1
|
Hashizume M, Takashima A, Iwasaki M. An mRNA-LNP-based Lassa virus vaccine induces protective immunity in mice. J Virol 2024; 98:e0057824. [PMID: 38767352 PMCID: PMC11237644 DOI: 10.1128/jvi.00578-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 04/21/2024] [Indexed: 05/22/2024] Open
Abstract
The mammarenavirus Lassa virus (LASV) causes the life-threatening hemorrhagic fever disease, Lassa fever. The lack of licensed medical countermeasures against LASV underscores the urgent need for the development of novel LASV vaccines, which has been hampered by the requirement for a biosafety level 4 facility to handle live LASV. Here, we investigated the efficacy of mRNA-lipid nanoparticle (mRNA-LNP)-based vaccines expressing the LASV glycoprotein precursor (LASgpc) or nucleoprotein (LCMnp) of the prototypic mammarenavirus, lymphocytic choriomeningitis virus (LCMV), in mice. Two doses of LASgpc- or LCMnp-mRNA-LNP administered intravenously (i.v.) protected C57BL/6 mice from a lethal challenge with a recombinant (r) LCMV expressing a modified LASgpc (rLCMV/LASgpc2m) inoculated intracranially. Intramuscular (i.m.) immunization with two doses of LASgpc- or LCMnp-mRNA-LNP significantly reduced the viral load in C57BL/6 mice inoculated i.v. with rLCMV/LASgpc2m. High levels of viremia and lethality were observed in CBA mice inoculated i.v. with rLCMV/LASgpc2m, which were abrogated by i.m. immunization with two doses of LASgpc-mRNA-LNP. The protective efficacy of two i.m. doses of LCMnp-mRNA-LNP was confirmed in a lethal hemorrhagic disease model of FVB mice i.v. inoculated with wild-type rLCMV. In all conditions tested, negligible and high levels of LASgpc- and LCMnp-specific antibodies were detected in mRNA-LNP-immunized mice, respectively, but robust LASgpc- and LCMnp-specific CD8+ T cell responses were induced. Accordingly, plasma from LASgpc-mRNA-LNP-immunized mice did not exhibit neutralizing activity. Our findings and surrogate mouse models of LASV infection, which can be studied at a reduced biocontainment level, provide a critical foundation for the rapid development of mRNA-LNP-based LASV vaccines.IMPORTANCELassa virus (LASV) is a highly pathogenic mammarenavirus responsible for several hundred thousand infections annually in West African countries, causing a high number of lethal Lassa fever (LF) cases. Despite its significant impact on human health, clinically approved, safe, and effective medical countermeasures against LF are not available. The requirement of a biosafety level 4 facility to handle live LASV has been one of the main obstacles to the research and development of LASV countermeasures. Here, we report that two doses of mRNA-lipid nanoparticle-based vaccines expressing the LASV glycoprotein precursor (LASgpc) or nucleoprotein (LCMnp) of lymphocytic choriomeningitis virus (LCMV), a mammarenavirus genetically closely related to LASV, conferred protection to recombinant LCMV-based surrogate mouse models of lethal LASV infection. Notably, robust LASgpc- and LCMnp-specific CD8+ T cell responses were detected in mRNA-LNP-immunized mice, whereas no virus-neutralizing activity was observed.
Collapse
Affiliation(s)
- Mei Hashizume
- Laboratory of Emerging Viral Diseases, International Research Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Ayako Takashima
- Laboratory of Emerging Viral Diseases, International Research Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Masaharu Iwasaki
- Laboratory of Emerging Viral Diseases, International Research Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka, Japan
- Center for Advanced Modalities and Drug Delivery System, Osaka University, Suita, Osaka, Japan
- RNA Frontier Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
2
|
Gorzkiewicz M, Cramer J, Xu HC, Lang PA. The role of glycosylation patterns of viral glycoproteins and cell entry receptors in arenavirus infection. Biomed Pharmacother 2023; 166:115196. [PMID: 37586116 DOI: 10.1016/j.biopha.2023.115196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/14/2023] [Accepted: 07/18/2023] [Indexed: 08/18/2023] Open
Abstract
Mammarenaviruses are enveloped RNA viruses that can be associated with rodent-transmitted diseases in humans. Their virions are composed of a nucleocapsid surrounded by a lipid bilayer with glycoprotein (GP) spikes interacting with receptors on target cells. Both the GP and receptors are highly glycosylated, with glycosylation patterns being crucial for virus binding and cell entry, viral tropism, immune responses, or therapy strategies. These effects have been previously described for several different viruses. In case of arenaviruses, they remain insufficiently understood. Thus, it is important to determine the mechanisms of glycosylation of viral proteins and receptors responsible for infection, in order to fully understand the biology of arenaviruses. In this article, we have summarized and critically evaluated the available literature data on the glycosylation of mammarenavirus-associated proteins to facilitate further research in this field.
Collapse
Affiliation(s)
- Michal Gorzkiewicz
- Department of Molecular Medicine II, Medical Faculty, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany; Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland.
| | - Jonathan Cramer
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Haifeng C Xu
- Department of Molecular Medicine II, Medical Faculty, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Philipp A Lang
- Department of Molecular Medicine II, Medical Faculty, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany.
| |
Collapse
|
3
|
Bezerra EHS, Melo-Hanchuk TD, Marques RE. Structural and molecular biology of Sabiá virus. Exp Biol Med (Maywood) 2023; 248:1624-1634. [PMID: 37937408 PMCID: PMC10723027 DOI: 10.1177/15353702231199071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023] Open
Abstract
Brazilian mammarenavirus, or Sabiá virus (SABV), is a New World (NW) arenavirus associated with fulminant hemorrhagic disease in humans and the sole biosafety level 4 microorganism ever isolated in Brazil. Since the isolation of SABV in the 1990s, studies on viral biology have been scarce, with no available countermeasures against SABV infection or disease. Here we provide a comprehensive review of SABV biology, including key aspects of SABV replication, and comparisons with related Old World and NW arenaviruses. SABV is most likely a rodent-borne virus, transmitted to humans, through exposure to urine and feces in peri-urban areas. Using protein structure prediction methods and alignments, we analyzed shared and unique features of SABV proteins (GPC, NP, Z, and L) that could be explored in search of therapeutic strategies, including repurposing intended application against arenaviruses. Highly conserved catalytic activities present in L protein could be targeted for broad-acting antiviral activity among arenaviruses, while protein-protein interactions, such as those between L and the matrix protein Z, have evolved in NW arenaviruses and should be specific to SABV. The nucleoprotein (NP) also shares targetable interaction interfaces with L and Z and exhibits exonuclease activity in the C-terminal domain, which may be involved in multiple aspects of SABV replication. Envelope glycoproteins GP1 and GP2 have been explored in the development of promising cross-reactive neutralizing antibodies and vaccines, some of which could be repurposed for SABV. GP1 remains a challenging target in SABV as evolutive pressures render it the most variable viral protein in terms of both sequence and structure, while antiviral strategies targeting the Z protein remain to be validated. In conclusion, the prediction and analysis of protein structures should revolutionize research on viruses such as SABV by facilitating the rational design of countermeasures while reducing dependence on sophisticated laboratory infrastructure for experimental validation.
Collapse
Affiliation(s)
| | | | - Rafael Elias Marques
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), São Paulo 13083-100, Brazil
| |
Collapse
|
4
|
Hashizume M, Takashima A, Iwasaki M. A small stem-loop-forming region within the 3'-UTR of a non-polyadenylated LCMV mRNA promotes translation. J Biol Chem 2022; 298:101576. [PMID: 35026225 PMCID: PMC8888456 DOI: 10.1016/j.jbc.2022.101576] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 11/30/2022] Open
Abstract
Mammalian arenavirus (mammarenavirus) mRNAs are characterized by 5′-capped and 3′-nonpolyadenylated untranslated regions (UTRs). We previously reported that the nonpolyadenylated 3′-UTR of viral mRNA (vmRNA), which is derived from the noncoding intergenic region (IGR), regulates viral protein levels at the posttranscriptional level. This finding provided the basis for the development of novel live-attenuated vaccines (LAVs) against human pathogenic mammarenaviruses. Detailed information about the roles of specific vmRNA 3′-UTR sequences in controlling translation efficiency will help in understanding the mechanism underlying attenuation by IGR manipulations. Here, we characterize the roles of cis-acting mRNA regulatory sequences of a prototypic mammarenavirus, lymphocytic choriomeningitis virus (LCMV), in modulating translational efficiency. Using in vitro transcribed RNA mimics encoding a reporter gene, we demonstrate that the 3′-UTR of nucleoprotein (NP) mRNA without a poly(A) tail promotes translation in a poly(A)-binding protein-independent manner. Comparison with the 3′-UTR of glycoprotein precursor mRNA, which is translated less efficiently, revealed that a 10-nucleotide sequence proximal to the NP open reading frame is essential for promoting translation. Modification of this 10-nucleotide sequence also impacted reporter gene expression in recombinant LCMV. Our findings will enable rational design of the 10-nucleotide sequence to further improve our mammarenavirus LAV candidates and to develop a novel LCMV vector capable of controlling foreign gene expression.
Collapse
Affiliation(s)
- Mei Hashizume
- Laboratory of Emerging Viral Diseases, International Research Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Ayako Takashima
- Laboratory of Emerging Viral Diseases, International Research Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Masaharu Iwasaki
- Laboratory of Emerging Viral Diseases, International Research Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Center for Infectious Disease Education and Research (CiDER), Osaka University, 2-8 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
5
|
Sasso E, D'Alise AM, Zambrano N, Scarselli E, Folgori A, Nicosia A. New viral vectors for infectious diseases and cancer. Semin Immunol 2020; 50:101430. [PMID: 33262065 DOI: 10.1016/j.smim.2020.101430] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/23/2020] [Accepted: 11/16/2020] [Indexed: 12/12/2022]
Abstract
Since the discovery in 1796 by Edward Jenner of vaccinia virus as a way to prevent and finally eradicate smallpox, the concept of using a virus to fight another virus has evolved into the current approaches of viral vectored genetic vaccines. In recent years, key improvements to the vaccinia virus leading to a safer version (Modified Vaccinia Ankara, MVA) and the discovery that some viruses can be used as carriers of heterologous genes encoding for pathological antigens of other infectious agents (the concept of 'viral vectors') has spurred a new wave of clinical research potentially providing for a solution for the long sought after vaccines against major diseases such as HIV, TB, RSV and Malaria, or emerging infectious diseases including those caused by filoviruses and coronaviruses. The unique ability of some of these viral vectors to stimulate the cellular arm of the immune response and, most importantly, T lymphocytes with cell killing activity, has also reawakened the interest toward developing therapeutic vaccines against chronic infectious diseases and cancer. To this end, existing vectors such as those based on Adenoviruses have been improved in immunogenicity and efficacy. Along the same line, new vectors that exploit viruses such as Vesicular Stomatitis Virus (VSV), Measles Virus (MV), Lymphocytic choriomeningitis virus (LCMV), cytomegalovirus (CMV), and Herpes Simplex Virus (HSV), have emerged. Furthermore, technological progress toward modifying their genome to render some of these vectors incompetent for replication has increased confidence toward their use in infant and elderly populations. Lastly, their production process being the same for every product has made viral vectored vaccines the technology of choice for rapid development of vaccines against emerging diseases and for 'personalised' cancer vaccines where there is an absolute need to reduce time to the patient from months to weeks or days. Here we review the recent developments in viral vector technologies, focusing on novel vectors based on primate derived Adenoviruses and Poxviruses, Rhabdoviruses, Paramixoviruses, Arenaviruses and Herpesviruses. We describe the rationale for, immunologic mechanisms involved in, and design of viral vectored gene vaccines under development and discuss the potential utility of these novel genetic vaccine approaches in eliciting protection against infectious diseases and cancer.
Collapse
Affiliation(s)
- Emanuele Sasso
- Nouscom srl, Via di Castel Romano 100, 00128 Rome, Italy; Ceinge-Biotecnologie Avanzate S.C. A.R.L., via Gaetano Salvatore 486, 80145 Naples, Italy.
| | | | - Nicola Zambrano
- Ceinge-Biotecnologie Avanzate S.C. A.R.L., via Gaetano Salvatore 486, 80145 Naples, Italy; Department of Molecular Medicine and Medical Biotechnology, University Federico II, Via Pansini 5, 80131 Naples, Italy.
| | | | | | - Alfredo Nicosia
- Ceinge-Biotecnologie Avanzate S.C. A.R.L., via Gaetano Salvatore 486, 80145 Naples, Italy; Department of Molecular Medicine and Medical Biotechnology, University Federico II, Via Pansini 5, 80131 Naples, Italy.
| |
Collapse
|
6
|
Analysis of the Function of the Lymphocytic Choriomeningitis Virus S Segment Untranslated Region on Growth Capacity In Vitro and on Virulence In Vivo. Viruses 2020; 12:v12080896. [PMID: 32824338 PMCID: PMC7474432 DOI: 10.3390/v12080896] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 11/18/2022] Open
Abstract
Lymphocytic choriomeningitis virus (LCMV) is a prototypic arenavirus. The function of untranslated regions (UTRs) of the LCMV genome has not been well studied except for the extreme 19 nucleotide residues of both the 5′ and 3′ termini. There are internal UTRs composed of 58 and 41 nucleotide residues in the 5′ and 3′ UTRs, respectively, in the LCMV S segment. Their functional roles have yet to be elucidated. In this study, reverse genetics and minigenome systems were established for LCMV strain WE and the function of these regions were analyzed. It was revealed that nucleotides 20–40 and 20–38 located downstream of the 19 nucleotides in the 5′ and 3′ termini, respectively, were involved in viral genome replication and transcription. Furthermore, it was revealed that the other internal UTRs (nucleotides 41–77 and 39–60 in the 5′ and 3′ termini, respectively) in the S segment were involved in virulence in vivo, even though these regions did not affect viral growth capacity in Vero cells. The introduction of LCMV with mutations in these regions attenuates the virus and may enable the production of LCMV vaccine candidates.
Collapse
|
7
|
Kim YJ, Cubitt B, Chen E, Hull MV, Chatterjee AK, Cai Y, Kuhn JH, de la Torre JC. The ReFRAME library as a comprehensive drug repurposing library to identify mammarenavirus inhibitors. Antiviral Res 2019; 169:104558. [PMID: 31302150 DOI: 10.1016/j.antiviral.2019.104558] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/09/2019] [Accepted: 07/11/2019] [Indexed: 01/05/2023]
Abstract
Several mammarenaviruses, chiefly Lassa virus (LASV) in Western Africa and Junín virus (JUNV) in the Argentine Pampas, cause severe disease in humans and pose important public health problems in their endemic regions. Moreover, mounting evidence indicates that the worldwide-distributed mammarenavirus lymphocytic choriomeningitis virus (LCMV) is a neglected human pathogen of clinical significance. The lack of licensed mammarenavirus vaccines and partial efficacy of current anti-mammarenavirus therapy limited to an off-label use of the nucleoside analog ribavirin underscore an unmet need for novel therapeutics to combat human pathogenic mammarenavirus infections. This task can be facilitated by the implementation of "drug repurposing" strategies to reduce the time and resources required to advance identified antiviral drug candidates into the clinic. We screened a drug repurposing library of 11,968 compounds (Repurposing, Focused Rescue and Accelerated Medchem [ReFRAME]) and identified several potent inhibitors of LCMV multiplication that had also strong anti-viral activity against LASV and JUNV. Our findings indicate that enzymes of the rate-limiting steps of pyrimidine and purine biosynthesis, the pro-viral MCL1 apoptosis regulator, BCL2 family member protein and the mitochondrial electron transport complex III, play critical roles in the completion of the mammarenavirus life cycle, suggesting they represent potential druggable targets to counter human pathogenic mammarenavirus infections.
Collapse
Affiliation(s)
- Yu-Jin Kim
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Beatrice Cubitt
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Emily Chen
- California Institute for Biomedical Research, La Jolla, CA, 92037, USA
| | - Mitchell V Hull
- California Institute for Biomedical Research, La Jolla, CA, 92037, USA
| | | | - Yingyun Cai
- Integrated Research Facility at Fort Detrick (IRF-Frederick), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), B-8200 Research Plaza, Fort Detrick, Frederick, MD, 21702, USA
| | - Jens H Kuhn
- Integrated Research Facility at Fort Detrick (IRF-Frederick), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), B-8200 Research Plaza, Fort Detrick, Frederick, MD, 21702, USA
| | - Juan C de la Torre
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA.
| |
Collapse
|
8
|
Abstract
Atomic structures of the polymerase–endonuclease complex of the orthomyxovirus influenza and the orthobunyavirus La Crosse—two distinct segmented negative-sense (SNS) RNA viruses—demonstrate that binding of the genomic 5′ RNA rearranges the catalytic residues of the RNA-dependent RNA-polymerase (RdRP). Working with the arenavirus, Machupo, we demonstrate that 5′ RNAs from the genomic and antigenomic copies of both segments activate the RdRP in conjunction with a specific promoter. This study builds upon structural studies with two different SNS RNA viruses to reveal a previously unappreciated mechanism of RNA-guided promoter-specific polymerase regulation in SNS RNA viruses. The conservation of activating RNA elements among the polymerase–endonuclease complexes of SNS RNA viruses suggests new avenues for developing antiviral therapeutics. Segmented negative-sense (SNS) RNA viruses initiate infection by delivering into cells a suite of genomic RNA segments, each sheathed by the viral nucleocapsid protein and bound by the RNA-dependent RNA-polymerase (RdRP). For the orthomyxovirus influenza and the bunyavirus La Crosse, the 5′ end of the genomic RNA binds as a hook-like structure proximal to the active site of the RdRP. Using an in vitro assay for the RNA-dependent RNA-polymerase (RdRP) of the arenavirus Machupo (MACV), we demonstrate that the 5′ genomic and antigenomic RNAs of both small and large genome segments stimulate activity in a promoter-specific manner. Functional probing of the activating RNAs identifies intramolecular base-pairing between positions +1 and +7 and a pseudotemplated 5′ terminal guanine residue as key for activation. Binding of structured 5′ RNAs is a conserved feature of all SNS RNA virus polymerases, implying that promoter-specific RdRP activation extends beyond the arenaviruses. The 5′ RNAs and the RNA binding pocket itself represent targets for therapeutic intervention.
Collapse
|
9
|
Urata S, Kenyon E, Nayak D, Cubitt B, Kurosaki Y, Yasuda J, de la Torre JC, McGavern DB. BST-2 controls T cell proliferation and exhaustion by shaping the early distribution of a persistent viral infection. PLoS Pathog 2018; 14:e1007172. [PMID: 30028868 PMCID: PMC6080785 DOI: 10.1371/journal.ppat.1007172] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 08/07/2018] [Accepted: 06/20/2018] [Indexed: 12/27/2022] Open
Abstract
The interferon inducible protein, BST-2 (or, tetherin), plays an important role in the innate antiviral defense system by inhibiting the release of many enveloped viruses. Consequently, viruses have evolved strategies to counteract the anti-viral activity of this protein. While the mechanisms by which BST-2 prevents viral dissemination have been defined, less is known about how this protein shapes the early viral distribution and immunological defense against pathogens during the establishment of persistence. Using the lymphocytic choriomeningitis virus (LCMV) model of infection, we sought insights into how the in vitro antiviral activity of this protein compared to the immunological defense mounted in vivo. We observed that BST-2 modestly reduced production of virion particles from cultured cells, which was associated with the ability of BST-2 to interfere with the virus budding process mediated by the LCMV Z protein. Moreover, LCMV does not encode a BST-2 antagonist, and viral propagation was not significantly restricted in cells that constitutively expressed BST-2. In contrast to this very modest effect in cultured cells, BST-2 played a crucial role in controlling LCMV in vivo. In BST-2 deficient mice, a persistent strain of LCMV was no longer confined to the splenic marginal zone at early times post-infection, which resulted in an altered distribution of LCMV-specific T cells, reduced T cell proliferation / function, delayed viral control in the serum, and persistence in the brain. These data demonstrate that BST-2 is important in shaping the anatomical distribution and adaptive immune response against a persistent viral infection in vivo.
Collapse
Affiliation(s)
- Shuzo Urata
- National Research Center for the Control and Prevention of Infectious Diseases (CCPID), Nagasaki University, Nagasaki, Japan
- Department of Emerging Infectious Diseases, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
- Department of Immunology and Microbial Science IMM-6, The Scripps Research Institute, La Jolla, California, United States of America
| | - Elizabeth Kenyon
- Viral Immunology & Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Debasis Nayak
- Viral Immunology & Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
- Center for Bioscience and Biomedical Engineering, Indian Institute of Technology Indore, India
| | - Beatrice Cubitt
- Department of Immunology and Microbial Science IMM-6, The Scripps Research Institute, La Jolla, California, United States of America
| | - Yohei Kurosaki
- Department of Emerging Infectious Diseases, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Jiro Yasuda
- National Research Center for the Control and Prevention of Infectious Diseases (CCPID), Nagasaki University, Nagasaki, Japan
- Department of Emerging Infectious Diseases, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Juan C. de la Torre
- Department of Immunology and Microbial Science IMM-6, The Scripps Research Institute, La Jolla, California, United States of America
| | - Dorian B. McGavern
- Viral Immunology & Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
10
|
A Highly Conserved Leucine in Mammarenavirus Matrix Z Protein Is Required for Z Interaction with the Virus L Polymerase and Z Stability in Cells Harboring an Active Viral Ribonucleoprotein. J Virol 2018; 92:JVI.02256-17. [PMID: 29593035 DOI: 10.1128/jvi.02256-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 03/20/2018] [Indexed: 12/26/2022] Open
Abstract
Mammarenaviruses cause chronic infections in their natural rodent hosts. Infected rodents shed infectious virus into excreta. Humans are infected through mucosal exposure to aerosols or direct contact of abraded skin with fomites, resulting in a wide range of manifestations from asymptomatic or mild febrile illness to severe life-threatening hemorrhagic fever. The mammarenavirus matrix Z protein has been shown to be a main driving force of virus budding and to act as a negative regulator of viral RNA synthesis. To gain a better understanding of how the Z protein exerts its several different functions, we investigated the interaction between Z and viral polymerase L protein using the prototypic mammarenavirus, lymphocytic choriomeningitis virus (LCMV). We found that in the presence of an active viral ribonucleoprotein (vRNP), the Z protein translocated from nonionic detergent-resistant, membrane-rich structures to a subcellular compartment with a different membrane composition susceptible to disruption by nonionic detergents. Alanine (A) substitution of a highly conserved leucine (L) at position 72 in LCMV Z protein abrogated Z-L interaction. The L72A mutation did not affect the stability or budding activity of Z when expressed alone, but in the presence of an active vRNP, mutation L72A promoted rapid degradation of Z via a proteasome- and lysosome-independent pathway. Accordingly, L72A mutation in the Z protein resulted in nonviable LCMV. Our findings have uncovered novel aspects of the dynamics of the Z protein for which a highly conserved L residue was strictly required.IMPORTANCE Several mammarenaviruses, chiefly Lassa virus (LASV), cause hemorrhagic fever disease in humans and pose important public health concerns in their regions of endemicity. Moreover, mounting evidence indicates that the worldwide-distributed, prototypic mammarenavirus, lymphocytic choriomeningitis virus (LCMV), is a neglected human pathogen of clinical significance. The mammarenavirus matrix Z protein plays critical roles in different steps of the viral life cycle by interacting with viral and host cellular components. Here we report that alanine substitution of a highly conserved leucine residue, located at position 72 in LCMV Z protein, abrogated Z-L interaction. The L72A mutation did not affect Z budding activity but promoted its rapid degradation in the presence of an active viral ribonucleoprotein (vRNP). Our findings have uncovered novel aspects of the dynamics of the Z protein for which a highly conserved L residue was strictly required.
Collapse
|
11
|
Miranda PO, Cubitt B, Jacob NT, Janda KD, de la Torre JC. Mining a Kröhnke Pyridine Library for Anti-Arenavirus Activity. ACS Infect Dis 2018; 4:815-824. [PMID: 29405696 DOI: 10.1021/acsinfecdis.7b00236] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Several arenaviruses cause hemorrhagic fever (HF) disease in humans and represent important public health problems in their endemic regions. In addition, evidence indicates that the worldwide-distributed prototypic arenavirus lymphocytic choriomeningitis virus is a neglected human pathogen of clinical significance. There are no licensed arenavirus vaccines, and current antiarenavirus therapy is limited to an off-label use of ribavirin that is only partially effective. Therefore, there is an unmet need for novel therapeutics to combat human pathogenic arenaviruses, a task that will be facilitated by the identification of compounds with antiarenaviral activity that could serve as probes to identify arenavirus-host interactions suitable for targeting, as well as lead compounds to develop future antiarenaviral drugs. Screening of a combinatorial library of Krönhke pyridines identified compound KP-146 [(5-(5-(2,3-dihydrobenzo[ b][1,4] dioxin-6-yl)-4'-methoxy-[1,1'-biphenyl]-3-yl)thiophene-2-carboxamide] as having strong anti-lymphocytic choriomeningitis virus (LCMV) activity in cultured cells. KP-146 did not inhibit LCMV cell entry but rather interfered with the activity of the LCMV ribonucleoprotein (vRNP) responsible for directing virus RNA replication and gene transcription, as well as with the budding process mediated by the LCMV matrix Z protein. LCMV variants with increased resistance to KP-146 did not emerge after serial passages in the presence of KP-146. Our findings support the consideration of Kröhnke pyridine scaffold as a valuable source to identify compounds that could serve as tools to dissect arenavirus-host interactions, as well as lead candidate structures to develop antiarenaviral drugs.
Collapse
|
12
|
Zaza AD, Herbreteau CH, Peyrefitte CN, Emonet SF. Mammarenaviruses deleted from their Z gene are replicative and produce an infectious progeny in BHK-21 cells. Virology 2018; 518:34-44. [PMID: 29453057 DOI: 10.1016/j.virol.2018.01.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 01/16/2018] [Accepted: 01/18/2018] [Indexed: 11/19/2022]
Abstract
Mammarenaviruses bud out of infected cells via the recruitment of the endosomal sorting complex required for transport through late domain motifs localized into their Z protein. Here, we demonstrated that mammarenaviruses lacking this protein can be rescued and are replicative, despite a 3-log reduction in virion production, in BHK-21 cells, but not in five other cell lines. Mutations of putative late domain motifs identified into the viral nucleoprotein resulted in the almost complete abolition of infectious virion production by Z-deleted mammarenaviruses. This result strongly suggested that the nucleoprotein may compensate for the deletion of Z. These observations were primarily obtained using the Lymphocytic choriomeningitis virus, and further confirmed using the Old World Lassa and New World Machupo viruses, responsible of human hemorrhagic fevers. Z-deleted viruses should prove very useful tools to investigate the biology of Mammarenaviruses.
Collapse
Affiliation(s)
- Amélie D Zaza
- Fab'entech, 24 rue Jean Baldassini, 69007 Lyon, France; Unité de virologie, Département de Biologie des Agents Transmissibles, Institut de Recherche Biomédicale des Armées, 1 place général Valérie André, BP 73 91 223 Brétigny-sur-Orge cedex, France.
| | | | - Christophe N Peyrefitte
- Unité de virologie, Département de Biologie des Agents Transmissibles, Institut de Recherche Biomédicale des Armées, 1 place général Valérie André, BP 73 91 223 Brétigny-sur-Orge cedex, France.
| | - Sébastien F Emonet
- Unité de virologie, Département de Biologie des Agents Transmissibles, Institut de Recherche Biomédicale des Armées, 1 place général Valérie André, BP 73 91 223 Brétigny-sur-Orge cedex, France.
| |
Collapse
|
13
|
Pontremoli C, Forni D, Cagliani R, Pozzoli U, Riva S, Bravo IG, Clerici M, Sironi M. Evolutionary analysis of Old World arenaviruses reveals a major adaptive contribution of the viral polymerase. Mol Ecol 2017; 26:5173-5188. [PMID: 28779541 DOI: 10.1111/mec.14282] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 07/25/2017] [Accepted: 07/31/2017] [Indexed: 12/17/2022]
Abstract
The Old World (OW) arenavirus complex includes several species of rodent-borne viruses, some of which (i.e., Lassa virus, LASV and Lymphocytic choriomeningitis virus, LCMV) cause human diseases. Most LCMV and LASV infections are caused by rodent-to-human transmissions. Thus, viral evolution is largely determined by events that occur in the wildlife reservoirs. We used a set of human- and rodent-derived viral sequences to investigate the evolutionary history underlying OW arenavirus speciation, as well as the more recent selective events that accompanied LASV spread in West Africa. We show that the viral RNA polymerase (L protein) was a major positive selection target in OW arenaviruses and during LASV out-of-Nigeria migration. No evidence of selection was observed for the glycoprotein, whereas positive selection acted on the nucleoprotein (NP) during LCMV speciation. Positively selected sites in L and NP are surrounded by highly conserved residues, and the bulk of the viral genome evolves under purifying selection. Several positively selected sites are likely to modulate viral replication/transcription. In both L and NP, structural features (solvent exposed surface area) are important determinants of site-wise evolutionary rate variation. By incorporating several rodent-derived sequences, we also performed an analysis of OW arenavirus codon adaptation to the human host. Results do not support a previously hypothesized role of codon adaptation in disease severity for non-Nigerian strains. In conclusion, L and NP represent the major selection targets and possible determinants of disease presentation; these results suggest that field surveys and experimental studies should primarily focus on these proteins.
Collapse
Affiliation(s)
- Chiara Pontremoli
- Bioinformatics, Scientific Institute IRCCS E. MEDEA, Bosisio Parini, Italy
| | - Diego Forni
- Bioinformatics, Scientific Institute IRCCS E. MEDEA, Bosisio Parini, Italy
| | - Rachele Cagliani
- Bioinformatics, Scientific Institute IRCCS E. MEDEA, Bosisio Parini, Italy
| | - Uberto Pozzoli
- Bioinformatics, Scientific Institute IRCCS E. MEDEA, Bosisio Parini, Italy
| | - Stefania Riva
- Bioinformatics, Scientific Institute IRCCS E. MEDEA, Bosisio Parini, Italy
| | - Ignacio G Bravo
- Laboratory MIVEGEC, UMR CNRS 5290, IRD 224, UM, Centre National de la Recherche Scientifique, Montpellier, France
| | - Mario Clerici
- Department of Physiopathology and Transplantation, University of Milan, Milan, Italy.,Don C. Gnocchi Foundation ONLUS, IRCCS, Milan, Italy
| | - Manuela Sironi
- Bioinformatics, Scientific Institute IRCCS E. MEDEA, Bosisio Parini, Italy
| |
Collapse
|
14
|
Abstract
The development of arenavirus reverse genetics has provided investigators with a novel and powerful approach for the investigation of the arenavirus molecular and cell biology. The use of cell-based minigenome systems has allowed examining the cis- and trans-acting factors involved in arenavirus replication and transcription, and the identification of novel anti-arenaviral drug targets without requiring the use of live forms of arenaviruses. Likewise, it is now feasible to rescue infectious arenaviruses entirely from cloned cDNAs containing predetermined mutations in their genomes to investigate virus-host interactions and mechanisms of pathogenesis. These advances in arenavirus genetics have also facilitated screens to identify anti-arenaviral drugs and the pursuit of novel strategies to generate live-attenuated arenavirus vaccine candidates. Moreover, the generation of tri-segmented (r3) arenaviruses expressing foreign genes of interest (GOI) has opened the possibility of implementing live-attenuated arenaviruses-based vaccine vector approaches. In this chapter, we will summarize the implementation of plasmid-based reverse genetics techniques for the development of r3 arenaviruses expressing foreign GOI for their implementation as vaccine vectors.
Collapse
Affiliation(s)
- Luis Martínez-Sobrido
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY, 14642, USA.
| | - Juan Carlos de la Torre
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, 92037, USA.
| |
Collapse
|
15
|
Residues K465 and G467 within the Cytoplasmic Domain of GP2 Play a Critical Role in the Persistence of Lymphocytic Choriomeningitis Virus in Mice. J Virol 2016; 90:10102-10112. [PMID: 27581982 DOI: 10.1128/jvi.01303-16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 08/22/2016] [Indexed: 11/20/2022] Open
Abstract
Several arenaviruses, chiefly Lassa virus (LASV), cause hemorrhagic fever disease in humans and pose serious public health concerns in their regions of endemicity. Moreover, mounting evidence indicates that the worldwide-distributed prototypic arenavirus, lymphocytic choriomeningitis virus (LCMV), is a neglected human pathogen of clinical significance. We have documented that a recombinant LCMV containing the glycoprotein (GPC) gene of LASV within the backbone of the immunosuppressive clone 13 (Cl-13) variant of the Armstrong strain of LCMV (rCl-13/LASV-GPC) exhibited Cl-13-like growth properties in cultured cells, but in contrast to Cl-13, rCl-13/LASV-GPC was unable to establish persistence in immunocompetent adult mice, which prevented its use for some in vivo experiments. Recently, V459K and K461G mutations within the GP2 cytoplasmic domain (CD) of rCl-13/LASV-GPC were shown to increase rCl-13/LASV-GPC infectivity in mice. Here, we generated rCl-13(GPC/VGKS) by introducing the corresponding revertant mutations K465V and G467K within GP2 of rCl-13 and we show that rCl-13(GPC/VGKS) was unable to persist in mice. K465V and G467K mutations did not affect GPC processing, virus RNA replication, or gene expression. In addition, rCl-13(GPC/VGKS) grew to high titers in cultured cell lines and in immunodeficient mice. Further analysis revealed that rCl-13(GPC/VGKS) infected fewer splenic plasmacytoid dendritic cells than rCl-13, yet the two viruses induced similar type I interferon responses in mice. Our findings have identified novel viral determinants of Cl-13 persistence and also revealed that virus GPC-host interactions yet to be elucidated critically contribute to Cl-13 persistence. IMPORTANCE The prototypic arenavirus, lymphocytic choriomeningitis virus (LCMV), provides investigators with a superb experimental model system to investigate virus-host interactions. The Armstrong strain (ARM) of LCMV causes an acute infection, whereas its derivative, clone 13 (Cl-13), causes a persistent infection. Mutations F260L and K1079Q within GP1 and L polymerase, respectively, have been shown to play critical roles in Cl-13's ability to persist in mice. However, there is an overall lack of knowledge about other viral determinants required for Cl-13's persistence. Here, we report that mutations K465V and G467K within the cytoplasmic domain of Cl-13 GP2 resulted in a virus, rCl-13(GPC/VGKS), that failed to persist in mice despite exhibiting Cl-13 wild-type-like fitness in cultured cells and immunocompromised mice. This finding has uncovered novel viral determinants of viral persistence, and a detailed characterization of rCl-13(GPC/VGKS) can provide novel insights into the mechanisms underlying persistent viral infection.
Collapse
|
16
|
Molouki A, Peeters B. Rescue of recombinant Newcastle disease virus: current cloning strategies and RNA polymerase provision systems. Arch Virol 2016; 162:1-12. [PMID: 27695950 DOI: 10.1007/s00705-016-3065-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 09/12/2016] [Indexed: 01/08/2023]
Abstract
Since the first rescue of a recombinant Newcastle disease virus (rNDV) in the late 1990s, many more rNDVs have been rescued by researchers around the world. Regardless of methodology, the main principle behind rescue of the virus has remained the same, i.e., the formation of a functional replication complex by simultaneously providing the full-length viral RNA and the viral NP, P and L proteins. However, different strategies have been reported for the insertion of the full-length genome into a suitable transcription vector, which remains the most challenging step of the rescue. Moreover, several systems have been published for provision of the DNA-dependent RNA polymerase, which is needed for transcription of viral RNA (vRNA) from the transfected plasmid DNA. The aim of this article is to consolidate all of the current cDNA assembly strategies and transcription systems used in rescue of rNDV in order to attain a better understanding of the advantages and disadvantages of each approach.
Collapse
Affiliation(s)
- Aidin Molouki
- Department of Avian Disease Research and Diagnostic, Razi Vaccine and Serum Research Institute, Karaj, Iran. .,Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran.
| | - Ben Peeters
- Department of Virology, Wageningen Bioveterinary Research, PO Box 65, 8200 AB, Lelystad, The Netherlands
| |
Collapse
|
17
|
Reporter-Expressing, Replicating-Competent Recombinant Arenaviruses. Viruses 2016; 8:v8070197. [PMID: 27447662 PMCID: PMC4974532 DOI: 10.3390/v8070197] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 06/28/2016] [Accepted: 07/08/2016] [Indexed: 02/07/2023] Open
Abstract
Several arenaviruses cause hemorrhagic fever (HF) disease in humans and pose an important public health problem in their endemic regions. To date, no Food and Drug Administration (FDA)-licensed vaccines are available to combat human arenavirus infections, and current anti-arenaviral drug therapy is limited to an off-label use of ribavirin that is only partially effective. The development of arenavirus reverse genetic approaches has provided investigators with a novel and powerful approach for the study of arenavirus biology including virus–host interactions underlying arenavirus induced disease. The use of cell-based minigenome systems has allowed examining the cis- and trans-acting factors involved in arenavirus replication and transcription, as well as particle assembly and budding. Likewise, it is now feasible to rescue infectious arenaviruses containing predetermined mutations in their genomes to investigate virus-host interactions and mechanisms of pathogenesis. The use of reverse genetics approaches has also allowed the generation of recombinant arenaviruses expressing additional genes of interest. These advances in arenavirus molecular genetics have also facilitated the implementation of novel screens to identify anti-arenaviral drugs, and the development of novel strategies for the generation of arenavirus live-attenuated vaccines. In this review, we will summarize the current knowledge on reporter-expressing, replicating-competent arenaviruses harboring reporter genes in different locations of the viral genome and their use for studying and understanding arenavirus biology and the identification of anti-arenaviral drugs to combat these important human pathogens.
Collapse
|
18
|
Robinson JE, Hastie KM, Cross RW, Yenni RE, Elliott DH, Rouelle JA, Kannadka CB, Smira AA, Garry CE, Bradley BT, Yu H, Shaffer JG, Boisen ML, Hartnett JN, Zandonatti MA, Rowland MM, Heinrich ML, Martínez-Sobrido L, Cheng B, de la Torre JC, Andersen KG, Goba A, Momoh M, Fullah M, Gbakie M, Kanneh L, Koroma VJ, Fonnie R, Jalloh SC, Kargbo B, Vandi MA, Gbetuwa M, Ikponmwosa O, Asogun DA, Okokhere PO, Follarin OA, Schieffelin JS, Pitts KR, Geisbert JB, Kulakoski PC, Wilson RB, Happi CT, Sabeti PC, Gevao SM, Khan SH, Grant DS, Geisbert TW, Saphire EO, Branco LM, Garry RF. Most neutralizing human monoclonal antibodies target novel epitopes requiring both Lassa virus glycoprotein subunits. Nat Commun 2016; 7:11544. [PMID: 27161536 PMCID: PMC4866400 DOI: 10.1038/ncomms11544] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 04/07/2016] [Indexed: 01/19/2023] Open
Abstract
Lassa fever is a severe multisystem disease that often has haemorrhagic manifestations. The epitopes of the Lassa virus (LASV) surface glycoproteins recognized by naturally infected human hosts have not been identified or characterized. Here we have cloned 113 human monoclonal antibodies (mAbs) specific for LASV glycoproteins from memory B cells of Lassa fever survivors from West Africa. One-half bind the GP2 fusion subunit, one-fourth recognize the GP1 receptor-binding subunit and the remaining fourth are specific for the assembled glycoprotein complex, requiring both GP1 and GP2 subunits for recognition. Notably, of the 16 mAbs that neutralize LASV, 13 require the assembled glycoprotein complex for binding, while the remaining 3 require GP1 only. Compared with non-neutralizing mAbs, neutralizing mAbs have higher binding affinities and greater divergence from germline progenitors. Some mAbs potently neutralize all four LASV lineages. These insights from LASV human mAb characterization will guide strategies for immunotherapeutic development and vaccine design.
Collapse
Affiliation(s)
- James E Robinson
- Section of Infectious Disease, Department of Pediatrics, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, Louisiana 70112, USA
| | - Kathryn M Hastie
- Department of Immunology and Microbial Science, Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Robert W Cross
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, 301 University Boulevard, Galveston, Texas 77555, USA
| | - Rachael E Yenni
- Department of Microbiology and Immunology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, Louisiana 70112, USA
| | - Deborah H Elliott
- Section of Infectious Disease, Department of Pediatrics, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, Louisiana 70112, USA
| | - Julie A Rouelle
- Section of Infectious Disease, Department of Pediatrics, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, Louisiana 70112, USA
| | - Chandrika B Kannadka
- Section of Infectious Disease, Department of Pediatrics, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, Louisiana 70112, USA
| | - Ashley A Smira
- Section of Infectious Disease, Department of Pediatrics, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, Louisiana 70112, USA
| | - Courtney E Garry
- Section of Infectious Disease, Department of Pediatrics, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, Louisiana 70112, USA.,Autoimmune Technologies, LLC, 1010 Common St #1705, New Orleans, Louisiana 70112, USA
| | - Benjamin T Bradley
- Section of Infectious Disease, Department of Pediatrics, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, Louisiana 70112, USA
| | - Haini Yu
- Section of Infectious Disease, Department of Pediatrics, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, Louisiana 70112, USA
| | - Jeffrey G Shaffer
- Department of Biostatistics and Bioinformatics, Tulane School of Public Health and Tropical Medicine, New Orleans, Louisiana 70112, USA
| | - Matt L Boisen
- Corgenix, Inc., 11575 Main Street #400, Broomfield, Colorado 80020, USA
| | - Jessica N Hartnett
- Department of Microbiology and Immunology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, Louisiana 70112, USA
| | - Michelle A Zandonatti
- Department of Immunology and Microbial Science, Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Megan M Rowland
- Zalgen Labs, LLC, 20271 Goldenrod Lane, Suite 2083, Germantown, Maryland 20876, USA
| | - Megan L Heinrich
- Zalgen Labs, LLC, 20271 Goldenrod Lane, Suite 2083, Germantown, Maryland 20876, USA
| | - Luis Martínez-Sobrido
- Department of Microbiology and Immunology, University of Rochester, 601 Elmwood Avenue, Rochester, New York 14642, USA
| | - Benson Cheng
- Department of Microbiology and Immunology, University of Rochester, 601 Elmwood Avenue, Rochester, New York 14642, USA
| | - Juan C de la Torre
- Department of Immunology and Microbial Science, Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Kristian G Andersen
- Department of Immunology and Microbial Science, Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Augustine Goba
- Viral Hemorrhagic Fever Program, Kenema Government Hospital, 1 Combema Road, Kenema, Sierra Leone
| | - Mambu Momoh
- Viral Hemorrhagic Fever Program, Kenema Government Hospital, 1 Combema Road, Kenema, Sierra Leone.,Department of Laboratory Sciences Polytechnic College, 2 Combema Road, Kenema, Sierra Leone
| | - Mohamed Fullah
- Viral Hemorrhagic Fever Program, Kenema Government Hospital, 1 Combema Road, Kenema, Sierra Leone.,Department of Laboratory Sciences Polytechnic College, 2 Combema Road, Kenema, Sierra Leone
| | - Michael Gbakie
- Viral Hemorrhagic Fever Program, Kenema Government Hospital, 1 Combema Road, Kenema, Sierra Leone
| | - Lansana Kanneh
- Viral Hemorrhagic Fever Program, Kenema Government Hospital, 1 Combema Road, Kenema, Sierra Leone
| | - Veronica J Koroma
- Viral Hemorrhagic Fever Program, Kenema Government Hospital, 1 Combema Road, Kenema, Sierra Leone
| | - Richard Fonnie
- Viral Hemorrhagic Fever Program, Kenema Government Hospital, 1 Combema Road, Kenema, Sierra Leone
| | - Simbirie C Jalloh
- Viral Hemorrhagic Fever Program, Kenema Government Hospital, 1 Combema Road, Kenema, Sierra Leone
| | - Brima Kargbo
- Ministry of Health and Sanitation, 4th Floor Youyi Building, Freetown, Sierra Leone
| | - Mohamed A Vandi
- Viral Hemorrhagic Fever Program, Kenema Government Hospital, 1 Combema Road, Kenema, Sierra Leone.,Ministry of Health and Sanitation, 4th Floor Youyi Building, Freetown, Sierra Leone
| | - Momoh Gbetuwa
- Viral Hemorrhagic Fever Program, Kenema Government Hospital, 1 Combema Road, Kenema, Sierra Leone.,Ministry of Health and Sanitation, 4th Floor Youyi Building, Freetown, Sierra Leone
| | - Odia Ikponmwosa
- Department of Medicine, Institute of Lassa Fever Research and Control, Irrua Specialist Teaching Hospital, Km. 87, Benin/Auchi Road, Irrua, Nigeria
| | - Danny A Asogun
- Department of Medicine, Institute of Lassa Fever Research and Control, Irrua Specialist Teaching Hospital, Km. 87, Benin/Auchi Road, Irrua, Nigeria
| | - Peter O Okokhere
- Department of Medicine, Institute of Lassa Fever Research and Control, Irrua Specialist Teaching Hospital, Km. 87, Benin/Auchi Road, Irrua, Nigeria
| | - Onikepe A Follarin
- Department of Medicine, Institute of Lassa Fever Research and Control, Irrua Specialist Teaching Hospital, Km. 87, Benin/Auchi Road, Irrua, Nigeria.,Department of Biological Sciences, College of Natural Sciences, Redeemer's University, Off Gbongan-Oshogbo Road, Ede, Nigeria.,African Center of Excellence for Genomics of Infectious Disease (ACEGID), Redeemer's University, Off Gbongan-Oshogbo Road, Ede, Nigeria
| | - John S Schieffelin
- Section of Infectious Disease, Department of Pediatrics, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, Louisiana 70112, USA.,Section of Infectious Disease, Department of Internal Medicine, Tulane University School of Medicine, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, Louisiana 70112, USA
| | - Kelly R Pitts
- Corgenix, Inc., 11575 Main Street #400, Broomfield, Colorado 80020, USA
| | - Joan B Geisbert
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, 301 University Boulevard, Galveston, Texas 77555, USA
| | - Peter C Kulakoski
- Autoimmune Technologies, LLC, 1010 Common St #1705, New Orleans, Louisiana 70112, USA
| | - Russell B Wilson
- Autoimmune Technologies, LLC, 1010 Common St #1705, New Orleans, Louisiana 70112, USA
| | - Christian T Happi
- Department of Medicine, Institute of Lassa Fever Research and Control, Irrua Specialist Teaching Hospital, Km. 87, Benin/Auchi Road, Irrua, Nigeria.,Department of Biological Sciences, College of Natural Sciences, Redeemer's University, Off Gbongan-Oshogbo Road, Ede, Nigeria.,African Center of Excellence for Genomics of Infectious Disease (ACEGID), Redeemer's University, Off Gbongan-Oshogbo Road, Ede, Nigeria
| | - Pardis C Sabeti
- Department of Organismic and Evolutionary Biology, Center for Systems Biology, Harvard University, 1350 Massachusetts Avenue, Cambridge, Massachusetts 02138, USA.,Center for Systems Biology, Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, 415 Main Street, Cambridge, Massachusetts 02142, USA.,Department of Immunology and Infectious Disease, Harvard School of Public Health, 677 Huntington Avenue, Boston, Massachusetts 02115, USA
| | - Sahr M Gevao
- Department of Medicine, University of Sierra Leone, Freetown, Sierra Leone
| | - S Humarr Khan
- Viral Hemorrhagic Fever Program, Kenema Government Hospital, 1 Combema Road, Kenema, Sierra Leone.,Ministry of Health and Sanitation, 4th Floor Youyi Building, Freetown, Sierra Leone
| | - Donald S Grant
- Viral Hemorrhagic Fever Program, Kenema Government Hospital, 1 Combema Road, Kenema, Sierra Leone.,Ministry of Health and Sanitation, 4th Floor Youyi Building, Freetown, Sierra Leone
| | - Thomas W Geisbert
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, 301 University Boulevard, Galveston, Texas 77555, USA
| | - Erica Ollmann Saphire
- Department of Immunology and Microbial Science, Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA.,The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Luis M Branco
- Zalgen Labs, LLC, 20271 Goldenrod Lane, Suite 2083, Germantown, Maryland 20876, USA
| | - Robert F Garry
- Department of Microbiology and Immunology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, Louisiana 70112, USA.,Zalgen Labs, LLC, 20271 Goldenrod Lane, Suite 2083, Germantown, Maryland 20876, USA
| |
Collapse
|
19
|
The High Degree of Sequence Plasticity of the Arenavirus Noncoding Intergenic Region (IGR) Enables the Use of a Nonviral Universal Synthetic IGR To Attenuate Arenaviruses. J Virol 2016; 90:3187-97. [PMID: 26739049 DOI: 10.1128/jvi.03145-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 12/30/2015] [Indexed: 12/19/2022] Open
Abstract
UNLABELLED Hemorrhagic fever arenaviruses (HFAs) pose important public health problems in regions where they are endemic. Concerns about human-pathogenic arenaviruses are exacerbated because of the lack of FDA-licensed arenavirus vaccines and because current antiarenaviral therapy is limited to an off-label use of ribavirin that is only partially effective. We have recently shown that the noncoding intergenic region (IGR) present in each arenavirus genome segment, the S and L segments (S-IGR and L-IGR, respectively), plays important roles in the control of virus protein expression and that this knowledge could be harnessed for the development of live-attenuated vaccine strains to combat HFAs. In this study, we further investigated the sequence plasticity of the arenavirus IGR. We demonstrate that recombinants of the prototypic arenavirus lymphocytic choriomeningitis virus (rLCMVs), whose S-IGRs were replaced by the S-IGR of Lassa virus (LASV) or an entirely nonviral S-IGR-like sequence (Ssyn), are viable, indicating that the function of S-IGR tolerates a high degree of sequence plasticity. In addition, rLCMVs whose L-IGRs were replaced by Ssyn or S-IGRs of the very distantly related reptarenavirus Golden Gate virus (GGV) were viable and severely attenuated in vivo but able to elicit protective immunity against a lethal challenge with wild-type LCMV. Our findings indicate that replacement of L-IGR by a nonviral Ssyn could serve as a universal molecular determinant of arenavirus attenuation. IMPORTANCE Hemorrhagic fever arenaviruses (HFAs) cause high rates of morbidity and mortality and pose important public health problems in regions where they are endemic. Implementation of live-attenuated vaccines (LAVs) will represent a major step to combat HFAs. Here we document that the arenavirus noncoding intergenic region (IGR) has a high degree of plasticity compatible with virus viability. This observation led us to generate recombinant LCMVs containing nonviral synthetic IGRs. These rLCMVs were severely attenuated in vivo but able to elicit protective immunity against a lethal challenge with wild-type LCMV. These nonviral synthetic IGRs can be used as universal molecular determinants of arenavirus attenuation for the rapid development of safe and effective, as well as stable, LAVs to combat HFA.
Collapse
|
20
|
Abstract
Several arenavirus cause hemorrhagic fever disease in humans and pose a significant public health problem in their endemic regions. To date, no licensed vaccines are available to combat human arenavirus infections, and anti-arenaviral drug therapy is limited to an off-label use of ribavirin that is only partially effective. The development of arenavirus reverse genetics approaches provides investigators with a novel and powerful approach for the investigation of the arenavirus molecular and cell biology. The use of cell-based minigenome systems has allowed examining the cis- and trans-acting factors involved in arenavirus replication and transcription and the identification of novel anti-arenaviral drug targets without requiring the use of live forms of arenaviruses. Likewise, it is now feasible to rescue infectious arenaviruses entirely from cloned cDNAs containing predetermined mutations in their genomes to investigate virus-host interactions and mechanisms of pathogenesis, as well as to facilitate screens to identify anti-arenaviral drugs and development of novel live-attenuated arenavirus vaccines. Recently, reverse genetics have also allowed the generation of tri-segmented arenaviruses expressing foreign genes, facilitating virus detection and opening the possibility of implementing live-attenuated arenavirus-based vaccine vector approaches. Likewise, the development of single-cycle infectious, reporter-expressing, arenaviruses has provided a new experimental method to study some aspects of the biology of highly pathogenic arenaviruses without the requirement of high-security biocontainment required to study HF-causing arenaviruses. In this chapter we summarize the current knowledge on arenavirus reverse genetics and the implementation of plasmid-based reverse genetics techniques for the development of arenavirus vaccines and vaccine vectors.
Collapse
Affiliation(s)
- Luis Martínez-Sobrido
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY, 14642, USA.
| | - Benson Yee Hin Cheng
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Juan Carlos de la Torre
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, 92037, USA.
| |
Collapse
|
21
|
Abstract
Vaccination with a recombinant LCMV based vector expressing tumor-associated or viral antigens is a safe and versatile method to induce an immune response against tumors or viral infections. Here, we describe the generation of recombinant LCMV vectors in which the gene encoding the viral LCMV-GP was substituted with a gene of interest (vaccine antigen). This renders the vaccine vector propagation-incompetent while it preserves the property of eliciting a strong cytotoxic T cell response.
Collapse
Affiliation(s)
- Sandra Ring
- Institute of Immunobiology, Kantonsspital St. Gallen, Rorschacher Str. 95, St. Gallen, 9007, Switzerland
| | - Lukas Flatz
- Institute of Immunobiology, Kantonsspital St. Gallen, Rorschacher Str. 95, St. Gallen, 9007, Switzerland.
| |
Collapse
|
22
|
General Molecular Strategy for Development of Arenavirus Live-Attenuated Vaccines. J Virol 2015; 89:12166-77. [PMID: 26401045 DOI: 10.1128/jvi.02075-15] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 09/14/2015] [Indexed: 12/21/2022] Open
Abstract
UNLABELLED Hemorrhagic fever arenaviruses (HFA) pose important public health problems in regions where they are endemic. Thus, Lassa virus (LASV) infects several hundred thousand individuals yearly in West Africa, causing a large number of Lassa fever cases associated with high morbidity and mortality. Concerns about human-pathogenic arenaviruses are exacerbated because of the lack of FDA-licensed arenavirus vaccines and because current antiarenaviral therapy is limited to an off-label use of ribavirin that is only partially effective. The Mopeia virus (MOPV)/LASV reassortant (ML29) is a LASV candidate live-attenuated vaccine (LAV) that has shown promising results in animal models. Nevertheless, the mechanism of ML29 attenuation remains unknown, which raises concerns about the phenotypic stability of ML29 in response to additional mutations. Development of LAVs based on well-defined molecular mechanisms of attenuation will represent a major step in combatting HFA. We used the prototypic arenavirus lymphocytic choriomeningitis virus (LCMV) to develop a general molecular strategy for arenavirus attenuation. Our approach involved replacement of the noncoding intergenic region (IGR) of the L genome segment with the IGR of the S genome segment to generate a recombinant LCMV, rLCMV(IGR/S-S), that was highly attenuated in vivo but induced protection against a lethal challenge with wild-type LCMV. Attenuation of rLCMV(IGR/S-S) was associated with a stable reorganization of the control of viral gene expression. This strategy can facilitate the rapid development of LAVs with the antigenic composition of the parental HFA and a mechanism of attenuation that minimizes concerns about increased virulence that could be caused by genetic changes in the LAV. IMPORTANCE Hemorrhagic fever arenaviruses (HFA) cause high morbidity and mortality, and pose important public health problems in the regions where they are endemic. Implementation of live-attenuated vaccines (LAV) will represent a major step in combatting HFA. Here we have used the prototypic arenavirus LCMV to document a general molecular strategy for arenavirus attenuation that can facilitate the rapid development of safe and effective, as well as stable, LAV to combat HFA.
Collapse
|
23
|
The Nucleoprotein Is Required for Lymphocytic Choriomeningitis Virus-Based Vaccine Vector Immunogenicity. J Virol 2015; 89:11734-8. [PMID: 26355095 DOI: 10.1128/jvi.01613-15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 09/06/2015] [Indexed: 12/14/2022] Open
Abstract
Recombinant glycoprotein-deficient lymphocytic choriomeningitis virus-based vaccine vectors (rLCMV/ΔGP) are potent CD8(+) T cell inducers. To investigate the underlying molecular requirements, we generated a nucleoprotein-deficient vector counterpart (rLCMV/ΔNP). NP but not GP is a minimal trans-acting factor for viral transcription and genome replication. We found that, unlike rLCMV/ΔGP, rLCMV/ΔNP failed to elicit detectable CD8(+) T cell responses unless NP was trans complemented in a transgenic host. Hence, NP-dependent intracellular gene expression is essential for LCMV vector immunogenicity.
Collapse
|
24
|
Identification and Mechanism of Action of a Novel Small-Molecule Inhibitor of Arenavirus Multiplication. J Virol 2015; 89:10924-33. [PMID: 26292327 PMCID: PMC4621110 DOI: 10.1128/jvi.01587-15] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 08/17/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Several arenaviruses cause hemorrhagic fever disease in humans and represent important public health problems in the regions where these viruses are endemic. In addition, evidence indicates that the worldwide-distributed prototypic arenavirus lymphocytic choriomeningitis virus (LCMV) is an important neglected human pathogen. There are no licensed arenavirus vaccines and current antiarenavirus therapy is limited to the use of ribavirin that is only partially effective. Therefore, there is an unmet need for novel antiarenaviral therapeutics. Here, we report the generation of a novel recombinant LCM virus and its use to develop a cell-based high-throughput screen to rapidly identify inhibitors of LCMV multiplication. We used this novel assay to screen a library of 30,400 small molecules and identified compound F3406 (chemical name: N-[3,5-bis(fluoranyl)phenyl]-2-[5,7-bis(oxidanylidene)-6-propyl-2-pyrrolidin-1-yl-[1,3]thiazolo[4,5-d]pyrimidin-4-yl]ethanamide), which exhibited strong anti-LCMV activity in the absence of cell toxicity. Mechanism-of-action studies revealed that F3406 inhibited LCMV cell entry by specifically interfering with the pH-dependent fusion in the endosome compartment that is mediated by LCMV glycoprotein GP2 and required to release the virus ribonucleoprotein into the cell cytoplasm to initiate transcription and replication of the virus genome. We identified residue M437 within the transmembrane domain of GP2 as critical for virus susceptibility to F3406. IMPORTANCE Hemorrhagic fever arenaviruses (HFA) are important human pathogens that cause high morbidity and mortality in areas where these viruses are endemic. In addition, evidence indicates that the worldwide-distributed prototypic arenavirus lymphocytic choriomeningitis virus (LCMV) is a neglected human pathogen of clinical significance. Concerns posed by arenavirus infections are aggravated by the lack of U.S. Food and Drug Administration-licensed arenavirus vaccines and current antiarenaviral therapy being limited to the off-label use of ribavirin that is only partially effective. Here we describe a novel recombinant LCMV and its use to develop a cell-based assay suitable for HTS to rapidly identify inhibitors arenavirus multiplication. The concepts and experimental strategies we describe in this work provide the bases for the rapid identification and characterization of novel anti-HFA therapeutics.
Collapse
|
25
|
Abstract
The Arenaviridae are enveloped, negative-sense RNA viruses with several family members that cause hemorrhagic fevers. This work provides immunofluorescence evidence that, unlike those of New World arenaviruses, the replication and transcription complexes (RTC) of lymphocytic choriomeningitis virus (LCMV) colocalize with eukaryotic initiation factor 4E (eIF4E) and that eIF4E may participate in the translation of LCMV mRNA. Additionally, we identify two residues in the LCMV nucleoprotein (NP) that are conserved in every mammalian arenavirus and are required for recombinant LCMV recovery. One of these sites, Y125, was confirmed to be phosphorylated by using liquid chromatography-tandem mass spectrometry (LC-MS/MS). NP Y125 is located in the N-terminal region of NP that is disordered when RNA is bound. The other site, NP T206, was predicted to be a phosphorylation site. Immunofluorescence analysis demonstrated that NP T206 is required for the formation of the punctate RTC that are typically observed during LCMV infection. A minigenome reporter assay using NP mutants, as well as Northern blot analysis, demonstrated that although NP T206A does not form punctate RTC, it can transcribe and replicate a minigenome. However, in the presence of matrix protein (Z) and glycoprotein (GP), translation of the minigenome message with NP T206A was inhibited, suggesting that punctate RTC formation is required to regulate viral replication. Together, these results highlight a significant difference between New and Old World arenaviruses and demonstrate the importance of RTC formation and translation priming in RTC for Old World arenaviruses. Several members of the Arenaviridae cause hemorrhagic fevers and are classified as category A pathogens. Arenavirus replication-transcription complexes (RTC) are nucleated by the viral nucleoprotein. This study demonstrates that the formation of these complexes is required for virus viability and suggests that RTC nucleation is regulated by the phosphorylation of a single nucleoprotein residue. This work adds to the body of knowledge about how these key viral structures are formed and participate in virus replication. Additionally, the fact that Old World arenavirus complexes colocalize with the eukaryotic initiation factor 4E, while New World arenaviruses do not, is only the second notable difference observed between New and Old World arenaviruses, the first being the difference in the glycoprotein receptor.
Collapse
|
26
|
Efficient Interaction between Arenavirus Nucleoprotein (NP) and RNA-Dependent RNA Polymerase (L) Is Mediated by the Virus Nucleocapsid (NP-RNA) Template. J Virol 2015; 89:5734-8. [PMID: 25762740 DOI: 10.1128/jvi.00103-15] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 03/07/2015] [Indexed: 11/20/2022] Open
Abstract
In this study, we document that efficient interaction between arenavirus nucleoprotein (NP) and RNA-dependent RNA polymerase (L protein), the two trans-acting viral factors required for both virus RNA replication and gene transcription, requires the presence of virus-specific RNA sequences located within the untranslated 5' and 3' termini of the viral genome.
Collapse
|
27
|
Wilson MR, Peters CJ. Diseases of the central nervous system caused by lymphocytic choriomeningitis virus and other arenaviruses. HANDBOOK OF CLINICAL NEUROLOGY 2014; 123:671-81. [PMID: 25015511 DOI: 10.1016/b978-0-444-53488-0.00033-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Michael R Wilson
- Multiple Sclerosis Center, Department of Neurology, School of Medicine, University of California San Francisco, San Francisco, CA, USA.
| | - Clarence J Peters
- Departments of Microbiology, Immunology and Pathology and Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
28
|
Abstract
Several arenaviruses, chiefly Lassa virus (LASV), cause hemorrhagic fever (HF) disease in humans and pose a great public health concern in the regions in which they are endemic. Moreover, evidence indicates that the worldwide-distributed prototypic arenavirus lymphocytic choriomeningitis virus (LCMV) is a neglected human pathogen of clinical significance. The limited existing armamentarium to combat human-pathogenic arenaviruses underscores the importance of developing novel antiarenaviral drugs, a task that would be facilitated by the identification and characterization of virus-host cell factor interactions that contribute to the arenavirus life cycle. A genome-wide small interfering RNA (siRNA) screen identified sodium hydrogen exchanger 3 (NHE3) as required for efficient multiplication of LCMV in HeLa cells, but the mechanisms by which NHE activity contributed to the life cycle of LCMV remain unknown. Here we show that treatment with the NHE inhibitor 5-(N-ethyl-N-isopropyl) amiloride (EIPA) resulted in a robust inhibition of LCMV multiplication in both rodent (BHK-21) and human (A549) cells. EIPA-mediated inhibition was due not to interference with virus RNA replication, gene expression, or budding but rather to a blockade of virus cell entry. EIPA also inhibited cell entry mediated by the glycoproteins of the HF arenaviruses LASV and Junin virus (JUNV). Pharmacological and genetic studies revealed that cell entry of LCMV in A549 cells depended on actin remodeling and Pak1, suggesting a macropinocytosis-like cell entry pathway. Finally, zoniporide, an NHE inhibitor being explored as a therapeutic agent to treat myocardial infarction, inhibited LCMV propagation in culture cells. Our findings indicate that targeting NHEs could be a novel strategy to combat human-pathogenic arenaviruses.
Collapse
|
29
|
Mice lacking functional STAT1 are highly susceptible to lethal infection with Lassa virus. J Virol 2013; 87:10908-11. [PMID: 23903830 DOI: 10.1128/jvi.01433-13] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lassa fever (LF) is a potentially lethal human disease that is caused by the arenavirus Lassa virus (LASV). Annually, around 300,000 infections with up to 10,000 deaths occur in regions of Lassa fever endemicity in West Africa. Here we demonstrate that mice lacking a functional STAT1 pathway are highly susceptible to infection with LASV and develop lethal disease with pathology similar to that reported in humans.
Collapse
|
30
|
Vázquez-Calvo Á, Martín-Acebes MA, Sáiz JC, Ngo N, Sobrino F, de la Torre JC. Inhibition of multiplication of the prototypic arenavirus LCMV by valproic acid. Antiviral Res 2013; 99:172-9. [PMID: 23735299 DOI: 10.1016/j.antiviral.2013.05.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 04/24/2013] [Accepted: 05/24/2013] [Indexed: 11/18/2022]
Abstract
Valproic acid (VPA), a short chain fatty acid commonly used for treatment of neurological disorders, has been shown to inhibit production of infectious progeny of different enveloped viruses including the prototypic arenavirus lymphocytic choriomeningitis virus (LCMV). In this study we have investigated the mechanisms by which VPA inhibits LCMV multiplication in cultured cells. VPA reduced production of infectious LCMV progeny and virus propagation without exerting a major blockage on either viral RNA or protein synthesis, but rather affecting the cell release and specific infectivity of LCMV progeny from infected cells. Our results would support the repurposing of VPA as a candidate antiviral drug to combat arenavirus infections.
Collapse
|
31
|
Nayak D, Johnson KR, Heydari S, Roth TL, Zinselmeyer BH, McGavern DB. Type I interferon programs innate myeloid dynamics and gene expression in the virally infected nervous system. PLoS Pathog 2013; 9:e1003395. [PMID: 23737750 PMCID: PMC3667771 DOI: 10.1371/journal.ppat.1003395] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 04/17/2013] [Indexed: 11/18/2022] Open
Abstract
Viral infections of central nervous system (CNS) often trigger inflammatory responses that give rise to a wide range of pathological outcomes. The CNS is equipped with an elaborate network of innate immune sentinels (e.g. microglia, macrophages, dendritic cells) that routinely serve as first responders to these infections. The mechanisms that underlie the dynamic programming of these cells following CNS viral infection remain undefined. To gain insights into this programming, we utilized a combination of genomic and two-photon imaging approaches to study a pure innate immune response to a noncytopathic virus (lymphocytic choriomeningitis virus) as it established persistence in the brain. This enabled us to evaluate how global gene expression patterns were translated into myeloid cell dynamics following infection. Two-photon imaging studies revealed that innate myeloid cells mounted a vigorous early response to viral infection characterized by enhanced vascular patrolling and a complete morphological transformation. Interestingly, innate immune activity subsided over time and returned to a quasi-normal state as the virus established widespread persistence in the brain. At the genomic level, early myeloid cell dynamics were associated with massive changes in CNS gene expression, most of which declined over time and were linked to type I interferon signaling (IFN-I). Surprisingly, in the absence of IFN-I signaling, almost no differential gene expression was observed in the nervous system despite increased viral loads. In addition, two-photon imaging studies revealed that IFN-I receptor deficient myeloid cells were unresponsive to viral infection and remained in a naïve state. These data demonstrate that IFN-I engages non-redundant programming responsible for nearly all innate immune activity in the brain following a noncytopathic viral infection. This Achilles' heel could explain why so many neurotropic viruses have acquired strategies to suppress IFN-I. The central nervous system is equipped with innate immune cells that serve as first responders to sterile injuries and infections. The mechanisms that program the movement and morphological transformations of these cells following infection remain undefined. Here, we utilized a combination of genomic and in vivo imaging approaches to define pathways that program the motion of innate immune cells responding to a noncytopathic virus as it established persistence in the brain. In vivo imaging studies performed in the living brain revealed that innate myeloid cells mounted a vigorous early response that returned to a “naïve” state during persistence. This was associated at the genomic level with robust changes in gene expression that were mostly quenched over time. Analysis of the gene expression pattern revealed a prominent type I interferon (IFN-I) signature only at the early stage of infection. Surprisingly, in the absence of type I interferon (IFN-I) signaling, almost no genes were differentially expressed in the virally infected nervous system and all innate myeloid cells were unresponsive. These data indicate IFN-I programs all innate myeloid activity in the nervous system following a noncytopathic viral infection. This non-redundant anti-viral program represents an Achilles' heel that can be exploited by neurotropic viruses.
Collapse
Affiliation(s)
- Debasis Nayak
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | | |
Collapse
|
32
|
Ortiz-Riaño E, Cheng BYH, Carlos de la Torre J, Martínez-Sobrido L. Arenavirus reverse genetics for vaccine development. J Gen Virol 2013; 94:1175-1188. [PMID: 23364194 DOI: 10.1099/vir.0.051102-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Arenaviruses are important human pathogens with no Food and Drug Administration (FDA)-licensed vaccines available and current antiviral therapy being limited to an off-label use of the nucleoside analogue ribavirin of limited prophylactic efficacy. The development of reverse genetics systems represented a major breakthrough in arenavirus research. However, rescue of recombinant arenaviruses using current reverse genetics systems has been restricted to rodent cells. In this study, we describe the rescue of recombinant arenaviruses from human 293T cells and Vero cells, an FDA-approved line for vaccine development. We also describe the generation of novel vectors that mediate synthesis of both negative-sense genome RNA and positive-sense mRNA species of lymphocytic choriomeningitis virus (LCMV) directed by the human RNA polymerases I and II, respectively, within the same plasmid. This approach reduces by half the number of vectors required for arenavirus rescue, which could facilitate virus rescue in cell lines approved for human vaccine production but that cannot be transfected at high efficiencies. We have shown the feasibility of this approach by rescuing both the Old World prototypic arenavirus LCMV and the live-attenuated vaccine Candid#1 strain of the New World arenavirus Junín. Moreover, we show the feasibility of using these novel strategies for efficient rescue of recombinant tri-segmented both LCMV and Candid#1.
Collapse
Affiliation(s)
- Emilio Ortiz-Riaño
- Department of Microbiology and Immunology, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Benson Yee Hin Cheng
- Department of Microbiology and Immunology, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Juan Carlos de la Torre
- Department of Immunology and Microbial Science, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Luis Martínez-Sobrido
- Department of Microbiology and Immunology, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, USA
| |
Collapse
|
33
|
Olson MR, McDermott DS, Varga SM. The initial draining lymph node primes the bulk of the CD8 T cell response and influences memory T cell trafficking after a systemic viral infection. PLoS Pathog 2012; 8:e1003054. [PMID: 23236277 PMCID: PMC3516554 DOI: 10.1371/journal.ppat.1003054] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 10/10/2012] [Indexed: 11/18/2022] Open
Abstract
Lymphocytic choriomeningitis virus (LCMV) causes a systemic infection in mice with virus replication occurring in both peripheral tissues and secondary lymphoid organs. Because of the rapid systemic dissemination of the virus, the secondary lymphoid organs responsible for the induction of the LCMV-specific CD8 T cell response are poorly defined. We show that the mediastinal lymph node (MedLN) serves as the primary draining lymph node following LCMV infection. In addition, we demonstrate that the MedLN is responsible for priming the majority of the virus-specific CD8 T cell response. Following resolution of the acute infection, the draining MedLN exhibits characteristics of a reactive lymph node including an increased presence of germinal center B cells and increased cellularity for up to 60 days post-infection. Furthermore, the reactive MedLN harbors an increased frequency of CD62L(-) effector memory CD8 T cells as compared to the non-draining lymph nodes. The accumulation of LCMV-specific CD62L(-) memory CD8 T cells in the MedLN is independent of residual antigen and is not a unique feature of the MedLN as footpad infection with LCMV leads to a similar increase of virus-specific CD62L(-) effector memory CD8 T cells in the draining popliteal lymph node. Our results indicate that CD62L(-) effector memory CD8 T cells are granted preferential access into the draining lymph nodes for an extended time following resolution of an infection.
Collapse
Affiliation(s)
- Matthew R. Olson
- Department of Microbiology, University of Iowa, Iowa City, Iowa, United States of America
| | - Daniel S. McDermott
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, Iowa, United States of America
| | - Steven M. Varga
- Department of Microbiology, University of Iowa, Iowa City, Iowa, United States of America
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, Iowa, United States of America
- Department of Pathology, University of Iowa, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
34
|
Cleavage of the Junin virus nucleoprotein serves a decoy function to inhibit the induction of apoptosis during infection. J Virol 2012; 87:224-33. [PMID: 23077297 DOI: 10.1128/jvi.01929-12] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The regulation of apoptosis during infection is an important factor for host survival and, in some cases, also for the virus life cycle. At the same time, mechanisms to prevent the induction of apoptosis have been observed in numerous viral pathogens, but until now the role of apoptosis during arenavirus infection has not been investigated. Junin virus (JUNV) belongs to the New World arenavirus serogroup of the Arenaviridae and is the causative agent of Argentine hemorrhagic fever. We have demonstrated that infection with JUNV in cell culture does not induce apoptosis but leads to cleavage of the nucleoprotein (NP) into discrete products resembling caspase cleavage events. Similar specific NP degradation patterns were also observed in NP-transfected cell lines, and a closer examination of the sequence of NP showed several putative caspase cleavage motifs. Point mutations that abolished these cleavage motifs were consistent with the loss of certain cleavage products. Consistent with these data, further studies showed that treatment with a caspase inhibitor also reduced NP cleavage, indicating that the observed cleavage events were occurring as a result of caspase activity with NP as a substrate. Finally, we showed that expression of NP suppresses the cleavage of caspase 3 in cells treated with an apoptosis activator. Based on these findings, we propose that NP functions as a decoy substrate for caspase cleavage in order to inhibit the induction of apoptosis in JUNV-infected cells.
Collapse
|
35
|
Ortiz-Riaño E, Cheng BYH, de la Torre JC, Martínez-Sobrido L. D471G mutation in LCMV-NP affects its ability to self-associate and results in a dominant negative effect in viral RNA synthesis. Viruses 2012. [PMID: 23202457 PMCID: PMC3497045 DOI: 10.3390/v4102137] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Arenaviruses merit significant interest because several family members are etiological agents of severe hemorrhagic fevers, representing a major burden to public health. Currently, there are no FDA-licensed vaccines against arenaviruses and the only available antiviral therapy is limited to the use of ribavirin that is partially effective. Arenavirus nucleoprotein (NP) is found associated with the genomic RNA forming the viral ribonucleoproteins (vRNPs) that together with the polymerase (L) direct viral replication and transcription. Virion formation requires the recruitment of vRNPs into budding sites, a process in which the arenavirus matrix-like protein (Z) plays a major role. Therefore, proper NP-NP and NP-Z interactions are required for the generation of infectious progeny. In this work we demonstrate the role of the amino acid residue D471 in the self-association of lymphocytic choriomeningitis virus nucleoprotein (LCMV-NP). Amino acid substitutions at this position abrogate NP oligomerization, affecting its ability to mediate replication and transcription of a minigenome reporter plasmid. However, its ability to interact with the Z protein, counteract the cellular interferon response and bind to dsRNA analogs was retained. Additionally, we also document the dominant negative effect of D471G mutation on viral infection, suggesting that NP self-association is an excellent target for the development of new antivirals against arenaviruses.
Collapse
Affiliation(s)
- Emilio Ortiz-Riaño
- Department of Microbiology and Immunology, University of Rochester, 601 Elmwood Avenue, Rochester, New York 14642; (E.O-R); (B.Y.H.C); (L. M-S)
| | - Benson Y. H. Cheng
- Department of Microbiology and Immunology, University of Rochester, 601 Elmwood Avenue, Rochester, New York 14642; (E.O-R); (B.Y.H.C); (L. M-S)
| | - Juan C. de la Torre
- To whom correspondence should be addressed;
(L.M-S), Tel.: +1-585-276-4733; (J.C. dlT), Tel.: +1-858-784-9462
| | - Luis Martínez-Sobrido
- To whom correspondence should be addressed;
(L.M-S), Tel.: +1-585-276-4733; (J.C. dlT), Tel.: +1-858-784-9462
| |
Collapse
|
36
|
HMGB1 protein binds to influenza virus nucleoprotein and promotes viral replication. J Virol 2012; 86:9122-33. [PMID: 22696656 DOI: 10.1128/jvi.00789-12] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Influenza virus has evolved replication strategies that hijack host cell pathways. To uncover interactions between viral macromolecules and host proteins, we applied a phage display strategy. A library of human cDNA expression products displayed on filamentous phages was submitted to affinity selection for influenza viral ribonucleoproteins (vRNPs). High-mobility-group box (HMGB) proteins were found to bind to the nucleoprotein (NP) component of vRNPs. HMGB1 and HMGB2 bind directly to the purified NP in the absence of viral RNA, and the HMG box A domain is sufficient to bind the NP. We show that HMGB1 associates with the viral NP in the nuclei of infected cells, promotes viral growth, and enhances the activity of the viral polymerase. The presence of a functional HMGB1 DNA-binding site is required to enhance influenza virus replication. Glycyrrhizin, which reduces HMGB1 binding to DNA, inhibits influenza virus polymerase activity. Our data show that the HMGB1 protein can play a significant role in intranuclear replication of influenza viruses, thus extending previous findings on the bornavirus and on a number of DNA viruses.
Collapse
|
37
|
HMGB1 protein binds to influenza virus nucleoprotein and promotes viral replication. J Virol 2012. [PMID: 22696656 DOI: 10.1128/jv1.00789.12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Influenza virus has evolved replication strategies that hijack host cell pathways. To uncover interactions between viral macromolecules and host proteins, we applied a phage display strategy. A library of human cDNA expression products displayed on filamentous phages was submitted to affinity selection for influenza viral ribonucleoproteins (vRNPs). High-mobility-group box (HMGB) proteins were found to bind to the nucleoprotein (NP) component of vRNPs. HMGB1 and HMGB2 bind directly to the purified NP in the absence of viral RNA, and the HMG box A domain is sufficient to bind the NP. We show that HMGB1 associates with the viral NP in the nuclei of infected cells, promotes viral growth, and enhances the activity of the viral polymerase. The presence of a functional HMGB1 DNA-binding site is required to enhance influenza virus replication. Glycyrrhizin, which reduces HMGB1 binding to DNA, inhibits influenza virus polymerase activity. Our data show that the HMGB1 protein can play a significant role in intranuclear replication of influenza viruses, thus extending previous findings on the bornavirus and on a number of DNA viruses.
Collapse
|
38
|
Boettler T, Cheng Y, Ehrhardt K, von Herrath M. TGF-β blockade does not improve control of an established persistent viral infection. Viral Immunol 2012; 25:232-8. [PMID: 22620718 DOI: 10.1089/vim.2011.0079] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Acute resolving viral infections are often associated with a strong and multi-specific T-cell response, whereas in persistent viral infections T-cell responses are often impaired. It has been suggested that the resuscitation of the antiviral T-cell response could be a powerful tool to target persisting viruses. Several immunoregulatory pathways, such as IL-10 and TGF-β, have been shown to be involved in the induction of T-cell exhaustion and viral persistence. In this study, we sought to investigate whether TGF-β signaling is also relevant in the maintenance of T-cell exhaustion after viral persistence has been established, and whether blockade of TGF-β signaling could improve control of viral replication in a mouse model of persistent virus infection. Using the LCMV clone 13 model, we analyzed the frequency, function, and phenotype of virus-specific CD4 and CD8 T cells following therapeutic TGF-β signaling blockade. We show that in vivo blockade of the TGF-β receptor failed to substantially enhance the antiviral T-cell response, and was insufficient to mediate a therapeutically-relevant reduction of viral titers in different tissues. Thus, although TGF-β signaling has the ability to hamper antiviral immunity, its pharmacological blockade may not be sufficient to tackle persistent viruses.
Collapse
Affiliation(s)
- Tobias Boettler
- La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | | | | | | |
Collapse
|
39
|
Abstract
Several arenaviruses, chiefly Lassa virus (LASV), cause hemorrhagic fever (HF) disease in humans and pose a significant public health concern in regions where they are endemic. On the other hand, evidence indicates that the globally distributed prototypic arenavirus lymphocytic choriomeningitis virus (LCMV) is a neglected human pathogen. The phosphatidylinositol 3-kinase (PI3K)/Akt pathway participates in many cellular processes, including cell survival and differentiation, and also has been shown to play important roles in different steps of the life cycles of a variety of viruses. Here we report that the inhibition of the PI3K/Akt pathway inhibited budding and to a lesser extent RNA synthesis, but not cell entry, of LCMV. Accordingly, BEZ-235, a PI3K inhibitor currently in cancer clinical trials, inhibited LCMV multiplication in cultured cells. These findings, together with those previously reported for Junin virus (JUNV), indicate that targeting the PI3K/Akt pathway could represent a novel antiviral strategy to combat human-pathogenic arenaviruses.
Collapse
|
40
|
The C-terminal region of lymphocytic choriomeningitis virus nucleoprotein contains distinct and segregable functional domains involved in NP-Z interaction and counteraction of the type I interferon response. J Virol 2011; 85:13038-48. [PMID: 21976642 DOI: 10.1128/jvi.05834-11] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Several arenaviruses cause hemorrhagic fever (HF) disease in humans that is associated with high morbidity and significant mortality. Arenavirus nucleoprotein (NP), the most abundant viral protein in infected cells and virions, encapsidates the viral genome RNA, and this NP-RNA complex, together with the viral L polymerase, forms the viral ribonucleoprotein (vRNP) that directs viral RNA replication and gene transcription. Formation of infectious arenavirus progeny requires packaging of vRNPs into budding particles, a process in which arenavirus matrix-like protein (Z) plays a central role. In the present study, we have characterized the NP-Z interaction for the prototypic arenavirus lymphocytic choriomeningitis virus (LCMV). The LCMV NP domain that interacted with Z overlapped with a previously documented C-terminal domain that counteracts the host type I interferon (IFN) response. However, we found that single amino acid mutations that affect the anti-IFN function of LCMV NP did not disrupt the NP-Z interaction, suggesting that within the C-terminal region of NP different amino acid residues critically contribute to these two distinct and segregable NP functions. A similar NP-Z interaction was confirmed for the HF arenavirus Lassa virus (LASV). Notably, LCMV NP interacted similarly with both LCMV Z and LASV Z, while LASV NP interacted only with LASV Z. Our results also suggest the presence of a conserved protein domain within NP but with specific amino acid residues playing key roles in determining the specificity of NP-Z interaction that may influence the viability of reassortant arenaviruses. In addition, this NP-Z interaction represents a potential target for the development of antiviral drugs to combat human-pathogenic arenaviruses.
Collapse
|
41
|
Conserved residues in Lassa fever virus Z protein modulate viral infectivity at the level of the ribonucleoprotein. J Virol 2011; 85:3172-8. [PMID: 21228230 DOI: 10.1128/jvi.02081-10] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Arenaviruses are negative-strand RNA viruses that cause human diseases such as lymphocytic choriomeningitis, Bolivian hemorrhagic fever, and Lassa hemorrhagic fever. No licensed vaccines exist, and current treatment is limited to ribavirin. The prototypic arenavirus, lymphocytic choriomeningitis virus (LCMV), is a model for dissecting virus-host interactions in persistent and acute disease. The RING finger protein Z has been identified as the driving force of arenaviral budding and acts as the viral matrix protein. While residues in Z required for viral budding have been described, residues that govern the Z matrix function(s) have yet to be fully elucidated. Because this matrix function is integral to viral assembly, we reasoned that this would be reflected in sequence conservation. Using sequence alignment, we identified several conserved residues in Z outside the RING and late domains. Nine residues were each mutated to alanine in Lassa fever virus Z. All of the mutations affected the expression of an LCMV minigenome and the infectivity of virus-like particles, but to greatly varying degrees. Interestingly, no mutations appeared to affect Z-mediated budding or association with viral GP. Our findings provide direct experimental evidence supporting a role for Z in the modulation of the activity of the viral ribonucleoprotein (RNP) complex and its packaging into mature infectious viral particles.
Collapse
|
42
|
Use of single-cycle infectious lymphocytic choriomeningitis virus to study hemorrhagic fever arenaviruses. J Virol 2010; 85:1684-95. [PMID: 21123370 DOI: 10.1128/jvi.02229-10] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Several arenaviruses, chiefly Lassa virus (LASV) and Junin virus in West Africa and Argentina, respectively, cause hemorrhagic fever (HF) disease in humans that is associated with high morbidity and significant mortality. The investigation of antiviral strategies to combat HF arenaviruses is hampered by the requirement of biosafety level 4 (BSL-4) facilities to work with these viruses. These biosafety hurdles could be overcome by the use of recombinant single-cycle infectious arenaviruses. To explore this concept, we have developed a recombinant lymphocytic choriomeningitis virus (LCMV) (rLCMVΔGP/GFP) where we replaced the viral glycoprotein (GP) with the green fluorescent protein (GFP). We generated high titers of GP-pseudotyped rLCMVΔGP/GFP via genetic trans complementation using stable cell lines that constitutively express LCMV or LASV GPs. Replication of these GP-pseudotyped rLCMVΔGP/GFP viruses was restricted to GP-expressing cell lines. This system allowed us to rapidly and reliably characterize and quantify the neutralization activities of serum antibodies against LCMV and LASV within a BSL-2 facility. The sensitivity of the GFP-based microneutralization assay we developed was similar to that obtained with a conventionally used focus reduction neutralization (FRNT) assay. Using GP-pseudotyped rLCMVΔGP/GFP, we have also obtained evidence supporting the feasibility of this approach to identify and evaluate candidate antiviral drugs against HF arenaviruses without the need of BSL-4 laboratories.
Collapse
|
43
|
T-705 (favipiravir) inhibition of arenavirus replication in cell culture. Antimicrob Agents Chemother 2010; 55:782-7. [PMID: 21115797 DOI: 10.1128/aac.01219-10] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
A number of New World arenaviruses (Junín [JUNV], Machupo [MACV], and Guanarito [GTOV] viruses) can cause human disease ranging from mild febrile illness to a severe and often fatal hemorrhagic fever syndrome. These highly pathogenic viruses and the Old World Lassa fever virus pose a significant threat to public health and national security. The only licensed antiviral agent with activity against these viruses, ribavirin, has had mixed success in treating severe arenaviral disease and is associated with significant toxicities. A novel pyrazine derivative currently in clinical trials for the treatment of influenza virus infections, T-705 (favipiravir), has demonstrated broad-spectrum activity against a number of RNA viruses, including arenaviruses. T-705 has also been shown to be effective against Pichinde arenavirus infection in a hamster model. Here, we demonstrate the robust antiviral activity of T-705 against authentic highly pathogenic arenaviruses in cell culture. We show that T-705 disrupts an early or intermediate stage in viral replication, distinct from absorption or release, and that its antiviral activity in cell culture is reversed by the addition of purine bases and nucleosides, but not with pyrimidines. Specific inhibition of viral replication/transcription by T-705 was demonstrated using a lymphocytic choriomeningitis arenavirus replicon system. Our findings indicate that T-705 acts to inhibit arenavirus replication/transcription and may directly target the viral RNA-dependent RNA polymerase.
Collapse
|
44
|
Viral replicative capacity is the primary determinant of lymphocytic choriomeningitis virus persistence and immunosuppression. Proc Natl Acad Sci U S A 2010; 107:21641-6. [PMID: 21098292 DOI: 10.1073/pnas.1011998107] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The Clone 13 (Cl13) strain of lymphocytic choriomeningitis virus is widely studied as a model of chronic systemic viral infection. Here, we used reverse genetic techniques to identify the molecular basis of Cl13 persistence and immunosuppression, the characteristics differentiating it from the closely related Armstrong strain. We found that a single-point mutation in the Cl13 polymerase was necessary and partially sufficient for viral persistence and immunosuppression. A glycoprotein mutation known to enhance dendritic cell targeting accentuated both characteristics but when introduced alone, failed to alter the phenotype of the Armstrong strain. The decisive polymerase mutation increased intracellular viral RNA load in plasmacytoid dendritic cells, which we identified as a main initial target cell type in vivo, and increased viremia in the early phase of infection. These findings establish the enhanced replicative capacity as the primary determinant of the Cl13 phenotype. Viral persistence and immunosuppression can, thus, represent a direct consequence of excessive viral replication overwhelming the host's antiviral defense.
Collapse
|
45
|
Antiviral activity of a small-molecule inhibitor of arenavirus glycoprotein processing by the cellular site 1 protease. J Virol 2010; 85:795-803. [PMID: 21068251 DOI: 10.1128/jvi.02019-10] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Arenaviruses merit interest as clinically important human pathogens and include several causative agents, chiefly Lassa virus (LASV), of hemorrhagic fever disease in humans. There are no licensed LASV vaccines, and current antiarenavirus therapy is limited to the use of ribavirin, which is only partially effective and is associated with significant side effects. The arenavirus glycoprotein (GP) precursor GPC is processed by the cellular site 1 protease (S1P) to generate the peripheral virion attachment protein GP1 and the fusion-active transmembrane protein GP2, which is critical for production of infectious progeny and virus propagation. Therefore, S1P-mediated processing of arenavirus GPC is a promising target for therapeutic intervention. To this end, we have evaluated the antiarenaviral activity of PF-429242, a recently described small-molecule inhibitor of S1P. PF-429242 efficiently prevented the processing of GPC from the prototypic arenavirus lymphocytic choriomeningitis virus (LCMV) and LASV, which correlated with the compound's potent antiviral activity against LCMV and LASV in cultured cells. In contrast, a recombinant LCMV expressing a GPC whose processing into GP1 and GP2 was mediated by furin, instead of S1P, was highly resistant to PF-429242 treatment. PF-429242 did not affect virus RNA replication or budding but had a modest effect on virus cell entry, indicating that the antiarenaviral activity of PF-429242 was mostly related to its ability to inhibit S1P-mediated processing of arenavirus GPC. Our findings support the feasibility of using small-molecule inhibitors of S1P-mediated processing of arenavirus GPC as a novel antiviral strategy.
Collapse
|
46
|
Glycosylation modulates arenavirus glycoprotein expression and function. Virology 2010; 409:223-33. [PMID: 21056893 DOI: 10.1016/j.virol.2010.10.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Revised: 06/17/2010] [Accepted: 10/06/2010] [Indexed: 11/20/2022]
Abstract
The glycoprotein of lymphocytic choriomeningitis virus (LCMV) contains nine potential N-linked glycosylation sites. We investigated the function of these N-glycosylations by using alanine-scanning mutagenesis. All the available sites were occupied on GP1 and two of three on GP2. N-linked glycan mutations at positions 87 and 97 on GP1 resulted in reduction of expression and absence of cleavage and were necessary for downstream functions, as confirmed by the loss of GP-mediated fusion activity with T87A and S97A mutants. In contrast, T234A and E379N/A381T mutants impaired GP-mediated cell fusion without altered expression or processing. Infectivity via virus-like particles required glycans and a cleaved glycoprotein. Glycosylation at the first site within GP2, not normally utilized by LCMV, exhibited increased VLP infectivity. We also confirmed the role of the N-linked glycan at position 173 in the masking of the neutralizing epitope GP-1D. Taken together, our results indicated a strong relationship between fusion and infectivity.
Collapse
|
47
|
Borrow P, Martínez-Sobrido L, de la Torre JC. Inhibition of the type I interferon antiviral response during arenavirus infection. Viruses 2010; 2:2443-80. [PMID: 21994626 PMCID: PMC3185579 DOI: 10.3390/v2112443] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 10/22/2010] [Accepted: 10/22/2010] [Indexed: 12/20/2022] Open
Abstract
Arenaviruses merit interest both as tractable experimental model systems to study acute and persistent viral infections, and as clinically-important human pathogens. Several arenaviruses cause hemorrhagic fever (HF) disease in humans. In addition, evidence indicates that the globally-distributed prototypic arenavirus lymphocytic choriomeningitis virus (LCMV) is a human pathogen of clinical significance in congenital infections, and also poses a great danger to immunosuppressed individuals. Arenavirus persistence and pathogenesis are facilitated by their ability to overcome the host innate immune response. Mammalian hosts have developed both membrane toll-like receptors (TLR) and cytoplasmic pattern recognition receptors (PRRs) that recognize specific pathogen-associated molecular patterns (PAMPs), resulting in activation of the transcription factors IRF3 or IRF7, or both, which together with NF-κB and ATF-2/c-JUN induce production of type I interferon (IFN-I). IFN-I plays a key role in host anti-microbial defense by mediating direct antiviral effects via up-regulation of IFN-I stimulated genes (ISGs), activating dendritic cells (DCs) and natural killer (NK) cells, and promoting the induction of adaptive responses. Accordingly, viruses have developed a plethora of strategies to disrupt the IFN-I mediated antiviral defenses of the host, and the viral gene products responsible for these disruptions are often major virulence determinants. IRF3- and IRF7-dependent induction of host innate immune responses is frequently targeted by viruses. Thus, the arenavirus nucleoprotein (NP) was shown to inhibit the IFN-I response by interfering with the activation of IRF3. This NP anti-IFN activity, together with alterations in the number and function of DCs observed in mice chronically infected with LCMV, likely play an important role in LCMV persistence in its murine host. In this review we will discuss current knowledge about the cellular and molecular mechanisms by which arenaviruses can subvert the host innate immune response and their implications for understanding HF arenaviral disease as well as arenavirus persistence in their natural hosts.
Collapse
Affiliation(s)
- Persephone Borrow
- Nuffield Department of Clinical Medicine, The Jenner Institute, University of Oxford, Compton, Newbury, Berkshire RG20 7NN, UK; E-Mail:
| | - Luis Martínez-Sobrido
- Department of Microbiology and Immunology, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Juan Carlos de la Torre
- Department of Immunology and Microbial Science, IMM-6, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
48
|
Viral protein determinants of Lassa virus entry and release from polarized epithelial cells. J Virol 2010; 84:3178-88. [PMID: 20071570 DOI: 10.1128/jvi.02240-09] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The epithelium plays a key role in the spread of Lassa virus. Transmission from rodents to humans occurs mainly via inhalation or ingestion of droplets, dust, or food contaminated with rodent urine. Here, we investigated Lassa virus infection in cultured epithelial cells and subsequent release of progeny viruses. We show that Lassa virus enters polarized Madin-Darby canine kidney (MDCK) cells mainly via the basolateral route, consistent with the basolateral localization of the cellular Lassa virus receptor alpha-dystroglycan. In contrast, progeny virus was efficiently released from the apical cell surface. Further, we determined the roles of the glycoprotein, matrix protein, and nucleoprotein in directed release of nascent virus. To do this, a virus-like-particle assay was developed in polarized MDCK cells based on the finding that, when expressed individually, both the glycoprotein GP and matrix protein Z form virus-like particles. We show that GP determines the apical release of Lassa virus from epithelial cells, presumably by recruiting the matrix protein Z to the site of virus assembly, which is in turn essential for nucleocapsid incorporation into virions.
Collapse
|
49
|
de la Torre JC. Molecular and cell biology of the prototypic arenavirus LCMV: implications for understanding and combating hemorrhagic fever arenaviruses. Ann N Y Acad Sci 2009; 1171 Suppl 1:E57-64. [PMID: 19751403 DOI: 10.1111/j.1749-6632.2009.05048.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Arenaviruses merit interest as experimental model systems to study virus-host interactions and as clinically important human pathogens. Several arenaviruses, chiefly Lassa virus (LASV), cause hemorrhagic fever (HF) in humans. In addition, evidence indicates that the worldwide-distributed prototypic arenavirus lymphocytic choriomeningitis virus (LCMV) is a neglected human pathogen. Moreover, arenaviruses pose a biodefense threat. No licensed arenavirus vaccines are available, and current therapy is limited to the use of ribavirin, which is only partially effective and associated with significant side effects. The development of arenavirus reverse genetics systems has made it possible to manipulate the arenavirus genome, which is contributing to significant progress in understanding arenavirus molecular and cell biology, as well as arenavirus-host interactions underlying arenavirus-induced HF disease in humans. This, in turn, should facilitate the development of novel both vaccines and antiviral drugs to combat the dual threats of naturally occurring and intentionally introduced arenavirus infections.
Collapse
Affiliation(s)
- Juan C de la Torre
- Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California 92037, USA.
| |
Collapse
|
50
|
Identification of amino acid residues critical for the anti-interferon activity of the nucleoprotein of the prototypic arenavirus lymphocytic choriomeningitis virus. J Virol 2009; 83:11330-40. [PMID: 19710144 DOI: 10.1128/jvi.00763-09] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lymphocytic choriomeningitis virus (LCVM) nucleoprotein (NP) counteracts the host type I interferon (IFN) response by inhibiting activation of the IFN regulatory factor 3 (IRF3). In this study, we have mapped the regions and specific amino acid residues within NP involved in its anti-IFN activity. We identified a region spanning residues 382 to 386 as playing a critical role in the IFN-counteracting activity of NP. Alanine substitutions at several positions within this region resulted in NP mutants that lacked the IFN-counteracting activity but retained their functions in virus RNA synthesis and assembly of infectious particles. We used reverse genetics to rescue a recombinant LCMV strain carrying mutation D382A in its NP [rLCMV/NP*(D382A)]. Compared to wild-type (WT) LCMV, rLCMV/NP*(D382A) exhibited a higher level of attenuation in IFN-competent than IFN-deficient cells. In addition, A549 cells infected with rLCMV/NP*(D382A), but not with WT LCMV, produced IFN and failed to rescue replication of the IFN-sensitive Newcastle disease virus.
Collapse
|