1
|
Setia M, Suvas PK, Rana M, Chakraborty A, Suvas S. Differential homing of monocytes and neutrophils in the epithelial layer of HSV-1 infected cornea regulates viral dissemination and wound healing. Ocul Surf 2025; 36:69-82. [PMID: 39793926 DOI: 10.1016/j.jtos.2025.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/07/2024] [Accepted: 01/06/2025] [Indexed: 01/13/2025]
Abstract
PURPOSE To ascertain the homing of monocytes and neutrophils in the epithelium versus stroma of HSV-1 infected corneas at different stages of infection and functional significance of their anatomical location in virus-infected corneas. METHODS The corneas of C57BL/6J mice were infected with HSV-1 McKrae. Mice were euthanized on different days post-infection. The epithelium and stroma were separated from the infected corneas, and flow cytometry was performed to characterize the myeloid cell subsets in the epithelium versus the stromal layers of an infected cornea. MACS columns were used to purify neutrophils or deplete myeloid cells from infected corneas. Corneal epithelial scratch assay was performed to ascertain the impact of neutrophils on epithelium wound healing. RESULTS Our results showed a biphasic influx of monocytes in the epithelial but not the stromal layer of HSV-1-infected corneas. Furthermore, we noted the predominance of monocytes over neutrophils in the epithelium and the stromal layer of the cornea during the pre-clinical stage of corneal HSV-1 infection. However, neutrophils were the major myeloid cell subset in the epithelium and stroma during the clinical disease period of infection. Removal of monocytes from the infected epithelial layer during the pre-clinical stage promotes the dissemination of the virus. Interestingly, neutrophils localized in the corneal epithelium inhibit corneal epithelial wound healing. CONCLUSIONS Together, our data suggest that differential kinetics of monocytes and neutrophils homing in the epithelial layer regulate viral dissemination and epithelial wound healing in HSV-1-infected corneas.
Collapse
Affiliation(s)
- Mizumi Setia
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - Pratima Krishna Suvas
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - Mashidur Rana
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - Anish Chakraborty
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - Susmit Suvas
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
2
|
Sabri H, Barough MS, Zafari E, Pakjoo M, Mahdavi M, Esmaeili F, Sadeghi S, Sarrami-Forooshani R. Synergistic Anti-Tumor Effects of Newcastle Disease Virus and Doxorubicin: Evidence from A Murine Breast Cancer Model. Int Immunopharmacol 2024; 143:113481. [PMID: 39467343 DOI: 10.1016/j.intimp.2024.113481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/20/2024] [Accepted: 10/21/2024] [Indexed: 10/30/2024]
Abstract
BACKGROUND Despite the recent advances in the diagnosis and treatment of breast cancer, triple-negative breast cancer (TNBC) remains a clinical challenge due to its aggressive nature and resistance to conventional therapies. Virotherapy has emerged as a promising cancer treatment strategy, leveraging the ability of viruses to specifically target and replicate in cancerous cells. This study evaluated the oncolytic potential of a combined therapeutic strategy, utilizing Newcastle disease virus (NDV) and Doxorubicin hydrochloride (Dox) both in vitro and in vivo. METHODS The in vitro experiments involved exposing human and mouse TNBC cell lines (MDA-MB-231 and 4T1, respectively) to NDV and Dox, individually or in combination. Cell viability assays and flow cytometry analyses were conducted to assess the synergistic effects of NDV and Dox on regulating breast cancer cell behavior in vitro. Furthermore, the immune-stimulating potential of NDV was investigated by examining its effects on dendritic cell (DC) maturation using flow cytometry and T cell proliferation. The in vitro anti-tumor effects of NDV were examined in both parental and tamoxifen-resistant cancer cells to assess its efficacy against chemoresistance. Animal models of breast cancer were treated with NDV in combination with Dox. The body weight changes, tumor volume, and survival rates of the mice were monitored throughout the study. Histopathological analyses were conducted to evaluate the potential toxic effects of the treatments. RESULTS Based on the MTT results, NDV at optimal concentrations synergized the effect of Dox to reduce the viability of both MDA-MB231 and 4T1 cell lines (Isobologram combination index of less than 1). Additionally, individual treatment with NDV was able to significantly reduce the viability of patient-derived breast cancer cells, compared to the untreated control (P < 0.05) without affecting the cells of normal adjacent tissue. Furthermore, a combination of NDV and Dox significantly enhanced the percentage of early and late apoptotic cells in MDA-MB-231 (P < 0.0001) and late apoptotic cells in 4T1 (P < 0.0001), in comparison with individual treatment with these agents. Flow cytometry results showed that, compared to wild type MDA-MB-231 cells, NDV-infected MDA-MB-231 cells were better inducers of T cell proliferation and DC maturation as evidenced by increased proliferation index (P < 0.05) and elevated expression of CD1a, CD83, and CD86 (P < 0.0001), respectively. Moreover, co-treatment of both wild-type and (tamoxifen) TAM-resistant MCF-7/TAMR-1 cells with TAM and NDV significantly reduce the viability of the cancer cells (P < 0.0001). In tumor-bearing mice locally engrafted with 4T1 cells, combined treatment of NDV and Dox exhibited a marked reduction in median tumor volume compared to the control group, validating our in vitro findings on their synergistic anti-tumor effects. These findings suggest that combining NDV with Dox can effectively inhibit tumor progression and has the potential to reduce the dose, and consequently the toxic side-effects, of Dox in breast cancer therapy.
Collapse
Affiliation(s)
- Hamed Sabri
- Advanced Therapy Medicinal Product (ATMP) Department, Breast Cancer Research Center, Academic Center for Education, Culture and Research (ACECR), Motamed Cancer Institute, Tehran, Iran
| | - Mahdieh Shokrollahi Barough
- Advanced Therapy Medicinal Product (ATMP) Department, Breast Cancer Research Center, Academic Center for Education, Culture and Research (ACECR), Motamed Cancer Institute, Tehran, Iran
| | - Ehsan Zafari
- Advanced Therapy Medicinal Product (ATMP) Department, Breast Cancer Research Center, Academic Center for Education, Culture and Research (ACECR), Motamed Cancer Institute, Tehran, Iran
| | - Mahdi Pakjoo
- Advanced Therapy Medicinal Product (ATMP) Department, Breast Cancer Research Center, Academic Center for Education, Culture and Research (ACECR), Motamed Cancer Institute, Tehran, Iran
| | - Mehdi Mahdavi
- Advanced Therapy Medicinal Product (ATMP) Department, Breast Cancer Research Center, Academic Center for Education, Culture and Research (ACECR), Motamed Cancer Institute, Tehran, Iran
| | - Fatemeh Esmaeili
- Advanced Therapy Medicinal Product (ATMP) Department, Breast Cancer Research Center, Academic Center for Education, Culture and Research (ACECR), Motamed Cancer Institute, Tehran, Iran
| | - Somaye Sadeghi
- Advanced Therapy Medicinal Product (ATMP) Department, Breast Cancer Research Center, Academic Center for Education, Culture and Research (ACECR), Motamed Cancer Institute, Tehran, Iran; Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran.
| | - Ramin Sarrami-Forooshani
- Advanced Therapy Medicinal Product (ATMP) Department, Breast Cancer Research Center, Academic Center for Education, Culture and Research (ACECR), Motamed Cancer Institute, Tehran, Iran.
| |
Collapse
|
3
|
Pereira LHS, Alves ADC, Lopes GFM, da Silva BF, Vieira MS, Lopes DDO, Ferreira JMS, Lara Dos Santos L. Soluble isoforms of the DC-SIGN receptor can increase the dengue virus infection in immature dendritic cells. Braz J Infect Dis 2024; 28:103873. [PMID: 39341603 PMCID: PMC11490914 DOI: 10.1016/j.bjid.2024.103873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 08/01/2024] [Accepted: 09/08/2024] [Indexed: 10/01/2024] Open
Abstract
Dengue is a disease with a high-impact on public health worldwide. Many researches have focused on the cell receptors involved in its pathogenesis. The role of soluble isoforms of DC-SIGN (Dendritic Cell-Specific ICAM-3 Grabbing Non-integrin) receptor in the process of Dengue Virus (DENV) infection is not well understood. This work proposes to evaluate changes in the infection process of Immature Dendritic Cells (iDCs) by DENV in the presence of DC-SIGN recombinant soluble isoforms 8, 10, and 12. The recombinant isoforms were built by heterologous expression, the DENV-2 was multiplied in the Aedes albopictus C6/36 cells and quantified in BHK-21 cells, and the iDCs were produced from the THP-1 strain. Infection assays were performed in the presence of iDCs, DENV-2, and isoforms 8, 10, and 12 separately at 25, 50 and 100 ng/mL. The final viral load was estimated by qPCR and statistical analysis was performed by Kruskal-Wallis and ANOVA tests. The iDC profile was confirmed by increasing expression of CD11c, CD86, and CD209 surface markers and maintaining CD14 expression. Infection assays demonstrated a 23-fold increase in DENV viral load in the presence of isoforms 8 and 10 at 100 ng/mL compared to the viral control (p < 0.05), while isoform 12 did not alter the viral load. It was possible to conclude that at 100 ng/mL isoforms (8 and 10) can interact with DENV, increasing viral infection, and potentially acting as opsonins.
Collapse
Affiliation(s)
- Lailah Horácio Sales Pereira
- Universidade Federal de São João del-Rei (UFSJ), Laboratório de Biologia Molecular, Divinópolis, MG, Brazil; Universidade Federal de São João del-Rei (UFSJ), Laboratório de Microbiologia Médica, Divinópolis, MG, Brazil
| | - Amanda do Carmo Alves
- Universidade Federal de São João del-Rei (UFSJ), Laboratório de Biologia Molecular, Divinópolis, MG, Brazil
| | | | - Brenda Fernandes da Silva
- Universidade Federal de São João del-Rei (UFSJ), Laboratório de Biologia Molecular, Divinópolis, MG, Brazil
| | - Mariana Sousa Vieira
- Universidade Federal de Minas Gerais (UFMG), Laboratório de Imunoparasitologia, Belo Horizonte, MG, Brazil
| | - Débora de Oliveira Lopes
- Universidade Federal de São João del-Rei (UFSJ), Laboratório de Biologia Molecular, Divinópolis, MG, Brazil
| | | | - Luciana Lara Dos Santos
- Universidade Federal de São João del-Rei (UFSJ), Laboratório de Biologia Molecular, Divinópolis, MG, Brazil
| |
Collapse
|
4
|
Klein HC, Guest PC, Dobrowolny H, Steiner J. Inflammation and viral infection as disease modifiers in schizophrenia. Front Psychiatry 2023; 14:1231750. [PMID: 37850104 PMCID: PMC10577328 DOI: 10.3389/fpsyt.2023.1231750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/12/2023] [Indexed: 10/19/2023] Open
Abstract
Numerous studies have now implicated a role for inflammation in schizophrenia. However, many aspects surrounding this aspect of the disease are still controversial. This controversy has been driven by conflicting evidence on the role of both pro-and anti-inflammatory factors and by often contentious findings concerning cytokine and immune cell profiles in the central nervous system and periphery. Current evidence supports the point that interleukin-6 is elevated in CSF, but does not support activation of microglia, resident macrophage-like cells in the brain. Furthermore, the mechanisms involving transit of the peripheral immune system factors across the blood brain barrier to central parenchyma have still not been completely elucidated. This process appears to involve perivascular macrophages and accompanying dendritic cells retained in the parenchyma by the chemokine and cytokine composition of the surrounding milieu. In addition, a number of studies have shown that this can be modulated by infection with viruses such as herpes simplex virus type I which may disrupt antigen presentation in the perivascular space, with long-lasting consequences. In this review article, we discuss the role of inflammation and viral infection as potential disease modifiers in schizophrenia. The primary viral hit may occur in the fetus in utero, transforming the immune response regulatory T-cells or the virus may secondarily remain latent in immune cells or neurons and modify further immune responses in the developing individual. It is hoped that unraveling this pathway further and solidifying our understanding of the pathophysiological mechanisms involved will pave the way for future studies aimed at identification and implementation of new biomarkers and drug targets. This may facilitate the development of more effective personalized therapies for individuals suffering with schizophrenia.
Collapse
Affiliation(s)
- Hans C. Klein
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Research and Education Department Addiction Care Northern Netherlands, Groningen, Netherlands
| | - Paul C. Guest
- Department of Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Laboratory of Translational Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Henrik Dobrowolny
- Department of Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Laboratory of Translational Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Johann Steiner
- Department of Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Laboratory of Translational Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Center for Health and Medical Prevention (CHaMP), Magdeburg, Germany
- German Center for Mental Health (DZPG), Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Halle-Jena-Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| |
Collapse
|
5
|
Marcozzi S, Bigossi G, Giuliani ME, Lai G, Giacconi R, Piacenza F, Malavolta M. Spreading Senescent Cells' Burden and Emerging Therapeutic Targets for Frailty. Cells 2023; 12:2287. [PMID: 37759509 PMCID: PMC10528263 DOI: 10.3390/cells12182287] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
The spreading of senescent cells' burden holds profound implications for frailty, prompting the exploration of novel therapeutic targets. In this perspective review, we delve into the intricate mechanisms underlying senescent cell spreading, its implications for frailty, and its therapeutic development. We have focused our attention on the emerging age-related biological factors, such as microbiome and virome alterations, elucidating their significant contribution to the loss of control over the accumulation rate of senescent cells, particularly affecting key frailty domains, the musculoskeletal system and cerebral functions. We believe that gaining an understanding of these mechanisms could not only aid in elucidating the involvement of cellular senescence in frailty but also offer diverse therapeutic possibilities, potentially advancing the future development of tailored interventions for these highly diverse patients.
Collapse
Affiliation(s)
- Serena Marcozzi
- Advanced Technology Center for Aging Research and Geriatric Mouse Clinic, IRCCS INRCA, 60121 Ancona, Italy; (S.M.); (G.B.); (M.E.G.); (R.G.); (F.P.)
- Scientific Direction, IRCCS INRCA, 60124 Ancona, Italy
| | - Giorgia Bigossi
- Advanced Technology Center for Aging Research and Geriatric Mouse Clinic, IRCCS INRCA, 60121 Ancona, Italy; (S.M.); (G.B.); (M.E.G.); (R.G.); (F.P.)
| | - Maria Elisa Giuliani
- Advanced Technology Center for Aging Research and Geriatric Mouse Clinic, IRCCS INRCA, 60121 Ancona, Italy; (S.M.); (G.B.); (M.E.G.); (R.G.); (F.P.)
| | - Giovanni Lai
- Advanced Technology Center for Aging Research and Geriatric Mouse Clinic, IRCCS INRCA, 60121 Ancona, Italy; (S.M.); (G.B.); (M.E.G.); (R.G.); (F.P.)
| | - Robertina Giacconi
- Advanced Technology Center for Aging Research and Geriatric Mouse Clinic, IRCCS INRCA, 60121 Ancona, Italy; (S.M.); (G.B.); (M.E.G.); (R.G.); (F.P.)
| | - Francesco Piacenza
- Advanced Technology Center for Aging Research and Geriatric Mouse Clinic, IRCCS INRCA, 60121 Ancona, Italy; (S.M.); (G.B.); (M.E.G.); (R.G.); (F.P.)
| | - Marco Malavolta
- Advanced Technology Center for Aging Research and Geriatric Mouse Clinic, IRCCS INRCA, 60121 Ancona, Italy; (S.M.); (G.B.); (M.E.G.); (R.G.); (F.P.)
| |
Collapse
|
6
|
Zhang B, Mao H, Zhu H, Guo J, Zhou P, Ma Z. Response to HIV-1 gp160-carrying recombinant virus HSV-1 and HIV-1 VLP combined vaccine in BALB/c mice. Front Microbiol 2023; 14:1136664. [PMID: 37007461 PMCID: PMC10063819 DOI: 10.3389/fmicb.2023.1136664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/01/2023] [Indexed: 03/19/2023] Open
Abstract
Human immunodeficiency virus (HIV) induced AIDS causes a large number of infections and deaths worldwide every year, still no vaccines are available to prevent infection. Recombinant herpes simplex virus type 1 (HSV-1) vector-based vaccines coding the target proteins of other pathogens have been widely used for disease control. Here, a recombinant virus with HIV-1 gp160 gene integration into the internal reverse (IR) region-deleted HSV-1 vector (HSV-BAC), was obtained by bacterial artificial chromosome (BAC) technology, and its immunogenicity investigated in BALB/c mice. The result showed similar replication ability of the HSV-BAC-based recombinant virus and wild type. Furthermore, humoral and cellular immune response showed superiority of intraperitoneal (IP) administration, compared to intranasally (IN), subcutaneous (SC) and intramuscularly (IM), that evidenced by production of significant antibody and T cell responses. More importantly, in a prime-boost combination study murine model, the recombinant viruses prime followed by HIV-1 VLP boost induced stronger and broader immune responses than single virus or protein vaccination in a similar vaccination regimen. Antibody production was sufficient with huge potential for viral clearance, along with efficient T-cell activation, which were evaluated by the enzyme-linked immunosorbent assay (ELISA) and flow cytometry (FC). Overall, these findings expose the value of combining different vaccine vectors and modalities to improve immunogenicity and breadth against different HIV-1 antigens.
Collapse
Affiliation(s)
- Beibei Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Ürümqi, Xinjiang, China
| | - Hongyan Mao
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Ürümqi, Xinjiang, China
| | - Hongjuan Zhu
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Ürümqi, Xinjiang, China
| | - Jingxia Guo
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Ürümqi, Xinjiang, China
| | - Paul Zhou
- Unit of Antiviral Immunity and Genetic Therapy, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Zhenghai Ma
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Ürümqi, Xinjiang, China
- *Correspondence: Zhenghai Ma,
| |
Collapse
|
7
|
Riaz B, Islam SMS, Ryu HM, Sohn S. CD83 Regulates the Immune Responses in Inflammatory Disorders. Int J Mol Sci 2023; 24:ijms24032831. [PMID: 36769151 PMCID: PMC9917562 DOI: 10.3390/ijms24032831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Activating the immune system plays an important role in maintaining physiological homeostasis and defending the body against harmful infections. However, abnormalities in the immune response can lead to various immunopathological responses and severe inflammation. The activation of dendritic cells (DCs) can influence immunological responses by promoting the differentiation of T cells into various functional subtypes crucial for the eradication of pathogens. CD83 is a molecule known to be expressed on mature DCs, activated B cells, and T cells. Two isotypes of CD83, a membrane-bound form and a soluble form, are subjects of extensive scientific research. It has been suggested that CD83 is not only a ubiquitous co-stimulatory molecule but also a crucial player in monitoring and resolving inflammatory reactions. Although CD83 has been involved in immunological responses, its functions in autoimmune diseases and effects on pathogen immune evasion remain unclear. Herein, we outline current immunological findings and the proposed function of CD83 in inflammatory disorders.
Collapse
Affiliation(s)
- Bushra Riaz
- Department of Biomedical Science, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - S. M. Shamsul Islam
- Department of Microbiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Hye Myung Ryu
- Department of Biomedical Science, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Seonghyang Sohn
- Department of Biomedical Science, Ajou University School of Medicine, Suwon 16499, Republic of Korea
- Department of Microbiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
- Correspondence:
| |
Collapse
|
8
|
Tognarelli EI, Retamal-Díaz A, Farías MA, Duarte LF, Palomino TF, Ibañez FJ, Riedel CA, Kalergis AM, Bueno SM, González PA. Pharmacological Inhibition of IRE-1 Alpha Activity in Herpes Simplex Virus Type 1 and Type 2-Infected Dendritic Cells Enhances T Cell Activation. Front Immunol 2022; 12:764861. [PMID: 35069537 PMCID: PMC8766714 DOI: 10.3389/fimmu.2021.764861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 12/06/2021] [Indexed: 12/25/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2) infections are life-long and highly prevalent in the human population. These viruses persist in the host, eliciting either symptomatic or asymptomatic infections that may occur sporadically or in a recurrent manner through viral reactivations. Clinical manifestations due to symptomatic infection may be mild such as orofacial lesions, but may also translate into more severe diseases, such as ocular infections that may lead to blindness and life-threatening encephalitis. A key feature of herpes simplex viruses (HSVs) is that they have evolved molecular determinants that hamper numerous components of the host’s antiviral innate and adaptive immune system. Importantly, HSVs infect and negatively modulate the function of dendritic cells (DCs), by inhibiting their T cell-activating capacity and eliciting their apoptosis after infection. Previously, we reported that HSV-2 activates the splicing of the mRNA of XBP1, which is related to the activity of the unfolded protein response (UPR) factor Inositol-Requiring Enzyme 1 alpha (IRE-1α). Here, we sought to evaluate if the activation of the IRE-1α pathway in DCs upon HSV infection may be related to impaired DC function after infection with HSV-1 or HSV-2. Interestingly, the pharmacological inhibition of the endonuclease activity of IRE-1α in HSV-1- and HSV-2-infected DCs significantly reduced apoptosis in these cells and enhanced their capacity to migrate to lymph nodes and activate virus-specific CD4+ and CD8+ T cells. These findings suggest that the activation of the IRE-1α-dependent UPR pathway in HSV-infected DCs may play a significant role in the negative effects that these viruses exert over these cells and that the modulation of this signaling pathway may be relevant for enhancing the function of DCs upon infection with HSVs.
Collapse
Affiliation(s)
- Eduardo I Tognarelli
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Angello Retamal-Díaz
- Millennium Institute on Immunology and Immunotherapy, Departamento de Biotecnología, Facultad de Ciencias del Mar y de Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile
| | - Mónica A Farías
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Luisa F Duarte
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Tomás F Palomino
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Francisco J Ibañez
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia A Riedel
- Millennium Institute on Immunology and Immunotherapy, Departamento de Biología Celular, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Alexis M Kalergis
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Departamento de Endocrinología, Facultad de Medicina, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Susan M Bueno
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo A González
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
9
|
MA F, LF D, EI T, PA G. Herpes simplex virus interference with immunity: Focus on dendritic cells. Virulence 2021; 12:2583-2607. [PMID: 34895058 PMCID: PMC8677016 DOI: 10.1080/21505594.2021.1980990] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/20/2021] [Accepted: 09/10/2021] [Indexed: 12/12/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2) are highly prevalent in the human population. These viruses cause lifelong infections by establishing latency in neurons and undergo sporadic reactivations that promote recurrent disease and new infections. The success of HSVs in persisting in infected individuals is likely due to their multiple molecular determinants involved in escaping the host antiviral and immune responses. Importantly, HSVs infect and negatively modulate the function of dendritic cells (DCs), key immune cells that are involved in establishing effective and balanced immunity against viruses. Here, we review and discuss several molecular and cellular processes modulated by HSVs in DCs, such as autophagy, apoptosis, and the unfolded protein response. Given the central role of DCs in establishing optimal antiviral immunity, particular emphasis should be given to the outcome of the interactions occurring between HSVs and DCs.
Collapse
Affiliation(s)
- Farías MA
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Duarte LF
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Tognarelli EI
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - González PA
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
10
|
Abstract
Like all herpesviruses, the roseoloviruses (HHV6A, -6B, and -7) establish lifelong infection within their host, requiring these viruses to evade host antiviral responses. One common host-evasion strategy is the downregulation of host-encoded, surface-expressed glycoproteins. Roseoloviruses have been shown to evade the host immune response by downregulating NK-activating ligands, class I MHC, and the TCR/CD3 complex. To more globally identify glycoproteins that are differentially expressed on the surface of HHV6A-infected cells, we performed cell surface capture of N-linked glycoproteins present on the surface of T cells infected with HHV6A, and compared these to proteins present on the surface of uninfected T cells. We found that the protein tyrosine phosphatase CD45 is downregulated in T cells infected with HHV6A. We also demonstrated that CD45 is similarly downregulated in cells infected with HHV7. CD45 is essential for signaling through the T cell receptor and, as such, is necessary for developing a fully functional immune response. Interestingly, the closely related betaherpesviruses human cytomegalovirus (HCMV) and murine cytomegalovirus (MCMV) have also separately evolved unique mechanisms to target CD45. While HCMV and MCMV target CD45 signaling and trafficking, HHV6A acts to downregulate CD45 transcripts. IMPORTANCE Human herpesviruses-6 and -7 infect essentially 100% of the world's population before the age of 5 and then remain latent or persistent in their host throughout life. As such, these viruses are among the most pervasive and stealthy of all viruses. Host immune cells rely on the presence of surface-expressed proteins to identify and target virus-infected cells. Here, we investigated the changes that occur to proteins expressed on the cell surface of T cells after infection with human herpesvirus-6A. We discovered that HHV-6A infection results in a reduction of CD45 on the surface of infected T cells and impaired activation in response to T cell receptor stimulation.
Collapse
|
11
|
Duarte LF, Reyes A, Farías MA, Riedel CA, Bueno SM, Kalergis AM, González PA. Crosstalk Between Epithelial Cells, Neurons and Immune Mediators in HSV-1 Skin Infection. Front Immunol 2021; 12:662234. [PMID: 34012447 PMCID: PMC8126613 DOI: 10.3389/fimmu.2021.662234] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/06/2021] [Indexed: 12/12/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) infection is highly prevalent in humans, with approximately two-thirds of the world population living with this virus. However, only a fraction of those carrying HSV-1, which elicits lifelong infections, are symptomatic. HSV-1 mainly causes lesions in the skin and mucosae but reaches the termini of sensory neurons innervating these tissues and travels in a retrograde manner to the neuron cell body where it establishes persistent infection and remains in a latent state until reactivated by different stimuli. When productive reactivations occur, the virus travels back along axons to the primary infection site, where new rounds of replication are initiated in the skin, in recurrent or secondary infections. During this process, new neuron infections occur. Noteworthy, the mechanisms underlying viral reactivations and the exit of latency are somewhat poorly understood and may be regulated by a crosstalk between the infected neurons and components of the immune system. Here, we review and discuss the immune responses that occur at the skin during primary and recurrent infections by HSV-1, as well as at the interphase of latently-infected neurons. Moreover, we discuss the implications of neuronal signals over the priming and migration of immune cells in the context of HSV-1 infection.
Collapse
Affiliation(s)
- Luisa F Duarte
- Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Antonia Reyes
- Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Mónica A Farías
- Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia A Riedel
- Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Susan M Bueno
- Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M Kalergis
- Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Endocrinología, Facultad de Medicina, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo A González
- Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
12
|
Bertram KM, Truong NR, Smith JB, Kim M, Sandgren KJ, Feng KL, Herbert JJ, Rana H, Danastas K, Miranda-Saksena M, Rhodes JW, Patrick E, Cohen RC, Lim J, Merten SL, Harman AN, Cunningham AL. Herpes Simplex Virus type 1 infects Langerhans cells and the novel epidermal dendritic cell, Epi-cDC2s, via different entry pathways. PLoS Pathog 2021; 17:e1009536. [PMID: 33905459 PMCID: PMC8104422 DOI: 10.1371/journal.ppat.1009536] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 05/07/2021] [Accepted: 04/06/2021] [Indexed: 12/24/2022] Open
Abstract
Skin mononuclear phagocytes (MNPs) provide the first interactions of invading viruses with the immune system. In addition to Langerhans cells (LCs), we recently described a second epidermal MNP population, Epi-cDC2s, in human anogenital epidermis that is closely related to dermal conventional dendritic cells type 2 (cDC2) and can be preferentially infected by HIV. Here we show that in epidermal explants topically infected with herpes simplex virus (HSV-1), both LCs and Epi-cDC2s interact with HSV-1 particles and infected keratinocytes. Isolated Epi-cDC2s support higher levels of infection than LCs in vitro, inhibited by acyclovir, but both MNP subtypes express similar levels of the HSV entry receptors nectin-1 and HVEM, and show similar levels of initial uptake. Using inhibitors of endosomal acidification, actin and cholesterol, we found that HSV-1 utilises different entry pathways in each cell type. HSV-1 predominantly infects LCs, and monocyte-derived MNPs, via a pH-dependent pathway. In contrast, Epi-cDC2s are mainly infected via a pH-independent pathway which may contribute to the enhanced infection of Epi-cDC2s. Both cells underwent apoptosis suggesting that Epi-cDC2s may follow the same dermal migration and uptake by dermal MNPs that we have previously shown for LCs. Thus, we hypothesize that the uptake of HSV and infection of Epi-cDC2s will stimulate immune responses via a different pathway to LCs, which in future may help guide HSV vaccine development and adjuvant targeting.
Collapse
Affiliation(s)
- Kirstie M. Bertram
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, Australia
- The Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia
| | - Naomi R. Truong
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, Australia
- The Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia
| | - Jacinta B. Smith
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, Australia
- The Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia
| | - Min Kim
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, Australia
- The Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia
| | - Kerrie J. Sandgren
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, Australia
- The Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia
| | - Konrad L. Feng
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, Australia
- The Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia
| | - Jason J. Herbert
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, Australia
- The Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia
| | - Hafsa Rana
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, Australia
- The Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia
| | - Kevin Danastas
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, Australia
- The Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia
| | - Monica Miranda-Saksena
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, Australia
- The Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia
| | - Jake W. Rhodes
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, Australia
- The Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia
| | - Ellis Patrick
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, Australia
- The School of Mathematics and Statistics, Faculty of Science, The University of Sydney, Camperdown, Australia
| | - Ralph C. Cohen
- Department of Surgery, University of Sydney and The Children’s Hospital at Westmead, Westmead, Australia
| | - Jake Lim
- Department of Surgery, Westmead Private Hospital, Westmead, Australia
| | - Steven L. Merten
- Department of Surgery, Macquarie University Hospital, Macquarie Park, Australia
| | - Andrew N. Harman
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, Australia
- The School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Westmead, Australia
| | - Anthony L. Cunningham
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, Australia
- The Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia
- * E-mail:
| |
Collapse
|
13
|
Birzer A, Kraner ME, Heilingloh CS, Mühl-Zürbes P, Hofmann J, Steinkasserer A, Popella L. Mass Spectrometric Characterization of HSV-1 L-Particles From Human Dendritic Cells and BHK21 Cells and Analysis of Their Functional Role. Front Microbiol 2020; 11:1997. [PMID: 33117298 PMCID: PMC7550753 DOI: 10.3389/fmicb.2020.01997] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 07/28/2020] [Indexed: 12/01/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) is a very common human pathogenic virus among the world’s population. The lytic replication cycle of HSV-1 is, amongst others, characterized by a tripartite viral gene expression cascade, the assembly of nucleocapsids involving their subsequent nuclear egress, tegumentation, re-envelopment and the final release of progeny viral particles. During productive infection of a multitude of different cell types, HSV-1 generates not only infectious heavy (H-) particles, but also non-infectious light (L-) particles, lacking the capsid. In monocyte-derived mature dendritic cells (mDCs), HSV-1 causes a non-productive infection with the predominant release of L-particles. Until now, the generation and function of L-particles is not well understood, however, they are described as factors transferring viral components to the cellular microenvironment. To obtain deeper insights into the L-particle composition, we performed a mass-spectrometry-based analysis of L-particles derived from HSV-1-infected mDCs or BHK21 cells and H-particles from the latter one. In total, we detected 63 viral proteins in both H- and L-particle preparations derived from HSV-1-infected BHK21 cells. In L-particles from HSV-1-infected mDCs we identified 41 viral proteins which are differentially distributed compared to L-particles from BHK21 cells. In this study, we present data suggesting that L-particles modify mDCs and suppress their T cell stimulatory capacity. Due to the plethora of specific viral proteins incorporated into and transmitted by L-particles, it is tempting to speculate that L-particles manipulate non-infected bystander cells for the benefit of the virus.
Collapse
Affiliation(s)
- Alexandra Birzer
- Department of Immune Modulation, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Max Edmund Kraner
- Division of Biochemistry, Department of Biology, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | | | - Petra Mühl-Zürbes
- Department of Immune Modulation, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Jörg Hofmann
- Division of Biochemistry, Department of Biology, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | | | - Linda Popella
- Department of Immune Modulation, Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
14
|
Saez A, Herrero-Fernandez B, Gomez-Bris R, Somovilla-Crespo B, Rius C, Gonzalez-Granado JM. Lamin A/C and the Immune System: One Intermediate Filament, Many Faces. Int J Mol Sci 2020; 21:E6109. [PMID: 32854281 PMCID: PMC7504305 DOI: 10.3390/ijms21176109] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/19/2020] [Accepted: 08/21/2020] [Indexed: 12/11/2022] Open
Abstract
Nuclear envelope lamin A/C proteins are a major component of the mammalian nuclear lamina, a dense fibrous protein meshwork located in the nuclear interior. Lamin A/C proteins regulate nuclear mechanics and structure and control cellular signaling, gene transcription, epigenetic regulation, cell cycle progression, cell differentiation, and cell migration. The immune system is composed of the innate and adaptive branches. Innate immunity is mediated by myeloid cells such as neutrophils, macrophages, and dendritic cells. These cells produce a rapid and nonspecific response through phagocytosis, cytokine production, and complement activation, as well as activating adaptive immunity. Specific adaptive immunity is activated by antigen presentation by antigen presenting cells (APCs) and the cytokine microenvironment, and is mainly mediated by the cellular functions of T cells and the production of antibodies by B cells. Unlike most cell types, immune cells regulate their lamin A/C protein expression relatively rapidly to exert their functions, with expression increasing in macrophages, reducing in neutrophils, and increasing transiently in T cells. In this review, we discuss and summarize studies that have addressed the role played by lamin A/C in the functions of innate and adaptive immune cells in the context of human inflammatory and autoimmune diseases, pathogen infections, and cancer.
Collapse
Affiliation(s)
- Angela Saez
- Centro de Biotecnología y Genómica de Plantas (CBGP), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo, Pozuelo de Alarcón, Pozuelo de Alarcón, 28223 Madrid, Spain;
| | - Beatriz Herrero-Fernandez
- LamImSys Lab, Instituto de Investigación Hospital 12 de Octubre (imas12), 28041 Madrid, Spain; (B.H.-F.); (R.G.-B.); (B.S.-C.)
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain
| | - Raquel Gomez-Bris
- LamImSys Lab, Instituto de Investigación Hospital 12 de Octubre (imas12), 28041 Madrid, Spain; (B.H.-F.); (R.G.-B.); (B.S.-C.)
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain
| | - Beatriz Somovilla-Crespo
- LamImSys Lab, Instituto de Investigación Hospital 12 de Octubre (imas12), 28041 Madrid, Spain; (B.H.-F.); (R.G.-B.); (B.S.-C.)
| | - Cristina Rius
- Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid (UEM), Villaviciosa de Odón, 28670 Madrid, Spain;
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares, 28029 Madrid, Spain
| | - Jose M. Gonzalez-Granado
- LamImSys Lab, Instituto de Investigación Hospital 12 de Octubre (imas12), 28041 Madrid, Spain; (B.H.-F.); (R.G.-B.); (B.S.-C.)
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares, 28029 Madrid, Spain
| |
Collapse
|
15
|
Grosche L, Mühl-Zürbes P, Ciblis B, Krawczyk A, Kuhnt C, Kamm L, Steinkasserer A, Heilingloh CS. Herpes Simplex Virus Type-2 Paralyzes the Function of Monocyte-Derived Dendritic Cells. Viruses 2020; 12:E112. [PMID: 31963276 PMCID: PMC7019625 DOI: 10.3390/v12010112] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/09/2020] [Accepted: 01/14/2020] [Indexed: 12/13/2022] Open
Abstract
Herpes simplex viruses not only infect a variety of different cell types, including dendritic cells (DCs), but also modulate important cellular functions in benefit of the virus. Given the relevance of directed immune cell migration during the initiation of potent antiviral immune responses, interference with DC migration constitutes a sophisticated strategy to hamper antiviral immunity. Notably, recent reports revealed that HSV-1 significantly inhibits DC migration in vitro. Thus, we aimed to investigate whether HSV-2 also modulates distinct hallmarks of DC biology. Here, we demonstrate that HSV-2 negatively interferes with chemokine-dependent in vitro migration capacity of mature DCs (mDCs). Interestingly, rather than mediating the reduction of the cognate chemokine receptor expression early during infection, HSV-2 rapidly induces β2 integrin (LFA-1)-mediated mDC adhesion and thereby blocks mDC migration. Mechanistically, HSV-2 triggers the proteasomal degradation of the negative regulator of β2 integrin activity, CYTIP, which causes the constitutive activation of LFA-1 and thus mDC adhesion. In conclusion, our data extend and strengthen recent findings reporting the reduction of mDC migration in the context of a herpesviral infection. We thus hypothesize that hampering antigen delivery to secondary lymphoid organs by inhibition of mDC migration is an evolutionary conserved strategy among distinct members of Herpesviridae.
Collapse
Affiliation(s)
- Linda Grosche
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91052 Erlangen, Germany
| | - Petra Mühl-Zürbes
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91052 Erlangen, Germany
| | - Barbara Ciblis
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91052 Erlangen, Germany
| | - Adalbert Krawczyk
- Department of Infectious Diseases, University Hospital Essen, University of Duisburg-Essen, D-45147 Essen, Germany
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, D-45147 Essen, Germany
| | - Christine Kuhnt
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91052 Erlangen, Germany
| | - Lisa Kamm
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91052 Erlangen, Germany
| | - Alexander Steinkasserer
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91052 Erlangen, Germany
| | - Christiane Silke Heilingloh
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91052 Erlangen, Germany
- Department of Infectious Diseases, University Hospital Essen, University of Duisburg-Essen, D-45147 Essen, Germany
| |
Collapse
|
16
|
Sandgren KJ, Truong NR, Smith JB, Bertram K, Cunningham AL. Vaccines for Herpes Simplex: Recent Progress Driven by Viral and Adjuvant Immunology. Methods Mol Biol 2020; 2060:31-56. [PMID: 31617171 DOI: 10.1007/978-1-4939-9814-2_2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Herpes simplex viruses (HSV) types 1 and 2 are ubiquitous. They both cause genital herpes, occasionally severe disease in the immunocompromised, and facilitate much HIV acquisition globally. Despite more than 60 years of research, there is no licensed prophylactic HSV vaccine and some doubt as to whether this can be achieved. Nevertheless, a previous HSV vaccine candidate did have partial success in preventing genital herpes and HSV acquisition and another immunotherapeutic candidate reduced viral shedding and recurrent lesions, inspiring further research. However, the entry pathway of HSV into the anogenital mucosa and the subsequent cascade of immune responses need further elucidation so that these responses could be mimicked or improved by a vaccine, to prevent viral entry and colonization of the neuronal ganglia. For an effective novel vaccine against genital herpes the choice of antigen and adjuvant may be critical. The incorporation of adjuvants of the vaccine candidates in the past, may account for their partial efficacy. It is likely that they can be improved by understanding the mechanisms of immune responses elicited by different adjuvants and comparing these to natural immune responses. Here we review the history of vaccines for HSV, those in development and compare them to successful vaccines for chicken pox or herpes zoster. We also review what is known of the natural immune control of herpes lesions, via interacting innate immunity and CD4 and CD8 T cells and the lessons they provide for development of new, more effective vaccines.
Collapse
Affiliation(s)
- Kerrie J Sandgren
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia.,Sydney Medical School, The University of Sydney, Westmead, NSW, Australia
| | - Naomi R Truong
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia.,Sydney Medical School, The University of Sydney, Westmead, NSW, Australia
| | - Jacinta B Smith
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia.,Sydney Medical School, The University of Sydney, Westmead, NSW, Australia
| | - Kirstie Bertram
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia.,Sydney Medical School, The University of Sydney, Westmead, NSW, Australia
| | - Anthony L Cunningham
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia. .,Sydney Medical School, The University of Sydney, Westmead, NSW, Australia.
| |
Collapse
|
17
|
Crisci E, Svanberg C, Ellegård R, Khalid M, Hellblom J, Okuyama K, Bhattacharya P, Nyström S, Shankar EM, Eriksson K, Larsson M. HSV-2 Cellular Programming Enables Productive HIV Infection in Dendritic Cells. Front Immunol 2019; 10:2889. [PMID: 31867020 PMCID: PMC6909011 DOI: 10.3389/fimmu.2019.02889] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 11/25/2019] [Indexed: 12/13/2022] Open
Abstract
Genital herpes is a common sexually transmitted infection caused by herpes simplex virus type 2 (HSV-2). Genital herpes significantly enhances the acquisition and transmission of HIV-1 by creating a microenvironment that supports HIV infection in the host. Dendritic cells (DCs) represent one of the first innate cell types that encounter HIV-1 and HSV-2 in the genital mucosa. HSV-2 infection has been shown to modulate DCs, rendering them more receptive to HIV infection. Here, we investigated the potential mechanisms underlying HSV-2-mediated augmentation of HIV-1 infection. We demonstrated that the presence of HSV-2 enhanced productive HIV-1 infection of DCs and boosted inflammatory and antiviral responses. The HSV-2 augmented HIV-1 infection required intact HSV-2 DNA, but not active HSV-2 DNA replication. Furthermore, the augmented HIV infection of DCs involved the cGAS-STING pathway. Interestingly, we could not see any involvement of TLR2 or TLR3 nor suppression of infection by IFN-β production. The conditioning by HSV-2 in dual exposed DCs decreased protein expression of IFI16, cGAS, STING, and TBK1, which is associated with signaling through the STING pathway. Dual exposure to HSV-2 and HIV-1 gave decreased levels of several HIV-1 restriction factors, especially SAMHD1, TREX1, and APOBEC3G. Activation of the STING pathway in DCs by exposure to both HSV-2 and HIV-1 most likely led to the proteolytic degradation of the HIV-1 restriction factors SAMHD1, TREX1, and APOBEC3G, which should release their normal restriction of HIV infection in DCs. This released their normal restriction of HIV infection in DCs. We showed that HSV-2 reprogramming of cellular signaling pathways and protein expression levels in the DCs provided a setting where HIV-1 can establish a higher productive infection in the DCs. In conclusion, HSV-2 reprogramming opens up DCs for HIV-1 infection and creates a microenvironment favoring HIV-1 transmission.
Collapse
Affiliation(s)
- Elisa Crisci
- Division of Molecular Virology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Cecilia Svanberg
- Division of Molecular Virology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Rada Ellegård
- Division of Molecular Virology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Mohammad Khalid
- Division of Molecular Virology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Julia Hellblom
- Division of Molecular Virology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Kazuki Okuyama
- Division of Experimental Haematology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Pradyot Bhattacharya
- Division of Molecular Virology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Sofia Nyström
- Division of Molecular Virology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Esaki M. Shankar
- Division of Infection Biology and Medical Microbiology, Department of Life Sciences, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur, India
| | - Kristina Eriksson
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Gothenburg, Sweden
| | - Marie Larsson
- Division of Molecular Virology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| |
Collapse
|
18
|
Xu Q, Rangaswamy US, Wang W, Robbins SH, Harper J, Jin H, Cheng X. Evaluation of Newcastle disease virus mediated dendritic cell activation and cross-priming tumor-specific immune responses ex vivo. Int J Cancer 2019; 146:531-541. [PMID: 31584185 DOI: 10.1002/ijc.32694] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 07/03/2019] [Accepted: 09/05/2019] [Indexed: 12/13/2022]
Abstract
We have developed an oncolytic Newcastle disease virus (NDV) that has potent in vitro and in vivo anti-tumor activities and attenuated pathogenicity in chickens. In this ex vivo study using the same recombinant NDV backbone with GFP transgene (NDV-GFP, designated as rNDV), we found that rNDV induces maturation of monocyte-derived immature dendritic cells (iDCs) by both direct and indirect mechanisms, which promote development of antigen-specific T cell responses. Addition of rNDV directly to iDCs culture induced DC maturation, as demonstrated by the increased expression of costimulatory and antigen-presenting molecules as well as the production of type I interferons (IFNs). rNDV infection of the HER-2 positive human breast cancer cell line (SKBR3) resulted in apoptotic cell death, release of proinflammatory cytokines, and danger-associated molecular pattern molecules (DAMPs) including high-mobility group protein B1 (HMGB1) and heat shock protein 70 (HSP70). Addition of rNDV-infected SKBR3 cells to iDC culture resulted in greatly enhanced upregulation of the maturation markers and release of type I IFNs by DCs than rNDV-infected DCs only. When co-cultured with autologous T cells, DCs pre-treated with rNDV-infected SKBR3 cells cross-primed T cells in an antigen-specific manner. Altogether, our data strongly support the potential of oncolytic NDV as efficient therapeutic agent for cancer treatment.
Collapse
Affiliation(s)
- Qi Xu
- Microbial Sciences, AstraZeneca Ltd, South San Francisco, CA
| | | | - Weijia Wang
- Microbial Sciences, AstraZeneca Ltd, South San Francisco, CA
| | | | - James Harper
- Oncology R&D, AstraZeneca Ltd, Cambridge, United Kingdom
| | - Hong Jin
- Microbial Sciences, AstraZeneca Ltd, South San Francisco, CA
| | - Xing Cheng
- Microbial Sciences, AstraZeneca Ltd, South San Francisco, CA
| |
Collapse
|
19
|
Xu X, Zhang Y, Li Q. Characteristics of herpes simplex virus infection and pathogenesis suggest a strategy for vaccine development. Rev Med Virol 2019; 29:e2054. [PMID: 31197909 PMCID: PMC6771534 DOI: 10.1002/rmv.2054] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 04/03/2019] [Accepted: 04/27/2019] [Indexed: 12/15/2022]
Abstract
Herpes simplex virus (HSV) can cause oral or genital ulcerative lesions and even encephalitis in various age groups with high infection rates. More seriously, HSV may lead to a wide range of recurrent diseases throughout a lifetime. No vaccines against HSV are currently available. The accumulated clinical research data for HSV vaccines reveal that the effects of HSV interacting with the host, especially the host immune system, may be important for the development of HSV vaccines. HSV vaccine development remains a major challenge. Thus, we focus on the research data regarding the interactions of HSV and host immune cells, including dendritic cells (DCs), innate lymphoid cells (ILCs), macrophages, and natural killer (NK) cells, and the related signal transduction pathways involved in immune evasion and cytokine production. The aim is to explore possible strategies to develop new effective HSV vaccines.
Collapse
Affiliation(s)
- Xingli Xu
- Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical SciencesPeking Union Medical CollegeKunmingChina
| | - Ying Zhang
- Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical SciencesPeking Union Medical CollegeKunmingChina
| | - Qihan Li
- Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical SciencesPeking Union Medical CollegeKunmingChina
| |
Collapse
|
20
|
Truong NR, Smith JB, Sandgren KJ, Cunningham AL. Mechanisms of Immune Control of Mucosal HSV Infection: A Guide to Rational Vaccine Design. Front Immunol 2019; 10:373. [PMID: 30894859 PMCID: PMC6414784 DOI: 10.3389/fimmu.2019.00373] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 02/14/2019] [Indexed: 12/17/2022] Open
Abstract
Herpes Simplex Virus (HSV) is a highly prevalent sexually transmitted infection that aside from causing cold sores and genital lesions, causes complications in the immunocompromised and has facilitated a large proportion of HIV acquisition globally. Despite decades of research, there is no prophylactic HSV vaccine ready for use in humans, leaving many questioning whether a prophylactic vaccine is an achievable goal. A previous HSV vaccine trial did have partial success in decreasing acquisition of HSV2–promising evidence that vaccines can prevent acquisition. However, there is still an incomplete understanding of the immune response pathways elicited by HSV after initial mucosal infection and how best to replicate these responses with a vaccine, such that acquisition and colonization of the dorsal root ganglia could be prevented. Another factor to consider in the rational design of an HSV vaccine is adjuvant choice. Understanding the immune responses elicited by different adjuvants and whether lasting humoral and cell-mediated responses are induced is important, especially when studies of past trial vaccines found that a sufficiently protective cell-mediated response was lacking. In this review, we discuss what is known of the immune control involved in initial herpes lesions and reactivation, including the importance of CD4 and CD8 T cells, and the interplay between innate and adaptive immunity in response to primary infection, specifically focusing on the viral relay involved. Additionally, a summary of previous and current vaccine trials, including the components used, immune responses elicited and the feasibility of prophylactic vaccines looking forward, will also be discussed.
Collapse
Affiliation(s)
- Naomi R Truong
- Centre for Virus Research, The Westmead Institute for Medical Research, Sydney, NSW, Australia.,Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Jacinta B Smith
- Centre for Virus Research, The Westmead Institute for Medical Research, Sydney, NSW, Australia
| | - Kerrie J Sandgren
- Centre for Virus Research, The Westmead Institute for Medical Research, Sydney, NSW, Australia.,Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Anthony L Cunningham
- Centre for Virus Research, The Westmead Institute for Medical Research, Sydney, NSW, Australia.,Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
21
|
Turan A, Grosche L, Krawczyk A, Mühl-Zürbes P, Drassner C, Düthorn A, Kummer M, Hasenberg M, Voortmann S, Jastrow H, Dörrie J, Schaft N, Kraner M, Döhner K, Sodeik B, Steinkasserer A, Heilingloh CS. Autophagic degradation of lamins facilitates the nuclear egress of herpes simplex virus type 1. J Cell Biol 2018; 218:508-523. [PMID: 30587512 PMCID: PMC6363456 DOI: 10.1083/jcb.201801151] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 10/02/2018] [Accepted: 11/08/2018] [Indexed: 01/11/2023] Open
Abstract
Turan and Grosche et al. show that herpes simplex virus type 1 (HSV-1) infection leads to autophagic degradation of nuclear lamins in immature dendritic cells, facilitating HSV-1 nuclear egress and the formation of infectious progeny virus. In mature dendritic cells, autophagy is inhibited due to elevated KIF1B and KIF2A protein levels. Dendritic cells (DCs) are crucial for the induction of potent antiviral immune responses. In contrast to immature DCs (iDCs), mature DCs (mDCs) are not permissive for infection with herpes simplex virus type 1 (HSV-1). Here, we demonstrate that HSV-1 infection of iDCs and mDCs induces autophagy, which promotes the degradation of lamin A/C, B1, and B2 in iDCs only. This in turn facilitates the nuclear egress of progeny viral capsids and thus the formation of new infectious particles. In contrast, lamin protein levels remain stable in HSV-1–infected mDCs due to an inefficient autophagic flux. Elevated protein levels of KIF1B and KIF2A in mDCs inhibited lamin degradation, likely by hampering autophagosome–lysosome fusion. Therefore, in mDCs, fewer progeny capsids were released from the nuclei into the cytosol, and fewer infectious virions were assembled. We hypothesize that inhibition of autophagic lamin degradation in mDCs represents a very powerful cellular counterstrike to inhibit the production of progeny virus and thus viral spread.
Collapse
Affiliation(s)
- Aykut Turan
- Department of Immune Modulation, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Linda Grosche
- Department of Immune Modulation, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Adalbert Krawczyk
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Petra Mühl-Zürbes
- Department of Immune Modulation, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Christina Drassner
- Department of Immune Modulation, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Alexandra Düthorn
- Department of Immune Modulation, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Mirko Kummer
- Department of Immune Modulation, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Mike Hasenberg
- Imaging Center Essen, Electron Microscopy Unit, University Hospital of Essen, Essen, Germany
| | - Sylvia Voortmann
- Imaging Center Essen, Electron Microscopy Unit, University Hospital of Essen, Essen, Germany
| | - Holger Jastrow
- Imaging Center Essen, Electron Microscopy Unit, University Hospital of Essen, Essen, Germany.,Institute of Anatomy, University of Duisburg-Essen, Essen, Germany
| | - Jan Dörrie
- Department of Dermatology, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Niels Schaft
- Department of Dermatology, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Max Kraner
- Division of Biochemistry, Department of Biology, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Katinka Döhner
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Beate Sodeik
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | | | | |
Collapse
|
22
|
Adejumo BIG, Oronsaye FE, Drisu UI, Adebowale MO, Oke OM, Dimkpa U, Omosor KI, Abdulrahman ON, Ukatu EN, Michael EA. The Level of CD4<sup>+</sup> T Cell Count among Reproductive Age Women Coinfected with Human Immune Virus, Hepatitis Surface Antigen and Herpes Simplex Virus in Kogi State, Nigeria. Health (London) 2018. [DOI: 10.4236/health.2018.1010111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
23
|
Retamal-Díaz A, Weiss KA, Tognarelli EI, Freire M, Bueno SM, Herold BC, Jacobs WR, González PA. US6 Gene Deletion in Herpes Simplex Virus Type 2 Enhances Dendritic Cell Function and T Cell Activation. Front Immunol 2017; 8:1523. [PMID: 29176979 PMCID: PMC5686121 DOI: 10.3389/fimmu.2017.01523] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 10/27/2017] [Indexed: 02/01/2023] Open
Abstract
Herpes simplex virus (HSV) type 1 (HSV-1) and type 2 (HSV-2) produce lifelong infections that are associated with frequent asymptomatic or clinically apparent reactivation. Importantly, HSV express multiple virulence factors that negatively modulate innate and adaptive immune components. Notably, HSV interfere with dendritic cell (DC) viability and function, likely hindering the capacity of the host to mount effective immunity against these viruses. Recently, an HSV-2 virus that was deleted in glycoprotein D was engineered (designated ΔgD-2). The virus is propagated on a complementing cell line that expresses HSV-1 gD, which permits a single round of viral replication. ΔgD-2 is safe, immunogenic, and provided complete protection against vaginal or skin challenges with HSV-1 and HSV-2 in murine models. Here, we sought to assess the interaction of ΔgD-2 with DCs and found that, in contrast to wild-type (WT) virus which induces DC apoptosis, ΔgD-2 promoted their migration and capacity to activate naïve CD8+ and CD4+ T cells in vitro and in vivo. Furthermore, DCs exposed to the WT and ΔgD-2 virus experienced different unfolded protein responses. Mice primed with DCs infected with ΔgD-2 in vitro displayed significantly reduced infection and pathology after genital challenge with virulent HSV-2 compared to non-primed mice, suggesting that DCs play a role in the immune response to the vaccine strain.
Collapse
Affiliation(s)
- Angello Retamal-Díaz
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Kayla A Weiss
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, United States
| | - Eduardo I Tognarelli
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Mariela Freire
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Susan M Bueno
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Betsy C Herold
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, United States.,Department of Pediatrics, Albert Einstein College of Medicine, New York, NY, United States
| | - William R Jacobs
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, United States.,Department of Genetics, Albert Einstein College of Medicine, New York, NY, United States.,Howard Hughes Medical Institute, Albert Einstein College of Medicine, New York, NY, United States
| | - Pablo A González
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
24
|
Grosche L, Kummer M, Steinkasserer A. What Goes Around, Comes Around - HSV-1 Replication in Monocyte-Derived Dendritic Cells. Front Microbiol 2017; 8:2149. [PMID: 29163433 PMCID: PMC5674004 DOI: 10.3389/fmicb.2017.02149] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 10/20/2017] [Indexed: 01/12/2023] Open
Abstract
HSV-1 is a very successful human pathogen, known for its high sero-prevalence and the ability to infect a wide range of different cell types, including dendritic cells (DCs). As very potent antigen-presenting cells DCs play an important role in the induction of antiviral immune responses and therefore represent a strategic target for viral-mediated immune escape mechanisms. It is known that HSV-1 completes its gene expression profile in immature as well as in mature DCs, while lytic infection is only found in immature DCs (iDCs). Notably, HSV-1 infected mature DCs (mDCs) fail to release infectious progeny virions into the supernatant. Apart from HSV-1 dissemination via extracellular routes cell-to-cell spread counteracts a yet unknown mechanism by which the virus is trapped in mDCs and not released into the supernatant. The dissemination in a cell-cell contact-dependent manner enables HSV-1 to infect bystander cells without the exposure toward the extracellular environment. This supports the virus to successfully infect the host and establish latency. In this review the mechanism of HSV-1 replication in iDCs and mDCs and its immunological as well as virological implications, will be discussed.
Collapse
Affiliation(s)
- Linda Grosche
- Department of Immune Modulation, University Hospital Erlangen, Erlangen, Germany
| | - Mirko Kummer
- Department of Immune Modulation, University Hospital Erlangen, Erlangen, Germany
| | | |
Collapse
|
25
|
Budida R, Stankov MV, Döhner K, Buch A, Panayotova-Dimitrova D, Tappe KA, Pohlmann A, Sodeik B, Behrens GMN. Herpes simplex virus 1 interferes with autophagy of murine dendritic cells and impairs their ability to stimulate CD8 + T lymphocytes. Eur J Immunol 2017; 47:1819-1834. [PMID: 28771693 DOI: 10.1002/eji.201646908] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 05/31/2017] [Accepted: 08/01/2017] [Indexed: 12/17/2022]
Abstract
The MHC class I presentation is responsible for the presentation of viral proteins to CD8+ T lymphocytes and mainly depends on the classical antigen processing pathway. Recently, a second pathway involving autophagy has been implicated in this process. Here, we show an increase in the capacity of murine dendritic cells (DCs) to present viral antigens on MHC class I after infection with a mutant herpes simplex virus 1 (HSV-1-Δ34.5), lacking infected cell protein 34.5 (ICP34.5), when compared to its parental HSV-1 strain. The ICP34.5 protein counteracts host cell translational arrest and suppresses macroautophagy, and the lack of this protein resulted in a low viral protein abundance, which was processed and presented in an efficient way. Our study demonstrates an important role of autophagy in processing endogenous viral proteins in HSV-1-infected DCs.
Collapse
Affiliation(s)
- Ramachandramouli Budida
- Department of Clinical Immunology and Rheumatology, Hannover Medical School, Hannover, Germany
| | - Metodi V Stankov
- Department of Clinical Immunology and Rheumatology, Hannover Medical School, Hannover, Germany
| | - Katinka Döhner
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Anna Buch
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | | | - Kim A Tappe
- Department of Clinical Immunology and Rheumatology, Hannover Medical School, Hannover, Germany
| | - Anja Pohlmann
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Beate Sodeik
- Institute of Virology, Hannover Medical School, Hannover, Germany.,DZIF-German Center for Infection Research, Hannover-Braunschweig site, Hannover, Germany
| | - Georg M N Behrens
- Department of Clinical Immunology and Rheumatology, Hannover Medical School, Hannover, Germany.,DZIF-German Center for Infection Research, Hannover-Braunschweig site, Hannover, Germany
| |
Collapse
|
26
|
El-Awady AR, Arce RM, Cutler CW. Dendritic cells: microbial clearance via autophagy and potential immunobiological consequences for periodontal disease. Periodontol 2000 2017; 69:160-80. [PMID: 26252408 PMCID: PMC4530502 DOI: 10.1111/prd.12096] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2015] [Indexed: 12/15/2022]
Abstract
Dendritic cells are potent antigen‐capture and antigen‐presenting cells that play a key role in the initiation and regulation of the adaptive immune response. This process of immune homeostasis, as maintained by dendritic cells, is susceptible to dysregulation by certain pathogens during chronic infections. Such dysregulation may lead to disease perpetuation with potentially severe systemic consequences. Here we discuss in detail how intracellular pathogens exploit dendritic cells and escape degradation by altering or evading autophagy. This novel mechanism explains, in part, the chronic, persistent nature observed in several immuno‐inflammatory diseases, including periodontal disease. We also propose a hypothetical model of the plausible role of autophagy in the context of periodontal disease. Promotion of autophagy may open new therapeutic strategies in the search of a ‘cure’ for periodontal disease in humans.
Collapse
|
27
|
Botting RA, Rana H, Bertram KM, Rhodes JW, Baharlou H, Nasr N, Cunningham AL, Harman AN. Langerhans cells and sexual transmission of HIV and HSV. Rev Med Virol 2017; 27. [PMID: 28044388 DOI: 10.1002/rmv.1923] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 12/01/2016] [Accepted: 12/02/2016] [Indexed: 12/14/2022]
Abstract
Langerhans cells (LCs) situated in stratified squamous epithelium of the skin and mucosal tissue are amongst the first cells that sexually transmitted pathogens encounter during transmission. They are potent antigen presenting cells and play a key role in the host mounting an appropriate immune response. As such, viruses have evolved complex strategies to manipulate these cells to facilitate successful transmission. One of best studied examples is HIV, which manipulates the natural function of these cells to interact with CD4 T cells, which are the main target cell for HIV in which rapid replication occurs. However, there is controversy in the literature as to the role that LCs play in this process. Langerhans cells also play a key role in the way the body mounts an immune response to HSV, and there is also a complex interplay between the transmission of HSV and HIV that involves LCs. In this article, we review both past and present literatures with a particular focus on a few very recent studies that shed new light on the role that LCs play in the transmission and immune response to these 2 pathogens.
Collapse
Affiliation(s)
- Rachel A Botting
- The Westmead Institute for Medical Research, University of Sydney, Westmead, New South Wales, Australia
| | - Hafsa Rana
- The Westmead Institute for Medical Research, University of Sydney, Westmead, New South Wales, Australia
| | - Kirstie M Bertram
- The Westmead Institute for Medical Research, University of Sydney, Westmead, New South Wales, Australia
| | - Jake W Rhodes
- The Westmead Institute for Medical Research, University of Sydney, Westmead, New South Wales, Australia
| | - Heeva Baharlou
- The Westmead Institute for Medical Research, University of Sydney, Westmead, New South Wales, Australia
| | - Najla Nasr
- The Westmead Institute for Medical Research, University of Sydney, Westmead, New South Wales, Australia
| | - Anthony L Cunningham
- The Westmead Institute for Medical Research, University of Sydney, Westmead, New South Wales, Australia
| | - Andrew N Harman
- The Westmead Institute for Medical Research, University of Sydney, Westmead, New South Wales, Australia
| |
Collapse
|
28
|
Complement Opsonization Promotes Herpes Simplex Virus 2 Infection of Human Dendritic Cells. J Virol 2016; 90:4939-4950. [PMID: 26937039 PMCID: PMC4859714 DOI: 10.1128/jvi.00224-16] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 02/24/2016] [Indexed: 01/11/2023] Open
Abstract
Herpes simplex virus 2 (HSV-2) is one of the most common sexually transmitted infections globally, with a very high prevalence in many countries. During HSV-2 infection, viral particles become coated with complement proteins and antibodies, both present in genital fluids, which could influence the activation of immune responses. In genital mucosa, the primary target cells for HSV-2 infection are epithelial cells, but resident immune cells, such as dendritic cells (DCs), are also infected. DCs are the activators of the ensuing immune responses directed against HSV-2, and the aim of this study was to examine the effects opsonization of HSV-2, either with complement alone or with complement and antibodies, had on the infection of immature DCs and their ability to mount inflammatory and antiviral responses. Complement opsonization of HSV-2 enhanced both the direct infection of immature DCs and their production of new infectious viral particles. The enhanced infection required activation of the complement cascade and functional complement receptor 3. Furthermore, HSV-2 infection of DCs required endocytosis of viral particles and their delivery into an acid endosomal compartment. The presence of complement in combination with HSV-1- or HSV-2-specific antibodies more or less abolished HSV-2 infection of DCs. Our results clearly demonstrate the importance of studying HSV-2 infection under conditions that ensue in vivo, i.e., conditions under which the virions are covered in complement fragments and complement fragments and antibodies, as these shape the infection and the subsequent immune response and need to be further elucidated. IMPORTANCE During HSV-2 infection, viral particles should become coated with complement proteins and antibodies, both present in genital fluids, which could influence the activation of the immune responses. The dendritic cells are activators of the immune responses directed against HSV-2, and the aim of this study was to examine the effects of complement alone or complement and antibodies on HSV-2 infection of dendritic cells and their ability to mount inflammatory and antiviral responses. Our results demonstrate that the presence of antibodies and complement in the genital environment can influence HSV-2 infection under in vitro conditions that reflect the in vivo situation. We believe that our findings are highly relevant for the understanding of HSV-2 pathogenesis.
Collapse
|
29
|
Claessen C, De Lange V, Huang T, Ma G, Osterrieder N, Favoreel H, Van de Walle GR. Equine herpesvirus type 1 (EHV1) induces alterations in the immunophenotypic profile of equine monocyte-derived dendritic cells. Vet J 2016; 210:85-8. [PMID: 26920348 DOI: 10.1016/j.tvjl.2015.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 12/11/2015] [Accepted: 12/14/2015] [Indexed: 10/22/2022]
Abstract
Equine herpesvirus 1 (EHV1) is an α-herpesvirus that can infect a variety of different cells in vitro and in vivo, including dendritic cells (DC) which are essential in the immune response against EHV1. Infection of equine monocyte-derived DC (MDDC) with EHV1 induced down-regulation of major histocompatibility complex I (MHCI), CD83, CD86, CD206, CD29 and CD172a, but not of CD11a/CD18 and MHCII. This down-regulation was not mediated by the virion host-shutoff (VHS) protein or pUL49.5. Interestingly, down-regulation of CD83 and CD86 was in part mediated by pUL56. Taken together, these data indicate that EHV1 employs different and still unresolved mechanisms to induce down-regulation of several functionally important cell surface proteins on equine DC.
Collapse
Affiliation(s)
- Christophe Claessen
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, B-9820 Merelbeke, Belgium
| | - Valérie De Lange
- Department of Obstetrics, Reproduction and Herd Health, Faculty of Veterinary Medicine, Ghent University, B-9820 Merelbeke, Belgium
| | - Teng Huang
- Institut für Virologie, Freie Universität Berlin, 14163 Berlin, Germany
| | - Guanggang Ma
- Institut für Virologie, Freie Universität Berlin, 14163 Berlin, Germany
| | | | - Herman Favoreel
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, B-9820 Merelbeke, Belgium
| | - Gerlinde R Van de Walle
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, B-9820 Merelbeke, Belgium; Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14850, USA.
| |
Collapse
|
30
|
Heilingloh CS, Kummer M, Mühl-Zürbes P, Drassner C, Daniel C, Klewer M, Steinkasserer A. L Particles Transmit Viral Proteins from Herpes Simplex Virus 1-Infected Mature Dendritic Cells to Uninfected Bystander Cells, Inducing CD83 Downmodulation. J Virol 2015; 89:11046-55. [PMID: 26311871 PMCID: PMC4621140 DOI: 10.1128/jvi.01517-15] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 08/19/2015] [Indexed: 01/11/2023] Open
Abstract
UNLABELLED Mature dendritic cells (mDCs) are known as the most potent antigen-presenting cells (APCs) since they are also able to prime/induce naive T cells. Thus, mDCs play a pivotal role during the induction of antiviral immune responses. Remarkably, the cell surface molecule CD83, which was shown to have costimulatory properties, is targeted by herpes simplex virus 1 (HSV-1) for viral immune escape. Infection of mDCs with HSV-1 results in downmodulation of CD83, resulting in reduced T cell stimulation. In this study, we report that not only infected mDCs but also uninfected bystander cells in an infected culture show a significant CD83 reduction. We demonstrate that this effect is independent of phagocytosis and transmissible from infected to uninfected mDCs. The presence of specific viral proteins found in these uninfected bystander cells led to the hypothesis that viral proteins are transferred from infected to uninfected cells via L particles. These L particles are generated during lytic replication in parallel with full virions, called H particles. L particles contain viral proteins but lack the viral capsid and DNA. Therefore, these particles are not infectious but are able to transfer several viral proteins. Incubation of mDCs with L particles indeed reduced CD83 expression on uninfected bystander DCs, providing for the first time evidence that functional viral proteins are transmitted via L particles from infected mDCs to uninfected bystander cells, thereby inducing CD83 downmodulation. IMPORTANCE HSV-1 has evolved a number of strategies to evade the host's immune system. Among others, HSV-1 infection of mDCs results in an inhibited T cell activation caused by degradation of CD83. Interestingly, CD83 is lost not only from HSV-1-infected mDCs but also from uninfected bystander cells. The release of so-called L particles, which contain several viral proteins but lack capsid and DNA, during infection is a common phenomenon observed among several viruses, such as human cytomegalovirus (HCMV), Epstein-Barr virus, and HSV-1. However, the detailed function of these particles is poorly understood. Here, we provide for the first time evidence that functional viral proteins can be transferred to uninfected bystander mDCs via L particles, revealing important biological functions of these particles during lytic replication. Therefore, the transfer of viral proteins by L particles to modulate uninfected bystander cells may represent an additional strategy for viral immune escape.
Collapse
Affiliation(s)
| | - Mirko Kummer
- Department of Immune Modulation, University Hospital Erlangen, Erlangen, Germany
| | - Petra Mühl-Zürbes
- Department of Immune Modulation, University Hospital Erlangen, Erlangen, Germany
| | - Christina Drassner
- Department of Immune Modulation, University Hospital Erlangen, Erlangen, Germany
| | - Christoph Daniel
- Department of Pathology, Nephropathology, University Hospital Erlangen, Erlangen, Germany
| | - Monika Klewer
- Department of Pathology, Nephropathology, University Hospital Erlangen, Erlangen, Germany
| | | |
Collapse
|
31
|
Kubicka-Sierszen A, Grzegorczyk JŁ. The influence of infectious factors on dendritic cell apoptosis. Arch Med Sci 2015; 11:1044-51. [PMID: 26528349 PMCID: PMC4624750 DOI: 10.5114/aoms.2015.54860] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 06/04/2013] [Accepted: 10/02/2013] [Indexed: 12/23/2022] Open
Abstract
Pathogens can have a negative influence on dendritic cells (DCs), causing their apoptosis, which prevents active presentation of foreign antigens. It results in a state of immunosuppression which makes the body susceptible to secondary infections. Infected immature DCs have lower expression of co-stimulatory and adhesion molecules, reduced ability to secrete cytokines and an inhibited maturation process and are incapable of effective antigen presentation and activation of T-lymphocytes. In some cases, the ability of DCs to undergo rapid apoptosis is important for the body defense, which is probably because of DCs' ability to cross-present and cooperate with other cells. Apoptotic bodies released from the infected DCs are phagocytosed by other DCs, which then stimulate the effector cells and present antigens more efficiently than infected cells. The aim of this article is to review how the DCs respond to viral and bacterial factors and which biochemical mechanisms are responsible for their apoptosis.
Collapse
Affiliation(s)
- Agata Kubicka-Sierszen
- Department of Microbiology and Laboratory Medical Immunology, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Janina Ł Grzegorczyk
- Department of Microbiology and Laboratory Medical Immunology, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
32
|
Role of gB and pUS3 in Equine Herpesvirus 1 Transfer between Peripheral Blood Mononuclear Cells and Endothelial Cells: a Dynamic In Vitro Model. J Virol 2015; 89:11899-908. [PMID: 26378176 DOI: 10.1128/jvi.01809-15] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 09/08/2015] [Indexed: 12/29/2022] Open
Abstract
UNLABELLED Infected peripheral blood mononuclear cells (PBMC) effectively transport equine herpesvirus type 1 (EHV-1), but not EHV-4, to endothelial cells (EC) lining the blood vessels of the pregnant uterus or central nervous system, a process that can result in abortion or myeloencephalopathy. We examined, using a dynamic in vitro model, the differences between EHV-1 and EHV-4 infection of PBMC and PBMC-EC interactions. In order to evaluate viral transfer between infected PBMC and EC, cocultivation assays were performed. Only EHV-1 was transferred from PBMC to EC, and viral glycoprotein B (gB) was shown to be mainly responsible for this form of cell-to-cell transfer. For addressing the more dynamic aspects of PBMC-EC interaction, infected PBMC were perfused through a flow channel containing EC in the presence of neutralizing antibodies. By simulating capillary blood flow and analyzing the behavior of infected PBMC through live fluorescence imaging and automated cell tracking, we observed that EHV-1 was able to maintain tethering and rolling of infected PBMC on EC more effectively than EHV-4. Deletion of US3 reduced the ability of infected PBMC to tether and roll compared to that of cells infected with parental virus, which resulted in a significant reduction in virus transfer from PBMC to EC. Taking the results together, we conclude that systemic spread and EC infection by EHV-1, but not EHV-4, is caused by its ability to infect and/or reprogram mononuclear cells with respect to their tethering and rolling behavior on EC and consequent virus transfer. IMPORTANCE EHV-1 is widespread throughout the world and causes substantial economic losses through outbreaks of respiratory disease, abortion, and myeloencephalopathy. Despite many years of research, no fully protective vaccines have been developed, and several aspects of viral pathogenesis still need to be uncovered. In the current study, we investigated the molecular mechanisms that facilitate the cell-associated viremia, which is arguably the most important aspect of EHV-1 pathogenesis. The newly discovered functions of gB and pUS3 add new facets to their previously reported roles. Due to the conserved nature of cell-associated viremia among numerous herpesviruses, these results are also very relevant for viruses such as varicella-zoster virus, pseudorabies virus, human cytomegalovirus, and others. In addition, the constructed mutant and recombinant viruses exhibit potent in vitro replication but have significant defects in certain stages of the disease course. These viruses therefore show much promise as candidates for future live vaccines.
Collapse
|
33
|
Hu K, Harris DL, Yamaguchi T, von Andrian UH, Hamrah P. A Dual Role for Corneal Dendritic Cells in Herpes Simplex Keratitis: Local Suppression of Corneal Damage and Promotion of Systemic Viral Dissemination. PLoS One 2015; 10:e0137123. [PMID: 26332302 PMCID: PMC4557979 DOI: 10.1371/journal.pone.0137123] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 08/12/2015] [Indexed: 12/20/2022] Open
Abstract
The cornea is the shield to the foreign world and thus, a primary site for peripheral infections. However, transparency and vision are incompatible with inflammation and scarring that may result from infections. Thus, the cornea is required to perform a delicate balance between fighting infections and preserving vision. To date, little is known about the specific role of antigen-presenting cells in viral keratitis. In this study, utilizing an established murine model of primary acute herpes simplex virus (HSV)-1 keratitis, we demonstrate that primary HSV keratitis results in increased conventional dendritic cells (cDCs) and macrophages within 24 hours after infection. Local depletion of cDCs in CD11c-DTR mice by subconjuntival diphtheria toxin injections, led to increased viral proliferation, and influx of inflammatory cells, resulting in increased scarring and clinical keratitis. In addition, while HSV infection resulted in significant corneal nerve destruction, local depletion of cDCs resulted in a much more severe loss of corneal nerves. Further, local cDC depletion resulted in decreased corneal nerve infection, and subsequently decreased and delayed systemic viral transmission in the trigeminal ganglion and draining lymph node, resulting in decreased mortality of mice. In contrast, sham depletion or depletion of macrophages through local injection of clodronate liposomes had neither a significant impact on the cornea, nor an effect on systemic viral transmission. In conclusion, we demonstrate that corneal cDCs may play a primary role in local corneal defense during viral keratitis and preserve vision, at the cost of inducing systemic viral dissemination, leading to increased mortality.
Collapse
Affiliation(s)
- Kai Hu
- Schepens Eye Research Institute, Massachusetts Eye & Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States of America
- Cornea Service, Massachusetts Eye & Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States of America
- Immune Disease Institute, Program in Cellular and Molecular Medicine at Children’s Hospital Boston, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Deshea L. Harris
- Schepens Eye Research Institute, Massachusetts Eye & Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States of America
- Immune Disease Institute, Program in Cellular and Molecular Medicine at Children’s Hospital Boston, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Takefumi Yamaguchi
- Schepens Eye Research Institute, Massachusetts Eye & Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States of America
- Cornea Service, Massachusetts Eye & Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States of America
- Immune Disease Institute, Program in Cellular and Molecular Medicine at Children’s Hospital Boston, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ulrich H. von Andrian
- Immune Disease Institute, Program in Cellular and Molecular Medicine at Children’s Hospital Boston, Harvard Medical School, Boston, Massachusetts, United States of America
- Division of Immunology, Department of Microbiology & Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Pedram Hamrah
- Schepens Eye Research Institute, Massachusetts Eye & Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States of America
- Cornea Service, Massachusetts Eye & Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States of America
- Immune Disease Institute, Program in Cellular and Molecular Medicine at Children’s Hospital Boston, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
34
|
Grabowski MK, Gray RH, Makumbi F, Kagaayi J, Redd AD, Kigozi G, Reynolds SJ, Nalugoda F, Lutalo T, Wawer MJ, Serwadda D, Quinn TC, Tobian AAR. Use of injectable hormonal contraception and women's risk of herpes simplex virus type 2 acquisition: a prospective study of couples in Rakai, Uganda. LANCET GLOBAL HEALTH 2015; 3:e478-e486. [PMID: 26094162 DOI: 10.1016/s2214-109x(15)00086-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 02/03/2015] [Accepted: 02/11/2015] [Indexed: 01/09/2023]
Abstract
BACKGROUND The injectable hormonal contraceptive depo-medroxyprogesterone acetate (DMPA) has been associated with increased risk of HIV acquisition, but findings are inconsistent. Whether DMPA increases the risk of other sexually transmitted viral infections is unknown. We assessed the association between DMPA use and incident herpes simplex virus type 2 (HSV2) infection in women. METHODS In this prospective study, we enrolled HIV-negative and HSV2-negative women aged 15-49 years whose HIV-negative male partners were concurrently enrolled in a randomised trial of male circumcision in Rakai, Uganda. We excluded women if either they or their male partners HIV seroconverted. The primary outcome was HSV2 seroconversion, assessed annually. The male circumcision trial was registered with ClinicalTrials.gov, number NCT00425984. FINDINGS Between Aug 11, 2003, and July 6, 2006, we enrolled 682 women in this study. We noted HSV2 seroconversions in 70 (10%) women. Incidence was 13·5 per 100 person-years in women consistently using DMPA (nine incident infections per 66·5 person-years), 4·3 per 100 person-years in pregnant women who were not using hormonal contraception (18 incident infections per 423·5 person-years), and 6·6 per 100 person-years in women who were neither pregnant nor using hormonal contraception (35 incident infections per 529·5 person-years). Women consistently using DMPA had an adjusted hazard ratio for HSV2 seroconversion of 2·26 (95% CI 1·09-4·69; p=0·029) compared with women who were neither pregnant nor using hormonal contraception. Of 132 women with HSV2-seropositive partners, seroconversion was 36·4 per 100 person-years in consistent DMPA users (four incident infections per 11 person-years) and 10·7 per 100 person-years in women who were neither pregnant nor using hormonal contraception (11 incident infections per 103 person-years; adjusted hazard ratio 6·23, 95% CI 1·49-26·3; p=0·012). INTERPRETATION Consistent DMPA use might increase risk of HSV2 seroconversion; however, study power was low. These findings should be assessed in larger populations with more frequent follow-up than in this study, and other contraceptive methods should also be assessed. Access to a wide range of highly effective contraceptive methods is needed for women, particularly in sub-Saharan Africa. FUNDING Bill and Melinda Gates Foundation, Doris Duke Charitable Foundation, US National Institutes of Health, and Fogarty International Center.
Collapse
Affiliation(s)
- Mary K Grabowski
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Ronald H Gray
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA; Rakai Health Sciences Program, Entebbe, Uganda
| | | | | | - Andrew D Redd
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, US National Institutes of Health, Bethesda, MD, USA
| | | | - Steven J Reynolds
- Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA; Rakai Health Sciences Program, Entebbe, Uganda; Division of Intramural Research, National Institute of Allergy and Infectious Diseases, US National Institutes of Health, Bethesda, MD, USA
| | | | - Tom Lutalo
- Rakai Health Sciences Program, Entebbe, Uganda
| | - Maria J Wawer
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA; Rakai Health Sciences Program, Entebbe, Uganda
| | - David Serwadda
- Rakai Health Sciences Program, Entebbe, Uganda; School of Public Health, Makerere University, Kampala, Uganda
| | - Thomas C Quinn
- Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA; Division of Intramural Research, National Institute of Allergy and Infectious Diseases, US National Institutes of Health, Bethesda, MD, USA
| | - Aaron A R Tobian
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA; Rakai Health Sciences Program, Entebbe, Uganda.
| |
Collapse
|
35
|
Marsden V, Donaghy H, Bertram KM, Harman AN, Nasr N, Keoshkerian E, Merten S, Lloyd AR, Cunningham AL. Herpes simplex virus type 2-infected dendritic cells produce TNF-α, which enhances CCR5 expression and stimulates HIV production from adjacent infected cells. THE JOURNAL OF IMMUNOLOGY 2015; 194:4438-45. [PMID: 25840914 DOI: 10.4049/jimmunol.1401706] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 03/01/2015] [Indexed: 12/25/2022]
Abstract
Prior HSV-2 infection enhances the acquisition of HIV-1 >3-fold. In genital herpes lesions, the superficial layers of stratified squamous epithelium are disrupted, allowing easier access of HIV-1 to Langerhans cells (LC) in the epidermis and perhaps even dendritic cells (DCs) in the outer dermis, as well as to lesion infiltrating activated T lymphocytes and macrophages. Therefore, we examined the effects of coinfection with HIV-1 and HSV-2 on monocyte-derived DCs (MDDC). With simultaneous coinfection, HSV-2 significantly stimulated HIV-1 DNA production 5-fold compared with HIV-1 infection alone. Because <1% of cells were dually infected, this was a field effect. Virus-stripped supernatants from HSV-2-infected MDDCs were shown to enhance HIV-1 infection, as measured by HIV-1-DNA and p24 Ag in MDDCs. Furthermore these supernatants markedly stimulated CCR5 expression on both MDDCs and LCs. TNF-α was by far the most prominent cytokine in the supernatant and also within HSV-2-infected MDDCs. HSV-2 infection of isolated immature epidermal LCs, but not keratinocytes, also produced TNF-α (and low levels of IFN-β). Neutralizing Ab to TNF-α and its receptor, TNF-R1, on MDDCs markedly inhibited the CCR5-stimulating effect of the supernatant. Therefore, these results suggest that HSV-2 infection of DCs in the skin during primary or recurrent genital herpes may enhance HIV-1 infection of adjacent DCs, thus contributing to acquisition of HIV-1 through herpetic lesions.
Collapse
Affiliation(s)
- Valerie Marsden
- Centre for Virus Research, Westmead Millennium Institute, Westmead, New South Wales, Australia 2145; Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia 2006
| | - Heather Donaghy
- Centre for Virus Research, Westmead Millennium Institute, Westmead, New South Wales, Australia 2145
| | - Kirstie M Bertram
- Centre for Virus Research, Westmead Millennium Institute, Westmead, New South Wales, Australia 2145; Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia 2006
| | - Andrew N Harman
- Centre for Virus Research, Westmead Millennium Institute, Westmead, New South Wales, Australia 2145
| | - Najla Nasr
- Centre for Virus Research, Westmead Millennium Institute, Westmead, New South Wales, Australia 2145
| | - Elizabeth Keoshkerian
- Inflammation and Infection Research Centre, Faculty of Medicine, The University of New South Wales, Kensington, New South Wales, Australia 2052; and
| | - Steven Merten
- Pure Aesthetics Plastic Surgery, Sydney, New South Wales, Australia 2000
| | - Andrew R Lloyd
- Inflammation and Infection Research Centre, Faculty of Medicine, The University of New South Wales, Kensington, New South Wales, Australia 2052; and
| | - Anthony L Cunningham
- Centre for Virus Research, Westmead Millennium Institute, Westmead, New South Wales, Australia 2145; Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia 2006;
| |
Collapse
|
36
|
Buela KAG, Hendricks RL. Cornea-infiltrating and lymph node dendritic cells contribute to CD4+ T cell expansion after herpes simplex virus-1 ocular infection. THE JOURNAL OF IMMUNOLOGY 2014; 194:379-87. [PMID: 25422507 DOI: 10.4049/jimmunol.1402326] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
After HSV type 1 corneal infection, CD4(+) T cells are expanded in the draining lymph nodes (DLNs) and restimulated in the infected cornea to regulate the destructive inflammatory disease herpes stromal keratitis (HSK). The contribution of cornea resident, cornea-infiltrating, and DLN resident dendritic cells (DC) to CD4(+) T cell expansion in DLNs and restimulation in corneas is unknown. Cornea resident and cornea-infiltrating DCs were selectively depleted by timed local (subconjunctival) injection of diphtheria toxin (DT) into mice that express high-affinity DT receptors from the CD11c promoter. Corneal and DLN DCs were depleted by systemic (i.p.) DT treatment. We found that: 1) DCs that were resident in the cornea and DLNs at the time of infection or that migrate into the tissues during the first 24 h postinfection were not required for CD4(+) T cell expansion; 2) DCs that infiltrated the cornea >24 h postinfection were responsible for most of the CD4(+) T cell expansion measured in the DLNs at 3 and 7 d postinfection (dpi); 3) non-cornea-derived DCs that infiltrate the DLNs >24 h postinfection made a modest contribution to CD4(+) T cell expansion at 3 dpi but did not contribute at 7 dpi; and 4) surprisingly, HSK development between 7 and 21 dpi did not require corneal DCs. DC-independent HSK development appears to reflect close interactions of CD4(+) T cells with MHC class II(+) corneal epithelial cells and macrophages in infected DC-depleted corneas.
Collapse
Affiliation(s)
- Kristine-Ann G Buela
- Graduate Program in Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213; Eye and Ear Institute, Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Robert L Hendricks
- Eye and Ear Institute, Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213; and Department of Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| |
Collapse
|
37
|
Ariza ME, Glaser R, Williams MV. Human herpesviruses-encoded dUTPases: a family of proteins that modulate dendritic cell function and innate immunity. Front Microbiol 2014; 5:504. [PMID: 25309527 PMCID: PMC4176148 DOI: 10.3389/fmicb.2014.00504] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 09/08/2014] [Indexed: 12/11/2022] Open
Abstract
We have previously shown that Epstein-Barr virus (EBV)-encoded dUTPase can modulate innate immune responses through the activation of TLR2 and NF-κB signaling. However, whether this novel immune function of the dUTPase is specific for EBV or a common property of the Herpesviridae family is not known. In this study, we demonstrate that the purified viral dUTPases encoded by herpes simplex virus type 2 (HSV-2), human herpesvirus-6A (HHV-6A), human herpesvirus-8 (HHV-8) and varicella-zoster virus (VZV) differentially activate NF-κB through ligation of TLR2/TLR1 heterodimers. Furthermore, activation of NF-κB by the viral dUTPases was inhibited by anti-TLR2 blocking antibodies (Abs) and the over-expression of dominant-negative constructs of TLR2, lacking the TIR domain, and MyD88 in human embryonic kidney 293 cells expressing TLR2/TLR1. In addition, treatment of human dendritic cells and PBMCs with the herpesviruses-encoded dUTPases from HSV-2, HHV-6A, HHV-8, and VZV resulted in the secretion of the inflammatory cytokines IL-1β, IL-6, IL-8, IL-12, TNF-α, IL-10, and IFN-γ. Interestingly, blocking experiments revealed that the anti-TLR2 Ab significantly reduced the secretion of cytokines by the various herpesviruses-encoded dUTPases (p < 0.05). To our knowledge, this is the first report demonstrating that a non-structural protein encoded by herpesviruses HHV-6A, HHV-8, VZV and to a lesser extent HSV-2 is a pathogen-associated molecular pattern. Our results reveal a novel function of the virus-encoded dUTPases, which may be important to the pathophysiology of diseases caused by these viruses. More importantly, this study demonstrates that the immunomodulatory functions of dUTPases are a common property of the Herpesviridae family and thus, the dUTPase could be a potential target for the development of novel therapeutic agents against infections caused by these herpesviruses.
Collapse
Affiliation(s)
- Maria Eugenia Ariza
- Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University College of Medicine Columbus, OH, USA
| | - Ronald Glaser
- Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University College of Medicine Columbus, OH, USA ; Institute for Behavioral Medicine Research, The Ohio State University College of Medicine Columbus, OH, USA
| | - Marshall V Williams
- Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University College of Medicine Columbus, OH, USA
| |
Collapse
|
38
|
Soboll Hussey G, Ashton LV, Quintana AM, Van de Walle GR, Osterrieder N, Lunn DP. Equine herpesvirus type 1 pUL56 modulates innate responses of airway epithelial cells. Virology 2014; 464-465:76-86. [PMID: 25046270 DOI: 10.1016/j.virol.2014.05.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 02/24/2014] [Accepted: 05/12/2014] [Indexed: 12/22/2022]
Abstract
Recently, the product of equine herpesvirus type 1 (EHV-1) ORF1, a homolog to HSV-1 pUL56, was shown to modulate MHC-I expression and innate immunity. Here, we investigated modulation of respiratory epithelial immunity by EHV-1 pUL56 and compared responses to those of PBMCs, which are important target cells that allow cell-associated EHV-1 viremia. The salient observations are as follows: (i) EHV-1 significantly down-modulated MHC-I and MHC-II expression in equine respiratory epithelial cells (ERECs). MHC-I expression remained unaffected in PBMCs and MHC-II expression was increased. (ii) Infection with an EHV-1 ORF1 deletion mutant partially restored MHC-I and MHC-II expression and altered IFN-alpha and IL-10 mRNA expression. (iii) Deletion of EHV-1 ORF1 also significantly increased chemokine expression and chemotaxis of monocytes and neutrophils in ERECs. Collectively, these results suggest a role for EHV-1 pUL56 in modulation of antigen presentation, cytokine expression and chemotaxis at the respiratory epithelium, but not in PBMC.
Collapse
Affiliation(s)
- Gisela Soboll Hussey
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, East Lansing, MI, USA.
| | - Laura V Ashton
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Ayshea M Quintana
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Gerlinde R Van de Walle
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | | | - David P Lunn
- North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
39
|
Qeska V, Barthel Y, Herder V, Stein VM, Tipold A, Urhausen C, Günzel-Apel AR, Rohn K, Baumgärtner W, Beineke A. Canine distemper virus infection leads to an inhibitory phenotype of monocyte-derived dendritic cells in vitro with reduced expression of co-stimulatory molecules and increased interleukin-10 transcription. PLoS One 2014; 9:e96121. [PMID: 24769532 PMCID: PMC4000198 DOI: 10.1371/journal.pone.0096121] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 04/02/2014] [Indexed: 12/27/2022] Open
Abstract
Canine distemper virus (CDV) exhibits a profound lymphotropism that causes immunosuppression and increased susceptibility of affected dogs to opportunistic infections. Similar to human measles virus, CDV is supposed to inhibit terminal differentiation of dendritic cells (DCs), responsible for disturbed repopulation of lymphoid tissues and diminished antigen presenting function in dogs. In order to testify the hypothesis that CDV-infection leads to an impairment of professional antigen presenting cells, canine DCs have been generated from peripheral blood monocytes in vitro and infected with CDV. Virus infection was confirmed and quantified by transmission electron microscopy, CDV-specific immunofluorescence, and virus titration. Flow cytometric analyses revealed a significant down-regulation of the major histocompatibility complex class II and co-stimulatory molecules CD80 and CD86 in CDV-infected DCs, indicative of disturbed antigen presenting capacity. Molecular analyses revealed an increased expression of the immune inhibitory cytokine interleukin-10 in DCs following infection. Results of the present study demonstrate that CDV causes phenotypical changes and altered cytokine expression of DCs, which represent potential mechanisms to evade host immune responses and might contribute to immune dysfunction and virus persistence in canine distemper.
Collapse
Affiliation(s)
- Visar Qeska
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| | - Yvonne Barthel
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Vanessa Herder
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| | - Veronika M. Stein
- Center for Systems Neuroscience, Hannover, Germany
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Andrea Tipold
- Center for Systems Neuroscience, Hannover, Germany
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Carola Urhausen
- Unit for Reproductive Medicine, Small Animal Clinic, University of Veterinary Medicine Hannover, Germany
| | - Anne-Rose Günzel-Apel
- Unit for Reproductive Medicine, Small Animal Clinic, University of Veterinary Medicine Hannover, Germany
| | - Karl Rohn
- Department of Biometry, Epidemiology and Information Processing, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| | - Andreas Beineke
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
- * E-mail:
| |
Collapse
|
40
|
Abstract
CD4(+) T cells are key cells of the adaptive immune system that use T cell antigen receptors to recognize peptides that are generated in endosomes or phagosomes and displayed on the host cell surface bound to major histocompatibility complex molecules. These T cells participate in immune responses that protect hosts from microbes such as Mycobacterium tuberculosis, Cryptococcus neoformans, Leishmania major, and Salmonella enterica, which have evolved to live in the phagosomes of macrophages and dendritic cells. Here, we review studies indicating that CD4(+) T cells control phagosomal infections asymptomatically in most individuals by secreting cytokines that activate the microbicidal activities of infected phagocytes but in a way that inhibits the pathogen but does not eliminate it. Indeed, we make the case that localized, controlled, persistent infection is necessary to maintain large numbers of CD4(+) effector T cells in a state of activation needed to eradicate systemic and more pathogenic forms of the infection. Finally, we posit that current vaccines for phagosomal infections fail because they do not produce this "periodic reminder" form of CD4(+) T cell-mediated immune control.
Collapse
|
41
|
Mott KR, Allen SJ, Zandian M, Akbari O, Hamrah P, Maazi H, Wechsler SL, Sharpe AH, Freeman GJ, Ghiasi H. Inclusion of CD80 in HSV targets the recombinant virus to PD-L1 on DCs and allows productive infection and robust immune responses. PLoS One 2014; 9:e87617. [PMID: 24475315 PMCID: PMC3903765 DOI: 10.1371/journal.pone.0087617] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 12/20/2013] [Indexed: 12/31/2022] Open
Abstract
CD80 plays a critical role in stimulation of T cells and subsequent control of infection. To investigate the effect of CD80 on HSV-1 infection, we constructed a recombinant HSV-1 virus that expresses two copies of the CD80 gene in place of the latency associated transcript (LAT). This mutant virus (HSV-CD80) expressed high levels of CD80 and had similar virus replication kinetics as control viruses in rabbit skin cells. In contrast to parental virus, this CD80 expressing recombinant virus replicated efficiently in immature dendritic cells (DCs). Additionally, the susceptibility of immature DCs to HSV-CD80 infection was mediated by CD80 binding to PD-L1 on DCs. This interaction also contributed to a significant increase in T cell activation. Taken together, these results suggest that inclusion of CD80 as a vaccine adjuvant may promote increased vaccine efficacy by enhancing the immune response directly and also indirectly by targeting to DC.
Collapse
Affiliation(s)
- Kevin R. Mott
- Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Burns & Allen Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Sariah J. Allen
- Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Burns & Allen Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Mandana Zandian
- Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Burns & Allen Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Omid Akbari
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Pedram Hamrah
- Massachusetts Eye & Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Hadi Maazi
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Steven L. Wechsler
- Gavin Herbert Eye Institute, the Department of Ophthalmology, the Department of Microbiology and Molecular Genetics, and the Center for Virus Research, University of California Irvine, School of Medicine, Irvine, California, United States of America
| | - Arlene H. Sharpe
- Department of Pathology, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts, United States of America
| | - Gordon J. Freeman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Homayon Ghiasi
- Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Burns & Allen Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
42
|
Harimoto H, Shimizu M, Nakagawa Y, Nakatsuka K, Wakabayashi A, Sakamoto C, Takahashi H. Inactivation of tumor-specific CD8⁺ CTLs by tumor-infiltrating tolerogenic dendritic cells. Immunol Cell Biol 2013; 91:545-55. [PMID: 24018532 PMCID: PMC3806489 DOI: 10.1038/icb.2013.38] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 07/03/2013] [Accepted: 07/07/2013] [Indexed: 02/06/2023]
Abstract
Cancer immunosurveillance failure is largely attributed to the insufficient activation of tumor-specific class I major histocompatibility complex (MHC) molecule (MHC-I)-restricted CD8+ cytotoxic T lymphocytes (CTLs). DEC-205+ dendritic cells (DCs), having the ability to cross-present, can present captured tumor antigens on MHC-I alongside costimulatory molecules, inducing the priming and activation of tumor-specific CD8+ CTLs. It has been suggested that reduced levels of costimulatory molecules on DCs may be a cause of impaired CTL induction and that some tumors may induce the downregulation of costimulatory molecules on tolerogenic DCs. To examine such possibilities, we established two distinct types of murine hepatoma cell lines, named Hepa1-6-1 and Hepa1-6-2 (derived from Hepa1-6 cells), and confirmed that they display similar antigenicities, as well as identical surface expression of MHC-I. We found that Hepa1-6-1 had the ability to grow continuously after subcutaneous implantation into syngeneic C57BL/6 mice and did not prime CD8+ CTLs. In contrast, Hepa1-6-2 cells, which display reduced levels of adhesion molecules, such as Intercellular Adhesion Molecule 1 (ICAM-1), failed to grow in vivo and efficiently primed CTLs. Moreover, Hepa1-6-1-derived factors, such as transforming growth factor (TGF)-β1, vascular endothelial growth factor (VEGF) and α-fetoprotein (AFP), converted CD11chigh MHC-IIhigh DEC-205+ DC subsets into tolerogenic cells, displaying downregulated costimulatory molecules and having impaired cross-presenting capacities. These immunosuppressive tolerogenic DCs appeared to inhibit the induction of tumor-specific CD8+ CTLs and suppress their cytotoxic functions within the tumor. Together, the findings presented here provide a new method of cancer immunotherapy using the selective suppression, depletion or alteration of immunosuppressive tolerogenic DCs within tumors.
Collapse
Affiliation(s)
- Hirotomo Harimoto
- 1] Department of Microbiology and Immunology, Nippon Medical School, Tokyo, Japan [2] Third Department of Internal Medicine, Nippon Medical School, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
43
|
Stefanidou M, Ramos I, Mas Casullo V, Trépanier JB, Rosenbaum S, Fernandez-Sesma A, Herold BC. Herpes simplex virus 2 (HSV-2) prevents dendritic cell maturation, induces apoptosis, and triggers release of proinflammatory cytokines: potential links to HSV-HIV synergy. J Virol 2013; 87:1443-53. [PMID: 23152529 PMCID: PMC3554174 DOI: 10.1128/jvi.01302-12] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 11/02/2012] [Indexed: 12/21/2022] Open
Abstract
Herpes simplex virus 2 (HSV-2) may cause frequent recurrences, highlighting its ability to evade host defense. This study tested the hypothesis that HSV-2 interferes with dendritic cell (DC) function as an escape mechanism, which may contribute to enhanced HIV replication in coinfected populations. Immature monocyte-derived human DCs were exposed to live or UV-inactivated HSV-2 or lipopolysaccharide. Little or no increase in the maturation marker CD83 was observed in response to HSV-2 and HSV-2 exposed DCs were impaired in their ability to present antigen (influenza) to T cells. Exposure to UV-inactivated virus stimulated a modest, but significant increase in CD83, suggesting that viral gene expression contributes to the block in DC maturation. The functional impairment of HSV-2-exposed DCs could be partially attributed to the induction of apoptosis. Live and inactivated HSV-2 triggered an increase in the number of early and late apoptotic cells in both the infected and bystander cell populations; apoptosis was associated with a decrease in cellular FLICE-inhibitory protein (c-FLIP). Paradoxically, HSV-2 induced Akt phosphorylation, which typically promotes DC maturation and survival. Despite these aberrant responses, live and inactivated HSV-2 induced the release of cytokines into culture supernatants, which were sufficient to activate HIV-1 replication in latently infected U1 cells. Together, these findings suggest that in the presence of overt or subclinical HSV-2, the function of mucosal DCs would be impaired. These responses may allow HSV to escape immune surveillance but may also promote HIV infection and contribute to the epidemiological link between HIV and HSV.
Collapse
Affiliation(s)
- Martha Stefanidou
- Departments of Pediatrics and Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA.
| | | | | | | | | | | | | |
Collapse
|
44
|
Nopora K, Bernhard CA, Ried C, Castello AA, Murphy KM, Marconi P, Koszinowski U, Brocker T. MHC class I cross-presentation by dendritic cells counteracts viral immune evasion. Front Immunol 2012. [PMID: 23189079 PMCID: PMC3505839 DOI: 10.3389/fimmu.2012.00348] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
DCs very potently activate CD8(+) T cells specific for viral peptides bound to MHC class I molecules. However, many viruses have evolved immune evasion mechanisms, which inactivate infected DCs and might reduce priming of T cells. Then MHC class I cross-presentation of exogenous viral Ag by non-infected DCs may become crucial to assure CD8(+) T cell responses. Although many vital functions of infected DCs are inhibited in vitro by many different viruses, the contributions of cross-presentation to T cell immunity when confronted with viral immune inactivation in vivo has not been demonstrated up to now, and remains controversial. Here we show that priming of Herpes Simplex Virus (HSV)-, but not murine cytomegalovirus (mCMV)-specific CD8(+) T cells was severely reduced in mice with a DC-specific cross-presentation deficiency. In contrast, while CD8(+) T cell responses to mutant HSV, which lacks crucial inhibitory genes, also depended on CD8α(+) DCs, they were independent of cross-presentation. Therefore HSV-specific CTL-responses entirely depend on the CD8α(+) DC subset, which present via direct or cross-presentation mechanisms depending on the immune evasion equipment of virus. Our data establish the contribution of cross-presentation to counteract viral immune evasion mechanisms in some, but not all viruses.
Collapse
Affiliation(s)
- Katrin Nopora
- Institute for Immunology, Ludwig-Maximilians-University Munich Munich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Regulating cytokine function enhances safety and activity of genetic cancer therapies. Mol Ther 2012; 21:167-74. [PMID: 23281444 DOI: 10.1038/mt.2012.225] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Genetic therapies, including transfected immune cells and viral vectors, continue to show clinical responses as systemically deliverable and targeted therapeutics, with the first such approaches having been approved for cancer treatment. The majority of these employ cytokine transgenes. However, expression of cytokines early after systemic delivery can result in increased toxicity and nonspecific induction of the immune response. In addition, premature immune-mediated clearance of the therapy may result, especially for viral-based approaches. Here, it was initially verified that cytokine (interleukin (IL)2) or chemokine (CCL5) expression from a systemically delivered oncolytic virus resulted in reduced oncolytic activity and suboptimal immune activation, while IL2 also resulted in increased toxicity. However, all these limitations could be overcome through incorporation of exogenous regulation of cytokine or chemokine transgene function through fusion of a small and externally controllable destabilizing domain to the protein of interest. Regulation allowed an initial phase without cytokine function, permitting enhanced delivery and oncolytic activity before activation of cytokine function and a subsequent phase of enhanced and tumor-targeted immunotherapeutic activity. As a result of this exogenous regulation of cytokine function, both oncolytic and immune-mediated mechanisms of action were optimized, greatly enhancing therapeutic activity, while toxicity was significantly reduced.
Collapse
|
46
|
Abstract
Herpes simplex virus-1 (HSV-1) infects the majority of the world's population. These infections are often asymptomatic, but ocular HSV-1 infections cause multiple pathologies with perhaps the most destructive being herpes stromal keratitis (HSK). HSK lesions, which are immunoinflammatory in nature, can recur throughout life and often cause progressive corneal scaring resulting in visual impairment. Current treatment involves broad local immunosuppression with topical steroids along with antiviral coverage. Unfortunately, the immunopathologic mechanisms defined in animal models of HSK have not yet translated into improved therapy. Herein, we review the clinical epidemiology and pathology of the disease and summarize the large amount of basic research regarding the immunopathology of HSK. We examine the role of the innate and adaptive immune system in the clearance of virus and the destruction of the normal corneal architecture that is typical of HSK. Our goal is to define current knowledge of the pathogenic mechanisms and recurrent nature of HSK and identify areas that require further study.
Collapse
|
47
|
Wiesel M, Oxenius A. From crucial to negligible: functional CD8⁺ T-cell responses and their dependence on CD4⁺ T-cell help. Eur J Immunol 2012; 42:1080-8. [PMID: 22539281 DOI: 10.1002/eji.201142205] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
CD8(+) T cells play an important role in controlling pathogenic infections and are therefore key players in the immune response. It has been shown that among other factors CD4(+) T cells can shape the magnitude as well as the quality of primary and/or secondary CD8(+) T-cell responses. However, due to the complexity and the differences among diverse immunization or infection models, the overall requirement, the time points, as well as the specific mechanism(s) of CD4(+) T-cell help may differ substantially. Here, we summarize current knowledge about the differential requirement of CD4(+) T-cell help in promoting primary CD8(+) T-cell responses as well as establishing functional memory CD8(+) T cells in various experimental settings.
Collapse
Affiliation(s)
- Melanie Wiesel
- Institute for Microbiology, ETH Zürich, Zürich, Switzerland
| | | |
Collapse
|
48
|
Kinchington PR, Leger AJS, Guedon JMG, Hendricks RL. Herpes simplex virus and varicella zoster virus, the house guests who never leave. HERPESVIRIDAE 2012; 3:5. [PMID: 22691604 PMCID: PMC3541251 DOI: 10.1186/2042-4280-3-5] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 05/12/2012] [Indexed: 12/16/2022]
Abstract
Human alphaherpesviruses including herpes simplex viruses (HSV-1, HSV-2) and varicella zoster virus (VZV) establish persistent latent infection in sensory neurons for the life of the host. All three viruses have the potential to reactivate causing recurrent disease. Regardless of the homology between the different virus strains, the three viruses are characterized by varying pathologies. This review will highlight the differences in infection pattern, immune response, and pathogenesis associated with HSV-1 and VZV.
Collapse
Affiliation(s)
- Paul R Kinchington
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | | | | | | |
Collapse
|
49
|
Chentoufi AA, Dervillez X, Dasgupta G, Nguyen C, Kabbara KW, Jiang X, Nesburn AB, Wechsler SL, Benmohamed L. The herpes simplex virus type 1 latency-associated transcript inhibits phenotypic and functional maturation of dendritic cells. Viral Immunol 2012; 25:204-15. [PMID: 22512280 DOI: 10.1089/vim.2011.0091] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
We recently found that the herpes simplex virus-1 (HSV-1) latency-associated transcript (LAT) results in exhaustion of virus-specific CD8⁺ T cells in latently-infected trigeminal ganglia (TG). In this study we sought to determine if this impairment may involve LAT directly and/or indirectly interfering with DC maturation. We found that a small number of HSV-1 antigen-positive DCs are present in the TG of latently-infected CD11c/eYFP mice; however, this does not imply that these DCs are acutely or latently infected. Some CD8⁺ T cells are adjacent to DCs, suggesting possible interactions. It has previously been shown that wild-type HSV-1 interferes with DC maturation. Here we show for the first time that this is associated with LAT expression, since compared to LAT⁻ virus: (1) LAT⁺ virus interfered with expression of MHC class I and the co-stimulatory molecules CD80 and CD86 on the surface of DCs; (2) LAT⁺ virus impaired DC production of the proinflammatory cytokines IL-6, IL-12, and TNF-α; and (3) DCs infected in vitro with LAT⁺ virus had significantly reduced the ability to stimulate HSV-specific CD8⁺ T cells. While a similar number of DCs was found in LAT⁺ and LAT⁻ latently-infected TG of CD11c/eYFP transgenic mice, more HSV-1 Ag-positive DCs and more exhausted CD8 T cells were seen with LAT⁺ virus. Consistent with these findings, HSV-specific cytotoxic CD8⁺ T cells in the TG of mice latently-infected with LAT⁺ virus produced less IFN-γ and TNF-α than those from TG of LAT⁻-infected mice. Together, these results suggest a novel immune-evasion mechanism whereby the HSV-1 LAT increases the number of HSV-1 Ag-positive DCs in latently-infected TG, and interferes with DC phenotypic and functional maturation. The effect of LAT on TG-resident DCs may contribute to the reduced function of HSV-specific CD8⁺ T cells in the TG of mice latently infected with LAT⁺ virus.
Collapse
Affiliation(s)
- Aziz Alami Chentoufi
- Laboratory of Cellular and Molecular Immunology, School of Medicine, University of California-Irvine, Irvine, California, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Kim M, Osborne NR, Zeng W, Donaghy H, McKinnon K, Jackson DC, Cunningham AL. Herpes Simplex Virus Antigens Directly Activate NK Cells via TLR2, Thus Facilitating Their Presentation to CD4 T Lymphocytes. THE JOURNAL OF IMMUNOLOGY 2012; 188:4158-70. [DOI: 10.4049/jimmunol.1103450] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|