1
|
Wang L, Zhu W, Gong L, Kang Y, Lv L, Zhai Y, Zhang Y, Qiu X, Zhuang G, Sun A. MDV-encoded protein kinase U S3 phosphorylates WTAP to inhibit transcriptomic m 6A modification and cellular protein translation. Vet Microbiol 2025; 300:110335. [PMID: 39644648 DOI: 10.1016/j.vetmic.2024.110335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/28/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
Marek's disease virus (MDV)-encoded US3 is a highly conserved serine/threonine protein kinase in alpha-herpesviruses. In other alpha-herpesviruses, such as pseudorabies virus (PRV), US3 phosphorylates the N6-methyladenosine (m6A) methyltransferase Wilms tumor 1-associated protein (WTAP), inhibiting m6A modification. However, the role and mechanism of US3-mediated WTAP phosphorylation during MDV infection remain undefined. Our study revealed that MDV infection in vitro does not alter WTAP expression, while significant changes in WTAP expression occur during the MDV life cycle in vivo. We demonstrated that MDV-encoded US3 interacts with and co-localizes with WTAP in the nucleus. Further analysis showed that US3 binds to WTAP's C-terminal domain and phosphorylates WTAP at S273, S305, S314, and S375. Notably, the interaction between US3 and WTAP does not affect WTAP stability but inhibits transcriptomic m6A modification and cellular protein translation. Therefore, these findings enhance our understanding of the molecular mechanisms underlying MDV infection.
Collapse
Affiliation(s)
- Lele Wang
- College of Veterinary Medicine, International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou 450046, China
| | - Wenhui Zhu
- College of Veterinary Medicine, International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou 450046, China
| | - Lele Gong
- College of Veterinary Medicine, International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou 450046, China
| | - Yunzhe Kang
- College of Veterinary Medicine, International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou 450046, China
| | - Lijie Lv
- College of Veterinary Medicine, International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou 450046, China
| | - Yunyun Zhai
- College of Veterinary Medicine, International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou 450046, China
| | - Yuanyuan Zhang
- College of Veterinary Medicine, International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou 450046, China
| | - Xiangqi Qiu
- College of Veterinary Medicine, International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou 450046, China
| | - Guoqing Zhuang
- College of Veterinary Medicine, International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou 450046, China; Longhu Laboratory, Henan Agricultural University, Zhengzhou University, Zhengzhou 450046, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Henan Agricultural University, Zhengzhou 450046, China.
| | - Aijun Sun
- College of Veterinary Medicine, International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou 450046, China; Longhu Laboratory, Henan Agricultural University, Zhengzhou University, Zhengzhou 450046, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Henan Agricultural University, Zhengzhou 450046, China.
| |
Collapse
|
2
|
Dai J, Song C, Tan L, Sun Y, Tang N, Qu Y, Liao Y, Qiu X, Ding C. Onset and long-term duration of immunity provided by a single vaccination with recombinant a Marek's disease virus with REV-LTR insertion. Front Vet Sci 2024; 11:1510834. [PMID: 39735581 PMCID: PMC11681624 DOI: 10.3389/fvets.2024.1510834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 11/30/2024] [Indexed: 12/31/2024] Open
Abstract
Marek's Disease (MD), caused by Marek's disease virus (MDV), is a highly contagious lymphoproliferative disease in poultry. Despite the fact that MD has been effectively controlled by vaccines, the virulence of field isolates of MDV has continued to evolve, becoming more virulent under the immune pressure of vaccines. Our previous research has confirmed that the recombinant rMDV strain with REV-LTR insertion can be used as a live attenuated vaccine candidate. The aim of this research was to evaluate the onset and duration of immunity of the rMDV strain through two experiments. In both experiments, 1-day-old SPF chickens were vaccinated subcutaneously with the rMDV strain at a dose of 3,000 Plaque Formation Unit (PFU) per chick in 0.2 mL of the MD diluent. Then, in Experimental design 1, the chicks in the groups Vac-3d/CC-3d, Vac-5d/CC-5d, and Vac-7d/CC-7d were challenged separately with 500 PFU vvMDV strain MD5 at 3 days, 5 days, and 7 days after vaccination; in Experimental design 2, the chicks in group Vac-60d/CC-60d, Vac-120d/CC-120d, and Vac-180d/CC-180d were challenged at 60 days, 120 days, and 180 days after vaccination. The clinical symptoms and weight gain of chickens in each group were observed and recorded. The results showed that the rMDV strain with REV-LTR insertion provides protection starting from 3 days of age and achieves good immune effects at 5 days of age after 1-day-old immunization, and the immunization duration can reach for at least 180 days. Given age-related resistance, it can be confirmed that our vaccine can actually provide lifelong immunity. This study provides valuable insights into the onset and duration of immunity of the rMDV strain, which will provide a basis for the development and improvement of MD vaccines.
Collapse
Affiliation(s)
- Jun Dai
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Experimental Animal Center, Zunyi Medical University, Zunyi, China
| | - Cuiping Song
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Lei Tan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yingjie Sun
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Ning Tang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yang Qu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Ying Liao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Xusheng Qiu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Chan Ding
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| |
Collapse
|
3
|
Niebora J, Data K, Domagała D, Józkowiak M, Barrett S, Norizadeh Abbariki T, Bryja A, Kulus M, Woźniak S, Ziemak H, Piotrowska-Kempisty H, Antosik P, Bukowska D, Mozdziak P, Dzięgiel P, Kempisty B. Avian Models for Human Carcinogenesis-Recent Findings from Molecular and Clinical Research. Cells 2024; 13:1797. [PMID: 39513904 PMCID: PMC11544849 DOI: 10.3390/cells13211797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/24/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
Birds, especially the chick and hen, have been important biomedical research models for centuries due to the accessibility of the avian embryo and the early discovery of avian viruses. Comprehension of avian tumor virology was a milestone in basic cancer research, as was that of non-viral genesis, as it enabled the discovery of oncogenes. Furthermore, studies on avian viruses provided initial insights into Kaposi's sarcoma and EBV-induced diseases. However, the role of birds in human carcinogenesis extends beyond the realm of virology research. Utilization of CAM, the chorioallantoic membrane, an easily accessible extraembryonic tissue with rich vasculature, has enabled studies on tumor-induced angiogenesis and metastasis and the efficient screening of potential anti-cancer compounds. Also, the chick embryo alone is an effective preclinical in vivo patient-derived xenograft model, which is important for the development of personalized therapies. Furthermore, adult birds may also closely resemble human oncogenesis, as evidenced by the laying hen, which is the only animal model of a spontaneous form of ovarian cancer. Avian models may create an interesting alternative compared with mammalian models, enabling the creation of a relatively cost-effective and easy-to-maintain platform to address key questions in cancer biology.
Collapse
Affiliation(s)
- Julia Niebora
- Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland (D.D.); (M.J.)
| | - Krzysztof Data
- Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland (D.D.); (M.J.)
| | - Dominika Domagała
- Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland (D.D.); (M.J.)
| | - Małgorzata Józkowiak
- Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland (D.D.); (M.J.)
- Department of Toxicology, Poznan University of Medical Sciences, 60-631 Poznan, Poland
| | - Saoirse Barrett
- Human Clinical Embryology & Assisted Conception, School of Medicine, University of Dundee, Dundee DD1 4HN, UK
| | | | - Artur Bryja
- Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland (D.D.); (M.J.)
| | - Magdalena Kulus
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Sławomir Woźniak
- Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland (D.D.); (M.J.)
| | - Hanna Ziemak
- Veterinary Clinic of the Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Hanna Piotrowska-Kempisty
- Department of Toxicology, Poznan University of Medical Sciences, 60-631 Poznan, Poland
- Department of Basic and Preclinical Science, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Paweł Antosik
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Dorota Bukowska
- Department of Diagnostics and Clinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Paul Mozdziak
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA;
- Physiology Graduate Faculty, North Carolina State University, Raleigh, NC 27695, USA
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Bartosz Kempisty
- Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland (D.D.); (M.J.)
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
- Physiology Graduate Faculty, North Carolina State University, Raleigh, NC 27695, USA
- Center of Assisted Reproduction, Department of Obstetrics and Gynecology, University Hospital and Masaryk University, 601 77 Brno, Czech Republic
| |
Collapse
|
4
|
Chacón RD, Sánchez-Llatas CJ, Astolfi-Ferreira CS, Raso TF, Piantino Ferreira AJ. Diversity of Marek's Disease Virus Strains in Infections in Backyard and Ornamental Birds. Animals (Basel) 2024; 14:2867. [PMID: 39409816 PMCID: PMC11482489 DOI: 10.3390/ani14192867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 10/19/2024] Open
Abstract
Marek's disease is caused by Mardivirus gallidalpha2, commonly known as Marek's disease virus (MDV). This pathogen infects various bird species resulting in a range of clinical manifestations. The meq gene, which is crucial for oncogenesis, has been extensively studied, but molecular investigations of MDV in noncommercial South American birds are limited. This study detected MDV in backyard and ornamental birds from Brazil and Peru and characterized the meq gene. MDV was confirmed in all seven outbreaks examined. Three isoforms of meq (S-meq, meq, and L-meq) and two to seven proline repeat regions (PRRs) were detected among the sequenced strains. At the amino acid level, genetic profiles with low and high virulence potential were identified. Phylogenetic analysis grouped the sequences into three distinct clusters. Selection pressure analysis revealed 18 and 15 codons under positive and negative selection, respectively. The results demonstrate significant MDV diversity in the studied birds, with both high and low virulence potentials. This study highlights the importance of monitoring and characterizing circulating MDV in backyard and ornamental birds, as they can act as reservoirs for future epidemiological outbreaks.
Collapse
Affiliation(s)
- Ruy D. Chacón
- Department of Pathology, School of Veterinary Medicine, University of São Paulo, Av. Prof. Orlando Marques de Paiva, 87, São Paulo 05508-900, Brazil; (R.D.C.); (C.S.A.-F.); (T.F.R.)
| | - Christian J. Sánchez-Llatas
- Department of Genetics, Physiology, and Microbiology, Faculty of Biology, Complutense University of Madrid (UCM), 28040 Madrid, Spain;
| | - Claudete S. Astolfi-Ferreira
- Department of Pathology, School of Veterinary Medicine, University of São Paulo, Av. Prof. Orlando Marques de Paiva, 87, São Paulo 05508-900, Brazil; (R.D.C.); (C.S.A.-F.); (T.F.R.)
| | - Tânia Freitas Raso
- Department of Pathology, School of Veterinary Medicine, University of São Paulo, Av. Prof. Orlando Marques de Paiva, 87, São Paulo 05508-900, Brazil; (R.D.C.); (C.S.A.-F.); (T.F.R.)
| | - Antonio J. Piantino Ferreira
- Department of Pathology, School of Veterinary Medicine, University of São Paulo, Av. Prof. Orlando Marques de Paiva, 87, São Paulo 05508-900, Brazil; (R.D.C.); (C.S.A.-F.); (T.F.R.)
| |
Collapse
|
5
|
Ortigas-Vasquez A, Pandey U, Renner DW, Bowen CD, Baigent SJ, Dunn J, Cheng H, Yao Y, Read AF, Nair V, Kennedy DA, Szpara ML. Comparative analysis of multiple consensus genomes of the same strain of Marek's disease virus reveals intrastrain variation. Virus Evol 2024; 10:veae047. [PMID: 39036034 PMCID: PMC11259760 DOI: 10.1093/ve/veae047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/24/2024] [Accepted: 06/17/2024] [Indexed: 07/23/2024] Open
Abstract
Current strategies to understand the molecular basis of Marek's disease virus (MDV) virulence primarily consist of cataloging divergent nucleotides between strains with different phenotypes. However, most comparative genomic studies of MDV rely on previously published consensus genomes despite the confirmed existence of MDV strains as mixed viral populations. To assess the reliability of interstrain genomic comparisons relying on published consensus genomes of MDV, we obtained two additional consensus genomes of vaccine strain CVI988 (Rispens) and two additional consensus genomes of the very virulent strain Md5 by sequencing viral stocks and cultured field isolates. In conjunction with the published genomes of CVI988 and Md5, this allowed us to perform three-way comparisons between multiple consensus genomes of the same strain. We found that consensus genomes of CVI988 can vary in as many as 236 positions involving 13 open reading frames (ORFs). By contrast, we found that Md5 genomes varied only in 11 positions involving a single ORF. Notably, we were able to identify 3 single-nucleotide polymorphisms (SNPs) in the unique long region and 16 SNPs in the unique short (US) region of CVI988GenBank.BAC that were not present in either CVI988Pirbright.lab or CVI988USDA.PA.field. Recombination analyses of field strains previously described as natural recombinants of CVI988 yielded no evidence of crossover events in the US region when either CVI988Pirbright.lab or CVI988USDA.PA.field were used to represent CVI988 instead of CVI988GenBank.BAC. We were also able to confirm that both CVI988 and Md5 populations were mixed, exhibiting a total of 29 and 27 high-confidence minor variant positions, respectively. However, we did not find any evidence of minor variants in the positions corresponding to the 19 SNPs in the unique regions of CVI988GenBank.BAC. Taken together, our findings suggest that continued reliance on the same published consensus genome of CVI988 may have led to an overestimation of genomic divergence between CVI988 and virulent strains and that multiple consensus genomes per strain may be necessary to ensure the accuracy of interstrain genomic comparisons.
Collapse
Affiliation(s)
- Alejandro Ortigas-Vasquez
- Department of Biology, Center for Infectious Disease Dynamics, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Utsav Pandey
- Department of Biochemistry and Molecular Biology, Center for Infectious Disease Dynamics, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Daniel W Renner
- Department of Biology, Center for Infectious Disease Dynamics, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Chris D Bowen
- Department of Biology, Center for Infectious Disease Dynamics, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Susan J Baigent
- Viral Oncogenesis Group, The Pirbright Institute, Woking GU24 0NF, UK
| | - John Dunn
- United States Department of Agriculture, Agricultural Research Service, US National Poultry Research Center, Southeast Poultry Research Laboratory, Athens, GA 30605, USA
| | - Hans Cheng
- United States Department of Agriculture, Agricultural Research Service, US National Poultry Research Center, Avian Disease and Oncology Laboratory, East Lansing, MI 48823, USA
| | - Yongxiu Yao
- Viral Oncogenesis Group, The Pirbright Institute, Woking GU24 0NF, UK
| | - Andrew F Read
- Department of Biology, Center for Infectious Disease Dynamics, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Venugopal Nair
- Viral Oncogenesis Group, The Pirbright Institute, Woking GU24 0NF, UK
| | - Dave A Kennedy
- Department of Biology, Center for Infectious Disease Dynamics, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Moriah L Szpara
- Department of Biology, Center for Infectious Disease Dynamics, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
- Department of Biochemistry and Molecular Biology, Center for Infectious Disease Dynamics, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
6
|
Emad A, El-Kenawy AA, El-Tholoth M. Molecular characterization of Marek's Disease virus reveals reticuloendotheliosis virus-long terminal repeat integration in the genome of the field isolates in Egypt. Poult Sci 2024; 103:103722. [PMID: 38626691 PMCID: PMC11036097 DOI: 10.1016/j.psj.2024.103722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/02/2024] [Accepted: 03/31/2024] [Indexed: 04/18/2024] Open
Abstract
The highly contagious, immunosuppressive, and cancer-causing Marek's disease virus (MDV) infects chickens. The financial costs of Marek's disease (MD) are significant for the chicken industry. In this study, a total of 180 samples from chicken farms suspected to be MDV-infected were collected. The chickens were sampled during the period between the months of October 2016 and February 2018 at Dakahlia and Damietta Governorates, Egypt. A total of 36 pooled samples were created. The prepared samples were inoculated into embryonated chicken eggs (ECEs). Indirect fluorescent antibody technique (IFAT) and ICP4 gene-based polymerase chain reaction (PCR) were used for MDV identification. For the genetic characterization of the identified virus, The ICP4 gene sequence was identified and compared with the sequences available from various regions of the world. Furthermore, the genomes of all detected MDVs were screened for the long terminal repeat (LTR) region of reticuloendotheliosis (REV) in their genomes. The results showed that 31 out of 36 pooled samples (86.1%) inoculated into ECEs displayed the characteristic pock lesions. By using IFAT and PCR to identify MDV in ECEs, positive results were found in 27 samples (75%). The Egyptian virus is thought to be genetically closely related to MDVs circulating in Ethiopia, China, and India. REV-LTR was amplified from 6 out of 27 field isolates genomes (22.2 %) while MDV vaccine strains were free from REV-LTR insertion. The integrated REV-LTRs depicted a close genetic relationship with those integrated in fowl poxvirus (FWPV) circulating in Egypt as well as those integrated in FWPVs and MDVs from China, USA, South Africa, and Australia. To the best of our knowledge, this investigation represents the first identification and characterization of REV-LTR insertions in Egyptian MDV field isolates. Given the findings above, additional research in the future seems crucial to determine how the REV-LTR insertions affect MDV pathogenesis, virulence, and insufficient vaccination protection.
Collapse
Affiliation(s)
- Aya Emad
- Department of Virology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Ali A. El-Kenawy
- Department of Virology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Mohamed El-Tholoth
- Department of Virology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
- Veterinary Science Program, Faculty of Health Sciences, Al Ain Men's Campus, Higher Colleges of Technology, 17155, UAE
| |
Collapse
|
7
|
Davidson I, Lupini C, Catelli E, Quaglia G, Maddaloni L, Mescolini G. Virulence evaluation of Israeli Marek's disease virus isolates from commercial poultry using their meq gene sequence. Virus Genes 2024; 60:32-43. [PMID: 38184501 DOI: 10.1007/s11262-023-02042-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/17/2023] [Indexed: 01/08/2024]
Abstract
Fifty-seven Gallid alphaherpesvirus 2 (GaHV-2) isolates, collected during a 30-year period (1990-2019) from commercial poultry flocks affected by Marek's disease (MD), were molecularly characterised. The GaHV-2 meq gene was amplified and sequenced to evaluate the virus virulence, based on the number of PPPPs within the proline-rich repeats (PRRs) of its transactivation domain. The present illustration of virus virulence evaluation on a large scale of field virus isolates by molecular analysis exemplifies the practical benefit and usefulness of the molecular marker in commercial GaVH-2 isolates. The alternative assay of GaVH-2 virulence pathotyping is the classical Gold Standard ADOL method, which is difficult and impossible to employ on a large scale using the Specific Pathogen Free (SPF) chicks of the ADOL strains kept in isolators for two months. The phylogenetic analysis performed in the present study showed that the meq gene amino acid sequences of the 57 Israeli strains divide into 16 phylogenetic branches. The virulence evaluation was performed in comparison with 36 GaHV-2 prototype strains, previously characterised by the in vivo Gold Standard ADOL assay. The results obtained revealed that the GaHV-2 strains circulating in Israel have evolved into a higher virulence potential during the years, as the four-proline stretches number in the meq gene decreased over the investigated period, typically of very virulent virus prototypes. The present study supports the meq gene molecular markers for the assessment of field GaVH-2 strains virulence.
Collapse
Affiliation(s)
| | - Caterina Lupini
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Bologna, Italy
| | - Elena Catelli
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Bologna, Italy
| | - Giulia Quaglia
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Bologna, Italy
| | - Luca Maddaloni
- Department of Public Health and Infectious Diseases, Sapienza, University of Rome, Rome, Italy
| | - Giulia Mescolini
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Bologna, Italy
- Operating Unit of Animal Health and Hygiene of Livestock Production, Department of Public Health, AUSL della Romagna, Forlì, FC, Italy
| |
Collapse
|
8
|
Ortigas-Vasquez A, Pandey U, Renner D, Bowen C, Baigent SJ, Dunn J, Cheng H, Yao Y, Read AF, Nair V, Kennedy DA, Szpara ML. Comparative Analysis of Multiple Consensus Genomes of the Same Strain of Marek's Disease Virus Reveals Intrastrain Variation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.04.556264. [PMID: 37732198 PMCID: PMC10508761 DOI: 10.1101/2023.09.04.556264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Current strategies to understand the molecular basis of Marek's disease virus (MDV) virulence primarily consist of cataloguing divergent nucleotides between strains with different phenotypes. However, each MDV strain is typically represented by a single consensus genome despite the confirmed existence of mixed viral populations. To assess the reliability of single-consensus interstrain genomic comparisons, we obtained two additional consensus genomes of vaccine strain CVI988 (Rispens) and two additional consensus genomes of the very virulent strain Md5 by sequencing viral stocks and cultured field isolates. In conjunction with the published genomes of CVI988 and Md5, this allowed us to perform 3-way comparisons between consensus genomes of the same strain. We found that consensus genomes of CVI988 can vary in as many as 236 positions involving 13 open reading frames (ORFs). In contrast, we found that Md5 genomes varied only in 11 positions involving a single ORF. Phylogenomic analyses showed all three Md5 consensus genomes clustered closely together, while also showing that CVI988 GenBank.BAC diverged from CVI988 Pirbright.lab and CVI988 USDA.PA.field . Comparison of CVI988 consensus genomes revealed 19 SNPs in the unique regions of CVI988 GenBank.BAC that were not present in either CVI988 Pirbright.lab or CVI988 USDA.PA.field . Finally, we evaluated the genomic heterogeneity of CVI988 and Md5 populations by identifying positions with >2% read support for alternative alleles in two ultra-deeply sequenced samples. We were able to confirm that both populations of CVI988 and Md5 were mixed, exhibiting a total of 29 and 27 high-confidence minor variant positions, respectively. We did not find any evidence of minor variants in the positions corresponding to the 19 SNPs in the unique regions of CVI988 GenBank.BAC . Taken together, our findings confirm that consensus genomes of the same strain of MDV can vary and suggest that multiple consensus genomes per strain are needed in order to maximize the accuracy of interstrain genomic comparisons.
Collapse
|
9
|
Žlabravec Z, Slavec B, Rožmanec E, Koprivec S, Dovč A, Zorman Rojs O. First Report of Marek's Disease Virus in Commercial Turkeys in Slovenia. Animals (Basel) 2024; 14:250. [PMID: 38254418 PMCID: PMC10812425 DOI: 10.3390/ani14020250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/09/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Marek's disease (MD), caused by Mardivirus gallidalpha 2 (GaAHV-2), also known as MD virus (MDV), is a lymphoproliferative disease that primarily affects chickens. Recently, MDV has been detected in lymphomatous tumors in turkeys in various countries. Between 2021 and 2023, three cases ranging from no to severe clinical disorders (depression, lameness, and increased mortality) occurred in commercial turkey flocks in Slovenia. In all cases, MDV was detected by PCR in DNA samples extracted from organs developing tumor infiltrations. Sequencing and phylogenetic analysis of the meq gene revealed that the GaAHV-2 detected has molecular features of a very virulent pathotype and genetic similarity with GaAHV-2 detected in chickens in Tunisia. This is the first report of MDV in commercial turkeys in Slovenia.
Collapse
Affiliation(s)
- Zoran Žlabravec
- Institute of Poultry, Birds, Small Mammals, and Reptiles, Faculty of Veterinary Medicine, University of Ljubljana, Gerbičeva ulica 60, 1000 Ljubljana, Slovenia; (Z.Ž.)
| | - Brigita Slavec
- Institute of Poultry, Birds, Small Mammals, and Reptiles, Faculty of Veterinary Medicine, University of Ljubljana, Gerbičeva ulica 60, 1000 Ljubljana, Slovenia; (Z.Ž.)
| | - Ema Rožmanec
- Veterinarska Ambulanta PP, d.o.o., Potrčeva cesta 10, 2250 Ptuj, Slovenia
| | - Saša Koprivec
- Institute of Preclinical Sciences, Faculty of Veterinary Medicine, University of Ljubljana, Gerbičeva ulica 60, 1000 Ljubljana, Slovenia
| | - Alenka Dovč
- Institute of Poultry, Birds, Small Mammals, and Reptiles, Faculty of Veterinary Medicine, University of Ljubljana, Gerbičeva ulica 60, 1000 Ljubljana, Slovenia; (Z.Ž.)
| | - Olga Zorman Rojs
- Institute of Poultry, Birds, Small Mammals, and Reptiles, Faculty of Veterinary Medicine, University of Ljubljana, Gerbičeva ulica 60, 1000 Ljubljana, Slovenia; (Z.Ž.)
| |
Collapse
|
10
|
Zhu X, Wang L, Gong L, Zhai Y, Wang R, Jin J, Lu W, Zhao X, Liao Y, Zhang G, Zhuang G, Sun A. LORF9 of Marek's disease virus is involved in the early cytolytic replication of B lymphocytes and can act as a target for gene deletion vaccine development. J Virol 2023; 97:e0157423. [PMID: 38014947 PMCID: PMC10734499 DOI: 10.1128/jvi.01574-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 10/28/2023] [Indexed: 11/29/2023] Open
Abstract
IMPORTANCE Marek's disease virus (MDV) is a highly infectious and oncogenic virus that can induce severe T cell lymphomas in chickens. MDV encodes more than 100 genes, most of which have unknown functions. This work indicated that the LORF9 gene is necessary for MDV early cytolytic replication in B lymphocytes. In addition, we have found that the LORF9 deletion mutant has a comparative immunological protective effect with CVI988/Rispens vaccine strain against very virulent MDV challenge. This is a significant discovery that LORF9 can be exploited as a possible target for the development of an MDV gene deletion vaccine.
Collapse
Affiliation(s)
- Xiaojing Zhu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
- International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou, China
| | - Lele Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
- International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou, China
| | - Lele Gong
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
- International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou, China
| | - Yunyun Zhai
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
- International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou, China
| | - Rui Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
- International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou, China
| | - Jiaxin Jin
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
- International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou, China
| | - Wenlong Lu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
- International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou, China
| | - Xuyang Zhao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
- International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou, China
| | - Yifei Liao
- Division of Infectious Disease, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Gaiping Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
- International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou, China
- Longhu Laboratory of Advanced Immunology, Zhengzhou, China
| | - Guoqing Zhuang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
- International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou, China
| | - Aijun Sun
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
- International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
11
|
Oluwayinka EB, Otesile EB, Oni OO, Ajayi OL, Dunn JR. Molecular characterization and phylogenetic analysis of Marek's disease virus in chickens from Ogun State, Nigeria. Avian Pathol 2023; 52:401-411. [PMID: 37605844 DOI: 10.1080/03079457.2023.2243838] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/26/2023] [Indexed: 08/23/2023]
Abstract
Marek's disease (MD) is caused by oncogenic MD virus serotype 1 (MDV1) and is characterized by lymphoproliferative lesions resulting in high morbidity and mortality in chickens. Despite being ubiquitous on poultry farms, there is a dearth of information on its molecular characteristics in Nigeria. This study aimed at characterizing three virulence genes (Meq, pp38, and vIL-8) of MDV1 from chickens in Ogun state, Nigeria. Blood, feather quill, and tumour samples of chickens from different commercial poultry farms in Ogun State were pooled, spotted on 107 FTA cards, and screened for MDV1 by polymerase chain reaction (PCR). Phylogenetic analysis was carried out to compare Nigerian MDV1 Meq, pp38, and vIL-8 genes sequences with the published references. Thirteen samples were MDV1-positive and the Meq, as well as pp38, and vIL-8 genes from the different samples were 100% identical. The Meq genes contained 339 amino acids (aa) with three PPPP motifs in the transactivation domain and two interruptions of the PPPP motifs due to proline-to-arginine substitutions at positions 176 and 217 resulting in a 20.88% proline composition. Phylogenetic analysis revealed that the Meq gene clustered with strains from Egypt and very virulent ATE2539 strain from Hungary. Mutations were observed in the pp38 protein (at positions 107 and 109) and vIL-8 protein (at positions 4 and 31). Based on the molecular analysis of the three genes, the results indicate the presence of MDV1 with virulence signatures; therefore, further studies on in vivo pathotyping of Nigerian MDV1 from all states should be performed.RESEARCH HIGHLIGHTS Meq, pp38 and vIL-8 genes were 100% identical between Nigerian MDV strains.Proline content in Nigerian meq gene was 20.88% with two PPPP motifs interruptions.Meq, pp38 and vIL-8 genes of Nigerian MDV were similar to Egyptian and Indian strains.
Collapse
Affiliation(s)
- E B Oluwayinka
- Department of Veterinary Medicine, Federal University of Agriculture Abeokuta, Abeokuta, Nigeria
| | - E B Otesile
- Department of Veterinary Medicine, Federal University of Agriculture Abeokuta, Abeokuta, Nigeria
| | - O O Oni
- Department of Veterinary Medicine, Federal University of Agriculture Abeokuta, Abeokuta, Nigeria
| | - O L Ajayi
- Department of Veterinary Pathology, Federal University of Agriculture Abeokuta, Abeokuta, Nigeria
| | - J R Dunn
- US National Poultry Research Center, Athens, GA, USA
| |
Collapse
|
12
|
Wood ML, Neumann R, Roy P, Nair V, Royle NJ. Characterization of integrated Marek's disease virus genomes supports a model of integration by homology-directed recombination and telomere-loop-driven excision. J Virol 2023; 97:e0071623. [PMID: 37737586 PMCID: PMC10617522 DOI: 10.1128/jvi.00716-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/03/2023] [Indexed: 09/23/2023] Open
Abstract
IMPORTANCE Marek's disease virus (MDV) is a ubiquitous chicken pathogen that inflicts a large economic burden on the poultry industry, despite worldwide vaccination programs. MDV is only partially controlled by available vaccines, and the virus retains the ability to replicate and spread between vaccinated birds. Following an initial infection, MDV enters a latent state and integrates into host telomeres and this may be a prerequisite for malignant transformation, which is usually fatal. To understand the mechanism that underlies the dynamic relationship between integrated-latent and reactivated MDV, we have characterized integrated MDV (iMDV) genomes and their associated telomeres. This revealed a single orientation among iMDV genomes and the loss of some terminal sequences that is consistent with integration by homology-directed recombination and excision via a telomere-loop-mediated process.
Collapse
Affiliation(s)
- Michael L. Wood
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Rita Neumann
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Poornima Roy
- Viral Oncogenesis Group, The Pirbright Institute, Pirbright, Surrey, United Kingdom
| | - Venugopal Nair
- Viral Oncogenesis Group, The Pirbright Institute, Pirbright, Surrey, United Kingdom
| | - Nicola J. Royle
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
13
|
Cherif A, Basharat Z, Yaseen M, Bhat MA, Uddin I, Ziedan NI, Mabood F, Sadfi-Zouaoui N, Messaoudi A. Identification of Disalicyloyl Curcumin as a Potential DNA Polymerase Inhibitor for Marek's Disease Herpesvirus: A Computational Study Using Virtual Screening and Molecular Dynamics Simulations. Molecules 2023; 28:6576. [PMID: 37764352 PMCID: PMC10537106 DOI: 10.3390/molecules28186576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/31/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
Marek's disease virus (MDV) is a highly contagious and persistent virus that causes T-lymphoma in chickens, posing a significant threat to the poultry industry despite the availability of vaccines. The emergence of new virulent strains has further intensified the challenge of designing effective antiviral drugs for MDV. In this study, our main objective was to identify novel antiviral phytochemicals through in silico analysis. We employed Alphafold to construct a three-dimensional (3D) structure of the MDV DNA polymerase, a crucial enzyme involved in viral replication. To ensure the accuracy of the structural model, we validated it using tools available at the SAVES server. Subsequently, a diverse dataset containing thousands of compounds, primarily derived from plant sources, was subjected to molecular docking with the MDV DNA polymerase model, utilizing AutoDock software V 4.2. Through comprehensive analysis of the docking results, we identified Disalicyloyl curcumin as a promising drug candidate that exhibited remarkable binding affinity, with a minimum energy of -12.66 Kcal/mol, specifically targeting the DNA polymerase enzyme. To further assess its potential, we performed molecular dynamics simulations, which confirmed the stability of Disalicyloyl curcumin within the MDV system. Experimental validation of its inhibitory activity in vitro can provide substantial support for its effectiveness. The outcomes of our study hold significant implications for the poultry industry, as the discovery of efficient antiviral phytochemicals against MDV could substantially mitigate the economic losses associated with this devastating disease.
Collapse
Affiliation(s)
- Aziza Cherif
- Laboratoire de Mycologie, Pathologies et Biomarqueurs (LR16ES05), Département de Biologie, Université de Tunis-El Manar, Tunis 2092, Tunisia; (A.C.); (N.S.-Z.)
| | | | - Muhammad Yaseen
- Institute of Chemical Sciences, University of Swat, Swat 19130, Pakistan; (I.U.); (F.M.)
| | - Mashooq Ahmad Bhat
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Imad Uddin
- Institute of Chemical Sciences, University of Swat, Swat 19130, Pakistan; (I.U.); (F.M.)
| | - Noha I. Ziedan
- Department of Physical Mathematical and Engineering Science, University of Chester, Chester CH2 4NU, UK;
| | - Fazal Mabood
- Institute of Chemical Sciences, University of Swat, Swat 19130, Pakistan; (I.U.); (F.M.)
| | - Najla Sadfi-Zouaoui
- Laboratoire de Mycologie, Pathologies et Biomarqueurs (LR16ES05), Département de Biologie, Université de Tunis-El Manar, Tunis 2092, Tunisia; (A.C.); (N.S.-Z.)
| | - Abdelmonaem Messaoudi
- Laboratoire de Mycologie, Pathologies et Biomarqueurs (LR16ES05), Département de Biologie, Université de Tunis-El Manar, Tunis 2092, Tunisia; (A.C.); (N.S.-Z.)
- Higher Institute of Biotechnology of Beja, Jendouba University, Habib Bourguiba Street, Beja 9000, Tunisia
| |
Collapse
|
14
|
Hosseini H, Kafi ZZ, Sadri N, Morshed R, Tolouei T, Ghalyanchilangeroudi A. Marek's Disease Virus in Commercial Turkey Flocks, Iran. Avian Dis 2023; 67:269-272. [PMID: 39126414 DOI: 10.1637/aviandiseases-d-23-00028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 06/20/2023] [Indexed: 08/12/2024]
Abstract
Marek's disease is a significant illness in chickens and a potential threat to the poultry industry worldwide. Marek's disease virus (MDV) causes immunosuppression and lymphoproliferative disease in chickens, but the turkey is an unusual host for the virus, and tumors caused by MDV in turkeys are unique. This study sampled 15 asymptomatic commercial turkey flocks (five spleens from each flock) at slaughter. Gallid alphaherpesvirus 2 (GaHV-2) was identified by PCR of spleen samples of two flocks. A phylogenetic analysis of the Meq gene was also performed. Sequencing and phylogenetic analysis revealed that the turkey GaHV-2 had genetic similarity with GaHV-2 strains recently detected in the Iranian commercial layer and breeder turkey flocks. This is the first time MDV has been detected in turkey flocks of Iran, and therefore, further assays including experimental inoculation to demonstrate pathotype characteristics in vivo are needed.
Collapse
Affiliation(s)
- Hossein Hosseini
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Karaj Islamic Azad, Karaj, Iran, 3149968111
| | - Zahra Ziafati Kafi
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran 1419963111
| | - Naser Sadri
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran 1419963111
| | - Rima Morshed
- Department of Basic Science, Faculty of Encyclopedia, Institute for Humanities and Cultural Studies, Tehran, Iran 1997743881
| | - Tohid Tolouei
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran 1419963111
| | - Arash Ghalyanchilangeroudi
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran 1419963111,
| |
Collapse
|
15
|
Volkening JD, Spatz SJ, Ponnuraj N, Akbar H, Arrington JV, Vega-Rodriguez W, Jarosinski KW. Viral proteogenomic and expression profiling during productive replication of a skin-tropic herpesvirus in the natural host. PLoS Pathog 2023; 19:e1011204. [PMID: 37289833 PMCID: PMC10284419 DOI: 10.1371/journal.ppat.1011204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/21/2023] [Accepted: 05/29/2023] [Indexed: 06/10/2023] Open
Abstract
Efficient transmission of herpesviruses is essential for dissemination in host populations; however, little is known about the viral genes that mediate transmission, mostly due to a lack of natural virus-host model systems. Marek's disease is a devastating herpesviral disease of chickens caused by Marek's disease virus (MDV) and an excellent natural model to study skin-tropic herpesviruses and transmission. Like varicella zoster virus that causes chicken pox in humans, the only site where infectious cell-free MD virions are efficiently produced is in epithelial skin cells, a requirement for host-to-host transmission. Here, we enriched for heavily infected feather follicle epithelial skin cells of live chickens to measure both viral transcription and protein expression using combined short- and long-read RNA sequencing and LC/MS-MS bottom-up proteomics. Enrichment produced a previously unseen breadth and depth of viral peptide sequencing. We confirmed protein translation for 84 viral genes at high confidence (1% FDR) and correlated relative protein abundance with RNA expression levels. Using a proteogenomic approach, we confirmed translation of most well-characterized spliced viral transcripts and identified a novel, abundant isoform of the 14 kDa transcript family via IsoSeq transcripts, short-read intron-spanning sequencing reads, and a high-quality junction-spanning peptide identification. We identified peptides representing alternative start codon usage in several genes and putative novel microORFs at the 5' ends of two core herpesviral genes, pUL47 and ICP4, along with strong evidence of independent transcription and translation of the capsid scaffold protein pUL26.5. Using a natural animal host model system to examine viral gene expression provides a robust, efficient, and meaningful way of validating results gathered from cell culture systems.
Collapse
Affiliation(s)
| | - Stephen J. Spatz
- US National Poultry Research Laboratory, ARS, USDA, Athens, Georgia, United States of America
| | - Nagendraprabhu Ponnuraj
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Haji Akbar
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Justine V. Arrington
- Protein Sciences Facility, Roy J. Carver Biotechnology Center, University of Illinois Urbana-Champaign, Urbana, Illinois, United States of America
| | - Widaliz Vega-Rodriguez
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Keith W. Jarosinski
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| |
Collapse
|
16
|
Birhan M, Gelaye E, Ibrahim SM, Berhane N, Abayneh T, Getachew B, Zemene A, Birie K, Deresse G, Adamu K, Dessalegn B, Gessese AT, Kinde MZ, Bitew M. Marek's disease in chicken farms from Northwest Ethiopia: gross pathology, virus isolation, and molecular characterization. Virol J 2023; 20:45. [PMID: 36890573 PMCID: PMC9997020 DOI: 10.1186/s12985-023-02003-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 03/01/2023] [Indexed: 03/10/2023] Open
Abstract
Marek's disease virus (MDV) is a highly contagious, immunosuppressive, and oncogenic chicken pathogen causing marek's disease (MD). In this outbreak-based study, 70 dual-purpose chickens that originated from poultry farms in Northwest Ethiopia and suspected of MD were sampled for pathological and virological study from January 2020 to June 2020. Clinically, affected chickens showed inappetence, dyspnea, depression, shrunken combs, and paralysis of legs, wings, and neck, and death. Pathologically, single or multiple greyish white to yellow tumor-like nodular lesions of various size were appreciated in visceral organs. In addition, splenomegaly, hepatomegaly, renomegaly, and sciatic nerve enlargement were observed. Twenty-seven (27) pooled clinical samples i.e. 7 pooled spleen samples and 20 pooled feathers samples were aseptically collected. Confluent monolayer of Chicken Embryo Fibroblast cells was inoculated with a suspension of pathological samples. Of this, MDV-suggestive cytopathic effects were recorded in 5 (71.42%) and 17 (85%) pooled spleen and feather samples respectively. Molecular confirmation of pathogenic MDV was conducted using conventional PCR amplifying 318 bp of ICP4 gene of MDV-1, of which, 40.9% (9/22) tested positive. In addition, 5 PCR-positive samples from various farms were sequenced further confirming the identity of MDV. The ICP4 partial gene sequences were submitted to GenBank with the following accession numbers: OP485106, OP485107, OP485108, OP485109, and OP485110. Comparative phylogenetics showed, two of the isolates from the same site, Metema, seem to be clonal complexes forming distinct cluster. The other three isolates, two from Merawi and one from Debretabor, appear to represent distinct genotypes although the isolate from Debretabor is closer to the Metema clonal complex. On the other hand, the isolates from Merawi appeared genetically far related to the rest of the 3 isolates and clustered with Indian MDV strains included in the analysis. This study presented the first molecular evidence of MDV in chicken farms from Northwest Ethiopia. Biosecurity measures should strictly be implemented to hinder the spread of the virus. Nationwide studies on molecular characteristics of MDV isolates, their pathotypes, and estimation of the economic impact associated with the disease may help justify production and use of MD vaccines within the country.
Collapse
Affiliation(s)
- Mastewal Birhan
- Institute of Biotechnology, University of Gondar, Gondar, Ethiopia.
- College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia.
| | | | | | - Nega Berhane
- Institute of Biotechnology, University of Gondar, Gondar, Ethiopia
| | | | | | - Aragaw Zemene
- Institute of Biotechnology, University of Gondar, Gondar, Ethiopia
| | - Kassahun Birie
- College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
| | | | | | - Bereket Dessalegn
- College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
| | - Abebe Tesfaye Gessese
- College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
| | - Mebrie Zemene Kinde
- College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
| | - Molalegne Bitew
- Bio and Emerging Technology Institute, Addis Ababa, Ethiopia
| |
Collapse
|
17
|
Mehta A, Khasiyev F, Wright CB, Rundek T, Sacco RL, Elkind MSV, Gutierrez J. Intracranial Large Artery Stenosis and Past Infectious Exposures: Results From the NOMAS Cohort. Stroke 2022; 53:1589-1596. [PMID: 35105181 PMCID: PMC9038664 DOI: 10.1161/strokeaha.121.036793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 11/19/2021] [Indexed: 11/16/2022]
Abstract
BACKGROUND Intracranial large artery stenosis (ILAS) is an important contributor to ischemic stroke in the United States and worldwide. There is evidence to suggest that chronic exposure to certain infectious agents may also be associated with ILAS. We aimed to study this association further in an ethnically diverse, prospective, population-based sample of Northern Manhattan. METHODS We enrolled a random sample of stroke-free participants from an urban, racially, and ethnically diverse community in 1993. Participants have been followed prospectively and a subset underwent brain magnetic resonance angiograms from 2003 to 2008. Intracranial stenoses of the circle of Willis and vertebrobasilar arteries were scored as 0=no stenosis, 1≤50% (or luminal irregularities), 2=50% to 69%, 3≥70% stenosis, and 4=flow gap. We summed the individual score of each artery to produce a global ILAS score (possible range, 0-44). Past infectious exposure to Chlamydia pneumoniae, Helicobacter pylori, cytomegalovirus, and herpes simplex virus 1 and 2 was determined using serum antibody titers. RESULTS Among 572 NOMAS (Northern Manhattan Study) participants (mean age 71.0±8.0 years, 60% women, 68% Hispanic) with available magnetic resonance angiogram and serological data, herpes simplex virus 2 (beta=0.051, P<0.001) and cytomegalovirus (beta=0.071, P<0.05) were associated with ILAS score after adjusting for demographics and vascular risk factors. Stratifying by anterior and posterior circulations, herpes simplex virus 2 remained associated with the anterior circulation (beta=0.055 P<0.01) but not with posterior circulation ILAS score. CONCLUSIONS Chronic infectious exposures, specifically herpes simplex virus 2 and cytomegalovirus were associated with asymptomatic ILAS as seen on magnetic resonance angiogram imaging. This may represent an additional target of intervention in the ongoing effort to stem the substantial global burden of strokes related to ILAS.
Collapse
Affiliation(s)
- Amol Mehta
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Farid Khasiyev
- Department of Neurology, Saint Louis University, Saint Louis, MO, USA
| | - Clinton B. Wright
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Tatjana Rundek
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, Florida, USA
- Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, Florida, USA
- Evelyn F. McKnight Brain Institute, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Ralph L. Sacco
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, Florida, USA
- Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, Florida, USA
- Evelyn F. McKnight Brain Institute, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Mitchell SV Elkind
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Jose Gutierrez
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| |
Collapse
|
18
|
Phylogenetic analyses on Marek's disease virus circulating in Iranian backyard and commercial poultry indicate viruses of different origin. Braz J Microbiol 2022; 53:1683-1689. [PMID: 35484378 PMCID: PMC9433632 DOI: 10.1007/s42770-022-00738-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/19/2022] [Indexed: 11/02/2022] Open
Abstract
As neoplastic viruses have been affecting Iranian chicken farms more frequently in recent years, the first step in prevention may therefore be to genetically characterize and systematically identify their source and origin. Recently, we published a phylogenetic analysis based on the meq gene of Gallid alphaherpesvirus 2, commonly known as serotype 1 Marek's disease virus (MDV-1), that circulated in Iranian backyard and commercial chickens. In the current study, we are reporting for the first time the identification of a 298 aa meq protein containing only two PPPP motifs from an MDV-1-infected unvaccinated backyard turkey. This protein length has never been reported from any turkey species before. According to phylogenetic analysis, a close genetic relationship (0.68%) to several chicken-origin isolates such as the American vv + 648A strain was found. In addition, we identified a standard meq protein from a MDV-1-infected commercial chicken farm. In corroboration with our previous finding from other Iranian provinces, it is likely that the highly identical MDV-1 viruses currently circulating in Iranian chicken farms, which may be indicative of human role in the spread of the virus, have similar Eurasian origin. Our data suggest that regardless of the meq size, MDV-1 circulating in Iran are from different origins. On the other hand, meq sequences from bird species other than chicken have been reported but are very few. Our investigation suggests MDV-1 circulating in turkey do not have species-specific sequences.
Collapse
|
19
|
Identification of Marek's disease virus pUL56 homologue and analysis of critical amino acid stretches indispensable for its intracellular localization. Virus Res 2022; 313:198741. [PMID: 35271885 DOI: 10.1016/j.virusres.2022.198741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/02/2022] [Accepted: 03/06/2022] [Indexed: 11/22/2022]
Abstract
Marek's disease virus (MDV) is considered a unique member of the Alphaherpesvirinae subfamily that induces rapid onset of T cell lymphoma in chickens. Compared with other conserved UL56 gene homologues of herpesviruses, little is known about the roles of MDV UL56 gene, while recent studies of mammalian herpesvirus pUL56 proteins have revealed their involvement in promoting ubiquitination of the Nedd4 (neural precursor cell expressed developmentally down-regulated protein 4) -like E3 ubiquitin ligases for proteasomal degradation and in modulating host immune responses. To determine the expression kinetics of UL56 gene products, chicken embryo fibroblasts were infected with very virulent or attenuated MDV strain and analyzed by quantitative PCR and Western blotting. During the time course of infection, the levels of UL56 mRNA transcripts increased consistently. At the translational level, the pUL56 protein encoded by UL56 gene was expressed in the size of 32 kDa, which emerged as early as 12 h post-infection (hpi) but otherwise began to wane at 72 hpi thereafter. With the treatment of viral DNA synthesis inhibitors, the pUL56 expression was significantly reduced, featuring the dynamics of a late (γ)-gene product. By confocal imaging, pUL56 was found to reside in the Golgi compartment. Both the L-domain motifs and the C-terminal tail-anchored transmembrane were essential for its intracellular localization. Noticeably, pUL56 co-localized with a truncated mutant of the chicken Nedd4-like family protein harboring only the WW domains; however, co-immunoprecipitation assay established no direct interaction between them, and the ectopic expression of pUL56 did not alter the abundance of endogenous Nedd4-like protein. Overall, the present study provides a caveat that the pUL56 homologues of different herpesviruses with structural similarities might vary in expression patterns and probably in functional consequences. For this reason, further investigation should be encouraged to focus on the potential association between UL56 gene and MDV pathogenesis in the context of engineered viral mutants.
Collapse
|
20
|
Du X, Zhou D, Zhou J, Xue J, Wang G, Cheng Z. Marek’s disease virus serine/threonine kinase Us3 facilitates viral replication by targeting IRF7 to block IFN-β production. Vet Microbiol 2022; 266:109364. [DOI: 10.1016/j.vetmic.2022.109364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 01/18/2022] [Accepted: 01/31/2022] [Indexed: 10/19/2022]
|
21
|
Ongor H, Timurkaan N, Abayli H, Karabulut B, Kalender H, Tonbak S, Eroksuz H, Çetinkaya B. First report of Serotype-1 Marek's disease virus (MDV-1) with oncogenic form in backyard turkeys in Turkey: a molecular analysis study. BMC Vet Res 2022; 18:30. [PMID: 35016700 PMCID: PMC8753842 DOI: 10.1186/s12917-021-03130-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/27/2021] [Indexed: 12/03/2022] Open
Abstract
Background Marek’s disease (MD) is a lymphoproliferative disease caused by Gallid alphaherpesvirus 2 (GaHV-2, MDV-1), which primarily affects chickens. However, the virus is also able to induce tumors and polyneuritis in turkeys, albeit less frequently than in chickens. Results This is the first study in Turkey reporting the molecular characterization of a MDV-1 strain detected in a flock of backyard turkeys exhibiting visceral lymphoma. Here, MEQ, vIL-8, pp38 and 132-bp tandem repeat regions, which are frequently preferred in the pathotyping of MDV-1, were examined. It was determined that the MEQ gene of MDV-1/TR-21/turkey strain obtained in the present study encoded 339 amino acids (1020 nt) and had four proline-rich repeat regions (PPPP). Based on the nucleotide sequence of the MEQ gene of the MDV-1/TR-21/turkey strain, a phylogenetic tree was created using the MEGA-X software with the Maximum Likelihood Method (in 1000 replicates). Our strain was highly identical (> 99.8) to the Italian/Ck/625/16, Polish (Polen5) and some Turkish (Layer-GaHV-2-02-TR-2017, Tr/MDV-1/19) MDV-1 strains. Also, nt and aa sequences of the MEQ gene of our strain were 99.1 and 99.41% identical to another Turkish strain (MDV/Tur/2019) originated from chickens. Sequence analysis of pp38 and vIL-8 genes also supported the above finding. The identity ratios of nucleotide and amino acid sequences of vIL-8 and pp38 genes of MDV-1/TR-21/turkey strain were 99.64–100% and 99.79–100%, respectively, when compared with those of the Polish strain. According to 132-bp tandem repeat PCR results, the MDV-1/TR-21/turkey strain had five copies. Conclusions These results suggested that the MDV-1/TR-21/turkey strain obtained from backyard turkeys can be either very virulent or very virulent plus pathotype, though experimental inoculation is required for precise pathotyping.
Collapse
Affiliation(s)
- Hasan Ongor
- Department of Microbiology, Faculty of Veterinary Medicine, Firat University, 23110, Elazig, Turkey.
| | - Necati Timurkaan
- Department of Pathology, Faculty of Veterinary Medicine, Firat University, Elazig, Turkey
| | - Hasan Abayli
- Department of Virology, Faculty of Veterinary Medicine, Firat University, Elazig, Turkey
| | - Burak Karabulut
- Department of Pathology, Faculty of Veterinary Medicine, Firat University, Elazig, Turkey
| | - Hakan Kalender
- Department of Microbiology, Faculty of Veterinary Medicine, Firat University, 23110, Elazig, Turkey
| | - Sukru Tonbak
- Department of Virology, Faculty of Veterinary Medicine, Firat University, Elazig, Turkey
| | - Hatice Eroksuz
- Department of Pathology, Faculty of Veterinary Medicine, Firat University, Elazig, Turkey
| | - Burhan Çetinkaya
- Department of Microbiology, Faculty of Veterinary Medicine, Firat University, 23110, Elazig, Turkey
| |
Collapse
|
22
|
Conrad SJ, Oluwayinka EB, Heidari M, Mays JK, Dunn JR. Deletion of the Viral Thymidine Kinase in a Meq-Deleted Recombinant Marek's Disease Virus Reduces Lymphoid Atrophy but Is Less Protective. Microorganisms 2021; 10:7. [PMID: 35056456 PMCID: PMC8779792 DOI: 10.3390/microorganisms10010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/17/2021] [Accepted: 12/18/2021] [Indexed: 11/16/2022] Open
Abstract
Marek's disease (MD) is a ubiquitous disease of domesticated chickens and its etiologic agent is the Gallid alphaherpesvirus 2 (GaHV-2), also known as Marek's disease virus (MDV). MD is currently controlled by vaccination using live attenuated strains of MDV (e.g., CVI988/Rispens), non-pathogenic serotypes of MDV (GaHV-3), or non-pathogenic strains of the related Melagrid alphaherpesvirus 1 (MeHV-1). One attractive strategy for the production of new vaccine strains is a recombinant MDV attenuated by the deletion of the major viral oncogene meq. However, meq-deleted variants of MDV cause atrophy of the bursa and thymus in maternal antibody-negative chickens, and the resulting immunosuppression makes them unsuitable. Herein we detail our attempt to mitigate the lymphoid atrophy caused by meq-deleted MDV by further attenuation of the virus through ablation of the viral thymidine kinase (tk) gene. We demonstrate that ablation of the viral tk from the meq-deleted virus rMd5B40/Δmeq resulted in a virus attenuated for replication in vitro and which spared chickens from atrophy of the lymphoid organs in vivo. When the rMd5B40/Δmeq/Δtk/GFP was used as a vaccine it was protective against challenge with the vv+MDV strain 686, but the protection was less than that provided by the CVI988/Rispens vaccine.
Collapse
Affiliation(s)
- Steven J. Conrad
- United States Department of Agriculture, Agricultural Research Service, U.S. National Poultry Research Center, Avian Disease and Oncology Laboratory, East Lansing, MI 48823, USA; (S.J.C.); (M.H.); (J.K.M.)
| | - Eniope B. Oluwayinka
- Department of Veterinary Medicine, Federal University of Agriculture Abeokuta, Abeokuta 111101, Nigeria;
| | - Mohammad Heidari
- United States Department of Agriculture, Agricultural Research Service, U.S. National Poultry Research Center, Avian Disease and Oncology Laboratory, East Lansing, MI 48823, USA; (S.J.C.); (M.H.); (J.K.M.)
| | - Jody K. Mays
- United States Department of Agriculture, Agricultural Research Service, U.S. National Poultry Research Center, Avian Disease and Oncology Laboratory, East Lansing, MI 48823, USA; (S.J.C.); (M.H.); (J.K.M.)
| | - John R. Dunn
- United States Department of Agriculture, Agricultural Research Service, U.S. National Poultry Research Center, Avian Disease and Oncology Laboratory, East Lansing, MI 48823, USA; (S.J.C.); (M.H.); (J.K.M.)
| |
Collapse
|
23
|
Diverse Single-Stranded DNA Viruses Identified in Chicken Buccal Swabs. Microorganisms 2021; 9:microorganisms9122602. [PMID: 34946202 PMCID: PMC8703526 DOI: 10.3390/microorganisms9122602] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/11/2021] [Accepted: 12/13/2021] [Indexed: 11/18/2022] Open
Abstract
High-throughput sequencing approaches offer the possibility to better understand the complex microbial communities associated with animals. Viral metagenomics has facilitated the discovery and identification of many known and unknown viruses that inhabit mucosal surfaces of the body and has extended our knowledge related to virus diversity. We used metagenomics sequencing of chicken buccal swab samples and identified various small DNA viruses with circular genome organization. Out of 134 putative circular viral-like circular genome sequences, 70 are cressdnaviruses and 26 are microviruses, whilst the remaining 38 most probably represent sub-genomic molecules. The cressdnaviruses found in this study belong to the Circoviridae, Genomoviridae and Smacoviridae families as well as previously described CRESS1 and naryavirus groups. Among these, genomoviruses and smacoviruses were the most prevalent across the samples. Interestingly, we also identified 26 bacteriophages that belong to the Microviridae family, whose members are known to infect enterobacteria.
Collapse
|
24
|
Yimer YM, Asfaw Ali D, Getachew Ayalew B, Bitew Asires M, Gelaye E. Pathogenicity of Field Marek’s Disease Virus Serotype-1 and Vaccine Efficacy Test in Chicken in Eastern Shewa Ethiopia. Vet Med (Auckl) 2021; 12:347-357. [PMID: 35223432 PMCID: PMC8866982 DOI: 10.2147/vmrr.s332737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 12/02/2021] [Indexed: 11/23/2022]
Abstract
Background Marek’s disease is a chicken lymphoproliferative viral illness. As new viruses emerge, vaccination immunity is being broken and hence pathogenecity assessment and vaccine evaluation related to the pathogen is critical for developing vaccine immunity in the field. Methods An experimental investigation was conducted to determine the pathogenicity of field isolates against Marek’s disease in antibody-free chicks and to assess the protective efficacy of the Marek’s disease vaccination. The viral isolates in question were discovered during an outbreak investigation for a previous study. The pathogenicity and effectiveness trial used a complete random design. Results In the pathogenicity trial, chickens inoculated with Bishoftu and Mojo field isolate had lower body weight 77.7±3.757 and 78.15±1.95 g at 10 dpi, respectively, when compared to un-inoculated controls, 89.85±3.838 g at 10 dpi. Incidence of early mortality syndrome (35% and 25%), lymphoma (53.8% and 40%), and overall mortality (50% and 45%) between Bishoftu and Mojo isolates, respectively, was discovered. Vaccinations with Herpes virus of turkey challenged chickens were provided complete protection against Marek’s disease. Conclusion Based on the findings in pathogenecity assessment experimental trials, Bishoftu and Mojo isolates were designated as virulent Marek’s disease viruses. Regular vaccinations with Herpes virus of turkey vaccine and supported by biosecurity measures in poultry farms are important to prevent the disease.
Collapse
Affiliation(s)
| | - Destaw Asfaw Ali
- College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
- Correspondence: Destaw Asfaw Ali College of Veterinary Medicine and Animal Science, University of Gondar, P.O. Box 196, Gondar, Ethiopia Email
| | | | | | | |
Collapse
|
25
|
Marek's disease virus encoded miR-M6 and miR-M10 are dispensable for virus replication and pathogenesis in chickens. Vet Microbiol 2021; 262:109248. [PMID: 34628274 DOI: 10.1016/j.vetmic.2021.109248] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/02/2021] [Indexed: 12/30/2022]
Abstract
MicroRNAs (miRNAs) are a class of approximately 22 nucleotides long non-coding RNAs, and virus-encoded miRNAs play an important role in pathogenesis. Marek's disease virus (MDV) is an oncogenic avian alphaherpesvirus that causes immunosuppression and tumors in its natural host, chicken. In the MDV genome, 14 miRNA precursors and 26 mature miRNAs were identified, thus MDV has been used as a model to study the function of viral miRNAs in vivo. Recently, a cluster of miRNAs encoded by MDV, Cluster 3 miRNAs (miR-M8-M10), has been shown to restrict early cytolytic replication and pathogenesis of MDV. In this study, we further analyzed the role of miR-M6 and miR-M10, members of cluster miR-M8-M10, in MDV replication and pathogenicity. We found that, compared to parental MDV, deletion of miR-M6-5p significantly enhanced the replication of MDV in cell culture, but not in chickens. The replication of miR-M6-5p deletion MDV was restored once the deleted sequences were re-inserted. Our results also showed that deletion of miR-M10-5p did not affect the replication of MDV in vitro and in vivo. In addition, our animal study results showed that deletion of miR-M6-5p or miR-M10-5p did not alter the pathogenesis of MDV. In conclusion, our study shows that both miR-M6 and miR-M10 are dispensable for MDV replication and pathogenesis in chickens, while also suggests a repressive role of miR-M6 in MDV replication in cell culture.
Collapse
|
26
|
Molouki A, Ghalyanchilangeroudi A, Abdoshah M, Shoushtari A, Abtin A, Eshtartabadi F, Mahmoudzadeh Akhijahani M, Ziafatikafi Z, Babaeimarzango SS, Allahyari E, Ahmadzadeh L, Fallah Mehrabadi MH, Lim SHE, Rouhani K, Hosseini H, Nair V. Report of a new meq gene size: The first study on genetic characterisation of Marek's disease viruses circulating in Iranian commercial layer and backyard chicken. Br Poult Sci 2021; 63:142-149. [PMID: 34423692 DOI: 10.1080/00071668.2021.1963677] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
1. In recent months, several outbreaks with clinical signs of MDV-1 were reported in Iranian parent and laying hen farms, in addition to backyard chickens. Several meq gene sequences from these outbreaks were amplified and molecularly characterised.2. The meq protein sequences revealed three different sizes, namely the standard 339 aa, a shorter form of 338 aa lacking a proline residue at position 191, and a very short (vs) size of 265 aa. Based on sequence and size, the 265 aa meq has never been reported from international research groups before. The protein has only one PPPP repeat motif suggesting it belongs to a highly virulent strain.3. The standard meq sequences showed 100% BLAST identity to the vv+ isolate Polen5. However, the 338 aa form clustered to the clade usually reported from North America.4. This is the first report on genetic analysis of MDV-1 from Iran, but further study is required to obtain a better picture of the diversity and prevalence of different MDV-1 strains circulating in the country's farms, backyard poultry and other bird species.
Collapse
Affiliation(s)
- A Molouki
- Department of Avian Diseases Research and Diagnostics, Razi Vaccine and Serum Research, Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - A Ghalyanchilangeroudi
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - M Abdoshah
- Department of Avian Diseases Research and Diagnostics, Razi Vaccine and Serum Research, Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - A Shoushtari
- Department of Avian Diseases Research and Diagnostics, Razi Vaccine and Serum Research, Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - A Abtin
- Department of Avian Diseases Research and Diagnostics, Razi Vaccine and Serum Research, Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - F Eshtartabadi
- Department of Avian Diseases Research and Diagnostics, Razi Vaccine and Serum Research, Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - M Mahmoudzadeh Akhijahani
- Department of Avian Diseases Research and Diagnostics, Razi Vaccine and Serum Research, Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Z Ziafatikafi
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | | | - E Allahyari
- Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - L Ahmadzadeh
- Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - M H Fallah Mehrabadi
- Department of Avian Diseases Research and Diagnostics, Razi Vaccine and Serum Research, Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - S H E Lim
- Health Sciences Division, Abu Dhabi Women's College, Higher Colleges of Technology, Abu Dhabi, United Arab Emirates
| | - K Rouhani
- Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - H Hosseini
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Islamic Azad University, Karaj, Iran
| | - V Nair
- Viral Oncogenesis Group & OIE Marek's Disease Virus Reference Laboratory, Pirbright Institute, Surrey, UK
| |
Collapse
|
27
|
Liao Y, Bajwa K, Al-Mahmood M, Gimeno IM, Reddy SM, Lupiani B. The role of Meq-vIL8 in regulating Marek's disease virus pathogenesis. J Gen Virol 2021; 102. [PMID: 33236979 DOI: 10.1099/jgv.0.001528] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Marek's disease virus (MDV) is a highly cell-associated oncogenic alphaherpesvirus that causes T cell lymphoma in chickens. MDV-encoded Meq and vIL8 proteins play important roles in transformation and early cytolytic infection, respectively. Previous studies identified a spliced transcript, meq-vIL8, formed by alternative splicing of meq and vIL8 genes in MDV lymphoblastoid tumour cells. To determine the role of Meq-vIL8 in MDV pathogenesis, we generated a recombinant MDV (MDV-meqΔSD) by mutating the splice donor site in the meq gene to abrogate the expression of Meq-vIL8. As expected, our results show that MDV-meqΔSD virus grows similarly to the parental and revertant viruses in cell culture, suggesting that Meq-vIL8 is dispensable for MDV growth in vitro. We further characterized the pathogenic properties of MDV-meqΔSD virus in chickens. Our results show that lack of Meq-vIL8 did not affect virus replication during the early cytolytic phase, as determined by immunohistochemistry analysis and/or viral genome copy number, but significantly enhanced viral DNA load in the late phase of infection in the spleen and brain of infected chickens. In addition, we observed that abrogation of Meq-vIL8 expression reduced the mean death time and increased the prevalence of persistent neurological disease, common features of highly virulent strains of MDV, in inoculated chickens. In conclusion, our study shows that Meq-vIL8 is an important virulence factor of MDV.
Collapse
Affiliation(s)
- Yifei Liao
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas 77843, USA
| | - Kanika Bajwa
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas 77843, USA
| | - Mohammad Al-Mahmood
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas 77843, USA
| | - Isabel M Gimeno
- North Carolina State University, College of Veterinary Medicine, 1060 William Moore Drive, Raleigh, North Carolina 27607, USA
| | - Sanjay M Reddy
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas 77843, USA
| | - Blanca Lupiani
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas 77843, USA
| |
Collapse
|
28
|
Latest Insights into Unique Open Reading Frames Encoded by Unique Long (UL) and Short (US) Regions of Marek's Disease Virus. Viruses 2021; 13:v13060974. [PMID: 34070255 PMCID: PMC8225041 DOI: 10.3390/v13060974] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 12/27/2022] Open
Abstract
Marek’s disease virus (MDV) is an oncogenic avian alphaherpesvirus whose genome consists of unique long (UL) and short (US) regions that are flanked by inverted repeat regions. More than 100 open reading frames (ORFs) have been annotated in the MDV genome, and are involved in various aspects of MDV biology and pathogenesis. Within UL and US regions of MDV, there are several unique ORFs, some of which have recently been shown to be important for MDV replication and pathogenesis. In this review, we will summarize the current knowledge on these ORFs and compare their location in different MDV strains.
Collapse
|
29
|
Sun A, Liao Y, Liu Y, Yang S, Wang X, Zhu X, Teng M, Chai S, Luo J, Zhang G, Zhuang G. Virus-encoded microRNA-M7 restricts early cytolytic replication and pathogenesis of Marek's disease virus. Vet Microbiol 2021; 259:109082. [PMID: 34144834 DOI: 10.1016/j.vetmic.2021.109082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/18/2021] [Indexed: 10/21/2022]
Abstract
MicroRNAs (miRNAs) are a class of ∼22 nucleotides non-coding RNAs that are encoded by a wide range of hosts. Viruses, especially herpesviruses, encode a variety of miRNAs that involved in disease progression. Recently, a cluster of virus-encoded miRNAs, miR-M8-M10, have been shown to restrict early cytolytic replication and pathogenesis of Marek's disease virus (MDV), an oncogenic avian alphaherpesvirus that causes lymphoproliferative disease in chickens. In this study, we specifically dissected the role of miR-M7, a member of cluster miR-M8-M10, in regulating MDV replication and pathogenesis. We found that deletion of miR-M7-5p did not affect the virus plaque size and growth in cell culture. However, compared to parental virus, infection of miR-M7-5p deletion virus significantly increased MDV genome copy number at 5 days post infection, suggesting that miR-M7 plays a role to restrict MDV replication during early cytolytic phase. In addition, our results showed that infection of miR-M7-5p deletion virus significantly enhanced the mortality of chickens, even it induced lymphoid organ atrophy similar to parental and revertant viruses. Taken together, our study revealed that the miR-M7 acts as a repressive factor of MDV replication and pathogenesis.
Collapse
Affiliation(s)
- Aijun Sun
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, Henan, People's Republic of China; College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Yifei Liao
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Ying Liu
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, Henan, People's Republic of China; College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Shuaikang Yang
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, Henan, People's Republic of China; College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Xiangru Wang
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, Henan, People's Republic of China; College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Xiaojing Zhu
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, Henan, People's Republic of China; College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Man Teng
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan, People's Republic of China; UK-China Centre of Excellence for Research on Avian Diseases, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, People's Republic of China
| | - Shujun Chai
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan, People's Republic of China
| | - Jun Luo
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan, People's Republic of China; UK-China Centre of Excellence for Research on Avian Diseases, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, People's Republic of China
| | - Gaiping Zhang
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, Henan, People's Republic of China; Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan, People's Republic of China; UK-China Centre of Excellence for Research on Avian Diseases, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, People's Republic of China; College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Guoqing Zhuang
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, Henan, People's Republic of China; College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, Henan, China.
| |
Collapse
|
30
|
Liao Y, Lupiani B, Reddy SM. Manipulation of Promyelocytic Leukemia Protein Nuclear Bodies by Marek's Disease Virus Encoded US3 Protein Kinase. Microorganisms 2021; 9:microorganisms9040685. [PMID: 33810320 PMCID: PMC8066686 DOI: 10.3390/microorganisms9040685] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 12/20/2022] Open
Abstract
Promyelocytic leukemia protein nuclear bodies (PML-NBs) are dynamic nuclear structures, shown to be important for herpesvirus replication; however, their role in regulating Marek’s disease virus (MDV) infection has not been studied. MDV is an oncogenic alphaherpesvirus that causes lymphoproliferative disease in chickens. MDV encodes a US3 serine/threonine protein kinase that is important for MDV replication and gene expression. In this study, we studied the role of MDV US3 in regulating PML-NBs. Using an immunofluorescence assay, we found that MDV US3 disrupts PML and SP100 in a kinase dependent manner. In addition, treatment with MG-132 (a proteasome inhibitor) could partially restore the levels of PML and SP100, suggesting that a cellular proteasome dependent degradation pathway is involved in MDV US3 induced disruption of PML and SP100. These findings provide the first evidence for the interplay between MDV proteins and PML-NBs.
Collapse
|
31
|
Liao Y, Lupiani B, AI-Mahmood M, Reddy SM. Marek's disease virus US3 protein kinase phosphorylates chicken HDAC 1 and 2 and regulates viral replication and pathogenesis. PLoS Pathog 2021; 17:e1009307. [PMID: 33596269 PMCID: PMC7920345 DOI: 10.1371/journal.ppat.1009307] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 03/01/2021] [Accepted: 01/12/2021] [Indexed: 12/15/2022] Open
Abstract
Marek’s disease virus (MDV) is a potent oncogenic alphaherpesvirus that elicits a rapid onset of malignant T-cell lymphomas in chickens. Three MDV types, including GaHV-2 (MDV-1), GaHV-3 (MDV-2) and MeHV-1 (HVT), have been identified and all encode a US3 protein kinase. MDV-1 US3 is important for efficient virus growth in vitro. To study the role of US3 in MDV replication and pathogenicity, we generated an MDV-1 US3-null virus and chimeric viruses by replacing MDV-1 US3 with MDV-2 or HVT US3. Using MD as a natural virus-host model, we showed that both MDV-2 and HVT US3 partially rescued the growth deficiency of MDV-1 US3-null virus. In addition, deletion of MDV-1 US3 attenuated the virus resulting in higher survival rate and lower MDV specific tumor incidence, which could be partially compensated by MDV-2 and HVT US3. We also identified chicken histone deacetylase 1 (chHDAC1) as a common US3 substrate for all three MDV types while only US3 of MDV-1 and MDV-2 phosphorylate chHDAC2. We further determined that US3 of MDV-1 and HVT phosphorylate chHDAC1 at serine 406 (S406), while MDV-2 US3 phosphorylates S406, S410, and S415. In addition, MDV-1 US3 phosphorylates chHDAC2 at S407, while MDV-2 US3 targets S407 and S411. Furthermore, biochemical studies show that MDV US3 mediated phosphorylation of chHDAC1 and 2 affect their stability, transcriptional regulation activity, and interaction network. Using a class I HDAC specific inhibitor, we showed that MDV US3 mediated phosphorylation of chHDAC1 and 2 is involved in regulation of virus replication. Overall, we identified novel substrates for MDV US3 and characterized the role of MDV US3 in MDV pathogenesis. Marek’s disease virus (MDV) is a highly contagious and oncogenic avian alphaherpesvirus that causes T-cell lymphomas in chickens. Alphaherpesviruses encoded US3 is a multifunctional protein kinase involved in viral replication, apoptosis resistance, and cell-to-cell spread. In this study, we evaluated the importance of MDV US3 in regulating MDV replication and pathogenesis in chickens. Our results provide first evidence that MDV US3 protein kinase is involved in the replication and pathogenicity of MDV in its natural host. We also identified chicken histone deacetylase 1 and 2 (chHDAC1 and 2) as novel substrates of US3 for MDV and characterized the potential impacts of MDV US3 induced phosphorylation in their protein stability, transcriptional regulation and protein interactions; to our knowledge, this is the first comparative study of the functions of US3 from all three MDV types. This is an important finding towards a better understanding of the functions of alphaherpesviruses encoded US3 protein kinase.
Collapse
Affiliation(s)
- Yifei Liao
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Blanca Lupiani
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Mohammad AI-Mahmood
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Sanjay M. Reddy
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
- * E-mail:
| |
Collapse
|
32
|
A Novel Effective and Safe Vaccine for Prevention of Marek's Disease Caused by Infection with a Very Virulent Plus (vv+) Marek's Disease Virus. Vaccines (Basel) 2021; 9:vaccines9020159. [PMID: 33669421 PMCID: PMC7920416 DOI: 10.3390/vaccines9020159] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/03/2021] [Accepted: 02/12/2021] [Indexed: 11/16/2022] Open
Abstract
Marek’s disease virus (MDV) is a highly contagious alphaherpesvirus that causes rapid onset lymphoma in chickens. Marek’s disease (MD) is effectively controlled using vaccination; however, MDV continues to break through vaccinal immunity, due to the emergence of highly virulent field strains. Earlier studies revealed that deletion of the meq gene from MDV resulted in an attenuated virus that protects against MD in chickens challenged with highly virulent field strains. However, the meq deleted virus retains the ability to induce significant lymphoid organ atrophy. In a different study, we found that the deletion of the vIL8 gene resulted in the loss of lymphoid organ atrophy in inoculated chickens. Here, we describe the generation of a recombinant MDV from which both meq and vIL8 genes were deleted. In vitro studies revealed that the meq and vIL8 double deletion virus replicated at levels similar to the parental very virulent plus (vv+) virus. In addition, in vivo studies showed that the double deletion mutant virus (686BAC-ΔMeqΔvIL8) conferred protection comparable to CVI988, a commercial vaccine strain, when challenged with a vv+ MDV virus, and significantly reduced lymphoid organ atrophy, when compared to meq null virus, in chickens. In conclusion, our study describes the development of a safe and effective vaccine candidate for prevention of MD in chickens.
Collapse
|
33
|
Sun A, Yang S, Luo J, Teng M, Xu Y, Wang R, Zhu X, Zheng L, Wu Y, Yao Y, Nair V, Zhang G, Zhuang G. UL28 and UL33 homologs of Marek's disease virus terminase complex involved in the regulation of cleavage and packaging of viral DNA are indispensable for replication in cultured cells. Vet Res 2021; 52:20. [PMID: 33579382 PMCID: PMC7881644 DOI: 10.1186/s13567-021-00901-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 01/21/2021] [Indexed: 12/27/2022] Open
Abstract
Processing and packaging of herpesvirus genomic DNA is regulated by a packaging-associated terminase complex comprising of viral proteins pUL15, pUL28 and pUL33. Marek’s disease virus (MDV) homologs UL28 and UL33 showed conserved functional features with high sequence identity with the corresponding Herpes simplex virus 1 (HSV-1) homologs. As part of the investigations into the role of the UL28 and UL33 homologs of oncogenic MDV for DNA packaging and replication in cultured cells, we generated MDV mutant clones deficient in UL28 or UL33 of full-length MDV genomes. Transfection of UL28- or UL33-deleted BAC DNA into chicken embryo fibroblast (CEF) did not result either in the production of visible virus plaques, or detectable single cell infection after passaging onto fresh CEF cells. However, typical MDV plaques were detectable in CEF transfected with the DNA of revertant mutants where the deleted genes were precisely reinserted. Moreover, the replication defect of the UL28-deficient mutant was completely restored when fragment encoding the full UL28 gene was co-transfected into CEF cells. Viruses recovered from the revertant construct, as well as by the UL28 co-transfection, showed replication ability comparable with parental virus. Furthermore, the transmission electron microscopy study indicated that immature capsids were assembled without the UL28 expression, but with the loss of infectivity. Importantly, predicted three-dimensional structures of UL28 between MDV and HSV-1 suggests conserved function in virus replication. For the first time, these results revealed that both UL28 and UL33 are essential for MDV replication through regulating DNA cleavage and packaging.
Collapse
Affiliation(s)
- Aijun Sun
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, Henan, China.,International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, Henan, People's Republic of China
| | - Shuaikang Yang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, Henan, China.,International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, Henan, People's Republic of China
| | - Jun Luo
- Key Laboratory of Animal Immunology, Ministry of Agriculture and Rural Affairs & Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China.,UK-China Centre of Excellence for Research On Avian Diseases, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Man Teng
- Key Laboratory of Animal Immunology, Ministry of Agriculture and Rural Affairs & Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China.,UK-China Centre of Excellence for Research On Avian Diseases, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Yijie Xu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Rui Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, Henan, China.,International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, Henan, People's Republic of China
| | - Xiaojing Zhu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, Henan, China.,International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, Henan, People's Republic of China
| | - Luping Zheng
- Key Laboratory of Animal Immunology, Ministry of Agriculture and Rural Affairs & Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China.,UK-China Centre of Excellence for Research On Avian Diseases, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Yanan Wu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, Henan, China.,International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, Henan, People's Republic of China
| | - Yongxiu Yao
- UK-China Centre of Excellence for Research On Avian Diseases, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China.,The Pirbright Institute & UK-China Centre of Excellence for Research On Avian Diseases, Pirbright, Ash Road, Guildford, GU24 0NF, Surrey, UK
| | - Venugopal Nair
- UK-China Centre of Excellence for Research On Avian Diseases, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China.,The Pirbright Institute & UK-China Centre of Excellence for Research On Avian Diseases, Pirbright, Ash Road, Guildford, GU24 0NF, Surrey, UK
| | - Gaiping Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, Henan, China.,International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, Henan, People's Republic of China.,Key Laboratory of Animal Immunology, Ministry of Agriculture and Rural Affairs & Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China.,UK-China Centre of Excellence for Research On Avian Diseases, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Guoqing Zhuang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, Henan, China. .,International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, Henan, People's Republic of China.
| |
Collapse
|
34
|
In Vivo Inhibition of Marek's Disease Virus in Transgenic Chickens Expressing Cas9 and gRNA against ICP4. Microorganisms 2021; 9:microorganisms9010164. [PMID: 33450980 PMCID: PMC7828426 DOI: 10.3390/microorganisms9010164] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/07/2021] [Accepted: 01/11/2021] [Indexed: 12/28/2022] Open
Abstract
Marek’s disease (MD), caused by MD herpesvirus (MDV), is an economically important disease in chickens. The efficacy of the existing vaccines against evolving virulent stains may become limited and necessitates the development of novel antiviral strategies to protect poultry from MDV strains with increased virulence. The CRISPR/Cas9 system has emerged as a powerful genome editing tool providing an opportunity to develop antiviral strategies for the control of MDV infection. Here, we characterized Tol2 transposon constructs encoding Cas9 and guide RNAs (gRNAs) specific to the immediate early infected-cell polypeptide-4 (ICP4) of MDV. We generated transgenic chickens that constitutively express Cas9 and ICP4-gRNAs (gICP4) and challenged them via intraabdominal injection of MDV-1 Woodlands strain passage-19 (p19). Transgenic chickens expressing both gRNA/Cas9 had a significantly reduced replication of MDV in comparison to either transgenic Cas9-only or the wild-type (WT) chickens. We further confirmed that the designed gRNAs exhibited sequence-specific virus interference in transgenic chicken embryo fibroblast (CEF) expressing Cas9/gICP4 when infected with MDV but not with herpesvirus of turkeys (HVT). These results suggest that CRISPR/Cas9 can be used as an antiviral approach to control MDV infection in chickens, allowing HVT to be used as a vector for recombinant vaccines.
Collapse
|
35
|
Role of microRNA and long non-coding RNA in Marek's disease tumorigenesis in chicken. Res Vet Sci 2021; 135:134-142. [PMID: 33485054 DOI: 10.1016/j.rvsc.2021.01.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 01/03/2021] [Accepted: 01/07/2021] [Indexed: 12/11/2022]
Abstract
Marek's disease virus (MDV), the causative agent of Marek's disease (MD), results in highly infectious phymatosis, lymphatic tissue hyperplasia, and neoplasia. MD is associated with high morbidity and mortality rate. Non-coding RNAs (ncRNAs) entails long non-coding RNA (lncRNA) and microRNA (miRNA). Numerous studies have reported that specific miRNAs and lncRNAs participate in multiple cellular processes, such as proliferation, migration, and tumor cell invasion. Specialized miRNAs and lncRNAs militate a similar role in MD tumor oncogenesis. Despite its growing popularity, only a few reviews are available on ncRNA in MDV tumor oncogenes. Herein, we summarized the role of the miRNAs and lncRNAs in MD tumorigenesis. Altogether, we brought forth the research issues, such as MD prevention, screening, regulatory network formation, novel miRNAs, and lncRNAs analysis in MD that needs to be explored further. This review provides a theoretical platform for the further analysis of miRNAs and lncRNAs functions and the prevention and control of MD and malignancies in domestic animals.
Collapse
|
36
|
Murata S, Machida Y, Isezaki M, Maekawa N, Okagawa T, Konnai S, Ohashi K. Genetic characterization of a Marek's disease virus strain isolated in Japan. Virol J 2020; 17:186. [PMID: 33228722 PMCID: PMC7684920 DOI: 10.1186/s12985-020-01456-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 11/15/2020] [Indexed: 01/29/2023] Open
Abstract
Background Marek’s disease virus (MDV) causes malignant lymphomas in chickens (Marek’s disease, MD). MD is currently controlled by vaccination; however, MDV strains have a tendency to develop increased virulence. Distinct diversity and point mutations are present in the Meq proteins, the oncoproteins of MDV, suggesting that changes in protein function induced by amino acid substitutions might affect MDV virulence. We previously reported that recent MDV isolates in Japan display distinct mutations in Meq proteins from those observed in traditional MDV isolates in Japan, but similar to those in MDV strains isolated from other countries. Methods To further investigate the genetic characteristics in Japanese field strains, we sequenced the whole genome of an MDV strain that was successfully isolated from a chicken with MD in Japan. A phylogenetic analysis of the meq gene was also performed. Results Phylogenetic analysis revealed that the Meq proteins in most of the Japanese isolates were similar to those of Chinese and European strains, and the genomic sequence of the Japanese strain was classified into the Eurasian cluster. Comparison of coding region sequences among the Japanese strain and MDV strains from other countries revealed that the genetic characteristics of the Japanese strain were similar to those of Chinese and European strains. Conclusions The MDV strains distributed in Asian and European countries including Japan seem to be genetically closer to each other than to MDV strains from North America. These findings indicate that the genetic diversities of MDV strains that emerged may have been dependent on the different vaccination-based control approaches.
Collapse
Affiliation(s)
- Shiro Murata
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo, 060-0818, Japan. .,Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo, 060-0818, Japan.
| | - Yuka Machida
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo, 060-0818, Japan
| | - Masayoshi Isezaki
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo, 060-0818, Japan
| | - Naoya Maekawa
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo, 060-0818, Japan
| | - Tomohiro Okagawa
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo, 060-0818, Japan
| | - Satoru Konnai
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo, 060-0818, Japan.,Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo, 060-0818, Japan
| | - Kazuhiko Ohashi
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo, 060-0818, Japan.,Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo, 060-0818, Japan
| |
Collapse
|
37
|
Liao Y, Sun A, Zhuang G, Lupiani B, Reddy SM. Deletion of LORF9 but not LORF10 attenuates Marek's disease virus pathogenesis. Vet Microbiol 2020; 251:108911. [PMID: 33212362 DOI: 10.1016/j.vetmic.2020.108911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 10/26/2020] [Indexed: 11/17/2022]
Abstract
Marek's disease virus (MDV) genome contains a number of uncharacterized long open reading frames (LORF) and their role in viral pathogenesis has not been fully investigated. Among them, LORF9 (MDV069) and LORF10 (MDV071) are locate at the right terminus of the MDV genome unique long region (UL). To investigate their role in MDV pathogenesis, we generated LORF9 or LORF10 deletion and revertant viruses. In vitro growth kinetics results show that both LORF9 and LORF10 are not essential for virus growth in cell culture. However, LORF9, but not LORF10, is involved in MDV early cytolytic replication in vivo, as evidenced by limited viral antigen expression in lymphoid organs of LORF9 deletion virus inoculated chickens. MDV genome copy number data further confirmed that LORF9 is important for MDV replication in spleen during early cytolytic phase. Deletion of LORF9 also partially impairs the replication of MDV in feather follicle epithelium (FFE); however, it can still establish latency and transformation. In addition, pathogenesis studies show that deletion of LORF9, but not LORF10, result in significant reduction of MDV induced mortality and slightly reduce MDV associated tumors of inoculated chickens. Importantly, we confirmed these results with the generation of LORF9 and LORF10 revertant viruses that fully restore the phenotypes of parental MDV. In conclusion, our results show that deletion of LORF9, but not LORF10, significantly impair viral replication in lymphoid organs during early cytolytic phase and attenuate Marek's disease virus pathogenesis.
Collapse
Affiliation(s)
- Yifei Liao
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Aijun Sun
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Guoqing Zhuang
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Blanca Lupiani
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Sanjay M Reddy
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
38
|
Role of Marek's Disease Virus (MDV)-Encoded U S3 Serine/Threonine Protein Kinase in Regulating MDV Meq and Cellular CREB Phosphorylation. J Virol 2020; 94:JVI.00892-20. [PMID: 32581093 DOI: 10.1128/jvi.00892-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 06/15/2020] [Indexed: 12/15/2022] Open
Abstract
Marek's disease (MD) is a neoplastic disease of chickens caused by Marek's disease virus (MDV), a member of the subfamily Alphaherpesvirinae Like other alphaherpesviruses, MDV encodes a serine/threonine protein kinase, US3. The functions of US3 have been extensively studied in other alphaherpesviruses; however, the biological functions of MDV US3 and its substrates have not been studied in detail. In this study, we investigated potential cellular pathways that are regulated by MDV US3 and identified chicken CREB (chCREB) as a substrate of MDV US3. We show that wild-type MDV US3, but not kinase-dead US3 (US3-K220A), increases CREB phosphorylation, leading to recruitment of phospho-CREB (pCREB) to the promoter of the CREB-responsive gene and activation of CREB target gene expression. Using US3 deletion and US3 kinase-dead recombinant MDV, we identified US3-responsive MDV genes during infection and found that the majority of US3-responsive genes were located in the MDV repeat regions. Chromatin immunoprecipitation sequencing (ChIP-seq) studies determined that some US3-regulated genes colocalized with Meq (an MDV-encoded oncoprotein) recruitment sites. Chromatin immunoprecipitation-PCR (ChIP-PCR) further confirmed Meq binding to the ICP4/LAT region, which is also regulated by US3. Furthermore, biochemical studies demonstrated that MDV US3 interacts with Meq in transfected cells and MDV-infected chicken embryonic fibroblasts in a phosphorylation-dependent manner. Finally, in vitro kinase studies revealed that Meq is a US3 substrate. MDV US3 thus acts as an upstream kinase of the CREB signaling pathway to regulate the transcription function of the CREB/Meq heterodimer, which targets cellular and viral gene expression.IMPORTANCE MDV is a potent oncogenic herpesvirus that induces T-cell lymphoma in infected chickens. Marek's disease continues to have a significant economic impact on the poultry industry worldwide. US3 encoded by alphaherpesviruses is a multifunctional kinase involved in the regulation of various cellular pathways. Using an MDV genome quantitative reverse transcriptase PCR (qRT-PCR) array and chromatin immunoprecipitation, we elucidated the role of MDV US3 in viral and cellular gene regulation. Our results provide insights into how viral kinase regulates host cell signaling pathways to activate both viral and host gene expression. This is an important step toward understanding host-pathogen interaction through activation of signaling cascades.
Collapse
|
39
|
Sadigh Y, Tahiri-Alaoui A, Spatz S, Nair V, Ribeca P. Pervasive Differential Splicing in Marek's Disease Virus can Discriminate CVI-988 Vaccine Strain from RB-1B Very Virulent Strain in Chicken Embryonic Fibroblasts. Viruses 2020; 12:E329. [PMID: 32197378 PMCID: PMC7150913 DOI: 10.3390/v12030329] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/07/2020] [Accepted: 03/10/2020] [Indexed: 12/13/2022] Open
Abstract
Marek's disease is a major scourge challenging poultry health worldwide. It is caused by the highly contagious Marek's disease virus (MDV), an alphaherpesvirus. Here, we showed that, similar to other members of its Herpesviridae family, MDV also presents a complex landscape of splicing events, most of which are uncharacterised and/or not annotated. Quite strikingly, and although the biological relevance of this fact is unknown, we found that a number of viral splicing isoforms are strain-specific, despite the close sequence similarity of the strains considered: very virulent RB-1B and vaccine CVI-988. We validated our findings by devising an assay that discriminated infections caused by the two strains in chicken embryonic fibroblasts on the basis of the presence of some RNA species. To our knowledge, this study is the first to accomplish such a result, emphasizing how relevant a comprehensive picture of the viral transcriptome is to fully understand viral pathogenesis.
Collapse
Affiliation(s)
- Yashar Sadigh
- Avian Viral Oncogenesis, The Pirbright Institute, Ash Road, Woking GU24 0NF, UK;
| | - Abdessamad Tahiri-Alaoui
- Clinical BioManufacturing Facility, The Jenner Institute, University of Oxford, Old Road, Headington, Oxford OX3 7JT, UK;
| | - Stephen Spatz
- US National Poultry Research Center, 934 College Station Road, Athens, GA 30605, USA;
| | - Venugopal Nair
- Avian Viral Oncogenesis, The Pirbright Institute, Ash Road, Woking GU24 0NF, UK;
| | - Paolo Ribeca
- Integrative Biology and Bioinformatics, The Pirbright Institute, Ash Road, Woking GU24 0NF, UK
- Biomathematics and Statistics Scotland (BioSS), James Clerk Maxwell Building, Peter Guthrie Tait Road, The King’s Buildings, Edinburgh EH9 3FD, UK
| |
Collapse
|
40
|
Mescolini G, Lupini C, Davidson I, Massi P, Tosi G, Fiorentini L, Catelli E. Molecular characterization of a Marek's disease virus strain detected in tumour-bearing turkeys. Avian Pathol 2019; 49:202-207. [PMID: 31702386 DOI: 10.1080/03079457.2019.1691715] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Marek's disease (MD) is a lymphoproliferative disease caused by Gallid alphaherpesvirus 2 (GaHV-2), which primarily affects chickens. However, the virus is also able to induce tumours in turkeys, albeit less frequently than in chickens. This study reports the molecular characterization of a GaHV-2 strain detected in a flock of Italian meat-type turkeys exhibiting visceral lymphomas. Sequencing and phylogenetic analysis of the meq gene revealed that the turkey GaHV-2 has molecular features of high virulence and genetic similarity with GaHV-2 strains recently detected in Italian commercial and backyard chickens. GaHV-2 is ubiquitous among chickens despite vaccination, and chicken-to-turkey transmission is hypothesized due to the presence of broilers in neighbouring pens.RESEARCH HIGHLIGHTS A GaHV-2 strain from Italian turkeys was molecularly characterized.The turkey strain presented molecular characteristics of high virulence in its meq gene.The turkey strain was closely related to previously detected chicken strains.
Collapse
Affiliation(s)
- Giulia Mescolini
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, BO, Italy
| | - Caterina Lupini
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, BO, Italy
| | - Irit Davidson
- Division of Avian Diseases, Kimron Veterinary Institute, Bet Dagan, Israel
| | - Paola Massi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Sezione Diagnostica di Forlì, Forlì, FC, Italy
| | - Giovanni Tosi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Sezione Diagnostica di Forlì, Forlì, FC, Italy
| | - Laura Fiorentini
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Sezione Diagnostica di Forlì, Forlì, FC, Italy
| | - Elena Catelli
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, BO, Italy
| |
Collapse
|
41
|
Detection and Molecular Characterization of a Natural Coinfection of Marek's Disease Virus and Reticuloendotheliosis Virus in Brazilian Backyard Chicken Flock. Vet Sci 2019; 6:vetsci6040092. [PMID: 31756886 PMCID: PMC6958383 DOI: 10.3390/vetsci6040092] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 01/12/2023] Open
Abstract
Marek’s disease virus (MDV) and the reticuloendotheliosis virus (REV) are two of the primary oncogenic viruses that significantly affect chickens. In Brazil, there have been no previous published reports on the presence of field REV alone or in coinfection. This retrospective study analyzes samples from a case of lymphoproliferative lesions from a backyard chicken flock. MDV and REV were detected by PCR and classified as MDV1 and REV3, respectively, through sequencing and phylogenetic analysis based on the glycoprotein B (gB) genes for MDV and the polymerase (pol) and envelope (env) genes for REV. Real-time PCR reactions were performed for MDV to rule out the presence of the Rispens vaccine strain. This is the first report of the presence of REV in coinfection with a MDV clinical case in Brazil and the first molecular characterization of REV in South America. This study highlights the importance of molecular diagnosis for REV and MDV in poultry. In addition, this study highlights the distribution of these two viruses worldwide and the latent risk of them solely or in coinfection to this part of the world.
Collapse
|
42
|
Mescolini G, Lupini C, Davidson I, Massi P, Tosi G, Catelli E. Marek's disease viruses circulating in commercial poultry in Italy in the years 2015-2018 are closely related by their meq gene phylogeny. Transbound Emerg Dis 2019; 67:98-107. [PMID: 31411371 DOI: 10.1111/tbed.13327] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/23/2019] [Accepted: 08/07/2019] [Indexed: 02/06/2023]
Abstract
Marek's disease (MD) is a lymphoproliferative disease important to the poultry industry worldwide; it is caused by Gallid alphaherpesvirus 2 (GaHV-2). The virulence of GaHV-2 isolates has shifted over the years from mild to virulent, very virulent and very virulent +. Nowadays the disease is controlled by vaccination, but field strains of increased virulence are emerging worldwide. Economic losses due to MD are mostly associated with its acute form, characterized by visceral lymphomas. The present study aimed to molecularly classify a group of 13 GaHV-2 strains detected in vaccinated Italian commercial chicken flocks during acute MD outbreaks, and to scrutinize the ability of predicting GaHV-2 virulence, according to the meq gene sequence. The full-length meq genes were amplified, and the obtained amino acid (aa) sequences were analysed, focusing mainly on the number of stretches of four proline molecules (PPPP) within the transactivation domain. Phylogenetic analysis was carried out with the Maximum Likelihood method using the obtained aa sequences, and the sequences of Italian strains detected in backyard flocks and of selected strains retrieved from GenBank. All the analysed strains showed 100% sequence identity in the meq gene, which encodes a Meq protein of 339 aa. The Meq protein includes four PPPP motifs in the transactivation domain and an interruption of a PPPP motif due to a proline-to-serine substitution at position 218. These features are typically encountered in highly virulent isolates. Phylogenetic analysis revealed that the analysed strains belonged to a cluster that includes high-virulence GaHV-2 strains detected in Italian backyard flocks and a hypervirulent Polish strain. Our results support the hypothesis that the virulence of field isolates can be suggested by meq aa sequence analysis.
Collapse
Affiliation(s)
- Giulia Mescolini
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Italy
| | - Caterina Lupini
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Italy
| | - Irit Davidson
- Division of Avian Diseases, Kimron Veterinary Institute, Bet Dagan, Israel
| | - Paola Massi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Sezione Diagnostica di Forlì, Forlì, Italy
| | - Giovanni Tosi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Sezione Diagnostica di Forlì, Forlì, Italy
| | - Elena Catelli
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Italy
| |
Collapse
|
43
|
Marek's Disease Virus-Encoded MicroRNA 155 Ortholog Critical for the Induction of Lymphomas Is Not Essential for the Proliferation of Transformed Cell Lines. J Virol 2019; 93:JVI.00713-19. [PMID: 31189706 PMCID: PMC6694823 DOI: 10.1128/jvi.00713-19] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 06/05/2019] [Indexed: 01/10/2023] Open
Abstract
Marek’s disease virus (MDV) is an alphaherpesvirus associated with Marek’s disease (MD), a highly contagious neoplastic disease of chickens. MD serves as an excellent model for studying virus-induced T-cell lymphomas in the natural chicken hosts. Among the limited set of genes associated with MD oncogenicity, MDV-miR-M4, a highly expressed viral ortholog of the oncogenic miR-155, has received extensive attention due to its direct role in the induction of lymphomas. Using a targeted CRISPR-Cas9-based gene editing approach in MDV-transformed lymphoblastoid cell lines, we show that MDV-miR-M4, despite its critical role in the induction of tumors, is not essential for maintaining the transformed phenotype and continuous proliferation. As far as we know, this was the first study in which precise editing of an oncogenic miRNA was carried out in situ in MD lymphoma-derived cell lines to demonstrate that it is not essential in maintaining the transformed phenotype. MicroRNAs (miRNAs) are small noncoding RNAs with profound regulatory roles in many areas of biology, including cancer. MicroRNA 155 (miR-155), one of the extensively studied multifunctional miRNAs, is important in several human malignancies such as diffuse large B cell lymphoma and chronic lymphocytic leukemia. Moreover, miR-155 orthologs KSHV-miR-K12-11 and MDV-miR-M4, encoded by Kaposi’s sarcoma-associated herpesvirus (KSHV) and Marek’s disease virus (MDV), respectively, are also involved in oncogenesis. In MDV-induced T-cell lymphomas and in lymphoblastoid cell lines derived from them, MDV-miR-M4 is highly expressed. Using excellent disease models of infection in natural avian hosts, we showed previously that MDV-miR-M4 is critical for the induction of T-cell lymphomas as mutant viruses with precise deletions were significantly compromised in their oncogenicity. However, those studies did not elucidate whether continued expression of MDV-miR-M4 is essential for maintaining the transformed phenotype of tumor cells. Here using an in situ CRISPR/Cas9 editing approach, we deleted MDV-miR-M4 from the MDV-induced lymphoma-derived lymphoblastoid cell line MDCC-HP8. Precise deletion of MDV-miR-M4 was confirmed by PCR, sequencing, quantitative reverse transcription-PCR (qRT-PCR), and functional analysis. Continued proliferation of the MDV-miR-M4-deleted cell lines demonstrated that MDV-miR-M4 expression is not essential for maintaining the transformed phenotype, despite its initial critical role in the induction of lymphomas. Ability to examine the direct role of oncogenic miRNAs in situ in tumor cell lines is valuable in delineating distinct determinants and pathways associated with the induction or maintenance of transformation in cancer cells and will also contribute significantly to gaining further insights into the biology of oncogenic herpesviruses. IMPORTANCE Marek’s disease virus (MDV) is an alphaherpesvirus associated with Marek’s disease (MD), a highly contagious neoplastic disease of chickens. MD serves as an excellent model for studying virus-induced T-cell lymphomas in the natural chicken hosts. Among the limited set of genes associated with MD oncogenicity, MDV-miR-M4, a highly expressed viral ortholog of the oncogenic miR-155, has received extensive attention due to its direct role in the induction of lymphomas. Using a targeted CRISPR-Cas9-based gene editing approach in MDV-transformed lymphoblastoid cell lines, we show that MDV-miR-M4, despite its critical role in the induction of tumors, is not essential for maintaining the transformed phenotype and continuous proliferation. As far as we know, this was the first study in which precise editing of an oncogenic miRNA was carried out in situ in MD lymphoma-derived cell lines to demonstrate that it is not essential in maintaining the transformed phenotype.
Collapse
|
44
|
Vallbracht M, Backovic M, Klupp BG, Rey FA, Mettenleiter TC. Common characteristics and unique features: A comparison of the fusion machinery of the alphaherpesviruses Pseudorabies virus and Herpes simplex virus. Adv Virus Res 2019; 104:225-281. [PMID: 31439150 DOI: 10.1016/bs.aivir.2019.05.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Membrane fusion is a fundamental biological process that allows different cellular compartments delimited by a lipid membrane to release or exchange their respective contents. Similarly, enveloped viruses such as alphaherpesviruses exploit membrane fusion to enter and infect their host cells. For infectious entry the prototypic human Herpes simplex viruses 1 and 2 (HSV-1 and -2, collectively termed HSVs) and the porcine Pseudorabies virus (PrV) utilize four different essential envelope glycoproteins (g): the bona fide fusion protein gB and the regulatory heterodimeric gH/gL complex that constitute the "core fusion machinery" conserved in all members of the Herpesviridae; and the subfamily specific receptor binding protein gD. These four components mediate attachment and fusion of the virion envelope with the host cell plasma membrane through a tightly regulated sequential activation process. Although PrV and the HSVs are closely related and employ the same set of glycoproteins for entry, they show remarkable differences in the requirements for fusion. Whereas the HSVs strictly require all four components for membrane fusion, PrV can mediate cell-cell fusion without gD. Moreover, in contrast to the HSVs, PrV provides a unique opportunity for reversion analyses of gL-negative mutants by serial cell culture passaging, due to a limited cell-cell spread capacity of gL-negative PrV not observed in the HSVs. This allows a more direct analysis of the function of gH/gL during membrane fusion. Unraveling the molecular mechanism of herpesvirus fusion has been a goal of fundamental research for years, and yet important mechanistic details remain to be uncovered. Nevertheless, the elucidation of the crystal structures of all key players involved in PrV and HSV membrane fusion, coupled with a wealth of functional data, has shed some light on this complex puzzle. In this review, we summarize and discuss the contemporary knowledge on the molecular mechanism of entry and membrane fusion utilized by the alphaherpesvirus PrV, and highlight similarities but also remarkable differences in the requirements for fusion between PrV and the HSVs.
Collapse
Affiliation(s)
- Melina Vallbracht
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany.
| | - Marija Backovic
- Institut Pasteur, Unité de Virologie Structurale, UMR3569 (CNRS), Paris, France
| | - Barbara G Klupp
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| | - Felix A Rey
- Institut Pasteur, Unité de Virologie Structurale, UMR3569 (CNRS), Paris, France
| | - Thomas C Mettenleiter
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| |
Collapse
|
45
|
Sun A, Luo J, Wan B, Du Y, Wang X, Weng H, Cao X, Zhang T, Chai S, Zhao D, Xing G, Zhuang G, Zhang G. Lorf9 deletion significantly eliminated lymphoid organ atrophy induced by meq-deleted very virulent Marek's disease virus. Vet Microbiol 2019; 235:164-169. [PMID: 31282374 DOI: 10.1016/j.vetmic.2019.06.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 06/26/2019] [Accepted: 06/30/2019] [Indexed: 10/26/2022]
Abstract
Marek's disease virus (MDV) is a highly contagious alphaherpesvirus that causes rapid onset of T cell lymphomas in chickens. MDV continues to break through vaccinal immunity due to the emergence of highly virulent field strains. Earlier studies revealed that deletion of the meq gene from MDV results in attenuated vaccines that protect against disease when chickens are infected with highly virulent strains. However, meq-deleted viruses still retain the ability to induce lymphoid organ atrophy, which raises safety concerns. In an earlier study, we found that deletion of lorf9 counteracts this lymphoid organ atrophy. Here, we describe the generation of a double deletion mutant virus lacking virus-encoded meq and lorf9. In vitro studies revealed that during replication, the mutant virus had kinetic characteristics similar to the parental virus; however, in vivo the replication capability was significantly reduced. Results of animal studies revealed no obvious MDV-specific symptoms and lesions. Importantly, the double deletion mutant virus lost the capacity to induce lymphoid organ atrophy, which has been the main obstacle during development of a good vaccine candidate.
Collapse
Affiliation(s)
- Aijun Sun
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, Henan, PR China
| | - Jun Luo
- Key laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan, PR China
| | - Bo Wan
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, Henan, PR China
| | - Yongkun Du
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, Henan, PR China
| | - Xiangru Wang
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, Henan, PR China
| | - Haoyu Weng
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, Henan, PR China
| | - Xinru Cao
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, Henan, PR China
| | - Tianlu Zhang
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, Henan, PR China
| | - Shujun Chai
- Key laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan, PR China
| | - Dong Zhao
- Key laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan, PR China
| | - Guangxu Xing
- Key laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan, PR China
| | - Guoqing Zhuang
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, Henan, PR China.
| | - Gaiping Zhang
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, Henan, PR China; Key laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan, PR China.
| |
Collapse
|
46
|
Kaján GL, Affranio I, Tóthné Bistyák A, Kecskeméti S, Benkő M. An emerging new fowl adenovirus genotype. Heliyon 2019; 5:e01732. [PMID: 31193583 PMCID: PMC6536733 DOI: 10.1016/j.heliyon.2019.e01732] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 04/08/2019] [Accepted: 05/10/2019] [Indexed: 12/01/2022] Open
Abstract
In this work, we examined the diversity of fowl adenovirus (FAdV) types occurring in Hungary. From diseased chicken flocks in Eastern Hungary, 29 FAdV strains were isolated between 2011 and 2015. We performed molecular typing of the isolates based on their partial hexon sequences. The results showed that representatives from every FAdV species from A to E are present in Hungary, but compared to the findings from our previous survey, a lower number of different FAdV types were detected. Inclusion body hepatitis was always associated with FAdV-2 or -8b, gizzard erosion was caused in almost every case by FAdV-1. Numerous strains belonging to species FAdV-B were found. The complete genome sequence of a candidate new genotype strain, showing the highest divergence from the reference FAdV-5, was determined using next generation sequencing. In order to provide results compatible with the serology-based type classification, multiple genomic regions, including the major antigenic determinants, of the new isolate (strain 40440-M/2015) were compared to their counterparts in the prototype FAdV-5 (strain 340) from species FAdV-B, at both nucleotide and amino acid sequence levels. In different comparative analyses, the two strains were always found to have larger divergence between each other than any two of the most closely related FAdV serotypes. This new emerging FAdV genotype is already present in Hungary and Austria, though its exact pathological role requires further investigations. The introduction of a novel FAdV (geno)type for the classification of these strains is further supported.
Collapse
Affiliation(s)
- Győző L Kaján
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Hungária krt. 21, H-1143, Budapest, Hungary
| | - Ilaria Affranio
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Hungária krt. 21, H-1143, Budapest, Hungary
| | - Andrea Tóthné Bistyák
- Veterinary Diagnostic Directorate, National Food Chain Safety Office, Bornemissza u. 3-7, H-4031, Debrecen, Hungary
| | - Sándor Kecskeméti
- Veterinary Diagnostic Directorate, National Food Chain Safety Office, Bornemissza u. 3-7, H-4031, Debrecen, Hungary
| | - Mária Benkő
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Hungária krt. 21, H-1143, Budapest, Hungary
| |
Collapse
|
47
|
Zhou X, Wu S, Zhou H, Wang M, Wang M, Lü Y, Cheng Z, Xu J, Ai Y. Marek's Disease Virus Regulates the Ubiquitylome of Chicken CD4 + T Cells to Promote Tumorigenesis. Int J Mol Sci 2019; 20:E2089. [PMID: 31035338 PMCID: PMC6539122 DOI: 10.3390/ijms20092089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 04/23/2019] [Accepted: 04/26/2019] [Indexed: 12/19/2022] Open
Abstract
Ubiquitination and deubiquitination of cellular proteins are reciprocal reactions catalyzed by ubiquitination-related enzymes and deubiquitinase (DUB) which regulate almost all cellular processes. Marek's disease virus (MDV) encodes a viral DUB that plays an important role in the MDV pathogenicity. Chicken CD4+ T-cell lymphoma induced by MDV is a key contributor to multiple visceral tumors and immunosuppression of chickens with Marek's disease (MD). However, alterations in the ubiquitylome of MDV-induced T lymphoma cells are still unclear. In this study, a specific antibody against K-ε-GG was used to isolate ubiquitinated peptides from CD4+ T cells and MD T lymphoma cells. Mass spectrometry was used to compare and analyze alterations in the ubiquitylome. Our results showed that the ubiquitination of 717 and 778 proteins was significantly up- and downregulated, respectively, in T lymphoma cells. MDV up- and downregulated ubiquitination of a similar percentage of proteins. The ubiquitination of transferases, especially serine/threonine kinases, was the main regulatory target of MDV. Compared with CD4+ T cells of the control group, MDV mainly altered the ubiquitylome associated with the signal transduction, immune system, cancer, and infectious disease pathways in T lymphoma cells. In these pathways, the ubiquitination of CDK1, IL-18, PRKCB, ETV6, and EST1 proteins was significantly up- or downregulated as shown by immunoblotting. The current study revealed that the MDV infection could exert a significant influence on the ubiquitylome of CD4+ T cells.
Collapse
Affiliation(s)
- Xiaolu Zhou
- College of Animal Science, Jilin University, 5333 Xi An Road, Changchun 130062, Jilin, China.
| | - Shanli Wu
- College of Basic Medical Sciences, Jilin University, 126 Xin Min Avenue, Changchun 130021, Jilin, China.
| | - Hongda Zhou
- College of Animal Science, Jilin University, 5333 Xi An Road, Changchun 130062, Jilin, China.
| | - Mengyun Wang
- College of Animal Science, Jilin University, 5333 Xi An Road, Changchun 130062, Jilin, China.
| | - Menghan Wang
- College of Animal Science, Jilin University, 5333 Xi An Road, Changchun 130062, Jilin, China.
| | - Yan Lü
- College of Animal Science, Jilin University, 5333 Xi An Road, Changchun 130062, Jilin, China.
| | - Zhongyi Cheng
- Jingjie PTM Biolabs Co. Ltd., 452 6th Street, Hangzhou Eco. & Tech. Developmental Area, Hangzhou 310018, Zhejiang, China.
| | - Jiacui Xu
- College of Animal Science, Jilin University, 5333 Xi An Road, Changchun 130062, Jilin, China.
| | - Yongxing Ai
- College of Animal Science, Jilin University, 5333 Xi An Road, Changchun 130062, Jilin, China.
| |
Collapse
|
48
|
The Transcriptional Landscape of Marek's Disease Virus in Primary Chicken B Cells Reveals Novel Splice Variants and Genes. Viruses 2019; 11:v11030264. [PMID: 30884829 PMCID: PMC6466439 DOI: 10.3390/v11030264] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/12/2019] [Accepted: 03/13/2019] [Indexed: 12/14/2022] Open
Abstract
Marek's disease virus (MDV) is an oncogenic alphaherpesvirus that infects chickens and poses a serious threat to poultry health. In infected animals, MDV efficiently replicates in B cells in various lymphoid organs. Despite many years of research, the viral transcriptome in primary target cells of MDV remained unknown. In this study, we uncovered the transcriptional landscape of the very virulent RB1B strain and the attenuated CVI988/Rispens vaccine strain in primary chicken B cells using high-throughput RNA-sequencing. Our data confirmed the expression of known genes, but also identified a novel spliced MDV gene in the unique short region of the genome. Furthermore, de novo transcriptome assembly revealed extensive splicing of viral genes resulting in coding and non-coding RNA transcripts. A novel splicing isoform of MDV UL15 could also be confirmed by mass spectrometry and RT-PCR. In addition, we could demonstrate that the associated transcriptional motifs are highly conserved and closely resembled those of the host transcriptional machinery. Taken together, our data allow a comprehensive re-annotation of the MDV genome with novel genes and splice variants that could be targeted in further research on MDV replication and tumorigenesis.
Collapse
|
49
|
Neerukonda SN, Tavlarides-Hontz P, McCarthy F, Pendarvis K, Parcells MS. Comparison of the Transcriptomes and Proteomes of Serum Exosomes from Marek's Disease Virus-Vaccinated and Protected and Lymphoma-Bearing Chickens. Genes (Basel) 2019; 10:E116. [PMID: 30764491 PMCID: PMC6410298 DOI: 10.3390/genes10020116] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 01/29/2019] [Accepted: 01/30/2019] [Indexed: 01/01/2023] Open
Abstract
Marek's disease virus (MDV) is the causative agent of Marek's disease (MD), a complex pathology of chickens characterized by paralysis, immunosuppression, and T-cell lymphomagenesis. MD is controlled in poultry production via vaccines administered in ovo or at hatch, and these confer protection against lymphoma formation, but not superinfection by MDV field strains. Despite vaccine-induced humoral and cell-mediated immune responses, mechanisms eliciting systemic protection remain unclear. Here we report the contents of serum exosomes to assess their possible roles as indicators of systemic immunity, and alternatively, tumor formation. We examined the RNA and protein content of serum exosomes from CVI988 (Rispens)-vaccinated and protected chickens (VEX), and unvaccinated tumor-bearing chickens (TEX), via deep-sequencing and mass spectrometry, respectively. Bioinformatic analyses of microRNAs (miRNAs) and predicted miRNA targets indicated a greater abundance of tumor suppressor miRNAs in VEX compared to TEX. Conversely, oncomiRs originating from cellular (miRs 106a-363) and MDV miRNA clusters were more abundant in TEX compared to VEX. Most notably, mRNAs mapping to the entire MDV genome were identified in VEX, while mRNAs mapping to the repeats flanking the unique long (IRL/TRL) were identified in TEX. These data suggest that long-term systemic vaccine-induced immune responses may be mediated at the level of VEX which transfer viral mRNAs to antigen presenting cells systemically. Proteomic analyses of these exosomes suggested potential biomarkers for VEX and TEX. These data provide important putative insight into MDV-mediated immune suppression and vaccine responses, as well as potential serum biomarkers for MD protection and susceptibility.
Collapse
Affiliation(s)
| | | | - Fiona McCarthy
- Department of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ 85721, USA.
| | - Kenneth Pendarvis
- Department of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ 85721, USA.
| | - Mark S Parcells
- Department of Animal and Food Sciences, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
50
|
The Natural Large Genomic Deletion Is Unrelated to the Increased Virulence of the Novel Genotype Fowl Adenovirus 4 Recently Emerged in China. Viruses 2018; 10:v10090494. [PMID: 30217040 PMCID: PMC6165077 DOI: 10.3390/v10090494] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/10/2018] [Accepted: 09/11/2018] [Indexed: 12/31/2022] Open
Abstract
Since 2015, severe hydropericardium-hepatitis syndrome (HHS), caused by a highly pathogenic fowl adenovirus 4 (FAdV-4), emerged in China. In our previous study, the FAdV-4 has been identified as a novel genotype with a unique 1966-bp nucleotide deletion (1966Del) between open reading frame 42 and 43. In this study, the natural 1966Del was frequently identified among 17 clinical isolates and other reported Chinese clinical strains. To investigate the relationship between 1966Del and the increased virulence of the novel FAdV-4, a CRISPR/Cas9 operating platform for FAdV-4 was developed for the first time in this study. Based on this platform, a Re1966 strain was rescued, inserted the relative 1966Del sequence of a nonpathogenic strain KR5. In the pathogenicity study, the Re1966 strain retained high virulence for specific-pathogen-free chickens, similar to the parental wild-type HLJFAd15, although the survival time of chickens infected with Re1966 was much longer. Therefore, the natural 1966Del was identified as a non-essential site for the increased virulence of the emerged novel FAdV-4. Although further research on the virulence-determining region or point within the genome of the novel FAdV-4 is needed, the CRISPR/Cas9 operating platform for the novel FAdV-4 was developed and successfully applied to edit the genomic DNA for the first time, and it provides a novel powerful tool for both basic virology studies and vaccine vector development of FAdVs.
Collapse
|