1
|
Stelitano D, Cortese M. Electron microscopy: The key to resolve RNA viruses replication organelles. Mol Microbiol 2024; 121:679-687. [PMID: 37777341 DOI: 10.1111/mmi.15173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/14/2023] [Accepted: 09/17/2023] [Indexed: 10/02/2023]
Abstract
Positive-sense single-stranded RNA viruses significantly reshape intracellular membranes to generate viral replication organelles that form a controlled niche in which nucleic acids, enzymes, and cofactors accumulate to assure an efficient replication of the viral genome. In recent years, advancements in electron microscopy (EM) techniques have enabled imaging of these viral factories in a near-native state providing significantly higher molecular details that have led to progress in our general understanding of virus biology. In this review, we describe the contribution of the cutting-edge EM approaches to the current knowledge of replication organelles biogenesis, structure, and functions.
Collapse
Affiliation(s)
- Debora Stelitano
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
- Scuola Superiore Meridionale, Naples, Italy
| | - Mirko Cortese
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
- Università della Campania Luigi Vanvitelli, Caserta, Italy
| |
Collapse
|
2
|
Hagedorn E, Bunnell D, Henschel B, Smith DL, Dickinson S, Brown AW, De Luca M, Turner AN, Chtarbanova S. RNA virus-mediated changes in organismal oxygen consumption rate in young and old Drosophila melanogaster males. Aging (Albany NY) 2023; 15:1748-1767. [PMID: 36947702 PMCID: PMC10085608 DOI: 10.18632/aging.204593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 02/20/2023] [Indexed: 03/24/2023]
Abstract
Aging is accompanied by increased susceptibility to infections including with viral pathogens resulting in higher morbidity and mortality among the elderly. Significant changes in host metabolism can take place following virus infection. Efficient immune responses are energetically costly, and viruses divert host molecular resources to promote their own replication. Virus-induced metabolic reprogramming could impact infection outcomes, however, how this is affected by aging and impacts organismal survival remains poorly understood. RNA virus infection of Drosophila melanogaster with Flock House virus (FHV) is an effective model to study antiviral responses with age, where older flies die faster than younger flies due to impaired disease tolerance. Using this aged host-virus model, we conducted longitudinal, single-fly respirometry studies to determine if metabolism impacts infection outcomes. Analysis using linear mixed models on Oxygen Consumption Rate (OCR) following the first 72-hours post-infection showed that FHV modulates respiration, but age has no significant effect on OCR. However, the longitudinal assessment revealed that OCR in young flies progressively and significantly decreases, while OCR in aged flies remains constant throughout the three days of the experiment. Furthermore, we found that the OCR signature at 24-hours varied in response to both experimental treatment and survival status. FHV-injected flies that died prior to 48- or 72-hours measurements had a lower OCR compared to survivors at 48-hours. Our findings suggest the host's metabolic profile could influence the outcome of viral infections.
Collapse
Affiliation(s)
- Eli Hagedorn
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35401, USA
- Present Address: Indiana University School of Medicine-Indianapolis, Medical Scientist Training Program, Indianapolis, IN 46202, USA
| | - Dean Bunnell
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35401, USA
| | - Beate Henschel
- Department of Epidemiology and Biostatistics, Indiana University School of Public Health-Bloomington, Biostatistics Consulting Center, Bloomington, IN 47405, USA
| | - Daniel L. Smith
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL 35233, USA
- Nathan Shock Center of Excellence in the Basic Biology of Aging, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Stephanie Dickinson
- Department of Epidemiology and Biostatistics, Indiana University School of Public Health-Bloomington, Biostatistics Consulting Center, Bloomington, IN 47405, USA
| | - Andrew W. Brown
- Department of Applied Health Sciences, Indiana University, School of Public Health-Bloomington, Bloomington, IN 47405, USA
- Present Address: University of Arkansas for Medical Sciences and Arkansas Children’s Research Institute, Little Rock, AR 72202, USA
| | - Maria De Luca
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Ashley N. Turner
- Department of Biology, Jacksonville State University, Jacksonville, AL 36265, USA
| | - Stanislava Chtarbanova
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35401, USA
- Nathan Shock Center of Excellence in the Basic Biology of Aging, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Center for Convergent Bioscience and Medicine, University of Alabama, Tuscaloosa, AL 35401, USA
- Alabama Life Research Institute, University of Alabama, Tuscaloosa, AL 35401, USA
| |
Collapse
|
3
|
Nodavirus RNA replication crown architecture reveals proto-crown precursor and viral protein A conformational switching. Proc Natl Acad Sci U S A 2023; 120:e2217412120. [PMID: 36693094 PMCID: PMC9945985 DOI: 10.1073/pnas.2217412120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Positive-strand RNA viruses replicate their genomes in virus-induced membrane vesicles, and the resulting RNA replication complexes are a major target for virus control. Nodavirus studies first revealed viral RNA replication proteins forming a 12-fold symmetric "crown" at the vesicle opening to the cytosol, an arrangement recently confirmed to extend to distantly related alphaviruses. Using cryoelectron microscopy (cryo-EM), we show that mature nodavirus crowns comprise two stacked 12-mer rings of multidomain viral RNA replication protein A. Each ring contains an ~19 nm circle of C-proximal polymerase domains, differentiated by strikingly diverged positions of N-proximal RNA capping/membrane binding domains. The lower ring is a "proto-crown" precursor that assembles prior to RNA template recruitment, RNA synthesis, and replication vesicle formation. In this proto-crown, the N-proximal segments interact to form a toroidal central floor, whose 3.1 Å resolution structure reveals many mechanistic details of the RNA capping/membrane binding domains. In the upper ring, cryo-EM fitting indicates that the N-proximal domains extend radially outside the polymerases, forming separated, membrane-binding "legs." The polymerase and N-proximal domains are connected by a long linker accommodating the conformational switch between the two rings and possibly also polymerase movements associated with RNA synthesis and nonsymmetric electron density in the lower center of mature crowns. The results reveal remarkable viral protein multifunctionality, conformational flexibility, and evolutionary plasticity and insights into (+)RNA virus replication and control.
Collapse
|
4
|
den Boon JA, Zhan H, Unchwaniwala N, Horswill M, Slavik K, Pennington J, Navine A, Ahlquist P. Multifunctional Protein A Is the Only Viral Protein Required for Nodavirus RNA Replication Crown Formation. Viruses 2022; 14:v14122711. [PMID: 36560715 PMCID: PMC9788154 DOI: 10.3390/v14122711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022] Open
Abstract
Positive-strand RNA virus RNA genome replication occurs in membrane-associated RNA replication complexes (RCs). Nodavirus RCs are outer mitochondrial membrane invaginations whose necked openings to the cytosol are "crowned" by a 12-fold symmetrical proteinaceous ring that functions as the main engine of RNA replication. Similar protein crowns recently visualized at the openings of alphavirus and coronavirus RCs highlight their broad conservation and functional importance. Using cryo-EM tomography, we earlier showed that the major nodavirus crown constituent is viral protein A, whose polymerase, RNA capping, membrane interaction and multimerization domains drive RC formation and function. Other viral proteins are strong candidates for unassigned EM density in the crown. RNA-binding RNAi inhibitor protein B2 co-immunoprecipitates with protein A and could form crown subdomains that protect nascent viral RNA and dsRNA templates. Capsid protein may interact with the crown since nodavirus virion assembly has spatial and other links to RNA replication. Using cryoelectron tomography and complementary approaches, we show that, even when formed in mammalian cells, nodavirus RC crowns generated without B2 and capsid proteins are functional and structurally indistinguishable from mature crowns in infected Drosophila cells expressing all viral proteins. Thus, the only nodaviral factors essential to form functional RCs and crowns are RNA replication protein A and an RNA template. We also resolve apparent conflicts in prior results on B2 localization in infected cells, revealing at least two distinguishable pools of B2. The results have significant implications for crown structure, assembly, function and control as an antiviral target.
Collapse
Affiliation(s)
- Johan A. den Boon
- John W. and Jeanne M. Rowe Center for Research in Virology, Morgridge Institute for Research, Madison, WI 53715, USA
- Institute for Molecular Virology, University of Wisconsin–Madison, Madison, WI 53706, USA
- McArdle Laboratory for Cancer Research, University of Wisconsin–Madison, Madison, WI 53705, USA
| | - Hong Zhan
- John W. and Jeanne M. Rowe Center for Research in Virology, Morgridge Institute for Research, Madison, WI 53715, USA
- Institute for Molecular Virology, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Nuruddin Unchwaniwala
- John W. and Jeanne M. Rowe Center for Research in Virology, Morgridge Institute for Research, Madison, WI 53715, USA
- Institute for Molecular Virology, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Mark Horswill
- John W. and Jeanne M. Rowe Center for Research in Virology, Morgridge Institute for Research, Madison, WI 53715, USA
- Institute for Molecular Virology, University of Wisconsin–Madison, Madison, WI 53706, USA
- McArdle Laboratory for Cancer Research, University of Wisconsin–Madison, Madison, WI 53705, USA
| | - Kailey Slavik
- John W. and Jeanne M. Rowe Center for Research in Virology, Morgridge Institute for Research, Madison, WI 53715, USA
- Institute for Molecular Virology, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Janice Pennington
- John W. and Jeanne M. Rowe Center for Research in Virology, Morgridge Institute for Research, Madison, WI 53715, USA
- Institute for Molecular Virology, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Amanda Navine
- John W. and Jeanne M. Rowe Center for Research in Virology, Morgridge Institute for Research, Madison, WI 53715, USA
- Institute for Molecular Virology, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Paul Ahlquist
- John W. and Jeanne M. Rowe Center for Research in Virology, Morgridge Institute for Research, Madison, WI 53715, USA
- Institute for Molecular Virology, University of Wisconsin–Madison, Madison, WI 53706, USA
- McArdle Laboratory for Cancer Research, University of Wisconsin–Madison, Madison, WI 53705, USA
- Correspondence:
| |
Collapse
|
5
|
Sathanantham P, Zhao W, He G, Murray A, Fenech E, Diaz A, Schuldiner M, Wang X. A conserved viral amphipathic helix governs the replication site-specific membrane association. PLoS Pathog 2022; 18:e1010752. [PMID: 36048900 PMCID: PMC9473614 DOI: 10.1371/journal.ppat.1010752] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 09/14/2022] [Accepted: 07/19/2022] [Indexed: 11/18/2022] Open
Abstract
Positive-strand RNA viruses assemble their viral replication complexes (VRCs) on specific host organelle membranes, yet it is unclear how viral replication proteins recognize and what motifs or domains in viral replication proteins determine their destinations. We show here that an amphipathic helix, helix B in replication protein 1a of brome mosaic virus (BMV), is necessary for 1a’s localization to the nuclear endoplasmic reticulum (ER) membrane where BMV assembles its VRCs. Helix B is also sufficient to target soluble proteins to the nuclear ER membrane in yeast and plant cells. We further show that an equivalent helix in several plant- and human-infecting viruses of the Alsuviricetes class targets fluorescent proteins to the organelle membranes where they form their VRCs, including ER, vacuole, and Golgi membranes. Our work reveals a conserved helix that governs the localization of VRCs among a group of viruses and points to a possible target for developing broad-spectrum antiviral strategies. Positive-strand RNA viruses [(+)RNA viruses] are the largest viral class that include numerous pathogens causing important diseases in humans, animals, and plants. During their infections, (+)RNA viruses assemble their viral replication complexes (VRCs), where they multiply themselves, at specific organelle membranes. An initial step to form VRCs is to target viral replication proteins to the designated organelle membranes. For brome mosaic virus (BMV), its replication protein 1a is responsible for the VRC formation at the nuclear endoplasmic reticulum (ER) membrane. We show that an amphipathic alpha-helix, helix B, in BMV 1a is necessary for the association of BMV 1a with the nuclear ER membrane and for BMV genome amplification. In addition, Helix B is sufficient to target several soluble proteins to the nuclear ER membrane in yeast and plant cells. BMV belongs to the Alsuviricetes class that includes viruses infecting humans, animals, and plants. We further show that the helix B across members of the Alsuviricetes class is sufficient to target fluorescence proteins to the designated organelle membranes. Our results reveal a conserved feature among a group of viruses in governing the associations with replication site-specific organelle membranes and point to a target to develop broad-spectrum antivirals.
Collapse
Affiliation(s)
- Preethi Sathanantham
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Wenhao Zhao
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Nanjing, China
| | - Guijuan He
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Austin Murray
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Emma Fenech
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Arturo Diaz
- Department of Biology, La Sierra University, Riverside, California, United States of America
| | - Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Xiaofeng Wang
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
- * E-mail:
| |
Collapse
|
6
|
Neufeldt CJ, Cortese M. Membrane architects: how positive-strand RNA viruses restructure the cell. J Gen Virol 2022; 103. [PMID: 35976091 DOI: 10.1099/jgv.0.001773] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Virus infection is a process that requires combined contributions from both virus and host factors. For this process to be efficient within the crowded host environment, viruses have evolved ways to manipulate and reorganize host structures to produce cellular microenvironments. Positive-strand RNA virus replication and assembly occurs in association with cytoplasmic membranes, causing a reorganization of these membranes to create microenvironments that support viral processes. Similarities between virus-induced membrane domains and cellular organelles have led to the description of these structures as virus replication organelles (vRO). Electron microscopy analysis of vROs in positive-strand RNA virus infected cells has revealed surprising morphological similarities between genetically diverse virus species. For all positive-strand RNA viruses, vROs can be categorized into two groups: those that make invaginations into the cellular membranes (In-vRO), and those that cause the production of protrusions from cellular membranes (Pr-vRO), most often in the form of double membrane vesicles (DMVs). In this review, we will discuss the current knowledge on the structure and biogenesis of these two different vRO classes as well as comparing morphology and function of vROs between various positive-strand RNA viruses. Finally, we will discuss recent studies describing pharmaceutical intervention in vRO formation as an avenue to control virus infection.
Collapse
Affiliation(s)
- Christopher John Neufeldt
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Mirko Cortese
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| |
Collapse
|
7
|
Identification and Characterization of Two Novel Noda-like Viruses from Rice Plants Showing the Dwarfing Symptom. Viruses 2022; 14:v14061159. [PMID: 35746632 PMCID: PMC9231309 DOI: 10.3390/v14061159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/21/2022] [Accepted: 05/25/2022] [Indexed: 02/01/2023] Open
Abstract
Nodaviruses are small bipartite RNA viruses and are considered animal viruses. Here, we identified two novel noda-like viruses (referred to as rice-associated noda-like virus 1 (RNLV1) and rice-associated noda-like virus 2 (RNLV2)) in field-collected rice plants showing a dwarfing phenotype through RNA-seq. RNLV1 genome consists of 3335 nt RNA1 and 1769 nt RNA2, and RNLV2 genome consists of 3279 nt RNA1 and 1525 nt RNA2. Three conserved ORFs were identified in each genome of the two novel viruses, encoding an RNA-dependent RNA polymerase, an RNA silencing suppressor, and a capsid protein, respectively. The results of sequence alignment, protein domain prediction, and evolutionary analysis indicate that these two novel viruses are clearly different from the known nodaviruses, especially the CPs. We have also determined that the B2 protein encoded by the two new noda-like viruses can suppress RNA silencing in plants. Two reverse genetic systems were constructed and used to show that RNLV1 RNA1 can replicate in plant cells and RNLV1 can replicate in insect Sf9 cells. We have also found two unusual peptidase family A21 domains in the RNLV1 CP, and RNLV1 CP can self-cleave in acidic environments. These findings provide new knowledge of novel nodaviruses.
Collapse
|
8
|
Nishikiori M, den Boon JA, Unchwaniwala N, Ahlquist P. Crowning Touches in Positive-Strand RNA Virus Genome Replication Complex Structure and Function. Annu Rev Virol 2022; 9:193-212. [PMID: 35610038 DOI: 10.1146/annurev-virology-092920-021307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Positive-strand RNA viruses, the largest genetic class of eukaryotic viruses, include coronaviruses and many other established and emerging pathogens. A major target for understanding and controlling these viruses is their genome replication, which occurs in virus-induced membrane vesicles that organize replication steps and protect double-stranded RNA intermediates from innate immune recognition. The structure of these complexes has been greatly illuminated by recent cryo-electron microscope tomography studies with several viruses. One key finding in diverse systems is the organization of crucial viral RNA replication factors in multimeric rings or crowns that among other functions serve as exit channels gating release of progeny genomes to the cytosol for translation and encapsidation. Emerging results suggest that these crowns serve additional important purposes in replication complex assembly, function, and interaction with downstream processes such as encapsidation. The findings provide insights into viral function and evolution and new bases for understanding, controlling, and engineering positive-strand RNA viruses. Expected final online publication date for the Annual Review of Virology, Volume 9 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Masaki Nishikiori
- John and Jeanne Rowe Center for Research in Virology, Morgridge Institute for Research, Madison, Wisconsin, USA; .,Institute for Molecular Virology and McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Johan A den Boon
- John and Jeanne Rowe Center for Research in Virology, Morgridge Institute for Research, Madison, Wisconsin, USA; .,Institute for Molecular Virology and McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Nuruddin Unchwaniwala
- John and Jeanne Rowe Center for Research in Virology, Morgridge Institute for Research, Madison, Wisconsin, USA; .,Institute for Molecular Virology and McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Current affiliation: Assembly Biosciences, Inc., South San Francisco, California, USA
| | - Paul Ahlquist
- John and Jeanne Rowe Center for Research in Virology, Morgridge Institute for Research, Madison, Wisconsin, USA; .,Institute for Molecular Virology and McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
9
|
Coronavirus RNA Synthesis Takes Place within Membrane-Bound Sites. Viruses 2021; 13:v13122540. [PMID: 34960809 PMCID: PMC8708976 DOI: 10.3390/v13122540] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/01/2021] [Accepted: 12/15/2021] [Indexed: 12/22/2022] Open
Abstract
Infectious bronchitis virus (IBV), a gammacoronavirus, is an economically important virus to the poultry industry, as well as a significant welfare issue for chickens. As for all positive strand RNA viruses, IBV infection causes rearrangements of the host cell intracellular membranes to form replication organelles. Replication organelle formation is a highly conserved and vital step in the viral life cycle. Here, we investigate the localization of viral RNA synthesis and the link with replication organelles in host cells. We have shown that sites of viral RNA synthesis and virus-related dsRNA are associated with one another and, significantly, that they are located within a membrane-bound compartment within the cell. We have also shown that some viral RNA produced early in infection remains within these membranes throughout infection, while a proportion is trafficked to the cytoplasm. Importantly, we demonstrate conservation across all four coronavirus genera, including SARS-CoV-2. Understanding more about the replication of these viruses is imperative in order to effectively find ways to control them.
Collapse
|
10
|
Unchwaniwala N, Zhan H, den Boon JA, Ahlquist P. Cryo-electron microscopy of nodavirus RNA replication organelles illuminates positive-strand RNA virus genome replication. Curr Opin Virol 2021; 51:74-79. [PMID: 34601307 PMCID: PMC8504867 DOI: 10.1016/j.coviro.2021.09.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 11/18/2022]
Abstract
The nodavirus flock house virus recently provided a well-characterized model for the first cryo-electron microscope tomography of membrane-bound, positive-strand RNA ((+)RNA) virus genome replication complexes (RCs). The resulting first views of RC organization and complementary biochemical results showed that the viral RNA replication vesicle is tightly packed with the dsRNA genomic RNA replication intermediate, and that (+)ssRNA replication products are released through the vesicle neck to the cytosol through a 12-fold symmetric ring or crown of multi-functional viral RNA replication proteins, which likely also contribute to viral RNA synthesis. Subsequent studies identified similar crown-like RNA replication protein complexes in alphavirus and coronavirus RCs, indicating related mechanisms across highly divergent (+)RNA viruses. As outlined in this review, these results have significant implications for viral function, evolution and control.
Collapse
Affiliation(s)
- Nuruddin Unchwaniwala
- John and Jeanne Rowe Center for Research in Virology, Morgridge Institute for Research, Madison, WI, 53715, United States; Institute for Molecular Virology, University of Wisconsin-Madison, Madison, WI, 53706, United States; McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI, 53705, United States
| | - Hong Zhan
- John and Jeanne Rowe Center for Research in Virology, Morgridge Institute for Research, Madison, WI, 53715, United States; Institute for Molecular Virology, University of Wisconsin-Madison, Madison, WI, 53706, United States; McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI, 53705, United States
| | - Johan A den Boon
- John and Jeanne Rowe Center for Research in Virology, Morgridge Institute for Research, Madison, WI, 53715, United States; Institute for Molecular Virology, University of Wisconsin-Madison, Madison, WI, 53706, United States; McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI, 53705, United States
| | - Paul Ahlquist
- John and Jeanne Rowe Center for Research in Virology, Morgridge Institute for Research, Madison, WI, 53715, United States; Institute for Molecular Virology, University of Wisconsin-Madison, Madison, WI, 53706, United States; McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI, 53705, United States
| |
Collapse
|
11
|
Determinants in non-structural protein 4A of dengue virus required for RNA replication and replication organelle biogenesis. J Virol 2021; 95:e0131021. [PMID: 34379504 DOI: 10.1128/jvi.01310-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dengue virus (DENV) constitutes one of the most important arboviral pathogens affecting humans. The high prevalence of DENV infections, which cause more than twenty thousand deaths annually, and the lack of effective vaccines or direct-acting antiviral drugs make it a global health concern. DENV genome replication occurs in close association with the host endomembrane system, which is remodeled to form the viral replication organelle that originates from ER membranes. To date, the viral and cellular determinants responsible for the biogenesis of DENV replication organelles are still poorly defined. The viral nonstructural protein (NS) 4A can remodel membranes and has been shown to associate with numerous host factors in DENV replicating cells. In the present study we used reverse and forward genetic screens and identified sites within NS4A required for DENV replication. We also mapped the determinants in NS4A required for interactions with other viral proteins. Moreover, taking advantage of our recently developed polyprotein expression system, we evaluated the role of NS4A in the formation of DENV replication organelles. Together, we report a detailed map of determinants within NS4A required for RNA replication, interaction with other viral proteins and replication organelle formation. Our results suggest that NS4A might be an attractive target for antiviral therapy. Importance DENV is the most prevalent mosquito-borne virus, causing around 390 million infections each year. There are no approved therapies to treat DENV infection and the only available vaccine shows limited efficacy. The viral non-structural proteins have emerged as attractive drug targets, due to their pivotal role in RNA replication and establishment of virus-induced membranous compartments, designated replication organelles (ROs). The transmembrane protein NS4A, generated by cleavage of the NS4A-2K-4B precursor, contributes to DENV replication by unknown mechanisms. Here, we report a detailed genetic interaction map of NS4A and identify residues required for RNA replication and interaction between NS4A-2K-4B and NS2B-3 as well as NS1. Importantly, by means of an expression-based system we demonstrate the essential role of NS4A in ROs biogenesis and identify determinants in NS4A required for this process. Our data suggest that NS4A is an attractive target for antiviral therapy.
Collapse
|
12
|
McMenamin AJ, Parekh F, Lawrence V, Flenniken ML. Investigating Virus-Host Interactions in Cultured Primary Honey Bee Cells. INSECTS 2021; 12:653. [PMID: 34357313 PMCID: PMC8329929 DOI: 10.3390/insects12070653] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/10/2021] [Accepted: 07/13/2021] [Indexed: 12/23/2022]
Abstract
Honey bee (Apis mellifera) health is impacted by viral infections at the colony, individual bee, and cellular levels. To investigate honey bee antiviral defense mechanisms at the cellular level we further developed the use of cultured primary cells, derived from either larvae or pupae, and demonstrated that these cells could be infected with a panel of viruses, including common honey bee infecting viruses (i.e., sacbrood virus (SBV) and deformed wing virus (DWV)) and an insect model virus, Flock House virus (FHV). Virus abundances were quantified over the course of infection. The production of infectious virions in cultured honey bee pupal cells was demonstrated by determining that naïve cells became infected after the transfer of deformed wing virus or Flock House virus from infected cell cultures. Initial characterization of the honey bee antiviral immune responses at the cellular level indicated that there were virus-specific responses, which included increased expression of bee antiviral protein-1 (GenBank: MF116383) in SBV-infected pupal cells and increased expression of argonaute-2 and dicer-like in FHV-infected hemocytes and pupal cells. Additional studies are required to further elucidate virus-specific honey bee antiviral defense mechanisms. The continued use of cultured primary honey bee cells for studies that involve multiple viruses will address this knowledge gap.
Collapse
Affiliation(s)
- Alexander J. McMenamin
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717, USA; (A.J.M.); (F.P.); (V.L.)
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
- Pollinator Health Center, Montana State University, Bozeman, MT 59717, USA
| | - Fenali Parekh
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717, USA; (A.J.M.); (F.P.); (V.L.)
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
- Pollinator Health Center, Montana State University, Bozeman, MT 59717, USA
| | - Verena Lawrence
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717, USA; (A.J.M.); (F.P.); (V.L.)
- Pollinator Health Center, Montana State University, Bozeman, MT 59717, USA
| | - Michelle L. Flenniken
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717, USA; (A.J.M.); (F.P.); (V.L.)
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
- Pollinator Health Center, Montana State University, Bozeman, MT 59717, USA
| |
Collapse
|
13
|
A smart viral vector for targeted delivery of hydrophobic drugs. Sci Rep 2021; 11:7030. [PMID: 33782428 PMCID: PMC8007742 DOI: 10.1038/s41598-021-86198-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 03/08/2021] [Indexed: 02/07/2023] Open
Abstract
Targeted delivery of hydrophobic chemotherapeutic drugs to tumor cells remains a fundamental problem in cancer therapy. Effective encapsulation of hydrophobic drugs in nano-vehicles can improve their pharmacokinetics, bioavailability and prevent off-target localization. We have devised a method for easy chemical conjugation and multivalent display of a tumor-homing peptide to virus-like particles of a non-mammalian virus, Flock House Virus (FHV), to engineer it into a smart vehicle for targeted delivery of hydrophobic drugs. This conjugation method provides dual functionalization to the VLPs, first, a 2 kDa PEG spacer arm shields VLPs from immune reactivity, and second, attachment of the tumor homing peptide tLyP-1 chauffeurs the encapsulated hydrophobic drugs to target cells. The fortuitous affinity of the FHV capsid towards hydrophobic molecules, and dependence on Ca2+ for maintaining a stable capsid shell, were utilized for incorporation of hydrophobic drugs—doxorubicin and ellipticine—in tLyP-1 conjugated VLPs. The drug release profile from the VLP was observed to be gradual, and strictly endosomal pH dependent. We propose that this accessible platform empowers surface functionalization of VLP with numerous ligands containing terminal cysteines, for generating competent delivery vehicles, antigenic display and other biomedical applications.
Collapse
|
14
|
Wong LH, Edgar JR, Martello A, Ferguson BJ, Eden ER. Exploiting Connections for Viral Replication. Front Cell Dev Biol 2021; 9:640456. [PMID: 33816489 PMCID: PMC8012536 DOI: 10.3389/fcell.2021.640456] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/01/2021] [Indexed: 12/16/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the cause of the COVID-19 (coronavirus disease 2019) pandemic, is a positive strand RNA (+RNA) virus. Like other +RNA viruses, SARS-CoV-2 is dependent on host cell metabolic machinery to survive and replicate, remodeling cellular membranes to generate sites of viral replication. Viral RNA-containing double-membrane vesicles (DMVs) are a striking feature of +RNA viral replication and are abundant in SARS-CoV-2-infected cells. Their generation involves rewiring of host lipid metabolism, including lipid biosynthetic pathways. Viruses can also redirect lipids from host cell organelles; lipid exchange at membrane contact sites, where the membranes of adjacent organelles are in close apposition, has been implicated in the replication of several +RNA viruses. Here we review current understanding of DMV biogenesis. With a focus on the exploitation of contact site machinery by +RNA viruses to generate replication organelles, we discuss evidence that similar mechanisms support SARS-CoV-2 replication, protecting its RNA from the host cell immune response.
Collapse
Affiliation(s)
| | - James R. Edgar
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | | | - Brian J. Ferguson
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Emily R. Eden
- UCL Institute of Ophthalmology, London, United Kingdom
| |
Collapse
|
15
|
Mao K, Breen P, Ruvkun G. Mitochondrial dysfunction induces RNA interference in C. elegans through a pathway homologous to the mammalian RIG-I antiviral response. PLoS Biol 2020; 18:e3000996. [PMID: 33264285 PMCID: PMC7735679 DOI: 10.1371/journal.pbio.3000996] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 12/14/2020] [Accepted: 11/09/2020] [Indexed: 12/27/2022] Open
Abstract
RNA interference (RNAi) is an antiviral pathway common to many eukaryotes that detects and cleaves foreign nucleic acids. In mammals, mitochondrially localized proteins such as mitochondrial antiviral signaling (MAVS), retinoic acid-inducible gene I (RIG-I), and melanoma differentiation-associated protein 5 (MDA5) mediate antiviral responses. Here, we report that mitochondrial dysfunction in Caenorhabditis elegans activates RNAi-directed silencing via induction of a pathway homologous to the mammalian RIG-I helicase viral response pathway. The induction of RNAi also requires the conserved RNA decapping enzyme EOL-1/DXO. The transcriptional induction of eol-1 requires DRH-1 as well as the mitochondrial unfolded protein response (UPRmt). Upon mitochondrial dysfunction, EOL-1 is concentrated into foci that depend on the transcription of mitochondrial RNAs that may form double-stranded RNA (dsRNA), as has been observed in mammalian antiviral responses. Enhanced RNAi triggered by mitochondrial dysfunction is necessary for the increase in longevity that is induced by mitochondrial dysfunction. Surveillance of mitochondrial dysfunction in the nematode Caenorhabditis elegans triggers the activation of an RNA interference pathway to mediate antiviral defense, in a manner homologous to the mammalian RIG-I helicase viral response pathway.
Collapse
Affiliation(s)
- Kai Mao
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Peter Breen
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Gary Ruvkun
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
16
|
Unchwaniwala N, Zhan H, Pennington J, Horswill M, den Boon JA, Ahlquist P. Subdomain cryo-EM structure of nodaviral replication protein A crown complex provides mechanistic insights into RNA genome replication. Proc Natl Acad Sci U S A 2020; 117:18680-18691. [PMID: 32690711 PMCID: PMC7414174 DOI: 10.1073/pnas.2006165117] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
For positive-strand RNA [(+)RNA] viruses, the major target for antiviral therapies is genomic RNA replication, which occurs at poorly understood membrane-bound viral RNA replication complexes. Recent cryoelectron microscopy (cryo-EM) of nodavirus RNA replication complexes revealed that the viral double-stranded RNA replication template is coiled inside a 30- to 90-nm invagination of the outer mitochondrial membrane, whose necked aperture to the cytoplasm is gated by a 12-fold symmetric, 35-nm diameter "crown" complex that contains multifunctional viral RNA replication protein A. Here we report optimizing cryo-EM tomography and image processing to improve crown resolution from 33 to 8.5 Å. This resolves the crown into 12 distinct vertical segments, each with 3 major subdomains: A membrane-connected basal lobe and an apical lobe that together comprise the ∼19-nm-diameter central turret, and a leg emerging from the basal lobe that connects to the membrane at ∼35-nm diameter. Despite widely varying replication vesicle diameters, the resulting two rings of membrane interaction sites constrain the vesicle neck to a highly uniform shape. Labeling protein A with a His-tag that binds 5-nm Ni-nanogold allowed cryo-EM tomography mapping of the C terminus of protein A to the apical lobe, which correlates well with the predicted structure of the C-proximal polymerase domain of protein A. These and other results indicate that the crown contains 12 copies of protein A arranged basally to apically in an N-to-C orientation. Moreover, the apical polymerase localization has significant mechanistic implications for template RNA recruitment and (-) and (+)RNA synthesis.
Collapse
Affiliation(s)
- Nuruddin Unchwaniwala
- John and Jeanne Rowe Center for Research in Virology, Morgridge Institute for Research, Madison, WI 53715
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, WI 53706
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI 53706
| | - Hong Zhan
- John and Jeanne Rowe Center for Research in Virology, Morgridge Institute for Research, Madison, WI 53715
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, WI 53706
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI 53706
| | - Janice Pennington
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, WI 53706
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI 53706
| | - Mark Horswill
- John and Jeanne Rowe Center for Research in Virology, Morgridge Institute for Research, Madison, WI 53715
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, WI 53706
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI 53706
| | - Johan A den Boon
- John and Jeanne Rowe Center for Research in Virology, Morgridge Institute for Research, Madison, WI 53715
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, WI 53706
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI 53706
| | - Paul Ahlquist
- John and Jeanne Rowe Center for Research in Virology, Morgridge Institute for Research, Madison, WI 53715;
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, WI 53706
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI 53706
- Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, WI 53706
| |
Collapse
|
17
|
Xu T, Liu S, Li X, Zhang Q. Genomic characterization of covert mortality nodavirus from farming shrimp: Evidence for a new species within the family Nodaviridae. Virus Res 2020; 286:198092. [PMID: 32659308 DOI: 10.1016/j.virusres.2020.198092] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 07/08/2020] [Accepted: 07/08/2020] [Indexed: 12/21/2022]
Abstract
The prevalence of covert mortality nodavirus (CMNV) has become one of the major threats to the shrimp farming industry in Asia and South America recently. Here, the genomic RNA1 and RNA2 of CMNV were characterized by using transcriptome sequencing and RT-PCR. Our study revealed that RNA1 is 3228 bp in length, and contains two putative Open Reading Frames (ORFs), one encoding the RNA dependent RNA polymerase (RdRp) of length 1043 amino acids and another encoding the protein B2 with a length of 132 amino acids. RNA2 is 1448 bp in length and encodes a capsid protein of 437 amino acids. CMNV shared the highest similarity of 51.78 % for RdRp with the other known nodaviruses. Phylogenetic analyses on the basis of RdRp, B2 and capsid proteins indicated that CMNV might represent a novel viral species in the family Nodaviridae. This study reported the first genome sequence of CMNV and it would be helpful for further studies of CMNV in relation to its evolution, diagnostic technique and control strategy.
Collapse
Affiliation(s)
- Tingting Xu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Marine Aquaculture Disease Control, Ministry of Agriculture, Key Laboratory of Marine Aquaculture Epidemiology and Biosecurity, Qingdao, 266071, China
| | - Shuang Liu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Marine Aquaculture Disease Control, Ministry of Agriculture, Key Laboratory of Marine Aquaculture Epidemiology and Biosecurity, Qingdao, 266071, China
| | - Xiaoping Li
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Marine Aquaculture Disease Control, Ministry of Agriculture, Key Laboratory of Marine Aquaculture Epidemiology and Biosecurity, Qingdao, 266071, China
| | - Qingli Zhang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Marine Aquaculture Disease Control, Ministry of Agriculture, Key Laboratory of Marine Aquaculture Epidemiology and Biosecurity, Qingdao, 266071, China; Marine Fisheries Science and Food Production Process Function Laboratory, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| |
Collapse
|
18
|
Ren S, Ding C, Sun Y. Morphology Remodeling and Selective Autophagy of Intracellular Organelles during Viral Infections. Int J Mol Sci 2020; 21:ijms21103689. [PMID: 32456258 PMCID: PMC7279407 DOI: 10.3390/ijms21103689] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/14/2020] [Accepted: 05/21/2020] [Indexed: 12/17/2022] Open
Abstract
Viruses have evolved different strategies to hijack subcellular organelles during their life cycle to produce robust infectious progeny. Successful viral reproduction requires the precise assembly of progeny virions from viral genomes, structural proteins, and membrane components. Such spatial and temporal separation of assembly reactions depends on accurate coordination among intracellular compartmentalization in multiple organelles. Here, we overview the rearrangement and morphology remodeling of virus-triggered intracellular organelles. Focus is given to the quality control of intracellular organelles, the hijacking of the modified organelle membranes by viruses, morphology remodeling for viral replication, and degradation of intracellular organelles by virus-triggered selective autophagy. Understanding the functional reprogram and morphological remodeling in the virus-organelle interplay can provide new insights into the development of broad-spectrum antiviral strategies.
Collapse
Affiliation(s)
- Shanhui Ren
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute. Chinese Academy of Agricultural Science, Shanghai 200241, China;
| | - Chan Ding
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute. Chinese Academy of Agricultural Science, Shanghai 200241, China;
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Correspondence: (C.D.); (Y.S.); Tel.: +86-21-34293441 (C.D. & Y.S.); Fax: +86-21-54081818 (C.D. & Y.S.)
| | - Yingjie Sun
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute. Chinese Academy of Agricultural Science, Shanghai 200241, China;
- Correspondence: (C.D.); (Y.S.); Tel.: +86-21-34293441 (C.D. & Y.S.); Fax: +86-21-54081818 (C.D. & Y.S.)
| |
Collapse
|
19
|
George S, Viswanathan R, Sapkal GN. Molecular aspects of the teratogenesis of rubella virus. Biol Res 2019; 52:47. [PMID: 31455418 PMCID: PMC6712747 DOI: 10.1186/s40659-019-0254-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 08/12/2019] [Indexed: 11/10/2022] Open
Abstract
Rubella or German measles is an infection caused by rubella virus (RV). Infection of children and adults is usually characterized by a mild exanthematous febrile illness. However, RV is a major cause of birth defects and fetal death following infection in pregnant women. RV is a teratogen and is a major cause of public health concern as there are more than 100,000 cases of congenital rubella syndrome (CRS) estimated to occur every year. Several lines of evidence in the field of molecular biology of RV have provided deeper insights into the teratogenesis process. The damage to the growing fetus in infected mothers is multifactorial, arising from a combination of cellular damage, as well as its effect on the dividing cells. This review focuses on the findings in the molecular biology of RV, with special emphasis on the mitochondrial, cytoskeleton and the gene expression changes. Further, the review addresses in detail, the role of apoptosis in the teratogenesis process.
Collapse
Affiliation(s)
- Suji George
- Diagnostic Virology Group, ICMR-National Institute of Virology, 20-A, Dr. Ambedkar Road, Pune, Maharashtra 411001 India
| | - Rajlakshmi Viswanathan
- Diagnostic Virology Group, ICMR-National Institute of Virology, 20-A, Dr. Ambedkar Road, Pune, Maharashtra 411001 India
| | - Gajanan N. Sapkal
- Diagnostic Virology Group, ICMR-National Institute of Virology, 20-A, Dr. Ambedkar Road, Pune, Maharashtra 411001 India
| |
Collapse
|
20
|
Moreno-Altamirano MMB, Kolstoe SE, Sánchez-García FJ. Virus Control of Cell Metabolism for Replication and Evasion of Host Immune Responses. Front Cell Infect Microbiol 2019; 9:95. [PMID: 31058096 PMCID: PMC6482253 DOI: 10.3389/fcimb.2019.00095] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 03/22/2019] [Indexed: 12/11/2022] Open
Abstract
Over the last decade, there has been significant advances in the understanding of the cross-talk between metabolism and immune responses. It is now evident that immune cell effector function strongly depends on the metabolic pathway in which cells are engaged in at a particular point in time, the activation conditions, and the cell microenvironment. It is also clear that some metabolic intermediates have signaling as well as effector properties and, hence, topics such as immunometabolism, metabolic reprograming, and metabolic symbiosis (among others) have emerged. Viruses completely rely on their host's cell energy and molecular machinery to enter, multiply, and exit for a new round of infection. This review explores how viruses mimic, exploit or interfere with host cell metabolic pathways and how, in doing so, they may evade immune responses. It offers a brief outline of key metabolic pathways, mitochondrial function and metabolism-related signaling pathways, followed by examples of the mechanisms by which several viral proteins regulate host cell metabolic activity.
Collapse
Affiliation(s)
- María Maximina B Moreno-Altamirano
- Laboratorio de Inmunorregulación, Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Simon E Kolstoe
- School of Health Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Francisco Javier Sánchez-García
- Laboratorio de Inmunorregulación, Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
21
|
Seligmann H. Giant viruses: spore‐like missing links betweenRickettsiaand mitochondria? Ann N Y Acad Sci 2019; 1447:69-79. [DOI: 10.1111/nyas.14022] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 01/10/2019] [Accepted: 01/16/2019] [Indexed: 12/27/2022]
Affiliation(s)
- Hervé Seligmann
- The National Natural History Collectionsthe Hebrew University of Jerusalem Jerusalem Israel
| |
Collapse
|
22
|
Comas-Garcia M. Packaging of Genomic RNA in Positive-Sense Single-Stranded RNA Viruses: A Complex Story. Viruses 2019; 11:v11030253. [PMID: 30871184 PMCID: PMC6466141 DOI: 10.3390/v11030253] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/07/2019] [Accepted: 03/08/2019] [Indexed: 02/06/2023] Open
Abstract
The packaging of genomic RNA in positive-sense single-stranded RNA viruses is a key part of the viral infectious cycle, yet this step is not fully understood. Unlike double-stranded DNA and RNA viruses, this process is coupled with nucleocapsid assembly. The specificity of RNA packaging depends on multiple factors: (i) one or more packaging signals, (ii) RNA replication, (iii) translation, (iv) viral factories, and (v) the physical properties of the RNA. The relative contribution of each of these factors to packaging specificity is different for every virus. In vitro and in vivo data show that there are different packaging mechanisms that control selective packaging of the genomic RNA during nucleocapsid assembly. The goals of this article are to explain some of the key experiments that support the contribution of these factors to packaging selectivity and to draw a general scenario that could help us move towards a better understanding of this step of the viral infectious cycle.
Collapse
Affiliation(s)
- Mauricio Comas-Garcia
- Research Center for Health Sciences and Biomedicine (CICSaB), Universidad Autónoma de San Luis Potosí (UASLP), Av. Sierra Leona 550 Lomas 2da Seccion, 72810 San Luis Potosi, Mexico.
- Department of Sciences, Universidad Autónoma de San Luis Potosí (UASLP), Av. Chapultepec 1570, Privadas del Pedregal, 78295 San Luis Potosi, Mexico.
| |
Collapse
|
23
|
Zhang Z, He G, Filipowicz NA, Randall G, Belov GA, Kopek BG, Wang X. Host Lipids in Positive-Strand RNA Virus Genome Replication. Front Microbiol 2019; 10:286. [PMID: 30863375 PMCID: PMC6399474 DOI: 10.3389/fmicb.2019.00286] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 02/04/2019] [Indexed: 12/19/2022] Open
Abstract
Membrane association is a hallmark of the genome replication of positive-strand RNA viruses [(+)RNA viruses]. All well-studied (+)RNA viruses remodel host membranes and lipid metabolism through orchestrated virus-host interactions to create a suitable microenvironment to survive and thrive in host cells. Recent research has shown that host lipids, as major components of cellular membranes, play key roles in the replication of multiple (+)RNA viruses. This review focuses on how (+)RNA viruses manipulate host lipid synthesis and metabolism to facilitate their genomic RNA replication, and how interference with the cellular lipid metabolism affects viral replication.
Collapse
Affiliation(s)
- Zhenlu Zhang
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Guijuan He
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, United States
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, China
| | | | - Glenn Randall
- Department of Microbiology, The University of Chicago, Chicago, IL, United States
| | - George A. Belov
- Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD, United States
| | | | - Xiaofeng Wang
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
24
|
Merkling SH, Riahi H, Overheul GJ, Schenck A, van Rij RP. Peroxisome-associated Sgroppino links fat metabolism with survival after RNA virus infection in Drosophila. Sci Rep 2019; 9:2065. [PMID: 30765784 PMCID: PMC6375949 DOI: 10.1038/s41598-019-38559-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 12/31/2018] [Indexed: 12/31/2022] Open
Abstract
The fruit fly Drosophila melanogaster is a valuable model organism for the discovery and characterization of innate immune pathways, but host responses to virus infection remain incompletely understood. Here, we describe a novel player in host defense, Sgroppino (Sgp). Genetic depletion of Sgroppino causes hypersensitivity of adult flies to infections with the RNA viruses Drosophila C virus, cricket paralysis virus, and Flock House virus. Canonical antiviral immune pathways are functional in Sgroppino mutants, suggesting that Sgroppino exerts its activity via an as yet uncharacterized process. We demonstrate that Sgroppino localizes to peroxisomes, organelles involved in lipid metabolism. In accordance, Sgroppino-deficient flies show a defect in lipid metabolism, reflected by higher triglyceride levels, higher body mass, and thicker abdominal fat tissue. In addition, knock-down of Pex3, an essential peroxisome biogenesis factor, increases sensitivity to virus infection. Together, our results establish a genetic link between the peroxisomal protein Sgroppino, fat metabolism, and resistance to virus infection.
Collapse
Affiliation(s)
- Sarah H Merkling
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Insect-Virus Interactions Group, Department of Genomes and Genetics, Institut Pasteur, Paris, France
| | - Human Riahi
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Gijs J Overheul
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Annette Schenck
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ronald P van Rij
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
25
|
A Transgenic Flock House Virus Replicon Reveals an RNAi Independent Antiviral Mechanism Acting in Drosophila Follicular Somatic Cells. G3-GENES GENOMES GENETICS 2019; 9:403-412. [PMID: 30530643 PMCID: PMC6385967 DOI: 10.1534/g3.118.200872] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The small interfering RNA (siRNA) pathway is the main and best studied invertebrate antiviral response. Other poorly characterized protein based antiviral mechanisms also contribute to the control of viral replication in insects. In addition, it remains unclear whether tissue specific factors contribute to RNA and protein-based antiviral immunity mechanisms. In vivo screens to identify such factors are challenging and time consuming. In addition, the scored phenotype is usually limited to survival and/or viral load. Transgenic viral replicons are valuable tools to overcome these limitations and screen for novel antiviral factors. Here we describe transgenic Drosophila melanogaster lines encoding a Flock House Virus-derived replicon (FHV∆B2eGFP), expressing GFP as a reporter of viral replication. This replicon is efficiently controlled by the siRNA pathway in most somatic tissues, with GFP fluorescence providing a reliable marker for the activity of antiviral RNAi. Interestingly, in follicular somatic cells (FSC) of ovaries, this replicon is still partially repressed in an siRNA independent manner. We did not detect replicon derived Piwi-interacting RNAs in FSCs and identified 31 differentially expressed genes between restrictive and permissive FSCs. Altogether, our results uncovered a yet unidentified RNAi-independent mechanism controlling FHV replication in FSCs of ovaries and validate the FHV∆B2eGFP replicon as a tool to screen for novel tissue specific antiviral mechanisms.
Collapse
|
26
|
Warrilow D, Huang B, Newton ND, Harrison JJ, Johnson KN, Chow WK, Hall RA, Hobson-Peters J. The taxonomy of an Australian nodavirus isolated from mosquitoes. PLoS One 2018; 13:e0210029. [PMID: 30596795 PMCID: PMC6312370 DOI: 10.1371/journal.pone.0210029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 12/14/2018] [Indexed: 11/18/2022] Open
Abstract
We describe a virus isolated from Culex annulirostris mosquitoes in Australia. Phylogenetic analysis of its RNA-dependent RNA polymerase sequence and that of other related viruses revealed 6 clades, two of which corresponded wholly or partly with existing genera in the family Nodaviridae. There was greater genetic diversity within the family than previously recognized prompting us to suggest that additional genera should be considered within the family.
Collapse
Affiliation(s)
- David Warrilow
- Public Health Virology Laboratory, Queensland Health Forensic and Scientific Services, Archerfield, Queensland
- * E-mail: (DW); (JHP)
| | - Bixing Huang
- Public Health Virology Laboratory, Queensland Health Forensic and Scientific Services, Archerfield, Queensland
| | - Natalee D. Newton
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Jessica J. Harrison
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Karyn N. Johnson
- School of Biological Sciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Weng Kong Chow
- Australian Defence Force Malaria and Infectious Disease Institute, Queensland, Australia
| | - Roy A. Hall
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Jody Hobson-Peters
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
- * E-mail: (DW); (JHP)
| |
Collapse
|
27
|
The RNA Capping Enzyme Domain in Protein A is Essential for Flock House Virus Replication. Viruses 2018; 10:v10090483. [PMID: 30205593 PMCID: PMC6165433 DOI: 10.3390/v10090483] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 09/05/2018] [Accepted: 09/05/2018] [Indexed: 01/18/2023] Open
Abstract
The nodavirus flock house virus (FHV) and the alphavirus Semliki Forest virus (SFV) show evolutionarily intriguing similarities in their replication complexes and RNA capping enzymes. In this study, we first established an efficient FHV trans-replication system in mammalian cells, which disjoins protein expression from viral RNA synthesis. Following transfection, FHV replicase protein A was associated with mitochondria, whose outer surface displayed pouch-like invaginations with a ‘neck’ structure opening towards the cytoplasm. In mitochondrial pellets from transfected cells, high-level synthesis of both genomic and subgenomic RNA was detected in vitro and the newly synthesized RNA was of positive polarity. Secondly, we initiated the study of the putative RNA capping enzyme domain in protein A by mutating the conserved amino acids H93, R100, D141, and W215. RNA replication was abolished for all mutants inside cells and in vitro except for W215A, which showed reduced replication. Transfection of capped RNA template did not rescue the replication activity of the mutants. Comparing the efficiency of SFV and FHV trans-replication systems, the FHV system appeared to produce more RNA. Using fluorescent marker proteins, we demonstrated that both systems could replicate in the same cell. This work may facilitate the comparative analysis of FHV and SFV replication.
Collapse
|
28
|
Huang R, Zhou Q, Shi Y, Zhang J, He J, Xie J. Protein A from orange-spotted grouper nervous necrosis virus triggers type I interferon production in fish cell. FISH & SHELLFISH IMMUNOLOGY 2018; 79:234-243. [PMID: 29733958 DOI: 10.1016/j.fsi.2018.05.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 04/29/2018] [Accepted: 05/02/2018] [Indexed: 06/08/2023]
Abstract
Family Nodaviridae consists of two genera: Alphanodavirus and Betanodavirus, and the latter is classified into four genotypes, including red-spotted grouper nervous necrosis virus, tiger puffer nervous necrosis virus, striped jack nervous necrosis virus, and barfin flounder nervous necrosis virus. Type I interferons (IFNs) play a central role in the innate immune system and antiviral responses, and the interactions between IFN and NNV have been investigated in this study. We have found that the RNA-dependent RNA polymerase (RdRp) from orange-spotted nervous necrosis virus (OGNNV), named protein A, was capable of activating IFN promoter in fathead minnow (FHM) cells. Transient expression of protein A was found to induce IFN expression and secretion, endowing FHM cells with anti-tiger frog virus ability. Protein A from SJNNV can also induce IFN expression in FHM cells but that from Flock House virus (FHV), a well-studied representative species of genus Alphanodavirus, cannot. RdRp activity and mitochondrial localization were shown to be required for protein A to induce IFN expression by means of activating IRF3 but not NFκB. Furthermore, DsRNA synthesized in vitro transcription and poly I:C activated IFN promoter activity when transfected into FHM cells, and dsRNA were also detected in NNV-infected cells. We postulated that dsRNA, a PAMP, was produced by protein A, leading to activation of innate immune response. These results suggest that protein As from NNV are the agonists of innate immune response. This is the first work to demonstrate the interaction between NNV protein A and innate immune system, and may help to understand pathogenesis of NNV.
Collapse
Affiliation(s)
- Runqing Huang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Qiong Zhou
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yan Shi
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jing Zhang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jianguo He
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China; School of Marine Sciences, Sun Yat-sen University, Guangzhou, China.
| | - Junfeng Xie
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
29
|
Poirier EZ, Goic B, Tomé-Poderti L, Frangeul L, Boussier J, Gausson V, Blanc H, Vallet T, Loyd H, Levi LI, Lanciano S, Baron C, Merkling SH, Lambrechts L, Mirouze M, Carpenter S, Vignuzzi M, Saleh MC. Dicer-2-Dependent Generation of Viral DNA from Defective Genomes of RNA Viruses Modulates Antiviral Immunity in Insects. Cell Host Microbe 2018; 23:353-365.e8. [PMID: 29503180 PMCID: PMC5857290 DOI: 10.1016/j.chom.2018.02.001] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 11/08/2017] [Accepted: 02/07/2018] [Indexed: 12/21/2022]
Abstract
The RNAi pathway confers antiviral immunity in insects. Virus-specific siRNA responses are amplified via the reverse transcription of viral RNA to viral DNA (vDNA). The nature, biogenesis, and regulation of vDNA are unclear. We find that vDNA produced during RNA virus infection of Drosophila and mosquitoes is present in both linear and circular forms. Circular vDNA (cvDNA) is sufficient to produce siRNAs that confer partially protective immunity when challenged with a cognate virus. cvDNAs bear homology to defective viral genomes (DVGs), and DVGs serve as templates for vDNA and cvDNA synthesis. Accordingly, DVGs promote the amplification of vDNA-mediated antiviral RNAi responses in infected Drosophila. Furthermore, vDNA synthesis is regulated by the DExD/H helicase domain of Dicer-2 in a mechanism distinct from its role in siRNA generation. We suggest that, analogous to mammalian RIG-I-like receptors, Dicer-2 functions like a pattern recognition receptor for DVGs to modulate antiviral immunity in insects.
Collapse
Affiliation(s)
- Enzo Z Poirier
- Institut Pasteur, Viruses and RNA Interference, Centre National de la Recherche Scientifique UMR 3569, 75015 Paris, France; Institut Pasteur, Viral Populations and Pathogenesis, Centre National de la Recherche Scientifique UMR 3569, 75015 Paris, France; University of Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, 75013 Paris, France
| | - Bertsy Goic
- Institut Pasteur, Viruses and RNA Interference, Centre National de la Recherche Scientifique UMR 3569, 75015 Paris, France
| | - Lorena Tomé-Poderti
- Institut Pasteur, Viruses and RNA Interference, Centre National de la Recherche Scientifique UMR 3569, 75015 Paris, France
| | - Lionel Frangeul
- Institut Pasteur, Viruses and RNA Interference, Centre National de la Recherche Scientifique UMR 3569, 75015 Paris, France
| | - Jérémy Boussier
- Institut Pasteur, Immunobiology of Dendritic Cells, Institut National de la Santé et de la Recherche Médicale, U1223, 75015 Paris, France
| | - Valérie Gausson
- Institut Pasteur, Viruses and RNA Interference, Centre National de la Recherche Scientifique UMR 3569, 75015 Paris, France
| | - Hervé Blanc
- Institut Pasteur, Viruses and RNA Interference, Centre National de la Recherche Scientifique UMR 3569, 75015 Paris, France; Institut Pasteur, Viral Populations and Pathogenesis, Centre National de la Recherche Scientifique UMR 3569, 75015 Paris, France
| | - Thomas Vallet
- Institut Pasteur, Viral Populations and Pathogenesis, Centre National de la Recherche Scientifique UMR 3569, 75015 Paris, France
| | - Hyelee Loyd
- Department of Animal Science, Iowa State University, Ames, IA 50010, USA
| | - Laura I Levi
- Institut Pasteur, Viral Populations and Pathogenesis, Centre National de la Recherche Scientifique UMR 3569, 75015 Paris, France
| | - Sophie Lanciano
- Institut de Recherche pour le Développement, DIADE, Université de Montpellier, Université de Perpignan, LGDP, 66860 Perpignan, France
| | - Chloé Baron
- Institut Pasteur, Viruses and RNA Interference, Centre National de la Recherche Scientifique UMR 3569, 75015 Paris, France
| | - Sarah H Merkling
- Institut Pasteur, Insect-Virus Interactions, Centre National de la Recherche Scientifique URA 3012, 75015 Paris, France
| | - Louis Lambrechts
- Institut Pasteur, Insect-Virus Interactions, Centre National de la Recherche Scientifique URA 3012, 75015 Paris, France
| | - Marie Mirouze
- Institut de Recherche pour le Développement, DIADE, Université de Montpellier, Université de Perpignan, LGDP, 66860 Perpignan, France
| | - Susan Carpenter
- Department of Animal Science, Iowa State University, Ames, IA 50010, USA
| | - Marco Vignuzzi
- Institut Pasteur, Viral Populations and Pathogenesis, Centre National de la Recherche Scientifique UMR 3569, 75015 Paris, France.
| | - Maria-Carla Saleh
- Institut Pasteur, Viruses and RNA Interference, Centre National de la Recherche Scientifique UMR 3569, 75015 Paris, France.
| |
Collapse
|
30
|
Yong CY, Yeap SK, Omar AR, Tan WS. Advances in the study of nodavirus. PeerJ 2017; 5:e3841. [PMID: 28970971 PMCID: PMC5622607 DOI: 10.7717/peerj.3841] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 09/01/2017] [Indexed: 12/14/2022] Open
Abstract
Nodaviruses are small bipartite RNA viruses which belong to the family of Nodaviridae. They are categorized into alpha-nodavirus, which infects insects, and beta-nodavirus, which infects fishes. Another distinct group of nodavirus infects shrimps and prawns, which has been proposed to be categorized as gamma-nodavirus. Our current review focuses mainly on recent studies performed on nodaviruses. Nodavirus can be transmitted vertically and horizontally. Recent outbreaks have been reported in China, Indonesia, Singapore and India, affecting the aquaculture industry. It also decreased mullet stock in the Caspian Sea. Histopathology and transmission electron microscopy (TEM) are used to examine the presence of nodaviruses in infected fishes and prawns. For classification, virus isolation followed by nucleotide sequencing are required. In contrast to partial sequence identification, profiling the whole transcriptome using next generation sequencing (NGS) offers a more comprehensive comparison and characterization of the virus. For rapid diagnosis of nodavirus, assays targeting the viral RNA based on reverse-transcription PCR (RT-PCR) such as microfluidic chips, reverse-transcription loop-mediated isothermal amplification (RT-LAMP) and RT-LAMP coupled with lateral flow dipstick (RT-LAMP-LFD) have been developed. Besides viral RNA detections, diagnosis based on immunological assays such as enzyme-linked immunosorbent assay (ELISA), immunodot and Western blotting have also been reported. In addition, immune responses of fish and prawn are also discussed. Overall, in fish, innate immunity, cellular type I interferon immunity and humoral immunity cooperatively prevent nodavirus infections, whereas prawns and shrimps adopt different immune mechanisms against nodavirus infections, through upregulation of superoxide anion, prophenoloxidase, superoxide dismutase (SOD), crustin, peroxinectin, anti-lipopolysaccharides and heat shock proteins (HSP). Potential vaccines for fishes and prawns based on inactivated viruses, recombinant proteins or DNA, either delivered through injection, oral feeding or immersion, are also discussed in detail. Lastly, a comprehensive review on nodavirus virus-like particles (VLPs) is presented. In recent years, studies on prawn nodavirus are mainly focused on Macrobrachium rosenbergii nodavirus (MrNV). Recombinant MrNV VLPs have been produced in prokaryotic and eukaryotic expression systems. Their roles as a nucleic acid delivery vehicle, a platform for vaccine development, a molecular tool for mechanism study and in solving the structures of MrNV are intensively discussed.
Collapse
Affiliation(s)
- Chean Yeah Yong
- Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | | | - Abdul Rahman Omar
- Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Wen Siang Tan
- Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.,Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
31
|
Ryabov EV. Invertebrate RNA virus diversity from a taxonomic point of view. J Invertebr Pathol 2017; 147:37-50. [PMID: 27793741 PMCID: PMC7094257 DOI: 10.1016/j.jip.2016.10.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 10/03/2016] [Accepted: 10/14/2016] [Indexed: 02/04/2023]
Abstract
Invertebrates are hosts to diverse RNA viruses that have all possible types of encapsidated genomes (positive, negative and ambisense single stranded RNA genomes, or a double stranded RNA genome). These viruses also differ markedly in virion morphology and genome structure. Invertebrate RNA viruses are present in three out of four currently recognized orders of RNA viruses: Mononegavirales, Nidovirales, and Picornavirales, and 10 out of 37 RNA virus families that have yet to be assigned to an order. This mini-review describes general properties of the taxonomic groups, which include invertebrate RNA viruses on the basis of their current classification by the International Committee on Taxonomy of Viruses (ICTV).
Collapse
Affiliation(s)
- Eugene V Ryabov
- ER Healthcare Consulting Ltd., Poundgate Lane, Coventry CV4 8HJ, United Kingdom.
| |
Collapse
|
32
|
Zhou Y, Kearney CM. Chimeric Flock House virus protein A with endoplasmic reticulum-targeting domain enhances viral replication and virus-like particle trans-encapsidation in plants. Virology 2017; 507:151-160. [PMID: 28437636 DOI: 10.1016/j.virol.2017.04.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 04/14/2017] [Accepted: 04/18/2017] [Indexed: 10/19/2022]
Abstract
Flock House virus (FHV) RNA can be trans-encapsidated, entirely in planta, by tobacco mosaic virus coat protein to form virus-like particles (VLPs). Vaccination with these VLPs leads to strong antigen expression in mice and immune-activation. We hypothesize that creating an additional cellular site for replication and/or trans-encapsidation might significantly improve the final output of trans-encapsidated product. FHV protein A was engineered to target the endoplasmic reticulum (ER) via a heterologous tobacco etch virus ER-targeting domain, and was expressed in cis or in trans relative to the replicating FHV RNA1. A strong increase in marker gene expression in plants was noted when ER-targeted protein A was supplied in trans. RNA fluorescence in situ hybridization revealed RNA1 replication in both the mitochondria and ER, and total RNA1 accumulation was increased. In support of our hypothesis, VLP yield was increased significantly by the addition of this single genetic component to the inoculum.
Collapse
Affiliation(s)
- Yiyang Zhou
- Institute of Biomedical Studies, Baylor University, Waco, TX, USA.
| | - Christopher M Kearney
- Institute of Biomedical Studies, Baylor University, Waco, TX, USA; Department of Biology, Baylor University, Waco, TX, USA
| |
Collapse
|
33
|
Ertel KJ, Benefield D, Castaño-Diez D, Pennington JG, Horswill M, den Boon JA, Otegui MS, Ahlquist P. Cryo-electron tomography reveals novel features of a viral RNA replication compartment. eLife 2017; 6. [PMID: 28653620 PMCID: PMC5515581 DOI: 10.7554/elife.25940] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 06/20/2017] [Indexed: 12/18/2022] Open
Abstract
Positive-strand RNA viruses, the largest genetic class of viruses, include numerous important pathogens such as Zika virus. These viruses replicate their RNA genomes in novel, membrane-bounded mini-organelles, but the organization of viral proteins and RNAs in these compartments has been largely unknown. We used cryo-electron tomography to reveal many previously unrecognized features of Flock house nodavirus (FHV) RNA replication compartments. These spherular invaginations of outer mitochondrial membranes are packed with electron-dense RNA fibrils and their volumes are closely correlated with RNA replication template length. Each spherule’s necked aperture is crowned by a striking cupped ring structure containing multifunctional FHV RNA replication protein A. Subtomogram averaging of these crowns revealed twelve-fold symmetry, concentric flanking protrusions, and a central electron density. Many crowns were associated with long cytoplasmic fibrils, likely to be exported progeny RNA. These results provide new mechanistic insights into positive-strand RNA virus replication compartment structure, assembly, function and control. DOI:http://dx.doi.org/10.7554/eLife.25940.001
Collapse
Affiliation(s)
- Kenneth J Ertel
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, United States.,Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, United States
| | - Desirée Benefield
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, United States.,Morgridge Institute for Research, University of Wisconsin-Madison, Madison, United States
| | | | - Janice G Pennington
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, United States.,Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, United States
| | - Mark Horswill
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, United States.,Morgridge Institute for Research, University of Wisconsin-Madison, Madison, United States
| | - Johan A den Boon
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, United States.,Morgridge Institute for Research, University of Wisconsin-Madison, Madison, United States
| | - Marisa S Otegui
- Department of Botany, University of Wisconsin-Madison, Madison, United States.,Laboratory of Cell and Molecular Biology, University of Wisconsin-Madison, Madison, United States
| | - Paul Ahlquist
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, United States.,Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, United States.,Morgridge Institute for Research, University of Wisconsin-Madison, Madison, United States
| |
Collapse
|
34
|
Meng M, Lee CC. Function and Structural Organization of the Replication Protein of Bamboo mosaic virus. Front Microbiol 2017; 8:522. [PMID: 28400766 PMCID: PMC5368238 DOI: 10.3389/fmicb.2017.00522] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/13/2017] [Indexed: 12/17/2022] Open
Abstract
The genus Potexvirus is one of the eight genera belonging to the family Alphaflexiviridae according to the Virus Taxonomy 2015 released by International Committee on Taxonomy of Viruses (www.ictvonline.org/index.asp). Currently, the genus contains 35 known species including many agricultural important viruses, e.g., Potato virus X (PVX). Members of this genus are characterized by flexuous, filamentous virions of 13 nm in diameter and 470-580 nm in length. A potexvirus has a monopartite positive-strand RNA genome, encoding five open-reading frames (ORFs), with a cap structure at the 5' end and a poly(A) tail at the 3' end. Besides PVX, Bamboo mosaic virus (BaMV) is another potexvirus that has received intensive attention due to the wealth of knowledge on the molecular biology of the virus. In this review, we discuss the enzymatic activities associated with each of the functional domains of the BaMV replication protein, a 155-kDa polypeptide encoded by ORF1. The unique cap formation mechanism, which may be conserved across the alphavirus superfamily, is particularly addressed. The recently identified interactions between the replication protein and the plant host factors are also described.
Collapse
Affiliation(s)
- Menghsiao Meng
- Graduate Institute of Biotechnology, National Chung Hsing University Taichung, Taiwan
| | - Cheng-Cheng Lee
- Graduate Institute of Biotechnology, National Chung Hsing University Taichung, Taiwan
| |
Collapse
|
35
|
Delgui LR, Colombo MI. A Novel Mechanism Underlying the Innate Immune Response Induction upon Viral-Dependent Replication of Host Cell mRNA: A Mistake of +sRNA Viruses' Replicases. Front Cell Infect Microbiol 2017; 7:5. [PMID: 28164038 PMCID: PMC5247633 DOI: 10.3389/fcimb.2017.00005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 01/04/2017] [Indexed: 12/25/2022] Open
Abstract
Viruses are lifeless particles designed for setting virus-host interactome assuring a new generation of virions for dissemination. This interactome generates a pressure on host organisms evolving mechanisms to neutralize viral infection, which places the pressure back onto virus, a process known as virus-host cell co-evolution. Positive-single stranded RNA (+sRNA) viruses are an important group of viral agents illustrating this interesting phenomenon. During replication, their genomic +sRNA is employed as template for translation of viral proteins; among them the RNA-dependent RNA polymerase (RdRp) is responsible of viral genome replication originating double-strand RNA molecules (dsRNA) as intermediates, which accumulate representing a potent threat for cellular dsRNA receptors to initiate an antiviral response. A common feature shared by these viruses is their ability to rearrange cellular membranes to serve as platforms for genome replication and assembly of new virions, supporting replication efficiency increase by concentrating critical factors and protecting the viral genome from host anti-viral systems. This review summarizes current knowledge regarding cellular dsRNA receptors and describes prototype viruses developing replication niches inside rearranged membranes. However, for several viral agents it's been observed both, a complex rearrangement of cellular membranes and a strong innate immune antiviral response induction. So, we have included recent data explaining the mechanism by, even though viruses have evolved elegant hideouts, host cells are still able to develop dsRNA receptors-dependent antiviral response.
Collapse
Affiliation(s)
- Laura R Delgui
- Consejo Nacional de Investigaciones Científicas y Tecnológicas, Facultad de Ciencias Médicas, Instituto de Histología y Embriología de Mendoza, Universidad Nacional de CuyoMendoza, Argentina; Facultad de Ciencias Exactas y Naturales, Universidad Nacional de CuyoMendoza, Argentina
| | - María I Colombo
- Consejo Nacional de Investigaciones Científicas y Tecnológicas, Facultad de Ciencias Médicas, Instituto de Histología y Embriología de Mendoza, Universidad Nacional de Cuyo Mendoza, Argentina
| |
Collapse
|
36
|
Huang HJ, Liu CW, Zhou X, Zhang CX, Bao YY. A mitochondrial membrane protein is a target for rice ragged stunt virus in its insect vector. Virus Res 2016; 229:48-56. [PMID: 28034779 DOI: 10.1016/j.virusres.2016.12.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 12/21/2016] [Accepted: 12/21/2016] [Indexed: 10/20/2022]
Abstract
Rice ragged stunt virus (RRSV; Reoviridae) is exclusively transmitted by the brown planthopper Nilaparvata lugens in a persistent-propagative manner. It is understood that RNA viral proliferation is associated with the intracellular membranes of the insect host cells. However, the molecular mechanisms of the interaction between the RRSV proliferation and the intracellular membranes remain essentially unknown. It will be of great interest to determine whether RRSV protein(s) directly interact with intracellular membrane components of its host cells. In this study, we identified a RRSV nonstructural protein Pns10 interacting with a host oligomycin-sensitivity conferral protein (OSCP) using yeast two-hybrid system. The interaction between RRSV Pns10 and N. lugens OSCP was verified by a glutathione S-transferase pull-down assay. Confocal miscopy revealed colocalization of these two proteins in the cytoplasm of the salivary gland cells during the viral infection. The virions were further detected in the mitochondria under confocal miscopy and transmission electron microscopy combined with western blotting assay. This is the first observation that RRSV protein has a direct link with mitochondria. Suppressing OSCP gene expression by RNA interference notably decreased the viral loads in RRSV-infected insects. These findings revealed novel aspects of a viral protein in targeting the host mitochondrial membrane and provide insights concerning the mitochondrial membrane protein-based virus proliferation mode in the insect vector.
Collapse
Affiliation(s)
- Hai-Jian Huang
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Cheng-Wen Liu
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Xiang Zhou
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Chuan-Xi Zhang
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Yan-Yuan Bao
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
37
|
Singh S, Mittal A. Transmembrane Domain Lengths Serve as Signatures of Organismal Complexity and Viral Transport Mechanisms. Sci Rep 2016; 6:22352. [PMID: 26925972 PMCID: PMC4772119 DOI: 10.1038/srep22352] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 02/12/2016] [Indexed: 12/24/2022] Open
Abstract
It is known that membrane proteins are important in various secretory pathways, with
a possible role of their transmembrane domains (TMDs) as sorting determinant
factors. One key aspect of TMDs associated with various
“checkposts” (i.e. organelles) of intracellular trafficking
is their length. To explore possible linkages in organisms with varying
“complexity” and differences in TMD lengths of membrane
proteins associated with different organelles (such as Endoplasmic Reticulum, Golgi,
Endosomes, Nucleus, Plasma Membrane), we analyzed ~70000 membrane
protein sequences in over 300 genomes of fungi, plants, non-mammalian vertebrates
and mammals. We report that as we move from simpler to complex organisms, variation
in organellar TMD lengths decreases, especially compared to their respective plasma
membranes, with increasing organismal complexity. This suggests an evolutionary
pressure in modulating length of TMDs of membrane proteins with increasing
complexity of communication between sub-cellular compartments. We also report
functional applications of our findings by discovering remarkable distinctions in
TMD lengths of membrane proteins associated with different intracellular transport
pathways. Finally, we show that TMD lengths extracted from viral proteins can serve
as somewhat weak indicators of viral replication sites in plant cells but very
strong indicators of different entry pathways employed by animal viruses.
Collapse
Affiliation(s)
- Snigdha Singh
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Aditya Mittal
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
38
|
Yan M, Liu L, Liang Q, He J, Weng S, He J, Xu X. A mitochondrial outer membrane-localized protein encoded by White spot syndrome virus. Virus Genes 2016; 52:290-3. [DOI: 10.1007/s11262-016-1291-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 01/09/2016] [Indexed: 12/27/2022]
|
39
|
Role of Mitochondrial Membrane Spherules in Flock House Virus Replication. J Virol 2016; 90:3676-83. [PMID: 26792749 DOI: 10.1128/jvi.03080-15] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 01/14/2016] [Indexed: 01/20/2023] Open
Abstract
UNLABELLED Viruses that generate double-stranded RNA (dsRNA) during replication must overcome host defense systems designed to detect this infection intermediate. All positive-sense RNA viruses studied to date modify host membranes to help facilitate the sequestration of dsRNA from host defenses and concentrate replication factors to enhance RNA production. Flock House virus (FHV) is an attractive model for the study of these processes since it is well characterized and infects Drosophila cells, which are known to have a highly effective RNA silencing system. During infection, FHV modifies the outer membrane of host mitochondria to form numerous membrane invaginations, called spherules, that are ∼50 nm in diameter and known to be the site of viral RNA replication. While previous studies have outlined basic structural features of these invaginations, very little is known about the mechanism underlying their formation. Here we describe the optimization of an experimental system for the analysis of FHV host membrane modifications using crude mitochondrial preparations from infected Drosophila cells. These preparations can be programmed to synthesize both single- and double-stranded FHV RNA. The system was used to demonstrate that dsRNA is protected from nuclease digestion by virus-induced membrane invaginations and that spherules play an important role in stimulating RNA replication. Finally, we show that spherules generated during FHV infection appear to be dynamic as evidenced by their ability to form or disperse based on the presence or absence of RNA synthesis. IMPORTANCE It is well established that positive-sense RNA viruses induce significant membrane rearrangements in infected cells. However, the molecular mechanisms underlying these rearrangements, particularly membrane invagination and spherule formation, remain essentially unknown. How the formation of spherules enhances viral RNA synthesis is also not understood, although it is assumed to be partly a result of evading host defense pathways. To help interrogate some of these issues, we optimized a cell-free replication system consisting of mitochondria isolated from Flock House virus-infected Drosophila cells for use in biochemical and structural studies. Our data suggest that spherules generated during Flock House virus replication are dynamic, protect double-stranded RNA, and enhance RNA replication in general. Cryo-electron microscopy suggests that the samples are amenable to detailed structural analyses of spherules engaged in RNA synthesis. This system thus provides a foundation for understanding the molecular mechanisms underlying spherule formation, maintenance, and function during positive-sense viral RNA replication.
Collapse
|
40
|
Lee CC, Lin TL, Lin JW, Han YT, Huang YT, Hsu YH, Meng M. Promotion of Bamboo Mosaic Virus Accumulation in Nicotiana benthamiana by 5'→3' Exonuclease NbXRN4. Front Microbiol 2016; 6:1508. [PMID: 26779163 PMCID: PMC4702010 DOI: 10.3389/fmicb.2015.01508] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 12/14/2015] [Indexed: 12/11/2022] Open
Abstract
Bamboo mosaic virus (BaMV) has a 6.4-kb (+) sense RNA genome with a 5' cap and a 3' poly(A) tail. ORF1 of this potexvirus encodes a 155-kDa replication protein responsible for the viral RNA replication/transcription and 5' cap formation. To learn more about the replication complex of BaMV, a protein preparation enriched in the 155-kDa replication protein was obtained from Nicotiana benthamiana by a protocol involving agroinfiltration and immunoprecipitation. Subsequent analysis by SDS-PAGE and mass spectrometry identified a handful of host proteins that may participate in the viral replication. Among them, the cytoplasmic exoribonuclease NbXRN4 particularly caught our attention. NbXRN4 has been shown to have an antiviral activity against Tomato bushy stunt virus and Tomato mosaic virus. In Arabidopsis, the enzyme could reduce RNAi- and miRNA-mediated RNA decay. This study found that downregulation of NbXRN4 greatly decreased BaMV accumulation, while overexpression of NbXRN4 resulted in an opposite effect. Mutations at the catalytically essential residues abolished the function of NbXRN4 in the increase of BaMV accumulation. Nonetheless, NbXRN4 was still able to promote BaMV accumulation in the presence of the RNA silencing suppressor P19. In summary, the replication efficiency of BaMV may be improved by the exoribonuclease activity of NbXRN4.
Collapse
Affiliation(s)
- Cheng-Cheng Lee
- Graduate Institute of Biotechnology, National Chung Hsing University Taichung, Taiwan
| | - Tzu-Ling Lin
- Graduate Institute of Biotechnology, National Chung Hsing UniversityTaichung, Taiwan; Division of Medicine Centre for Nephrology, University College LondonLondon, UK
| | - Jhe-Wei Lin
- Graduate Institute of Biotechnology, National Chung Hsing University Taichung, Taiwan
| | - Yu-Tsung Han
- Graduate Institute of Biotechnology, National Chung Hsing University Taichung, Taiwan
| | - Yu-Ting Huang
- Graduate Institute of Biotechnology, National Chung Hsing University Taichung, Taiwan
| | - Yau-Heiu Hsu
- Graduate Institute of Biotechnology, National Chung Hsing University Taichung, Taiwan
| | - Menghsiao Meng
- Graduate Institute of Biotechnology, National Chung Hsing University Taichung, Taiwan
| |
Collapse
|
41
|
Abstract
Many viruses replicate and assemble in subcellular microenvironments called virus factories or ‘viroplasm.’ Virus factories increase the efficiency of replication and at the same time protect viruses from antiviral defenses. We describe how viruses reorganize cellular membrane compartments and cytoskeleton to generate these ‘mini-organelles’ and how these rearrangements parallel cellular responses to stress such as protein aggregation and DNA damage.
Collapse
|
42
|
Urakova N, Frese M, Hall RN, Liu J, Matthaei M, Strive T. Expression and partial characterisation of rabbit haemorrhagic disease virus non-structural proteins. Virology 2015; 484:69-79. [DOI: 10.1016/j.virol.2015.05.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 05/08/2015] [Indexed: 02/06/2023]
|
43
|
Identification of Host Cell Factors Associated with Astrovirus Replication in Caco-2 Cells. J Virol 2015; 89:10359-70. [PMID: 26246569 DOI: 10.1128/jvi.01225-15] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 07/28/2015] [Indexed: 01/25/2023] Open
Abstract
UNLABELLED Astroviruses are small, nonenveloped viruses with a single-stranded positive-sense RNA genome causing acute gastroenteritis in children and immunocompromised patients. Since positive-sense RNA viruses have frequently been found to replicate in association with membranous structures, in this work we characterized the replication of the human astrovirus serotype 8 strain Yuc8 in Caco-2 cells, using density gradient centrifugation and free-flow zonal electrophoresis (FFZE) to fractionate cellular membranes. Structural and nonstructural viral proteins, positive- and negative-sense viral RNA, and infectious virus particles were found to be associated with a distinct population of membranes separated by FFZE. The cellular proteins associated with this membrane population in infected and mock-infected cells were identified by tandem mass spectrometry. The results indicated that membranes derived from multiple cell organelles were present in the population. Gene ontology and protein-protein interaction network analysis showed that groups of proteins with roles in fatty acid synthesis and ATP biosynthesis were highly enriched in the fractions of this population in infected cells. Based on this information, we investigated by RNA interference the role that some of the identified proteins might have in the replication cycle of the virus. Silencing of the expression of genes involved in cholesterol (DHCR7, CYP51A1) and fatty acid (FASN) synthesis, phosphatidylinositol (PI4KIIIβ) and inositol phosphate (ITPR3) metabolism, and RNA helicase activity (DDX23) significantly decreased the amounts of Yuc8 genomic and antigenomic RNA, synthesis of the structural protein VP90, and virus yield. These results strongly suggest that astrovirus RNA replication and particle assembly take place in association with modified membranes potentially derived from multiple cell organelles. IMPORTANCE Astroviruses are common etiological agents of acute gastroenteritis in children and immunocompromised patients. More recently, they have been associated with neurological diseases in mammals, including humans, and are also responsible for different pathologies in birds. In this work, we provide evidence that astrovirus RNA replication and virus assembly occur in contact with cell membranes potentially derived from multiple cell organelles and show that membrane-associated cellular proteins involved in lipid metabolism are required for efficient viral replication. Our findings provide information to enhance our knowledge of astrovirus biology and provide information that might be useful for the development of therapeutic interventions to prevent virus replication.
Collapse
|
44
|
Hellström K, Vihinen H, Kallio K, Jokitalo E, Ahola T. Correlative light and electron microscopy enables viral replication studies at the ultrastructural level. Methods 2015; 90:49-56. [PMID: 25916619 DOI: 10.1016/j.ymeth.2015.04.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 04/15/2015] [Accepted: 04/17/2015] [Indexed: 02/06/2023] Open
Abstract
Electron microscopy (EM) is a powerful tool to study structural changes within cells caused e.g. by ectopic protein expression, gene silencing or virus infection. Correlative light and electron microscopy (CLEM) has proven to be useful in cases when it is problematic to identify a particular cell among a majority of unaffected cells at the EM level. In this technique the cells of interest are first identified by fluorescence microscopy and then further processed for EM. CLEM has become crucial when studying positive-strand RNA virus replication, as it takes place in nanoscale replication sites on specific cellular membranes. Here we have employed CLEM for Semliki Forest virus (SFV) replication studies both by transfecting viral replication components to cells or by infecting different cell types. For the transfection-based system, we developed an RNA template that can be detected in the cells even in the absence of replication and thus allows exploration of lethal mutations in viral proteins. In infected mammalian and mosquito cells, we were able to find replication-positive cells by using a fluorescently labeled viral protein even in the cases of low infection efficiency. The fluorescent region within these cells was shown to correspond to an area rich in modified membranes. These results show that CLEM is a valuable technique for studying virus replication and membrane modifications at the ultrastructural level.
Collapse
Affiliation(s)
- Kirsi Hellström
- Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Helena Vihinen
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Katri Kallio
- Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Eija Jokitalo
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Tero Ahola
- Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
45
|
Balique F, Lecoq H, Raoult D, Colson P. Can plant viruses cross the kingdom border and be pathogenic to humans? Viruses 2015; 7:2074-98. [PMID: 25903834 PMCID: PMC4411691 DOI: 10.3390/v7042074] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 03/20/2015] [Accepted: 04/06/2015] [Indexed: 12/30/2022] Open
Abstract
Phytoviruses are highly prevalent in plants worldwide, including vegetables and fruits. Humans, and more generally animals, are exposed daily to these viruses, among which several are extremely stable. It is currently accepted that a strict separation exists between plant and vertebrate viruses regarding their host range and pathogenicity, and plant viruses are believed to infect only plants. Accordingly, plant viruses are not considered to present potential pathogenicity to humans and other vertebrates. Notwithstanding these beliefs, there are many examples where phytoviruses circulate and propagate in insect vectors. Several issues are raised here that question if plant viruses might further cross the kingdom barrier to cause diseases in humans. Indeed, there is close relatedness between some plant and animal viruses, and almost identical gene repertoires. Moreover, plant viruses can be detected in non-human mammals and humans samples, and there are evidence of immune responses to plant viruses in invertebrates, non-human vertebrates and humans, and of the entry of plant viruses or their genomes into non-human mammal cells and bodies after experimental exposure. Overall, the question raised here is unresolved, and several data prompt the additional extensive study of the interactions between phytoviruses and non-human mammals and humans, and the potential of these viruses to cause diseases in humans.
Collapse
Affiliation(s)
- Fanny Balique
- Aix-Marseille Université, Unité de Recherche sur les Maladies Infectieuses et Tropicales Émergentes (URMITE) UM 63 CNRS 7278 IRD 3R198 INSERM U1095, Facultés de Médecine et de Pharmacie, 27 boulevard Jean Moulin, 13385 Marseille cedex 05, France.
- Institut National de la Recherche Agronomique (INRA), UR 407, Pathologie Végétale, 84140 Montfavet, France.
| | - Hervé Lecoq
- Institut National de la Recherche Agronomique (INRA), UR 407, Pathologie Végétale, 84140 Montfavet, France.
| | - Didier Raoult
- Aix-Marseille Université, Unité de Recherche sur les Maladies Infectieuses et Tropicales Émergentes (URMITE) UM 63 CNRS 7278 IRD 3R198 INSERM U1095, Facultés de Médecine et de Pharmacie, 27 boulevard Jean Moulin, 13385 Marseille cedex 05, France.
- Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, Pôle des Maladies Infectieuses et Tropicales Clinique et Biologique, Fédération de Bactériologie-Hygiène-Virologie, Centre Hospitalo-Universitaire Timone, Assistance publique - hôpitaux de Marseille, 264 rue Saint-Pierre, 13385 Marseille cedex 05, France.
| | - Philippe Colson
- Aix-Marseille Université, Unité de Recherche sur les Maladies Infectieuses et Tropicales Émergentes (URMITE) UM 63 CNRS 7278 IRD 3R198 INSERM U1095, Facultés de Médecine et de Pharmacie, 27 boulevard Jean Moulin, 13385 Marseille cedex 05, France.
- Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, Pôle des Maladies Infectieuses et Tropicales Clinique et Biologique, Fédération de Bactériologie-Hygiène-Virologie, Centre Hospitalo-Universitaire Timone, Assistance publique - hôpitaux de Marseille, 264 rue Saint-Pierre, 13385 Marseille cedex 05, France.
| |
Collapse
|
46
|
Ahola T, Karlin DG. Sequence analysis reveals a conserved extension in the capping enzyme of the alphavirus supergroup, and a homologous domain in nodaviruses. Biol Direct 2015; 10:16. [PMID: 25886938 PMCID: PMC4392871 DOI: 10.1186/s13062-015-0050-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 03/24/2015] [Indexed: 12/16/2022] Open
Abstract
Background Members of the alphavirus supergroup include human pathogens such as chikungunya virus, hepatitis E virus and rubella virus. They encode a capping enzyme with methyltransferase-guanylyltransferase (MTase-GTase) activity, which is an attractive drug target owing to its unique mechanism. However, its experimental study has proven very difficult. Results We examined over 50 genera of viruses by sequence analyses. Earlier studies showed that the MTase-GTase contains a “Core” region conserved in sequence. We show that it is followed by a long extension, which we termed “Iceberg” region, whose secondary structure, but not sequence, is strikingly conserved throughout the alphavirus supergroup. Sequence analyses strongly suggest that the minimal capping domain corresponds to the Core and Iceberg regions combined, which is supported by earlier experimental data. The Iceberg region contains all known membrane association sites that contribute to the assembly of viral replication factories. We predict that it may also contain an overlooked, widely conserved membrane-binding amphipathic helix. Unexpectedly, we detected a sequence homolog of the alphavirus MTase-GTase in taxa related to nodaviruses and to chronic bee paralysis virus. The presence of a capping enzyme in nodaviruses is biologically consistent, since they have capped genomes but replicate in the cytoplasm, where no cellular capping enzyme is present. The putative MTase-GTase domain of nodaviruses also contains membrane-binding sites that may drive the assembly of viral replication factories, revealing an unsuspected parallel with the alphavirus supergroup. Conclusions Our work will guide the functional analysis of the alphaviral MTase-GTase and the production of domains for structure determination. The identification of a homologous domain in a simple model system, nodaviruses, which replicate in numerous eukaryotic cell systems (yeast, flies, worms, mammals, and plants), can further help crack the function and structure of the enzyme. Reviewers This article was reviewed by Valerian Dolja, Eugene Koonin and Sebastian Maurer-Stroh. Electronic supplementary material The online version of this article (doi:10.1186/s13062-015-0050-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tero Ahola
- Department of Food and Environmental Sciences, University of Helsinki, 00014, Helsinki, Finland.
| | - David G Karlin
- Department of Zoology, University of Oxford, Oxford, OX1 3PS, UK. .,The Division of Structural Biology, Henry Wellcome Building, Roosevelt Drive, Oxford, OX3 7BN, UK.
| |
Collapse
|
47
|
Kappes MA, Miller CL, Faaberg KS. Porcine reproductive and respiratory syndrome virus nonstructural protein 2 (nsp2) topology and selective isoform integration in artificial membranes. Virology 2015; 481:51-62. [PMID: 25768891 DOI: 10.1016/j.virol.2015.01.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Revised: 01/15/2015] [Accepted: 01/30/2015] [Indexed: 11/28/2022]
Abstract
The membrane insertion and topology of nonstructural protein 2 (nsp2) of porcine reproductive and respiratory syndrome virus (PRRSV) strain VR-2332 was assessed using a cell free translation system in the presence or absence of artificial membranes. Expression of PRRSV nsp2 in the absence of all other viral factors resulted in the genesis of both full-length nsp2 as well as a select number of C-terminal nsp2 isoforms. Addition of membranes to the translation stabilized the translation reaction, resulting in predominantly full-length nsp2 as assessed by immunoprecipitation. Analysis further showed full-length nsp2 strongly associates with membranes, along with two additional large nsp2 isoforms. Membrane integration of full-length nsp2 was confirmed through high-speed density fractionation, protection from protease digestion, and immunoprecipitation. The results demonstrated that nsp2 integrated into the membranes with an unexpected topology, where the amino (N)-terminal (cytoplasmic) and C-terminal (luminal) domains were orientated on opposite sides of the membrane surface.
Collapse
Affiliation(s)
- Matthew A Kappes
- Virus and Prion Research Unit, USDA-ARS-National Animal Disease Center, Ames, IA, USA; Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Cathy L Miller
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Kay S Faaberg
- Virus and Prion Research Unit, USDA-ARS-National Animal Disease Center, Ames, IA, USA.
| |
Collapse
|
48
|
Harak C, Lohmann V. Ultrastructure of the replication sites of positive-strand RNA viruses. Virology 2015; 479-480:418-33. [PMID: 25746936 PMCID: PMC7111692 DOI: 10.1016/j.virol.2015.02.029] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 01/06/2015] [Accepted: 02/16/2015] [Indexed: 12/13/2022]
Abstract
Positive strand RNA viruses replicate in the cytoplasm of infected cells and induce intracellular membranous compartments harboring the sites of viral RNA synthesis. These replication factories are supposed to concentrate the components of the replicase and to shield replication intermediates from the host cell innate immune defense. Virus induced membrane alterations are often generated in coordination with host factors and can be grouped into different morphotypes. Recent advances in conventional and electron microscopy have contributed greatly to our understanding of their biogenesis, but still many questions remain how viral proteins capture membranes and subvert host factors for their need. In this review, we will discuss different representatives of positive strand RNA viruses and their ways of hijacking cellular membranes to establish replication complexes. We will further focus on host cell factors that are critically involved in formation of these membranes and how they contribute to viral replication.
Collapse
Affiliation(s)
- Christian Harak
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Im Neuenheimer Feld 345, D-69120 Heidelberg, Germany
| | - Volker Lohmann
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Im Neuenheimer Feld 345, D-69120 Heidelberg, Germany.
| |
Collapse
|
49
|
Fernández-de-Castro I, Risco C. Imaging RNA virus replication assemblies: bunyaviruses and reoviruses. Future Virol 2014. [DOI: 10.2217/fvl.14.95] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
ABSTRACT RNA viruses replicate in the cytoplasm in close association with host cell membranes. Both viral and cellular factors generate organelle-like structures termed viral factories, viral inclusions or viroplasms. Biochemical, light and electron microscopy analyses, including 3D models, have improved our understanding of the architecture and function of RNA virus replication factories. In these structures, the virus compartmentalizes genome replication and transcription, thus enhancing replication efficiency and protection from host defenses. Recent studies with diverse RNA viruses have elucidated the ultrastructure of replication organelles and shown how these structures act in close coordination with virion assembly. This review focuses on a general description of RNA virus factories and summarizes recent progress in the characterization of those assembled by bunyaviruses and reoviruses. We describe how these viruses modify intracellular membranes; we highlight similarities with the structures induced by viruses of other families, and discuss how these structures might be formed.
Collapse
Affiliation(s)
| | - Cristina Risco
- Cell Structure Laboratory, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| |
Collapse
|
50
|
Expanding use of multi-origin subcellular membranes by positive-strand RNA viruses during replication. Curr Opin Virol 2014; 9:119-26. [DOI: 10.1016/j.coviro.2014.09.015] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 09/22/2014] [Indexed: 12/11/2022]
|