1
|
Ghafarian S, Samavat B, Lee K, Sheikhghomi S, Cheraghpour K, Shukla D, Djalilian AR, Chodosh J, Soleimani M. Clinical strategies to prevent recurrence of Herpes simplex and Herpes zoster following ocular surgery: A comprehensive review with practical guidelines. Surv Ophthalmol 2025; 70:734-755. [PMID: 39961450 DOI: 10.1016/j.survophthal.2025.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 02/07/2025] [Accepted: 02/10/2025] [Indexed: 02/23/2025]
Abstract
Recurrences of herpetic infections following intraocular surgeries pose a threat to optimal surgical outcomes. The high prevalence of herpetic diseases require ophthalmologists to be familiar with the special measures in the surgery of these patients. A thorough preoperative assessment and meticulous postoperative surveillance should be tailored for each patient, depending on the surgery and the risk of virus reactivation. We compile the relevant evidence in the literature and provide a comprehensive review of the preoperative assessment and postoperative diagnostic clues and management of the herpetic infections following different types of intraocular surgeries, including cataract surgery, keratoplasty, corneal crosslinking, glaucoma, and refractive surgeries.
Collapse
Affiliation(s)
- Sadegh Ghafarian
- Department of Ophthalmology, Farabi Eye Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Bijan Samavat
- Department of Ophthalmology, Velayat Hospital, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Karen Lee
- Department of Ophthalmology, University of North Carolina, NC, USA
| | - Sima Sheikhghomi
- Department of Ophthalmology, Madani Hospital, Alborz University of Medical Sciences, Jahanshahr, Karaj, Alborz Province, Iran
| | - Kasra Cheraghpour
- Department of Ophthalmology, Farabi Eye Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Deepak Shukla
- Department of Ophthalmology & Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA; Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, USA
| | - Ali R Djalilian
- Department of Ophthalmology & Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - James Chodosh
- Department of Ophthalmology and Visual Sciences, University of New Mexico School of Medicine, NM, USA
| | | |
Collapse
|
2
|
Lee SH, Koh A, Lee SJ, Lee H, Kim KW. M2a Macrophage-Dominant Microenvironment in Inflammation Attenuation and Wound Healing of Human Corneal Endothelial Cells. Invest Ophthalmol Vis Sci 2025; 66:35. [PMID: 40492988 PMCID: PMC12165261 DOI: 10.1167/iovs.66.6.35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 05/17/2025] [Indexed: 06/12/2025] Open
Abstract
Purpose To investigate the anti-inflammatory and wound-healing effects of an M2a macrophage-dominant microenvironment on human corneal endothelial cells (HCECs) in vitro. Methods Two in vitro corneal endothelial inflammation models were developed: a lipopolysaccharide (LPS)-induced inflammation-only model and a dual inflammation-and-wound model. HCECs were co-cultured with M2a macrophages or treated with M1 macrophage-derived exosomes (M1-exo), M2a macrophage-derived exosomes (M2a-exo), or epidermal growth factor (EGF)-preconditioned M2a-derived exosomes (EGF-M2a-exo). Gene and protein expression of inflammatory markers was assessed, and HCEC proliferation was evaluated using cell growth curves. Results Scratch wounding alone did not induce significant inflammation in HCECs, whereas LPS stimulation combined with scratch wounding markedly increased inflammatory responses. In the inflammation-only model, co-culture with M2a macrophages or M2a-exo treatment significantly suppressed LPS-induced upregulation of IL6, IL1B, and ICAM1 at the mRNA level in HCECs and reduced IL-6 protein secretion. In the dual inflammation-and-wound model, M2a-exo showed limited efficacy, but EGF-M2a-exo significantly reduced inflammatory marker expression. Cell growth analysis revealed that M2a-exo treatment promoted faster HCEC proliferation compared to M1-exo treatment under non-inflammatory conditions, despite no significant differences in cell cycle-related genes. In LPS-stimulated HCECs, EGF-M2a-exo treatment restored proliferation to levels comparable with non-inflammatory controls by day 5. Conclusions An M2a macrophage-dominant microenvironment demonstrates anti-inflammatory and regenerative effects on inflamed HCECs. EGF preconditioning enhances these properties, suggesting a potential therapeutic approach for managing corneal endothelial inflammation and injury.
Collapse
Affiliation(s)
- Seung Hyeun Lee
- Chung-Ang Ocular Surface Restoration via Immune-Inflammation Alleviation (CORIA) Laboratory, Seoul, Republic of Korea
- Department of Ophthalmology, Chung-Ang University Gwangmyeong Hospital, Gwangmyeong-si, Gyeonggi-do, Republic of Korea
- Chung-Ang University Graduate School, Seoul, Republic of Korea
| | - Ahra Koh
- Chung-Ang Ocular Surface Restoration via Immune-Inflammation Alleviation (CORIA) Laboratory, Seoul, Republic of Korea
- Chung-Ang University Graduate School, Seoul, Republic of Korea
| | - Soo Jin Lee
- Chung-Ang Ocular Surface Restoration via Immune-Inflammation Alleviation (CORIA) Laboratory, Seoul, Republic of Korea
| | - Hun Lee
- Department of Ophthalmology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Kyoung Woo Kim
- Chung-Ang Ocular Surface Restoration via Immune-Inflammation Alleviation (CORIA) Laboratory, Seoul, Republic of Korea
- Department of Ophthalmology, Chung-Ang University College of Medicine, Chung-Ang University Hospital, Seoul, Republic of Korea
| |
Collapse
|
3
|
Uday S, Modak D, Sanjay S. Corneal epithelial and fibrovascular downgrowth postcataract surgery with intrastromal bleed: a rare case study with multimodal imaging. BMJ Case Rep 2024; 17:e253299. [PMID: 38479826 PMCID: PMC10941121 DOI: 10.1136/bcr-2022-253299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2024] Open
Abstract
A woman in her 60s presented with diminution of vision and redness in her right eye (OD) 1.5 months duration, 10 months post cataract surgery. The best-corrected visual acuity (BCVA) on the OD was fingers counting at 0.5 m. The anterior section of the OD demonstrated superior pre-Descemet's intrastromal bleeding, superior dense fibrovascular growth in the corneal mid-stroma and superior fibrovascular downgrowth measuring 5×5 mm in the anterior chamber. Along with topical prednisolone acetate (1%) suspension 4 times per day on a tapering dose, antivascular endothelial growth factor therapy was administered intrastromally and subconjunctivally in the superior bulbar conjunctiva near limbus (0.05 mL of 2.5 mg/0.1 mL at each site). Over the course of a week, the intrastromal bleed had completely stopped. Three months later, at the final follow-up, the BCVA had marginally improved to fingers counting 2 m, with a lingering 4×4 mm nebulomacular scar.
Collapse
Affiliation(s)
- Shylaja Uday
- Cornea, Narayana Nethralaya, Bangalore, Karnataka, India
| | - Durgalaxmi Modak
- Cornea and Refractive Surgery, Narayana Nethralaya, Bangalore, Karnataka, India
| | - Srinivasan Sanjay
- Uveitis and Ocular Immunology, Narayana Nethralaya, Bangalore, Karnataka, India
| |
Collapse
|
4
|
Clahsen T, Hadrian K, Notara M, Schlereth SL, Howaldt A, Prokosch V, Volatier T, Hos D, Schroedl F, Kaser-Eichberger A, Heindl LM, Steven P, Bosch JJ, Steinkasserer A, Rokohl AC, Liu H, Mestanoglu M, Kashkar H, Schumacher B, Kiefer F, Schulte-Merker S, Matthaei M, Hou Y, Fassbender S, Jantsch J, Zhang W, Enders P, Bachmann B, Bock F, Cursiefen C. The novel role of lymphatic vessels in the pathogenesis of ocular diseases. Prog Retin Eye Res 2023; 96:101157. [PMID: 36759312 DOI: 10.1016/j.preteyeres.2022.101157] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/13/2022] [Accepted: 12/17/2022] [Indexed: 02/10/2023]
Abstract
Historically, the eye has been considered as an organ free of lymphatic vessels. In recent years, however, it became evident, that lymphatic vessels or lymphatic-like vessels contribute to several ocular pathologies at various peri- and intraocular locations. The aim of this review is to outline the pathogenetic role of ocular lymphatics, the respective molecular mechanisms and to discuss current and future therapeutic options based thereon. We will give an overview on the vascular anatomy of the healthy ocular surface and the molecular mechanisms contributing to corneal (lymph)angiogenic privilege. In addition, we present (i) current insights into the cellular and molecular mechanisms occurring during pathological neovascularization of the cornea triggered e.g. by inflammation or trauma, (ii) the role of lymphatic vessels in different ocular surface pathologies such as dry eye disease, corneal graft rejection, ocular graft versus host disease, allergy, and pterygium, (iii) the involvement of lymphatic vessels in ocular tumors and metastasis, and (iv) the novel role of the lymphatic-like structure of Schlemm's canal in glaucoma. Identification of the underlying molecular mechanisms and of novel modulators of lymphangiogenesis will contribute to the development of new therapeutic targets for the treatment of ocular diseases associated with pathological lymphangiogenesis in the future. The preclinical data presented here outline novel therapeutic concepts for promoting transplant survival, inhibiting metastasis of ocular tumors, reducing inflammation of the ocular surface, and treating glaucoma. Initial data from clinical trials suggest first success of novel treatment strategies to promote transplant survival based on pretransplant corneal lymphangioregression.
Collapse
Affiliation(s)
- Thomas Clahsen
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Karina Hadrian
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Maria Notara
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Simona L Schlereth
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Antonia Howaldt
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Verena Prokosch
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Thomas Volatier
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Deniz Hos
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Falk Schroedl
- Center for Anatomy and Cell Biology, Institute of Anatomy and Cell Biology - Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Alexandra Kaser-Eichberger
- Center for Anatomy and Cell Biology, Institute of Anatomy and Cell Biology - Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Ludwig M Heindl
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Philipp Steven
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Cluster of Excellence: Cellular Stress Responses in Ageing-Associated Diseases, CECAD, University of Cologne, Cologne, Germany
| | - Jacobus J Bosch
- Centre for Human Drug Research and Leiden University Medical Center, Leiden, the Netherlands
| | | | - Alexander C Rokohl
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Hanhan Liu
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Mert Mestanoglu
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Hamid Kashkar
- Institute for Molecular Immunology, Center for Molecular Medicine Cologne (CMMC), CECAD Research Center, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Björn Schumacher
- Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany; Cluster of Excellence: Cellular Stress Responses in Ageing-Associated Diseases, CECAD, University of Cologne, Cologne, Germany
| | - Friedemann Kiefer
- European Institute for Molecular Imaging (EIMI), University of Münster, 48149, Münster, Germany
| | - Stefan Schulte-Merker
- Institute for Cardiovascular Organogenesis and Regeneration, Faculty of Medicine, WWU Münster, Münster, Germany
| | - Mario Matthaei
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Yanhong Hou
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, 83 Fenyang Road, Xuhui District, Shanghai, China
| | - Sonja Fassbender
- IUF‒Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany; Immunology and Environment, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Jonathan Jantsch
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Wei Zhang
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Philip Enders
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Björn Bachmann
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Felix Bock
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Claus Cursiefen
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany; Cluster of Excellence: Cellular Stress Responses in Ageing-Associated Diseases, CECAD, University of Cologne, Cologne, Germany.
| |
Collapse
|
5
|
Dempsey MP, Conrady CD. The Host-Pathogen Interplay: A Tale of Two Stories within the Cornea and Posterior Segment. Microorganisms 2023; 11:2074. [PMID: 37630634 PMCID: PMC10460047 DOI: 10.3390/microorganisms11082074] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/10/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Ocular infectious diseases are an important cause of potentially preventable vision loss and blindness. In the following manuscript, we will review ocular immunology and the pathogenesis of herpesviruses and Pseudomonas aeruginosa infections of the cornea and posterior segment. We will highlight areas of future research and what is currently known to promote bench-to-bedside discoveries to improve clinical outcomes of these debilitating ocular diseases.
Collapse
Affiliation(s)
- Michael P. Dempsey
- Department of Ophthalmology and Visual Sciences, Truhlsen Eye Center, University of Nebraska Medical Center, Omaha, NE 68105, USA
| | - Christopher D. Conrady
- Department of Ophthalmology and Visual Sciences, Truhlsen Eye Center, University of Nebraska Medical Center, Omaha, NE 68105, USA
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
6
|
Ren J, Antony F, Rouse BT, Suryawanshi A. Role of Innate Interferon Responses at the Ocular Surface in Herpes Simplex Virus-1-Induced Herpetic Stromal Keratitis. Pathogens 2023; 12:437. [PMID: 36986359 PMCID: PMC10058014 DOI: 10.3390/pathogens12030437] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023] Open
Abstract
Herpes simplex virus type 1 (HSV-1) is a highly successful pathogen that primarily infects epithelial cells of the orofacial mucosa. After initial lytic replication, HSV-1 enters sensory neurons and undergoes lifelong latency in the trigeminal ganglion (TG). Reactivation from latency occurs throughout the host's life and is more common in people with a compromised immune system. HSV-1 causes various diseases depending on the site of lytic HSV-1 replication. These include herpes labialis, herpetic stromal keratitis (HSK), meningitis, and herpes simplex encephalitis (HSE). HSK is an immunopathological condition and is usually the consequence of HSV-1 reactivation, anterograde transport to the corneal surface, lytic replication in the epithelial cells, and activation of the host's innate and adaptive immune responses in the cornea. HSV-1 is recognized by cell surface, endosomal, and cytoplasmic pattern recognition receptors (PRRs) and activates innate immune responses that include interferons (IFNs), chemokine and cytokine production, as well as the recruitment of inflammatory cells to the site of replication. In the cornea, HSV-1 replication promotes type I (IFN-α/β) and type III (IFN-λ) IFN production. This review summarizes our current understanding of HSV-1 recognition by PRRs and innate IFN-mediated antiviral immunity during HSV-1 infection of the cornea. We also discuss the immunopathogenesis of HSK, current HSK therapeutics and challenges, proposed experimental approaches, and benefits of promoting local IFN-λ responses.
Collapse
Affiliation(s)
- Jiayi Ren
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, 240B Greene Hall, Auburn, AL 36849, USA
| | - Ferrin Antony
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, 240B Greene Hall, Auburn, AL 36849, USA
| | - Barry T. Rouse
- College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA
| | - Amol Suryawanshi
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, 240B Greene Hall, Auburn, AL 36849, USA
| |
Collapse
|
7
|
Filiberti A, Gmyrek GB, Berube AN, Carr DJJ. Osteopontin contributes to virus resistance associated with type I IFN expression, activation of downstream ifn-inducible effector genes, and CCR2 +CD115 +CD206 + macrophage infiltration following ocular HSV-1 infection of mice. Front Immunol 2023; 13:1028341. [PMID: 36685562 PMCID: PMC9846535 DOI: 10.3389/fimmu.2022.1028341] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 12/05/2022] [Indexed: 01/06/2023] Open
Abstract
Ocular pathology is often associated with acute herpes simplex virus (HSV)-1 infection of the cornea in mice. The present study was undertaken to determine the role of early T lymphocyte activation 1 protein or osteopontin (OPN) in corneal inflammation and host resistance to ocular HSV-1 infection. C57BL/6 wild type (WT) and osteopontin deficient (OPN KO) mice infected in the cornea with HSV-1 were evaluated for susceptibility to infection and cornea pathology. OPN KO mice were found to possess significantly more infectious virus in the cornea at day 3 and day 7 post infection compared to infected WT mice. Coupled with these findings, HSV-1-infected OPN KO mouse corneas were found to express less interferon (IFN)-α1, double-stranded RNA-dependent protein kinase, and RNase L compared to infected WT animals early post infection that likely contributed to decreased resistance. Notably, OPN KO mice displayed significantly less corneal opacity and neovascularization compared to WT mice that paralleled a decrease in expression of vascular endothelial growth factor (VEGF) A within 12 hr post infection. The change in corneal pathology of the OPN KO mice aligned with a decrease in total leukocyte infiltration into the cornea and specifically, in neutrophils at day 3 post infection and in macrophage subpopulations including CCR2+CD115+CD206+ and CD115+CD183+CD206+ -expressing cells. The infiltration of CD4+ and CD8+ T cells into the cornea was unaltered comparing infected WT to OPN KO mice. Likewise, there was no difference in the total number of HSV-1-specific CD4+ or CD8+ T cells found in the draining lymph node with both sets functionally competent in response to virus antigen comparing WT to OPN KO mice. Collectively, these results demonstrate OPN deficiency directly influences the host innate immune response to ocular HSV-1 infection reducing some aspects of inflammation but at a cost with an increase in local HSV-1 replication.
Collapse
Affiliation(s)
- Adrian Filiberti
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Grzegorz B. Gmyrek
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Amanda N. Berube
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Daniel J. J. Carr
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| |
Collapse
|
8
|
Ruff AL, Causey RD, Koenig JA, LaGrasta CV, Gomez AM, Chalmers BT, Lehman JG. siRNA high throughput screening identifies regulators of chloropicrin and hydrogen fluoride injury in human corneal epithelial cell models. Exp Eye Res 2022; 222:109169. [PMID: 35820464 DOI: 10.1016/j.exer.2022.109169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 11/04/2022]
Abstract
Corneal injuries induced by various toxicants result in similar clinical presentations such as corneal opacity and neovascularization. Many studies suggest that several weeks post-exposure a convergence of the molecular mechanisms drives these progressive pathologies. However, chemical agents vary in toxicological properties, and early molecular responses are anticipated to be somewhat dissimilar for different toxicants. We chose 3120 targets from the Dharmacon Human Druggable genome to screen for chloropicrin (CP) and hydrogen fluoride (HF) corneal injury as we hypothesized that targets identified in vitro may be effective as therapeutic targets in future studies. Human immortalized corneal epithelial cells (SV40-HCEC) were used for screening. Cell viability and IL-8 were analyzed to down-select hits into validation studies, where multiplex cytokine analysis and high content analysis were performed to understand toxicant effect and target function. Some endpoints were also evaluated in a second human immortalized corneal epithelial cell line, TCEpi. Over 20 targets entered validation studies for CP and HF; of these, only three targets were shared: NR3C1, RELA, and KMT5A. These findings suggest that early molecular responses to different toxicants may be somewhat distinctive and present dissimilar targets for possible early intervention.
Collapse
Affiliation(s)
- Albert L Ruff
- US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, USA.
| | - Robert D Causey
- US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, USA
| | - Jeffrey A Koenig
- US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, USA
| | - Cristina V LaGrasta
- US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, USA
| | - Amber M Gomez
- US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, USA
| | - Bailey T Chalmers
- US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, USA
| | - John G Lehman
- US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, USA
| |
Collapse
|
9
|
Guo H, Koehler HS, Dix RD, Mocarski ES. Programmed Cell Death-Dependent Host Defense in Ocular Herpes Simplex Virus Infection. Front Microbiol 2022; 13:869064. [PMID: 35464953 PMCID: PMC9023794 DOI: 10.3389/fmicb.2022.869064] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/17/2022] [Indexed: 11/13/2022] Open
Abstract
Herpes simplex virus type 1 (HSV1) remains one of the most ubiquitous human pathogens on earth. The classical presentation of HSV1 infection occurs as a recurrent lesions of the oral mucosa commonly refer to as the common cold sore. However, HSV1 also is responsible for a range of ocular diseases in immunocompetent persons that are of medical importance, causing vision loss that may result in blindness. These include a recurrent corneal disease, herpes stromal keratitis, and a retinal disease, acute retinal necrosis, for which clinically relevant animal models exist. Diverse host immune mechanisms mediate control over herpesviruses, sustaining lifelong latency in neurons. Programmed cell death (PCD) pathways including apoptosis, necroptosis, and pyroptosis serve as an innate immune mechanism that eliminates virus-infected cells and regulates infection-associated inflammation during virus invasion. These different types of cell death operate under distinct regulatory mechanisms but all server to curtail virus infection. Herpesviruses, including HSV1, have evolved numerous cell death evasion strategies that restrict the hosts ability to control PCD to subvert clearance of infection and modulate inflammation. In this review, we discuss the key studies that have contributed to our current knowledge of cell death pathways manipulated by HSV1 and relate the contributions of cell death to infection and potential ocular disease outcomes.
Collapse
Affiliation(s)
- Hongyan Guo
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, United States
| | - Heather S. Koehler
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, United States
- School of Molecular Biosciences, College of Veterinary Medicine, Biotechnology Life Sciences, Pullman, WA, United States
| | - Richard D. Dix
- Viral Immunology Center, Department of Biology, Georgia State University, Atlanta, GA, United States
- Department of Ophthalmology, Emory University School of Medicine, Atlanta, GA, United States
| | - Edward S. Mocarski
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
10
|
Tripartite-Motif 21 (TRIM21) Deficiency Results in a Modest Loss of Herpes Simplex Virus (HSV)-1 Surveillance in the Trigeminal Ganglia Following Cornea Infection. Viruses 2022; 14:v14030589. [PMID: 35336995 PMCID: PMC8951137 DOI: 10.3390/v14030589] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/08/2022] [Accepted: 03/10/2022] [Indexed: 12/10/2022] Open
Abstract
Tripartite-motif 21 (TRIM21) is thought to regulate the type I interferon (IFN) response to virus pathogens and serve as a cytosolic Fc receptor for immunoglobulin. Since herpes simplex virus (HSV)-1 is sensitive to type I IFN and neutralizing antibody, we investigated the role of TRIM21 in response to ocular HSV-1 infection in mice. In comparison to wild type (WT) mice, TRIM21 deficient (TRIM21 KO) mice were found to be no more susceptible to ocular HSV-1 infection than WT animals, in terms of infectious virus recovered in the cornea. Similar pathology, in terms of neovascularization, opacity, and loss of peripheral vision function, was observed in both WT and TRIM21 KO mice. However, TRIM21 KO mice did possess a significant increase in infectious virus recovered in the trigeminal ganglia, in comparison to the WT animals. The increased susceptibility was not due to changes in HSV-1-specific CD4+ or CD8+ T cell numbers or functional capabilities, or in changes in type I IFN or IFN-inducible gene expression. In summary, the absence of TRIM21 results in a modest, but significant, increase in HSV-1 titers recovered from the TG of TRIM21 KO mice during acute infection, by a mechanism yet to be determined.
Collapse
|
11
|
Chirapapaisan C, Muller RT, Sahin A, Cruzat A, Cavalcanti BM, Jamali A, Pavan-Langston D, Hamrah P. Effect of herpes simplex keratitis scar location on bilateral corneal nerve alterations: an in vivo confocal microscopy study. Br J Ophthalmol 2022; 106:319-325. [PMID: 33229344 PMCID: PMC11583201 DOI: 10.1136/bjophthalmol-2020-316628] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 09/14/2020] [Accepted: 10/30/2020] [Indexed: 11/04/2022]
Abstract
AIMS To evaluate the impact of herpes simplex virus (HSV)-induced scar location on bilateral corneal nerve alterations using laser in vivo confocal microscopy (IVCM). METHODS Central and peripheral corneal subbasal nerve density (CSND) were assessed bilaterally in 39 patients with unilateral HSV-induced corneal scars (21 central scars (CS), 18 peripheral scars (PS)) using IVCM. Results were compared between patients and 24 age-matched controls. CSND was correlated to corneal sensation for all locations. RESULTS Overall patients revealed significant decrease of CSND in the central and peripheral cornea (9.13±0.98 and 6.26±0.53 mm/mm2, p<0.001), compared with controls (22.60±0.77 and 9.88±0.49 mm/mm2). CS group showed a decrease in central (8.09±1.30 mm/mm2) and total peripheral nerves (5.15±0.62 mm/mm2) of the affected eyes, whereas PS group demonstrated a decrease in central (10.34±1.48 mm/mm2) and localised peripheral nerves only in the scar area (4.22±0.77 mm/mm2) (all p<0.001). In contralateral eyes, CSND decreased in the central cornea of the CS group (16.88±1.27, p=0.004), and in the peripheral area, mirroring the scar area in the affected eyes of the PS group (7.20±0.87, p=0.032). Corneal sensation significantly decreased in the whole cornea of the affected, but not in contralateral eyes (p<0.001). A positive correlation between CSND and corneal sensation was found in all locations (p<0.001). CONCLUSIONS Patients with HSV scar demonstrate bilateral CSND decrease as shown by IVCM. CSND and corneal sensation decrease in both central and peripheral cornea in affected eyes, although only in the scar area in PS group. Interestingly, diminishment of CSND was found locally in the contralateral eyes, corresponding and mirroring the scar location in the affected eyes.
Collapse
Affiliation(s)
- Chareenun Chirapapaisan
- Ocular Surface Imaging Center, Cornea and Refractive Surgery Service, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
- Department of Ophthalmology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Rodrigo T Muller
- Ocular Surface Imaging Center, Cornea and Refractive Surgery Service, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
- Center for Translational Ocular Immunology and Cornea Service, New England Eye Center, Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, Massachusetts, USA
- Department of Ophthalmology, Federal University of São Paulo, São Paulo, Brazil
| | - Afsun Sahin
- Center for Translational Ocular Immunology and Cornea Service, New England Eye Center, Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, Massachusetts, USA
- Department of Ophthalmology, Koc University School of Medicine, Istanbul, Turkey
| | - Andrea Cruzat
- Ocular Surface Imaging Center, Cornea and Refractive Surgery Service, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
- Department of Ophthalmology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Bernardo M Cavalcanti
- Ocular Surface Imaging Center, Cornea and Refractive Surgery Service, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Arsia Jamali
- Ocular Surface Imaging Center, Cornea and Refractive Surgery Service, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
- Center for Translational Ocular Immunology and Cornea Service, New England Eye Center, Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Deborah Pavan-Langston
- Ocular Surface Imaging Center, Cornea and Refractive Surgery Service, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Pedram Hamrah
- Ocular Surface Imaging Center, Cornea and Refractive Surgery Service, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
- Center for Translational Ocular Immunology and Cornea Service, New England Eye Center, Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
12
|
Almeida I, Dias L, Jesus J, Fonseca I, Matias MJ, Pedro JC. Optical coherence tomography angiography in herpetic leucoma. BMC Med Imaging 2022; 22:17. [PMID: 35114961 PMCID: PMC8812036 DOI: 10.1186/s12880-022-00747-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/31/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Herpes simplex virus (HSV) keratitis remains a leading infectious cause of blindness worldwide. Although all forms of HSV keratitis are commonly recurrent, the risk is greatest in stromal keratitis, which is the most likely to result in corneal scarring, thinning, and neovascularization. Recent studies showed the ability of Optical Coherence Tomography Angiography (OCTA) to detect and study vascular abnormalities in the anterior segment, including abnormal corneal vessels. This study intends to investigate the potential of OCTA device to image and describe quantitatively the vascularization in eyes diagnosed with herpetic leucoma and to discuss and review the usefulness of this technique in this pathology. METHODS A Cross-sectional study was made, including 17 eyes of 15 patients with leucoma secondary to herpetic keratitis. All eyes underwent anterior segment Slit-Lamp photography (SLP), and OCTA with en-face, b-scans and c-scans imaging. The vessel density (VD) was analyzed in the inferior, nasal and temporal corneal margin in all patients, and in the central area, in eyes with central corneal neovascularization (CoNV). The measurements were calculated after binarization with ImageJ software, using OCTA scans with 6 × 6 mm in a depth of 800 μm. RESULTS Patients included had a mean age 53.267 ± 21.542 (years ± SD). The mean total vessel area was 50.907% ± 3.435%. VD was higher in the nasal quadrant (51.156% ± 4.276%) but there were no significant differences between the three analyzed areas (p = 0.940). OCTA was able to identify abnormal vessels when SLP apparently showed no abnormal vessels; OCTA was able to distinguish between larger and smaller vessels even in central cornea; OCTA scans allowed the investigation of several corneal planes and the relation of them with clinical findings. CONCLUSIONS OCTA can be useful in both qualitative and quantitative follow-up of patients and may become a non-invasive alternative to objectively monitor treatment response in eyes with corneal vascularization due to herpetic infection.
Collapse
Affiliation(s)
- Inês Almeida
- Department of Ophthalmology, Centro Hospitalar Entre Douro e Vouga, Rua Dr. Cândido de Pinho, 4520-211, Santa Maria da Feira, Portugal.
| | - Libânia Dias
- Department of Ophthalmology, Centro Hospitalar Entre Douro e Vouga, Rua Dr. Cândido de Pinho, 4520-211, Santa Maria da Feira, Portugal.,Department of Orthoptics, School of Health, Polytechnic of Porto, Porto, Portugal
| | - Jeniffer Jesus
- Department of Ophthalmology, Centro Hospitalar Entre Douro e Vouga, Rua Dr. Cândido de Pinho, 4520-211, Santa Maria da Feira, Portugal
| | - Inês Fonseca
- Department of Orthoptics, School of Health, Polytechnic of Porto, Porto, Portugal
| | - Maria João Matias
- Department of Ophthalmology, Centro Hospitalar Entre Douro e Vouga, Rua Dr. Cândido de Pinho, 4520-211, Santa Maria da Feira, Portugal
| | - João Carlos Pedro
- Department of Ophthalmology, Centro Hospitalar Entre Douro e Vouga, Rua Dr. Cândido de Pinho, 4520-211, Santa Maria da Feira, Portugal
| |
Collapse
|
13
|
Carr DJJ, Berube A, Gershburg E. The Durability of Vaccine Efficacy against Ocular HSV-1 Infection Using ICP0 Mutants 0∆NLS and 0∆RING Is Lost over Time. Pathogens 2021; 10:1470. [PMID: 34832625 PMCID: PMC8618588 DOI: 10.3390/pathogens10111470] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/05/2021] [Accepted: 11/10/2021] [Indexed: 12/20/2022] Open
Abstract
Vaccines to viral pathogens in experimental animal models are often deemed successful if immunization enhances resistance of the host to virus challenge as measured by cumulative survival, reduction in virus replication and spread and/or lessen or eliminate overt tissue pathology. Furthermore, the duration of the protective response against challenge is another important consideration that drives a vaccination regimen. In the current study, we assessed the durability of two related vaccines, 0∆NLS and 0∆RING, against ocular herpes simplex virus type 1 (HSV-1) challenge in mice thirty days (short-term) and one year (long-term) following the vaccine boost. The short-term vaccine efficacy study found the 0∆RING vaccine to be nearly equivalent to the 0∆NLS vaccine in comparison to vehicle-vaccinated mice in terms of controlling virus replication and preserving the visual axis. By comparison, the long-term assessment of the two vaccines found notable differences and less efficacy overall as noted below. Specifically, the results show that in comparison to vehicle-vaccinated mice, the 0∆NLS and 0∆RING vaccinated groups were more resistant in terms of survival and virus shedding following ocular challenge. Moreover, 0∆NLS vaccinated mice also possessed significantly less infectious virus in the peripheral and central nervous systems but not the cornea compared to mice vaccinated with vehicle or 0∆RING which had similar levels. However, all vaccinated groups showed similar levels of blood and lymphatic vessel genesis into the central cornea 30 days post infection. Likewise, corneal opacity was also similar among all groups of vaccinated mice following infection. Functionally, the blink response and visual acuity were 25-50% lower in vaccinated mice 30 days post infection compared to measurements taken prior to infection. The results demonstrate a dichotomy between resistance to infection and functional performance of the visual axis that collectively show an overall loss in vaccine efficacy long-term in comparison to short-term studies in a conventional prime-boost protocol.
Collapse
Affiliation(s)
- Daniel J. J. Carr
- Department of Ophthalmology, Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Amanda Berube
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| | | |
Collapse
|
14
|
Abstract
Two of the most prevalent human viruses worldwide, herpes simplex virus type 1 and type 2 (HSV-1 and HSV-2, respectively), cause a variety of diseases, including cold sores, genital herpes, herpes stromal keratitis, meningitis and encephalitis. The intrinsic, innate and adaptive immune responses are key to control HSV, and the virus has developed mechanisms to evade them. The immune response can also contribute to pathogenesis, as observed in stromal keratitis and encephalitis. The fact that certain individuals are more prone than others to suffer severe disease upon HSV infection can be partially explained by the existence of genetic polymorphisms in humans. Like all herpesviruses, HSV has two replication cycles: lytic and latent. During lytic replication HSV produces infectious viral particles to infect other cells and organisms, while during latency there is limited gene expression and lack of infectious virus particles. HSV establishes latency in neurons and can cause disease both during primary infection and upon reactivation. The mechanisms leading to latency and reactivation and which are the viral and host factors controlling these processes are not completely understood. Here we review the HSV life cycle, the interaction of HSV with the immune system and three of the best-studied pathologies: Herpes stromal keratitis, herpes simplex encephalitis and genital herpes. We also discuss the potential association between HSV-1 infection and Alzheimer's disease.
Collapse
Affiliation(s)
- Shuyong Zhu
- Institute of Virology, Hannover Medical School, Cluster of Excellence RESIST (Exc 2155), Hannover Medical School, Hannover, Germany
| | - Abel Viejo-Borbolla
- Institute of Virology, Hannover Medical School, Cluster of Excellence RESIST (Exc 2155), Hannover Medical School, Hannover, Germany
| |
Collapse
|
15
|
Su W, Sun S, Tian B, Tai PWL, Luo Y, Ko J, Zhan W, Ke X, Zheng Q, Li X, Yan H, Gao G, Lin H. Efficacious, safe, and stable inhibition of corneal neovascularization by AAV-vectored anti-VEGF therapeutics. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 22:107-121. [PMID: 34514023 PMCID: PMC8413663 DOI: 10.1016/j.omtm.2021.06.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 06/10/2021] [Indexed: 11/29/2022]
Abstract
Corneal neovascularization (CoNV) leads to visual impairment, affecting over 1.4 million people in the United States per year. It is caused by a variety of pathologies, such as inflammation, hypoxia, and limbal barrier dysfunction. Injection of the anti-vascular endothelial growth factor (VEGF) drug KH902 (conbercept) can inhibit CoNV but requires repeated dosing that produces associated side effects, such as cornea scar. To explore more efficacious and long-lasting treatment of CoNV, we employed recombinant adeno-associated virus (rAAV)2 and rAAV8 vectors to mediate KH902 expression via a single intrastromal injection and investigated its anti-angiogenic effects and safety in both alkali-burn- and suture-induced CoNV mouse models. Our results showed that rAAV-mediated KH902 mRNA expression in the cornea was sustained for at least 3 months after a single intrastromal injection. Moreover, the expression level of rAAV8-KH902 far exceeded that of rAAV2-KH902. A single-dose rAAV8-KH902 treatment at 8 × 108 genome copies (GCs) per cornea dramatically inhibited CoNV for an extended period of time in mouse CoNV models without adverse events, whereas the inhibition of CoNV by a single intrastromal administration of the conbercept drug lasted for only 10−14 days. Overall, our study demonstrated that the treatment of CoNV with a single dose of rAAV8-KH902 via intrastromal administration was safe, effective, and long lasting, representing a novel therapeutic strategy for CoNV.
Collapse
Affiliation(s)
- Wenqi Su
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin 300052, China.,Department of Ophthalmology and Visual Sciences, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Shuo Sun
- Department of Ophthalmology and Visual Sciences, University of Massachusetts Medical School, Worcester, MA 01655, USA.,Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China
| | - Bo Tian
- Department of Ophthalmology and Visual Sciences, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Phillip W L Tai
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA.,Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Yongwen Luo
- College of Veterinary Medicine, South China Agricultural University, No. 483, Wushan Road, Guangzhou 510642, China
| | - Jihye Ko
- Viral Vector Core, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Wei Zhan
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Xiao Ke
- Chengdu Kanghong Pharmaceutical Group, 36 Shuxi Rd., Jinniu District, Chengdu, Sichuan 610036, China
| | - Qiang Zheng
- Chengdu Kanghong Pharmaceutical Group, 36 Shuxi Rd., Jinniu District, Chengdu, Sichuan 610036, China
| | - Xiaorong Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China
| | - Hua Yan
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA.,Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01605, USA.,Viral Vector Core, University of Massachusetts Medical School, Worcester, MA 01605, USA.,Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Haijiang Lin
- Department of Ophthalmology and Visual Sciences, University of Massachusetts Medical School, Worcester, MA 01655, USA
| |
Collapse
|
16
|
Heparin-binding VEGFR1 variants as long-acting VEGF inhibitors for treatment of intraocular neovascular disorders. Proc Natl Acad Sci U S A 2021; 118:1921252118. [PMID: 34006633 PMCID: PMC8166142 DOI: 10.1073/pnas.1921252118] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Neovascularization is a key feature of ischemic retinal diseases and the wet form of age-related macular degeneration (AMD), all leading causes of severe vision loss. Vascular endothelial growth factor (VEGF) inhibitors have transformed the treatment of these disorders. Millions of patients have been treated with these drugs worldwide. However, in real-life clinical settings, many patients do not experience the same degree of benefit observed in clinical trials, in part because they receive fewer anti-VEGF injections. Therefore, there is an urgent need to discover and identify novel long-acting VEGF inhibitors. We hypothesized that binding to heparan-sulfate proteoglycans (HSPG) in the vitreous, and possibly other ocular structures, may be a strategy to promote intraocular retention, ultimately leading to a reduced burden of intravitreal injections. We designed a series of VEGF receptor 1 variants and identified some with strong heparin-binding characteristics and ability to bind to vitreous matrix. Our data indicate that some of our variants have longer duration and greater efficacy in animal models of intraocular neovascularization than current standard of care. Our study represents a systematic attempt to exploit the functional diversity associated with heparin affinity of a VEGF receptor.
Collapse
|
17
|
An intact complement system dampens cornea inflammation during acute primary HSV-1 infection. Sci Rep 2021; 11:10247. [PMID: 33986436 PMCID: PMC8119410 DOI: 10.1038/s41598-021-89818-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/30/2021] [Indexed: 02/03/2023] Open
Abstract
Corneal transparency is an essential characteristic necessary for normal vision. In response to microbial infection, the integrity of the cornea can become compromised as a result of the inflammatory response and the ensuing tissue pathology including neovascularization (NV) and collagen lamellae destruction. We have previously found complement activation contributes to cornea pathology-specifically, denervation in response to HSV-1 infection. Therefore, we investigated whether the complement system also played a role in HSV-1-mediated neovascularization. Using wild type (WT) and complement component 3 deficient (C3 KO) mice infected with HSV-1, we found corneal NV was accelerated associated with an increase in inflammatory monocytes (CD11b+CCR2+CD115+/-Ly6G-Ly6Chigh), macrophages (CD11b+CCR2+CD115+Ly6G-Ly6Chigh) and a subpopulation of granulocytes/neutrophils (CD11b+CCR2-CD115+Ly6G+Ly6Clow). There were also increases in select pro-inflammatory and pro-angiogenic factors including IL-1α, matrix metalloproteinases (MMP)-2, MMP-3, MMP-8, CXCL1, CCL2, and VEGF-A that coincided with increased inflammation, neovascularization, and corneal opacity in the C3 KO mice. The difference in inflammation between WT and C3 KO mice was not driven by changes in virus titer. However, viral antigen clearance was hindered in C3 KO mouse corneas suggesting the complement system has a dynamic regulatory role within the cornea once an inflammatory cascade is initiated by HSV-1.
Collapse
|
18
|
Subconjunctival Aflibercept for the Treatment of Formed Corneal Neovascularization. Eye Contact Lens 2021; 47:180-184. [PMID: 32443011 DOI: 10.1097/icl.0000000000000709] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2020] [Indexed: 11/26/2022]
Abstract
PURPOSE To evaluate the effect of a single subconjunctival aflibercept injection on formed corneal neovascularization. METHODS A prospective clinical trial, conducted at a single tertiary medical center. Included were consecutive patients with corneal pathologies complicated by corneal neovascularization, who were candidates for anti-vascular endothelial growth factor treatment at the discretion of a cornea specialist. A single subconjunctival injection of 0.08 mL of Aflibercept (Eylea 25 mg/mL) was administered near the limbus in proximity to the areas of maximal pathological neovascularization. Follow-up visits were scheduled on days 7, 30, 60, and 90 following injection. Best-corrected visual acuity (BCVA), intraocular pressure, slitlamp examination, digital cornea photography, specular microscopy, and anterior-segment optical coherence tomography were documented at each visit. The images were graded by a masked observer for density, extent, and centricity of corneal vascularization. RESULTS Six eyes of six patients were analyzed. No clinically significant ocular or systemic adverse events were documented. No change was noted in extent, density, or centricity of corneal blood vessels at seven, 30, and 90 days after injection (P>0.1 for all time point comparisons, Friedman test). Best-corrected visual acuity fluctuated insignificantly in 5/6 patients during follow-up time, and objective but not subjective improvement of BCVA was noted in one patient with no concurrent change of neovascularization. The recruitment has therefore halted prematurely. CONCLUSIONS A single subconjunctival aflibercept injection seems to be well tolerated. However, it is ineffective for regressing formed corneal neovascularization.
Collapse
|
19
|
Nicholas MP, Mysore N. Corneal neovascularization. Exp Eye Res 2020; 202:108363. [PMID: 33221371 DOI: 10.1016/j.exer.2020.108363] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 12/12/2022]
Abstract
The optical clarity of the cornea is essential for maintaining good visual acuity. Corneal neovascularization, which is a major cause of vision loss worldwide, leads to corneal opacification and often contributes to a cycle of chronic inflammation. While numerous factors prevent angiogenesis within the cornea, infection, inflammation, hypoxia, trauma, corneal degeneration, and corneal transplantation can all disrupt these homeostatic safeguards to promote neovascularization. Here, we summarize its etiopathogenesis and discuss the molecular biology of angiogenesis within the cornea. We then review the clinical assessment and diagnostic evaluation of corneal neovascularization. Finally, we describe current and emerging therapies.
Collapse
Affiliation(s)
- Matthew P Nicholas
- Flaum Eye Institute, University of Rochester Medical Center, 210 Crittenden Blvd., Rochester, NY, USA
| | - Naveen Mysore
- Flaum Eye Institute, University of Rochester Medical Center, 210 Crittenden Blvd., Rochester, NY, USA.
| |
Collapse
|
20
|
Heparanase-Regulated Syndecan-1 Shedding Facilitates Herpes Simplex Virus 1 Egress. J Virol 2020; 94:JVI.01672-19. [PMID: 31827001 DOI: 10.1128/jvi.01672-19] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 11/26/2019] [Indexed: 12/31/2022] Open
Abstract
Herpes simplex virus 1 (HSV-1) can infect virtually all cell types in vitro An important reason lies in its ability to exploit heparan sulfate (HS) for attachment to cells. HS is a ubiquitous glycosaminoglycan located on the cell surface and tethered to proteoglycans such as syndecan-1. Previously, we have shown that heparanase (HPSE) facilitates the release of viral particles by cleaving HS. Here, we demonstrate that HPSE is a master regulator where, in addition to directly enabling viral release via HS removal, it also facilitates cleavage of HS-containing ectodomains of syndecan-1, thereby further enhancing HSV-1 egress from infected cells. Syndecan-1 cleavage is mediated by upregulation of matrix metalloproteases (MMPs) that accompanies higher HPSE expression in infected cells. By overexpressing HPSE, we have identified MMP-3 and MMP-7 as important sheddases of syndecan-1 shedding in corneal epithelial cells, which are natural targets of HSV-1 infection. MMP-3 and MMP-7 were also naturally upregulated during HSV-1 infection. Altogether, this paper shows a new connection between HSV-1 release and syndecan-1 shedding, a phenomenon that is regulated by HPSE and executed by the MMPs. Our results also identify new molecular markers for HSV-1 infection and new targets for future interventions.IMPORTANCE HSV-1 is a common cause of recurrent viral infections in humans. The virus can cause a range of mucosal pathologies. Efficient viral egress from infected cells is an important step for HSV-1 transmission and virus-associated pathologies. Host mechanisms that contribute to HSV-1 egress from infected cells are poorly understood. Syndecan-1 is a common heparan sulfate proteoglycan expressed by many natural target cells. Despite its known connection with heparanase, a recently identified mediator of HSV-1 release, syndecan-1 has not been previously investigated in HSV-1 release. In this study, we demonstrate that the shedding of syndecan-1 by MMP-3 and MMP-7 supports viral egress. We show that the mechanism behind the activation of these MMPs is mediated by heparanase, which is upregulated upon HSV-1 infection. Our study elucidates a new connection between HSV-1 egress, heparanase, and matrix metallopeptidases; identifies new molecular markers of infection; and provides potential new targets for therapeutic interventions.
Collapse
|
21
|
Chen M, Bao L, Zhao M, Cao J, Zheng H. Progress in Research on the Role of FGF in the Formation and Treatment of Corneal Neovascularization. Front Pharmacol 2020; 11:111. [PMID: 32158390 PMCID: PMC7052042 DOI: 10.3389/fphar.2020.00111] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 01/28/2020] [Indexed: 12/23/2022] Open
Abstract
Corneal neovascularization (CNV) is a sight-threatening disease usually associated with inflammatory, infectious, degenerative, and traumatic disorders of the ocular surface. Fibroblast growth factor (FGF) family members play an important role in angiogenesis to induce corneal neovascularization, which significantly affects the differentiation, proliferation, metastasis, and chemotaxis of vascular endothelial cells. Both acidic fibroblast growth factor (aFGF) and basic fibroblast growth factor (bFGF) demonstrate positive staining in capillaries and induce corneal stromal cells. The anabolism of endothelial cells is induced by bFGF in corneal neovascularization. FGFs exert their effects via specific binding to cell surface-expressed specific receptors. We believe that both anti-FGF antibodies and anti-FGF receptor antibodies represent new directions for the treatment of CNV. Similar to anti-vascular endothelial growth factor antibodies, subconjunctival injection and eye drops can be considered effective forms of drug delivery.
Collapse
Affiliation(s)
- Mengji Chen
- Department of Ophthalmology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Licheng Bao
- Department of Ophthalmology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Mengying Zhao
- Department of Ophthalmology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiarong Cao
- Department of Ophthalmology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Haihua Zheng
- Department of Ophthalmology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
22
|
Kasiri A, Mirdehghan MS, Farrahi F, Ostadian F, Feghhi M, Ghomi MR, Mohammad Jafari A, Mahdian Rad A, Kasiri N. Prevention of Corneal Neovascularization; a Preliminary Experimental Study in Rabbits. MEDICAL HYPOTHESIS, DISCOVERY & INNOVATION OPHTHALMOLOGY JOURNAL 2020; 9:47-55. [PMID: 31976343 PMCID: PMC6969563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The purpose of this study was to compare the effects of propranolol, timolol and bevacizumab with betamethasone to prevent corneal neovascularization (CNV) in rabbits. This study was performed on 28 male rabbits. CNV was induced by three 7-0 silk sutures 2 mm long and 1 mm distal to the limbus. Animals were randomly divided into 4 groups of propranolol + betamethasone, timolol + betamethasone and bevacizumab + betamethasone and betamethasone alone. Eye drops were started from the first day of study. On 7th, 14th, 21st, 28th, 35th and 42nd days, vascular progression, time of neovascularization and vascular area were evaluated and compared with the control group (betamethasone alone). There was a significant reduction in the area of neovascularization in the timolol and bevacizumab groups compared to the control group (P-value = 0.05, P=0.047, respectively). Also, regarding vascular progression, there was a significant decrease in the timolol and bevacizumab groups (P-value = 0.014, P=0.002, respectively). Regarding delayed onset of neovascularization, there was a significant difference in the timolol and bevacizumab group in rabbits (P-value = 0.04, P=0.00, respectively). In conclusion, the use of timolol and bevacizumab drops besides betamethasone can delay neovascularization and decrease the length of corneal vascularization in rabbits.
Collapse
Affiliation(s)
- Ali Kasiri
- Department of Ophthalmology, Faculty of Medicine, Infectious Ophthalmic Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Sadegh Mirdehghan
- Department of Ophthalmology, Faculty of Medicine, Infectious Ophthalmic Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Fereydoun Farrahi
- Department of Ophthalmology, Faculty of Medicine, Infectious Ophthalmic Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Farshad Ostadian
- Department of Ophthalmology, Faculty of Medicine, Infectious Ophthalmic Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mostafa Feghhi
- Department of Ophthalmology, Faculty of Medicine, Infectious Ophthalmic Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mehdi Reza Ghomi
- Department of Ophthalmology, Faculty of Medicine, Infectious Ophthalmic Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Aram Mohammad Jafari
- Department of Ophthalmology, Faculty of Medicine, Infectious Ophthalmic Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Atefeh Mahdian Rad
- Department of Ophthalmology, Faculty of Medicine, Infectious Ophthalmic Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Niusha Kasiri
- Medical Student, Ahvaz Jundishapur University of Medical Sciences Ahvaz, Iran
| |
Collapse
|
23
|
Al-Kaabi A, Choremis J. HSV epithelial keratitis reactivation after subconjunctival bevacizumab injection: A case report. Can J Ophthalmol 2019; 54:e180-e182. [PMID: 31358162 DOI: 10.1016/j.jcjo.2018.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 10/22/2018] [Accepted: 10/22/2018] [Indexed: 10/27/2022]
Affiliation(s)
| | - Johanna Choremis
- Department of Ophthalmology, University of Montreal, Montreal, Que
| |
Collapse
|
24
|
Human antigen R protein modulates vascular endothelial growth factor expression in human corneal epithelial cells under hypoxia. J Formos Med Assoc 2019; 119:359-366. [PMID: 31262614 DOI: 10.1016/j.jfma.2019.06.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/20/2019] [Accepted: 06/14/2019] [Indexed: 01/23/2023] Open
Abstract
PURPOSE Corneal avascularity is critical for corneal transparency; therefore, a tailored process has been presumed to minimize corneal neovascularization (NV). In most cell types, the transcription of vascular endothelial growth factor (VEGF) is up-regulated, and the stability of VEGF mRNA is sustained by human antigen R (HuR) during hypoxia; however, whether such response applies to corneal epithelial cells is unclear. METHODS Human corneal epithelial cells (HCECs) and MCF-7 cells that serves as the control were incubated under 0.5% oxygen, and the levels of VEGF and HuR were examined time-dependently. The alteration of HuR was also examined in vivo using the closed-eye contact lens-induced corneal neovascularization rabbit model and immunohistochemistry. Additionally, the expression of HuR was modulated by transfection of plasmids encoding HuR or siRNA targeting HuR to validate the role of HuR in VEGF expression. RESULTS We found that, unlike in control cells, the level of VEGF was not up-regulated, and the HuR expression was declined in HCECs following hypoxia. The HuR immunostaining intensities were decreased in corneal epithelial cells of rabbits wearing contact lenses. In addition, HuR overexpression restored the ability of HCECs to up-regulate VEGF under hypoxia; however, knockdown of HuR suppressed hypoxia-induced VEGF in control cells but did not further decrease VEGF in HCECs. These findings suggest that HCECs may modulate HuR to suppress hypoxia-mediated up-regulation of VEGF. CONCLUSION Our study revealed a distinct regulation of VEGF via HuR in HCECs following hypoxia, which likely contributes to minimizing corneal NV and/or maintenance of corneal avascularity.
Collapse
|
25
|
Tian X, Wang T, Zhang S, Wang Q, Hu X, Ge C, Xie L, Zhou Q. PEDF Reduces the Severity of Herpetic Simplex Keratitis in Mice. Invest Ophthalmol Vis Sci 2019; 59:2923-2931. [PMID: 30025136 DOI: 10.1167/iovs.18-23942] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose The purpose of this study was to explore the effects of pigment epithelium derived factor (PEDF) and PEDF-derived peptides Mer44 and Mer34 on the severity of herpetic simplex keratitis (HSK) in mice. Methods Adult C57BL/6 mice were infected ocularly with the herpes simplex virus type 1 (HSV-1, McKrae strain) and injected subconjunctivally with PEDF, Mer44, or Mer34. Corneal nerve degeneration, neovascularization, sensitivity, neutrophils, macrophages and CD4+ T-cell infiltration, virus contents, and expressions of VEGF, PEDF, and proinflammatory factors were evaluated during acute period. The direct inhibitory effect of PEDF on HSV-1 replication was further evaluated in cultured monkey Vero cells. Results Following HSV-1 infection, corneal PEDF expression decreased at 3 and 7 days postinfection (dpi) but increased at 15 dpi, and returned to the similar level of normal mice at 45 dpi, which was accompanied with the progress of corneal nerve degeneration and neovascularization. Exogenous PEDF application attenuated corneal nerve degeneration and neovascularization and improved the impaired corneal sensitivity. Moreover, PEDF attenuated the neutrophils, but not macrophage or CD4+ T-cell infiltration, with the reduced expressions of IL-1β, IL-6, TNF-α, and VEGF. In addition, PEDF inhibited the replication of HSV-1 both in vitro and in mice. Mer44 attenuated corneal nerve degeneration more significantly than Mer34, whereas Mer34 inhibited corneal neovascularization. Conclusions PEDF and its derived peptides reduce the severity of herpetic simplex keratitis in mice, representing the potential therapeutic approach to control HSK lesions.
Collapse
Affiliation(s)
- Xiao Tian
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, China
| | - Tongsong Wang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, China
| | - Songmei Zhang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, China
| | - Qian Wang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, China
| | - Xiaoli Hu
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, China
| | - Cheng Ge
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, China
| | - Lixin Xie
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, China
| | - Qingjun Zhou
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, China
| |
Collapse
|
26
|
Sharma A, Singh SR, Dogra M, Singh C, Singh R. Herpes simplex virus keratouveitis recurrence following intravitreal bevacizumab injection. Oman J Ophthalmol 2019; 12:53-54. [PMID: 30787537 PMCID: PMC6380159 DOI: 10.4103/ojo.ojo_147_2016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
We report a case of recurrence of herpes simplex virus (HSV) keratouveitis following the intravitreal injection of bevacizumab for macular edema secondary to central retinal vein occlusion (CRVO) in a previously adequately treated patient of herpetic keratouveitis. A 47-year-old man with the previous history of HSV keratouveitis was administered 2 doses of intravitreal bevacizumab in the right eye for CRVO, at an interval of 4 weeks. Following the second dose, the patient developed decreased vision, corneal edema, and anterior segment inflammation. Since he was a previously known case of HSV keratouveitis with a positive polymerase chain reaction for HSV from the aqueous, oral valacyclovir was started along with topical steroids and cycloplegics. He showed a good response to treatment with resolution of keratouveitis. This case demonstrates that the recurrence of herpetic keratouveitis can be a possible complication of intravitreal bevacizumab, which may occur even after prior uneventful injections.
Collapse
Affiliation(s)
- Ashok Sharma
- Department of Ophthalmology, Advanced Eye Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Simar Rajan Singh
- Department of Ophthalmology, Advanced Eye Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Mohit Dogra
- Department of Ophthalmology, Advanced Eye Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Chintan Singh
- Department of Ophthalmology, Advanced Eye Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Ramandeep Singh
- Department of Ophthalmology, Advanced Eye Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
27
|
Koujah L, Suryawanshi RK, Shukla D. Pathological processes activated by herpes simplex virus-1 (HSV-1) infection in the cornea. Cell Mol Life Sci 2019; 76:405-419. [PMID: 30327839 PMCID: PMC6349487 DOI: 10.1007/s00018-018-2938-1] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 10/03/2018] [Accepted: 10/08/2018] [Indexed: 12/13/2022]
Abstract
Herpes simplex virus type-1 (HSV-1) is a ubiquitous pathogen that infects a large majority of the human population worldwide. It is also a leading cause of infection-related blindness in the developed world. HSV-1 infection of the cornea begins with viral entry into resident cells via a multistep process that involves interaction of viral glycoproteins and host cell surface receptors. Once inside, HSV-1 infection induces a chronic immune-inflammatory response resulting in corneal scarring, thinning and neovascularization. This leads to development of various ocular diseases such as herpes stromal keratitis, resulting in visual impairment and eventual blindness. HSV-1 can also invade the central nervous system and lead to encephalitis, a relatively common cause of sporadic fetal encephalitis worldwide. In this review, we discuss the pathological processes activated by corneal HSV-1 infection and existing antiviral therapies as well as novel therapeutic options currently under development.
Collapse
Affiliation(s)
- Lulia Koujah
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, 1855 W. Taylor St, Chicago, IL, 60612, USA
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Rahul K Suryawanshi
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, 1855 W. Taylor St, Chicago, IL, 60612, USA
| | - Deepak Shukla
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, 1855 W. Taylor St, Chicago, IL, 60612, USA.
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| |
Collapse
|
28
|
Lobo AM, Agelidis AM, Shukla D. Pathogenesis of herpes simplex keratitis: The host cell response and ocular surface sequelae to infection and inflammation. Ocul Surf 2019; 17:40-49. [PMID: 30317007 PMCID: PMC6340725 DOI: 10.1016/j.jtos.2018.10.002] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 09/26/2018] [Accepted: 10/10/2018] [Indexed: 02/08/2023]
Abstract
Herpes simplex virus type 1 (HSV) keratitis is a leading cause of infectious blindness. Clinical disease occurs variably throughout the cornea from epithelium to endothelium and recurrent HSV stromal keratitis is associated with corneal scarring and neovascularization. HSV keratitis can be associated with ocular pain and subsequent neutrophic keratopathy. Host cell interactions with HSV trigger an inflammatory cascade responsible not only for clearance of virus but also for progressive corneal opacification due to inflammatory cell infiltrate, angiogenesis, and corneal nerve loss. Current antiviral therapies target viral replication to decrease disease duration, severity and recurrence, but there are limitations to these agents. Therapies directed towards viral entry into cells, protein synthesis, inflammatory cytokines and vascular endothelial growth factor pathways in animal models represent promising new approaches to the treatment of recurrent HSV keratitis.
Collapse
Affiliation(s)
- Ann-Marie Lobo
- Department of Ophthalmology & Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA.
| | - Alex M Agelidis
- Department of Ophthalmology & Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA; Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, USA
| | - Deepak Shukla
- Department of Ophthalmology & Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA; Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
29
|
Roshandel D, Eslani M, Baradaran-Rafii A, Cheung AY, Kurji K, Jabbehdari S, Maiz A, Jalali S, Djalilian AR, Holland EJ. Current and emerging therapies for corneal neovascularization. Ocul Surf 2018; 16:398-414. [PMID: 29908870 DOI: 10.1016/j.jtos.2018.06.004] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 06/10/2018] [Accepted: 06/12/2018] [Indexed: 02/08/2023]
Abstract
The cornea is unique because of its complete avascularity. Corneal neovascularization (CNV) can result from a variety of etiologies including contact lens wear; corneal infections; and ocular surface diseases due to inflammation, chemical injury, and limbal stem cell deficiency. Management is focused primarily on the etiology and pathophysiology causing the CNV and involves medical and surgical options. Because inflammation is a key factor in the pathophysiology of CNV, corticosteroids and other anti-inflammatory medications remain the mainstay of treatment. Anti-VEGF therapies are gaining popularity to prevent CNV in a number of etiologies. Surgical options including vessel occlusion and ocular surface reconstruction are other options depending on etiology and response to medical therapy. Future therapies should provide more effective treatment options for the management of CNV.
Collapse
Affiliation(s)
- Danial Roshandel
- Ocular Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Medi Eslani
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA; Cincinnati Eye Institute, Edgewood, KY/ University of Cincinnati, Department of Ophthalmology, Cincinnati, OH, USA
| | - Alireza Baradaran-Rafii
- Ocular Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Albert Y Cheung
- Cincinnati Eye Institute, Edgewood, KY/ University of Cincinnati, Department of Ophthalmology, Cincinnati, OH, USA
| | - Khaliq Kurji
- Cincinnati Eye Institute, Edgewood, KY/ University of Cincinnati, Department of Ophthalmology, Cincinnati, OH, USA
| | - Sayena Jabbehdari
- Ocular Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Alejandra Maiz
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Setareh Jalali
- Ocular Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali R Djalilian
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA.
| | - Edward J Holland
- Cincinnati Eye Institute, Edgewood, KY/ University of Cincinnati, Department of Ophthalmology, Cincinnati, OH, USA.
| |
Collapse
|
30
|
VEGF Upregulation in Viral Infections and Its Possible Therapeutic Implications. Int J Mol Sci 2018; 19:ijms19061642. [PMID: 29865171 PMCID: PMC6032371 DOI: 10.3390/ijms19061642] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 05/28/2018] [Accepted: 05/29/2018] [Indexed: 12/12/2022] Open
Abstract
Several viruses are recognized as the direct or indirect causative agents of human tumors and other severe human diseases. Vascular endothelial growth factor (VEGF) is identified as a principal proangiogenic factor that enhances the production of new blood vessels from existing vascular network. Therefore, oncogenic viruses such as Kaposi’s sarcoma herpesvirus (KSHV) and Epstein-Barr virus (EBV) and non-oncogenic viruses such as herpes simplex virus (HSV-1) and dengue virus, which lack their own angiogenic factors, rely on the recruitment of cellular genes for angiogenesis in tumor progression or disease pathogenesis. This review summarizes how human viruses exploit the cellular signaling machinery to upregulate the expression of VEGF and benefit from its physiological functions for their own pathogenesis. Understanding the interplay between viruses and VEGF upregulation will pave the way to design targeted and effective therapeutic approaches for viral oncogenesis and severe diseases.
Collapse
|
31
|
Liu S, Romano V, Steger B, Kaye SB, Hamill KJ, Willoughby CE. Gene-based antiangiogenic applications for corneal neovascularization. Surv Ophthalmol 2018; 63:193-213. [DOI: 10.1016/j.survophthal.2017.10.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 10/09/2017] [Accepted: 10/12/2017] [Indexed: 12/22/2022]
|
32
|
Rajasagi NK, Rouse BT. Application of our understanding of pathogenesis of herpetic stromal keratitis for novel therapy. Microbes Infect 2018; 20:526-530. [PMID: 29329934 DOI: 10.1016/j.micinf.2017.12.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 12/18/2017] [Accepted: 12/20/2017] [Indexed: 12/31/2022]
Abstract
HSV-1 ocular infection can cause herpes stromal keratitis (SK), an immunopathological lesion. Frequent recurrences can lead to progressive corneal scaring which can result in vision impairment if left untreated. Currently, the acute and epithelial forms of SK are usually controlled using anti-viral drugs. However, chronic forms of SK which are inflammatory in nature, require the addition of a topical corticosteroid to the anti-viral treatment regimen. In this review, we highlight the essential events involved in SK pathogenesis which can be targeted for improved therapy. We also examine some approaches which can be combined with the current treatments to effectively control SK.
Collapse
Affiliation(s)
- Naveen K Rajasagi
- Biomedical & Diagnostic Sciences, College of Veterinary Medicine, The University of Tennessee, Knoxville, TN, 37996-0845, United States
| | - Barry T Rouse
- Biomedical & Diagnostic Sciences, College of Veterinary Medicine, The University of Tennessee, Knoxville, TN, 37996-0845, United States.
| |
Collapse
|
33
|
Palioura S, Kymionis G. Corneal neovascularization in childhood keratitis. EXPERT REVIEW OF OPHTHALMOLOGY 2017. [DOI: 10.1080/17469899.2017.1379900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Sotiria Palioura
- Athens Vision Eye Institute, Cornea Service, Athens, Greece
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - George Kymionis
- Jules Gonin Eye Hospital, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- Department of Ophthalmology, ‘Gennimatas Hospital’, National and Kapoditrian University of Athens, Athens, Greece
| |
Collapse
|
34
|
Chucair-Elliott AJ, Gurung HR, Carr MM, Carr DJJ. Colony Stimulating Factor-1 Receptor Expressing Cells Infiltrating the Cornea Control Corneal Nerve Degeneration in Response to HSV-1 Infection. Invest Ophthalmol Vis Sci 2017; 58:4670-4682. [PMID: 28903153 PMCID: PMC5597033 DOI: 10.1167/iovs.17-22159] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 08/05/2017] [Indexed: 12/20/2022] Open
Abstract
Purpose Herpes simplex virus type-1 (HSV-1) is a leading cause of neurotrophic keratitis, characterized by decreased or absent corneal sensation due to damage to the sensory corneal innervation. We previously reported the elicited immune response to infection contributes to the mechanism of corneal nerve regression/damage during acute HSV-1 infection. Our aim is to further establish the involvement of infiltrated macrophages in the mechanism of nerve loss upon infection. Methods Macrophage Fas-Induced Apoptosis (MAFIA) transgenic C57BL/6 mice were systemically treated with AP20187 dimerizer or vehicle (VEH), and their corneas, lymph nodes, and blood were assessed for CD45+CD11b+GFP+ cell depletion by flow cytometry (FC). Mice were ocularly infected with HSV-1 or left uninfected. At 2, 4, and/or 6 days post infection (PI), corneas were assessed for sensitivity and harvested for FC, nerve structure by immunohistochemistry, viral content by plaque assay, soluble factor content by suspension array, and activation of signaling pathways by Western blot analysis. C57BL6 mice were used to compare to the MAFIA mouse model. Results MAFIA mice treated with AP20187 had efficient depletion of CD45+CD11b+GFP+ cells in the tissues analyzed. The reduction of CD45+CD11b+GFP+ cells recruited to the infected corneas of AP20187-treated mice correlated with preservation of corneal nerve structure and function, decreased protein concentration of inflammatory cytokines, and decreased STAT3 activation despite no changes in viral content in the cornea compared to VEH-treated animals. Conclusions Our results suggest infiltrated macrophages are early effectors in the nerve regression following HSV-1 infection. We propose the neurodegeneration mechanism involves macrophages, local up-regulation of IL-6, and activation of STAT3.
Collapse
Affiliation(s)
- Ana J Chucair-Elliott
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Hem R Gurung
- Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Meghan M Carr
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Daniel J J Carr
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
- Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| |
Collapse
|
35
|
Al-Debasi T, Al-Bekairy A, Al-Katheri A, Al Harbi S, Mansour M. Topical versus subconjunctival anti-vascular endothelial growth factor therapy (Bevacizumab, Ranibizumab and Aflibercept) for treatment of corneal neovascularization. Saudi J Ophthalmol 2017; 31:99-105. [PMID: 28559722 PMCID: PMC5436388 DOI: 10.1016/j.sjopt.2017.02.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 02/28/2017] [Indexed: 12/01/2022] Open
Abstract
In order to evaluate the effect of topical and subconjunctival anti-vascular endothelial growth factor (anti-VEGF) therapy, Ranibizumab, Bevacizumab and Aflibercept as a therapy for corneal neovascularization (NV) treatment, the aim of this study was to review all data related to some of anti-VEGF as a promising therapies for corneal NV treatment. Corneal NV is a dangerous condition leading to a marked reduction in vision due to angiogenesis of abnormal vessels that block light. During the recent years, we have recognized new drug proliferation for corneal NV treatment. Recently, anti-VEGF therapies are one of the most important drugs used for corneal NV treatment. Several growth factors are involved in angiogenesis. The most important growth factor in corneal angiogenesis is VEGF. VEGF can be considered as key mediators in corneal angiogenesis. It is upregulated during corneal NV. In fact, anti-VEGF therapies have shown efficacy in attenuation of corneal NV in both animal models and clinical trials. A promising therapeutic success has been achieved using antibodies directed against VEGF. Bevacizumab has demonstrated efficacy and efficiency in the treatment of different neo-vascular ocular diseases and it has partially reduced corneal NV through different routes of administrations: topical, subconjunctival, and intraocular application. A similar efficacy to bevacizumab profiles in the treatment of neo-vascular age-related macular degeneration was induced by ranibizumab. Moreover, at worse levels of initial visual acuity of diabetic macular edema, aflibercept was more effective at improving vision. Anti-VEGF agents (Bevacizumab, Ranibizumab and Aflibercept) seem to have a higher efficiency and efficacy for corneal NV treatment. Both subconjunctival therapy and topical therapy of bevacizumab prohibit corneal NV, while early treatment with subconjunctival administration of ranibizumab may successfully reduce corneal NV. Therefore, establishment of safe doses is highly important before these drugs can be involved in the clinical setting. Further investigations and studies are highly warranted to adjust the dose and route of administration for the antibodies directed against VEGF to be the key therapeutic agents in the corneal NV treatment.
Collapse
Affiliation(s)
- Tariq Al-Debasi
- Division of Ophthalmology, King Abdulaziz Medical City-Riyadh, MC 1445, Saudi Arabia
| | - Abdulkareem Al-Bekairy
- Pharmaceutical Care Services, King Abdulaziz Medical City-Riyadh, MC 1445, Saudi Arabia.,Department of Pharmacy Practice and Pharmaceutical Sciences, College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, P.O Box 3660, Riyadh 11426, Saudi Arabia
| | - Abdulmalik Al-Katheri
- Pharmaceutical Care Services, King Abdulaziz Medical City-Riyadh, MC 1445, Saudi Arabia.,Department of Pharmacy Practice and Pharmaceutical Sciences, College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, P.O Box 3660, Riyadh 11426, Saudi Arabia
| | - Shmeylan Al Harbi
- Pharmaceutical Care Services, King Abdulaziz Medical City-Riyadh, MC 1445, Saudi Arabia.,Department of Pharmacy Practice and Pharmaceutical Sciences, College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, P.O Box 3660, Riyadh 11426, Saudi Arabia
| | - Mahmoud Mansour
- Department of Pharmacy Practice and Pharmaceutical Sciences, College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, P.O Box 3660, Riyadh 11426, Saudi Arabia
| |
Collapse
|
36
|
Eun JS, Cho KJ. Two Cases of Corneal Neovascularization Improved by Electrocauterization and Subconjunctival Bevacizumab Injection. JOURNAL OF THE KOREAN OPHTHALMOLOGICAL SOCIETY 2017. [DOI: 10.3341/jkos.2017.58.8.981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Jun Soo Eun
- Department of Ophthalmology, Dankook University College of Medicine, Cheonan, Korea
| | - Kyong Jin Cho
- Department of Ophthalmology, Dankook University College of Medicine, Cheonan, Korea
| |
Collapse
|
37
|
Bai Y, Wang W, Sun G, Zhang M, Dong J. Curcumin inhibits angiogenesis by up-regulation of microRNA-1275 and microRNA-1246: a promising therapy for treatment of corneal neovascularization. Cell Prolif 2016; 49:751-762. [PMID: 27625050 DOI: 10.1111/cpr.12289] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 08/13/2016] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE Curcumin (capable of inhibiting angiogenic growth of human umbilical vein endothelial cells [HUVECs]), can be employed in vitro as a model of pathogenesis of corneal neovascularization (CRNV). The aim of this study was to explore regulatory mechanisms of microRNA (miR) levels after curcumin treatment. MATERIALS AND METHODS Expression profiles of miRs in curcumin-treated HUVECs were investigated by miR microassay. Specific mimics and inhibitors of miR-1275 or miR-1246 were transfected into HUVECs. Then, their target genes, vascular endothelial growth factor B (VEGFB) and nuclear transcription factor kappa B acting protein (NKAP) were detected by quantitative real-time PCR, Western blotting assay or immunofluorescence assay. Cell proliferation and cell cycle parameters were measured with the help of CCK-8 assay and flow cytometry. RESULTS MiR-1275 and miR-1246 expression levels were up-regulated by curcumin. Administration of the specific mimics and inhibitors of the two miRs led to significant changes in expression of VEGFB and NKAP as well as the indicators related to angiogenesis. Anti-angiogenic effect of curcumin depended on expression patterns of the two miRs in that inhibition of either miR interfered with the effect of curcumin. Furthermore, overexpression of NKAP interrupted effects of curcumin on the cells. CONCLUSION Collectively, our findings demonstrate that curcumin inhibited HUVEC proliferation by up-regulation of miR-1275 and miR-1246.
Collapse
Affiliation(s)
- Yanhui Bai
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Weiqun Wang
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Guangli Sun
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Mingchang Zhang
- Department of Ophthalmology, Wuhan Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430312, China
| | - Jingmin Dong
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
38
|
Zarei Mahmudabadi A, Masoomi Karimi M, Bahabadi M, Bagheri Hoseinabadi Z, JafariSani M, Ahmadi R. Inhibition of AGS Cancer Cell Proliferation following siRNA-Mediated Downregulation of VEGFR2. CELL JOURNAL 2016; 18:381-8. [PMID: 27602320 PMCID: PMC5011326 DOI: 10.22074/cellj.2016.4566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 11/24/2015] [Indexed: 12/03/2022]
Abstract
Objective Vascular endothelial growth factor (VEGF) and VEGF receptors (VEGFRs) play
important roles in angiogenesis of different developmental mechanisms such as wound
healing, embryogenesis and diseases, including different types of cancer. VEGFR2 is
associated with cell proliferation, migration, and vascular permeability of endothelial cells.
Blocking VEGF and its receptors is suggested as a therapeutic approach to prevent tumor
growth. In this study, we aim to block VEGF signaling via small interfering RNA (siRNA)
inhibition of VEGFR2.
Materials and Methods In this experimental study, we used the RNA interference (RNAi)
mechanism to suppress expression of the VEGFR2 gene. We conducted the 3-(4,5-di-
methylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) assay, real-time polymerase
chain reaction (PCR), Western blot, and flow cytometry analyses of VEGFR2 expression.
Results Real-time PCR and Western blot results showed that VEGFR2 expression
significantly downregulated. This suppression was followed by inhibition of cell prolifera-
tion, reduction of viability, and induction of apoptosis in the cancer cells.
Conclusion These findings suggest that VEGFR2 has a role in cell proliferation and
tumor growth. Accordingly, it is suggested that VEGFR2 can be a therapeutic target
for controlling tumor growth and proliferation.
Collapse
Affiliation(s)
- Ali Zarei Mahmudabadi
- Department of Biochemical, Chemical Injuries Research Center, Baqiyatallah University of Medical Science, Tehran, Iran
| | - Masoomeh Masoomi Karimi
- Department of Immunology, Faculty of Medicine, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Majid Bahabadi
- Department of Biochemistry, Qazvin University of Medical Sciences, Qazvin, Iran
| | | | - Moslem JafariSani
- Department of Basic Sciences, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Reza Ahmadi
- Biochemistry Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
39
|
Mapping Murine Corneal Neovascularization and Weight Loss Virulence Determinants in the Herpes Simplex Virus 1 Genome and the Detection of an Epistatic Interaction between the UL and IRS/US Regions. J Virol 2016; 90:8115-31. [PMID: 27384650 PMCID: PMC5008079 DOI: 10.1128/jvi.00821-16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 06/22/2016] [Indexed: 01/14/2023] Open
Abstract
UNLABELLED Herpes simplex virus 1 (HSV-1) most commonly causes recrudescent labial ulcers; however, it is also the leading cause of infectious blindness in developed countries. Previous research in animal models has demonstrated that the severity of HSV-1 ocular disease is influenced by three main factors: host innate immunity, host immune response, and viral strain. We have previously shown that mixed infection with two avirulent HSV-1 strains (OD4 and CJ994) results in recombinants with a wide range of ocular disease phenotype severity. Recently, we developed a quantitative trait locus (QTL)-based computational approach (vQTLmap) to identify viral single nucleotide polymorphisms (SNPs) predicted to influence the severity of the ocular disease phenotypes. We have now applied vQTLmap to identify HSV-1 SNPs associated with corneal neovascularization and mean peak percentage weight loss (MPWL) using 65 HSV-1 OD4-CJ994 recombinants. The vQTLmap analysis using Random Forest for neovascularization identified phenotypically meaningful nonsynonymous SNPs in the ICP4, UL41 (VHS), UL42, UL46 (VP11/12), UL47 (VP13/14), UL48 (VP22), US3, US4 (gG), US6 (gD), and US7 (gI) coding regions. The ICP4 gene was previously identified as a corneal neovascularization determinant, validating the vQTLmap method. Further analysis detected an epistatic interaction for neovascularization between a segment of the unique long (UL) region and a segment of the inverted repeat short (IRS)/unique short (US) region. Ridge regression was used to identify MPWL-associated nonsynonymous SNPs in the UL1 (gL), UL2, UL4, UL49 (VP22), UL50, and ICP4 coding regions. The data provide additional insights into virulence gene and epistatic interaction discovery in HSV-1. IMPORTANCE Herpes simplex virus 1 (HSV-1) typically causes recurrent cold sores; however, it is also the leading source of infectious blindness in developed countries. Corneal neovascularization is critical for the progression of blinding ocular disease, and weight loss is a measure of infection severity. Previous HSV-1 animal virulence studies have shown that the severity of ocular disease is partially due to the viral strain. In the current study, we used a recently described computational quantitative trait locus (QTL) approach in conjunction with 65 HSV-1 recombinants to identify viral single nucleotide polymorphisms (SNPs) involved in neovascularization and weight loss. Neovascularization SNPs were identified in the ICP4, VHS, UL42, VP11/12, VP13/14, VP22, gG, US3, gD, and gI genes. Further analysis revealed an epistatic interaction between the UL and US regions. MPWL-associated SNPs were detected in the UL1 (gL), UL2, UL4, VP22, UL50, and ICP4 genes. This approach will facilitate future HSV virulence studies.
Collapse
|
40
|
McClellan SA, Ekanayaka SA, Li C, Jiang X, Barrett RP, Hazlett LD. Thrombomodulin Protects Against Bacterial Keratitis, Is Anti-Inflammatory, but Not Angiogenic. Invest Ophthalmol Vis Sci 2016; 56:8091-100. [PMID: 26720461 DOI: 10.1167/iovs.15-18393] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Thrombomodulin (TM) is a multidomain, transmembrane protein with anti-inflammatory properties. Thrombomodulin domain (D) 1 is lectin-like, interacting with Lewis Y antigen on lipopolysaccharide, and with HMGB1, while TMD23 is associated with angiogenic and anti-inflammatory functions. Thus, we tested if TM is protective against Pseudomonas aeruginosa keratitis and whether it enhanced corneal vascularity. METHODS Eyes of C57BL/6 (B6) mice were injected with recombinant TM (rTM), rTMD1, or PBS subconjunctivally before and intraperitoneally after infection with P. aeruginosa. Clinical scores, photography with a slit lamp, RT-PCR, ELISA, myeloperoxidase (MPO) assay, viable bacterial plate counts, and India ink perfusion were used to assess the disease response and corneal vascularity (rTM only). RESULTS Recombinant TM versus PBS treatment reduced clinical scores and corneal opacity. Corneal mRNA levels for HMGB1 were unchanged, but proinflammatory molecules IL-1β, CXCL2, NF-κB, TLR4, and RAGE were decreased; anti-inflammatory molecules SIGIRR and ST2 were increased. ELISA confirmed the mRNA data for HMGB1, IL-1β, and CXCL2 proteins. Both neutrophil influx and viable bacterial plate counts also were decreased after rTM treatment. Protein levels for angiogenic molecules VEGF, VEGFR-1, and VEGFR-2 were measured at 5 days post infection and were not different or reduced significantly after rTM treatment. Further, perfusion with India ink revealed similar vessel ingrowth between the two groups. Similar studies were performed with rTMD1, but disease severity, mRNA, proteins, MPO, and plate counts were not changed from controls. CONCLUSIONS These data provide evidence that rTM treatment is protective against bacterial keratitis, does not reduce HMGB1, and is not angiogenic.
Collapse
|
41
|
Hampel U, Frömmling P, Bräuer L, Schaefer I, Sel S, Holland D, Paulsen F. Somatostatin supports corneal wound healing in vivo. Ann Anat 2016; 205:1-8. [PMID: 26844626 DOI: 10.1016/j.aanat.2016.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 01/02/2016] [Accepted: 01/06/2016] [Indexed: 10/22/2022]
Abstract
PURPOSE To evaluate the influence of somatostatin (SST) and its analog octreotid (Oct) on corneal wound healing processes. METHODS The wound healing rate in C57BL/6 mice eyes under SST and Oct treatment was analyzed using an alkali-induced corneal wounding model. Effects of SST and Oct on cell proliferation, migration and quantified protein expression of vascular endothelial growth factor (VEGF) on human corneal epithelial cells (HCE, cell line) were evaluated by means of electric cell-substrate impedance sensing, scratch migration assays and ELISA. ERK1/2 and p38 phosphorylation was investigated by semi-quantitative western blot analysis. RESULTS Ten nanograms per microliters of SST significantly accelerated the wound closure rate of corneal defects in vivo. SST and Oct had no influence on HCE cell proliferation and migration and did not activate ERK1/2 or p38 signaling in HCE cells. However, there was increased VEGF protein expression in cytosolic proteins and medium supernatants of HCE upon Oct stimulation for 24h. One and 10ng/ml Oct led to a 2.5-fold and 100ng/ml Oct to a 4-fold upregulation of VEGF protein expression. CONCLUSION The data implicate that SST promotes corneal wound healing in a mouse model. However, using a HCE cell line in vitro, the wound healing mechanism does not seem to be supported by proliferation and migration processes or by activation of ERK1/2 and p38 signaling pathways. Other possible mechanisms could be the activation of other pathways and the induction of growth factors such as VEGF that modulate the observed corneal wound healing process.
Collapse
Affiliation(s)
- Ulrike Hampel
- Department of Anatomy II, Friedrich Alexander University Erlangen Nürnberg, Erlangen, Germany.
| | - Paul Frömmling
- Department of Anatomy II, Friedrich Alexander University Erlangen Nürnberg, Erlangen, Germany
| | - Lars Bräuer
- Department of Anatomy II, Friedrich Alexander University Erlangen Nürnberg, Erlangen, Germany
| | - Ivonne Schaefer
- Department of Dermatology and Allergology, HELIOS Klinikum Erfurt, Germany
| | - Saadettin Sel
- University Medical Center for Ophthalmology, Ruprecht Karl University Heidelberg, Heidelberg, Germany
| | | | - Friedrich Paulsen
- Department of Anatomy II, Friedrich Alexander University Erlangen Nürnberg, Erlangen, Germany.
| |
Collapse
|
42
|
Jafari Sani M, Yazdi F, Masoomi Karimi M, Alizadeh J, Rahmati M, Zarei Mahmudabadi A. The siRNA-Mediated Down-Regulation of Vascular Endothelial Growth Factor Receptor1. IRANIAN RED CRESCENT MEDICAL JOURNAL 2016; 18:e23418. [PMID: 27275397 PMCID: PMC4893410 DOI: 10.5812/ircmj.23418] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 04/16/2015] [Accepted: 06/08/2015] [Indexed: 11/24/2022]
Abstract
Background Angiogenesis is an important biological process involved in the proliferation of endothelial cells, tumor growth and metastasis. Vascular endothelial growth factor (VEGF) is considered as a prominent regulator of angiogenesis which exerts the aforementioned effect(s) through its respective receptors (VEGFR1 and VEGFR2). VEGF receptors are targeted as a therapeutic candidate for cancer growth inhibition. RNAi as a new and promising strategy has provided a useful means to specifically suppress gene expression in cancer cells. Objectives The current study aimed to down-regulate expression of the VEGFR1 using siRNA. Materials and Methods This experimental study designed specific siRNAs against VEGFR1. Total RNA was extracted from human umbilical vain endothelial cell (HUVEC) and subsequently cDNA was synthetized. PCR was performed using specific primers to amplify the target gene. After double digestion and purification, the gene was cloned into pEFGP-N1 expression vector. Then, AGS cells were transfected with recombinant pEGFP-N1 using lipofectamin. The gene expression and down-regulation were evaluated by fluorescence scanning, reverse transcription PCR (RT-PCR) and Western blot techniques. Results Fluorescent scanning, RT-PCR (27.68%) and western blot analysis (31.06%) showed that the expression of VEGFR1 was suppressed effectively. Conclusions The results of the current study showed that specifically designed siRNA can be considered as an appropriate strategy to suppress gene expression and might be a promising tool to prevent angiogenesis.
Collapse
Affiliation(s)
- Moslem Jafari Sani
- Biochemistry Department, School of Medicine, Shahroud University of Medical Sciences, Shahroud, IR Iran
| | - Foad Yazdi
- Biotechnology Department, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, IR Iran
| | - Masoomeh Masoomi Karimi
- Immunology Department, School of Medicine, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, IR Iran
| | - Javad Alizadeh
- Department of Molecular Medicine, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, IR Iran
| | - Majid Rahmati
- Biotechnology Department, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, IR Iran
| | - Ali Zarei Mahmudabadi
- Biochemical Department, Chemical Injuries Research Center, Baqiyatallah University of Medical Sciences, Tehran, IR Iran
- Corresponding Author: Ali Zarei Mahmudabadi, Biochemical Department, Chemical Injuries Research Center, Baqiyatallah University of Medical Sciences, Tehran, IR Iran. Tel: +98-9123277532, Fax: +98-2122830262, E-mail:
| |
Collapse
|
43
|
Gimenez F, Mulik S, Veiga-Parga T, Bhela S, Rouse BT. Robo 4 Counteracts Angiogenesis in Herpetic Stromal Keratitis. PLoS One 2015; 10:e0141925. [PMID: 26720197 PMCID: PMC4697792 DOI: 10.1371/journal.pone.0141925] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Accepted: 10/14/2015] [Indexed: 02/03/2023] Open
Abstract
The cornea is a complex tissue that must preserve its transparency to maintain optimal vision. However, in some circumstances, damage to the eye can result in neovascularization that impairs vision. This outcome can occur when herpes simplex virus type 1 (HSV-1) causes the immunoinflammatory lesion stromal keratitis (SK). Potentially useful measures to control the severity of SK are to target angiogenesis which with herpetic SK invariably involves VEGF. One such way to control angiogenesis involves the endothelial receptor Robo4 (R4), which upon interaction with another protein activates an antiangiogenic pathway that counteracts VEGF downstream signaling. In this study we show that mice unable to produce R4 because of gene knockout developed significantly higher angiogenesis after HSV-1 ocular infection than did infected wild type (WT) controls. Moreover, providing additional soluble R4 (sR4) protein by subconjunctival administration to R4 KO HSV-1 infected mice substantially rescued the WT phenotype. Finally, administration of sR4 to WT HSV-1 infected mice diminished the extent of corneal angiogenesis compared to WT control animals. Our results indicate that sR4 could represent a useful therapeutic tool to counteract corneal angiogenesis and help control the severity of SK.
Collapse
MESH Headings
- Animals
- Corneal Neovascularization/drug therapy
- Corneal Neovascularization/genetics
- Disease Models, Animal
- Female
- Genetic Predisposition to Disease
- Herpesvirus 1, Human
- Keratitis, Herpetic/drug therapy
- Keratitis, Herpetic/genetics
- Keratitis, Herpetic/pathology
- Mice
- Mice, Knockout
- Neovascularization, Pathologic/drug therapy
- Neovascularization, Pathologic/genetics
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/pharmacology
- Phenotype
- Receptors, Cell Surface
- Receptors, Immunologic/genetics
- Signal Transduction/drug effects
- Vascular Endothelial Growth Factor A/metabolism
Collapse
Affiliation(s)
- Fernanda Gimenez
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, 1414 Cumberland Avenue, Knoxville, TN, 37996, United States of America
| | - Sachin Mulik
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, 1414 Cumberland Avenue, Knoxville, TN, 37996, United States of America
- Immune Disease Institute and Program in Cellular and Molecular Medicine, Children’s Hospital Boston, Harvard Medical School, Boston, MA, United States of America
| | - Tamara Veiga-Parga
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, 1414 Cumberland Avenue, Knoxville, TN, 37996, United States of America
| | - Siddheshvar Bhela
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, 1414 Cumberland Avenue, Knoxville, TN, 37996, United States of America
| | - Barry T. Rouse
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, 1414 Cumberland Avenue, Knoxville, TN, 37996, United States of America
- * E-mail:
| |
Collapse
|
44
|
Sokolowski NA, Rizos H, Diefenbach RJ. Oncolytic virotherapy using herpes simplex virus: how far have we come? Oncolytic Virother 2015; 4:207-19. [PMID: 27512683 PMCID: PMC4918397 DOI: 10.2147/ov.s66086] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Oncolytic virotherapy exploits the properties of human viruses to naturally cytolysis of cancer cells. The human pathogen herpes simplex virus (HSV) has proven particularly amenable for use in oncolytic virotherapy. The relative safety of HSV coupled with extensive knowledge on how HSV interacts with the host has provided a platform for manipulating HSV to enhance the targeting and killing of human cancer cells. This has culminated in the approval of talimogene laherparepvec for the treatment of melanoma. This review focuses on the development of HSV as an oncolytic virus and where the field is likely to head in the future.
Collapse
Affiliation(s)
- Nicolas As Sokolowski
- Centre for Virus Research, Westmead Millennium Institute for Medical Research, The University of Sydney, NSW, Australia
| | - Helen Rizos
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, NSW, Australia
| | - Russell J Diefenbach
- Centre for Virus Research, Westmead Millennium Institute for Medical Research, The University of Sydney, NSW, Australia
| |
Collapse
|
45
|
Benayoun Y, Petellat F, Leclerc O, Dost L, Dallaudière B, Reddy C, Robert PY, Salomon JL. [Current treatments for corneal neovascularization]. J Fr Ophtalmol 2015; 38:996-1008. [PMID: 26522890 DOI: 10.1016/j.jfo.2015.09.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Revised: 09/12/2015] [Accepted: 09/17/2015] [Indexed: 11/27/2022]
Abstract
The extension of blood vessels into the normally avascular stroma defines corneal neovascularization. Though this phenomenon, pathophysiological and clinical features are well characterized, therapeutic modalities have been hindered by a lack of safe, efficacious and non-controversial treatments. In this literature review, we focus on available therapeutic options in light of recent evidence provided by animal and clinical studies. First, this review will focus on pharmacological treatments that target angiogenesis. The low cost and market availability of bevacizumab make it the first anti-angiogenic therapy choice, and it has demonstrable efficacy in reducing corneal neovascularization when administered topically or subconjunctivally. However, novel anti-angiogenic molecules targeting the intracellular pathways of angiogenesis (siRNA, antisense oligonucleotides) provide a promising alternative. Laser therapy (direct photocoagulation or photo-dynamic therapy) and fine needle diathermy also find a place in the treatment of stabilized corneal neovascularization alone or in association with anti-angiogenic therapy. Additionally, ocular surface reconstruction using amniotic membrane graft or limbal stem cell transplantation is essential when corneal neovascularization is secondary to primary or acquired limbal deficiency.
Collapse
Affiliation(s)
- Y Benayoun
- Clinique ophtalmologique François-Chénieux, 18, rue du Général-Catroux, 87039 Limoges cedex, France; Institut de recherche et d'innovation en sciences de la vision (IRIS-Vision), 18, rue du Général-Catroux, 87039 Limoges cedex, France.
| | - F Petellat
- Clinique ophtalmologique François-Chénieux, 18, rue du Général-Catroux, 87039 Limoges cedex, France; Institut de recherche et d'innovation en sciences de la vision (IRIS-Vision), 18, rue du Général-Catroux, 87039 Limoges cedex, France
| | - O Leclerc
- Service d'ophtalmologie, hôpital Dupuytren, CHU de Limoges, 87042 Limoges cedex, France
| | - L Dost
- Service d'ophtalmologie, hôpital Dupuytren, CHU de Limoges, 87042 Limoges cedex, France
| | - B Dallaudière
- Service de radiologie, hôpital Pellegrin, CHU de Bordeaux, 33000 Bordeaux, France
| | - C Reddy
- Baylor Scott & White Memorial Hospital, Texas A&M University, Texas, États-Unis
| | - P-Y Robert
- Service d'ophtalmologie, hôpital Dupuytren, CHU de Limoges, 87042 Limoges cedex, France
| | - J-L Salomon
- Clinique ophtalmologique François-Chénieux, 18, rue du Général-Catroux, 87039 Limoges cedex, France; Institut de recherche et d'innovation en sciences de la vision (IRIS-Vision), 18, rue du Général-Catroux, 87039 Limoges cedex, France
| |
Collapse
|
46
|
Abdelfattah NS, Amgad M, Zayed AA, Salem H, Elkhanany AE, Hussein H, Abd El-Baky N. Clinical correlates of common corneal neovascular diseases: a literature review. Int J Ophthalmol 2015; 8:182-93. [PMID: 25709930 DOI: 10.3980/j.issn.2222-3959.2015.01.32] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 11/19/2014] [Indexed: 12/14/2022] Open
Abstract
A large subset of corneal pathologies involves the formation of new blood and lymph vessels (neovascularization), leading to compromised visual acuity. This article aims to review the clinical causes and presentations of corneal neovascularization (CNV) by examining the mechanisms behind common CNV-related corneal pathologies, with a particular focus on herpes simplex stromal keratitis, contact lenses-induced keratitis and CNV secondary to keratoplasty. Moreover, we reviewed CNV in the context of different types of corneal transplantation and keratoprosthesis, and summarized the most relevant treatments available so far.
Collapse
Affiliation(s)
- Nizar Saleh Abdelfattah
- Doheny Image Reading Center, Doheny Eye Institute, University of California, Los Angeles, 1355 San Pablo Street, Los Angeles, California 90033, USA
| | - Mohamed Amgad
- Faculty of Medicine, Cairo University, Cairo 11956, Egypt
| | - Amira A Zayed
- Department of Surgery, Mayo Clinic, Rochester 55905, MN, USA
| | - Hamdy Salem
- Faculty of Medicine, University of Alexandria, Alexandria 21131, Egypt
| | - Ahmed E Elkhanany
- Department of Medical Oncology, Mayo Clinic, Rochester 55905, MN, USA
| | - Heba Hussein
- Faculty of Oral and Dental Medicine, Cairo University, Cairo 11956, Egypt
| | - Nawal Abd El-Baky
- Antibody Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technology Applications, Alexandria 21934, Egypt
| |
Collapse
|
47
|
Chucair-Elliott AJ, Zheng M, Carr DJJ. Degeneration and regeneration of corneal nerves in response to HSV-1 infection. Invest Ophthalmol Vis Sci 2015; 56:1097-107. [PMID: 25587055 DOI: 10.1167/iovs.14-15596] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
PURPOSE Herpes simplex virus type 1 (HSV-1) infection is one cause of neurotrophic keratitis, characterized by decreases in corneal sensation, blink reflex, and tear secretion as consequence of damage to the sensory fibers innervating the cornea. Our aim was to characterize changes in the corneal nerve network and its function in response to HSV-1 infection. METHODS C57BL/6J mice were infected with HSV-1 or left uninfected. Corneas were harvested at predetermined times post infection (pi) and assessed for β III tubulin, substance P, calcitonin gene-related peptide, and neurofilament H staining by immunohistochemistry (IHC). Corneal sensitivity was evaluated using a Cochet-Bonnet esthesiometer. Expression of genes associated with nerve repair was determined in corneas by real time RT-PCR, Western blotting, and IHC. Semaphorin 7A (SEMA 7A) neutralizing antibody or isotype control was subconjunctivally administered to infected mice. RESULTS The area of cornea occupied by β III tubulin immunoreactivity and sensitivity significantly decreased by day 8 pi. Modified reinnervation was observed by day 30 pi without recovery of corneal sensation. Sensory fibers were lost by day 8 pi and were still absent or abnormal at day 30 pi. Expression of SEMA 7A increased at day 8 pi, localizing to corneal epithelial cells. Neutralization of SEMA 7A resulted in defective reinnervation and lower corneal sensitivity. CONCLUSIONS Corneal sensory nerves were lost, consistent with loss of corneal sensation at day 8 pi. At day 30 pi, the cornea reinnervated but without recovering the normal arrangement of its fibers or function. SEMA 7A expression was increased at day 8pi, likely as part of a nerve regeneration mechanism.
Collapse
Affiliation(s)
- Ana J Chucair-Elliott
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Min Zheng
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Daniel J J Carr
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| |
Collapse
|
48
|
Sekelj S, Dekaris I, Balog T, Mahovne I, Krstonijevic EK, Janjetovic Z, Arar ZV, Aric I. Vascular endothelial growth factor in a recipient cornea acts as a prognostic factor for corneal graft reaction development. Curr Eye Res 2014; 40:407-14. [PMID: 24912114 DOI: 10.3109/02713683.2014.925935] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE To evaluate whether the vascular endothelial growth factor A (VEGF-A) in the recipient cornea measured at the time of penetrating keratoplasty (PK) can act as a prognostic factor for corneal graft reaction development. METHODS The study included 25 eyes (of 25 patients) scheduled for PK. According to preoperative clinical finding, patients were divided into three groups: inflammatory with neovascularization (n = 11); inflammatory without neovascularization (n = 7); and non-inflammatory (n = 7). One half of the recipient cornea was analyzed for the levels of VEGF-A protein using a commercial enzyme-linked immunosorbent assay; the other half was analyzed to determine the loci of VEGF-A production by immunohistochemistry. The frequencies of corneal graft reaction and rejection were recorded, together with the improvement of visual acuity. Twenty-five donor corneas obtained from cadaver eyes represented the control group (n = 25). RESULTS There was a statistically significant difference in the levels of VEGF-A protein between the recipient corneal buttons obtained from eyes with inflammatory changes and neovascularization, and those from the non-inflammatory group and controls (p < 0.01). The level of VEGF-A was 287.74 pg/ml (standard deviation [SD] = 129.181) in the inflammatory with corneal neovascularization group, 227.64 pg/ml (SD = 85.590) in the inflammatory without neovascularization group, 115.37 pg/ml (SD = 105.93) in the non-inflammatory group, and 142.28 pg/ml (SD = 93.081) in the control group. Graft reaction/rejection rate was 54.5%/45.5% in the inflammatory with neovascularization group, 14.3%/0% in the inflammatory without neovascularization group, and 14.3%/14.3% in non-inflammatory group. Patients who developed clinical signs of graft reaction during the postoperative follow-up had a significantly higher level of VEGF-A (307.4 pg/ml, SD = 100.058) compared with those without any signs of graft reaction (182.8 pg/ml, SD = 124.987). CONCLUSION Our results suggest that both graft reaction and final graft rejection occur more often in patients with increased levels of VEGF-A in a recipient cornea at the time of PK.
Collapse
Affiliation(s)
- Sandra Sekelj
- Eye Department, General Hospital "Dr. J. Bencevic" , Slavonski Brod , Croatia
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Anti-neovascular effect of chondrocyte-derived extracellular matrix on corneal alkaline burns in rabbits. Graefes Arch Clin Exp Ophthalmol 2014; 252:951-61. [DOI: 10.1007/s00417-014-2633-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 03/18/2014] [Accepted: 04/03/2014] [Indexed: 10/25/2022] Open
|
50
|
Treatment of Corneal Neovascularization Using Anti-VEGF Bevacizumab. J Ophthalmol 2014; 2014:178132. [PMID: 24778865 PMCID: PMC3981012 DOI: 10.1155/2014/178132] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Revised: 02/18/2014] [Accepted: 02/19/2014] [Indexed: 12/27/2022] Open
Abstract
Purpose. To evaluate antiangiogenic effect of local use of bevacizumab (anti-VEGF antibody) in patients with corneal neovascularization. Methods. Patients were divided into two groups. All patients suffered from some form of corneal neovascularization (NV). Patients in group A received 0.2–0.5 mL of bevacizumab solution subconjunctivally (concentration 25 mg/mL) in a single dose. Group A included 28 eyes from 27. Patients in group B applied bevacizumab eye drops twice daily (concentration 2.5 mg/mL) for two weeks. Group B included 38 eyes from 35 patients. We evaluated the number of corneal segments affected by NV, CDVA, and the incidence of complications and subjective complaints related to the treatment. The minimum follow-up period was six months. Results. By the 6-month follow-up, in group A the percentage reduction of the affected peripheral segments was 21.6% and of the central segments was 9.6%; in group B the percentage reduction of the central segments was 22.7% and of the central segments was 38.04%. In both groups we noticed a statistically significant reduction in the extent of NV. Conclusion. The use of bevacizumab seems to be an effective and safe method in the treatment of corneal neovascularization, either in the subconjunctival or topical application form.
Collapse
|