1
|
Homiski C, Dey-Rao R, Shen S, Qu J, Melendy T. DNA damage-induced phosphorylation of a replicative DNA helicase results in inhibition of DNA replication through attenuation of helicase function. Nucleic Acids Res 2024; 52:10311-10328. [PMID: 39126317 PMCID: PMC11417368 DOI: 10.1093/nar/gkae663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 06/14/2024] [Accepted: 07/18/2024] [Indexed: 08/12/2024] Open
Abstract
A major function of the DNA damage responses (DDRs) that act during the replicative phase of the cell cycle is to inhibit initiation and elongation of DNA replication. It has been shown that DNA replication of the polyomavirus, SV40, is inhibited and its replication fork is slowed by cellular DDR responses. The inhibition of SV40 DNA replication is associated with enhanced DDR kinase phosphorylation of SV40 Large T-antigen (LT), the viral DNA helicase. Mass spectroscopy was used to identify a novel highly conserved DDR kinase site, T518, on LT. In cell-based assays expression of a phosphomimetic form of LT at T518 (T518D) resulted in dramatically decreased levels of SV40 DNA replication, but LT-dependent transcriptional activation was unaffected. Purified WT and LT T518D were analyzed in vitro. In concordance with the cell-based data, reactions using SV40 LT-T518D, but not T518A, showed dramatic inhibition of SV40 DNA replication. A myriad of LT protein-protein interactions and LT's biochemical functions were unaffected by the LT T518D mutation; however, LT's DNA helicase activity was dramatically decreased on long, but not very short, DNA templates. These results suggest that DDR phosphorylation at T518 inhibits SV40 DNA replication by suppressing LT helicase activity.
Collapse
Affiliation(s)
- Caleb Homiski
- Departments of Microbiology & Immunology and Biochemistry, and the Witebsky Center for Microbial Pathogenesis & Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Rama Dey-Rao
- Departments of Microbiology & Immunology and Biochemistry, and the Witebsky Center for Microbial Pathogenesis & Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Shichen Shen
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York at Buffalo, Buffalo, NY 14203, USA; NYS Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Jun Qu
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York at Buffalo, Buffalo, NY 14203, USA; NYS Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Thomas Melendy
- Departments of Microbiology & Immunology and Biochemistry, and the Witebsky Center for Microbial Pathogenesis & Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York at Buffalo, Buffalo, NY 14203, USA
| |
Collapse
|
2
|
Moens U, Passerini S, Falquet M, Sveinbjørnsson B, Pietropaolo V. Phosphorylation of Human Polyomavirus Large and Small T Antigens: An Ignored Research Field. Viruses 2023; 15:2235. [PMID: 38005912 PMCID: PMC10674619 DOI: 10.3390/v15112235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/02/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Protein phosphorylation and dephosphorylation are the most common post-translational modifications mediated by protein kinases and protein phosphatases, respectively. These reversible processes can modulate the function of the target protein, such as its activity, subcellular localization, stability, and interaction with other proteins. Phosphorylation of viral proteins plays an important role in the life cycle of a virus. In this review, we highlight biological implications of the phosphorylation of the monkey polyomavirus SV40 large T and small t antigens, summarize our current knowledge of the phosphorylation of these proteins of human polyomaviruses, and conclude with gaps in the knowledge and a proposal for future research directions.
Collapse
Affiliation(s)
- Ugo Moens
- Department of Medical Biology, Faculty of Health Sciences, University of Tromsø—The Arctic University of Norway, 9037 Tromsø, Norway; (M.F.); (B.S.)
| | - Sara Passerini
- Department of Public Health and Infectious Diseases, “Sapienza” University of Rome, 00185 Rome, Italy;
| | - Mar Falquet
- Department of Medical Biology, Faculty of Health Sciences, University of Tromsø—The Arctic University of Norway, 9037 Tromsø, Norway; (M.F.); (B.S.)
| | - Baldur Sveinbjørnsson
- Department of Medical Biology, Faculty of Health Sciences, University of Tromsø—The Arctic University of Norway, 9037 Tromsø, Norway; (M.F.); (B.S.)
| | - Valeria Pietropaolo
- Department of Public Health and Infectious Diseases, “Sapienza” University of Rome, 00185 Rome, Italy;
| |
Collapse
|
3
|
Diaz J, Wang X, Tsang SH, Jiao J, You J. Phosphorylation of large T antigen regulates merkel cell polyomavirus replication. Cancers (Basel) 2014; 6:1464-86. [PMID: 25006834 PMCID: PMC4190550 DOI: 10.3390/cancers6031464] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 06/18/2014] [Accepted: 06/24/2014] [Indexed: 01/23/2023] Open
Abstract
Merkel Cell Polyomavirus (MCPyV) was recently discovered as a novel human polyomavirus that is associated with ~80% of Merkel Cell Carcinomas. The Large Tumor antigen (LT) is an early viral protein which has a variety of functions, including manipulation of the cell cycle and initiating viral DNA replication. Phosphorylation plays a critical regulatory role for polyomavirus LT proteins, but no investigation of MCPyV LT phosphorylation has been performed to date. In this report mass spectrometry analysis reveals three unique phosphorylation sites: T271, T297 and T299. In vivo replication assays confirm that phosphorylation of T271 does not play a role in viral replication, while modification at T297 and T299 have dramatic and opposing effects on LT’s ability to initiate replication from the viral origin. We test these mutants for their ability to bind, unwind, and act as a functional helicase at the viral origin. These studies provide a framework for understanding how phosphorylation of LT may dynamically regulate viral replication. Although the natural host cell of MCPyV has not yet been established, this work provides a foundation for understanding how LT activity is regulated and provides tools for better exploring this regulation in both natural host cells and Merkel cells.
Collapse
Affiliation(s)
- Jason Diaz
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| | - Xin Wang
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| | - Sabrina H Tsang
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| | - Jing Jiao
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| | - Jianxin You
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
4
|
Han Y, Wang Q, Qiu Y, Wu W, He H, Zhang J, Hu Y, Zhou X. Periplaneta fuliginosa densovirus nonstructural protein NS1 contains an endonuclease activity that is regulated by its phosphorylation. Virology 2013; 437:1-11. [PMID: 23290078 DOI: 10.1016/j.virol.2012.12.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Revised: 10/26/2012] [Accepted: 12/10/2012] [Indexed: 01/26/2023]
Abstract
Periplaneta fuliginosa densovirus (PfDNV) is a single-stranded DNA virus, belonging to Densovirinae subfamily, Parvoviridae family. Parvovirus nonstructural protein 1 (NS1) contains various activities required for parvoviral DNA replication, like endonuclease, helicase and ATPase, which are regulated by serine/threonine phosphorylation. However, for PfDNV, NS1 endonuclease activity has not been determined. Moreover, for densoviruses, whether NS1 is phosphorylated, and if so, phosphorylation pattern and impact on NS1 activities have not been investigated. Here, we demonstrated that PfDNV NS1 possesses endonuclease activity, covalently attaches to 5'-end of nicking site, and includes an active-site tyrosine (Y178). Moreover, using different phosphatases, we uncovered that both serine/threonine and tyrosine phosphorylations are critical for NS1 endonuclease and helicase activities. Further mass-spec and mutational analyses revealed that Y345 is phosphorylated and functions as a critical regulatory site for NS1 activities. This study should foster our understanding of NS1 activities and regulations in PfDNV and other densoviruses.
Collapse
Affiliation(s)
- Yajuan Han
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Analysis of the costructure of the simian virus 40 T-antigen origin binding domain with site I reveals a correlation between GAGGC spacing and spiral assembly. J Virol 2012; 87:2923-34. [PMID: 23269808 DOI: 10.1128/jvi.02549-12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Polyomavirus origins of replication contain multiple occurrences of G(A/G)GGC, the high-affinity binding element for the viral initiator T-antigen (T-ag). The site I regulatory region of simian virus 40, involved in the repression of transcription and the enhancement of DNA replication initiation, contains two GAGGC sequences arranged head to tail and separated by a 7-bp AT-rich sequence. We have solved a 3.2-Å costructure of the SV40 origin-binding domain (OBD) bound to site I. We have also established that T-ag assembly on site I is limited to the formation of a single hexamer. These observations have enabled an analysis of the role(s) of the OBDs bound to the site I pentanucleotides in hexamer formation. Of interest, they reveal a correlation between the OBDs bound to site I and a pair of OBD subunits in the previously described hexameric spiral structure. Based on these findings, we propose that spiral assembly is promoted by pentanucleotide pairs arranged in a head-to-tail manner. Finally, the possibility that spiral assembly by OBD subunits accounts for the heterogeneous distribution of pentanucleotides found in the origins of replication of polyomaviruses is discussed.
Collapse
|
6
|
Abstract
Replicative DNA helicases generally unwind DNA as a single hexamer that encircles and translocates along one strand of the duplex while excluding the complementary strand (“steric exclusion”). In contrast, large T antigen (T-ag), the replicative DNA helicase of the Simian Virus 40 (SV40), is reported to function as a pair of stacked hexamers that pumps double-stranded DNA through its central channel while laterally extruding single-stranded DNA. Here, we use single-molecule and ensemble assays to show that T-ag assembled on the SV40 origin unwinds DNA efficiently as a single hexamer that translocates on single-stranded DNA in the 3′ to 5′ direction. Unexpectedly, T-ag unwinds DNA past a DNA-protein crosslink on the translocation strand, suggesting that the T-ag ring can open to bypass bulky adducts. Together, our data underscore the profound conservation among replicative helicase mechanisms while revealing a new level of plasticity in their interactions with DNA damage.
Collapse
|
7
|
Abstract
Eukaryotic DNA replication is regulated to ensure all chromosomes replicate once and only once per cell cycle. Replication begins at many origins scattered along each chromosome. Except for budding yeast, origins are not defined DNA sequences and probably are inherited by epigenetic mechanisms. Initiation at origins occurs throughout the S phase according to a temporal program that is important in regulating gene expression during development. Most replication proteins are conserved in evolution in eukaryotes and archaea, but not in bacteria. However, the mechanism of initiation is conserved and consists of origin recognition, assembly of prereplication (pre-RC) initiative complexes, helicase activation, and replisome loading. Cell cycle regulation by protein phosphorylation ensures that pre-RC assembly can only occur in G1 phase, whereas helicase activation and loading can only occur in S phase. Checkpoint regulation maintains high fidelity by stabilizing replication forks and preventing cell cycle progression during replication stress or damage.
Collapse
Affiliation(s)
- R A Sclafani
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| | | |
Collapse
|
8
|
Fradet-Turcotte A, Vincent C, Joubert S, Bullock PA, Archambault J. Quantitative analysis of the binding of simian virus 40 large T antigen to DNA. J Virol 2007; 81:9162-74. [PMID: 17596312 PMCID: PMC1951407 DOI: 10.1128/jvi.00384-07] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
SV40 large T antigen (T-ag) is a multifunctional protein that successively binds to 5'-GAGGC-3' sequences in the viral origin of replication, melts the origin, unwinds DNA ahead of the replication fork, and interacts with host DNA replication factors to promote replication of the simian virus 40 genome. The transition of T-ag from a sequence-specific binding protein to a nonspecific helicase involves its assembly into a double hexamer whose formation is likely dictated by the propensity of T-ag to oligomerize and its relative affinities for the origin as well as for nonspecific double- and single-stranded DNA. In this study, we used a sensitive assay based on fluorescence anisotropy to measure the affinities of wild-type and mutant forms of the T-ag origin-binding domain (OBD), and of a larger fragment containing the N-terminal domain (N260), for different DNA substrates. We report that the N-terminal domain does not contribute to binding affinity but reduces the propensity of the OBD to self-associate. We found that the OBD binds with different affinities to its four sites in the origin and determined a consensus binding site by systematic mutagenesis of the 5'-GAGGC-3' sequence and of the residue downstream of it, which also contributes to affinity. Interestingly, the OBD also binds to single-stranded DNA with an approximately 10-fold higher affinity than to nonspecific duplex DNA and in a mutually exclusive manner. Finally, we provide evidence that the sequence specificity of full-length T-ag is lower than that of the OBD. These results provide a quantitative basis onto which to anchor our understanding of the interaction of T-ag with the origin and its assembly into a double hexamer.
Collapse
Affiliation(s)
- Amélie Fradet-Turcotte
- Laboratory of Molecular Virology, Institut de Recherches Cliniques de Montréal (IRCM), 110 Pine Avenue West, Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
9
|
Frisque RJ, Hofstetter C, Tyagarajan SK. Transforming Activities of JC Virus Early Proteins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 577:288-309. [PMID: 16626044 DOI: 10.1007/0-387-32957-9_21] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Polyomaviruses, as their name indicates, are viruses capable of inducing a variety of tumors in vivo. Members of this family, including the human JC and BK viruses (JCV, BKV), and the better characterized mouse polyomavirus and simian virus 40 (SV40), are small DNA viruses that commandeer a cell's molecular machinery to reproduce themselves. Studies of these virus-host interactions have greatly enhanced our understanding of a wide range of phenomena from cellular processes (e.g., DNA replication and transcription) to viral oncogenesis. The current chapter will focus upon the five known JCV early proteins and the contributions each makes to the oncogenic process (transformation) when expressed in cultured cells. Where appropriate, gaps in our understanding of JCV protein function will be supplanted with information obtained from the study of SV40 and BKV.
Collapse
|
10
|
Kumar A, Meinke G, Reese DK, Moine S, Phelan PJ, Fradet-Turcotte A, Archambault J, Bohm A, Bullock PA. Model for T-antigen-dependent melting of the simian virus 40 core origin based on studies of the interaction of the beta-hairpin with DNA. J Virol 2007; 81:4808-18. [PMID: 17287270 PMCID: PMC1900137 DOI: 10.1128/jvi.02451-06] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The interaction of simian virus 40 (SV40) T antigen (T-ag) with the viral origin has served as a model for studies of site-specific recognition of a eukaryotic replication origin and the mechanism of DNA unwinding. These studies have revealed that a motif termed the "beta-hairpin" is necessary for assembly of T-ag on the SV40 origin. Herein it is demonstrated that residues at the tip of the "beta-hairpin" are needed to melt the origin-flanking regions and that the T-ag helicase domain selectively assembles around one of the newly generated single strands in a manner that accounts for its 3'-to-5' helicase activity. Furthermore, T-ags mutated at the tip of the "beta-hairpin" are defective for oligomerization on duplex DNA; however, they can assemble on hybrid duplex DNA or single-stranded DNA (ssDNA) substrates provided the strand containing the 3' extension is present. Collectively, these experiments indicate that residues at the tip of the beta-hairpin generate ssDNA in the core origin and that the ssDNA is essential for subsequent oligomerization events.
Collapse
Affiliation(s)
- Anuradha Kumar
- Department of Biochemistry A703, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Tyagarajan SK, Frisque RJ. Stability and function of JC virus large T antigen and T' proteins are altered by mutation of their phosphorylated threonine 125 residues. J Virol 2006; 80:2083-91. [PMID: 16474116 PMCID: PMC1395387 DOI: 10.1128/jvi.80.5.2083-2091.2006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2005] [Accepted: 12/06/2005] [Indexed: 12/29/2022] Open
Abstract
JC virus (JCV), a human polyomavirus, exhibits oncogenic activity in rodents and primates. The large tumor antigens (TAgs) of the polyomaviruses play key roles in viral replication and oncogenic transformation. Analyses of JCV TAg phosphorylation mutants indicated that the amino-terminal phosphorylation site at threonine 125 (T125) is critical to TAg replication function. This site is also conserved in the TAg splice variants T'(135), T'(136), and T'(165). By constructing stable cell lines expressing JCV T125A and T125D mutants, we show that mutation of this phosphorylation site to alanine generates an unstable TAg; however, the stability of the three T' proteins is unaffected. JCV T125A mutant proteins bind the retinoblastoma protein (RB) family members p107 and p130 with slightly reduced efficiencies and fail to induce the release of transcriptionally active E2F from RB-E2F complexes. On the other hand, cell lines expressing JCV T125D mutant proteins produce stable TAg and T' proteins which bind p107 and p130 more efficiently than do the wild-type proteins. In addition, T125D mutant proteins efficiently induce the release of E2F from RB-E2F complexes. T125D mutant cell lines, unlike the T125A mutant lines, continue to grow under conditions of low serum concentration and anchorage independence. Finally, both T125A and T125D mutant viruses are replication defective. Phosphorylation of the T125 site is likely mediated by a cyclin-cyclin-dependent kinase, suggesting that JCV TAg and T' protein functions that mediate viral replication and oncogenic transformation events are regulated in a cell cycle-dependent manner.
Collapse
Affiliation(s)
- Shiva K Tyagarajan
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, 16802, USA
| | | |
Collapse
|
12
|
Sclafani RA, Fletcher RJ, Chen XS. Two heads are better than one: regulation of DNA replication by hexameric helicases. Genes Dev 2004; 18:2039-45. [PMID: 15342486 PMCID: PMC2292464 DOI: 10.1101/gad.1240604] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Robert. A. Sclafani
- Biochemistry and Molecular Genetics, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | - Ryan J. Fletcher
- Biochemistry and Molecular Genetics, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
- Molecular and Computational Biology, University of Southern California, Los Angeles, California 90089, USA
| | - Xiaojiang S. Chen
- Biochemistry and Molecular Genetics, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
- Molecular and Computational Biology, University of Southern California, Los Angeles, California 90089, USA
- Corresponding author: E-MAIL or ; FAX (303) 315-8113
| |
Collapse
|
13
|
Weisshart K, Friedl S, Taneja P, Nasheuer HP, Schlott B, Grosse F, Fanning E. Partial proteolysis of simian virus 40 T antigen reveals intramolecular contacts between domains and conformation changes upon hexamer assembly. J Biol Chem 2004; 279:38943-51. [PMID: 15247253 DOI: 10.1074/jbc.m406159200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Simian virus 40 large tumor antigen (Tag) is a multi-functional viral protein that binds specifically to SV40 origin DNA, serves as the replicative DNA helicase, and orchestrates the assembly and operation of the viral replisome. Tag associated with Mg-ATP forms hexamers and, in the presence of SV40 origin DNA, double hexamers. Limited tryptic digestion of monomeric Tag revealed three major stable structural domains. The N-terminal domain spans amino acids 1-130, the central domain comprises amino acids 131-476, and the C-terminal domain extends from amino acid 513 to amino acid 698. Co-immunoprecipitation of digestion products of monomeric Tag suggests that the N-terminal domain associates stably with sequences located in the central region of the same Tag molecule. Hexamer formation protected the tryptic cleavage sites in the exposed region between the central and C-terminal domains. Upon hexamerization, this exposed region also became less accessible to a monoclonal antibody whose epitope maps in that region. The tryptic digestion products of the soluble hexamer and the DNA-bound double hexamer were indistinguishable. A low-resolution model of the intramolecular and intermolecular interactions among Tag domains in the double hexamer is proposed.
Collapse
Affiliation(s)
- Klaus Weisshart
- Institute for Molecular Biotechnology, Beutenbergstrasse 11, 07745 Jena, Federal Republic of Germany
| | | | | | | | | | | | | |
Collapse
|
14
|
Reese DK, Sreekumar KR, Bullock PA. Interactions required for binding of simian virus 40 T antigen to the viral origin and molecular modeling of initial assembly events. J Virol 2004; 78:2921-34. [PMID: 14990710 PMCID: PMC353773 DOI: 10.1128/jvi.78.6.2921-2934.2004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The purified T-antigen origin binding domain binds site specifically to site II, the central region of the simian virus 40 core origin. However, in the context of full-length T antigen, the origin binding domain interacts poorly with DNA molecules containing just site II. Here we investigate the contributions of additional core origin regions, termed the flanking sequences, to origin recognition and the assembly of T-antigen hexamers and double hexamers. Results from these studies indicate that in addition to site-specific binding of the T-antigen origin binding domain to site II, T-antigen assembly requires non-sequence-specific interactions between a basic finger in the helicase domain and particular flanking sequences. Related studies demonstrate that the assembly of individual hexamers is coupled to the distortions in the proximal flanking sequence. In addition, the point in the double-hexamer assembly process that is regulated by phosphorylation of threonine 124, the sole posttranslational modification required for initiation of DNA replication, was further analyzed. Finally, T-antigen structural information is used to model various stages of T-antigen assembly on the core origin and the regulation of this process.
Collapse
Affiliation(s)
- Danielle K Reese
- Department of Biochemistry, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | |
Collapse
|
15
|
Abstract
Initiator proteins are key components of the DNA replication machinery that determine where initiation will occur. In the past few years, due to a greatly improved understanding of what viral initiators look like and how they function, we can now identify the basic tasks that are required of initiators, as well as begin to comprehend what activities are required to perform these tasks. The improved knowledge of the viral initiators also demonstrates an unexpected level of conservation between different viral initiators, which might extend also to their cellular counterparts.
Collapse
Affiliation(s)
- Arne Stenlund
- Cold Spring Harbor Laboratory, P.O. Box 100, 1 Bungtown Rd, Cold Spring Harbor, New York 11724, USA.
| |
Collapse
|
16
|
Titolo S, Welchner E, White PW, Archambault J. Characterization of the DNA-binding properties of the origin-binding domain of simian virus 40 large T antigen by fluorescence anisotropy. J Virol 2003; 77:5512-8. [PMID: 12692254 PMCID: PMC153955 DOI: 10.1128/jvi.77.9.5512-5518.2003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The affinity of the origin-binding domain (OBD) of simian virus 40 large T antigen for its cognate origin was measured at equilibrium using a DNA binding assay based on fluorescence anisotropy. At a near-physiological concentration of salt, the affinities of the OBD for site II and the core origin were 31 and 50 nM, respectively. Binding to any of the four 5'-GAGGC-3' binding sites in site II was only slightly weaker, between 57 and 150 nM. Although the OBD was shown previously to assemble as a dimer on two binding sites spaced by 7 bp, we found that increasing the distance between both binding sites by 1 to 3 bp had little effect on affinity. Similar results were obtained for full-length T antigen in absence of nucleotide. Addition of ADP-Mg, which promotes hexamerization of T antigen, greatly increased the affinity of full-length T antigen for the core origin and for nonspecific DNA. The implications of these findings for the assembly of T antigen at the origin and its transition to a non-specific DNA helicase are discussed.
Collapse
Affiliation(s)
- S Titolo
- Department of Biological Sciences, Boehringer Ingelheim (Canada) Ltd., Laval, Canada H7S 2G5
| | | | | | | |
Collapse
|
17
|
Titolo S, Brault K, Majewski J, White PW, Archambault J. Characterization of the minimal DNA binding domain of the human papillomavirus e1 helicase: fluorescence anisotropy studies and characterization of a dimerization-defective mutant protein. J Virol 2003; 77:5178-91. [PMID: 12692220 PMCID: PMC153954 DOI: 10.1128/jvi.77.9.5178-5191.2003] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The E1 helicase of papillomaviruses is required for replication of the viral double-stranded DNA genome, in conjunction with cellular factors. DNA replication is initiated at the viral origin by the assembly of E1 monomers into oligomeric complexes that have unwinding activity. In vivo, this process is catalyzed by the viral E2 protein, which recruits E1 specifically at the origin. For bovine papillomavirus (BPV) E1 a minimal DNA-binding domain (DBD) has been identified N-terminal to the enzymatic domain. In this study, we characterized the DBD of human papillomavirus 11 (HPV11), HPV18, and BPV E1 using a quantitative DNA binding assay based on fluorescence anisotropy. We found that the HPV11 DBD binds DNA with an affinity and sequence requirement comparable to those of the analogous domain of BPV but that the HPV18 DBD has a higher affinity for nonspecific DNA. By comparing the DNA-binding properties of a dimerization-defective protein to those of the wild type, we provide evidence that dimerization of the HPV11 DBD occurs only on two appropriately positioned E1 binding-sites and contributes approximately a 10-fold increase in binding affinity. In contrast, the HPV11 E1 helicase purified as preformed hexamers binds DNA with little sequence specificity, similarly to a dimerization-defective DBD. Finally, we show that the amino acid substitution that prevents dimerization reduces the ability of a longer E1 protein to bind to the origin in vitro and to support transient HPV DNA replication in vivo, but has little effect on its ATPase activity or ability to oligomerize into hexamers. These results are discussed in light of a model of the assembly of replication-competent double hexameric E1 complexes at the origin.
Collapse
Affiliation(s)
- S Titolo
- Department of Biological Sciences, Boehringer Ingelheim (Canada) Ltd., Laval, Canada H7S 2G5
| | | | | | | | | |
Collapse
|
18
|
Kim RJ, Moine S, Reese DK, Bullock PA. Peptides containing cyclin/Cdk-nuclear localization signal motifs derived from viral initiator proteins bind to DNA when unphosphorylated. J Virol 2002; 76:11785-92. [PMID: 12414920 PMCID: PMC136914 DOI: 10.1128/jvi.76.23.11785-11792.2002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A single phosphorylation event at T-antigen residue Thr124 regulates initiation of simian virus 40 DNA replication. To explore this regulatory process, a series of peptides were synthesized, centered on Thr124. These peptides contain a nuclear localization signal (NLS) and a recognition site for cyclin/Cdk kinases. When unphosphorylated, the "CDK/NLS" peptides inhibit T-antigen assembly and bind non-sequence specifically to DNA. However, these activities are greatly reduced upon phosphorylation of Thr124. Similar results were obtained by using peptides derived from the CDK/NLS region of bovine papillomavirus E1. Related studies indicate that residues in the NLS bind to DNA, whereas those in the CDK motif regulate binding. These findings are discussed in terms of the control of T-antigen double hexamer assembly and initiation of viral replication.
Collapse
Affiliation(s)
- Ronald J Kim
- Department of Biochemistry, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | | | |
Collapse
|
19
|
Lin BY, Makhov AM, Griffith JD, Broker TR, Chow LT. Chaperone proteins abrogate inhibition of the human papillomavirus (HPV) E1 replicative helicase by the HPV E2 protein. Mol Cell Biol 2002; 22:6592-604. [PMID: 12192057 PMCID: PMC135630 DOI: 10.1128/mcb.22.18.6592-6604.2002] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Human papillomavirus (HPV) DNA replication requires the viral origin recognition protein E2 and the presumptive viral replicative helicase E1. We now report for the first time efficient DNA unwinding by a purified HPV E1 protein. Unwinding depends on a supercoiled DNA substrate, topoisomerase I, single-stranded-DNA-binding protein, and ATP, but not an origin. Electron microscopy revealed completely unwound molecules. Intermediates contained two single-stranded loops emanating from a single protein complex, suggesting a bidirectional E1 helicase which translocated the flanking DNA in an inward direction. We showed that E2 protein partially inhibited DNA unwinding and that Hsp70 or Hsp40, which we reported previously to stimulate HPV-11 E1 binding to the origin and promote dihexameric E1 formation, apparently displaced E2 and abolished inhibition. Neither E2 nor chaperone proteins were detected in unwinding complexes. These results suggest that chaperones play important roles in the assembly and activation of a replicative helicase in higher eukaryotes. An E1 mutation in the ATP binding site caused deficient binding and unwinding of origin DNA, indicating the importance of ATP binding in efficient helicase assembly on the origin.
Collapse
Affiliation(s)
- Biing Yuan Lin
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, 35294-0005, USA
| | | | | | | | | |
Collapse
|
20
|
Uhlmann-Schiffler H, Seinsoth S, Stahl H. Preformed hexamers of SV40 T antigen are active in RNA and origin-DNA unwinding. Nucleic Acids Res 2002; 30:3192-201. [PMID: 12136101 PMCID: PMC135737 DOI: 10.1093/nar/gkf416] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Preformed hexamers of simian virus 40 (SV40) large tumor antigen (T antigen) constitute the bulk of T antigen in infected cells and are stable under physiological conditions. In spite of this they could not be assigned a function in virus replication or transformation. We report that preformed hexamers represent the active T antigen RNA helicase. Monomers and smaller oligomeric forms of T antigen were inactive due to the lack of hexamer formation under RNA unwinding conditions. In contrast to the immunologically related cellular DEAD-box protein p68, the T antigen RNA helicase is found to act in a much more processive way and it does not catalyze rearrangements of structured RNAs. Thereby, it rather seems to resemble other virus-encoded RNA helicases, like vaccinia virus NPH-II. Surprisingly, in our hands preformed hexamers also strikingly bound to and unwound the SV40 replication origin, pointing to a possible role of preformed hexamers in the initiation step of viral DNA replication. Furthermore, we have detected an extra hexamer-specific, high-affinity T antigen ATP binding site with a very slow exchange rate constant, the function of which is discussed.
Collapse
MESH Headings
- Adenosine Triphosphate/metabolism
- Animals
- Antigens, Polyomavirus Transforming/chemistry
- Antigens, Polyomavirus Transforming/metabolism
- Antigens, Polyomavirus Transforming/ultrastructure
- Binding, Competitive
- Cell Line
- DNA, Viral/chemistry
- DNA, Viral/metabolism
- DNA, Viral/ultrastructure
- Dimerization
- Microscopy, Electron
- Nucleic Acid Conformation
- Protein Binding
- RNA Helicases/metabolism
- RNA, Viral/chemistry
- RNA, Viral/metabolism
- Replication Origin/genetics
- Simian virus 40/genetics
- Simian virus 40/immunology
- Virus Replication
Collapse
Affiliation(s)
- Heike Uhlmann-Schiffler
- Medizinische Biochemie und Molekularbiologie, Universität des Saarlandes, Gebäude 44/45, D-66421 Homburg, SAAR, Germany
| | | | | |
Collapse
|
21
|
Karmakar P, Piotrowski J, Brosh RM, Sommers JA, Miller SPL, Cheng WH, Snowden CM, Ramsden DA, Bohr VA. Werner protein is a target of DNA-dependent protein kinase in vivo and in vitro, and its catalytic activities are regulated by phosphorylation. J Biol Chem 2002; 277:18291-302. [PMID: 11889123 DOI: 10.1074/jbc.m111523200] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human Werner Syndrome is characterized by early onset of aging, elevated chromosomal instability, and a high incidence of cancer. Werner protein (WRN) is a member of the recQ gene family, but unlike other members of the recQ family, it contains a unique 3'-->5' exonuclease activity. We have reported previously that human Ku heterodimer interacts physically with WRN and functionally stimulates WRN exonuclease activity. Because Ku and DNA-PKcs, the catalytic subunit of DNA-dependent protein kinase (DNA-PK), form a complex at DNA ends, we have now explored the possibility of functional modulation of WRN exonuclease activity by DNA-PK. We find that although DNA-PKcs alone does not affect the WRN exonuclease activity, the additional presence of Ku mediates a marked inhibition of it. The inhibition of WRN exonuclease by DNA-PKcs requires the kinase activity of DNA-PKcs. WRN is a target for DNA-PKcs phosphorylation, and this phosphorylation requires the presence of Ku. We also find that treatment of recombinant WRN with a Ser/Thr phosphatase enhances WRN exonuclease and helicase activities and that WRN catalytic activity can be inhibited by rephosphorylation of WRN with DNA-PK. Thus, the level of phosphorylation of WRN appears to regulate its catalytic activities. WRN forms a complex, both in vitro and in vivo, with DNA-PKC. WRN is phosphorylated in vivo after treatment of cells with DNA-damaging agents in a pathway that requires DNA-PKcs. Thus, WRN protein is a target for DNA-PK phosphorylation in vitro and in vivo, and this phosphorylation may be a way of regulating its different catalytic activities, possibly in the repair of DNA dsb.
Collapse
Affiliation(s)
- Parimal Karmakar
- Laboratory of Molecular Gerontology, NIA, National Institutes of Health, Baltimore, Maryland 21224, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Ott RD, Wang Y, Fanning E. Mutational analysis of simian virus 40 T-antigen primosome activities in viral DNA replication. J Virol 2002; 76:5121-30. [PMID: 11967327 PMCID: PMC136129 DOI: 10.1128/jvi.76.10.5121-5130.2002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The recruitment of DNA polymerase alpha-primase (pol-prim) is a crucial step in the establishment of a functional replication complex in eukaryotic cells, but the mechanism of pol-prim loading and the composition of the eukaryotic primosome are poorly understood. In the model system for simian virus 40 (SV40) DNA replication in vitro, synthesis of RNA primers at the origin of replication requires only the viral tumor (T) antigen, replication protein A (RPA), pol-prim, and topoisomerase I. On RPA-coated single-stranded DNA (ssDNA), T antigen alone mediates priming by pol-prim, constituting a relatively simple primosome. T-antigen activities proposed to participate in its primosome function include DNA helicase and protein-protein interactions with RPA and pol-prim. To test the role of these activities of T antigen in mediating priming by pol-prim, three replication-defective T antigens with mutations in the ATPase or helicase domain have been characterized. All three mutant proteins interacted physically and functionally with RPA and pol-prim and bound ssDNA, and two of them displayed some helicase activity. However, only one of these, 5030, mediated primer synthesis and elongation by pol-prim on RPA-coated ssDNA. The results suggest that a novel activity, present in 5030 T antigen and absent in the other two mutants, is required for T-antigen primosome function.
Collapse
Affiliation(s)
- Robert D Ott
- Department of Biological Sciences and Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37232, USA
| | | | | |
Collapse
|
23
|
Purviance JD, Prack AE, Barbaro BA, Bullock PA. In the simian virus 40 in vitro replication system, start site selection by the polymerase alpha-primase complex is not significantly altered by changes in the concentration of ribonucleotides. J Virol 2001; 75:6392-401. [PMID: 11413306 PMCID: PMC114362 DOI: 10.1128/jvi.75.14.6392-6401.2001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The simian virus 40 (SV40) in vitro replication system was previously used to demonstrate that the human polymerase (Pol) alpha-primase complex preferentially initiates DNA synthesis at pyrimidine-rich trinucleotide sequences. However, it has been reported that under certain conditions, nucleoside triphosphate (NTP) concentrations play a critical role in determining where eukaryotic primase initiates synthesis. Therefore, we have examined whether increased NTP concentrations alter the template locations at which SV40 replication is initiated. Our studies demonstrate that elevated ribonucleotide concentrations do not significantly alter which template sequences serve as initiation sites. Of considerable interest, the sequences that serve as initiation sites in the SV40 system are similar to those that serve as initiation sites for prokaryotic primases. It is also demonstrated that regardless of the concentration of ribonucleotides present in the reactions, DNA synthesis initiated outside of the core origin. These studies provide additional evidence that the Pol alpha-primase complex can initiate DNA synthesis only after a considerable amount of single-stranded DNA is generated.
Collapse
Affiliation(s)
- John D Purviance
- Department of Biochemistry, Tufts University School of Medicine, 136 Harrison Ave., Boston, MA 02111, USA
| | | | | | | |
Collapse
|
24
|
Sreekumar KR, Prack AE, Winters DR, Barbaro BA, Bullock PA. The simian virus 40 core origin contains two separate sequence modules that support T-antigen double-hexamer assembly. J Virol 2000; 74:8589-600. [PMID: 10954561 PMCID: PMC116372 DOI: 10.1128/jvi.74.18.8589-8600.2000] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Using subfragments of the simian virus 40 (SV40) core origin, we demonstrate that two alternative modules exist for the assembly of T-antigen (T-ag) double hexamers. Pentanucleotides 1 and 3 and the early palindrome (EP) constitute one assembly unit, while pentanucleotides 2 and 4 and the AT-rich region constitute a second, relatively weak, assembly unit. Related studies indicate that on the unit made up of pentanucleotide 1 and 3 and the EP assembly unit, the first hexamer forms on pentanucleotide 1 and that owing to additional protein-DNA and protein-protein interactions, the second hexamer is able to form on pentanucleotide 3. Oligomerization on the unit made up of pentanucleotide 2 and 4 and the AT-rich region is initiated by assembly of a hexamer on pentanucleotide 4; subsequent formation of the second hexamer takes place on pentanucleotide 2. Given that oligomerization on the SV40 origin is limited to double-hexamer formation, it is likely that only a single module is used for the initial assembly of T-ag double hexamers. Finally, we discuss the evidence that nucleotide hydrolysis is required for the remodeling events that result in the utilization of the second assembly unit.
Collapse
Affiliation(s)
- K R Sreekumar
- Department of Biochemistry, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | | | | | |
Collapse
|