Particle/administration & dosage
- Influenza A Virus, H1N1 Subtype/immunology
- SARS-CoV-2/immunology
- Neuraminidase/immunology
- Antibodies, Viral/immunology
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- CHO Cells
- Cricetulus
- Influenza Vaccines/immunology
- Female
- Mice, Inbred BALB C
- COVID-19/prevention & control
- COVID-19/immunology
- COVID-19 Vaccines/immunology
- Orthomyxoviridae Infections/prevention & control
- Orthomyxoviridae Infections/immunology
- Humans
- Antigens, Viral/immunology
- Antigens, Viral/genetics
Collapse
Affiliation(s)
- Zalma V Sanchez-Martinez
- Human Health Therapeutics Research Centre, National Research Council of Canada, Montreal, QC H4P 2R2, Canada.; Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Sergio P Alpuche-Lazcano
- Human Health Therapeutics Research Centre, National Research Council of Canada, Montreal, QC H4P 2R2, Canada.; Current address: Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), A.P. 510-3, Cuernavaca Morelos (CP 62250), Mexico
| | - Matthew Stuible
- Human Health Therapeutics Research Centre, National Research Council of Canada, Montreal, QC H4P 2R2, Canada
| | - Bassel Akache
- Human Health Therapeutics Research Centre, National Research Council Canada, 1200 Montreal Road, Ottawa, ON K1A 0R6, Canada
| | - Tyler M Renner
- Human Health Therapeutics Research Centre, National Research Council Canada, 1200 Montreal Road, Ottawa, ON K1A 0R6, Canada
| | - Lise Deschatelets
- Human Health Therapeutics Research Centre, National Research Council Canada, 1200 Montreal Road, Ottawa, ON K1A 0R6, Canada
| | - Renu Dudani
- Human Health Therapeutics Research Centre, National Research Council Canada, 1200 Montreal Road, Ottawa, ON K1A 0R6, Canada
| | - Blair A Harrison
- Human Health Therapeutics Research Centre, National Research Council Canada, 1200 Montreal Road, Ottawa, ON K1A 0R6, Canada
| | - Michael J McCluskie
- Human Health Therapeutics Research Centre, National Research Council Canada, 1200 Montreal Road, Ottawa, ON K1A 0R6, Canada
| | - Sabahudin Hrapovic
- Aquatic and Crop Resources Development Research Centre, National Research Council Canada, 6100 Royalmount Avenue, Montreal, QC H4P 2R2, Canada
| | - Julie Blouin
- Human Health Therapeutics Research Centre, National Research Council of Canada, Montreal, QC H4P 2R2, Canada
| | - Xinyu Wang
- Quantum and Nanotechnologies Research Centre, National Research Council Canada, 11421 Saskatchewan Drive, Edmonton, AB T6G 2M9, Canada
| | - Matthew Schuller
- Quantum and Nanotechnologies Research Centre, National Research Council Canada, 11421 Saskatchewan Drive, Edmonton, AB T6G 2M9, Canada
| | - Kai Cui
- Quantum and Nanotechnologies Research Centre, National Research Council Canada, 11421 Saskatchewan Drive, Edmonton, AB T6G 2M9, Canada
| | - Jae-Young Cho
- Quantum and Nanotechnologies Research Centre, National Research Council Canada, 11421 Saskatchewan Drive, Edmonton, AB T6G 2M9, Canada
| | - Yves Durocher
- Human Health Therapeutics Research Centre, National Research Council of Canada, Montreal, QC H4P 2R2, Canada.; Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada..
| |
Collapse
|
2
|
de Souza Cardoso R, Ono A. The Effects of Viral Structural Proteins on Acidic Phospholipids in Host Membranes. Viruses 2024; 16:1714. [PMID: 39599829 PMCID: PMC11599007 DOI: 10.3390/v16111714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/23/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
Enveloped viruses rely on host membranes for trafficking and assembly. A substantial body of literature published over the years supports the involvement of cellular membrane lipids in the enveloped virus assembly processes. In particular, the knowledge regarding the relationship between viral structural proteins and acidic phospholipids has been steadily increasing in recent years. In this review, we will briefly review the cellular functions of plasma membrane-associated acidic phospholipids and the mechanisms that regulate their local distribution within this membrane. We will then explore the interplay between viruses and the plasma membrane acidic phospholipids in the context of the assembly process for two enveloped viruses, the influenza A virus (IAV) and the human immunodeficiency virus type 1 (HIV-1). Among the proteins encoded by these viruses, three viral structural proteins, IAV hemagglutinin (HA), IAV matrix protein-1 (M1), and HIV-1 Gag protein, are known to interact with acidic phospholipids, phosphatidylserine and/or phosphatidylinositol (4,5)-bisphosphate. These interactions regulate the localization of the viral proteins to and/or within the plasma membrane and likely facilitate the clustering of the proteins. On the other hand, these viral proteins, via their ability to multimerize, can also alter the distribution of the lipids and may induce acidic-lipid-enriched membrane domains. We will discuss the potential significance of these interactions in the virus assembly process and the property of the progeny virions. Finally, we will outline key outstanding questions that need to be answered for a better understanding of the relationships between enveloped virus assembly and acidic phospholipids.
Collapse
Affiliation(s)
| | - Akira Ono
- Department of Microbiology and Immunology, The University of Michigan, Ann Arbor, MI 48109, USA;
| |
Collapse
|
3
|
Sekine W, Kamiki H, Ishida H, Matsugo H, Ohira K, Li K, Katayama M, Takenaka-Uema A, Murakami S, Horimoto T. Adaptation potential of H3N8 canine influenza virus in human respiratory cells. Sci Rep 2024; 14:18750. [PMID: 39138310 PMCID: PMC11322661 DOI: 10.1038/s41598-024-69509-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 08/06/2024] [Indexed: 08/15/2024] Open
Abstract
In 2004, the equine-origin H3N8 canine influenza virus (CIV) first caused an outbreak with lethal cases in racing greyhounds in Florida, USA, and then spread to domestic dogs nationwide. Although transmission of this canine virus to humans has not been reported, it is important to evaluate its zoonotic potential because of the high contact opportunities between companion dogs and humans. To gain insight into the interspecies transmissibility of H3N8 CIV, we tested its adaptability to human respiratory A549 cells through successive passages. We found that CIV acquired high growth properties in these cells mainly through mutations in surface glycoproteins, such as hemagglutinin (HA) and neuraminidase (NA). Our reverse genetics approach revealed that HA2-K82E, HA2-R163K, and NA-S18L mutations were responsible for the increased growth of CIV in human cells. Molecular analyses revealed that both HA2 mutations altered the optimum pH for HA membrane fusion activity and that the NA mutation changed the HA-NA functional balance. These findings suggest that H3N8 CIV could evolve into a human pathogen with pandemic potential through a small number of mutations, thereby posing a threat to public health in the future.
Collapse
Affiliation(s)
- Wataru Sekine
- Laboratory of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-Ku, Tokyo, Japan
| | - Haruhiko Kamiki
- Laboratory of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-Ku, Tokyo, Japan
| | - Hiroho Ishida
- Laboratory of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-Ku, Tokyo, Japan
- Laboratory of Infectious Diseases, School of Veterinary Medicine, Azabu University, Kanagawa, Japan
| | - Hiromichi Matsugo
- Laboratory of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-Ku, Tokyo, Japan
- Laboratory of RNA Viruses, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Kosuke Ohira
- Laboratory of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-Ku, Tokyo, Japan
| | - Kaixin Li
- Laboratory of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-Ku, Tokyo, Japan
| | - Misa Katayama
- Laboratory of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-Ku, Tokyo, Japan
| | - Akiko Takenaka-Uema
- Laboratory of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-Ku, Tokyo, Japan
| | - Shin Murakami
- Laboratory of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-Ku, Tokyo, Japan
| | - Taisuke Horimoto
- Laboratory of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-Ku, Tokyo, Japan.
| |
Collapse
|
4
|
Carter T, Iqbal M. The Influenza A Virus Replication Cycle: A Comprehensive Review. Viruses 2024; 16:316. [PMID: 38400091 PMCID: PMC10892522 DOI: 10.3390/v16020316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/15/2024] [Accepted: 02/17/2024] [Indexed: 02/25/2024] Open
Abstract
Influenza A virus (IAV) is the primary causative agent of influenza, colloquially called the flu. Each year, it infects up to a billion people, resulting in hundreds of thousands of human deaths, and causes devastating avian outbreaks with worldwide losses worth billions of dollars. Always present is the possibility that a highly pathogenic novel subtype capable of direct human-to-human transmission will spill over into humans, causing a pandemic as devastating if not more so than the 1918 influenza pandemic. While antiviral drugs for influenza do exist, they target very few aspects of IAV replication and risk becoming obsolete due to antiviral resistance. Antivirals targeting other areas of IAV replication are needed to overcome this resistance and combat the yearly epidemics, which exact a serious toll worldwide. This review aims to summarise the key steps in the IAV replication cycle, along with highlighting areas of research that need more focus.
Collapse
Affiliation(s)
- Toby Carter
- The Pirbright Institute, Ash Road, Pirbright, Woking GU24 0NF, UK;
| | | |
Collapse
|
5
|
Petrich A, Chiantia S. Influenza A Virus Infection Alters Lipid Packing and Surface Electrostatic Potential of the Host Plasma Membrane. Viruses 2023; 15:1830. [PMID: 37766238 PMCID: PMC10537794 DOI: 10.3390/v15091830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
The pathogenesis of influenza A viruses (IAVs) is influenced by several factors, including IAV strain origin and reassortment, tissue tropism and host type. While such factors were mostly investigated in the context of virus entry, fusion and replication, little is known about the viral-induced changes to the host lipid membranes which might be relevant in the context of virion assembly. In this work, we applied several biophysical fluorescence microscope techniques (i.e., Förster energy resonance transfer, generalized polarization imaging and scanning fluorescence correlation spectroscopy) to quantify the effect of infection by two IAV strains of different origin on the plasma membrane (PM) of avian and human cell lines. We found that IAV infection affects the membrane charge of the inner leaflet of the PM. Moreover, we showed that IAV infection impacts lipid-lipid interactions by decreasing membrane fluidity and increasing lipid packing. Because of such alterations, diffusive dynamics of membrane-associated proteins are hindered. Taken together, our results indicate that the infection of avian and human cell lines with IAV strains of different origins had similar effects on the biophysical properties of the PM.
Collapse
Affiliation(s)
| | - Salvatore Chiantia
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24–25, 14476 Potsdam, Germany
| |
Collapse
|
6
|
Abbadi N, Mousa JJ. Broadly Protective Neuraminidase-Based Influenza Vaccines and Monoclonal Antibodies: Target Epitopes and Mechanisms of Action. Viruses 2023; 15:200. [PMID: 36680239 PMCID: PMC9861061 DOI: 10.3390/v15010200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 12/31/2022] [Accepted: 01/04/2023] [Indexed: 01/13/2023] Open
Abstract
Neuraminidase (NA) is an important surface protein on influenza virions, playing an essential role in the viral life cycle and being a key target of the immune system. Despite the importance of NA-based immunity, current vaccines are focused on the hemagglutinin (HA) protein as the target for protective antibodies, and the amount of NA is not standardized in virion-based vaccines. Antibodies targeting NA are predominantly protective, reducing infection severity and viral shedding. Recently, NA-specific monoclonal antibodies have been characterized, and their target epitopes have been identified. This review summarizes the characteristics of NA, NA-specific antibodies, the mechanism of NA inhibition, and the recent efforts towards developing NA-based and NA-incorporating influenza vaccines.
Collapse
Affiliation(s)
- Nada Abbadi
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Jarrod J. Mousa
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
- Department of Biochemistry and Molecular Biology, Franklin College of Arts and Sciences, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
7
|
Adaptation of the H7N2 Feline Influenza Virus to Human Respiratory Cell Culture. Viruses 2022; 14:v14051091. [PMID: 35632832 PMCID: PMC9144431 DOI: 10.3390/v14051091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 11/17/2022] Open
Abstract
During 2016–2017, the H7N2 feline influenza virus infected more than 500 cats in animal shelters in New York, USA. A veterinarian who had treated the cats became infected with this feline virus and showed mild respiratory symptoms. This suggests that the H7N2 feline influenza virus may evolve into a novel pandemic virus with a high pathogenicity and transmissibility as a result of mutations in humans. In this study, to gain insight into the molecular basis of the transmission of the feline virus to humans, we selected mutant viruses with enhanced growth in human respiratory A549 cells via successive passages of the virus and found almost all mutations to be in the envelope glycoproteins, such as hemagglutinin (HA) and neuraminidase (NA). The reverse genetics approach revealed that the HA mutations, HA1-H16Q, HA2-I47T, or HA2-Y119H, in the stalk region can lead to a high growth of mutant viruses in A549 cells, possibly by changing the pH threshold for membrane fusion. Furthermore, NA mutation, I28S/L, or three-amino-acid deletion in the transmembrane region can enhance viral growth in A549 cells, possibly by changing the HA–NA functional balance. These findings suggest that the H7N2 feline influenza virus has the potential to become a human pathogen by adapting to human respiratory cells, owing to the synergistic biological effect of the mutations in its envelope glycoproteins.
Collapse
|
8
|
Moreira EA, Yamauchi Y, Matthias P. How Influenza Virus Uses Host Cell Pathways during Uncoating. Cells 2021; 10:1722. [PMID: 34359892 PMCID: PMC8305448 DOI: 10.3390/cells10071722] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/25/2021] [Accepted: 07/02/2021] [Indexed: 12/15/2022] Open
Abstract
Influenza is a zoonotic respiratory disease of major public health interest due to its pandemic potential, and a threat to animals and the human population. The influenza A virus genome consists of eight single-stranded RNA segments sequestered within a protein capsid and a lipid bilayer envelope. During host cell entry, cellular cues contribute to viral conformational changes that promote critical events such as fusion with late endosomes, capsid uncoating and viral genome release into the cytosol. In this focused review, we concisely describe the virus infection cycle and highlight the recent findings of host cell pathways and cytosolic proteins that assist influenza uncoating during host cell entry.
Collapse
Affiliation(s)
| | - Yohei Yamauchi
- Faculty of Life Sciences, School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK;
| | - Patrick Matthias
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland;
- Faculty of Sciences, University of Basel, 4031 Basel, Switzerland
| |
Collapse
|
9
|
Structural Domains of the Herpes Simplex Type 1 gD Protein that Restrict HIV-1 Particle Infectivity. J Virol 2021; 95:JVI.02355-20. [PMID: 33536165 PMCID: PMC8103709 DOI: 10.1128/jvi.02355-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previously, we showed that the presence of the herpes simplex virus type 1 (HSV-1) gD glycoprotein but not gB potently restricted HIV-1 particle infectivity. This restriction was characterized by incorporation of HSV-1 gD and the exclusion of the HIV-1 gp120/gp41 from budding virus particles. To determine the structural domains involved in gD restriction of HIV-1, a series of deletion mutants and chimeric proteins between gD and the non-restrictive gB were generated. Our results show that deletion of the cytoplasmic tail domain (CTD) of gD or that replacement of the transmembrane domain (TMD) with the TMD from gB slightly reduced restriction activity. However, replacement of the gD CTD with that of gB resulted in lower cell surface expression, significantly less incorporation into HIV-1 particles, and inefficient restriction of the release of infectious HIV-1. Analysis of gB/gD chimeric proteins revealed that removal of the gB CTD or replacement with gD CTD resulted in enhanced surface expression and an increase in restriction activity. Finally, we show that expression of gD without other HSV-1 proteins resulted in gD fractionation into detergent resistant membranes (DRM) and that gD co-localized with the raft marker GM1, which may partially explain its incorporation into budding virus particles. Taken together, our results suggest that expression of gD at the cell surface is likely a major factor but that other intrinsic properties are also involved in the gD-mediated restriction of HIV-1 particle infectivity.IMPORTANCE Previously, we showed that unlike the HSV-1, the presence of the gD glycoprotein in virus producer cells but not gB potently restricted HIV-1 particle infectivity. To better understand the relationship between cell surface expression, virus incorporation and restriction of HIV-1, we analyzed a series of deletion mutants and chimeric proteins in which domains of gD and gB were swapped. Our results indicate that: a) gD/gB chimeras having the cytoplasmic domain (CTD) of gB significantly reduced cell surface expression, release from cells, incorporation into virus, and reduced HIV-1 restriction; b) removal of the gB CTD or replacement with the gD CTD resulted in better surface expression, incorporation into HIV-1, and enhanced restriction; and c) the transmembrane domain of gB can influence transport and ultimately effect incorporation of gB into HIV-1. Overall, these data support a role for gD surface expression as crucial to restriction of infectious HIV-1 release.
Collapse
|
10
|
Touizer E, Sieben C, Henriques R, Marsh M, Laine RF. Application of Super-Resolution and Advanced Quantitative Microscopy to the Spatio-Temporal Analysis of Influenza Virus Replication. Viruses 2021; 13:233. [PMID: 33540739 PMCID: PMC7912985 DOI: 10.3390/v13020233] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/28/2021] [Accepted: 01/28/2021] [Indexed: 02/07/2023] Open
Abstract
With an estimated three to five million human cases annually and the potential to infect domestic and wild animal populations, influenza viruses are one of the greatest health and economic burdens to our society, and pose an ongoing threat of large-scale pandemics. Despite our knowledge of many important aspects of influenza virus biology, there is still much to learn about how influenza viruses replicate in infected cells, for instance, how they use entry receptors or exploit host cell trafficking pathways. These gaps in our knowledge are due, in part, to the difficulty of directly observing viruses in living cells. In recent years, advances in light microscopy, including super-resolution microscopy and single-molecule imaging, have enabled many viral replication steps to be visualised dynamically in living cells. In particular, the ability to track single virions and their components, in real time, now allows specific pathways to be interrogated, providing new insights to various aspects of the virus-host cell interaction. In this review, we discuss how state-of-the-art imaging technologies, notably quantitative live-cell and super-resolution microscopy, are providing new nanoscale and molecular insights into influenza virus replication and revealing new opportunities for developing antiviral strategies.
Collapse
Affiliation(s)
- Emma Touizer
- Division of Infection and Immunity, University College London, London WC1E 6AE, UK;
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK; (R.H.); (M.M.)
| | - Christian Sieben
- Department of Cell Biology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany;
| | - Ricardo Henriques
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK; (R.H.); (M.M.)
- The Francis Crick Institute, London NW1 1AT, UK
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| | - Mark Marsh
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK; (R.H.); (M.M.)
| | - Romain F. Laine
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK; (R.H.); (M.M.)
- The Francis Crick Institute, London NW1 1AT, UK
| |
Collapse
|
11
|
Cell-Based Influenza A/H1N1pdm09 Vaccine Viruses Containing Chimeric Hemagglutinin with Improved Membrane Fusion Ability. Vaccines (Basel) 2020; 8:vaccines8030458. [PMID: 32825107 PMCID: PMC7565828 DOI: 10.3390/vaccines8030458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/07/2020] [Accepted: 08/13/2020] [Indexed: 11/17/2022] Open
Abstract
The H1N1 influenza pandemic vaccine has been developed from the A/California/07/09 (Cal) virus and the well-known high-yield A/Puerto Rico/8/34 (PR8) virus by classical reassortment and reverse genetics (RG) in eggs. Previous studies have suggested that Cal-derived chimeric hemagglutinin (HA) and neuraminidase (NA) improve virus yields. However, the cell-based vaccine of the H1N1 pandemic virus has been less investigated. RG viruses that contained Cal-derived chimeric HA and NA could be rescued in Madin-Darby canine kidney cells that expressed α2,6-sialyltransferase (MDCK-SIAT1). The viral growth kinetics and chimeric HA and NA properties were analyzed. We attempted to generate various RG viruses that contained Cal-derived chimeric HA and NA, but half of them could not be rescued in MDCK-SIAT1 cells. When both the 3'- and 5'-terminal regions of Cal HA viral RNA were replaced with the corresponding regions of PR8 HA, the RG viruses were rescued. Our results were largely consistent with those of previous studies, in which the N- and C-terminal chimeric HA slightly improved virus yield. Importantly, the chimeric HA, compared to Cal HA, showed cell fusion ability at a broader pH range, likely due to amino acid substitutions in the transmembrane region of HA. The rescued RG virus with high virus yield harbored the chimeric HA capable of cell fusion at a broader range of pH.
Collapse
|
12
|
Barrett CT, Dutch RE. Viral Membrane Fusion and the Transmembrane Domain. Viruses 2020; 12:v12070693. [PMID: 32604992 PMCID: PMC7412173 DOI: 10.3390/v12070693] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 01/05/2023] Open
Abstract
Initiation of host cell infection by an enveloped virus requires a viral-to-host cell membrane fusion event. This event is mediated by at least one viral transmembrane glycoprotein, termed the fusion protein, which is a key therapeutic target. Viral fusion proteins have been studied for decades, and numerous critical insights into their function have been elucidated. However, the transmembrane region remains one of the most poorly understood facets of these proteins. In the past ten years, the field has made significant advances in understanding the role of the membrane-spanning region of viral fusion proteins. We summarize developments made in the past decade that have contributed to the understanding of the transmembrane region of viral fusion proteins, highlighting not only their critical role in the membrane fusion process, but further demonstrating their involvement in several aspects of the viral lifecycle.
Collapse
|
13
|
Meischel T, Villalon-Letelier F, Saunders PM, Reading PC, Londrigan SL. Influenza A virus interactions with macrophages: Lessons from epithelial cells. Cell Microbiol 2020; 22:e13170. [PMID: 31990121 DOI: 10.1111/cmi.13170] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/24/2019] [Accepted: 12/19/2019] [Indexed: 12/25/2022]
Abstract
Influenza viruses are an important cause of respiratory infection worldwide. In humans, infection with seasonal influenza A virus (IAV) is generally restricted to the respiratory tract where productive infection of airway epithelial cells promotes viral amplification, dissemination, and disease. Alveolar macrophages (MΦ) are also among the first cells to detect and respond to IAV, where they play a pivotal role in mounting effective innate immune responses. In contrast to epithelial cells, IAV infection of MΦ is a "dead end" for most seasonal strains, where replication is abortive and newly synthesised virions are not released. Although the key replicative stages leading to productive IAV infection in epithelial cells are defined, there is limited knowledge about the abortive IAV life cycle in MΦ. In this review, we will explore host factors and viral elements that support the early stages (entry) through to the late stages (viral egress) of IAV replication in epithelial cells. Similarities, differences, and unknowns for each key stage of the IAV replicative cycle in MΦ will then be highlighted. Herein, we provide mechanistic insights into MΦ-specific control of seasonal IAV replication through abortive infection, which may in turn, contribute to effective host defence.
Collapse
Affiliation(s)
- Tina Meischel
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Fernando Villalon-Letelier
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Philippa M Saunders
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Patrick C Reading
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia.,WHO Collaborating Centre for Reference and Research on Influenza, Victorian Infectious Diseases Reference Laboratory, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Sarah L Londrigan
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| |
Collapse
|
14
|
Kamiki H, Matsugo H, Ishida H, Kobayashi-Kitamura T, Sekine W, Takenaka-Uema A, Murakami S, Horimoto T. Adaptation of H3N2 canine influenza virus to feline cell culture. PLoS One 2019; 14:e0223507. [PMID: 31600274 PMCID: PMC6786582 DOI: 10.1371/journal.pone.0223507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 09/22/2019] [Indexed: 12/23/2022] Open
Abstract
H3N2 canine influenza viruses are prevalent in Asian and North American countries. During circulation of the viruses in dogs, these viruses are occasionally transmitted to cats. If this canine virus causes an epidemic in cats too, sporadic infections may occur in humans because of the close contact between these companion animals and humans, possibly triggering an emergence of mutant viruses with a pandemic potential. In this study, we aimed to gain an insight into the mutations responsible for inter-species transmission of H3N2 virus from dogs to cats. We found that feline CRFK cell-adapted viruses acquired several mutations in multiple genome segments. Among them, HA1-K299R, HA2-T107I, NA-L35R, and M2-W41C mutations individually increased virus growth in CRFK cells. With a combination of these mutations, virus growth further increased not only in CRFK cells but also in other feline fcwf-4 cells. Both HA1-K299R and HA2-T107I mutations increased thermal resistance of the viruses. In addition, HA2-T107I increased the pH requirement for membrane fusion. These findings suggest that the mutations, especially the two HA mutations, identified in this study, might be responsible for adaptation of H3N2 canine influenza viruses in cats.
Collapse
Affiliation(s)
- Haruhiko Kamiki
- Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Hiromichi Matsugo
- Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Hiroho Ishida
- Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Tomoya Kobayashi-Kitamura
- Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Wataru Sekine
- Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Akiko Takenaka-Uema
- Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Shin Murakami
- Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Taisuke Horimoto
- Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- * E-mail:
| |
Collapse
|
15
|
Sundberg EL, Deng Y, Burd CG. Syndecan-1 Mediates Sorting of Soluble Lipoprotein Lipase with Sphingomyelin-Rich Membrane in the Golgi Apparatus. Dev Cell 2019; 51:387-398.e4. [PMID: 31543446 DOI: 10.1016/j.devcel.2019.08.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/05/2019] [Accepted: 08/21/2019] [Indexed: 12/12/2022]
Abstract
In the secretory pathway, budding of vesicular transport carriers from the trans-Golgi network (TGN) must coordinate specification of lipid composition with selection of secreted proteins. We elucidate a mechanism of soluble protein cargo sorting into secretory vesicles with a sphingomyelin-rich membrane; the integral membrane proteoglycan Syndecan-1 (SDC1) acts as a sorting receptor, capturing the soluble enzyme lipoprotein lipase (LPL) during export from the TGN. Sorting of LPL requires bivalent interactions between LPL and SDC1-linked heparan sulfate chains and between LPL and the Golgi membrane. Physical features of the SDC1 transmembrane domain, rather than a specific sequence, confer targeting of SDC1 and bound LPL into the sphingomyelin secretion pathway. This study establishes that physicochemical properties of a protein transmembrane domain that drive lateral heterogeneity of the plasma membrane also operate at the TGN to confer sorting of an integral membrane protein and its ligand within the biosynthetic secretory pathway.
Collapse
Affiliation(s)
- Emma L Sundberg
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Yongqiang Deng
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Christopher G Burd
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
16
|
Sato R, Okura T, Kawahara M, Takizawa N, Momose F, Morikawa Y. Apical Trafficking Pathways of Influenza A Virus HA and NA via Rab17- and Rab23-Positive Compartments. Front Microbiol 2019; 10:1857. [PMID: 31456775 PMCID: PMC6700264 DOI: 10.3389/fmicb.2019.01857] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 07/29/2019] [Indexed: 11/13/2022] Open
Abstract
The envelope proteins of influenza A virus, hemagglutinin (HA) and neuraminidase (NA), play critical roles in viral entry to host cells and release from the cells, respectively. After protein synthesis, they are transported from the trans-Golgi network (TGN) to the apical plasma membrane (PM) and assembled into virus particles. However, the post-TGN transport pathways of HA and NA have not been clarified. Temporal study by confocal microscopy revealed that HA and NA colocalized soon after their synthesis, and relocated together from the TGN to the upper side of the cell. Using the Rab family protein, we investigated the post-TGN transport pathways of HA and NA. HA partially colocalized with AcGFP-Rab15, Rab17, and Rab23, but rarely with AcGFP-Rab11. When analyzed in cells stably expressing AcGFP-Rab, HA/NA colocalized with Rab15 and Rab17, markers of apical sorting and recycling endosomes, and later colocalized with Rab23, which distributes to the apical PM and endocytic vesicles. Overexpression of the dominant-negative (DN) mutants of Rab15 and Rab17, but not Rab23, significantly delayed HA transport to the PM. However, Rab23DN impaired cell surface expression of HA. Live-cell imaging revealed that NA moved rapidly with Rab17 but not with Rab15. NA also moved with Rab23 in the cytoplasm, but this motion was confined at the upper side of the cell. A fraction of HA was localized to Rab17 and Rab23 double-positive vesicles in the cytoplasm. Coimmunoprecipitation indicated that HA was associated with Rab17 and Rab23 in lipid raft fractions. When cholesterol was depleted by methyl-β-cyclodextrin treatment, the motion of NA and Rab17 signals ceased. These results suggest that HA and NA are incorporated into lipid raft microdomains and are cotransported to the PM by Rab17-positive and followed by Rab23-positive vesicles.
Collapse
Affiliation(s)
- Ryota Sato
- Graduate School for Infection Control, Kitasato Institute for Life Sciences, Kitasato University, Tokyo, Japan
| | - Takashi Okura
- Graduate School for Infection Control, Kitasato Institute for Life Sciences, Kitasato University, Tokyo, Japan
| | - Madoka Kawahara
- Graduate School for Infection Control, Kitasato Institute for Life Sciences, Kitasato University, Tokyo, Japan
| | - Naoki Takizawa
- Laboratory of Basic Biology, Institute of Microbial Chemistry, Tokyo, Japan
| | - Fumitaka Momose
- Graduate School for Infection Control, Kitasato Institute for Life Sciences, Kitasato University, Tokyo, Japan
| | - Yuko Morikawa
- Graduate School for Infection Control, Kitasato Institute for Life Sciences, Kitasato University, Tokyo, Japan
| |
Collapse
|
17
|
Kurebayashi Y, Takahashi T, Miura T, Otsubo T, Minami A, Fujita Y, Sakakibara K, Tanabe M, Iuchi A, Ota R, Ikeda K, Suzuki T. Fluorogenic Probes for Accurate in Situ Imaging of Viral and Mammalian Sialidases. ACS Chem Biol 2019; 14:1195-1204. [PMID: 31120724 DOI: 10.1021/acschembio.9b00103] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Sialidases are widely distributed in nature and are involved in many physiological and pathological processes. Sialidases are expressed and work in various tissues and organelles. Clarification of the localization of sialidases is very helpful as a way to understand their functions. We previously developed a novel fluorogenic probe for sialidases, BTP3-Neu5Ac, that visualized the localization of sialidase activity in live cells and tissues by precipitating the hydrophobic fluorescent compound; however, for the purpose of accurate fluorescence imaging of sialidase-expressing cells or the distribution of intracellular sialidase activity, BTP3-Neu5Ac was inadequate in imaging performance. We report the design and development of a sialidase imaging probe that improves the sensitivity and accuracy of in situ fluorescence imaging performance as well as increases the hydrophobicity by attaching linear unsaturated hydrocarbon chains into the hydrophobic fluorescent compound of BTP3-Neu5Ac. The newly developed probe showed low diffusivity and high brightness for fluorescence imaging, and it enabled sensitive and highly accurate imaging of viral sialidase in virus-infected cells and sialidase-expressing cells as well as mammalian sialidase in the rat brain. The probe also enabled the fluorescence imaging of intracellular viral sialidase in live-virus-infected cells. The newly developed probe is expected to be a useful tool that will contribute to the progress of research on sialidases in various fields such as research on viruses and brains.
Collapse
Affiliation(s)
- Yuuki Kurebayashi
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka-shi, Shizuoka 422-8526, Japan
| | - Tadanobu Takahashi
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka-shi, Shizuoka 422-8526, Japan
| | - Tomomi Miura
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka-shi, Shizuoka 422-8526, Japan
| | - Tadamune Otsubo
- Department of Organic Chemistry, School of Pharmaceutical Sciences, Hiroshima International University, Kure-shi, Hiroshima 737-0112, Japan
| | - Akira Minami
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka-shi, Shizuoka 422-8526, Japan
| | - Yuka Fujita
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka-shi, Shizuoka 422-8526, Japan
| | - Keiko Sakakibara
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka-shi, Shizuoka 422-8526, Japan
| | - Momoko Tanabe
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka-shi, Shizuoka 422-8526, Japan
| | - Ayano Iuchi
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka-shi, Shizuoka 422-8526, Japan
| | - Ryohei Ota
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka-shi, Shizuoka 422-8526, Japan
| | - Kiyoshi Ikeda
- Department of Organic Chemistry, School of Pharmaceutical Sciences, Hiroshima International University, Kure-shi, Hiroshima 737-0112, Japan
| | - Takashi Suzuki
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka-shi, Shizuoka 422-8526, Japan
| |
Collapse
|
18
|
Du R, Cui Q, Rong L. Competitive Cooperation of Hemagglutinin and Neuraminidase during Influenza A Virus Entry. Viruses 2019; 11:v11050458. [PMID: 31137516 PMCID: PMC6563287 DOI: 10.3390/v11050458] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/17/2019] [Accepted: 05/18/2019] [Indexed: 12/15/2022] Open
Abstract
The hemagglutinin (HA) and neuraminidase (NA) of influenza A virus possess antagonistic activities on interaction with sialic acid (SA), which is the receptor for virus attachment. HA binds SA through its receptor-binding sites, while NA is a receptor-destroying enzyme by removing SAs. The function of HA during virus entry has been extensively investigated, however, examination of NA has long been focused to its role in the exit of progeny virus from infected cells, and the role of NA in the entry process is still under-appreciated. This review summarizes the current understanding of the roles of HA and NA in relation to each other during virus entry.
Collapse
Affiliation(s)
- Ruikun Du
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
- Shandong Provincial Collaborative Innovation Center for Antiviral Traditional Chinese Medicine, Jinan 250355, China.
- Qingdao Academy of Chinese Medicinal Sciences, Shandong University of Traditional Chinese Medicine, Qingdao 266122, China.
| | - Qinghua Cui
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
- Shandong Provincial Collaborative Innovation Center for Antiviral Traditional Chinese Medicine, Jinan 250355, China.
- Qingdao Academy of Chinese Medicinal Sciences, Shandong University of Traditional Chinese Medicine, Qingdao 266122, China.
| | - Lijun Rong
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA.
| |
Collapse
|
19
|
Tang Q, Liu P, Chen M, Qin Y. Virion-Associated Cholesterol Regulates the Infection of Human Parainfluenza Virus Type 3. Viruses 2019; 11:v11050438. [PMID: 31096557 PMCID: PMC6563303 DOI: 10.3390/v11050438] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/05/2019] [Accepted: 05/12/2019] [Indexed: 12/12/2022] Open
Abstract
The matrix (M) proteins of paramyxoviruses bind to the nucleocapsids and cytoplasmic tails of glycoproteins, thus mediating the assembly and budding of virions. We first determined the budding characterization of the HPIV3 Fusion (F) protein to investigate the assembly mechanism of human parainfluenza virus type 3 (HPIV3). Our results show that expression of the HPIV3 F protein alone is sufficient to initiate the release of virus-like particles (VLPs), and the F protein can regulate the VLP-forming ability of the M protein. Furthermore, HPIV3F-Flag, which is a recombinant HPIV3 with a Flag tag at the C-terminus of the F protein, was constructed and recovered. We found that the M, F, and hemagglutinin-neuraminidase (HN) proteins and the viral genome can accumulate in lipid rafts in HPIV3F-Flag-infected cells, and the F protein mainly exists in the form of F1 in VLPs, lipid rafts, and purified virions. Furthermore, the function of cholesterol in the viral envelope and cell membrane was assessed via the elimination of cholesterol by methyl-β-cyclodextrin (MβCD). Our results suggest that the infectivity of HPIV3 was markedly reduced, due to defective internalization ability in the absence of cholesterol. These results reveal that HPIV3 might assemble in the lipid rafts to acquire cholesterol for the envelope of HPIV3, which suggests the that disruption of the cholesterol composition of HPIV3 virions might be a useful method for the design of anti-HPIV3 therapy.
Collapse
Affiliation(s)
- Qiaopeng Tang
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Pengfei Liu
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Mingzhou Chen
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Yali Qin
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
20
|
McAuley JL, Gilbertson BP, Trifkovic S, Brown LE, McKimm-Breschkin JL. Influenza Virus Neuraminidase Structure and Functions. Front Microbiol 2019; 10:39. [PMID: 30761095 PMCID: PMC6362415 DOI: 10.3389/fmicb.2019.00039] [Citation(s) in RCA: 280] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/10/2019] [Indexed: 12/31/2022] Open
Abstract
With the constant threat of emergence of a novel influenza virus pandemic, there must be continued evaluation of the molecular mechanisms that contribute to virulence. Although the influenza A virus surface glycoprotein neuraminidase (NA) has been studied mainly in the context of its role in viral release from cells, accumulating evidence suggests it plays an important, multifunctional role in virus infection and fitness. This review investigates the various structural features of NA, linking these with functional outcomes in viral replication. The contribution of evolving NA activity to viral attachment, entry and release of virions from infected cells, and maintenance of functional balance with the viral hemagglutinin are also discussed. Greater insight into the role of this important antiviral drug target is warranted.
Collapse
Affiliation(s)
- Julie L McAuley
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Brad P Gilbertson
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Sanja Trifkovic
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.,Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, United States
| | - Lorena E Brown
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Jennifer L McKimm-Breschkin
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| |
Collapse
|
21
|
Bedi S, Ono A. Friend or Foe: The Role of the Cytoskeleton in Influenza A Virus Assembly. Viruses 2019; 11:v11010046. [PMID: 30634554 PMCID: PMC6356976 DOI: 10.3390/v11010046] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 01/02/2019] [Accepted: 01/08/2019] [Indexed: 12/12/2022] Open
Abstract
Influenza A Virus (IAV) is a respiratory virus that causes seasonal outbreaks annually and pandemics occasionally. The main targets of the virus are epithelial cells in the respiratory tract. Like many other viruses, IAV employs the host cell’s machinery to enter cells, synthesize new genomes and viral proteins, and assemble new virus particles. The cytoskeletal system is a major cellular machinery, which IAV exploits for its entry to and exit from the cell. However, in some cases, the cytoskeleton has a negative impact on efficient IAV growth. In this review, we highlight the role of cytoskeletal elements in cellular processes that are utilized by IAV in the host cell. We further provide an in-depth summary of the current literature on the roles the cytoskeleton plays in regulating specific steps during the assembly of progeny IAV particles.
Collapse
Affiliation(s)
- Sukhmani Bedi
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Akira Ono
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
22
|
Influenza A Virus M2 Protein Apical Targeting Is Required for Efficient Virus Replication. J Virol 2018; 92:JVI.01425-18. [PMID: 30158290 DOI: 10.1128/jvi.01425-18] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 08/22/2018] [Indexed: 11/20/2022] Open
Abstract
The influenza A virus (IAV) M2 protein is a multifunctional protein with critical roles in virion entry, assembly, and budding. M2 is targeted to the apical plasma membrane of polarized epithelial cells, and the interaction of the viral proteins M2, M1, HA, and NA near glycolipid rafts in the apical plasma membrane is hypothesized to coordinate the assembly of infectious virus particles. To determine the role of M2 protein apical targeting in IAV replication, a panel of M2 proteins with basolateral plasma membrane (M2-Baso) or endoplasmic reticulum (M2-ER) targeting sequences was generated. MDCK II cells stably expressing M2-Baso, but not M2-ER, complemented the replication of M2-stop viruses. However, in primary human nasal epithelial cell (hNEC) cultures, viruses encoding M2-Baso and M2-ER replicated to negligible titers compared to those of wild-type virus. M2-Baso replication was negatively correlated with cell polarization. These results demonstrate that M2 apical targeting is essential for IAV replication: targeting M2 to the ER results in a strong, cell type-independent inhibition of virus replication, and targeting M2 to the basolateral membrane has greater effects in hNECs than in MDCK cells.IMPORTANCE Influenza A virus assembly and particle release occur at the apical membrane of polarized epithelial cells. The integral membrane proteins encoded by the virus, HA, NA, and M2, are all targeted to the apical membrane and believed to recruit the other structural proteins to sites of virus assembly. By targeting M2 to the basolateral or endoplasmic reticulum membranes, influenza A virus replication was significantly reduced. Basolateral targeting of M2 reduced the infectious virus titers with minimal effects on virus particle release, while targeting to the endoplasmic reticulum resulted in reduced infectious and total virus particle release. Therefore, altering the expression and the intracellular targeting of M2 has major effects on virus replication.
Collapse
|
23
|
Brandimarti R, Hill GS, Geiger JD, Meucci O. The lipid raft-dwelling protein US9 can be manipulated to target APP compartmentalization, APP processing, and neurodegenerative disease pathogenesis. Sci Rep 2017; 7:15103. [PMID: 29118375 PMCID: PMC5678071 DOI: 10.1038/s41598-017-15128-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 10/20/2017] [Indexed: 01/13/2023] Open
Abstract
The trafficking behavior of the lipid raft-dwelling US9 protein from Herpes Simplex Virus strikingly overlaps with that of the amyloid precursor protein (APP). Both US9 and APP processing machinery rely on their ability to shuttle between endosomes and plasma membranes, as well as on their lateral accumulation in lipid rafts. Therefore, repurposing US9 to track/modify these molecular events represents a valid approach to investigate pathological states including Alzheimer's disease and HIV-associated neurocognitive disorders where APP misprocessing to amyloid beta formation has been observed. Accordingly, we investigated the cellular localization of US9-driven cargo in neurons and created a US9-driven functional assay based on the exogenous enzymatic activity of Tobacco Etch Virus Protease. Our results demonstrate that US9 can direct and control cleavage of recombinant proteins exposed on the luminal leaflet of transport vesicles. Furthermore, we confirmed that US9 is associated with lipid-rafts and can target functional enzymes to membrane microdomains where pathologic APP-processing is thought to occur. Overall, our results suggest strongly that US9 can serve as a molecular driver that targets functional cargos to the APP machinery and can be used as a tool to study the contribution of lipid rafts to neurodegenerative disease conditions where amyloidogenesis has been implicated.
Collapse
Affiliation(s)
- Renato Brandimarti
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia (PA), USA.
- Department of Pharmacy and Biotechnologies, Alma Mater Studiorum, University of Bologna, Bologna, Italy.
| | - Gordon S Hill
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia (PA), USA
| | - Jonathan D Geiger
- Department of Basic Biomedical Sciences, University of North Dakota, School of Medicine and Health Sciences, Grand Forks (ND), USA
| | - Olimpia Meucci
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia (PA), USA.
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia (PA), USA.
| |
Collapse
|
24
|
Bajimaya S, Frankl T, Hayashi T, Takimoto T. Cholesterol is required for stability and infectivity of influenza A and respiratory syncytial viruses. Virology 2017; 510:234-241. [PMID: 28750327 DOI: 10.1016/j.virol.2017.07.024] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 07/12/2017] [Accepted: 07/19/2017] [Indexed: 01/12/2023]
Abstract
Cholesterol-rich lipid raft microdomains in the plasma membrane are considered to play a major role in the enveloped virus lifecycle. However, the functional role of cholesterol in assembly, infectivity and stability of respiratory RNA viruses is not fully understood. We previously reported that depletion of cellular cholesterol by cholesterol-reducing agents decreased production of human parainfluenza virus type 1 (hPIV1) particles by inhibiting virus assembly. In this study, we analyzed the role of cholesterol on influenza A virus (IAV) and respiratory syncytial virus (RSV) production. Unlike hPIV1, treatment of human airway cells with the agents did not decrease virus particle production. However, the released virions were less homogeneous in density and unstable. Addition of exogenous cholesterol to the released virions restored virus stability and infectivity. Collectively, these data indicate a critical role of cholesterol in maintaining IAV and RSV membrane structure that is essential for sustaining viral stability and infectivity.
Collapse
Affiliation(s)
- Shringkhala Bajimaya
- Department of Microbiology and Immunology, University of Rochester Medical Center, Box 672, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Tünde Frankl
- Department of Microbiology and Immunology, University of Rochester Medical Center, Box 672, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Tsuyoshi Hayashi
- Department of Microbiology and Immunology, University of Rochester Medical Center, Box 672, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Toru Takimoto
- Department of Microbiology and Immunology, University of Rochester Medical Center, Box 672, 601 Elmwood Avenue, Rochester, NY 14642, USA.
| |
Collapse
|
25
|
Lateral Organization of Influenza Virus Proteins in the Budozone Region of the Plasma Membrane. J Virol 2017; 91:JVI.02104-16. [PMID: 28202765 DOI: 10.1128/jvi.02104-16] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 02/12/2017] [Indexed: 12/24/2022] Open
Abstract
Influenza virus assembles and buds at the plasma membrane of virus-infected cells. The viral proteins assemble at the same site on the plasma membrane for budding to occur. This involves a complex web of interactions among viral proteins. Some proteins, like hemagglutinin (HA), NA, and M2, are integral membrane proteins. M1 is peripherally membrane associated, whereas NP associates with viral RNA to form an RNP complex that associates with the cytoplasmic face of the plasma membrane. Furthermore, HA and NP have been shown to be concentrated in cholesterol-rich membrane raft domains, whereas M2, although containing a cholesterol binding motif, is not raft associated. Here we identify viral proteins in planar sheets of plasma membrane using immunogold staining. The distribution of these proteins was examined individually and pairwise by using the Ripley K function, a type of nearest-neighbor analysis. Individually, HA, NA, M1, M2, and NP were shown to self-associate in or on the plasma membrane. HA and M2 are strongly coclustered in the plasma membrane; however, in the case of NA and M2, clustering depends upon the expression system used. Despite both proteins being raft resident, HA and NA occupy distinct but adjacent membrane domains. M2 and M1 strongly cocluster, but the association of M1 with HA or NA is dependent upon the means of expression. The presence of HA and NP at the site of budding depends upon the coexpression of other viral proteins. Similarly, M2 and NP occupy separate compartments, but an association can be bridged by the coexpression of M1.IMPORTANCE The complement of influenza virus proteins necessary for the budding of progeny virions needs to accumulate at budozones. This is complicated by HA and NA residing in lipid raft-like domains, whereas M2, although an integral membrane protein, is not raft associated. Other necessary protein components such as M1 and NP are peripherally associated with the membrane. Our data define spatial relationships between viral proteins in the plasma membrane. Some proteins, such as HA and M2, inherently cocluster within the membrane, although M2 is found mostly at the periphery of regions of HA, consistent with the proposed role of M2 in scission at the end of budding. The association between some pairs of influenza virus proteins, such as M2 and NP, appears to be brokered by additional influenza virus proteins, in this case M1. HA and NA, while raft associated, reside in distinct domains, reflecting their distributions in the viral membrane.
Collapse
|
26
|
Barman S, Krylov PS, Turner JC, Franks J, Webster RG, Husain M, Webby RJ. Manipulation of neuraminidase packaging signals and hemagglutinin residues improves the growth of A/Anhui/1/2013 (H7N9) influenza vaccine virus yield in eggs. Vaccine 2017; 35:1424-1430. [PMID: 28162820 DOI: 10.1016/j.vaccine.2017.01.061] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 01/19/2017] [Accepted: 01/23/2017] [Indexed: 02/06/2023]
Abstract
In 2013, a novel avian-origin H7N9 influenza A virus causing severe lower respiratory tract disease in humans emerged in China, with continued sporadic cases. An effective vaccine is needed for this virus in case it acquires transmissibility among humans; however, PR8-based A/Anhui/1/2013 (Anhui/1, H7N9), a WHO-recommended H7N9 candidate vaccine virus (CVV) for vaccine production, does not replicate well in chicken eggs, posing an obstacle to egg-based vaccine production. To address this issue, we explored the possibility that PR8's hemagglutinin (HA) and neuraminidase (NA) packaging signals mediate improvement of Anhui/1 CVV yield in eggs. We constructed chimeric HA and NA genes having the coding region of Anhui/1 HA and NA flanked by the 5' and 3' packaging signals of PR8's HA and NA, respectively. The growth of CVVs containing the chimeric HA was not affected, but that of those containing the chimeric NA gene grew in embryonated chicken eggs with a more than 2-fold higher titer than that of WT CVV. Upon 6 passages in eggs further yield increase was achieved although this was not associated with any changes in the chimeric NA gene. The HA of the passaged CVV, did, however, exhibit egg-adaptive mutations and one of them (HA-G218E) improved CVV growth in eggs without significantly changing antigenicity. The HA-G218E substitution and a chimeric NA, thus, combine to provide an Anhui/1 CVV with properties more favorable for vaccine manufacture.
Collapse
Affiliation(s)
- Subrata Barman
- Division of Virology, Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA.
| | - Petr S Krylov
- Division of Virology, Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA.
| | - Jasmine C Turner
- Division of Virology, Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA.
| | - John Franks
- Division of Virology, Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA.
| | - Robert G Webster
- Division of Virology, Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA.
| | - Matloob Husain
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand.
| | - Richard J Webby
- Division of Virology, Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
27
|
Thontiravong A, Tunterak W, Oraveerakul K, Amonsin A. In vitro characterization of the novel H3N1 reassortant influenza viruses from quail. Vet Microbiol 2016; 199:74-78. [PMID: 28110788 DOI: 10.1016/j.vetmic.2016.12.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 12/13/2016] [Accepted: 12/20/2016] [Indexed: 11/28/2022]
Abstract
Quail is considered as an intermediate host for generation of the novel reassortant influenza A viruses (IAVs). In this study, we evaluated the replication ability of the three novel H3N1 reassortant viruses recovered from pandemic H1N1 2009 (pH1N1) and duck H3N2 (dkH3N2) co-infected quail generated from our previous study in embryonated chicken eggs, mammalian (MDCK) and human lung derived (A549) cells. Our study demonstrated that all of the reassortant viruses replicated efficiently in avian and mammalian cells, albeit with slightly lower titers than the parental viruses. Of note, all of the reassortant viruses showed enhanced replication in human lung derived A549 cells compared to their parental viruses. Interestingly, among the reassortant viruses tested, a reassortant virus (P(NA,NS)-DK) containing NA and NS genes derived from pH1N1 and the other genes from dkH3N2 exhibited the highest replication ability in all in vitro models, indicating a high level of gene compatibility of this reassortant virus. Our results highlight the potential role of quail as intermediate hosts for the generation of the viable reassortant viruses with ability to replicate efficiently in avian, mammalian, and particularly human lung derived cells. These findings emphasize the need for the continuous IAV surveillance in quail to prevent the risk of the emergence of the novel viable reassortant viruses.
Collapse
Affiliation(s)
- Aunyaratana Thontiravong
- Emerging and Re-emerging Infectious Diseases in Animals (CUEIDAs), Center of Excellence, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand; Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Wikanda Tunterak
- Emerging and Re-emerging Infectious Diseases in Animals (CUEIDAs), Center of Excellence, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand; Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Kanisak Oraveerakul
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Alongkorn Amonsin
- Emerging and Re-emerging Infectious Diseases in Animals (CUEIDAs), Center of Excellence, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand; Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
28
|
Pohl MO, Lanz C, Stertz S. Late stages of the influenza A virus replication cycle-a tight interplay between virus and host. J Gen Virol 2016; 97:2058-2072. [PMID: 27449792 DOI: 10.1099/jgv.0.000562] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
After successful infection and replication of its genome in the nucleus of the host cell, influenza A virus faces several challenges before newly assembled viral particles can bud off from the plasma membrane, giving rise to a new infectious virus. The viral ribonucleoprotein (vRNP) complexes need to exit from the nucleus and be transported to the virus assembly sites at the plasma membrane. Moreover, they need to be bundled to ensure the incorporation of precisely one of each of the eight viral genome segments into newly formed viral particles. Similarly, viral envelope glycoproteins and other viral structural proteins need to be targeted to virus assembly sites for viral particles to form and bud off from the plasma membrane. During all these steps influenza A virus heavily relies on a tight interplay with its host, exploiting host-cell proteins for its own purposes. In this review, we summarize current knowledge on late stages of the influenza virus replication cycle, focusing on the role of host-cell proteins involved in this process.
Collapse
Affiliation(s)
- Marie O Pohl
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
| | - Caroline Lanz
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
| | - Silke Stertz
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
29
|
Abstract
Multidrug-resistance (MDR) phenomena are a worldwide health concern. ATP-binding cassette efflux pumps as P-glycoprotein have been thoroughly studied in a frantic run to develop new efflux modulators capable to reverse MDR phenotypes. The study of efflux pumps has provided some key aspects on drug extrusion, however the answers could not be found solely on ATP-binding cassette transporters. Its counterpart – the plasma membrane – is now emerging as a critical structure able to modify drug behavior and efflux pump activity. Alterations in the membrane surrounding P-glycoprotein are now known to modulate drug efflux, with membrane-related biophysical, biochemical and mechanical aspects further increasing the complexity of an already multifaceted phenomena. This review summarizes the main knowledge comprising the plasma membrane role in MDR.
Collapse
|
30
|
The amino-terminal region of the neuraminidase protein from avian H5N1 influenza virus is important for its biosynthetic transport to the host cell surface. Vet J 2014; 202:612-7. [PMID: 25458889 DOI: 10.1016/j.tvjl.2014.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 09/30/2014] [Accepted: 10/09/2014] [Indexed: 11/21/2022]
Abstract
Influenza virus neuraminidase (NA) is a major viral envelope glycoprotein, which plays a critical role in viral infection. Although NA functional domains have been determined previously, the precise role of the amino acids located at the N-terminus of avian H5N1 NA for protein expression and intracellular transport to the host plasma membrane is not fully understood. In the present study, a series of N-terminal truncation or deletion mutants of H5N1 NA were generated and their expression and intracellular trafficking were investigated. Protein expression from mutants NAΔ20, NAΔ35, NAΔ40, NAΔ7-20 and NAΔ7-35 was undetectable by immunoblotting and by performing NA activity assays. Mutants NAΔ6, NAΔ11 and NAΔ15-20 showed a marked decreased in protein expression, whereas mutants NAΔ7-15 and NAΔ15 displayed a slight increase in protein expression, compared with that of the native NA protein. These data suggest that amino acid residues 16-20 are vital for NA protein expression, while amino acids 7-15 might suppress NA protein expression. In deletion mutants NAΔ7-15 and NAΔ15 there was an accumulation of NA protein at the juxta-nuclear region, with reduced expression of NA at the cell surface. Although active Cdc42 could promote transport of wild-type NA to the host cell surface, this member of the Rho family of GTPases failed to regulate transport of mutants NAΔ7-15 and NAΔ15. The results of the study reveal that amino acid residues 7-15 of H5N1 NA are critical for its biosynthetic transport to the host cell surface.
Collapse
|
31
|
Influenza A virus hemagglutinin and neuraminidase mutually accelerate their apical targeting through clustering of lipid rafts. J Virol 2014; 88:10039-55. [PMID: 24965459 DOI: 10.1128/jvi.00586-14] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED In polarized epithelial cells, influenza A virus hemagglutinin (HA) and neuraminidase (NA) are intrinsically associated with lipid rafts and target the apical plasma membrane for viral assembly and budding. Previous studies have indicated that the transmembrane domain (TMD) and cytoplasmic tail (CT) of HA and NA are required for association with lipid rafts, but the raft dependencies of their apical targeting are controversial. Here, we show that coexpression of HA with NA accelerated their apical targeting through accumulation in lipid rafts. HA was targeted to the apical plasma membrane even when expressed alone, but the kinetics was much slower than that of HA in infected cells. Coexpression experiments revealed that apical targeting of HA and NA was accelerated by their coexpression. The apical targeting of HA was also accelerated by coexpression with M1 but not M2. The mutations in the outer leaflet of the TMD and the deletion of the CT in HA and NA that reduced their association with lipid rafts abolished the acceleration of their apical transport, indicating that the lipid raft association is essential for efficient apical trafficking of HA and NA. An in situ proximity ligation assay (PLA) revealed that HA and NA were accumulated and clustered in the cytoplasmic compartments only when both were associated with lipid rafts. Analysis with mutant viruses containing nonraft HA/NA confirmed these findings. We further analyzed lipid raft markers by in situ PLA and suggest a possible mechanism of the accelerated apical transport of HA and NA via clustering of lipid rafts. IMPORTANCE Lipid rafts serve as sites for viral entry, particle assembly, and budding, leading to efficient viral replication. The influenza A virus utilizes lipid rafts for apical plasma membrane targeting and particle budding. The hemagglutinin (HA) and neuraminidase (NA) of influenza virus, key players for particle assembly, contain determinants for apical sorting and lipid raft association. However, it remains to be elucidated how lipid rafts contribute to the apical trafficking and budding. We investigated the relation of lipid raft association of HA and NA to the efficiency of apical trafficking. We show that coexpression of HA and NA induces their accumulation in lipid rafts and accelerates their apical targeting, and we suggest that the accelerated apical transport likely occurs by clustering of lipid rafts at the TGN. This finding provides the first evidence that two different raft-associated viral proteins induce lipid raft clustering, thereby accelerating apical trafficking of the viral proteins.
Collapse
|
32
|
Virus particle release from glycosphingolipid-enriched microdomains is essential for dendritic cell-mediated capture and transfer of HIV-1 and henipavirus. J Virol 2014; 88:8813-25. [PMID: 24872578 DOI: 10.1128/jvi.00992-14] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Human immunodeficiency virus type 1 (HIV-1) exploits dendritic cells (DCs) to promote its transmission to T cells. We recently reported that the capture of HIV-1 by mature dendritic cells (MDCs) is mediated by an interaction between the glycosphingolipid (GSL) GM3 on virus particles and CD169/Siglec-1 on MDCs. Since HIV-1 preferentially buds from GSL-enriched lipid microdomains on the plasma membrane, we hypothesized that the virus assembly and budding site determines the ability of HIV-1 to interact with MDCs. In support of this hypothesis, mutations in the N-terminal basic domain (29/31KE) or deletion of the membrane-targeting domain of the HIV-1 matrix (MA) protein that altered the virus assembly and budding site to CD63(+)/Lamp-1-positive intracellular compartments resulted in lower levels of virion incorporation of GM3 and attenuation of virus capture by MDCs. Furthermore, MDC-mediated capture and transmission of MA mutant viruses to T cells were decreased, suggesting that HIV-1 acquires GSLs via budding from the plasma membrane to access the MDC-dependent trans infection pathway. Interestingly, MDC-mediated capture of Nipah and Hendra virus (recently emerged zoonotic paramyxoviruses) M (matrix) protein-derived virus-like particles that bud from GSL-enriched plasma membrane microdomains was also dependent on interactions between virion-incorporated GSLs and CD169. Moreover, capture and transfer of Nipah virus envelope glycoprotein-pseudotyped lentivirus particles by MDCs were severely attenuated upon depletion of GSLs from virus particles. These results suggest that GSL incorporation into virions is critical for the interaction of diverse enveloped RNA viruses with DCs and that the GSL-CD169 recognition nexus might be a conserved viral mechanism of parasitization of DC functions for systemic virus dissemination. IMPORTANCE Dendritic cells (DCs) can capture HIV-1 particles and transfer captured virus particles to T cells without establishing productive infection in DCs, a mechanism of HIV-1 trans infection. We have recently identified CD169-mediated recognition of GM3, a host-derived glycosphingolipid (GSL) incorporated into the virus particle membrane, as the receptor and ligand for the DC-HIV trans infection pathway. In this study, we have identified the matrix (MA) domain of Gag to be the viral determinant that governs incorporation of GM3 into HIV-1 particles, a previously unappreciated function of the HIV-1 MA. In addition, we demonstrate that the GSL-CD169-dependent trans infection pathway is also utilized as a dissemination mechanism by henipaviruses. GSL incorporation in henipaviruses was also dependent on the viral capsid (M) protein-directed assembly and budding from GSL-enriched lipid microdomains. These findings provide evidence of a conserved mechanism of retrovirus and henipavirus parasitization of cell-to-cell recognition pathways for systemic virus dissemination.
Collapse
|
33
|
Stoops EH, Caplan MJ. Trafficking to the apical and basolateral membranes in polarized epithelial cells. J Am Soc Nephrol 2014; 25:1375-86. [PMID: 24652803 DOI: 10.1681/asn.2013080883] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Renal epithelial cells must maintain distinct protein compositions in their apical and basolateral membranes in order to perform their transport functions. The creation of these polarized protein distributions depends on sorting signals that designate the trafficking route and site of ultimate functional residence for each protein. Segregation of newly synthesized apical and basolateral proteins into distinct carrier vesicles can occur at the trans-Golgi network, recycling endosomes, or a growing assortment of stations along the cellular trafficking pathway. The nature of the specific sorting signal and the mechanism through which it is interpreted can influence the route a protein takes through the cell. Cell type-specific variations in the targeting motifs of a protein, as are evident for Na,K-ATPase, demonstrate a remarkable capacity to adapt sorting pathways to different developmental states or physiologic requirements. This review summarizes our current understanding of apical and basolateral trafficking routes in polarized epithelial cells.
Collapse
Affiliation(s)
- Emily H Stoops
- Departments of Cellular & Molecular Physiology and Cell Biology, Yale University School of Medicine, New Haven, Connecticut
| | - Michael J Caplan
- Departments of Cellular & Molecular Physiology and Cell Biology, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
34
|
Lim PJ, Chu JJH. A polarized cell model for Chikungunya virus infection: entry and egress of virus occurs at the apical domain of polarized cells. PLoS Negl Trop Dis 2014; 8:e2661. [PMID: 24587455 PMCID: PMC3930524 DOI: 10.1371/journal.pntd.0002661] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 12/09/2013] [Indexed: 11/19/2022] Open
Abstract
Chikungunya virus (CHIKV) has resulted in several outbreaks in the past six decades. The clinical symptoms of Chikungunya infection include fever, skin rash, arthralgia, and an increasing incidence of encephalitis. The re-emergence of CHIKV with more severe pathogenesis highlights its potential threat on our human health. In this study, polarized HBMEC, polarized Vero C1008 and non-polarized Vero cells grown on cell culture inserts were infected with CHIKV apically or basolaterally. Plaque assays, viral binding assays and immunofluorescence assays demonstrated apical entry and release of CHIKV in polarized HBMEC and Vero C1008. Drug treatment studies were performed to elucidate both host cell and viral factors involved in the sorting and release of CHIKV at the apical domain of polarized cells. Disruption of host cell myosin II, microtubule and microfilament networks did not disrupt the polarized release of CHIKV. However, treatment with tunicamycin resulted in a bi-directional release of CHIKV, suggesting that N-glycans of CHIKV envelope glycoproteins could serve as apical sorting signals. Polarized cells are found in many parts of the human body and are characterized by the presence of two distinct plasma membrane domains: the apical domain facing the lumen and the basolateral domain facing the underlying tissues. Polarized epithelial cells line the major cavities of our body, while polarized endothelial cells line the blood-tissue interface, both of which protect our body against the invasion of biological pathogens. Thus, many pathogens have to invade the monolayer of epithelial or endothelial cells in order to establish infection. During infection with Chikungunya virus, a mosquito vector bites a human host and inoculates the virus into the host's bloodstream. In recent epidemics of Chikungunya infection, more severe clinical manifestations such as neurological complications were observed. As such, we studied the infection of Chikungunya virus in polarized cells in an aim to provide explanations for the more severe pathogenesis observed.
Collapse
Affiliation(s)
- Pei Jin Lim
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore, Singapore
| | - Justin Jang Hann Chu
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore, Singapore
- * E-mail:
| |
Collapse
|
35
|
Identification of amino acid changes that may have been critical for the genesis of A(H7N9) influenza viruses. J Virol 2014; 88:4877-96. [PMID: 24522919 DOI: 10.1128/jvi.00107-14] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
UNLABELLED Novel influenza A viruses of the H7N9 subtype [A(H7N9)] emerged in the spring of 2013 in China and had infected 163 people as of 10 January 2014; 50 of them died of the severe respiratory infection caused by these viruses. Phylogenetic studies have indicated that the novel A(H7N9) viruses emerged from reassortment of H7, N9, and H9N2 viruses. Inspections of protein sequences from A(H7N9) viruses and their immediate predecessors revealed several amino acid changes in A(H7N9) viruses that may have facilitated transmission and replication in the novel host. Since mutations that occurred more ancestrally may also have contributed to the genesis of A(H7N9) viruses, we inferred historical evolutionary events leading to the novel viruses. We identified a number of amino acid changes on the evolutionary path to A(H7N9) viruses, including substitutions that may be associated with host range, replicative ability, and/or host responses to infection. The biological significance of these amino acid changes can be tested in future studies. IMPORTANCE The novel influenza A viruses of the H7N9 subtype [A(H7N9)], which first emerged in the spring of 2013, cause severe respiratory infections in humans. Here, we performed a comprehensive evolutionary analysis of the progenitors of A(H7N9) viruses to identify amino acid changes that may have been critical for the emergence of A(H7N9) viruses and their ability to infect humans. We provide a list of potentially important amino acid changes that can be tested for their significance for the influenza virus host range, replicative ability, and/or host responses to infection.
Collapse
|
36
|
Matsuoka Y, Matsumae H, Katoh M, Eisfeld AJ, Neumann G, Hase T, Ghosh S, Shoemaker JE, Lopes TJS, Watanabe T, Watanabe S, Fukuyama S, Kitano H, Kawaoka Y. A comprehensive map of the influenza A virus replication cycle. BMC SYSTEMS BIOLOGY 2013; 7:97. [PMID: 24088197 PMCID: PMC3819658 DOI: 10.1186/1752-0509-7-97] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 09/24/2013] [Indexed: 02/05/2023]
Abstract
Background Influenza is a common infectious disease caused by influenza viruses. Annual epidemics cause severe illnesses, deaths, and economic loss around the world. To better defend against influenza viral infection, it is essential to understand its mechanisms and associated host responses. Many studies have been conducted to elucidate these mechanisms, however, the overall picture remains incompletely understood. A systematic understanding of influenza viral infection in host cells is needed to facilitate the identification of influential host response mechanisms and potential drug targets. Description We constructed a comprehensive map of the influenza A virus (‘IAV’) life cycle (‘FluMap’) by undertaking a literature-based, manual curation approach. Based on information obtained from publicly available pathway databases, updated with literature-based information and input from expert virologists and immunologists, FluMap is currently composed of 960 factors (i.e., proteins, mRNAs etc.) and 456 reactions, and is annotated with ~500 papers and curation comments. In addition to detailing the type of molecular interactions, isolate/strain specific data are also available. The FluMap was built with the pathway editor CellDesigner in standard SBML (Systems Biology Markup Language) format and visualized as an SBGN (Systems Biology Graphical Notation) diagram. It is also available as a web service (online map) based on the iPathways+ system to enable community discussion by influenza researchers. We also demonstrate computational network analyses to identify targets using the FluMap. Conclusion The FluMap is a comprehensive pathway map that can serve as a graphically presented knowledge-base and as a platform to analyze functional interactions between IAV and host factors. Publicly available webtools will allow continuous updating to ensure the most reliable representation of the host-virus interaction network. The FluMap is available at http://www.influenza-x.org/flumap/.
Collapse
Affiliation(s)
- Yukiko Matsuoka
- JST ERATO Kawaoka infection-induced host responses project, Minato-ku, Tokyo 108-8639, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Intact sphingomyelin biosynthetic pathway is essential for intracellular transport of influenza virus glycoproteins. Proc Natl Acad Sci U S A 2013; 110:6406-11. [PMID: 23576732 DOI: 10.1073/pnas.1219909110] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Cells genetically deficient in sphingomyelin synthase-1 (SGMS1) or blocked in their synthesis pharmacologically through exposure to a serine palmitoyltransferase inhibitor (myriocin) show strongly reduced surface display of influenza virus glycoproteins hemagglutinin (HA) and neuraminidase (NA). The transport of HA to the cell surface was assessed by accessibility of HA on intact cells to exogenously added trypsin and to HA-specific antibodies. Rates of de novo synthesis of viral proteins in wild-type and SGMS1-deficient cells were equivalent, and HA negotiated the intracellular trafficking pathway through the Golgi normally. We engineered a strain of influenza virus to allow site-specific labeling of HA and NA using sortase. Accessibility of both HA and NA to sortase was blocked in SGMS1-deficient cells and in cells exposed to myriocin, with a corresponding inhibition of the release of virus particles from infected cells. Generation of influenza virus particles thus critically relies on a functional sphingomyelin biosynthetic pathway, required to drive influenza viral glycoproteins into lipid domains of a composition compatible with virus budding and release.
Collapse
|
38
|
Differential transport of Influenza A neuraminidase signal anchor peptides to the plasma membrane. FEBS Lett 2013; 587:1411-7. [PMID: 23523923 DOI: 10.1016/j.febslet.2013.03.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 03/08/2013] [Accepted: 03/12/2013] [Indexed: 11/21/2022]
Abstract
Influenza A Neuraminidase is essential for virus release from the cell surface of host cells. Given differential structures of the N-terminal sequences including the transmembrane domains of neuraminidase subtypes, we investigated their contribution to transport and localization of subtypes N1, N2 and N8 to the plasma membrane. We generated consensus sequences from all protein entries available for these subtypes. We found that 40N-terminal the forty N-terminal amino acids are sufficient to confer plasma membrane localization of fusion proteins, albeit with different efficiencies. Strikingly, subtle differences in the primary structure of the part of the transmembrane domain that resides in the exoplasmic leaflet of the membrane have a major impact on transport efficiency, providing a potential target for the inhibition of virus release.
Collapse
|
39
|
Development of neuraminidase subtype-specific reference antisera by recombinant protein expressed in baculovirus. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2012; 20:140-5. [PMID: 23221001 DOI: 10.1128/cvi.00385-12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Outbreaks of avian influenza A virus infection, particularly the H5N1 strains that have affected birds and some humans for the past 15 years, have highlighted the need for increased surveillance and disease control. Such measures require diagnostic tests to detect and characterize the different subtypes of influenza virus. In the current study, a simple method for producing reference avian influenza virus antisera to be used in diagnostic tests was developed. Antisera of nine avian influenza A virus neuraminidases (NA) used for NA subtyping were produced using a recombinant baculovirus. The recombinant NA (rNA) proteins were expressed in Sf9 insect cells and inoculated intramuscularly into specific-pathogen-free chickens with the ISA70 adjuvant. The NA inhibition antibody titers of the rNA antiserum were in the ranges of 5 to 8 and 6 to 9 log(2) units after the primary and boost immunizations, respectively. The antisera were subtype specific, showing low cross-reactivity against every other NA subtype using the conventional thiobarbituric acid NA inhibition assay. These results suggest that this simple method for producing reference NA antisera without purification may be useful for the diagnosis and surveillance of influenza virus.
Collapse
|
40
|
Wang S, Li H, Chen Y, Wei H, Gao GF, Liu H, Huang S, Chen JL. Transport of influenza virus neuraminidase (NA) to host cell surface is regulated by ARHGAP21 and Cdc42 proteins. J Biol Chem 2012; 287:9804-9816. [PMID: 22318733 DOI: 10.1074/jbc.m111.312959] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Influenza virus neuraminidase (NA) is transported to the virus assembly site at the plasma membrane and is a major viral envelope component that plays a critical role in the release of progeny virions and in determination of host range restriction. However, little is known about the host factors that are involved in regulating the intracellular and cell surface transport of NA. Here we identified the Cdc42-specific GAP, ARHGAP21 differentially expressed in host cells infected with influenza A virus using cDNA microarray analysis. Furthermore, we have investigated the involvement of Rho family GTPases in NA transport to the cell surface. We found that expression of constitutively active or inactive mutants of RhoA or Rac1 did not significantly affect the amount of NA that reached the cell surface. However, expression of constitutively active Cdc42 or depletion of ARHGAP21 promoted the transport of NA to the plasma membranes. By contrast, cells expressing shRNA targeting Cdc42 or overexpressing ARHGAP21 exhibited a significant decrease in the amount of cell surface-localized NA. Importantly, silencing Cdc42 reduced influenza A virus replication, whereas silencing ARHGAP21 increased the virus replication. Together, our results reveal that ARHGAP21- and Cdc42-based signaling regulates the NA transport and thereby impacts virus replication.
Collapse
Affiliation(s)
- Song Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Hua Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China,; College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China, and
| | - Yuhai Chen
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Haitao Wei
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - George F Gao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Hongqiang Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Shile Huang
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130
| | - Ji-Long Chen
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China,.
| |
Collapse
|
41
|
Function of membrane rafts in viral lifecycles and host cellular response. Biochem Res Int 2011; 2011:245090. [PMID: 22191032 PMCID: PMC3235436 DOI: 10.1155/2011/245090] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 08/31/2011] [Accepted: 09/27/2011] [Indexed: 12/31/2022] Open
Abstract
Membrane rafts are small (10–200 nm) sterol- and sphingolipid-enriched domains that compartmentalize cellular processes. Membrane rafts play an important role in viral infection cycles and viral virulence. Viruses are divided into four main classes, enveloped DNA virus, enveloped RNA virus, nonenveloped DNA virus, and nonenveloped RNA virus. General virus infection cycle is also classified into two sections, the early stage (entry process) and the late stage (assembly, budding, and release processes of virus particles). In the viral cycle, membrane rafts act as a scaffold of many cellular signal transductions, which are associated with symptoms caused by viral infections. In this paper, we describe the functions of membrane rafts in viral lifecycles and host cellular response according to each virus classification, each stage of the virus lifecycle, and each virus-induced signal transduction.
Collapse
|
42
|
Abstract
Cell membranes are composed of a lipid bilayer, containing proteins that span the bilayer and/or interact with the lipids on either side of the two leaflets. Although recent advances in lipid analytics show that membranes in eukaryotic cells contain hundreds of different lipid species, the function of this lipid diversity remains enigmatic. The basic structure of cell membranes is the lipid bilayer, composed of two apposing leaflets, forming a two-dimensional liquid with fascinating properties designed to perform the functions cells require. To coordinate these functions, the bilayer has evolved the propensity to segregate its constituents laterally. This capability is based on dynamic liquid-liquid immiscibility and underlies the raft concept of membrane subcompartmentalization. This principle combines the potential for sphingolipid-cholesterol self-assembly with protein specificity to focus and regulate membrane bioactivity. Here we will review the emerging principles of membrane architecture with special emphasis on lipid organization and domain formation.
Collapse
Affiliation(s)
- Kai Simons
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany.
| | | |
Collapse
|
43
|
Association of influenza virus proteins with membrane rafts. Adv Virol 2011; 2011:370606. [PMID: 22312341 PMCID: PMC3265303 DOI: 10.1155/2011/370606] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Accepted: 05/02/2011] [Indexed: 12/12/2022] Open
Abstract
Assembly and budding of influenza virus proceeds in the viral budozone, a domain in the plasma membrane with characteristics of cholesterol/sphingolipid-rich membrane rafts. The viral transmembrane glycoproteins hemagglutinin (HA) and neuraminidase (NA) are intrinsically targeted to these domains, while M2 is seemingly targeted to the edge of the budozone. Virus assembly is orchestrated by the matrix protein M1, binding to all viral components and the membrane. Budding progresses by protein- and lipid-mediated membrane bending and particle scission probably mediated by M2. Here, we summarize the experimental evidence for this model with emphasis on the raft-targeting features of HA, NA, and M2 and review the functional importance of raft domains for viral protein transport, assembly and budding, environmental stability, and membrane fusion.
Collapse
|
44
|
Cai Y, Jia T, Lam SK, Ding Y, Gao C, San MWY, Pimpl P, Jiang L. Multiple cytosolic and transmembrane determinants are required for the trafficking of SCAMP1 via an ER-Golgi-TGN-PM pathway. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 65:882-96. [PMID: 21251105 DOI: 10.1111/j.1365-313x.2010.04469.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
How polytopic plasma membrane (PM) proteins reach their destination in plant cells remains elusive. Using transgenic tobacco BY-2 cells, we previously showed that the rice secretory carrier membrane protein 1 (SCAMP1), an integral membrane protein with four transmembrane domains (TMDs), is localized to the PM and trans-Golgi network (TGN). Here, we study the transport pathway and sorting signals of SCAMP1 by following its transient expression in tobacco BY-2 protoplasts and show that SCAMP1 reaches the PM via an endoplasmic reticulum (ER)-Golgi-TGN-PM pathway. Loss-of-function and gain-of-function analysis of various green fluorescent protein (GFP) fusions with SCAMP1 mutations further demonstrates that: (i) the cytosolic N-terminus of SCAMP1 contains an ER export signal; (ii) the transmembrane domain 2 (TMD2) and TMD3 of SCAMP1 are essential for Golgi export; (iii) SCAMP1 TMD1 is essential for TGN-to-PM targeting; (iv) the predicted topology of SCAMP1 and its various mutants remain identical as demonstrated by protease protection assay. Therefore, both the cytosolic N-terminus and TMD sequences of SCAMP1 play integral roles in mediating its transport to the PM via an ER-Golgi-TGN pathway.
Collapse
Affiliation(s)
- Yi Cai
- School of Life Sciences, Centre for Cell and Developmental Biology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Graham M, Liang B, Van Domselaar G, Bastien N, Beaudoin C, Tyler S, Kaplen B, Landry E, Li Y. Nationwide molecular surveillance of pandemic H1N1 influenza A virus genomes: Canada, 2009. PLoS One 2011; 6:e16087. [PMID: 21249207 PMCID: PMC3017559 DOI: 10.1371/journal.pone.0016087] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2010] [Accepted: 12/06/2010] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND In April 2009, a novel triple-reassortant swine influenza A H1N1 virus ("A/H1N1pdm"; also known as SOIV) was detected and spread globally as the first influenza pandemic of the 21(st) century. Sequencing has since been conducted at an unprecedented rate globally in order to monitor the diversification of this emergent virus and to track mutations that may affect virus behavior. METHODOLOGY/PRINCIPAL FINDINGS By Sanger sequencing, we determined consensus whole-genome sequences for A/H1N1pdm viruses sampled nationwide in Canada over 33 weeks during the 2009 first and second pandemic waves. A total of 235 virus genomes sampled from unique subjects were analyzed, providing insight into the temporal and spatial trajectory of A/H1N1pdm lineages within Canada. Three clades (2, 3, and 7) were identifiable within the first two weeks of A/H1N1pdm appearance, with clades 5 and 6 appearing thereafter; further diversification was not apparent. Only two viral sites displayed evidence of adaptive evolution, located in hemagglutinin (HA) corresponding to D222 in the HA receptor-binding site, and to E374 at HA2-subunit position 47. Among the Canadian sampled viruses, we observed notable genetic diversity (1.47 x 10⁻³ amino acid substitutions per site) in the gene encoding PB1, particularly within the viral genomic RNA (vRNA)-binding domain (residues 493-757). This genome data set supports the conclusion that A/H1N1pdm is evolving but not excessively relative to other H1N1 influenza A viruses. Entropy analysis was used to investigate whether any mutated A/H1N1pdm protein residues were associated with infection severity; however no virus genotypes were observed to trend with infection severity. One virus that harboured heterozygote coding mutations, including PB2 D567D/G, was attributed to a severe and potentially mixed infection; yet the functional significance of this PB2 mutation remains unknown. CONCLUSIONS/SIGNIFICANCE These findings contribute to enhanced understanding of Influenza A/H1N1pdm viral dynamics.
Collapse
Affiliation(s)
- Morag Graham
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Wu J, Zhang F, Wang M, Xu C, Song J, Zhou J, Lin X, Zhang Y, Wu X, Tan W, Lu J, Zhao H, Gao J, Zhao P, Lu J, Wang Y. Characterization of neuraminidases from the highly pathogenic avian H5N1 and 2009 pandemic H1N1 influenza A viruses. PLoS One 2010; 5:e15825. [PMID: 21209916 PMCID: PMC3012118 DOI: 10.1371/journal.pone.0015825] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Accepted: 11/29/2010] [Indexed: 01/09/2023] Open
Abstract
To study the precise role of the neuraminidase (NA), and its stalk region in particular, in the assembly, release, and entry of influenza virus, we deleted the 20-aa stalk segment from 2009 pandemic H1N1 NA (09N1) and inserted this segment, now designated 09s60, into the stalk region of a highly pathogenic avian influenza (HPAI) virus H5N1 NA (AH N1). The biological characterization of these wild-type and mutant NAs was analyzed by pseudotyped particles (pseudoparticles) system. Compared with the wild-type AH N1, the wild-type 09N1 exhibited higher NA activity and released more pseudoparticles. Deletion/insertion of the 09s60 segment did not alter this relationship. The infectivity of pseudoparticles harboring NA in combination with the hemagglutinin from HPAI H5N1 (AH H5) was decreased by insertion of 09s60 into AH N1 and was increased by deletion of 09s60 from 09N1. When isolated from the wild-type 2009H1N1 virus, 09N1 existed in the forms (in order of abundance) dimer>>tetramer>monomer, but when isolated from pseudoparticles, 09N1 existed in the forms dimer>monomer>>>tetramer. After deletion of 09s60, 09N1 existed in the forms monomer>>>dimer. AH N1 from pseudoparticles existed in the forms monomer>>dimer, but after insertion of 09s60, it existed in the forms dimer>>monomer. Deletion/insertion of 09s60 did not alter the NA glycosylation pattern of 09N1 or AH N1. The 09N1 was more sensitive than the AH N1 to the NA inhibitor oseltamivir, suggesting that the infectivity-enhancing effect of oseltamivir correlates with robust NA activity.
Collapse
Affiliation(s)
- Jia Wu
- Key Laboratory for Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Science, Wenzhou Medical College, Wenzhou, People's Republic of China
- State Key Laboratory for Molecular Virology and Genetic Engineering, National Institute for Viral Disease Control and Prevention, China Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Fengwei Zhang
- Key Laboratory for Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Science, Wenzhou Medical College, Wenzhou, People's Republic of China
- State Key Laboratory for Molecular Virology and Genetic Engineering, National Institute for Viral Disease Control and Prevention, China Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Maorong Wang
- Liver Disease Center of P.L.A., the 81st Hospital of PLA, Nanjing, People's Republic of China
| | - Chunqiong Xu
- Key Laboratory for Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Science, Wenzhou Medical College, Wenzhou, People's Republic of China
- School of Clinical Sciences, NingXia Medical University, Yinchuang, People's Republic of China
| | - Jingdong Song
- State Key Laboratory for Molecular Virology and Genetic Engineering, National Institute for Viral Disease Control and Prevention, China Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Jianfang Zhou
- State Key Laboratory for Molecular Virology and Genetic Engineering, National Institute for Viral Disease Control and Prevention, China Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Xiaojing Lin
- State Key Laboratory for Molecular Virology and Genetic Engineering, National Institute for Viral Disease Control and Prevention, China Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Yonghui Zhang
- State Key Laboratory for Molecular Virology and Genetic Engineering, National Institute for Viral Disease Control and Prevention, China Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Xiaobing Wu
- State Key Laboratory for Molecular Virology and Genetic Engineering, National Institute for Viral Disease Control and Prevention, China Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Wenjie Tan
- State Key Laboratory for Molecular Virology and Genetic Engineering, National Institute for Viral Disease Control and Prevention, China Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Jian Lu
- State Key Laboratory for Molecular Virology and Genetic Engineering, National Institute for Viral Disease Control and Prevention, China Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Honglan Zhao
- State Key Laboratory for Molecular Virology and Genetic Engineering, National Institute for Viral Disease Control and Prevention, China Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Jimin Gao
- Key Laboratory for Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Science, Wenzhou Medical College, Wenzhou, People's Republic of China
| | - Ping Zhao
- Department of Microbiology, Shanghai Key Laboratory of Medical Biodefense, The Second Military Medical University, Shanghai, People's Republic of China
- * E-mail: (YW); (JL); (PZ)
| | - Jianxin Lu
- Key Laboratory for Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Science, Wenzhou Medical College, Wenzhou, People's Republic of China
- * E-mail: (YW); (JL); (PZ)
| | - Yue Wang
- State Key Laboratory for Molecular Virology and Genetic Engineering, National Institute for Viral Disease Control and Prevention, China Center for Disease Control and Prevention, Beijing, People's Republic of China
- * E-mail: (YW); (JL); (PZ)
| |
Collapse
|
47
|
Ruiz A, Hill MS, Schmitt K, Stephens EB. Membrane raft association of the Vpu protein of human immunodeficiency virus type 1 correlates with enhanced virus release. Virology 2010; 408:89-102. [PMID: 20880565 DOI: 10.1016/j.virol.2010.08.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 08/05/2010] [Accepted: 08/26/2010] [Indexed: 11/26/2022]
Abstract
The Vpu protein of human immunodeficiency virus type 1 (HIV-1) is known to enhance virion release from certain cell types. To accomplish this function, Vpu interacts with the restriction factor known as bone marrow stromal cell antigen 2 (BST-2)/tetherin. In this study, we analyzed whether the Vpu protein is associated with microdomains known as lipid or membrane rafts. Our results indicate that Vpu partially partitions into detergent-resistant membrane (DRM) fractions when expressed alone or in the context of simian-human immunodeficiency virus (SHIV) infection. The ability to be partitioned into rafts was observed with both subtype B and C Vpu proteins. The use of cholesterol lowering lovastatin/M-β-cyclodextrin and co-patching experiments confirmed that Vpu can be detected in cholesterol rich regions of membranes. Finally, we present data showing that raft association-defective transmembrane mutants of Vpu have impaired enhanced virus release function, but still maintain the ability to down-regulate CD4.
Collapse
Affiliation(s)
- Autumn Ruiz
- Department of Anatomy and Cell Biology, University of Kansas Medical Center 3901 Rainbow Blvd. Kansas City, Kansas 66160
| | - M Sarah Hill
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center 3901 Rainbow Blvd. Kansas City, Kansas 66160
| | - Kimberly Schmitt
- Department of Anatomy and Cell Biology, University of Kansas Medical Center 3901 Rainbow Blvd. Kansas City, Kansas 66160
| | - Edward B Stephens
- Department of Anatomy and Cell Biology, University of Kansas Medical Center 3901 Rainbow Blvd. Kansas City, Kansas 66160.,Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center 3901 Rainbow Blvd. Kansas City, Kansas 66160
| |
Collapse
|
48
|
Abstract
Advances in cell biology and biophysics revealed that cellular membranes consist of multiple microdomains with specific sets of components such as lipid rafts and TEMs (tetraspanin-enriched microdomains). An increasing number of enveloped viruses have been shown to utilize these microdomains during their assembly. Among them, association of HIV-1 (HIV type 1) and other retroviruses with lipid rafts and TEMs within the PM (plasma membrane) is well documented. In this review, I describe our current knowledge on interrelationships between PM microdomain organization and the HIV-1 particle assembly process. Microdomain association during virus particle assembly may also modulate subsequent virus spread. Potential roles played by microdomains will be discussed with regard to two post-assembly events, i.e., inhibition of virus release by a raft-associated protein BST-2/tetherin and cell-to-cell HIV-1 transmission at virological synapses.
Collapse
|
49
|
Nayak DP, Balogun RA, Yamada H, Zhou ZH, Barman S. Influenza virus morphogenesis and budding. Virus Res 2009; 143:147-61. [PMID: 19481124 PMCID: PMC2730999 DOI: 10.1016/j.virusres.2009.05.010] [Citation(s) in RCA: 199] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Accepted: 05/19/2009] [Indexed: 12/11/2022]
Abstract
Influenza viruses are enveloped, negative stranded, segmented RNA viruses belonging to Orthomyxoviridae family. Each virion consists of three major sub-viral components, namely (i) a viral envelope decorated with three transmembrane proteins hemagglutinin (HA), neuraminidase (NA) and M2, (ii) an intermediate layer of matrix protein (M1), and (iii) an innermost helical viral ribonucleocapsid [vRNP] core formed by nucleoprotein (NP) and negative strand viral RNA (vRNA). Since complete virus particles are not found inside the cell, the processes of assembly, morphogenesis, budding and release of progeny virus particles at the plasma membrane of the infected cells are critically important for the production of infectious virions and pathogenesis of influenza viruses as well. Morphogenesis and budding require that all virus components must be brought to the budding site which is the apical plasma membrane in polarized epithelial cells whether in vitro cultured cells or in vivo infected animals. HA and NA forming the outer spikes on the viral envelope possess apical sorting signals and use exocytic pathways and lipid rafts for cell surface transport and apical sorting. NP also has apical determinant(s) and is probably transported to the apical budding site similarly via lipid rafts and/or through cortical actin microfilaments. M1 binds the NP and the exposed RNAs of vRNPs, as well as to the cytoplasmic tails (CT) and transmembrane (TM) domains of HA, NA and M2, and is likely brought to the budding site on the piggy-back of vRNP and transmembrane proteins. Budding processes involve bud initiation, bud growth and bud release. The presence of lipid rafts and assembly of viral components at the budding site can cause asymmetry of lipid bilayers and outward membrane bending leading to bud initiation and bud growth. Bud release requires fusion of the apposing viral and cellular membranes and scission of the virus buds from the infected cellular membrane. The processes involved in bud initiation, bud growth and bud scission/release require involvement both viral and host components and can affect bud closing and virus release in both positive and negative ways. Among the viral components, M1, M2 and NA play important roles in bud release and M1, M2 and NA mutations all affect the morphology of buds and released viruses. Disassembly of host cortical actin microfilaments at the pinching-off site appears to facilitate bud fission and release. Bud scission is energy dependent and only a small fraction of virus buds present on the cell surface is released. Discontinuity of M1 layer underneath the lipid bilayer, absence of outer membrane spikes, absence of lipid rafts in the lipid bilayer, as well as possible presence of M2 and disassembly of cortical actin microfilaments at the pinching-off site appear to facilitate bud fission and bud release. We provide our current understanding of these important processes leading to the production of infectious influenza virus particles.
Collapse
Affiliation(s)
- Debi P Nayak
- Department of Microbiology, Immunology and Molecular Genetics, Molecular Biology Institute, Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA.
| | | | | | | | | |
Collapse
|
50
|
Mapping the sequence mutations of the 2009 H1N1 influenza A virus neuraminidase relative to drug and antibody binding sites. Biol Direct 2009; 4:18; discussion 18. [PMID: 19457254 PMCID: PMC2691737 DOI: 10.1186/1745-6150-4-18] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Accepted: 05/20/2009] [Indexed: 11/30/2022] Open
Abstract
In this work, we study the consequences of sequence variations of the "2009 H1N1" (swine or Mexican flu) influenza A virus strain neuraminidase for drug treatment and vaccination. We find that it is phylogenetically more closely related to European H1N1 swine flu and H5N1 avian flu rather than to the H1N1 counterparts in the Americas. Homology-based 3D structure modeling reveals that the novel mutations are preferentially located at the protein surface and do not interfere with the active site. The latter is the binding cavity for 3 currently used neuraminidase inhibitors: oseltamivir (Tamiflu®), zanamivir (Relenza®) and peramivir; thus, the drugs should remain effective for treatment. However, the antigenic regions of the neuraminidase relevant for vaccine development, serological typing and passive antibody treatment can differ from those of previous strains and already vary among patients. This article was reviewed by Sandor Pongor and L. Aravind.
Collapse
|