1
|
Gonzalez J, Stoll K, DeSmet M, Androphy EJ. A conserved cysteine in the DNA-binding domain of MmuPV1 E2 is required for replication in vivo. J Virol 2024:e0142324. [PMID: 39665560 DOI: 10.1128/jvi.01423-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 11/22/2024] [Indexed: 12/13/2024] Open
Abstract
The papillomavirus (PV) E2 protein is highly conserved, consisting of an N-terminal transactivation domain linked to a C-terminal DNA binding and dimerization domain (DBD) by a flexible hinge region. The E2 DBD exhibits a helix-turn-helix structure that dimerizes into a beta barrel prior to binding DNA; the first helix, α1, is responsible for recognition of the palindromic E2 binding site. The DNA recognition helix consists of a tract of basic amino acids with a highly conserved central cysteine residue. Previous mutational analysis studies on this conserved cysteine have found that it is not required for viral replication or DNA binding. To investigate the function of this conserved cysteine in vitro and in vivo, we generated point mutations in MmuPV1 E2 at cysteine 307. We report here that this cysteine in the DNA recognition helix is required for transient viral replication and transactivation of proximal promoters, but C307 point mutants are still capable of enhancing the activation of distant upstream promoters in vitro. MmuPV1 genomes with the C307 mutation failed to produce warts when injected into mice, suggesting that the DNA recognition cysteine is required for viral replication in vivo. IMPORTANCE Papillomaviruses are the etiological agents of cancers of the oropharynx and anogenital tract. Understanding the mechanisms underlying PV pathogenesis is complicated by the strict species tropism displayed by the virus. The research presented here is significant because it links in vitro and in vivo models investigating the role of a conserved cysteine in the MmuPV1 E2 protein. This work elucidates the molecular mechanisms that regulate PV transcription and DNA replication and how these contribute to disease progression.
Collapse
Affiliation(s)
- Jessica Gonzalez
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Kennedy Stoll
- Indiana University School of Medicine, Terre Haute, Indiana, USA
| | - Marsha DeSmet
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Elliot J Androphy
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
2
|
Kirk A, Graham SV. The human papillomavirus late life cycle and links to keratinocyte differentiation. J Med Virol 2024; 96:e29461. [PMID: 38345171 DOI: 10.1002/jmv.29461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/21/2023] [Accepted: 01/25/2024] [Indexed: 02/15/2024]
Abstract
Regulation of human papillomavirus (HPV) gene expression is tightly linked to differentiation of the keratinocytes the virus infects. HPV late gene expression is confined to the cells in the upper layers of the epithelium where the virus capsid proteins are synthesized. As these proteins are highly immunogenic, and the upper epithelium is an immune-privileged site, this spatial restriction aids immune evasion. Many decades of work have contributed to the current understanding of how this restriction occurs at a molecular level. This review will examine what is known about late gene expression in HPV-infected lesions and will dissect the intricacies of late gene regulation. Future directions for novel antiviral approaches will be highlighted.
Collapse
Affiliation(s)
- Anna Kirk
- Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Sheila V Graham
- Centre for Virus Research, University of Glasgow, Glasgow, UK
| |
Collapse
|
3
|
Seaman WT, Saladyanant T, Madden V, Webster-Cyriaque J. Differentiated Oral Epithelial Cells Support the HPV Life Cycle. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.08.531611. [PMID: 36945381 PMCID: PMC10028893 DOI: 10.1101/2023.03.08.531611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
Abstract
Human Papillomavirus (HPV) associated oral disease continues to increase, both in the context of immune competence and of immune suppression. There are few models of oral HPV infection and current models are laborious. We hypothesized that differentiated oral epithelial cells could support the HPV life cycle. Clinical HPV16 cloned episomes were introduced into differentiated oral epithelial cells (OKF6tert1). Viral and cellular gene expression was assessed in the presence or absence of sodium butyrate, a differentiating agent that moved the cells to full terminal differentiation. Detection of keratin 10, cross-linked involucrin, and loricrin in the presence and absence of sodium butyrate confirmed terminal differentiation. Increasing sodium butyrate concentrations in the absence of HPV, were associated with decreased suprabasal markers and increased terminal differentiation markers. However, in the presence of HPV and of increasing sodium butyrate concentrations, both mitotic and suprabasal markers were increased and the terminal differentiation marker, loricrin, decreased. In this unique differentiated state, early and late viral gene products were detected including spliced mRNAs for E6*, E1^E4, and L1. E7 and L1 proteins were detected. The ratio of late (E1^E4) to early (E6/E7) transcripts in HPV16+ OKF6tert1 cells was distinct compared to HPV16+ C33a cells. Consistent with permissive HPV replication, DNA damage responses (phospho-chk2, gamma-H2AX), HPV E2-dependent LCR transactivation, and DNase-resistant particles were detected and visualized by transmission electron microscopy. In sum, monolayers of differentiated immortalized oral epithelial cells supported the full HPV life cycle. HPV may optimize the differentiation state of oral epithelial cells to facilitate its replication.
Collapse
|
4
|
Castro-Oropeza R, Piña-Sánchez P. Epigenetic and Transcriptomic Regulation Landscape in HPV+ Cancers: Biological and Clinical Implications. Front Genet 2022; 13:886613. [PMID: 35774512 PMCID: PMC9237502 DOI: 10.3389/fgene.2022.886613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/24/2022] [Indexed: 11/13/2022] Open
Abstract
Human Papillomavirus (HPV) is an oncogenic virus that causes the highest number of viral-associated cancer cases and deaths worldwide, with more than 690,000 new cases per year and 342,000 deaths only for cervical cancer (CC). Although the incidence and mortality rates for CC are declining in countries where screening and vaccination programs have been implemented, other types of cancer in which HPV is involved, such as oropharyngeal cancer, are increasing, particularly in men. Mutational and transcriptional profiles of various HPV-associated neoplasms have been described, and accumulated evidence has shown the oncogenic capacity of E6, E7, and E5 genes of high-risk HPV. Interestingly, transcriptomic analysis has revealed that although a vast majority of the human genome is transcribed into RNAs, only 2% of transcripts are translated into proteins. The remaining transcripts lacking protein-coding potential are called non-coding RNAs. In addition to the transfer and ribosomal RNAs, there are regulatory non-coding RNAs classified according to size and structure in long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), and small RNAs; such as microRNAs (miRNAs), piwi-associated RNAs (piRNAs), small nucleolar RNAs (snoRNAs) and endogenous short-interfering RNAs. Recent evidence has shown that lncRNAs, miRNAs, and circRNAs are aberrantly expressed under pathological conditions such as cancer. In addition, those transcripts are dysregulated in HPV-related neoplasms, and their expression correlates with tumor progression, metastasis, poor prognosis, and recurrence. Nuclear lncRNAs are epigenetic regulators involved in controlling gene expression at the transcriptional level through chromatin modification and remodeling. Moreover, disruption of the expression profiles of those lncRNAs affects multiple biological processes such as cell proliferation, apoptosis, and migration. This review highlights the epigenetic alterations induced by HPV, from infection to neoplastic transformation. We condense the epigenetic role of non-coding RNA alterations and their potential as biomarkers in transformation's early stages and clinical applications. We also summarize the molecular mechanisms of action of nuclear lncRNAs to understand better their role in the epigenetic control of gene expression and how they can drive the malignant phenotype of HPV-related neoplasia. Finally, we review several chemical and epigenetic therapy options to prevent and treat HPV-associated neoplasms.
Collapse
Affiliation(s)
| | - Patricia Piña-Sánchez
- Molecular Oncology Laboratory, Oncology Research Unit, Oncology Hospital, IMSS National Medical Center, Mexico City, Mexico
| |
Collapse
|
5
|
Ferguson J, Campos-León K, Pentland I, Stockton JD, Günther T, Beggs AD, Grundhoff A, Roberts S, Noyvert B, Parish JL. The chromatin insulator CTCF regulates HPV18 transcript splicing and differentiation-dependent late gene expression. PLoS Pathog 2021; 17:e1010032. [PMID: 34735550 PMCID: PMC8594839 DOI: 10.1371/journal.ppat.1010032] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 11/16/2021] [Accepted: 10/13/2021] [Indexed: 11/18/2022] Open
Abstract
The ubiquitous host protein, CCCTC-binding factor (CTCF), is an essential regulator of cellular transcription and functions to maintain epigenetic boundaries, stabilise chromatin loops and regulate splicing of alternative exons. We have previously demonstrated that CTCF binds to the E2 open reading frame (ORF) of human papillomavirus (HPV) 18 and functions to repress viral oncogene expression in undifferentiated keratinocytes by co-ordinating an epigenetically repressed chromatin loop within HPV episomes. Keratinocyte differentiation disrupts CTCF-dependent chromatin looping of HPV18 episomes promoting induction of enhanced viral oncogene expression. To further characterise CTCF function in HPV transcription control we utilised direct, long-read Nanopore RNA-sequencing which provides information on the structure and abundance of full-length transcripts. Nanopore analysis of primary human keratinocytes containing HPV18 episomes before and after synchronous differentiation allowed quantification of viral transcript species, including the identification of low abundance novel transcripts. Comparison of transcripts produced in wild type HPV18 genome-containing cells to those identified in CTCF-binding deficient genome-containing cells identifies CTCF as a key regulator of differentiation-dependent late promoter activation, required for efficient E1^E4 and L1 protein expression. Furthermore, our data show that CTCF binding at the E2 ORF promotes usage of the downstream weak splice donor (SD) sites SD3165 and SD3284, to the dominant E4 splice acceptor site at nucleotide 3434. These findings demonstrate that in the HPV life cycle both early and late virus transcription programmes are facilitated by recruitment of CTCF to the E2 ORF. Oncogenic human papillomavirus (HPV) infection is the cause of a subset of epithelial cancers of the uterine cervix, other anogenital areas and the oropharynx. HPV infection is established in the basal cells of epithelia where a restricted programme of viral gene expression is required for replication and maintenance of the viral episome. Completion of the HPV life cycle is dependent on the maturation (differentiation) of infected cells which induces enhanced viral gene expression and induction of capsid production. We previously reported that the host cell transcriptional regulator, CTCF, is hijacked by HPV to control viral gene expression. In this study, we use long-read mRNA sequencing to quantitatively map the variety and abundance of HPV transcripts produced in early and late stages of the HPV life cycle and to dissect the function of CTCF in controlling HPV gene expression and transcript processing.
Collapse
Affiliation(s)
- Jack Ferguson
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, West Midlands, United Kingdom
| | - Karen Campos-León
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, West Midlands, United Kingdom
| | - Ieisha Pentland
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, West Midlands, United Kingdom
| | - Joanne D. Stockton
- Genomics Birmingham, University of Birmingham, Birmingham, West Midlands, United Kingdom
| | - Thomas Günther
- Heinrich-Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Andrew D. Beggs
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, West Midlands, United Kingdom
- Genomics Birmingham, University of Birmingham, Birmingham, West Midlands, United Kingdom
| | - Adam Grundhoff
- Heinrich-Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Sally Roberts
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, West Midlands, United Kingdom
| | - Boris Noyvert
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, West Midlands, United Kingdom
- CRUK Birmingham Centre and Centre for Computational Biology, University of Birmingham, Birmingham, West Midlands, United Kingdom
| | - Joanna L. Parish
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, West Midlands, United Kingdom
- * E-mail:
| |
Collapse
|
6
|
Groves IJ, Drane ELA, Michalski M, Monahan JM, Scarpini CG, Smith SP, Bussotti G, Várnai C, Schoenfelder S, Fraser P, Enright AJ, Coleman N. Short- and long-range cis interactions between integrated HPV genomes and cellular chromatin dysregulate host gene expression in early cervical carcinogenesis. PLoS Pathog 2021; 17:e1009875. [PMID: 34432858 PMCID: PMC8439666 DOI: 10.1371/journal.ppat.1009875] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 09/14/2021] [Accepted: 08/07/2021] [Indexed: 12/26/2022] Open
Abstract
Development of cervical cancer is directly associated with integration of human papillomavirus (HPV) genomes into host chromosomes and subsequent modulation of HPV oncogene expression, which correlates with multi-layered epigenetic changes at the integrated HPV genomes. However, the process of integration itself and dysregulation of host gene expression at sites of integration in our model of HPV16 integrant clone natural selection has remained enigmatic. We now show, using a state-of-the-art 'HPV integrated site capture' (HISC) technique, that integration likely occurs through microhomology-mediated repair (MHMR) mechanisms via either a direct process, resulting in host sequence deletion (in our case, partially homozygously) or via a 'looping' mechanism by which flanking host regions become amplified. Furthermore, using our 'HPV16-specific Region Capture Hi-C' technique, we have determined that chromatin interactions between the integrated virus genome and host chromosomes, both at short- (<500 kbp) and long-range (>500 kbp), appear to drive local host gene dysregulation through the disruption of host:host interactions within (but not exceeding) host structures known as topologically associating domains (TADs). This mechanism of HPV-induced host gene expression modulation indicates that integration of virus genomes near to or within a 'cancer-causing gene' is not essential to influence their expression and that these modifications to genome interactions could have a major role in selection of HPV integrants at the early stage of cervical neoplastic progression.
Collapse
Affiliation(s)
- Ian J. Groves
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Emma L. A. Drane
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Marco Michalski
- Nuclear Dynamics Programme, Babraham Institute, Cambridge, United Kingdom
| | - Jack M. Monahan
- EMBL-European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
| | - Cinzia G. Scarpini
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Stephen P. Smith
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Giovanni Bussotti
- EMBL-European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
| | - Csilla Várnai
- Nuclear Dynamics Programme, Babraham Institute, Cambridge, United Kingdom
| | | | - Peter Fraser
- Nuclear Dynamics Programme, Babraham Institute, Cambridge, United Kingdom
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States of America
| | - Anton J. Enright
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
- EMBL-European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
| | - Nicholas Coleman
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
7
|
McBride AA, Warburton A, Khurana S. Multiple Roles of Brd4 in the Infectious Cycle of Human Papillomaviruses. Front Mol Biosci 2021; 8:725794. [PMID: 34386523 PMCID: PMC8353396 DOI: 10.3389/fmolb.2021.725794] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/14/2021] [Indexed: 12/17/2022] Open
Abstract
Human Papillomaviruses (HPV) reproduce in stratified epithelia by establishing a reservoir of low- level infection in the dividing basal cells and restricting the production of viral particles to terminally differentiated cells. These small DNA viruses hijack pivotal cellular processes and pathways to support the persistent infectious cycle. One cellular factor that is key to multiple stages of viral replication and transcription is the BET (bromodomain and extra-terminal domain) protein, Brd4 (Bromodomain containing protein 4). Here we provide an overview of the multiple interactions of Brd4 that occur throughout the HPV infectious cycle.
Collapse
Affiliation(s)
- Alison A. McBride
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | | | | |
Collapse
|
8
|
Murakami I, Iwata T, Morisada T, Tanaka K, Aoki D. Nucleosome Positioning on Episomal Human Papillomavirus DNA in Cultured Cells. Pathogens 2021; 10:pathogens10060772. [PMID: 34205361 PMCID: PMC8235217 DOI: 10.3390/pathogens10060772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/01/2021] [Accepted: 06/16/2021] [Indexed: 11/16/2022] Open
Abstract
Several human papillomaviruses (HPV) are associated with the development of cervical carcinoma. HPV DNA synthesis is increased during the differentiation of infected host keratinocytes as they migrate from the basal layer of the epithelium to the spinous layer, but the molecular mechanism is unclear. Nucleosome positioning affects various cellular processes such as DNA replication and repair by permitting the access of transcription factors to promoters to initiate transcription. In this study, nucleosome positioning on virus chromatin was investigated in normal immortalized keratinocytes (NIKS) stably transfected with HPV16 or HPV18 genomes to determine if there is an association with the viral life cycle. Micrococcal nuclease-treated DNA analyzed by Southern blotting using probes against HPV16 and HPV18 and quantified by nucleosome scanning analysis using real-time PCR revealed mononucleosomal-sized fragments of 140-200 base pairs that varied in their location within the viral genome according to whether the cells were undergoing proliferation or differentiation. Notably, changes in the regions around nucleotide 110 in proliferating and differentiating host cells were common to HPV16 and HPV18. Our findings suggest that changes in nucleosome positions on viral DNA during host cell differentiation is an important regulatory event in the viral life cycle.
Collapse
Affiliation(s)
- Isao Murakami
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo 160-8582, Japan; (I.M.); (T.M.); (D.A.)
- Department of Obstetrics and Gynecology, Toho University Ohashi Medical Center, Tokyo 153-8515, Japan;
| | - Takashi Iwata
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo 160-8582, Japan; (I.M.); (T.M.); (D.A.)
- Correspondence:
| | - Tohru Morisada
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo 160-8582, Japan; (I.M.); (T.M.); (D.A.)
| | - Kyoko Tanaka
- Department of Obstetrics and Gynecology, Toho University Ohashi Medical Center, Tokyo 153-8515, Japan;
| | - Daisuke Aoki
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo 160-8582, Japan; (I.M.); (T.M.); (D.A.)
| |
Collapse
|
9
|
Epigenetic Regulation of the Human Papillomavirus Life Cycle. Pathogens 2020; 9:pathogens9060483. [PMID: 32570816 PMCID: PMC7350343 DOI: 10.3390/pathogens9060483] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 12/20/2022] Open
Abstract
Persistent infection with certain types of human papillomaviruses (HPVs), termed high risk, presents a public health burden due to their association with multiple human cancers, including cervical cancer and an increasing number of head and neck cancers. Despite the development of prophylactic vaccines, the incidence of HPV-associated cancers remains high. In addition, no vaccine has yet been licensed for therapeutic use against pre-existing HPV infections and HPV-associated diseases. Although persistent HPV infection is the major risk factor for cancer development, additional genetic and epigenetic alterations are required for progression to the malignant phenotype. Unlike genetic mutations, the reversibility of epigenetic modifications makes epigenetic regulators ideal therapeutic targets for cancer therapy. This review article will highlight the recent advances in the understanding of epigenetic modifications associated with HPV infections, with a particular focus on the role of these epigenetic changes during different stages of the HPV life cycle that are closely associated with activation of DNA damage response pathways.
Collapse
|
10
|
Burley M, Roberts S, Parish JL. Epigenetic regulation of human papillomavirus transcription in the productive virus life cycle. Semin Immunopathol 2020; 42:159-171. [PMID: 31919577 PMCID: PMC7174255 DOI: 10.1007/s00281-019-00773-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 11/08/2019] [Indexed: 12/13/2022]
Abstract
Human papillomaviruses (HPV) are a large family of viruses which contain a circular, double-stranded DNA genome of approximately 8000 base pairs. The viral DNA is chromatinized by the recruitment of cellular histones which are subject to host cell-mediated post-translational epigenetic modification recognized as an important mechanism of virus transcription regulation. The HPV life cycle is dependent on the terminal differentiation of the target cell within epithelia-the keratinocyte. The virus life cycle begins in the undifferentiated basal compartment of epithelia where the viral chromatin is maintained in an epigenetically repressed state, stabilized by distal chromatin interactions between the viral enhancer and early gene region. Migration of the infected keratinocyte towards the surface of the epithelium induces cellular differentiation which disrupts chromatin looping and stimulates epigenetic remodelling of the viral chromatin. These epigenetic changes result in enhanced virus transcription and activation of the virus late promoter facilitating transcription of the viral capsid proteins. In this review article, we discuss the complexity of virus- and host-cell-mediated epigenetic regulation of virus transcription with a specific focus on differentiation-dependent remodelling of viral chromatin during the HPV life cycle.
Collapse
Affiliation(s)
- Megan Burley
- College of Medical and Dental Sciences, Institute of Cancer and Genomic Sciences, University of Birmingham, B152TT, Birmingham, UK
| | - Sally Roberts
- College of Medical and Dental Sciences, Institute of Cancer and Genomic Sciences, University of Birmingham, B152TT, Birmingham, UK
| | - Joanna L Parish
- College of Medical and Dental Sciences, Institute of Cancer and Genomic Sciences, University of Birmingham, B152TT, Birmingham, UK.
| |
Collapse
|
11
|
Morse MA, Balogh KK, Brendle SA, Campbell CA, Chen MX, Furze RC, Harada IL, Holyer ID, Kumar U, Lee K, Prinjha RK, Rüdiger M, Seal JT, Taylor S, Witherington J, Christensen ND. BET bromodomain inhibitors show anti-papillomavirus activity in vitro and block CRPV wart growth in vivo. Antiviral Res 2018; 154:158-165. [PMID: 29653131 DOI: 10.1016/j.antiviral.2018.03.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 03/22/2018] [Accepted: 03/27/2018] [Indexed: 12/19/2022]
Abstract
The DNA papillomaviruses infect squamous epithelium and can cause persistent, benign and sometimes malignant hyperproliferative lesions. Effective antiviral drugs to treat human papillomavirus (HPV) infection are lacking and here we investigate the anti-papillomavirus activity of novel epigenetic targeting drugs, BET bromodomain inhibitors. Bromodomain and Extra-Terminal domain (BET) proteins are host proteins which regulate gene transcription, they bind acetylated lysine residues in histones and non-histone proteins via bromodomains, functioning as scaffold proteins in the formation of transcriptional complexes at gene regulatory regions. The BET protein BRD4 has been shown to be involved in the papillomavirus life cycle, as a co-factor for viral E2 and also mediating viral partitioning in some virus types. We set out to study the activity of small molecule BET bromodomain inhibitors in models of papillomavirus infection. Several BET inhibitors reduced HPV11 E1ˆE4 mRNA expression in vitro and topical therapeutic administration of an exemplar compound I-BET762, abrogated CRPV cutaneous wart growth in rabbits, demonstrating translation of anti-viral effects to efficacy in vivo. Additionally I-BET762 markedly reduced viability of HPV16 infected W12 cells compared to non-infected C33A cells. The molecular mechanism for the cytotoxicity to W12 cells is unknown but may be through blocking viral-dependent cell-survival factors. We conclude that these effects, across multiple papillomavirus types and in vivo, highlight the potential to target BET bromodomains to treat HPV infection.
Collapse
Affiliation(s)
- Mary A Morse
- GlaxoSmithKline Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK.
| | - Karla K Balogh
- The Jake Gittlen Cancer Research Foundation, H069, Department of Pathology, C7800, The Pennsylvania State University, College of Medicine, 500 University Drive, Hershey, PA 17033-0850, USA
| | - Sarah A Brendle
- The Jake Gittlen Cancer Research Foundation, H069, Department of Pathology, C7800, The Pennsylvania State University, College of Medicine, 500 University Drive, Hershey, PA 17033-0850, USA
| | - Colin A Campbell
- GlaxoSmithKline Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK
| | - Mao X Chen
- GlaxoSmithKline Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK
| | - Rebecca C Furze
- GlaxoSmithKline Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK
| | - Isobel L Harada
- GlaxoSmithKline Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK
| | - Ian D Holyer
- GlaxoSmithKline Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK
| | - Umesh Kumar
- GlaxoSmithKline Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK
| | - Kevin Lee
- GlaxoSmithKline Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK
| | - Rab K Prinjha
- GlaxoSmithKline Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK
| | - Martin Rüdiger
- GlaxoSmithKline Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK
| | - Jonathan T Seal
- GlaxoSmithKline Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK
| | - Simon Taylor
- GlaxoSmithKline Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK
| | - Jason Witherington
- GlaxoSmithKline Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK
| | - Neil D Christensen
- The Jake Gittlen Cancer Research Foundation, H069, Department of Pathology, C7800, The Pennsylvania State University, College of Medicine, 500 University Drive, Hershey, PA 17033-0850, USA
| |
Collapse
|
12
|
Frazer IH. Eradicating HPV-Associated Cancer Through Immunization: A Glass Half Full…. Viral Immunol 2018; 31:80-85. [PMID: 29298130 DOI: 10.1089/vim.2017.0119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The human papillomavirus (HPV) is an important causal agent of premalignant cervical epithelial changes and cervical cancers. These cancers account for ∼5% of all cancers globally and kill more than a quarter million women annually. HPV infections also associate with certain anogenital and oropharyngeal cancers. Events leading to the development of HPV vaccines to prevent associated cancers are described, with a further discussion of goals that must be met to achieve full virus eradication.
Collapse
Affiliation(s)
- Ian H Frazer
- The University of Queensland Diamantina Institute , Woolloongabba, Australia
| |
Collapse
|
13
|
Moody C. Mechanisms by which HPV Induces a Replication Competent Environment in Differentiating Keratinocytes. Viruses 2017; 9:v9090261. [PMID: 28925973 PMCID: PMC5618027 DOI: 10.3390/v9090261] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 09/14/2017] [Accepted: 09/15/2017] [Indexed: 12/15/2022] Open
Abstract
Human papillomaviruses (HPV) are the causative agents of cervical cancer and are also associated with other genital malignancies, as well as an increasing number of head and neck cancers. HPVs have evolved their life cycle to contend with the different cell states found in the stratified epithelium. Initial infection and viral genome maintenance occurs in the proliferating basal cells of the stratified epithelium, where cellular replication machinery is abundant. However, the productive phase of the viral life cycle, including productive replication, late gene expression and virion production, occurs upon epithelial differentiation, in cells that normally exit the cell cycle. This review outlines how HPV interfaces with specific cellular signaling pathways and factors to provide a replication-competent environment in differentiating cells.
Collapse
Affiliation(s)
- Cary Moody
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
14
|
Epigenetic Alterations in Human Papillomavirus-Associated Cancers. Viruses 2017; 9:v9090248. [PMID: 28862667 PMCID: PMC5618014 DOI: 10.3390/v9090248] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 08/25/2017] [Accepted: 08/25/2017] [Indexed: 12/15/2022] Open
Abstract
Approximately 15–20% of human cancers are caused by viruses, including human papillomaviruses (HPVs). Viruses are obligatory intracellular parasites and encode proteins that reprogram the regulatory networks governing host cellular signaling pathways that control recognition by the immune system, proliferation, differentiation, genomic integrity, and cell death. Given that key proteins in these regulatory networks are also subject to mutation in non-virally associated diseases and cancers, the study of oncogenic viruses has also been instrumental to the discovery and analysis of many fundamental cellular processes, including messenger RNA (mRNA) splicing, transcriptional enhancers, oncogenes and tumor suppressors, signal transduction, immune regulation, and cell cycle control. More recently, tumor viruses, in particular HPV, have proven themselves invaluable in the study of the cancer epigenome. Epigenetic silencing or de-silencing of genes can have cellular consequences that are akin to genetic mutations, i.e., the loss and gain of expression of genes that are not usually expressed in a certain cell type and/or genes that have tumor suppressive or oncogenic activities, respectively. Unlike genetic mutations, the reversible nature of epigenetic modifications affords an opportunity of epigenetic therapy for cancer. This review summarizes the current knowledge on epigenetic regulation in HPV-infected cells with a focus on those elements with relevance to carcinogenesis.
Collapse
|
15
|
Graham SV. Keratinocyte Differentiation-Dependent Human Papillomavirus Gene Regulation. Viruses 2017; 9:E245. [PMID: 28867768 PMCID: PMC5618011 DOI: 10.3390/v9090245] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 08/24/2017] [Accepted: 08/25/2017] [Indexed: 12/29/2022] Open
Abstract
Human papillomaviruses (HPVs) cause diseases ranging from benign warts to invasive cancers. HPVs infect epithelial cells and their replication cycle is tightly linked with the differentiation process of the infected keratinocyte. The normal replication cycle involves an early and a late phase. The early phase encompasses viral entry and initial genome replication, stimulation of cell division and inhibition of apoptosis in the infected cell. Late events in the HPV life cycle include viral genome amplification, virion formation, and release into the environment from the surface of the epithelium. The main proteins required at the late stage of infection for viral genome amplification include E1, E2, E4 and E5. The late proteins L1 and L2 are structural proteins that form the viral capsid. Regulation of these late events involves both cellular and viral proteins. The late viral mRNAs are expressed from a specific late promoter but final late mRNA levels in the infected cell are controlled by splicing, polyadenylation, nuclear export and RNA stability. Viral late protein expression is also controlled at the level of translation. This review will discuss current knowledge of how HPV late gene expression is regulated.
Collapse
Affiliation(s)
- Sheila V Graham
- MRC-University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Garscube Estate, Glasgow G61 1QH, UK.
| |
Collapse
|
16
|
Songock WK, Scott ML, Bodily JM. Regulation of the human papillomavirus type 16 late promoter by transcriptional elongation. Virology 2017; 507:179-191. [PMID: 28448849 DOI: 10.1016/j.virol.2017.04.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 04/12/2017] [Accepted: 04/19/2017] [Indexed: 01/09/2023]
Abstract
Transcripts from the late promoter of human papillomavirus type 16 (HPV16) are upregulated upon host cell differentiation. Differentiation-dependent transcript regulation is thought to sequester viral antigens in the uppermost epithelial layers, facilitating immune evasion. The mechanisms regulating late promoter upregulation during differentiation are poorly characterized. We show that the late promoter is upregulated at the transcriptional level and that the viral enhancer stimulates promoter activity. Using kinase inhibition and chromatin immunoprecipitation analysis, we show evidence for differentiation-dependent enhancement of transcript elongation. Three factors that promote transcript elongation, cyclin dependent kinase 9 (CDK9), CDK8 (a subunit of the Mediator complex), and bromodomain containing protein 4 (Brd4) are recruited to viral genomes upon differentiation, and each plays a role in promoter activity. These results shed light on the transcriptional processes utilized by HPV16 for proper regulation of gene expression during the viral life cycle.
Collapse
Affiliation(s)
- William K Songock
- Department of Microbiology and Immunology, Center for Molecular and Tumor Virology, and Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Matthew L Scott
- Department of Microbiology and Immunology, Center for Molecular and Tumor Virology, and Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Jason M Bodily
- Department of Microbiology and Immunology, Center for Molecular and Tumor Virology, and Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA, USA.
| |
Collapse
|
17
|
Gunasekharan VK, Li Y, Andrade J, Laimins LA. Post-Transcriptional Regulation of KLF4 by High-Risk Human Papillomaviruses Is Necessary for the Differentiation-Dependent Viral Life Cycle. PLoS Pathog 2016; 12:e1005747. [PMID: 27386862 PMCID: PMC4936677 DOI: 10.1371/journal.ppat.1005747] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 06/16/2016] [Indexed: 02/07/2023] Open
Abstract
Human papillomaviruses (HPVs) are epithelial tropic viruses that link their productive life cycles to the differentiation of infected host keratinocytes. A subset of the over 200 HPV types, referred to as high-risk, are the causative agents of most anogenital malignancies. HPVs infect cells in the basal layer, but restrict viral genome amplification, late gene expression, and capsid assembly to highly differentiated cells that are active in the cell cycle. In this study, we demonstrate that HPV proteins regulate the expression and activities of a critical cellular transcription factor, KLF4, through post-transcriptional and post-translational mechanisms. Our studies show that KLF4 regulates differentiation as well as cell cycle progression, and binds to sequences in the upstream regulatory region (URR) to regulate viral transcription in cooperation with Blimp1. KLF4 levels are increased in HPV-positive cells through a post-transcriptional mechanism involving E7-mediated suppression of cellular miR-145, as well as at the post-translational level by E6–directed inhibition of its sumoylation and phosphorylation. The alterations in KLF4 levels and functions results in activation and suppression of a subset of KLF4 target genes, including TCHHL1, VIM, ACTN1, and POT1, that is distinct from that seen in normal keratinocytes. Knockdown of KLF4 with shRNAs in cells that maintain HPV episomes blocked genome amplification and abolished late gene expression upon differentiation. While KLF4 is indispensable for the proliferation and differentiation of normal keratinocytes, it is necessary only for differentiation-associated functions of HPV-positive keratinocytes. Increases in KLF4 levels alone do not appear to be sufficient to explain the effects on proliferation and differentiation of HPV-positive cells indicating that additional modifications are important. KLF4 has also been shown to be a critical regulator of lytic Epstein Barr virus (EBV) replication underscoring the importance of this cellular transcription factor in the life cycles of multiple human cancer viruses. Viruses that induce persistent infections often alter the expression and activities of cellular transcription factors to regulate their productive life cycles. Human papillomaviruses (HPVs) are epithelial tropic viruses that link their productive life cycles to the differentiation of infected host keratinocytes. Our studies show that KLF-4, originally characterized as a pluripotency factor, binds HPV-31 promoters activating viral transcription as well as modulates host cell differentiation and cell cycle progression. KLF4 levels and activity are enhanced in HPV-positive cells by E6 and E7 mediated post-transcriptional and post-translational mechanisms resulting in altered target gene expression and biological functions from that seen in normal keratinocytes. Importantly, silencing KLF4 hinders viral genome amplification and late gene expression. Along with its recently identified role in Epstein Barr Virus reactivation during differentiation, our studies demonstrate the importance of KLF4 in the life cycles of multiple human cancer viruses.
Collapse
Affiliation(s)
- Vignesh Kumar Gunasekharan
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Yan Li
- Center for Research Informatics, The University of Chicago, Chicago, Illinois, United States of America
| | - Jorge Andrade
- Center for Research Informatics, The University of Chicago, Chicago, Illinois, United States of America
| | - Laimonis A. Laimins
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
18
|
Affiliation(s)
- Dipendra Gautam
- Lineberger Comprehensive Cancer Center and Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Cary A. Moody
- Lineberger Comprehensive Cancer Center and Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
19
|
Abstract
Human papillomaviruses are the causative agents of cervical, anal as well as many oropharyngeal cancers. While prophylactic vaccines have been developed, uptake is low in the US and other Western countries, and access is limited in less developed countries. A number of areas are emerging as critical for future study. These include investigation of the mechanisms regulating infection and progression to cancer at both cervical and oropharyngeal sites as these appear to be distinct. HPV-induced cancers also may be susceptible to immune therapy, revealing opportunities for treating advanced cervical disease and reducing the morbidity of treatments for oropharyngeal cancers. We believe these areas are critical focal points for HPV cancer research in the next decade.
Collapse
Affiliation(s)
- Erika Langsfeld
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Laimonis A Laimins
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
20
|
Conrad RJ, Ott M. Therapeutics Targeting Protein Acetylation Perturb Latency of Human Viruses. ACS Chem Biol 2016; 11:669-80. [PMID: 26845514 DOI: 10.1021/acschembio.5b00999] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Persistent viral infections are widespread and represent significant public health burdens. Some viruses endure in a latent state by co-opting the host epigenetic machinery to manipulate viral gene expression. Small molecules targeting epigenetic pathways are now in the clinic for certain cancers and are considered as potential treatment strategies to reverse latency in HIV-infected individuals. In this review, we discuss how drugs interfering with one epigenetic pathway, protein acetylation, perturb latency of three families of pathogenic human viruses-retroviruses, herpesviruses, and papillomaviruses.
Collapse
Affiliation(s)
- Ryan J. Conrad
- Gladstone Institute of Virology and Immunology, San Francisco, California 94158, United States
- Graduate
Program in Pharmaceutical Sciences and Pharmacogenomics, University of California, San Francisco, California 94158, United States
- Department
of Medicine, University of California, San Francisco, California 94158, United States
| | - Melanie Ott
- Gladstone Institute of Virology and Immunology, San Francisco, California 94158, United States
- Graduate
Program in Pharmaceutical Sciences and Pharmacogenomics, University of California, San Francisco, California 94158, United States
- Department
of Medicine, University of California, San Francisco, California 94158, United States
| |
Collapse
|
21
|
Groves IJ, Knight ELA, Ang QY, Scarpini CG, Coleman N. HPV16 oncogene expression levels during early cervical carcinogenesis are determined by the balance of epigenetic chromatin modifications at the integrated virus genome. Oncogene 2016; 35:4773-86. [PMID: 26876196 PMCID: PMC5024154 DOI: 10.1038/onc.2016.8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 12/14/2015] [Accepted: 12/29/2015] [Indexed: 12/14/2022]
Abstract
In cervical squamous cell carcinomas, high-risk human papillomavirus (HRHPV) DNA is usually integrated into host chromosomes. Multiple integration events are thought to be present within the cells of a polyclonal premalignant lesion and the features that underpin clonal selection of one particular integrant remain poorly understood. We previously used the W12 model system to generate a panel of cervical keratinocyte clones, derived from cells of a low-grade premalignant lesion naturally infected with the major HRHPV type, HPV16. The cells were isolated regardless of their selective advantage and differed only by the site of HPV16 integration into the host genome. We used this resource to test the hypothesis that levels of HPV16 E6/E7 oncogene expression in premalignant cells are regulated epigenetically. We performed a comprehensive analysis of the epigenetic landscape of the integrated HPV16 DNA in selected clones, in which levels of virus oncogene expression per DNA template varied ~6.6-fold. Across the cells examined, higher levels of virus expression per template were associated with more open chromatin at the HPV16 long control region, together with greater loading of chromatin remodelling enzymes and lower nucleosome occupancy. There were higher levels of histone post-translational modification hallmarks of transcriptionally active chromatin and lower levels of repressive hallmarks. There was greater abundance of the active/elongating form of the RNA polymerase-II enzyme (RNAPII-Ser2P), together with CDK9, the component of positive transcription elongation factor b complex responsible for Ser2 phosphorylation. The changes observed were functionally significant, as cells with higher HPV16 expression per template showed greater sensitivity to depletion and/or inhibition of histone acetyltransferases and CDK9 and less sensitivity to histone deacetylase inhibition. We conclude that virus gene expression per template following HPV16 integration is determined through multiple layers of epigenetic regulation, which are likely to contribute to selection of individual cells during cervical carcinogenesis.
Collapse
Affiliation(s)
- I J Groves
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - E L A Knight
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Q Y Ang
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - C G Scarpini
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - N Coleman
- Department of Pathology, University of Cambridge, Cambridge, UK
| |
Collapse
|
22
|
Langsfeld ES, Bodily JM, Laimins LA. The Deacetylase Sirtuin 1 Regulates Human Papillomavirus Replication by Modulating Histone Acetylation and Recruitment of DNA Damage Factors NBS1 and Rad51 to Viral Genomes. PLoS Pathog 2015; 11:e1005181. [PMID: 26405826 PMCID: PMC4583417 DOI: 10.1371/journal.ppat.1005181] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 09/01/2015] [Indexed: 11/18/2022] Open
Abstract
Human papillomaviruses (HPV) regulate their differentiation-dependent life cycles by activating a number of cellular pathways, such as the DNA damage response, through control of post-translational protein modification. Sirtuin 1 (SIRT1) is a protein deacetylase that modulates the acetylation of a number of cellular substrates, resulting in activation of pathways controlling gene expression and DNA damage repair. Our studies indicate that SIRT1 levels are increased in cells containing episomes of high-risk HPV types through the combined action of the E6 and E7 oncoproteins. Knockdown of SIRT1 in these cells with shRNAs impairs viral activities including genome maintenance, amplification and late gene transcription, with minimal effects on cellular proliferation ability. Abrogation of amplification was also seen following treatment with the SIRT1 deacetylase inhibitor, EX-527. Importantly, SIRT1 binds multiple regions of the HPV genome in undifferentiated cells, but this association is lost upon of differentiation. SIRT1 regulates the acetylation of Histone H1 (Lys26) and H4 (Lys16) bound to HPV genomes and this may contribute to regulation of viral replication and gene expression. The differentiation-dependent replication of high-risk HPVs requires activation of factors in the Ataxia Telangiectasia Mutated (ATM) pathway and SIRT1 regulates the recruitment of both NBS1 and Rad51 to the viral genomes. These observations demonstrate that SIRT1 is a critical regulator of multiple aspects of the high-risk HPV life cycle. Human papillomaviruses regulate their differentiation-dependent life cycles by activating a number of cellular pathways, such as the DNA damage response, through control of post-translational protein modification. Sirtuin 1 (SIRT1) is a protein deacetylase that regulates the acetylation of a number of cellular substrates, resulting in activation of pathways involved in gene expression and DNA damage repair. We report here that SIRT1 protein levels are elevated in cells stably maintaining genomes of oncogenic HPVs and that SIRT1 knockdown impairs genome maintenance, productive replication and late gene transcription. The DNA damage sensing and repair pathways are critical for the HPV viral life cycle and members of this pathway, such as NBS1 and Rad51, are targets of SIRT1. Our studies demonstrate that SIRT1 binds the HPV genome and regulates both viral chromatin remodeling as well as binding of members of the homologous repair pathway to viral DNA. These findings demonstrate that binding of SIRT1 to the HPV genome is necessary for histone deacetylation and recruitment of DNA damage repair factors and is a critical step in the HPV life cycle.
Collapse
Affiliation(s)
- Erika S. Langsfeld
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Jason M. Bodily
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, Louisiana, United States of America
| | - Laimonis A. Laimins
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
23
|
Groves IJ, Coleman N. Pathogenesis of human papillomavirus-associated mucosal disease. J Pathol 2015; 235:527-38. [PMID: 25604863 DOI: 10.1002/path.4496] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 12/03/2014] [Indexed: 12/15/2022]
Abstract
Human papillomaviruses (HPVs) are a necessary cause of carcinoma of the cervix and other mucosal epithelia. Key events in high-risk HPV (HRHPV)-associated neoplastic progression include persistent infection, deregulated expression of virus early genes in basal epithelial cells and genomic instability causing secondary host genomic imbalances. There are multiple mechanisms by which deregulated virus early gene expression may be achieved. Integration of virus DNA into host chromosomes is observed in the majority of cervical squamous cell carcinomas (SCCs), although in ∼15% of cases the virus remains extrachromosomal (episomal). Interestingly, not all integration events provide a growth advantage to basal cervical epithelial cells or lead to increased levels of the virus oncogenes E6 and E7, when compared with episome-containing basal cells. The factors that provide a competitive advantage to some integrants, but not others, are complex and include virus and host contributions. Gene expression from integrated and episomal HRHPV is regulated through host epigenetic mechanisms affecting the virus long control region (LCR), which appear to be of functional importance. New approaches to treating HRHPV-associated mucosal neoplasia include knockout of integrated HRHPV DNA, depletion of virus transcripts and inhibition of virus early gene transcription through targeting or use of epigenetic modifiers. Copyright © 2014 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Ian J Groves
- University of Cambridge, Department of Pathology, UK
| | | |
Collapse
|
24
|
The transcription factors TBX2 and TBX3 interact with human papillomavirus 16 (HPV16) L2 and repress the long control region of HPVs. J Virol 2013; 87:4461-74. [PMID: 23388722 DOI: 10.1128/jvi.01803-12] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The minor capsid protein L2 of human papillomaviruses (HPVs) has multiple functions during the viral life cycle. Although L2 is required for effective invasion and morphogenesis, only a few cellular interaction partners are known so far. Using yeast two-hybrid screening, we identified the transcription factor TBX2 as a novel interaction partner of HPV type 16 (HPV16) L2. Coimmunoprecipitations and immunofluorescence analyses confirmed the L2-TBX2 interaction and revealed that L2 also interacts with TBX3, another member of the T-box family. Transcription of the early genes during HPV infection is under the control of an upstream enhancer and early promoter region, the long control region (LCR). In promoter-reporter gene assays, we observed that TBX2 and TBX3 repress transcription from the LCR and that this effect is enhanced by L2. Repression of the HPV LCR by TBX2/3 seems to be a conserved mechanism, as it was also observed with the LCRs of different HPV types. Finally, interaction of TBX2 with the LCR was detected by chromatin immunoprecipitation, and we found a strong colocalization of L2 and TBX2 in HPV16-positive cervical intraepithelial neoplasia (CIN) I-II tissue sections. These results suggest that TBX2/3 might play a role in the regulation of HPV gene expression during the viral life cycle.
Collapse
|
25
|
Human papillomavirus gene expression is controlled by host cell splicing factors. Biochem Soc Trans 2012; 40:773-7. [DOI: 10.1042/bst20120079] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
HPVs (human papillomaviruses) infect stratified epithelia and cause a variety of lesions ranging from benign warts to invasive tumours. The virus life cycle is tightly linked to differentiation of the keratinocyte it infects: papillomaviruses modulate host gene expression to ensure efficient virus replication. For example, the viral transcription factor E2 can directly up-regulate, in an epithelial differentiation-dependent manner, cellular SRSFs [SR (serine/arginine-rich) splicing factors] that control constitutive and alternative splicing. Changes in alternative splicing and the mechanisms controlling this for viral mRNAs have been the subject of intense exploration. However, to date experiments have only been carried out in model systems because the genetic systems suitable for studying alternative splicing of viral RNAs in the context of the virus life cycle are relatively recent and technically challenging. Now using these life cycle-supporting systems, our laboratory has identified SR proteins as important players in differentiation-dependent regulation of HPV gene expression. Better understanding of the role of cellular factors in regulating the virus life cycle is needed as it may help development of novel diagnostic approaches and antiviral therapies in the future.
Collapse
|
26
|
Differentiation-dependent changes in levels of C/EBPβ repressors and activators regulate human papillomavirus type 31 late gene expression. J Virol 2012; 86:5393-8. [PMID: 22379085 DOI: 10.1128/jvi.07239-11] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The liver-enriched transcriptional activator protein (LAP) isoform of CCAAT/enhancer binding protein β (C/EBPβ) is shown to be a major activator of differentiation-dependent human papillomavirus (HPV) late gene expression, while the liver-enriched inhibitory protein (LIP) isoform negatively regulates late expression. In undifferentiated cells, LIPs act as dominant-negative repressors of late expression, and upon differentiation, LIP levels are significantly reduced, allowing LAP-mediated activation of the late promoter. Importantly, knockdown of C/EBPβ isoforms blocks activation of late gene expression from complete viral genomes upon differentiation.
Collapse
|
27
|
Cortés-Gutiérrez EI, Dávila-Rodríguez MI, Fernández JL, López-Fernández C, Gosálvez J. Koilocytes are enriched for alkaline-labile sites. Eur J Histochem 2011; 54:e32. [PMID: 21337807 PMCID: PMC3167319 DOI: 10.4081/ejh.2010.e32] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
This study investigated possible variations in the chromatin structure of koilocytes resulting from human papillomavirus (HPV) infection. Alkaline-labile sites (ALS) were detected with the DNA breakage detection–fluorescence in situ hybridization (DBD-FISH) technique using a whole human genome DNA probe obtained from individuals without koilocytosis. The variable levels of ALS present were measured quantitatively using image analysis after whole-genome DNA hybridization. A significant increase in the number of ALS was observed in koilocytes compared with normal cells. We demonstrated that the presence of ALS could be an indicator of chromatin change in koilocytes caused by HPV infection.
Collapse
Affiliation(s)
- E I Cortés-Gutiérrez
- División de Genética, Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, IMSS, Monterrey, México.
| | | | | | | | | |
Collapse
|
28
|
Graham SV. Human papillomavirus: gene expression, regulation and prospects for novel diagnostic methods and antiviral therapies. Future Microbiol 2011; 5:1493-506. [PMID: 21073310 DOI: 10.2217/fmb.10.107] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Human papillomaviruses (HPVs) cause diseases ranging from benign warts to invasive tumors. A subset of these viruses termed 'high risk' infect the cervix where persistent infection can lead to cervical cancer. Although many HPV genomes have been sequenced, knowledge of virus gene expression and its regulation is still incomplete. This is due in part to the lack, until recently, of suitable systems for virus propagation in the laboratory. HPV gene expression is polycistronic initiating from multiple promoters. Gene regulation occurs at transcriptional, but particularly post-transcriptional levels, including RNA processing, nuclear export, mRNA stability and translation. A close association between the virus replication cycle and epithelial differentiation adds a further layer of complexity. Understanding HPV mRNA expression and its regulation in the different diseases associated with infection may lead to development of novel diagnostic approaches and will reveal key viral and cellular targets for development of novel antiviral therapies.
Collapse
Affiliation(s)
- Sheila V Graham
- MRC-University of Glasgow Centre for Virus Research, Institute of Infection Immunity & Inflammation, College of Medicine, Veterinary Medicine and Life Sciences, University of Glasgow G12 8TT, Scotland, UK.
| |
Collapse
|
29
|
Gray E, Pett MR, Ward D, Winder DM, Stanley MA, Roberts I, Scarpini CG, Coleman N. In vitro progression of human papillomavirus 16 episome-associated cervical neoplasia displays fundamental similarities to integrant-associated carcinogenesis. Cancer Res 2010; 70:4081-91. [PMID: 20442284 DOI: 10.1158/0008-5472.can-09-3335] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
An important event in the development of cervical squamous cell carcinoma (SCC) is deregulated expression of high-risk human papillomavirus (HR-HPV) oncogenes, most commonly related to viral integration into host DNA. Mechanisms of development of the approximately 15% of SCCs that contain extrachromosomal (episomal) HR-HPV are poorly understood due to limited longitudinal data. We therefore used the W12 model to study mechanisms of cervical carcinogenesis associated with episomal HPV16. In vitro progression of W12 normally occurs through selection of cells containing integrated HPV16. However, in one long-term culture, keratinocytes developed a selective growth advantage and invasive phenotype while retaining HPV16 episomes at increased copy number in the absence of transcriptionally active integrants. Longitudinal investigations revealed similarities between the episome- and integrant-associated routes of neoplastic progression. Most notable were dynamic changes in viral early gene expression in episome-retaining cells, consistent with continually changing selective pressures. An early increase in viral transcription preceded elevated episome copy number and was followed by a reduction to near baseline after the development of invasiveness. Episomal transcriptional deregulation did not require selection of a specific sequence variant of the HPV16 upstream regulatory region, although increased levels of acetylated histone H4 around the late promoter implicated a role for altered chromatin structure. Interestingly, invasive episome-retaining cells showed high levels of HPV16 E2/E6 proteins (despite decreased transcript levels) and reduced expression of IFN-stimulated genes, adaptations that support viral persistence and cell survival. Our findings suggest a unified working model for events important in cervical neoplastic progression regardless of HR-HPV physical state.
Collapse
Affiliation(s)
- Elizabeth Gray
- Medical Research Council Cancer Cell Unit, University of Cambridge, Cambridge, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
30
|
You J. Papillomavirus interaction with cellular chromatin. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2009; 1799:192-9. [PMID: 19786128 DOI: 10.1016/j.bbagrm.2009.09.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Revised: 09/14/2009] [Accepted: 09/17/2009] [Indexed: 11/26/2022]
Abstract
High-risk human papillomavirus (HPV) infection is the primary risk factor for cervical cancer. HPVs establish persistent infection by maintaining their genomes as extrachromosomal elements (episomes) that replicate along with host DNA in infected cells. The productive life cycle of HPV is intimately tied to the differentiation program of host squamous epithelium. This review examines the involvement of host chromatin in multiple aspects of the papillomavirus life cycle and the malignant progression of infected host cells. Papillomavirus utilizes host mitotic chromosomes as vehicles for transmitting its genetic materials across the cell cycle. By hitchhiking on host mitotic chromosomes, the virus ensures accurate segregation of the replicated viral episomes to the daughter cells during host cell division. This strategy allows persistent maintenance of the viral episome in the infected cells. In the meantime, the virus subverts the host chromatin-remodeling factors to promote viral transcription and efficient propagation of viral genomes. By associating with the host chromatin, papillomavirus redirects the normal cellular control of chromatin to create a cellular environment conducive to both its own survival and malignant progression of host cells. Comprehensive understanding of HPV-host chromatin interaction will offer new insights into the HPV life cycle as well as chromatin regulation. This virus-host interaction will also provide a paradigm for investigating other episomal DNA tumor viruses that share a similar mechanism for interacting with host chromatin.
Collapse
Affiliation(s)
- Jianxin You
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
31
|
Beglin M, Melar-New M, Laimins L. Human papillomaviruses and the interferon response. J Interferon Cytokine Res 2009; 29:629-35. [PMID: 19715460 PMCID: PMC2956683 DOI: 10.1089/jir.2009.0075] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Accepted: 06/29/2009] [Indexed: 11/12/2022] Open
Abstract
Human papillomaviruses (HPV) are small DNA viruses that target stratified keratinocytes for infection. A subset of HPV types infect epithelia in the genital tract and are the causative agents of cervical as well as other anogenital cancers. Interferon treatment of existing genital HPV lesions has had mixed results. While HPV proteins down-regulate the expression of interferon-inducible genes, interferon treatment ultimately induces their high-level transcription after a delay. Cells containing complete HPV genomes that are able to undergo productive replication upon differentiation are sensitive to interferon-induced growth arrest, while cells from high-grade cancers that only express E6 and E7 are resistant. Recent studies indicate this sensitivity is dependent upon the binding of the interferon-inducible factor, p56, to the E1 replication protein. The response to interferon by HPV proteins is complex and results from the action of multiple viral proteins.
Collapse
Affiliation(s)
- Melanie Beglin
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | | | | |
Collapse
|
32
|
Abstract
Papillomavirus is a pathogenic virus that induces benign tumor at the infected lesion, and its association with malignant tumor was first identified by R. Shope using animal model. A variety of cancers have been reported to be associated with the infection of human papillomavirus since the report by H. zur Hausen that describes a connection between the HPV infection and cervical cancer. The HPV infection is broadly distributed as a sexually transmitted disease (STD) and recently the initial age diagnosed as the cervical cancer is getting lowered. Because of its clinical importance, the study on HPV has been focused on the oncogenic properties, and the results of which had great impacts on the researches of the tumor suppressors, such as p53 and pRb, and "ubiquiitn-proteasome" pathway. On the other hand, the biological properties of HPV remain mostly disclosed. The lifecycle of HPV is tightly linked to the differentiation program of the target epithelial cell, and this unique property has hampered the study on the HPV replication mechanism. Here we summarized the findings on the HPV lifecycle, including the virus gene functions, the regulation of viral gene expression and replication.
Collapse
|
33
|
Inhibition of transcription and DNA replication by the papillomavirus E8-E2C protein is mediated by interaction with corepressor molecules. J Virol 2008; 82:5127-36. [PMID: 18353941 DOI: 10.1128/jvi.02647-07] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Papillomavirus genomes replicate as nuclear plasmids at a low copy number in undifferentiated keratinocytes. Papillomaviruses encode the E1 and E2 proteins that bind to the origin of replication and are required for the activation of replication. In addition to E2, several papillomaviruses express an E8-E2C protein, which is generated by alternative splicing and functions as a transcriptional repressor and inhibitor of the E1/E2-dependent replication of the viral origin. Previous analyses suggested that the E8 domain functions as a transferable repression domain. In this report we present evidence that the E8 domain is responsible for the interaction with cellular corepressor molecules such as histone deacetylases, the histone methyltransferase SETDB1, and the TRIM28/KAP-1/TIF1beta/KRIP-1 protein. Whereas the interaction with histone deacetylases is involved only in transcriptional repression, the interaction with TRIM28/KAP-1/TIF1beta/KRIP-1 contributes to the inhibition of E1/E2-dependent replication. The corepressor TRIM28/KAP-1/TIF1beta/KRIP-1 has been described to be part of multicomponent complexes involved in transcriptional regulation and functions as a scaffold protein. Since neither histone deacetylases nor the histone methyltransferase SETDB1 appears to be involved in the inhibition of E1/E2-dependent replication, most likely the modification of non-histone proteins contributes to the replication repression activity of E8-E2C.
Collapse
|
34
|
Kalantari M, Lee D, Calleja-Macias IE, Lambert PF, Bernard HU. Effects of cellular differentiation, chromosomal integration and 5-aza-2'-deoxycytidine treatment on human papillomavirus-16 DNA methylation in cultured cell lines. Virology 2008; 374:292-303. [PMID: 18242658 DOI: 10.1016/j.virol.2007.12.016] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2007] [Revised: 10/10/2007] [Accepted: 12/13/2007] [Indexed: 12/12/2022]
Abstract
Human papillomavirus-16 (HPV-16) genomes in cell culture and in situ are affected by polymorphic methylation patterns, which can repress the viral transcription. In order to understand some of the underlying mechanisms, we investigated changes of the methylation of HPV-16 DNA in cell cultures in response to cellular differentiation, to recombination with cellular DNA, and to an inhibitor of methylation. Undifferentiated W12E cells, derived from a precancerous lesion, contained extrachromosomal HPV-16 DNA with a sporadically methylated enhancer-promoter segment. Upon W12E cell differentiation, the viral DNA was demethylated, suggesting a link between differentiation and the epigenetic state of HPV-16 DNA. The viral genomes present in two W12I clones, in which individual copies of the HPV-16 genome have integrated into cellular DNA (type 1 integrants), were unmethylated, akin to that seen in the cervical carcinoma cell line SiHa (also a type 1 integrant). This finding is consistent with hypomethylation being necessary for continued viral gene expression. In contrast, two of three type 2 integrant W12I clones, containing concatemers of HPV-16 genomes integrated into the cellular DNA contained hypermethylated viral DNA, as observed in the cervical carcinoma cell line CaSki (also a type 2 integrant). A third, type 2, W12I clone, interestingly with fewer copies of the viral genome, contained unmethylated HPV-16 genomes. Epithelial differentiation of W12I clones did not lead to demethylation of chromosomally integrated viral genomes as was seen for extrachromosomal HPV-16 DNA in W12E clones. Hypomethylation of CaSki cells in the presence of the DNA methylation inhibitor 5-aza-2'-deoxycytidine reduced the cellular viability, possibly as a consequence of toxic effects of an excess of HPV-16 gene products. Our data support a model wherein (i) the DNA methylation state of extrachromosomal HPV16 replicons and epithelial differentiation are inversely coupled during the viral life cycle, (ii) integration of the viral genome into the host chromosome events leads to an alteration in methylation patterns on the viral genome that is dependent upon the type of integration event and possibly copy number, and (iii) integration universally results in the viral DNA becoming refractory to changes in methylation state upon cellular differentiation that are observed with extrachromosomal HPV-16 genomes.
Collapse
Affiliation(s)
- Mina Kalantari
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA 92697, USA
| | | | | | | | | |
Collapse
|
35
|
Wooldridge TR, Laimins LA. Regulation of human papillomavirus type 31 gene expression during the differentiation-dependent life cycle through histone modifications and transcription factor binding. Virology 2008; 374:371-80. [PMID: 18237759 DOI: 10.1016/j.virol.2007.12.011] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2007] [Revised: 11/14/2007] [Accepted: 12/11/2007] [Indexed: 11/25/2022]
Abstract
The life cycle of high-risk human papillomaviruses is linked to epithelial differentiation with virion production restricted to highly differentiated suprabasal cells. Two major viral promoters direct high-risk HPV gene expression and their activities are dependent upon differentiation. The early promoter controls initiation of transcripts at sites upstream of the E6 open reading frame and is active in both undifferentiated as well as differentiated cells. The late viral promoter directs transcription from a series of heterogeneous start sites in E7 and is activated upon differentiation. In this study, the state of histones as well as the spectrum of transcription factors bound to the two major HPV 31 viral promoters in undifferentiated and differentiated cells were examined using chromatin immunoprecipitation assays. Our studies indicate that, in undifferentiated cells, the chromatin surrounding both promoter regions is in an open, transcriptionally active state as indicated by the presence of dimethylated forms of histone H3 K4 as well as acetylated H3 and acetylated H4. Upon differentiation, there was an increase of four to six fold in the levels of dimethylated H3K4 and acetylated H3 respectively around both promoter regions as well as an increase of approximately nine fold in acetylated H4 at the early promoter. This suggests that nucleosomes of both promoter regions are further activated through histone modifications during differentiation. Chromatin immunoprecipitation assays were also used to examine the binding of transcription factors to the keratinocyte enhancer (KE)/early promoter region in the upstream regulatory region (URR) and late promoter sequences throughout differentiation. Our results suggest that a dynamic change in transcription factor binding occurs in both regions upon differentiation; most notably a significant increase in C/EBP-beta binding to the KE/early promoter region as well as C/EBP-alpha binding to the late promoter region upon differentiation. These increases in binding cannot be solely explained by changes in the total cellular levels of these factors following differentiation, but instead reflect increased binding specific to HPV genomes. Finally, transient expression analyses confirmed that the KE/early promoter region of the URR contributes significantly to the activation of late gene expression and this is consistent with regulation through the combinatorial binding of multiple transcription factors.
Collapse
Affiliation(s)
- Tonia R Wooldridge
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, 320 E. Superior St. Chicago, IL 60611, USA
| | | |
Collapse
|
36
|
Kanda T, Kukimoto I. [Human papillomavirus and cervical cancer]. Uirusu 2007; 56:219-30. [PMID: 17446671 DOI: 10.2222/jsv.56.219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Human papillomavirus (HPV) is a small non-enveloped icosahedral virus with a circular double-stranded DNA genome of 8 kilo base pairs. HPV particles reach and infect the basal cells of the stratified epithelia through small epithelial lesions. In the basal cells the viral DNA is maintained as episomes, which start to replicate when the host cells initiate terminal differentiation. In these differentiating cells the degradation of p53 by the E6 protein and the abrogation of the pRb functions by the E7 protein lead to the reactivation of the DNA synthesis machinery. After virus propagation the host cells usually die. On the other hand, in some of the infected cells, the E6 and E7 genes are integrated on rare occasion into cell DNA. The cell continuously expressing the E6 and E7 proteins from the integrated genes is immortalized and sometimes acquires malignant phenotype induced by the accumulated damages to DNA. Of more than 100 HPV genotypes recorded to date, 13 including types 16 and 18 are associated with cervical cancer. Expression of HPV major capsid protein L1 in some cultured cells results in production of virus-like particles (VLPs). The VLPs of types 6, 11, 16, and 18 were used as a prophylactic vaccine in recent clinical trials and shown to successfully induce type-specific neutralizing antibodies in the recipients.
Collapse
Affiliation(s)
- Tadahito Kanda
- Center for Pathogen Genomics, National Institute of Infectious Diseases.
| | | |
Collapse
|
37
|
Scheurer ME, Guillaud M, Tortolero-Luna G, McAulay C, Follen M, Adler-Storthz K. Human papillomavirus-related cellular changes measured by cytometric analysis of DNA ploidy and chromatin texture. CYTOMETRY PART B-CLINICAL CYTOMETRY 2007; 72:324-31. [PMID: 17205571 DOI: 10.1002/cyto.b.20173] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Image cytometry has provided two highly sensitive markers for the identification of the malignant potential of squamous lesions. Aneuploidy and chromatin texture have been investigated as quantitative measures of nuclear damage in premalignant lesions and carcinoma. Real-time PCR methods have evolved to yield highly specific measurements of mRNA expression in very sparse cellular samples. METHODS Human papillomavirus (HPV) 16 and 18 E7 mRNA expression was measured using quantitative RT-PCR. DNA index and chromatin measures were taken from image cytology samples. The chromatin features, through discriminant analysis, were aggregated into a score, and both measurements were related to mRNA expression. RESULTS mRNA level and DNA index show an increasing trend over increasing histological grades. However, DNA index and chromatin score were not correlated to mRNA levels in these samples. Chromatin score differed by mRNA type found with HPV 18 infected samples having a higher score than those with HPV 16. Samples infected with HPV 16 and HPV 18 had even higher chromatin scores. CONCLUSIONS DNA index and chromatin score were not directly correlated with mRNA levels. However both mRNA and DNA index were related to histological grade, and chromatin score was associated with HPV type. Therefore, DNA index and mRNA levels could be independent predictors of cervical dysplasia, and chromatin score could be related to the viral integration process in cells infected with HPV 18 or dual infections.
Collapse
Affiliation(s)
- Michael E Scheurer
- Department of Epidemiology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | |
Collapse
|
38
|
Kumar RA, Naidu SR, Wang X, Imbalzano AN, Androphy EJ. Interaction of papillomavirus E2 protein with the Brm chromatin remodeling complex leads to enhanced transcriptional activation. J Virol 2006; 81:2213-20. [PMID: 17151122 PMCID: PMC1865958 DOI: 10.1128/jvi.01746-06] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Papillomavirus E2 is a sequence-specific DNA binding protein that regulates transcription and replication of the viral genome. The transcriptional activities of E2 are typically evaluated by transient transfection of nonreplicating E2-dependent reporters. We sought to address whether E2 activates transcription in an episomal context and its potential interaction with the chromatin remodeling proteins. Using an Epstein-Barr virus-based episomal reporter, we demonstrate that E2 stimulates transcription from an E2-dependent promoter in a chromatin context. This activation is enhanced by the presence of proteins associated with SWI/SNF complexes, which are ATP-dependent chromatin remodeling enzymes. We show that exogenous expression of the Brm ATPase enhances E2 activity in SWI/SNF-deficient cell lines and that the amino-terminal transactivation domain of E2 mediates association with the Brm complex in vivo. Using chromatin immunoprecipitation assays, we demonstrate that Brm enhances promoter occupancy by E2 in an episomal context. Our results demonstrate that E2 activates transcription from an episomal reporter system and reveal a novel property of E2 in collaborating with the Brm chromatin remodeling complex in enhancing transcriptional activation.
Collapse
Affiliation(s)
- R Ajay Kumar
- Department of Medicine, University of Massachusetts Medical School, 364 Plantation Street, LRB 327, Worcester, MA 01605, USA
| | | | | | | | | |
Collapse
|
39
|
Milligan SG, Veerapraditsin T, Ahamet B, Mole S, Graham SV. Analysis of novel human papillomavirus type 16 late mRNAs in differentiated W12 cervical epithelial cells. Virology 2006; 360:172-81. [PMID: 17098271 PMCID: PMC2151308 DOI: 10.1016/j.virol.2006.10.012] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2006] [Revised: 09/12/2006] [Accepted: 10/05/2006] [Indexed: 11/15/2022]
Abstract
The life cycle of human papillomavirus type 16 (HPV16) is intimately linked to differentiation of the epithelium it infects, and late events in the life cycle are restricted to the suprabasal layers. Here we have used 5′RACE of polyadenylated RNA isolated from differentiated W12 cells (cervical epithelial cells containing episomal copies of the HPV16 genome) that express virus late proteins to map virus late mRNAs. Thirteen different transcripts were identified. Extensive alternative splicing and use of two late polyadenylation sites were noted. A novel promoter located in the long control region was detected as well as P97 and Plate. Promoters in the E4 and E5 open reading frames were active yielding transcripts where L1 or L2 respectively are the first open reading frames. Finally, mRNAs that could encode novel proteins E6*^*E7, E6*^E4, E1^*E4 and E1^E2C (putative repressor E2) were identified, indicating that HPV16 may encode more late proteins than previously accepted.
Collapse
|
40
|
Füle T, Máthé M, Suba Z, Csapó Z, Szarvas T, Tátrai P, Paku S, Kovalszky I. The presence of human papillomavirus 16 in neural structures and vascular endothelial cells. Virology 2006; 348:289-96. [PMID: 16499942 DOI: 10.1016/j.virol.2005.12.043] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2005] [Revised: 11/17/2005] [Accepted: 12/01/2005] [Indexed: 11/16/2022]
Abstract
Human papillomavirus (HPV) is known as a strictly epitheliotropic pathogen. Our results raised the possibility that HPV 16 is present in neural cells and in the vascular endothelium. By in situ hybridization, we have detected HPV 16 E6 ORF sequence in small blood vessels and peripheral nerves adjacent to oral and cervical cancers. The same structures have clearly shown immunohistochemical reactivity for the E6 oncoprotein. These results were verified by PCR applied to E6 and L1 ORFs following microscopic laser dissection of the immunohistochemically positive nerves and vessels. These observations suggest that HPV 16 DNA and protein are present in neurons and endothelial cells in the vicinity of HPV-associated tumors. The HPV 16 genome presumably exists in a non-replicating form in the neurons and constitutively produces high levels of E6 and E7 proteins with an unknown neuropathological outcome.
Collapse
Affiliation(s)
- Tibor Füle
- Department of Molecular Pathology, Joint Research Organization of the Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Kukimoto I, Takeuchi T, Kanda T. CCAAT/enhancer binding protein beta binds to and activates the P670 promoter of human papillomavirus type 16. Virology 2005; 346:98-107. [PMID: 16307770 DOI: 10.1016/j.virol.2005.10.025] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2005] [Revised: 10/11/2005] [Accepted: 10/17/2005] [Indexed: 11/18/2022]
Abstract
The P670 promoter of HPV16 directs transcription of the virus late genes in the differentiating epithelium. We found that CCAAT/enhancer binding protein beta (C/EBPbeta), a key transcription factor that induces the terminal differentiation of keratinocytes, enhanced the P670-driven transcription in transient reporter assays in HeLa cells and human primary keratinocytes, whereas it inhibited, as reported previously, the transcription from the early P97 promoter. An electrophoretic mobility shift analysis identified two binding sites in the upstream region of P670 for a bacterially expressed C/EBPbeta. A chromatin immunoprecipitation analysis demonstrated that C/EBPbeta bound to these sites of the P670 reporter plasmid in HeLa cells. Nucleotide substitutions in these sites in the reporter plasmid abrogated the enhancement by C/EBPbeta in the transient HeLa and keratinocyte assays, indicating that the C/EBPbeta-binding to these sites is required for the enhancement of transcription from P670. These results suggest that C/EBPbeta is involved in enhancing transcription from the P670 during keratinocyte differentiation.
Collapse
Affiliation(s)
- Iwao Kukimoto
- Division of Molecular Genetics, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan.
| | | | | |
Collapse
|
42
|
Johnson AS, Maronian N, Vieira J. Activation of Kaposi's sarcoma-associated herpesvirus lytic gene expression during epithelial differentiation. J Virol 2005; 79:13769-77. [PMID: 16227296 PMCID: PMC1262565 DOI: 10.1128/jvi.79.21.13769-13777.2005] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The oral cavity has been identified as the major site for the shedding of infectious Kaposi's sarcoma-associated herpesvirus (KSHV). While KSHV DNA is frequently detected in the saliva of KSHV seropositive persons, it does not appear to replicate in salivary glands. Some viruses employ the process of epithelial differentiation for productive viral replication. To test if KSHV utilizes the differentiation of oral epithelium as a mechanism for the activation of lytic replication and virus production, we developed an organotypic raft culture model of epithelium using keratinocytes from human tonsils. This system produced a nonkeratinized stratified squamous oral epithelium in vitro, as demonstrated by the presence of nucleated cells at the apical surface; the expression of involucrin and keratins 6, 13, 14, and 19; and the absence of keratin 1. The activation of KSHV lytic-gene expression was examined in this system using rKSHV.219, a recombinant virus that expresses the green fluorescent protein during latency from the cellular EF-1alpha promoter and the red fluorescent protein (RFP) during lytic replication from the viral early PAN promoter. Infection of keratinocytes with rKSHV.219 resulted in latent infection; however, when these keratinocytes differentiated into a multilayered epithelium, lytic cycle activation of rKSHV.219 occurred, as evidenced by RFP expression, the expression of the late virion protein open reading frame K8.1, and the production of infectious rKSHV.219 at the epithelial surface. These findings demonstrate that KSHV lytic activation occurs as keratinocytes differentiate into a mature epithelium, and it may be responsible for the presence of infectious KSHV in saliva.
Collapse
Affiliation(s)
- Andrew S Johnson
- Department of Laboratory Medicine, University of Washington, Box 358070, 1959 NE Pacific Street, Seattle, Washington 98109-8070, USA
| | | | | |
Collapse
|
43
|
Spink KM, Laimins LA. Induction of the human papillomavirus type 31 late promoter requires differentiation but not DNA amplification. J Virol 2005; 79:4918-26. [PMID: 15795277 PMCID: PMC1069532 DOI: 10.1128/jvi.79.8.4918-4926.2005] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human papillomavirus (HPV) life cycle is linked to the differentiation state of the host cell. In virus-infected undifferentiated basal epithelial cells, HPV genomes are maintained as episomes at low copy number. Upon differentiation, a concomitant increase in viral copy number and an induction of late gene expression from a differentiation-specific promoter is seen. To investigate whether late gene expression was dependent on the amplification of the viral genome, inhibitors of DNA replication and in vitro systems for epithelial differentiation were used in conjunction with cells that stably maintain HPV31 episomes. Treatment of cells induced to differentiate in methylcellulose with the DNA synthesis inhibitor cytosine beta-arabinofuranoside (AraC) blocked viral DNA amplification but did not prevent induction of late transcription. This suggests that late gene expression does not strictly require amplification of the viral genome and that differentiation signals alone are sufficient to activate transcription from the late promoter. However, DNA amplification does appear to be necessary for maximal induction of the late promoter. In order to examine the cis-acting elements that contribute to the activation of the late promoter, a transient reporter assay was developed. In these assays, an induction of late gene expression was seen upon differentiation that was specific to the late promoter. Mapping studies localized important regulatory elements to the E6/E7 region and identified short sequences that could serve as binding sites for transcription factors. Elements within the upstream regulatory region were also found to positively and negatively influence transcription from the late promoter. These results identify mechanisms important for the differentiation-dependent activation of late gene expression of high-risk papillomaviruses.
Collapse
Affiliation(s)
- Kathryn M Spink
- Microbiology-Immunology Department, Northwestern University, 303 E. Chicago Ave, Chicago, IL 60611, USA
| | | |
Collapse
|
44
|
Ishihara SL, Morohashi KI. A boundary for histone acetylation allows distinct expression patterns of the Ad4BP/SF-1 and GCNF loci in adrenal cortex cells. Biochem Biophys Res Commun 2005; 329:554-62. [PMID: 15737622 DOI: 10.1016/j.bbrc.2005.02.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2005] [Indexed: 01/21/2023]
Abstract
Ad4BP/SF-1 is a nuclear receptor whose expression is restricted to tissues involved in steroid hormone synthesis such as the adrenal cortex and gonads. Recent sequence data analysis has shown that the Ad4BP/SF-1 gene is located only 13kb downstream of the last exon of the neighboring GCNF gene that is expressed in some neurons and gonadal germ cells. Despite the close proximity of the two genes, regulatory elements from one do not interfere with the transcription of the neighboring gene, resulting in distinct expression patterns of Ad4BP/SF-1 and GCNF. This observation has led to the prediction that an insulator element must exist between the two loci to establish independent transcription units. We performed DNase I hypersensitivity assays on the adrenal cortex cell line, Y-1, to test for the existence of an insulator. Three hypersensitive sites were identified in the region spanning 2.1kb between the last exon of GCNF and the first exon of Ad4BP/SF-1. The most upstream site contains a binding site for CTCF, a known insulator protein, while the other sites are predicted to associate with the nuclear matrix. Chromatin immunoprecipitation analysis using anti-acetylated histone H3 and H4 antibodies showed a discontinuous pattern of histone H3 and H4 acetylation upstream of these sites. Our data suggest that the chromatin architecture specialized by CTCF and the nuclear matrix contribute to the distinct pattern of transcriptional regulation of these genes.
Collapse
Affiliation(s)
- Satoru L Ishihara
- Division for Sex Differentiation, National Institute for Basic Biology, National Institutes of Natural Sciences, Higashiyama 5-1, Myoudaiji-cho, Okazaki 444-8787, Japan
| | | |
Collapse
|
45
|
Bodily JM, Meyers C. Genetic analysis of the human papillomavirus type 31 differentiation-dependent late promoter. J Virol 2005; 79:3309-21. [PMID: 15731225 PMCID: PMC1075705 DOI: 10.1128/jvi.79.6.3309-3321.2005] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human papillomaviruses infect stratifying squamous epithelia, causing benign and malignant lesions. Upon differentiation of the host keratinocyte, the virus undergoes a dramatic increase in both DNA replication and transcription from the late promoter, leading to expression of late genes and virion morphogenesis. In human papillomavirus type 31 (HPV31), the late promoter is designated p742 and includes multiple start sites embedded within the E7 gene. In this report, we mapped viral DNA elements that control transcriptional activity from p742. Enhancer elements in the viral upstream regulatory region positively regulate this promoter. The region containing the transcriptional start sites is dispensable for activity, and at least two separate elements in the E6/E7 region are capable of supporting transcription. Of these, we mapped one to a 150-bp region of the E7 open reading frame and designate it the core p742 promoter. Using GF109203X, an inhibitor of protein kinase C signaling, we show that p742 activation is independent of viral genome amplification. Finally, we mapped elements in the region of p742 that confer responsiveness to differentiation and show that the upstream regulatory region does not contribute to the differentiation response of p742. These studies are an important step toward understanding the functioning and regulation of this multiple-start promoter.
Collapse
Affiliation(s)
- Jason M Bodily
- Department of Microbiology and Immunology H107, P. O. Box 850, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | | |
Collapse
|
46
|
Van Tine BA, Kappes JC, Banerjee NS, Knops J, Lai L, Steenbergen RDM, Meijer CLJM, Snijders PJF, Chatis P, Broker TR, Moen PT, Chow LT. Clonal selection for transcriptionally active viral oncogenes during progression to cancer. J Virol 2004; 78:11172-86. [PMID: 15452237 PMCID: PMC521852 DOI: 10.1128/jvi.78.20.11172-11186.2004] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Primary keratinocytes immortalized by human papillomaviruses (HPVs), along with HPV-induced cervical carcinoma cell lines, are excellent models for investigating neoplastic progression to cancer. By simultaneously visualizing viral DNA and nascent viral transcripts in interphase nuclei, we demonstrated for the first time a selection for a single dominant papillomavirus transcription center or domain (PVTD) independent of integrated viral DNA copy numbers or loci. The PVTD did not associate with several known subnuclear addresses but was almost always perinucleolar. Silent copies of the viral genome were activated by growth in the DNA methylation inhibitor 5-azacytidine. HPV-immortalized keratinocytes supertransduced with HPV oncogenes and selected for marker gene coexpression underwent crisis, and the surviving cells transcribed only the newly introduced genes. Thus, transcriptional selection in response to environmental changes is a dynamic process to achieve optimal gene expression for cell survival. This phenomenon may be critical in clonal selection during carcinogenesis. Examination of HPV-associated cancers supports this hypothesis.
Collapse
MESH Headings
- Cell Line, Transformed
- Cell Nucleolus/virology
- Cell Transformation, Neoplastic
- DNA, Viral/analysis
- Gene Expression Regulation, Viral
- Humans
- In Situ Hybridization, Fluorescence
- Keratinocytes/virology
- Oncogene Proteins, Viral/genetics
- Oncogene Proteins, Viral/metabolism
- Papillomaviridae/genetics
- Papillomaviridae/pathogenicity
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Selection, Genetic
- Transcription, Genetic
- Tyramine
- Virus Integration
Collapse
Affiliation(s)
- Brian A Van Tine
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, 1918 University Blvd., McCallum Bldg., Rm. 510, Birmingham, AL 35294-0005, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Longworth MS, Laimins LA. Pathogenesis of human papillomaviruses in differentiating epithelia. Microbiol Mol Biol Rev 2004; 68:362-72. [PMID: 15187189 PMCID: PMC419925 DOI: 10.1128/mmbr.68.2.362-372.2004] [Citation(s) in RCA: 423] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human papillomaviruses (HPV) are the etiological agents of cervical and other anogenital malignancies. Over 100 different types of HPVs have been identified to date, and all target epithelial tissues for infection. One-third of HPV types specifically infect the genital tract, and a subset of these are the causative agents of anogenital cancers. Other HPV types that infect the genital tract induce benign hyperproliferative lesions or genital warts. The productive life cycle of HPVs is linked to epithelial differentiation. Papillomaviruses are thought to infect cells in the basal layer of stratified epithelia and establish their genomes as multicopy nuclear episomes. In these cells, viral DNA is replicated along with cellular chromosomes. Following cell division, one of the daughter cells migrates away from the basal layer and undergoes differentiation. In highly differentiated suprabasal cells, vegetative viral replication and late-gene expression are activated, resulting in the generation of progeny virions. Since virion production is restricted to differentiated cells, infected basal cells can persist for up to several decades or until the immune system clears the infection. The E6 and E7 genes encode viral oncoproteins that target Rb and p53, respectively. During the viral life cycle, these proteins facilitate stable maintenance of episomes and stimulate differentiated cells to reenter the S phase. The E1 and E2 proteins act as origin recognition factors as well as regulators of early viral transcription. The functions of the E5 and E1--E4 proteins are still largely unknown, but these proteins have been implicated in modulating late viral functions. The L1 and L2 proteins form icosahedral capsids for progeny virion generation. The characterization of the cellular targets of these viral proteins and the mechanisms regulating the differentiation-dependent viral life cycle remain active areas for the study of these important human pathogens.
Collapse
Affiliation(s)
- Michelle S Longworth
- Department of Microbiology-Immunology, The Fineberg Medical School, Northwestern University, 303 E. Chicago Ave., Chicago, IL 60611, USA
| | | |
Collapse
|
48
|
Rosenstierne MW, Vinther J, Hansen CN, Prydsoe M, Norrild B. Identification and characterization of a cluster of transcription start sites located in the E6 ORF of human papillomavirus type 16. J Gen Virol 2003; 84:2909-2920. [PMID: 14573795 DOI: 10.1099/vir.0.19332-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Human papillomavirus type 16 (HPV-16) is the prototype strain among the malignant types of HPV in the western world. The main promoter, P97, located in front of the E6 ORF, has been shown to control expression of the oncogenes E6 and E7. These oncogenes are expressed continuously in HPV-16-transformed cells. In contrast to malignant HPV types, non-malignant HPV types have separate promoters driving the expression of E6 and E7. Experiments have shown that the translation of E7 is more efficient from monocistronic than bicistronic transcripts encoding both E6 and E7. Here, identification of a cluster of transcription start sites located in the E6 ORF of HPV-16 is presented. Transcripts from this region contain the E7 ORF as the first reading frame. The cluster consists of multiple transcription start sites located around nt 441. Additional transcription start sites were identified in a cluster around nt 480. A transcription start site has been identified previously at nt 480 but has never been characterized further. The region responsible for transcription activity was mapped to nt 272-448. Mutational analysis showed that initiation of transcription is independent of a TATA-box element, which is consistent with the finding of multiple transcription start sites. Furthermore, it is shown that proteins from HeLa and SiHa nuclear cell extracts bind to the two regions at nt 291-314 and 388-411, and that these two regions influence transcription activity in a cell type-dependent manner.
Collapse
Affiliation(s)
- Maiken W Rosenstierne
- Institute of Molecular Pathology, The Protein Laboratory, University of Copenhagen, Panum Institute, Bldg 6.2, Blegdamsvej 3C, DK.2200 Copenhagen N., Denmark
| | - Jeppe Vinther
- Institute of Molecular Pathology, The Protein Laboratory, University of Copenhagen, Panum Institute, Bldg 6.2, Blegdamsvej 3C, DK.2200 Copenhagen N., Denmark
| | - Christina N Hansen
- Institute of Molecular Pathology, The Protein Laboratory, University of Copenhagen, Panum Institute, Bldg 6.2, Blegdamsvej 3C, DK.2200 Copenhagen N., Denmark
| | - Martin Prydsoe
- Institute of Molecular Pathology, The Protein Laboratory, University of Copenhagen, Panum Institute, Bldg 6.2, Blegdamsvej 3C, DK.2200 Copenhagen N., Denmark
| | - Bodil Norrild
- Institute of Molecular Pathology, The Protein Laboratory, University of Copenhagen, Panum Institute, Bldg 6.2, Blegdamsvej 3C, DK.2200 Copenhagen N., Denmark
| |
Collapse
|
49
|
Bechtold V, Beard P, Raj K. Human papillomavirus type 16 E2 protein has no effect on transcription from episomal viral DNA. J Virol 2003; 77:2021-8. [PMID: 12525636 PMCID: PMC140940 DOI: 10.1128/jvi.77.3.2021-2028.2003] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human papillomavirus (HPV) E2 protein plays an important role in viral DNA replication. Many studies with high-risk HPVs have demonstrated that the E2 protein can also repress transcription of the E6 and E7 oncogenes. This conclusion, based on experiments carried out with cervical cancer cells bearing integrated HPV genomes, is currently assumed to be applicable to the normal HPV life cycle, in which the viral genomes are episomal. Here, we have tested experimentally whether this assumption is correct. We made use of a pair of isogenic cell lines, W12 and S12. W12 cells contain episomal HPV16 genomes, whereas S12 cells, which are derived from the W12 line, contain HPV DNA as integrated copies. When we expressed E2 in S12 cells, we observed strong repression of E6 and E7 transcription. In contrast, no effect of E2 on the transcription of these genes was detected in W12 cells. While integration of the viral genome into the host DNA contributes to the difference between W12 and S12 cells, integration by itself is not sufficient to explain this difference. Instead, the chromatin structure in the region of the E6 and E7 promoter (p97), which we show to be very different in these two cell lines, is likely to be the cause of the different responsiveness of p97 to the E2 protein. Experiments with the histone deacetylase inhibitor trichostatin A (TSA) indicated that the episomal HPV16 DNA is in a relatively inaccessible state prior to TSA treatment. Our results, together with those of others, suggest that any effect of the E2 protein on the expression of the E6 and E7 genes during the normal viral life cycle is of secondary importance compared to the function of E2 in replication.
Collapse
Affiliation(s)
- Viviane Bechtold
- Swiss Institute for Experimental Cancer Research (ISREC), 1066 Epalinges, Switzerland
| | | | | |
Collapse
|
50
|
Bernard HU. Gene Expression of Genital Human Papillomaviruses and Considerations on Potential Antiviral Approaches. Antivir Ther 2002. [DOI: 10.1177/135965350200700401] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Genital human papillomaviruses (HPVs) are carcinogenic to humans and are associated with most cases of cervical cancer, genital and laryngeal warts, and certain cutaneous neoplastic lesions. Five of the more than 50 known genital HPV types, HPV-6, -11, -16, -18 and -31, have become the models to study gene expression. The comparison of the studies of these five viruses and analyses of the genomic sequences of those genital HPV types that have not been transcriptionally studied make it likely that genital HPVs share most strategies for regulating their transcription. These strategies are quite different from those of unrelated human and animal papillomaviruses. Among these common properties are (i) a specific promoter structure allowing for fine-tuned negative feedback, (ii) a transcriptional enhancer that is specific for epithelial cells, (iii) regulation by progesterone and glucocorticoid hormones, (iv) silencers, whose principal function appears to be transcriptional repression in the basal layer of infected epithelia, (v) specifically positioned nucleosomes that mediate the functions of some enhancer and the silencer factors, (vi) nuclear matrix attachment regions that can, under different conditions, repress or stimulate transcription, and (vii) as yet poorly understood late promoters positioned very remote from the late genes. Most of these properties are controlled by cellular proteins that, due to their simultaneous importance for cellular processes, may not be useful as HPV-specific drug targets. It should be possible, however, to target complex cis-responsive elements unique to these HPV genomes by nucleotide sequence-specific molecules, such as antisense RNA, polyamides and artificial transcription factors. The application of small molecule-based drugs may be restricted to target proteins encoded by the HPV DNA, such as the replication factor E1 and the transcription/replication factor E2.
Collapse
|