1
|
Malik RM, Fazal S, Kamal MA. Computational Analysis of Domains Vulnerable to HPV-16 E6 Oncoprotein and Corresponding Hot Spot Residues. Protein Pept Lett 2021; 28:414-425. [PMID: 32703126 DOI: 10.2174/0929866527666200722134801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/19/2020] [Accepted: 06/28/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Human Papilloma Virus (HPV) is the primary cause of cancers in cervix, head and neck regions. Oncoprotein E6 of HPV-16, after infecting human body, alters host protein- protein interaction networks. E6 interacts with several proteins, causing the infection to progress into cervical cancer. The molecular basis for these interactions is the presence of short linear peptide motifs on E6 identical to those on human proteins. METHODS Motifs of LXXLL and E/DLLL/V-G after identification on E6, were analyzed for their dynamic fluctuations by use of elastic network models. Correlation analysis of amino acid residues of E6 was also performed in specific regions of motifs. RESULTS Arginine, Leucine, Glutamine, Threonine and Glutamic acid have been identified as hot spot residues of E6 which can subsequently provide a platform for drug designing and understanding of pathogenesis of cervical cancer. These amino acids play a significant role in stabilizing interactions with host proteins, ultimately causing infections and cancers. CONCLUSION Our study validates the role of linear binding motifs of E6 of HPV in interacting with these proteins as an important event in the propagation of HPV in human cells and its transformation into cervical cancer. The study further predicts the domains of protein kinase and armadillo as part of the regions involved in the interaction of E6AP, Paxillin and TNF R1, with viral E6.
Collapse
Affiliation(s)
| | - Sahar Fazal
- Capital University of Science and Technology, Islamabad, Pakistan
| | - Mohammad Amjad Kamal
- West China School of Nursing / Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| |
Collapse
|
2
|
Interaction of NEP with G Protein Pathway Suppressor 2 Facilitates Influenza A Virus Replication by Weakening the Inhibition of GPS2 to RNA Synthesis and Ribonucleoprotein Assembly. J Virol 2021; 95:JVI.00008-21. [PMID: 33658351 PMCID: PMC8139649 DOI: 10.1128/jvi.00008-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The nuclear export protein (NEP) serves multiple functions in the life cycle of influenza A virus (IAV). Identifying novel host proteins that interact with NEP and understanding their functions in IAV replication are of great interest. In this study, we screened and confirmed the direct interaction of G protein pathway suppressor 2 (GPS2) with NEP through a yeast two-hybrid screening assay and glutathione S-transferase-pulldown and co-immunoprecipitation assays. Knockdown or knockout of GPS2 enhanced IAV titers, whereas overexpression of GPS2 impaired IAV replication, demonstrating that GPS2 acted as a negative host factor in IAV replication. Meanwhile, GPS2 inhibited viral RNA synthesis by reducing the assembly of IAV polymerase. Interestingly, IAV NEP interacted with GPS2 and mediated its nuclear export, thereby activated the degradation of GPS2. Thus, NEP-GPS2 interaction weakened the inhibition of GPS2 to viral polymerase activity and benefited virus replication. Overall, this study identified the novel NEP-binding host partner GPS2 as a critical host factor to participate in IAV replication. These findings provided novel insights into the interactions between IAV and host cells, revealing a new function for GPS2 during IAV replication.Importance: NEP is proposed to play multiple biologically important roles in the life cycle of IAV, which largely relies on host factors by interaction. Our study demonstrated that GPS2 could reduce the interaction between PB1 and PB2 and interfere with vRNP assembly. Thus, GPS2 inhibited the RNA synthesis of IAV and negatively regulated its replication. Importantly, IAV NEP interacted with GPS2 and mediated the nuclear export of GPS2, thereby activated the degradation of GPS2. Thus, NEP-GPS2 interaction weakened the inhibition of GPS2 to viral polymerase activity and benefited virus replication.
Collapse
|
3
|
Scarth JA, Patterson MR, Morgan EL, Macdonald A. The human papillomavirus oncoproteins: a review of the host pathways targeted on the road to transformation. J Gen Virol 2021; 102:001540. [PMID: 33427604 PMCID: PMC8148304 DOI: 10.1099/jgv.0.001540] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/25/2020] [Indexed: 12/24/2022] Open
Abstract
Persistent infection with high-risk human papillomaviruses (HR-HPVs) is the causal factor in over 99 % of cervical cancer cases, and a significant proportion of oropharyngeal and anogenital cancers. The key drivers of HPV-mediated transformation are the oncoproteins E5, E6 and E7. Together, they act to prolong cell-cycle progression, delay differentiation and inhibit apoptosis in the host keratinocyte cell in order to generate an environment permissive for viral replication. The oncoproteins also have key roles in mediating evasion of the host immune response, enabling infection to persist. Moreover, prolonged infection within the cellular environment established by the HR-HPV oncoproteins can lead to the acquisition of host genetic mutations, eventually culminating in transformation to malignancy. In this review, we outline the many ways in which the HR-HPV oncoproteins manipulate the host cellular environment, focusing on how these activities can contribute to carcinogenesis.
Collapse
Affiliation(s)
- James A. Scarth
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire, LS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, West Yorkshire, LS2 9JT, UK
| | - Molly R. Patterson
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire, LS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, West Yorkshire, LS2 9JT, UK
| | - Ethan L. Morgan
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire, LS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, West Yorkshire, LS2 9JT, UK
- Present address: Tumour Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institute of Health, Bethesda, MD 20892, USA
| | - Andrew Macdonald
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire, LS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, West Yorkshire, LS2 9JT, UK
| |
Collapse
|
4
|
Vázquez-Ulloa E, Lizano M, Sjöqvist M, Olmedo-Nieva L, Contreras-Paredes A. Deregulation of the Notch pathway as a common road in viral carcinogenesis. Rev Med Virol 2018; 28:e1988. [PMID: 29956408 DOI: 10.1002/rmv.1988] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 03/27/2018] [Accepted: 05/23/2018] [Indexed: 12/15/2022]
Abstract
The Notch pathway is a conserved signaling pathway and a form of direct cell-cell communication related to many biological processes during development and adulthood. Deregulation of the Notch pathway is involved in many diseases, including cancer. Almost 20% of all cancer cases have an infectious etiology, with viruses responsible for at least 1.5 million new cancer cases per year. Seven groups of viruses have been classified as oncogenic: hepatitis B and C viruses (HBV and HCV respectively), Epstein-Barr virus (EBV), Kaposi sarcoma-associated herpesvirus (KSHV), human T lymphotropic virus (HTLV-1), human papillomavirus (HPV), and Merkel cell polyomavirus (MCPyV). These viruses share the ability to manipulate a variety of cell pathways that are critical in proliferation and differentiation, leading to malignant transformation. Viral proteins interact directly or indirectly with different members of the Notch pathway, altering their normal function. This review focuses exclusively on the direct interactions of viral oncoproteins with Notch elements, providing a deeper understanding of the dual behavior of the Notch pathway as activator or suppressor of neoplasia in virus-related cancers.
Collapse
Affiliation(s)
- Elenaé Vázquez-Ulloa
- Programa de Maestría y Doctorado en Ciencias Bioquímicas, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Tecnológico Nacional de México, Instituto Tecnológico de Gustavo A. Madero, Mexico City, Mexico
| | - Marcela Lizano
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Marika Sjöqvist
- Faculty of Science and Engineering, Biosciences, Åbo Akademi University, Turku, Finland
| | - Leslie Olmedo-Nieva
- Programa de Maestría y Doctorado en Ciencias Bioquímicas, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Adriana Contreras-Paredes
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
5
|
Abstract
Cervical cancer, a potentially preventable disease, remains the second most common malignancy in women worldwide. Human papillomavirus (HPV) is the single most important etiological agent in cervical cancer, contributing to neoplastic progression through the action of viral oncoproteins, mainly E6 and E7. Cervical screening programs using Pap smear testing have dramatically improved cervical cancer incidence and reduced deaths, but cervical cancer still remains a global health burden. The biomarker discovery for accurate detection and diagnosis of cervical carcinoma and its malignant precursors (collectively referred to as high-grade cervical disease) represents one of the current challenges in clinical medicine and cytopathology.
Collapse
Affiliation(s)
- Eun-Kyoung Yim
- Department of Obstetrics and Gynecology, Catholic University Medical College, 505 Banpo-dong, Seocho-gu, Seoul, 137-040, Republic of Korea
| | - Jong-Sup Park
- Department of Obstetrics and Gynecology, Catholic University Medical College, 505 Banpo-dong, Seocho-gu, Seoul, 137-040, Republic of Korea
| |
Collapse
|
6
|
Wang J, Dupuis C, Tyring SK, Underbrink MP. Sterile α Motif Domain Containing 9 Is a Novel Cellular Interacting Partner to Low-Risk Type Human Papillomavirus E6 Proteins. PLoS One 2016; 11:e0149859. [PMID: 26901061 PMCID: PMC4764768 DOI: 10.1371/journal.pone.0149859] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 02/05/2016] [Indexed: 11/18/2022] Open
Abstract
Low-risk type human papillomavirus (HPV) 6 and 11 infection causes recurrent respiratory papillomatosis (RRP) and genital warts. RRP is the most common benign tumor of the larynx in children with frequent relapses. Repeated surgeries are often needed to improve vocal function and prevent life-threatening respiratory obstruction. Currently, there are no effective treatments available to completely eliminate these diseases, largely due to limited knowledge regarding their viral molecular pathogenesis. HPV E6 proteins contribute to cell immortalization by interacting with a variety of cellular proteins, which have been well studied for the high-risk type HPVs related to cancer progression. However, the functions of low-risk HPV E6 proteins are largely unknown. In this study, we report GST-pulldown coupled mass spectrometry analysis with low-risk HPV E6 proteins that identified sterile alpha motif domain containing 9 (SAMD9) as a novel interacting partner. We then confirmed the interaction between HPV-E6 and SAMD9 using co-immunoprecipitation, proximity ligation assay, and confocal immunofluorescence staining. The SAMD9 gene is down-regulated in a variety of neoplasms and deleteriously mutated in normophosphatemic familial tumoral calcinosis. Interestingly, SAMD9 also has antiviral functions against poxvirus. Our study adds to the limited knowledge of the molecular properties of low-risk HPVs and describes new potential functions for the low-risk HPV E6 protein.
Collapse
Affiliation(s)
- Jia Wang
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Crystal Dupuis
- Department of Otolaryngology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Stephen K. Tyring
- Department of Dermatology, University of Texas Health Science Center, Houston, Texas, United States of America
| | - Michael P. Underbrink
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Otolaryngology, University of Texas Medical Branch, Galveston, Texas, United States of America
- * E-mail:
| |
Collapse
|
7
|
Abstract
Human papillomaviruses (HPVs) infect the epidermis as well as mucous membranes of humans. They are the causative agents of anogenital tract and some oropharyngeal cancers. Infections begin in the basal epithelia, where the viral genome replicates slowly along with its host cell. As infected cells begin to differentiate and progress toward the periphery, the virus drives proliferation in cells that would otherwise be quiescent. To uncouple differentiation from continued cellular propagation, HPVs express two oncoproteins, HPV E6 and E7. This review focuses on high-risk α-HPV E6, which in addition to supporting viral replication has transforming properties. HPV E6 promotes p53 degradation and activates telomerase, but the multifaceted oncoprotein has numerous other functions that are highlighted here.
Collapse
Affiliation(s)
- Nicholas A Wallace
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109;
| | - Denise A Galloway
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109;
| |
Collapse
|
8
|
Habbous S, Pang V, Xu W, Amir E, Liu G. Human papillomavirus and host genetic polymorphisms in carcinogenesis: a systematic review and meta-analysis. J Clin Virol 2014; 61:220-9. [PMID: 25174543 DOI: 10.1016/j.jcv.2014.07.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 07/26/2014] [Accepted: 07/30/2014] [Indexed: 11/28/2022]
Abstract
BACKGROUND As the role of human papillomavirus (HPV) in carcinogenesis continues to rise, the role of genetic factors that modify this risk have become increasingly important. In this study, we reviewed the literature for associations between polymorphisms and HPV in carcinogenesis. OBJECTIVE To identify any associations of genetic polymorphisms with oncogenic HPV in carcinogenesis and to evaluate the methodology used. STUDY DESIGN Systematic literature review of HPV, genetic polymorphisms, and cancer risk. Odds ratios (OR), interaction terms, and p-values were tabulated. Meta-analyses and measures of heterogeneity were estimated using RevMan 5.1. RESULTS The cervix was the most frequently studied cancer site followed by the head and neck. Overall risk of cancer (cancer vs. control) was the most common comparison, whereas reports of initiation (pre-cancer vs. control) and progression (cancer vs. pre-cancer) were rare. Case-series and joint-effect of HPV and genotype on risk was evaluated frequently, but the independent effect of either risk factor alone was rarely provided. P53-Arg72Pro was the most commonly studied polymorphism studied. No consistent interaction was detected by meta-analysis in the HPV(+) [OR 0.98 (0.55-1.76)] or the HPV(-) [OR 1.10 (0.76-1.60)] subsets in head and neck cancer risk. Polymorphisms in genes known to encode proteins that physically interact with HPV were infrequently studied. CONCLUSION No consistent polymorphism-HPV interactions were observed. Study design, choice of candidate polymorphisms/genes, and a focus on overall risk rather than any specific portions of the carcinogenic pathway may have contributed to lack of significant findings.
Collapse
Affiliation(s)
- Steven Habbous
- Ontario Cancer Institute, Princess Margaret Cancer Centre, Toronto, Ontario, Canada M5G 2M9
| | - Vincent Pang
- Ontario Cancer Institute, Princess Margaret Cancer Centre, Toronto, Ontario, Canada M5G 2M9
| | - Wei Xu
- Ontario Cancer Institute, Princess Margaret Cancer Centre, Toronto, Ontario, Canada M5G 2M9; Department of Biostatistics, Princess Margaret Cancer Centre, Toronto, Ontario, Canada M5G 2M9
| | - Eitan Amir
- Ontario Cancer Institute, Princess Margaret Cancer Centre, Toronto, Ontario, Canada M5G 2M9; Division of Medical Oncology and Hematology, Toronto, Ontario, Canada M5G 2M9
| | - Geoffrey Liu
- Ontario Cancer Institute, Princess Margaret Cancer Centre, Toronto, Ontario, Canada M5G 2M9; Medicine and Epidemiology, Dalla Lana School of Public Health, University of Toronto, Canada M5G 2M9.
| |
Collapse
|
9
|
Vande Pol SB, Klingelhutz AJ. Papillomavirus E6 oncoproteins. Virology 2013; 445:115-37. [PMID: 23711382 DOI: 10.1016/j.virol.2013.04.026] [Citation(s) in RCA: 248] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 04/22/2013] [Accepted: 04/25/2013] [Indexed: 02/07/2023]
Abstract
Papillomaviruses induce benign and malignant epithelial tumors, and the viral E6 oncoprotein is essential for full transformation. E6 contributes to transformation by associating with cellular proteins, docking on specific acidic LXXLL peptide motifs found on these proteins. This review examines insights from recent studies of human and animal E6 proteins that determine the three-dimensional structure of E6 when bound to acidic LXXLL peptides. The structure of E6 is related to recent advances in the purification and identification of E6 associated protein complexes. These E6 protein-complexes, together with other proteins that bind to E6, alter a broad array of biological outcomes including modulation of cell survival, cellular transcription, host cell differentiation, growth factor dependence, DNA damage responses, and cell cycle progression.
Collapse
Affiliation(s)
- Scott B Vande Pol
- Department of Pathology, University of Virginia, Charlottesville, VA 22901, USA.
| | | |
Collapse
|
10
|
Pang CL, Thierry F. Human papillomavirus proteins as prospective therapeutic targets. Microb Pathog 2012; 58:55-65. [PMID: 23164805 DOI: 10.1016/j.micpath.2012.11.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 11/07/2012] [Accepted: 11/07/2012] [Indexed: 01/01/2023]
Abstract
Human papillomaviruses (HPV) are the causative agents of a subset of cervical cancers that are associated with persistent viral infection. The HPV genome is an ∼8 kb circle of double-stranded DNA that encodes eight viral proteins, among which the products of the E6 and E7 open reading frames are recognized as being the primary HPV oncogenes. E6 and E7 are expressed in pre-malignant lesions as well as in cervical cancers; hence these proteins have been extensively studied as potential targets for HPV therapies and novel vaccines. Here we review the expression and functions of E6 and E7 in the viral vegetative cycle and in oncogenesis. We also explore the expression and functions of other HPV proteins, including those with oncogenic properties, and discuss the potential of these molecules as alternative therapeutic targets.
Collapse
Affiliation(s)
- Chai Ling Pang
- Singapore Immunology Network, 8A Biomedical Grove, #4-06 Immunos, A*STAR, Singapore 138648, Singapore
| | | |
Collapse
|
11
|
Activation of cap-dependent translation by mucosal human papillomavirus E6 proteins is dependent on the integrity of the LXXLL binding motif. J Virol 2012; 86:7466-72. [PMID: 22553330 DOI: 10.1128/jvi.00487-12] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human papillomavirus (HPV) type 16 (HPV16) E6 protein can stimulate mechanistic target of rapamycin complex 1 (mTORC1) signaling and cap-dependent translation through activation of the PDK1 and mTORC2 kinases. Here we report that HPV18 E6 also enhances cap-dependent translation. The integrity of LXXLL and PDZ protein binding domains is important for activation of cap-dependent translation by high-risk mucosal HPV E6 proteins. Consistent with this model, low-risk mucosal HPV6b and HPV11 E6 proteins, which do not contain a PDZ protein binding motif, also activate cap-dependent translation and mTORC1, albeit at a lower efficiency than high-risk HPV E6 proteins. In contrast, cutaneous HPV5 and HPV8 E6 proteins, which lack LXXLL and PDZ motif protein binding, do not enhance cap-dependent translation. Mutagenic analyses of low-risk HPV E6 proteins revealed that association with the LXXLL motif containing ubiquitin ligase E6AP (UBE3A) correlates with activation of cap-dependent translation. Hence, activation of mTORC1 and cap-dependent translation may be important for the viral life cycle in specific epithelial tissue types and contribute to cellular transformation in cooperation with other biological activities of high-risk HPV E6-containing proteins.
Collapse
|
12
|
Ou HD, May AP, O'Shea CC. The critical protein interactions and structures that elicit growth deregulation in cancer and viral replication. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2011; 3:48-73. [PMID: 21061422 DOI: 10.1002/wsbm.88] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
One of the greatest challenges in biomedicine is to define the critical targets and network interactions that are subverted to elicit growth deregulation in human cells. Understanding and developing rational treatments for cancer requires a definition of the key molecular targets and how they interact to elicit the complex growth deregulation phenotype. Viral proteins provide discerning and powerful probes to understand both how cells work and how they can be manipulated using a minimal number of components. The small DNA viruses have evolved to target inherent weaknesses in cellular protein interaction networks to hijack the cellular DNA and protein replication machinery. In the battle to escape the inevitability of senescence and programmed cell death, cancers have converged on similar mechanisms, through the acquisition and selection of somatic mutations that drive unchecked cellular replication in tumors. Understanding the dynamic mechanisms through which a minimal number of viral proteins promote host cells to undergo unscheduled and pathological replication is a powerful strategy to identify critical targets that are also disrupted in cancer. Viruses can therefore be used as tools to probe the system-wide protein-protein interactions and structures that drive growth deregulation in human cells. Ultimately this can provide a path for developing system context-dependent therapeutics. This review will describe ongoing experimental approaches using viruses to study pathways deregulated in cancer, with a particular focus on viral cellular protein-protein interactions and structures.
Collapse
Affiliation(s)
- Horng D Ou
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | | | | |
Collapse
|
13
|
Oberoi J, Fairall L, Watson PJ, Yang JC, Czimmerer Z, Kampmann T, Goult BT, Greenwood JA, Gooch JT, Kallenberger BC, Nagy L, Neuhaus D, Schwabe JW. Structural basis for the assembly of the SMRT/NCoR core transcriptional repression machinery. Nat Struct Mol Biol 2011; 18:177-84. [PMID: 21240272 PMCID: PMC3232451 DOI: 10.1038/nsmb.1983] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2009] [Accepted: 11/08/2010] [Indexed: 11/08/2022]
Abstract
Eukaryotic transcriptional repressors function by recruiting large coregulatory complexes that target histone deacetylase enzymes to gene promoters and enhancers. Transcriptional repression complexes, assembled by the corepressor NCoR and its homolog SMRT, are crucial in many processes, including development and metabolic physiology. The core repression complex involves the recruitment of three proteins, HDAC3, GPS2 and TBL1, to a highly conserved repression domain within SMRT and NCoR. We have used structural and functional approaches to gain insight into the architecture and biological role of this complex. We report the crystal structure of the tetrameric oligomerization domain of TBL1, which interacts with both SMRT and GPS2, and the NMR structure of the interface complex between GPS2 and SMRT. These structures, together with computational docking, mutagenesis and functional assays, reveal the assembly mechanism and stoichiometry of the corepressor complex.
Collapse
Affiliation(s)
- Jasmeen Oberoi
- Henry Wellcome Laboratories of Structural Biology, Department of Biochemistry, University of Leicester, Lancaster Road, Leicester. LE1 9HN
- MRC-Laboratory of Molecular Biology, Hills Road, Cambridge. CB2 0QH
| | - Louise Fairall
- Henry Wellcome Laboratories of Structural Biology, Department of Biochemistry, University of Leicester, Lancaster Road, Leicester. LE1 9HN
| | - Peter J. Watson
- Henry Wellcome Laboratories of Structural Biology, Department of Biochemistry, University of Leicester, Lancaster Road, Leicester. LE1 9HN
| | - Ji-Chun Yang
- MRC-Laboratory of Molecular Biology, Hills Road, Cambridge. CB2 0QH
| | - Zsolt Czimmerer
- Apoptosis and Genomics Research Group of the Hungarian Academy of Sciences, Department of Biochemistry and Molecular Biology, Life Sciences Building, Medical and Health Science Center, University of Debrecen, Debrecen, Egyetem ter 1. H-4032 Hungary
| | - Thorsten Kampmann
- Henry Wellcome Laboratories of Structural Biology, Department of Biochemistry, University of Leicester, Lancaster Road, Leicester. LE1 9HN
| | - Benjamin T. Goult
- Henry Wellcome Laboratories of Structural Biology, Department of Biochemistry, University of Leicester, Lancaster Road, Leicester. LE1 9HN
| | - Jacquie A. Greenwood
- Henry Wellcome Laboratories of Structural Biology, Department of Biochemistry, University of Leicester, Lancaster Road, Leicester. LE1 9HN
| | - John T. Gooch
- MRC-Laboratory of Molecular Biology, Hills Road, Cambridge. CB2 0QH
| | | | - Laszlo Nagy
- Apoptosis and Genomics Research Group of the Hungarian Academy of Sciences, Department of Biochemistry and Molecular Biology, Life Sciences Building, Medical and Health Science Center, University of Debrecen, Debrecen, Egyetem ter 1. H-4032 Hungary
| | - David Neuhaus
- MRC-Laboratory of Molecular Biology, Hills Road, Cambridge. CB2 0QH
| | - John W.R. Schwabe
- Henry Wellcome Laboratories of Structural Biology, Department of Biochemistry, University of Leicester, Lancaster Road, Leicester. LE1 9HN
| |
Collapse
|
14
|
Jarmalavicius S, Trefzer U, Walden P. Differential arginine methylation of the G‐protein pathway suppressor GPS‐2 recognized by tumor‐specific T cells in melanoma. FASEB J 2009; 24:937-46. [DOI: 10.1096/fj.09-136283] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Saulius Jarmalavicius
- Clinical Research Group Tumor ImmunologyDepartment of DermatologyCharité‐Universitätsmedizin BerlinBerlinGermany
| | - Uwe Trefzer
- Clinical Research Group Tumor ImmunologyDepartment of DermatologyCharité‐Universitätsmedizin BerlinBerlinGermany
| | - Peter Walden
- Clinical Research Group Tumor ImmunologyDepartment of DermatologyCharité‐Universitätsmedizin BerlinBerlinGermany
| |
Collapse
|
15
|
Howie HL, Katzenellenbogen RA, Galloway DA. Papillomavirus E6 proteins. Virology 2008; 384:324-34. [PMID: 19081593 DOI: 10.1016/j.virol.2008.11.017] [Citation(s) in RCA: 241] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Accepted: 11/03/2008] [Indexed: 02/07/2023]
Abstract
The papillomaviruses are small DNA viruses that encode approximately eight genes, and require the host cell DNA replication machinery for their viral DNA replication. Thus papillomaviruses have evolved strategies to induce host cell DNA synthesis balanced with strategies to protect the cell from unscheduled replication. While the papillomavirus E1 and E2 genes are directly involved in viral replication by binding to and unwinding the origin of replication, the E6 and E7 proteins have auxillary functions that promote proliferation. As a consequence of disrupting the normal checkpoints that regulate cell cycle entry and progression, the E6 and E7 proteins play a key role in the oncogenic properties of human papillomaviruses with a high risk of causing anogenital cancers (HR HPVs). As a consequence, E6 and E7 of HR HPVs are invariably expressed in cervical cancers. This article will focus on the E6 protein and its numerous activities including inactivating p53, blocking apoptosis, activating telomerase, disrupting cell adhesion, polarity and epithelial differentiation, altering transcription and reducing immune recognition.
Collapse
Affiliation(s)
- Heather L Howie
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109-1024, USA
| | | | | |
Collapse
|
16
|
Mammas IN, Sourvinos G, Giannoudis A, Spandidos DA. Human papilloma virus (HPV) and host cellular interactions. Pathol Oncol Res 2008; 14:345-54. [PMID: 18493868 DOI: 10.1007/s12253-008-9056-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Accepted: 04/17/2008] [Indexed: 12/17/2022]
Abstract
Viral-induced carcinogenesis has been attributed to the ability of viral oncoproteins to target and interact with the host cellular proteins. It is generally accepted that Human papilloma virus (HPV) E6 and E7 function as the dominant oncoproteins of 'high-risk' HPVs by altering the function of critical cellular proteins. Initially it was shown that HPV E6 enhances the degradation of p53, while HPV E7 inactivates the function of the retinoblastoma tumor suppressor protein Rb. However, recent studies during the last decade have identified a number of additional host cellular targets of both HPV E6 and E7 that may also play an important role in malignant cellular transformation. In this review we present the interactions of HPV E6 and E7 with the host cellular target proteins. We also present the role of DNA integration in the malignant transformation of the epithelial cell.
Collapse
Affiliation(s)
- Ioannis N Mammas
- Department of Virology, School of Medicine, University of Crete, Heraklion, 71100, Crete, Greece
| | | | | | | |
Collapse
|
17
|
Zhang D, Harry GJ, Blackshear PJ, Zeldin DC. G-protein pathway suppressor 2 (GPS2) interacts with the regulatory factor X4 variant 3 (RFX4_v3) and functions as a transcriptional co-activator. J Biol Chem 2008; 283:8580-90. [PMID: 18218630 PMCID: PMC2365754 DOI: 10.1074/jbc.m708209200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2007] [Revised: 01/22/2008] [Indexed: 11/06/2022] Open
Abstract
RFX4_v3 (regulatory factor X4 variant 3) is a brain-specific isoform of the transcription factor RFX4. Insertional mutagenesis in mice demonstrates that Rfx4_v3 is crucial for normal brain development. Many genes involved in critical processes during brain morphogenesis are dysregulated in Rfx4_v3 mutant brains. For example, Cx3cl1 is a CX3C-type chemokine that is abundant in brain and is a direct transcriptional target of RFX4_v3 through a specific promoter X-box (X-box 1), the responsive element for RFX proteins. To identify potential interacting partners for RFX4_v3, we performed yeast two-hybrid analysis. Nine candidate interactors were identified, including GPS2 (G-protein pathway suppressor 2). Indirect immunofluorescence demonstrated that GPS2 and RFX4_v3 co-localized to the nucleus. Both GPS2 and RFX4_v3 mRNAs were also present in most portions of the adult mouse brain as well as in brains at different ages, suggesting that the two proteins could bind to each other. Co-immunoprecipitation assays indicated that physical interactions between GPS2 and RFX4_v3 did indeed occur. Furthermore, GPS2 was recruited to the Cx3cl1 promoter by RFX4_v3 and potentiated RFX4_v3 transactivation on this promoter through X-box 1, suggesting that the protein-protein interaction was functionally relevant. GPS2 bound to both the carboxyl-terminal region (amino acids 575-735) and the middle region (amino acids 250-574) of the RFX4_v3 protein. RFX4_v3 amino acids 1-574 stimulated the Cx3cl1 promoter to a similar extent as the full-length RFX4_v3 protein; however, deletion of the carboxyl-terminal region of RFX4_v3 impaired the co-activating abilities of GPS2. Based on these data, we conclude that GPS2 interacts with RFX4_v3 to modulate transactivation of genes involved in brain morphogenesis, including Cx3Cl1.
Collapse
Affiliation(s)
- Donghui Zhang
- Laboratories of Respiratory Biology and Neurobiology, Office of Clinical Research, NIEHS, NIH, Research Triangle Park, NC 27709, USA
| | | | | | | |
Collapse
|
18
|
Tungteakkhun SS, Duerksen-Hughes PJ. Cellular binding partners of the human papillomavirus E6 protein. Arch Virol 2008; 153:397-408. [PMID: 18172569 PMCID: PMC2249614 DOI: 10.1007/s00705-007-0022-5] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2007] [Accepted: 12/13/2007] [Indexed: 11/25/2022]
Abstract
The high-risk strains of human papillomavirus (HR-HPV) are known to be causative agents of cervical cancer and have recently also been implicated in cancers of the oropharynx. E6 is a potent oncogene of HR-HPVs, and its role in the progression to malignancy has been and continues to be explored. E6 is known to interact with and subsequently inactivate numerous cellular proteins pivotal in the mediation of apoptosis, transcription of tumor suppressor genes, maintenance of epithelial organization, and control of cell proliferation. Binding of E6 to these proteins cumulatively contributes to the oncogenic potential of HPV. This paper provides an overview of these cellular protein partners of HR-E6, the motifs known to mediate oncoprotein binding, and the agents that have the potential to interfere with E6 expression and activity and thus prevent the subsequent progression to oncogenesis.
Collapse
Affiliation(s)
- Sandy S. Tungteakkhun
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92354 USA
| | | |
Collapse
|
19
|
Kisseljov F, Sakharova O, Kondratjeva T. Chapter 2 Cellular and Molecular Biological Aspects of Cervical Intraepithelial Neoplasia. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 271:35-95. [DOI: 10.1016/s1937-6448(08)01202-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
20
|
Storrs CH, Silverstein SJ. PATJ, a tight junction-associated PDZ protein, is a novel degradation target of high-risk human papillomavirus E6 and the alternatively spliced isoform 18 E6. J Virol 2007; 81:4080-90. [PMID: 17287269 PMCID: PMC1866151 DOI: 10.1128/jvi.02545-06] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2006] [Accepted: 01/30/2007] [Indexed: 12/25/2022] Open
Abstract
The E6 protein from high-risk human papillomavirus types interacts with and degrades several PDZ domain-containing proteins that localize to adherens junctions or tight junctions in polarized epithelial cells. We have identified the tight junction-associated multi-PDZ protein PATJ (PALS1-associated TJ protein) as a novel binding partner and degradation target of high-risk types 16 and 18 E6. PATJ functions in the assembly of the evolutionarily conserved CRB-PALS1-PATJ and Par6-aPKC-Par3 complexes and is critical for the formation of tight junctions in polarized cells. The ability of type 18 E6 full-length to bind to, and the subsequent degradation of, PATJ is dependent on its C-terminal PDZ binding motif. We demonstrate that the spliced 18 E6* protein, which lacks a C-terminal PDZ binding motif, associates with and degrades PATJ independently of full-length 18 E6. Thus, PATJ is the first binding partner that is degraded in response to both isoforms of 18 E6. The ability of E6 to utilize a non-E6AP ubiquitin ligase for the degradation of several PDZ binding partners has been suggested. We also demonstrate that 18 E6-mediated degradation of PATJ is not inhibited in cells where E6AP is silenced by shRNA. This suggests that the E6-E6AP complex is not required for the degradation of this protein target.
Collapse
Affiliation(s)
- Carina H Storrs
- Department of Microbiology, College of Physicians and Surgeons, Columbia University, 701 W. 168th St., New York, NY 10032, USA
| | | |
Collapse
|
21
|
Yim EK, Park JS. Biomarkers in cervical cancer. Biomark Insights 2007; 1:215-25. [PMID: 19690652 PMCID: PMC2716791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cervical cancer, a potentially preventable disease, remains the second most common malignancy in women worldwide. Human papillomavirus (HPV) is the single most important etiological agent in cervical cancer, contributing to neoplastic progression through the action of viral oncoproteins, mainly E6 and E7. Cervical screening programs using Pap smear testing have dramatically improved cervical cancer incidence and reduced deaths, but cervical cancer still remains a global health burden. The biomarker discovery for accurate detection and diagnosis of cervical carcinoma and its malignant precursors (collectively referred to as high-grade cervical disease) represents one of the current challenges in clinical medicine and cytopathology.
Collapse
Affiliation(s)
| | - Jong-Sup Park
- Correspondence: Jong-Sup Park, M.D., Ph.D., Tel: 82-2-590-2596; Fax: 82-2-595-8774;
| |
Collapse
|
22
|
Zhang Y, Dasgupta J, Ma RZ, Banks L, Thomas M, Chen XS. Structures of a human papillomavirus (HPV) E6 polypeptide bound to MAGUK proteins: mechanisms of targeting tumor suppressors by a high-risk HPV oncoprotein. J Virol 2007; 81:3618-26. [PMID: 17267502 PMCID: PMC1866053 DOI: 10.1128/jvi.02044-06] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human papillomavirus (HPV) E6 oncoprotein targets certain tumor suppressors such as MAGI-1 and SAP97/hDlg for degradation. A short peptide at the C terminus of E6 interacts specifically with the PDZ domains of these tumor suppressors, which is a property unique to high-risk HPVs that are associated with cervical cancer. The detailed recognition mechanisms between HPV E6 and PDZ proteins are unclear. To understand the specific binding of cellular PDZ substrates by HPV E6, we have solved the crystal structures of the complexes containing a peptide from HPV18 E6 bound to three PDZ domains from MAGI-1 and SAP97/Dlg. The complex crystal structures reveal novel features of PDZ peptide recognition that explain why high-risk HPV E6 can specifically target these cellular tumor suppressors for destruction. Moreover, a new peptide-binding loop on these PDZs is identified as interacting with the E6 peptide. Furthermore, we have identified an arginine residue, unique to high-risk HPV E6 but outside the canonical core PDZ recognition motif, that plays an important role in the binding of the PDZs of both MAGI-I and SAP97/Dlg, the mutation of which abolishes E6's ability to degrade the two proteins. Finally, we have identified a dimer form of MAGI-1 PDZ domain 1 in the cocrystal structure with E6 peptide, which may have functional relevance for MAGI-1 activity. In addition to its novel insights into the biochemistry of PDZ interactions, this study is important for understanding HPV-induced oncogenesis; this could provide a basis for developing antiviral and anticancer compounds.
Collapse
Affiliation(s)
- Yi Zhang
- Molecular and Computational Biology, University of Southern California, 1050 Childs Way, MCB201, Los Angeles, CA 90089, USA
| | | | | | | | | | | |
Collapse
|
23
|
Müller-Schiffmann A, Beckmann J, Steger G. The E6 protein of the cutaneous human papillomavirus type 8 can stimulate the viral early and late promoters by distinct mechanisms. J Virol 2006; 80:8718-28. [PMID: 16912319 PMCID: PMC1563847 DOI: 10.1128/jvi.00250-06] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The expression of the proteins encoded by human papillomaviruses (HPVs) is tightly linked to the differentiation program of the infected keratinocytes. The late promoter, expressing the structural proteins, becomes activated in the differentiated keratinocytes, while the early promoter is also active in the basal layers. We have shown previously that the viral transcriptional regulator E2 and the cellular coactivator p300 cooperate in activation of gene expression of HPV8, which infects the skin and is associated with epidermodysplasia verruciformis. Here we demonstrate that this activation is further stimulated after overexpression of the E6 oncoprotein of HPV8 (8E6). RNase protection experiments revealed that 8E6 efficiently cooperates with 8E2 and p300 in activation of the late promoter. In addition, the early promoter, which did not respond to 8E2 and/or p300, was stimulated more than fourfold by 8E6. Our data suggest that both promoters are activated via distinct mechanisms, since the activation of the early promoter was achieved by the N-terminal moiety of 8E6; in contrast, its C-terminal half was sufficient for late promoter activation. This was markedly reduced by the deletion of amino acids 132 to 136 of 8E6, which also abolished the binding to p300, indicating that a direct interaction between 8E6 and p300 is involved. Moreover, a 45-amino-acid segment within the C/H3 region of p300 is required for 8E6 to stimulate the coactivator function of p300. Our results demonstrate for the first time that an E6 oncoprotein of HPV directly contributes to the regulation of HPV gene expression.
Collapse
|
24
|
Garnett TO, Duerksen-Hughes PJ. Modulation of apoptosis by human papillomavirus (HPV) oncoproteins. Arch Virol 2006; 151:2321-35. [PMID: 16862386 PMCID: PMC1751433 DOI: 10.1007/s00705-006-0821-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2006] [Accepted: 06/12/2006] [Indexed: 01/31/2023]
Abstract
The regulation of host-mediated apoptosis by the E6 and E7 oncoproteins has garnered attention because it is believed to be an important strategy employed by high-risk (HR)-human papillomaviruses (HPVs) to evade immune surveillance. Additionally, the revelation that E5 can protect cells from tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-mediated apoptosis suggests that it may also play a role in undermining host defense mechanisms. Cellular transformation is an unintended consequence of persistent infection by HR-HPVs, and it is therefore likely that the primary function of E5, E6 and E7 is to regulate cell survival throughout the normal viral life cycle in order to ensure viral replication and promote the spread of progeny. The purpose of this article is to review the literature on the regulation of host-mediated apoptosis by E5, E6 and E7 that describes the mechanisms employed by HR-HPVs to persist in the host and create the conditions necessary for cellular transformation.
Collapse
Affiliation(s)
- T O Garnett
- Department of Biochemistry and Microbiology, Center for Molecular Biology and Gene Therapy, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA
| | | |
Collapse
|
25
|
Pinto-de-Oliveira A, McCance D, de Magalhães-Sant'Ana AC, Marques JM, Gonçalves T. Expression of HPV16 E6 oncoprotein increases resistance to several stress conditions in Saccharomyces cerevisiae. FEMS Yeast Res 2005; 5:777-87. [PMID: 15851106 DOI: 10.1016/j.femsyr.2005.02.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2004] [Revised: 11/26/2004] [Accepted: 02/03/2005] [Indexed: 11/23/2022] Open
Abstract
The E6 protein of human papillomavirus type 16 is essential for the oncogenic transformation process induced by these viruses. Here we expressed the E6 protein in Saccharomyces cerevisiae (which lacks p53) in order to determine if E6 interacts with normal cell functioning, independently of the p53 tumour suppressor factor. We observed a higher resistance to caffeine, hydrogen peroxide and to pheromone, but not to high temperature, starvation and osmostress. Measurement of the relative expression levels of target genes of the signalling pathways, involved in the latter stressful stimuli, led us to conclude that such pathways are differently regulated in the presence of E6.
Collapse
Affiliation(s)
- Ana Pinto-de-Oliveira
- Centre for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
| | | | | | | | | |
Collapse
|
26
|
Magal SS, Jackman A, Ish-Shalom S, Botzer LE, Gonen P, Schlegel R, Sherman L. Downregulation of Bax mRNA expression and protein stability by the E6 protein of human papillomavirus 16. J Gen Virol 2005; 86:611-621. [PMID: 15722521 DOI: 10.1099/vir.0.80453-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Previous studies have shown that human papillomavirus (HPV) 16 E6 inhibits apoptosis induced during terminal differentiation of primary human keratinocytes (PHKs) triggered by serum and calcium. E6 inhibition of apoptosis was accompanied with prolonged expression of Bcl-2 and reduced elevation of Bax levels. In the present study, the effect of E6 on Bax mRNA expression and protein stability was investigated. These studies indicate that stable E6 expression in differentiating keratinocytes reduced the steady-state levels of Bax mRNA and shortened the half-life of Bax protein. These results were confirmed in transiently transfected 293T cells where E6 degraded Bax in a dose-dependent manner. Bax degradation was also exhibited in Saos-2 cells that lack p53, indicating its p53 independence. E6 did not form complexes with Bax and did not induce Bax degradation in vitro under experimental conditions where p53 was degraded. Finally, E6 aa 120–132 were shown to be necessary for Bax destabilization and, more importantly, for abrogating the ability of Bax to induce cellular apoptosis, highlighting the functional consequences of the E6-induced alterations in Bax expression.
Collapse
Affiliation(s)
- Sharon Shnitman Magal
- Department of Human Microbiology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Anna Jackman
- Department of Human Microbiology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Shahar Ish-Shalom
- Department of Human Microbiology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Liat Edri Botzer
- Department of Human Microbiology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Pinhas Gonen
- Department of Human Microbiology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Richard Schlegel
- Department of Pathology, Georgetown University Medical School, Washington, DC 2007, USA
| | - Levana Sherman
- Department of Human Microbiology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel
| |
Collapse
|
27
|
Abstract
Human papillomavirus (HPV) is the most common sexually transmitted infection, with > 50% of sexually active women being affected. The virus causes a wide variety of benign and pre-malignant epithelial tumours and although most infections are transient, it is estimated that 1% of the sexually active population in the US have clinically apparent genital warts. A subset of genital HPVs, termed high-risk HPVs, is highly associated with the development of genital cancers including cervical carcinoma. Therapies for these HPV related cancers are however outside of the scope of this review. The absence of a simple monolayer cell culture system for analysis and propagation of the virus has substantially retarded progress in the development of diagnostic and therapeutic strategies for HPV infection. In spite of these difficulties, great progress has been made in the elucidation of the molecular controls of virus gene expression, replication and pathogenesis, and there has been some progress in the development of prophylactic and therapeutic vaccines and of other therapies.
Collapse
Affiliation(s)
- F X Wilson
- Roche Discovery Welwyn, Broadwater Road, Welwyn Garden City, Herts, AL7 3AY, UK
| |
Collapse
|
28
|
Liu X, Yuan H, Fu B, Disbrow GL, Apolinario T, Tomaic V, Kelley ML, Baker CC, Huibregtse J, Schlegel R. The E6AP ubiquitin ligase is required for transactivation of the hTERT promoter by the human papillomavirus E6 oncoprotein. J Biol Chem 2005; 280:10807-16. [PMID: 15655249 DOI: 10.1074/jbc.m410343200] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Most human cancer cells display increased telomerase activity that appears to be critical for continued cell proliferation and tumor formation. The E6 protein of malignancy-associated human papillomaviruses increases cellular telomerase in primary human keratinocytes at least partly via transcriptional activation of the telomerase catalytic subunit, hTERT. In the present study, we investigated whether E6AP, a ubiquitin ligase well known for binding and mediating some of the activities of the E6 oncoprotein, participated in the transactivation of the hTERT promoter. Our results demonstrate that E6 mutants that fail to bind E6AP are also defective for increasing telomerase activity and transactivating the hTERT promoter. More importantly, E6AP knock-out mouse cells and small interfering RNA techniques demonstrated that E6AP was required for hTERT promoter transactivation in both mouse and human cells. Neither E6 nor E6AP bound to the hTERT promoter or activated the promoter in the absence of the partner protein. With all transactivation-competent E6 proteins, induction of the hTERT promoter was dependent upon E box elements in the core promoter. It appears, therefore, that E6-mediated activation of the hTERT promoter requires a complex of E6-E6AP to engage the hTERT promoter and that activation is dependent upon Myc binding sites in the promoter. The recruitment of a cellular ubiquitin ligase to the hTERT promoter during E6-mediated transcriptional activation suggests a role for the local ubiquitination (and potential degradation) of promoter-associated regulatory proteins, including the Myc protein.
Collapse
Affiliation(s)
- Xuefeng Liu
- Department of Pathology and Oncology, Georgetown University Medical School, 3900 Reservoir Rd. NW, Washington, DC 20057, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Lee C, Laimins LA. Role of the PDZ domain-binding motif of the oncoprotein E6 in the pathogenesis of human papillomavirus type 31. J Virol 2004; 78:12366-77. [PMID: 15507623 PMCID: PMC525055 DOI: 10.1128/jvi.78.22.12366-12377.2004] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2004] [Accepted: 07/06/2004] [Indexed: 11/20/2022] Open
Abstract
A number of PDZ domain-containing proteins have been identified as binding partners for the oncoprotein E6 of the high-risk type human papillomaviruses (HPVs). These include hDlg, hScrib, MAGI-1, MAGI-2, MAGI-3, and MUPP1. The PDZ domain-binding motif (-X-T-X-V) at the carboxy terminus of E6 is essential for targeting PDZ proteins for proteasomal degradation. The presence of this motif only in the high-risk HPVs suggests its possible role in HPV-induced oncogenesis. To investigate the role of the PDZ domain-binding motif of E6 in the HPV life cycle, two mutant HPV31 genomes were constructed: E6ValDelta, with a deletion of the last amino acid residue of E6 (valine), and E6ETQVDelta, with a deletion of the entire PDZ domain-binding motif of E6 (ETQV). Three human foreskin keratinocyte (HFK) cell lines were established which maintained transfected wild-type HPV31 or either of two mutant genomes. Cells containing either of two mutant genomes were significantly retarded in their growth rates and reduced in their viral copy numbers compared to those transfected with wild-type genomes. Western analysis did not reveal any significant changes in the levels of PDZ proteins following stable transfection of any HPV31 genomes into HFKs. Although the E6ETQVDelta-transfected HFKs exhibited a pattern of morphological differentiation that appeared different from the HPV31 wild-type-transfected HFKs in organotypic raft cultures, immunohistochemical analysis failed to identify substantial changes in the differentiation-dependent membrane localization of hDlg proteins. These results suggest that binding of E6 to PDZ proteins modulates the early viral functions such as proliferation and maintenance of the viral copy number in undifferentiated cells.
Collapse
Affiliation(s)
- Choongho Lee
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Mail Code S213, 320 E. Superior Street, Chicago, IL 60611-3010, USA
| | | |
Collapse
|
30
|
de Villiers EM, Sandstrom RE, zur Hausen H, Buck CE. Presence of papillomavirus sequences in condylomatous lesions of the mamillae and in invasive carcinoma of the breast. Breast Cancer Res 2004; 7:R1-11. [PMID: 15642157 PMCID: PMC1064094 DOI: 10.1186/bcr940] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2004] [Revised: 08/07/2004] [Accepted: 09/07/2004] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Viruses including Epstein-Barr virus (EBV), a human equivalent of murine mammary tumour virus (MMTV) and human papillomavirus (HPV) have been implicated in the aetiology of human breast cancer. We report the presence of HPV DNA sequences in areolar tissue and tumour tissue samples from female patients with breast carcinoma. The presence of virus in the areolar-nipple complex suggests to us a potential pathogenic mechanism. METHODS Polymerase chain reaction (PCR) was undertaken to amplify HPV types in areolar and tumour tissue from breast cancer cases. In situ hybridisation supported the PCR findings and localised the virus in nipple, areolar and tumour tissue. RESULTS Papillomavirus DNA was present in 25 of 29 samples of breast carcinoma and in 20 of 29 samples from the corresponding mamilla. The most prevalent type in both carcinomas and nipples was HPV 11, followed by HPV 6. Other types detected were HPV 16, 23, 27 and 57 (nipples and carcinomas), HPV 20, 21, 32, 37, 38, 66 and GA3-1 (nipples only) and HPV 3, 15, 24, 87 and DL473 (carcinomas only). Multiple types were demonstrated in seven carcinomas and ten nipple samples. CONCLUSIONS The data demonstrate the occurrence of HPV in nipple and areolar tissues in patients with breast carcinoma. The authors postulate a retrograde ductular pattern of viral spread that may have pathogenic significance.
Collapse
Affiliation(s)
- Ethel-Michele de Villiers
- Division for the Characterization of Tumorviruses, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | | | - Harald zur Hausen
- Division for the Characterization of Tumorviruses, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | | |
Collapse
|
31
|
Longworth MS, Laimins LA. Pathogenesis of human papillomaviruses in differentiating epithelia. Microbiol Mol Biol Rev 2004; 68:362-72. [PMID: 15187189 PMCID: PMC419925 DOI: 10.1128/mmbr.68.2.362-372.2004] [Citation(s) in RCA: 406] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human papillomaviruses (HPV) are the etiological agents of cervical and other anogenital malignancies. Over 100 different types of HPVs have been identified to date, and all target epithelial tissues for infection. One-third of HPV types specifically infect the genital tract, and a subset of these are the causative agents of anogenital cancers. Other HPV types that infect the genital tract induce benign hyperproliferative lesions or genital warts. The productive life cycle of HPVs is linked to epithelial differentiation. Papillomaviruses are thought to infect cells in the basal layer of stratified epithelia and establish their genomes as multicopy nuclear episomes. In these cells, viral DNA is replicated along with cellular chromosomes. Following cell division, one of the daughter cells migrates away from the basal layer and undergoes differentiation. In highly differentiated suprabasal cells, vegetative viral replication and late-gene expression are activated, resulting in the generation of progeny virions. Since virion production is restricted to differentiated cells, infected basal cells can persist for up to several decades or until the immune system clears the infection. The E6 and E7 genes encode viral oncoproteins that target Rb and p53, respectively. During the viral life cycle, these proteins facilitate stable maintenance of episomes and stimulate differentiated cells to reenter the S phase. The E1 and E2 proteins act as origin recognition factors as well as regulators of early viral transcription. The functions of the E5 and E1--E4 proteins are still largely unknown, but these proteins have been implicated in modulating late viral functions. The L1 and L2 proteins form icosahedral capsids for progeny virion generation. The characterization of the cellular targets of these viral proteins and the mechanisms regulating the differentiation-dependent viral life cycle remain active areas for the study of these important human pathogens.
Collapse
Affiliation(s)
- Michelle S Longworth
- Department of Microbiology-Immunology, The Fineberg Medical School, Northwestern University, 303 E. Chicago Ave., Chicago, IL 60611, USA
| | | |
Collapse
|
32
|
Oh ST, Longworth MS, Laimins LA. Roles of the E6 and E7 proteins in the life cycle of low-risk human papillomavirus type 11. J Virol 2004; 78:2620-6. [PMID: 14963169 PMCID: PMC369251 DOI: 10.1128/jvi.78.5.2620-2626.2004] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many important functions have been attributed to the high-risk human papillomavirus (HPV) E6 and E7 proteins, including binding and degradation of p53 as well as interacting with Rb proteins. In contrast, the physiological roles of the low-risk E6 and E7 proteins remain unclear. Previous studies demonstrated that the high-risk E6 and E7 proteins also play roles in the productive life cycle by facilitating the maintenance of viral episomes (J. T. Thomas, W. G. Hubert, M. N. Ruesch, and L. A. Laimins, Proc. Natl. Acad. Sci. USA 96:8449-8454, 1999). In order to determine whether low-risk E6 or E7 is similarly necessary for the stable maintenance of episomes, HPV type 11 (HPV-11) genomes that contained translation termination mutations in E6 or E7 were constructed. Upon transfection into normal human keratinocytes, genomes in which E6 function was abolished were unable to be maintained episomally. Transfection of genomes containing substitution mutations in amino acids conserved in high- and low-risk HPV types suggested that multiple protein domains are involved in this process. Examination of cells transfected with HPV-11 genomes in which E7 function was inhibited were found to exhibit a more complex phenotype. At the second passage following transfection, mutant genomes were maintained as episomes but at significantly reduced levels than in cells transfected with the wild-type HPV-11 genome. Upon further passage in culture, however, the episomal forms of these E7 mutant genomes quickly disappeared. These findings identify important new functions for the low-risk E6 and E7 proteins in the episomal maintenance of low-risk HPV-11 genomes and suggest that they may act in a manner similar to that observed for the high-risk proteins.
Collapse
Affiliation(s)
- Stephen T Oh
- Department of Microbiology-Immunology, The Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | | | | |
Collapse
|
33
|
Gupta S, Takhar PPS, Degenkolbe R, Koh CH, Zimmermann H, Yang CM, Guan Sim K, Hsu SIH, Bernard HU. The human papillomavirus type 11 and 16 E6 proteins modulate the cell-cycle regulator and transcription cofactor TRIP-Br1. Virology 2004; 317:155-64. [PMID: 14675634 DOI: 10.1016/j.virol.2003.08.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The genital human papillomaviruses (HPVs) are a taxonomic group including HPV types that preferentially cause genital and laryngeal warts ("low-risk types"), such as HPV-6 and HPV-11, or cancer of the cervix and its precursor lesions ("high-risk types"), such as HPV-16. The transforming processes induced by these viruses depend on the proteins E5, E6, and E7. Among these oncoproteins, the E6 protein stands out because it supports a particularly large number of functions and interactions with cellular proteins, some of which are specific for the carcinogenic HPVs, while others are shared among low- and high-risk HPVs. Here we report yeast two-hybrid screens with HPV-6 and -11 E6 proteins that identified TRIP-Br1 as a novel cellular target. TRIP-Br1 was recently detected by two research groups, which described two separate functions, namely that of a transcriptional integrator of the E2F1/DP1/RB cell-cycle regulatory pathway (and then named TRIP-Br1), and that of an antagonist of the cyclin-dependent kinase suppression of p16INK4a (and then named p34SEI-1). We observed that TRIP-Br1 interacts with low- and high-risk HPV E6 proteins in yeast, in vitro and in mammalian cell cultures. Transcription activation of a complex consisting of E2F1, DP1, and TRIP-Br1 was efficiently stimulated by both E6 proteins. TRIP-Br1 has an LLG E6 interaction motif, which contributed to the binding of E6 proteins. Apparently, E6 does not promote degradation of TRIP-Br1. Our observations imply that the cell-cycle promoting transcription factor E2F1/DP1 is dually targeted by HPV oncoproteins, namely (i) by interference of the E7 protein with repression by RB, and (ii) by the transcriptional cofactor function of the E6 protein. Our data reveal the natural context of the transcription activator function of E6, which has been predicted without knowledge of the E2F1/DP1/TRIP-Br/E6 complex by studying chimeric constructs, and add a function to the limited number of transforming properties shared by low- and high-risk HPVs.
Collapse
Affiliation(s)
- Sanjay Gupta
- Institute of Molecular and Cell Biology, 30 Medical Drive, Singapore 117609
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Nguyen M, Song S, Liem A, Androphy E, Liu Y, Lambert PF. A mutant of human papillomavirus type 16 E6 deficient in binding alpha-helix partners displays reduced oncogenic potential in vivo. J Virol 2002; 76:13039-48. [PMID: 12438630 PMCID: PMC136691 DOI: 10.1128/jvi.76.24.13039-13048.2002] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2002] [Accepted: 08/22/2002] [Indexed: 11/20/2022] Open
Abstract
Human papillomaviruses (HPVs) are small DNA tumor viruses that are the causative agent of warts and are associated with many anogenital cancers. The viral gene encoding the E6 protein has been found to be involved in HPV oncogenesis. E6 is known to inactivate the cellular tumor suppressor, p53. In addition, E6 has been shown to bind to a variety of other cellular proteins. The focus of this study was to determine what role the interactions of E6 with a subset of cellular proteins which contain a common alpha-helical domain in their E6 binding region (alpha-helix partners) play in E6-mediated phenotypes. We generated transgenic mice expressing a mutant of E6, E6(I128T), which is defective for binding at least a subset of the alpha-helix partners, including E6AP, the ubiquitin ligase that mediates E6-dependent degradation of the p53 protein, to determine whether binding of alpha-helix partners plays a role in E6-mediated activities in vivo. Unlike mice expressing the wild-type E6 (strain K14E6(WT)), the mice expressing E6(I128T) lacked the ability to alter the radiation-induced block to DNA synthesis and promote the formation of benign skin tumors in conjunction with chemical carcinogens. Additionally, they displayed reduced levels of skin hyperplasia, spontaneous skin tumors, and tumor progression activity compared to those of the K14E6(WT) mice. From these results, we conclude that a domain in E6 that mediates alpha-helix partner binding is critical for E6-induced phenotypes in transgenic mice.
Collapse
Affiliation(s)
- Marie Nguyen
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin, 1400 University Avenue, Madison, WI 53706, USA
| | | | | | | | | | | |
Collapse
|
35
|
Zeng M, Kumar A, Meng G, Gao Q, Dimri G, Wazer D, Band H, Band V. Human papilloma virus 16 E6 oncoprotein inhibits retinoic X receptor-mediated transactivation by targeting human ADA3 coactivator. J Biol Chem 2002; 277:45611-8. [PMID: 12235159 DOI: 10.1074/jbc.m208447200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The expression of human papillomavirus (HPV) E6 oncoprotein is causally linked to high-risk HPV-associated human cancers. We have recently isolated hADA3, the human homologue of yeast transcriptional co-activator yADA3, as a novel E6 target. Human ADA3 binds to the high-risk (cancer-associated) but not the low-risk HPV E6 proteins and to immortalization-competent but not to immortalization-defective HPV16 E6 mutants, suggesting a role for the perturbation of hADA3 function in E6-mediated oncogenesis. We demonstrate here that hADA3 directly binds to the retinoic X receptor (RXR)alpha in vitro and in vivo. Using chromatin immunoprecipitation, we show that hADA3 is part of activator complexes bound to the native RXR response elements within the promoter of the cyclin-dependent kinase inhibitor gene p21. We show that hADA3 enhances the RXR(alpha)-mediated sequence-specific transactivation of retinoid target genes, cellular retinoic acid-binding protein II and p21. Significantly, we demonstrate that E6 inhibits the RXR(alpha)-mediated transactivation of target genes, implying that perturbation of RXR-mediated transactivation by E6 could contribute to HPV oncogenesis.
Collapse
Affiliation(s)
- Musheng Zeng
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, New England Medical Center, Boston, Massachusetts 02111, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Park RB, Androphy EJ. Genetic analysis of high-risk e6 in episomal maintenance of human papillomavirus genomes in primary human keratinocytes. J Virol 2002; 76:11359-64. [PMID: 12388696 PMCID: PMC136782 DOI: 10.1128/jvi.76.22.11359-11364.2002] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Papillomaviruses possess small DNA genomes that encode five early (E) proteins. Transient DNA replication requires activities of the E1 and E2 proteins and a DNA segment containing their binding sites. The E6 and E7 proteins of cancer-associated human papillomavirus (HPV) transform cells in culture. Recent reports have shown that E6 and E7 are necessary for episomal maintenance of HPV in primary keratinocytes. The functions of E6 necessary for viral replication have not been determined, and to address this question we used a recently developed transfection system based on HPV31. To utilize a series of HPV16 E6 mutations, HPV31 E6 was replaced by its HPV16 counterpart. This chimeric genome was competent for both transient and stable replication in keratinocytes. Four HPV16 E6 mutations that do not stimulate p53 degradation were unable to support stable viral replication, suggesting this activity may be necessary for episomal maintenance. E7 has also been shown to be essential for episomal maintenance of the HPV31 genome. A point mutation in the Rb binding motif of HPV E7 has been reported to render HPV31 unable to stably replicate. Interestingly, HPV31 genomes harboring two of the three p53 degradation-defective E6 mutations combined with this E7 mutation were maintained as replicating episomes. These findings imply that the balance between E6 and E7 functions in infected cells is critical for episomal maintenance of high-risk HPV genomes. This model will be useful to dissect the activities of E6 and E7 necessary for viral DNA replication.
Collapse
Affiliation(s)
- Regina B Park
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Tufts-New England Medical Center, Boston, Massachusetts, USA
| | | |
Collapse
|
37
|
Du M, Fan X, Hong E, Chen JJ. Interaction of oncogenic papillomavirus E6 proteins with fibulin-1. Biochem Biophys Res Commun 2002; 296:962-9. [PMID: 12200142 DOI: 10.1016/s0006-291x(02)02041-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Human papillomavirus (HPV) infection is the primary risk factor for the development of cervical cancer. The papillomavirus E6 gene is essential for virus-induced cellular transformation and the viral life cycle. Important insight into the mechanism of E6 function came from the discovery that cancer-related HPV E6 proteins promote the degradation of the tumor suppressor p53. However, mounting evidence indicates that interaction with p53 does not mediate all E6 activities. To explore the p53-independent functions of E6, we performed a yeast two-hybrid screen and identified fibulin-1 as an E6 binding protein. Fibulin-1 is a calcium-binding plasma and extracellular matrix protein that has been implicated in cellular transformation and tumor invasion. The interaction between E6 and fibulin-1 was demonstrated by both in vitro and in vivo assays. Fibulin-1 is associated specifically with cancer-related HPV E6s and the transforming bovine papillomavirus type 1 E6. Significantly, overexpression of fibulin-1 specifically inhibited E6-mediated transformation. These results suggest that fibulin-1 plays an important role in the biological activities of E6.
Collapse
Affiliation(s)
- Minjie Du
- Department of Medicine, University of Massachusetts Medical School, LRB Room 323, 364 Plantation Street, Worcester, MA 01605-2324, USA
| | | | | | | |
Collapse
|
38
|
Kumar A, Zhao Y, Meng G, Zeng M, Srinivasan S, Delmolino LM, Gao Q, Dimri G, Weber GF, Wazer DE, Band H, Band V. Human papillomavirus oncoprotein E6 inactivates the transcriptional coactivator human ADA3. Mol Cell Biol 2002; 22:5801-12. [PMID: 12138191 PMCID: PMC133989 DOI: 10.1128/mcb.22.16.5801-5812.2002] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2001] [Revised: 01/23/2002] [Accepted: 05/13/2002] [Indexed: 12/24/2022] Open
Abstract
High-risk human papillomaviruses (HPVs) are associated with carcinomas of the cervix and other genital tumors. The HPV oncoprotein E6 is essential for oncogenic transformation. We identify here hADA3, human homologue of the yeast transcriptional coactivator yADA3, as a novel E6-interacting protein and a target of E6-induced degradation. hADA3 binds selectively to the high-risk HPV E6 proteins and only to immortalization-competent E6 mutants. hADA3 functions as a coactivator for p53-mediated transactivation by stabilizing p53 protein. Notably, three immortalizing E6 mutants that do not induce direct p53 degradation but do interact with hADA3 induced the abrogation of p53-mediated transactivation and G(1) cell cycle arrest after DNA damage, comparable to wild-type E6. These findings reveal a novel strategy of HPV E6-induced loss of p53 function that is independent of direct p53 degradation. Given the likely role of the evolutionarily conserved hADA3 in multiple coactivator complexes, inactivation of its function may allow E6 to perturb numerous cellular pathways during HPV oncogenesis.
Collapse
Affiliation(s)
- Ajay Kumar
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, New England Medical Center, Boston, Massachusetts 02111, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Zhang J, Kalkum M, Chait BT, Roeder RG. The N-CoR-HDAC3 nuclear receptor corepressor complex inhibits the JNK pathway through the integral subunit GPS2. Mol Cell 2002; 9:611-23. [PMID: 11931768 DOI: 10.1016/s1097-2765(02)00468-9] [Citation(s) in RCA: 337] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The corepressors N-CoR and SMRT partner with histone deacetylases (HDACs) in diverse repression pathways. We report here that GPS2, a protein involved in intracellular signaling, is an integral subunit of the N-CoR-HDAC3 complex. We have determined structural motifs that direct the formation of a highly stable and active deacetylase complex. GPS2 and TBL1, another component of the N-CoR-HDAC3 complex, interact cooperatively with repression domain 1 of N-CoR to form a heterotrimeric structure and are indirectly linked to HDAC3 via an extended N-CoR SANT domain that also activates latent HDAC3 activity. More importantly, we show here that the N-CoR-HDAC3 complex inhibits JNK activation through the associated GPS2 subunit and thus could potentially provide an alternative mechanism for hormone-mediated antagonism of AP-1 function.
Collapse
Affiliation(s)
- Jinsong Zhang
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | | | | | | |
Collapse
|
40
|
Degenhardt YY, Silverstein S. Interaction of zyxin, a focal adhesion protein, with the e6 protein from human papillomavirus type 6 results in its nuclear translocation. J Virol 2001; 75:11791-802. [PMID: 11689660 PMCID: PMC114765 DOI: 10.1128/jvi.75.23.11791-11802.2001] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2001] [Accepted: 09/05/2001] [Indexed: 11/20/2022] Open
Abstract
Zyxin, a focal adhesion molecule, interacts specifically with the E6 protein from human papillomavirus (HPV) type 6 in a yeast two-hybrid screen of a cDNA library prepared from human keratinocytes. Zyxin does not interact significantly with E6 proteins from HPV types 11, 16, or 18. The interaction was confirmed by in vitro and in vivo analyses and it requires the LIM domains (Lin-11, Isl-1, and Mec-3 [G. Freyd, S. K. Kim, and H. R. Horvitz, Nature 344:876-879, 1990]) found at the carboxyl terminus of zyxin. Cotransfection of E6 from HPV ((6)E6) and zyxin results in the accumulation of zyxin in the nucleus where it can function as a transcriptional activator. (6)E6 can also mobilize endogenous zyxin to the nucleus.
Collapse
Affiliation(s)
- Y Y Degenhardt
- Department of Pharmacology, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA
| | | |
Collapse
|
41
|
Mantovani F, Banks L. The human papillomavirus E6 protein and its contribution to malignant progression. Oncogene 2001; 20:7874-87. [PMID: 11753670 DOI: 10.1038/sj.onc.1204869] [Citation(s) in RCA: 350] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The human papillomavirus (HPV) E6 protein is one of three oncoproteins encoded by the virus. It has long been recognized as a potent oncogene and is intimately associated with the events that result in the malignant conversion of virally infected cells. In order to understand the mechanisms by which E6 contributes to the development of human malignancy many laboratories have focused their attention on identifying the cellular proteins with which E6 interacts. In this review we discuss these interactions in the light of their respective contributions to the malignant progression of HPV transformed cells.
Collapse
Affiliation(s)
- F Mantovani
- International Centre for Genetic Engineering and Biotechnology Padriciano 99, I-34012 Trieste, Italy
| | | |
Collapse
|