1
|
Shema Mugisha C, Dinh T, Kumar A, Tenneti K, Eschbach JE, Davis K, Gifford R, Kvaratskhelia M, Kutluay SB. Emergence of Compensatory Mutations Reveals the Importance of Electrostatic Interactions between HIV-1 Integrase and Genomic RNA. mBio 2022; 13:e0043122. [PMID: 35975921 PMCID: PMC9601147 DOI: 10.1128/mbio.00431-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/27/2022] [Indexed: 01/11/2023] Open
Abstract
HIV-1 integrase (IN) has a noncatalytic function in virion maturation through its binding to the viral RNA genome (gRNA). Class II IN substitutions inhibit IN-gRNA binding and result in the formation of virions with aberrant morphologies marked by mislocalization of the gRNA between the capsid lattice and the lipid envelope. These viruses are noninfectious due to a block at an early reverse transcription stage in target cells. HIV-1 IN utilizes basic residues within its C-terminal domain (CTD) to bind to the gRNA; however, the molecular nature of how these residues mediate gRNA binding and whether other regions of IN are involved remain unknown. To address this, we have isolated compensatory substitutions in the background of a class II IN mutant virus bearing R269A/K273A substitutions within the IN-CTD. We found that the nearby D256N and D270N compensatory substitutions restored the ability of IN to bind gRNA and led to the formation of mature infectious virions. Reinstating the local positive charge of the IN-CTD through individual D256R, D256K, D278R, and D279R substitutions was sufficient to specifically restore IN-gRNA binding and reverse transcription for the IN R269A/K273A as well as the IN R262A/R263A class II mutants. Structural modeling suggested that compensatory substitutions in the D256 residue created an additional interaction interface for gRNA binding, whereas other substitutions acted locally within the unstructured C-terminal tail of IN. Taken together, our findings highlight the essential role of CTD in gRNA binding and reveal the importance of pliable electrostatic interactions between the IN-CTD and the gRNA. IMPORTANCE In addition to its catalytic function, HIV-1 integrase (IN) binds to the viral RNA genome (gRNA) through positively charged residues (i.e., R262, R263, R269, K273) within its C-terminal domain (CTD) and regulates proper virion maturation. Mutation of these residues results in the formation of morphologically aberrant viruses blocked at an early reverse transcription stage in cells. Here we show that compensatory substitutions in nearby negatively charged aspartic acid residues (i.e., D256N, D270N) restore the ability of IN to bind gRNA for these mutant viruses and result in the formation of accurately matured infectious virions. Similarly, individual charge reversal substitutions at D256 as well as other nearby positions (i.e., D278, D279) are all sufficient to enable the respective IN mutants to bind gRNA, and subsequently restore reverse transcription and virion infectivity. Taken together, our findings reveal the importance of highly pliable electrostatic interactions in IN-gRNA binding.
Collapse
Affiliation(s)
- Christian Shema Mugisha
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Tung Dinh
- Division of Infectious Diseases, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Abhishek Kumar
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Kasyap Tenneti
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Jenna E. Eschbach
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Keanu Davis
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Robert Gifford
- MRC-University of Glasgow Centre for Virus Research, Bearsden, Glasgow, United Kingdom
| | - Mamuka Kvaratskhelia
- Division of Infectious Diseases, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Sebla B. Kutluay
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, USA
| |
Collapse
|
2
|
Capsid Lattice Destabilization Leads to Premature Loss of the Viral Genome and Integrase Enzyme during HIV-1 Infection. J Virol 2020; 95:JVI.00984-20. [PMID: 33115869 DOI: 10.1128/jvi.00984-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 10/24/2020] [Indexed: 01/28/2023] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) capsid (CA) protein forms a conical lattice around the viral ribonucleoprotein complex (vRNP) consisting of a dimeric viral genome and associated proteins, together constituting the viral core. Upon entry into target cells, the viral core undergoes a process termed uncoating, during which CA molecules are shed from the lattice. Although the timing and degree of uncoating are important for reverse transcription and integration, the molecular basis of this phenomenon remains unclear. Using complementary approaches, we assessed the impact of core destabilization on the intrinsic stability of the CA lattice in vitro and fates of viral core components in infected cells. We found that substitutions in CA can impact the intrinsic stability of the CA lattice in vitro in the absence of vRNPs, which mirrored findings from an assessment of CA stability in virions. Altering CA stability tended to increase the propensity to form morphologically aberrant particles, in which the vRNPs were mislocalized between the CA lattice and the viral lipid envelope. Importantly, destabilization of the CA lattice led to premature dissociation of CA from vRNPs in target cells, which was accompanied by proteasomal-independent losses of the viral genome and integrase enzyme. Overall, our studies show that the CA lattice protects the vRNP from untimely degradation in target cells and provide the mechanistic basis of how CA stability influences reverse transcription.IMPORTANCE The human immunodeficiency virus type 1 (HIV-1) capsid (CA) protein forms a conical lattice around the viral RNA genome and the associated viral enzymes and proteins, together constituting the viral core. Upon infection of a new cell, viral cores are released into the cytoplasm where they undergo a process termed "uncoating," i.e., shedding of CA molecules from the conical lattice. Although proper and timely uncoating has been shown to be important for reverse transcription, the molecular mechanisms that link these two events remain poorly understood. In this study, we show that destabilization of the CA lattice leads to premature dissociation of CA from viral cores, which exposes the viral genome and the integrase enzyme for degradation in target cells. Thus, our studies demonstrate that the CA lattice protects the viral ribonucleoprotein complexes from untimely degradation in target cells and provide the first causal link between how CA stability affects reverse transcription.
Collapse
|
3
|
Elliott JL, Eschbach JE, Koneru PC, Li W, Puray-Chavez M, Townsend D, Lawson DQ, Engelman AN, Kvaratskhelia M, Kutluay SB. Integrase-RNA interactions underscore the critical role of integrase in HIV-1 virion morphogenesis. eLife 2020; 9:54311. [PMID: 32960169 PMCID: PMC7671690 DOI: 10.7554/elife.54311] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 09/22/2020] [Indexed: 01/29/2023] Open
Abstract
A large number of human immunodeficiency virus 1 (HIV-1) integrase (IN) alterations, referred to as class II substitutions, exhibit pleiotropic effects during virus replication. However, the underlying mechanism for the class II phenotype is not known. Here we demonstrate that all tested class II IN substitutions compromised IN-RNA binding in virions by one of the three distinct mechanisms: (i) markedly reducing IN levels thus precluding the formation of IN complexes with viral RNA; (ii) adversely affecting functional IN multimerization and consequently impairing IN binding to viral RNA; and (iii) directly compromising IN-RNA interactions without substantially affecting IN levels or functional IN multimerization. Inhibition of IN-RNA interactions resulted in the mislocalization of viral ribonucleoprotein complexes outside the capsid lattice, which led to premature degradation of the viral genome and IN in target cells. Collectively, our studies uncover causal mechanisms for the class II phenotype and highlight an essential role of IN-RNA interactions for accurate virion maturation.
Collapse
Affiliation(s)
- Jennifer L Elliott
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, United States
| | - Jenna E Eschbach
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, United States
| | - Pratibha C Koneru
- Division of Infectious Diseases, University of Colorado School of Medicine, Aurora, United States
| | - Wen Li
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, United States.,Department of Medicine, Harvard Medical School, Boston, United States
| | - Maritza Puray-Chavez
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, United States
| | - Dana Townsend
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, United States
| | - Dana Q Lawson
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, United States
| | - Alan N Engelman
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, United States.,Department of Medicine, Harvard Medical School, Boston, United States
| | - Mamuka Kvaratskhelia
- Division of Infectious Diseases, University of Colorado School of Medicine, Aurora, United States
| | - Sebla B Kutluay
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, United States
| |
Collapse
|
4
|
Elliott JL, Kutluay SB. Going beyond Integration: The Emerging Role of HIV-1 Integrase in Virion Morphogenesis. Viruses 2020; 12:E1005. [PMID: 32916894 PMCID: PMC7551943 DOI: 10.3390/v12091005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/03/2020] [Accepted: 09/07/2020] [Indexed: 12/22/2022] Open
Abstract
The HIV-1 integrase enzyme (IN) plays a critical role in the viral life cycle by integrating the reverse-transcribed viral DNA into the host chromosome. This function of IN has been well studied, and the knowledge gained has informed the design of small molecule inhibitors that now form key components of antiretroviral therapy regimens. Recent discoveries unveiled that IN has an under-studied yet equally vital second function in human immunodeficiency virus type 1 (HIV-1) replication. This involves IN binding to the viral RNA genome in virions, which is necessary for proper virion maturation and morphogenesis. Inhibition of IN binding to the viral RNA genome results in mislocalization of the viral genome inside the virus particle, and its premature exposure and degradation in target cells. The roles of IN in integration and virion morphogenesis share a number of common elements, including interaction with viral nucleic acids and assembly of higher-order IN multimers. Herein we describe these two functions of IN within the context of the HIV-1 life cycle, how IN binding to the viral genome is coordinated by the major structural protein, Gag, and discuss the value of targeting the second role of IN in virion morphogenesis.
Collapse
Affiliation(s)
| | - Sebla B. Kutluay
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110, USA;
| |
Collapse
|
5
|
Kleinpeter AB, Freed EO. HIV-1 Maturation: Lessons Learned from Inhibitors. Viruses 2020; 12:E940. [PMID: 32858867 PMCID: PMC7552077 DOI: 10.3390/v12090940] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/19/2020] [Accepted: 08/20/2020] [Indexed: 02/06/2023] Open
Abstract
Since the emergence of HIV and AIDS in the early 1980s, the development of safe and effective therapies has accompanied a massive increase in our understanding of the fundamental processes that drive HIV biology. As basic HIV research has informed the development of novel therapies, HIV inhibitors have been used as probes for investigating basic mechanisms of HIV-1 replication, transmission, and pathogenesis. This positive feedback cycle has led to the development of highly effective combination antiretroviral therapy (cART), which has helped stall the progression to AIDS, prolong lives, and reduce transmission of the virus. However, to combat the growing rates of virologic failure and toxicity associated with long-term therapy, it is important to diversify our repertoire of HIV-1 treatments by identifying compounds that block additional steps not targeted by current drugs. Most of the available therapeutics disrupt early events in the replication cycle, with the exception of the protease (PR) inhibitors, which act at the virus maturation step. HIV-1 maturation consists of a series of biochemical changes that facilitate the conversion of an immature, noninfectious particle to a mature infectious virion. These changes include proteolytic processing of the Gag polyprotein by the viral protease (PR), structural rearrangement of the capsid (CA) protein, and assembly of individual CA monomers into hexamers and pentamers that ultimately form the capsid. Here, we review the development and therapeutic potential of maturation inhibitors (MIs), an experimental class of anti-HIV-1 compounds with mechanisms of action distinct from those of the PR inhibitors. We emphasize the key insights into HIV-1 biology and structure that the study of MIs has provided. We will focus on three distinct groups of inhibitors that block HIV-1 maturation: (1) compounds that block the processing of the CA-spacer peptide 1 (SP1) cleavage intermediate, the original class of compounds to which the term MI was applied; (2) CA-binding inhibitors that disrupt capsid condensation; and (3) allosteric integrase inhibitors (ALLINIs) that block the packaging of the viral RNA genome into the condensing capsid during maturation. Although these three classes of compounds have distinct structures and mechanisms of action, they share the ability to block the formation of the condensed conical capsid, thereby blocking particle infectivity.
Collapse
Affiliation(s)
| | - Eric O. Freed
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA;
| |
Collapse
|
6
|
Gonelli CA, Khoury G, Center RJ, Purcell DFJ. HIV-1-based Virus-like Particles that Morphologically Resemble Mature, Infectious HIV-1 Virions. Viruses 2019; 11:v11060507. [PMID: 31159488 PMCID: PMC6630479 DOI: 10.3390/v11060507] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/23/2019] [Accepted: 05/29/2019] [Indexed: 01/04/2023] Open
Abstract
A prophylactic vaccine eliciting both broad neutralizing antibodies (bNAbs) to the HIV-1 envelope glycoprotein (Env) and strong T cell responses would be optimal for preventing HIV-1 transmissions. Replication incompetent HIV-1 virus-like particles (VLPs) offer the opportunity to present authentic-structured, virion-associated Env to elicit bNAbs, and also stimulate T cell responses. Here, we optimize our DNA vaccine plasmids as VLP expression vectors for efficient Env incorporation and budding. The original vector that was used in human trials inefficiently produced VLPs, but maximized safety by inactivating RNA genome packaging, enzyme functions that are required for integration into the host genome, and deleting accessory proteins Vif, Vpr, and Nef. These original DNA vaccine vectors generated VLPs with incomplete protease-mediated cleavage of Gag and were irregularly sized. Mutations to restore function within the defective genes revealed that several of the reverse transcriptase (RT) deletions mediated this immature phenotype. Here, we made efficient budding, protease-processed, and mature-form VLPs that resembled infectious virions by introducing alternative mutations that completely removed the RT domain, but preserved most other safety mutations. These VLPs, either expressed from DNA vectors in vivo or purified after expression in vitro, are potentially useful immunogens that can be used to elicit antibody responses that target Env on fully infectious HIV-1 virions.
Collapse
Affiliation(s)
- Christopher A Gonelli
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria 3000, Australia.
| | - Georges Khoury
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria 3000, Australia.
| | - Rob J Center
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria 3000, Australia.
- Viral Entry and Vaccines Laboratory, Disease Elimination, Burnet Institute, Melbourne, Victoria 3004, Australia.
| | - Damian F J Purcell
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria 3000, Australia.
| |
Collapse
|
7
|
Bieniasz PD, Kutluay SB. CLIP-related methodologies and their application to retrovirology. Retrovirology 2018; 15:35. [PMID: 29716635 PMCID: PMC5930818 DOI: 10.1186/s12977-018-0417-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 04/17/2018] [Indexed: 01/28/2023] Open
Abstract
Virtually every step of HIV-1 replication and numerous cellular antiviral defense mechanisms are regulated by the binding of a viral or cellular RNA-binding protein (RBP) to distinct sequence or structural elements on HIV-1 RNAs. Until recently, these protein-RNA interactions were studied largely by in vitro binding assays complemented with genetics approaches. However, these methods are highly limited in the identification of the relevant targets of RBPs in physiologically relevant settings. Development of crosslinking-immunoprecipitation sequencing (CLIP) methodology has revolutionized the analysis of protein-nucleic acid complexes. CLIP combines immunoprecipitation of covalently crosslinked protein-RNA complexes with high-throughput sequencing, providing a global account of RNA sequences bound by a RBP of interest in cells (or virions) at near-nucleotide resolution. Numerous variants of the CLIP protocol have recently been developed, some with major improvements over the original. Herein, we briefly review these methodologies and give examples of how CLIP has been successfully applied to retrovirology research.
Collapse
Affiliation(s)
- Paul D. Bieniasz
- Howard Hughes Medical Institute and Laboratory of Retrovirology, The Rockefeller University, New York, NY 10065 USA
| | - Sebla B. Kutluay
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110 USA
| |
Collapse
|
8
|
Allosteric HIV-1 Integrase Inhibitors Lead to Premature Degradation of the Viral RNA Genome and Integrase in Target Cells. J Virol 2017; 91:JVI.00821-17. [PMID: 28615207 DOI: 10.1128/jvi.00821-17] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 05/23/2017] [Indexed: 12/23/2022] Open
Abstract
Recent evidence indicates that inhibition of HIV-1 integrase (IN) binding to the viral RNA genome by allosteric integrase inhibitors (ALLINIs) or through mutations within IN yields aberrant particles in which the viral ribonucleoprotein complexes (vRNPs) are eccentrically localized outside the capsid lattice. These particles are noninfectious and are blocked at an early reverse transcription stage in target cells. However, the basis of this reverse transcription defect is unknown. Here, we show that the viral RNA genome and IN from ALLINI-treated virions are prematurely degraded in target cells, whereas reverse transcriptase remains active and stably associated with the capsid lattice. The aberrantly shaped cores in ALLINI-treated particles can efficiently saturate and be degraded by a restricting TRIM5 protein, indicating that they are still composed of capsid proteins arranged in a hexagonal lattice. Notably, the fates of viral core components follow a similar pattern in cells infected with eccentric particles generated by mutations within IN that inhibit its binding to the viral RNA genome. We propose that IN-RNA interactions allow packaging of both the viral RNA genome and IN within the protective capsid lattice to ensure subsequent reverse transcription and productive infection in target cells. Conversely, disruption of these interactions by ALLINIs or mutations in IN leads to premature degradation of both the viral RNA genome and IN, as well as the spatial separation of reverse transcriptase from the viral genome during early steps of infection.IMPORTANCE Recent evidence indicates that HIV-1 integrase (IN) plays a key role during particle maturation by binding to the viral RNA genome. Inhibition of IN-RNA interactions yields aberrant particles with the viral ribonucleoprotein complexes (vRNPs) eccentrically localized outside the conical capsid lattice. Although these particles contain all of the components necessary for reverse transcription, they are blocked at an early reverse transcription stage in target cells. To explain the basis of this defect, we tracked the fates of multiple viral components in infected cells. Here, we show that the viral RNA genome and IN in eccentric particles are prematurely degraded, whereas reverse transcriptase remains active and stably associated within the capsid lattice. We propose that IN-RNA interactions ensure the packaging of both vRNPs and IN within the protective capsid cores to facilitate subsequent reverse transcription and productive infection in target cells.
Collapse
|
9
|
Potempa M, Lee SK, Wolfenden R, Swanstrom R. The triple threat of HIV-1 protease inhibitors. Curr Top Microbiol Immunol 2015; 389:203-41. [PMID: 25778681 DOI: 10.1007/82_2015_438] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Newly released human immunodeficiency virus type 1 (HIV-1) particles obligatorily undergo a maturation process to become infectious. The HIV-1 protease (PR) initiates this step, catalyzing the cleavage of the Gag and Gag-Pro-Pol structural polyproteins. Proper organization of the mature virus core requires that cleavage of these polyprotein substrates proceeds in a highly regulated, specific series of events. The vital role the HIV-1 PR plays in the viral life cycle has made it an extremely attractive target for inhibition and has accordingly fostered the development of a number of highly potent substrate-analog inhibitors. Though the PR inhibitors (PIs) inhibit only the HIV-1 PR, their effects manifest at multiple different stages in the life cycle due to the critical importance of the PR in preparing the virus for these subsequent events. Effectively, PIs masquerade as entry inhibitors, reverse transcription inhibitors, and potentially even inhibitors of post-reverse transcription steps. In this chapter, we review the triple threat of PIs: the intermolecular cooperativity in the form of a cooperative dose-response for inhibition in which the apparent potency increases with increasing inhibition; the pleiotropic effects of HIV-1 PR inhibition on entry, reverse transcription, and post-reverse transcription steps; and their potency as transition state analogs that have the potential for further improvement that could lead to an inability of the virus to evolve resistance in the context of single drug therapy.
Collapse
Affiliation(s)
- Marc Potempa
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | | | | | | |
Collapse
|
10
|
van Bel N, van der Velden Y, Bonnard D, Le Rouzic E, Das AT, Benarous R, Berkhout B. The allosteric HIV-1 integrase inhibitor BI-D affects virion maturation but does not influence packaging of a functional RNA genome. PLoS One 2014; 9:e103552. [PMID: 25072705 PMCID: PMC4114784 DOI: 10.1371/journal.pone.0103552] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 05/20/2014] [Indexed: 12/30/2022] Open
Abstract
The viral integrase (IN) is an essential protein for HIV-1 replication. IN inserts the viral dsDNA into the host chromosome, thereby aided by the cellular co-factor LEDGF/p75. Recently a new class of integrase inhibitors was described: allosteric IN inhibitors (ALLINIs). Although designed to interfere with the IN-LEDGF/p75 interaction to block HIV DNA integration during the early phase of HIV-1 replication, the major impact was surprisingly found on the process of virus maturation during the late phase, causing a reverse transcription defect upon infection of target cells. Virus particles produced in the presence of an ALLINI are misformed with the ribonucleoprotein located outside the virus core. Virus assembly and maturation are highly orchestrated and regulated processes in which several viral proteins and RNA molecules closely interact. It is therefore of interest to study whether ALLINIs have unpredicted pleiotropic effects on these RNA-related processes. We confirm that the ALLINI BI-D inhibits virus replication and that the produced virus is non-infectious. Furthermore, we show that the wild-type level of HIV-1 genomic RNA is packaged in virions and these genomes are in a dimeric state. The tRNAlys3 primer for reverse transcription was properly placed on this genomic RNA and could be extended ex vivo. In addition, the packaged reverse transcriptase enzyme was fully active when extracted from virions. As the RNA and enzyme components for reverse transcription are properly present in virions produced in the presence of BI-D, the inhibition of reverse transcription is likely to reflect the mislocalization of the components in the aberrant virus particle.
Collapse
Affiliation(s)
- Nikki van Bel
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Yme van der Velden
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | | | | | - Atze T. Das
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | | | - Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- * E-mail:
| |
Collapse
|
11
|
Abstract
Integrase (IN) is required for lentivirus replication and is a proven drug target for the prevention of AIDS in HIV-1-infected patients. While clinical strand transfer inhibitors disarm the IN active site, allosteric inhibition of enzyme activity through the disruption of IN-IN protein interfaces holds great therapeutic potential. A promising class of allosteric IN inhibitors (ALLINIs), 2-(quinolin-3-yl) acetic acid derivatives, engage the IN catalytic core domain dimerisation interface at the binding site for the host integration co-factor LEDGF/p75. ALLINIs promote IN multimerisation and, independent of LEDGF/p75 protein, block the formation of the active IN-DNA complex, as well as inhibit the IN-LEDGF/p75 interaction in vitro. Yet, rather unexpectedly, the full inhibitory effect of these compounds is exerted during the late phase of HIV-1 replication. ALLINIs impair particle core maturation as well as reverse transcription and integration during the subsequent round of virus infection. Recapitulating the pleiotropic phenotypes observed with numerous IN mutant viruses, ALLINIs provide insight into underlying aspects of IN biology that extend beyond its catalytic activity. Therefore, in addition to the potential to expand our repertoire of HIV-1 antiretrovirals, ALLINIs afford important structural probes to dissect the multifaceted nature of the IN protein throughout the course of HIV-1 replication.
Collapse
|
12
|
Roberts JA, Thorley BR, Bruggink LD, Marshall JA. Electron microscope detection of an endogenous infection of retrovirus-like particles in L20B cells. Microscopy (Oxf) 2013; 62:485-6. [PMID: 23325931 DOI: 10.1093/jmicro/dfs133] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
L20B cells are a cell line commonly used for the isolation of poliovirus. The current study indicates that L20B cells are chronically infected with a retrovirus-like particle that replicates in the cytoplasm and buds through the plasma membrane. The findings indicate that care is needed in the use of L20B cells for certain virus isolation studies and emphasize the importance of electron microscope studies as an adjunct to the development of diagnostic virology protocols.
Collapse
Affiliation(s)
- Jason A Roberts
- Victorian Infectious Diseases Reference Laboratory, 10 Wreckyn Street, North Melbourne, Victoria 3051, Australia
| | | | | | | |
Collapse
|
13
|
Jalalirad M, Laughrea M. Formation of immature and mature genomic RNA dimers in wild-type and protease-inactive HIV-1: differential roles of the Gag polyprotein, nucleocapsid proteins NCp15, NCp9, NCp7, and the dimerization initiation site. Virology 2010; 407:225-36. [PMID: 20828778 DOI: 10.1016/j.virol.2010.08.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 08/06/2010] [Accepted: 08/13/2010] [Indexed: 12/22/2022]
Abstract
Formation of immature genomic RNA (gRNA) dimers is exquisitely nucleocapsid (NC)-dependent in protease-inactive (PR-in) HIV-1. This establishes that Pr55gag/Pr160gag-pol has NC-dependent chaperone activity within intact HIV-1. Mutations in the proximal zinc finger and the linker of the NC sequence of Pr55gag/Pr160gag-pol abolish gRNA dimerization in PR-in HIV-1. In wild type, where the NC of Pr55gag is processed into progressively smaller proteins termed NCp15 (NCp7-p1-p6), NCp9 (NCp7-p1) and NCp7, formation of immature dimers is much swifter than in PR-in HIV-1. NCp7 and NCp15 direct this rapid accumulation. NCp9 is sluggish in this process, but it stimulates the transition from immature to mature gRNA dimer as well as NCp7 and much better than NCp15. The amino-terminus, proximal zinc finger, linker, and distal zinc finger of NCp7 contribute to this maturation event in intact HIV-1. The DIS is a dimerization initiation site for all immature gRNA dimers, irrespective of their mechanism of formation.
Collapse
Affiliation(s)
- Mohammad Jalalirad
- McGill AIDS Center, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal QC, Canada H3T 1E2
| | | |
Collapse
|
14
|
Schlub TE, Smyth RP, Grimm AJ, Mak J, Davenport MP. Accurately measuring recombination between closely related HIV-1 genomes. PLoS Comput Biol 2010; 6:e1000766. [PMID: 20442872 PMCID: PMC2861704 DOI: 10.1371/journal.pcbi.1000766] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Accepted: 03/26/2010] [Indexed: 11/19/2022] Open
Abstract
Retroviral recombination is thought to play an important role in the generation of immune escape and multiple drug resistance by shuffling pre-existing mutations in the viral population. Current estimates of HIV-1 recombination rates are derived from measurements within reporter gene sequences or genetically divergent HIV sequences. These measurements do not mimic the recombination occurring in vivo, between closely related genomes. Additionally, the methods used to measure recombination make a variety of assumptions about the underlying process, and often fail to account adequately for issues such as co-infection of cells or the possibility of multiple template switches between recombination sites. We have developed a HIV-1 marker system by making a small number of codon modifications in gag which allow recombination to be measured over various lengths between closely related viral genomes. We have developed statistical tools to measure recombination rates that can compensate for the possibility of multiple template switches. Our results show that when multiple template switches are ignored the error is substantial, particularly when recombination rates are high, or the genomic distance is large. We demonstrate that this system is applicable to other studies to accurately measure the recombination rate and show that recombination does not occur randomly within the HIV genome.
Collapse
Affiliation(s)
- Timothy E. Schlub
- Centre for Vascular Research, University of New South Wales, Sydney, New South Wales, Australia
| | - Redmond P. Smyth
- Centre for Virology, The Burnet Institute, Melbourne, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, Australia
| | - Andrew J. Grimm
- Centre for Vascular Research, University of New South Wales, Sydney, New South Wales, Australia
| | - Johnson Mak
- Centre for Virology, The Burnet Institute, Melbourne, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, Australia
- Department of Microbiology, Monash University, Melbourne, Victoria, Australia
- * E-mail: (JM); (MPD)
| | - Miles P. Davenport
- Centre for Vascular Research, University of New South Wales, Sydney, New South Wales, Australia
- * E-mail: (JM); (MPD)
| |
Collapse
|
15
|
Moore MD, Hu WS. HIV-1 RNA dimerization: It takes two to tango. AIDS Rev 2009; 11:91-102. [PMID: 19529749 PMCID: PMC3056336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Each viral particle of HIV-1, the infectious agent of AIDS, contains two copies of the full-length viral genomic RNA. Encapsidating two copies of genomic RNA is one of the characteristics of the retrovirus family. The two RNA molecules are both positive-sense and often identical; furthermore, each RNA encodes the full complement of genetic information required for viral replication. The two strands of RNA are intricately entwined within the core of the mature infectious virus as a ribonuclear complex with the viral proteins, including nucleocapsid. Multiple steps in the biogenesis of the genomic full-length RNA are involved in achieving this location and dimeric state. The viral sequences and proteins involved in the process of RNA dimerization, both for the initial interstrand contact and subsequent steps that result in the condensed, stable conformation of the genomic RNA, are outlined in this review. In addition, the impact of the dimeric state of HIV-1 viral RNA is discussed with respect to its importance in efficient viral replication and, consequently, the potential development of antiviral strategies designed to disrupt the formation of dimeric RNA.
Collapse
Affiliation(s)
- Michael D Moore
- HIV Drug Resistance Program, National Cancer Institute, Frederick, MD 21702, USA
| | | |
Collapse
|
16
|
Keating CP, Hill MK, Hawkes DJ, Smyth RP, Isel C, Le SY, Palmenberg AC, Marshall JA, Marquet R, Nabel GJ, Mak J. The A-rich RNA sequences of HIV-1 pol are important for the synthesis of viral cDNA. Nucleic Acids Res 2008; 37:945-56. [PMID: 19106143 PMCID: PMC2647285 DOI: 10.1093/nar/gkn1015] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The bias of A-rich codons in HIV-1 pol is thought to be a record of hypermutations in viral genomes that lack biological functions. Bioinformatic analysis predicted that A-rich sequences are generally associated with minimal local RNA structures. Using codon modifications to reduce the amount of A-rich sequences within HIV-1 genomes, we have reduced the flexibility of RNA sequences in pol to analyze the functional significance of these A-rich 'structurally poor' RNA elements in HIV-1 pol. Our data showed that codon modification of HIV-1 sequences led to a suppression of virus infectivity by 5-100-fold, and this defect does not correlate with, viral entry, viral protein expression levels, viral protein profiles or virion packaging of genomic RNA. Codon modification of HIV-1 pol correlated with an enhanced dimer stability of the viral RNA genome, which was associated with a reduction of viral cDNA synthesis both during HIV-1 infection and in a cell free reverse transcription assay. Our data provided direct evidence that the HIV-1 A-rich pol sequence is not merely an evolutionary artifact of enzyme-induced hypermutations, and that HIV-1 has adapted to rely on A-rich RNA sequences to support the synthesis of viral cDNA during reverse transcription, highlighting the utility of using 'structurally poor' RNA domains in regulating biological process.
Collapse
Affiliation(s)
- Cameron P Keating
- Centre for Virology, Macfarlane Burnet Institute for Medical Research and Public Health, Melbourne, Victoria, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Moore MD, Fu W, Soheilian F, Nagashima K, Ptak RG, Pathak VK, Hu WS. Suboptimal inhibition of protease activity in human immunodeficiency virus type 1: effects on virion morphogenesis and RNA maturation. Virology 2008; 379:152-60. [PMID: 18657842 DOI: 10.1016/j.virol.2008.06.030] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2008] [Revised: 06/20/2008] [Accepted: 06/25/2008] [Indexed: 12/30/2022]
Abstract
Protease activity within nascently released human immunodeficiency virus type 1 (HIV-1) particles is responsible for the cleavage of the viral polyproteins Gag and Gag-Pol into their constituent parts, which results in the subsequent condensation of the mature conical core surrounding the viral genomic RNA. Concomitant with viral maturation is a conformational change in the packaged viral RNA from a loosely associated dimer into a more thermodynamically stable form. In this study we used suboptimal concentrations of two protease inhibitors, lopinavir and atazanavir, to study their effects on Gag polyprotein processing and on the properties of the RNA in treated virions. Analysis of the treated virions demonstrated that even with high levels of inhibition of viral infectivity (IC(90)), most of the Gag and Gag-Pol polyproteins were processed, although slight but significant increases in processing intermediates of Gag were detected. Drug treatments also caused a significant increase in the proportion of viruses displaying either immature or aberrant mature morphologies. The aberrant mature particles were characterized by an electron-dense region at the viral periphery and an electron-lucent core structure in the viral center, possibly indicating exclusion of the genomic RNA from these viral cores. Intriguingly, drug treatments caused only a slight decrease in overall thermodynamic stability of the viral RNA dimer, suggesting that the dimeric viral RNA was able to mature in the absence of correct core condensation.
Collapse
Affiliation(s)
- Michael D Moore
- HIV Drug Resistance Program, National Cancer Institute at Frederick, P.O. Box B, Building 535, Room 336, Frederick, Maryland 21702, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Kafaie J, Song R, Abrahamyan L, Mouland AJ, Laughrea M. Mapping of nucleocapsid residues important for HIV-1 genomic RNA dimerization and packaging. Virology 2008; 375:592-610. [PMID: 18343475 DOI: 10.1016/j.virol.2008.02.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2007] [Revised: 01/14/2008] [Accepted: 02/01/2008] [Indexed: 11/26/2022]
Abstract
Retroviral genomic RNA (gRNA) dimerization appears essential for viral infectivity, and the nucleocapsid protein (NC) of human immunodeficiency virus type 1 (HIV-1) facilitates HIV-1 gRNA dimerization. To identify the relevant and dispensable positions of NC, 34 of its 55 residues were mutated, individually or in small groups, in a panel of 40 HIV-1 mutants prepared by site-directed mutagenesis. It was found that the amino-terminus, the proximal zinc finger, the linker, and the distal zinc finger of NC each contributed roughly equally to efficient HIV-1 gRNA dimerization. The N-terminal and linker segments appeared to play predominantly electrostatic and steric roles, respectively. Mutating the hydrophobic patch of either zinc finger, or substituting alanines for their glycine doublet, was as disabling as deleting the corresponding finger. Replacing the CysX(2)CysX(4)HisX(4)Cys motif of either finger by CysX(2)CysX(4)CysX(4)Cys or CysX(2)CysX(4)HisX(4)His, interchanging the zinc fingers or, replacing one zinc finger by a copy of the other one, had generally intermediate effects; among these mutations, the His23-->Cys substitution in the N-terminal zinc finger had the mildest effect. The charge of NC could be increased or decreased by up to 18%, that of the linker could be reduced by 75% or increased by 50%, and one or two electric charges could be added or subtracted from either zinc finger, without affecting gRNA dimerization. Shortening, lengthening, or making hydrophobic the linker was as disabling as deleting the N-terminal or the C-terminal zinc finger, but a neutral and polar linker was innocuous. The present work multiplies by 4 and by 33 the number of retroviral and lentiviral NC mutations known to inhibit gRNA dimerization, respectively. It shows the first evidence that gRNA dimerization can be inhibited by: 1) mutations in the N-terminus or the linker of retroviral NC; 2) mutations in the proximal zinc finger of lentiviral NC; 3) mutations in the hydrophobic patch or the conserved glycines of the proximal or the distal retroviral zinc finger. Some NC mutations impaired gRNA dimerization more than mutations inactivating the viral protease, indicating that gRNA dimerization may be stimulated by the NC component of the Gag polyprotein. Most, but not all, mutations inhibited gRNA packaging; some had a strong effect on virus assembly or stability.
Collapse
Affiliation(s)
- Jafar Kafaie
- McGill AIDS Center, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada
| | | | | | | | | |
Collapse
|
19
|
Sinck L, Richer D, Howard J, Alexander M, Purcell DFJ, Marquet R, Paillart JC. In vitro dimerization of human immunodeficiency virus type 1 (HIV-1) spliced RNAs. RNA (NEW YORK, N.Y.) 2007; 13:2141-2150. [PMID: 17925344 PMCID: PMC2080610 DOI: 10.1261/rna.678307] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2007] [Accepted: 08/28/2007] [Indexed: 05/25/2023]
Abstract
The human immunodeficiency virus type 1 (HIV-1) packages its genomic RNA as a dimer of homologous RNA molecules that has to be selected among a multitude of cellular and viral RNAs. Interestingly, spliced viral mRNAs are packaged into viral particles with a relatively low efficiency despite the fact that they contain most of the extended packaging signal found in the 5' untranslated region of the genomic RNA, including the dimerization initiation site (DIS). As a consequence, HIV-1 spliced viral RNAs can theoretically homodimerize and heterodimerize with the genomic RNA, and thus they should directly compete with genomic RNA for packaging. To shed light on this issue, we investigated for the first time the in vitro dimerization properties of spliced HIV-1 RNAs. We found that singly spliced (env, vpr) and multispliced (tat, rev, and nef) RNA fragments are able to dimerize in vitro, and to efficiently form heterodimers with genomic RNA. Chemical probing experiments and inhibition of RNA dimerization by an antisense oligonucleotide directed against the DIS indicated that the DIS is structurally functional in spliced HIV-1 RNA, and that RNA dimerization occurs through a loop-loop interaction. In addition, by combining in vitro transcription and dimerization assays, we show that heterodimers can be efficiently formed only when the two RNA fragments are synthesized simultaneously, in the same environment. Together, our results support a model in which RNA dimerization would occur during transcription in the nucleus and could thus play a major role in splicing, transport, and localization of HIV-1 RNA.
Collapse
Affiliation(s)
- Lucile Sinck
- Architecture et Réactivité de l'ARN, Université Louis Pasteur, CNRS, IBMC, 67084, Strasbourg cedex, France
| | | | | | | | | | | | | |
Collapse
|
20
|
Mirambeau G, Lyonnais S, Coulaud D, Hameau L, Lafosse S, Jeusset J, Borde I, Reboud-Ravaux M, Restle T, Gorelick RJ, Le Cam E. HIV-1 protease and reverse transcriptase control the architecture of their nucleocapsid partner. PLoS One 2007; 2:e669. [PMID: 17712401 PMCID: PMC1940317 DOI: 10.1371/journal.pone.0000669] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2007] [Accepted: 06/18/2007] [Indexed: 11/18/2022] Open
Abstract
The HIV-1 nucleocapsid is formed during protease (PR)-directed viral maturation, and is transformed into pre-integration complexes following reverse transcription in the cytoplasm of the infected cell. Here, we report a detailed transmission electron microscopy analysis of the impact of HIV-1 PR and reverse transcriptase (RT) on nucleocapsid plasticity, using in vitro reconstitutions. After binding to nucleic acids, NCp15, a proteolytic intermediate of nucleocapsid protein (NC), was processed at its C-terminus by PR, yielding premature NC (NCp9) followed by mature NC (NCp7), through the consecutive removal of p6 and p1. This allowed NC co-aggregation with its single-stranded nucleic-acid substrate. Examination of these co-aggregates for the ability of RT to catalyse reverse transcription showed an effective synthesis of double-stranded DNA that, remarkably, escaped from the aggregates more efficiently with NCp7 than with NCp9. These data offer a compelling explanation for results from previous virological studies that focused on i) Gag processing leading to nucleocapsid condensation, and ii) the disappearance of NCp7 from the HIV-1 pre-integration complexes. We propose that HIV-1 PR and RT, by controlling the nucleocapsid architecture during the steps of condensation and dismantling, engage in a successive nucleoprotein-remodelling process that spatiotemporally coordinates the pre-integration steps of HIV-1. Finally we suggest that nucleoprotein remodelling mechanisms are common features developed by mobile genetic elements to ensure successful replication.
Collapse
Affiliation(s)
- Gilles Mirambeau
- Laboratoire de Microscopie Moléculaire, UMR 8126: Interactions moléculaires et cancer, CNRS, Université Paris Sud-Institut de Cancérologie Gustave Roussy, Villejuif, France
- Division de Biochimie, UFR des Sciences de la Vie, Université Pierre et Marie Curie-Paris, Paris, France
- * To whom correspondence should be addressed. E-mail: (GM); (ELC)
| | - Sébastien Lyonnais
- Laboratoire de Microscopie Moléculaire, UMR 8126: Interactions moléculaires et cancer, CNRS, Université Paris Sud-Institut de Cancérologie Gustave Roussy, Villejuif, France
| | - Dominique Coulaud
- Laboratoire de Microscopie Moléculaire, UMR 8126: Interactions moléculaires et cancer, CNRS, Université Paris Sud-Institut de Cancérologie Gustave Roussy, Villejuif, France
| | - Laurence Hameau
- Laboratoire de Microscopie Moléculaire, UMR 8126: Interactions moléculaires et cancer, CNRS, Université Paris Sud-Institut de Cancérologie Gustave Roussy, Villejuif, France
| | - Sophie Lafosse
- Laboratoire de Microscopie Moléculaire, UMR 8126: Interactions moléculaires et cancer, CNRS, Université Paris Sud-Institut de Cancérologie Gustave Roussy, Villejuif, France
| | - Josette Jeusset
- Laboratoire de Microscopie Moléculaire, UMR 8126: Interactions moléculaires et cancer, CNRS, Université Paris Sud-Institut de Cancérologie Gustave Roussy, Villejuif, France
| | - Isabelle Borde
- Laboratoire Biologie et Multimedia, Université Pierre et Marie Curie-Paris, Paris, France
| | - Michèle Reboud-Ravaux
- Laboratoire d'Enzymologie Moléculaire et Fonctionnelle, CNRS FRE 2852, Institut Jacques Monod, CNRS-Université Pierre et Marie Curie-Paris, Paris, France
| | - Tobias Restle
- Institut für Molekulare Medizin, Universitätsklinikum Schleswig-Holstein and ZMSB, Lübeck, Germany
| | - Robert J. Gorelick
- AIDS Vaccine Program, Basic Research Program, Science Applications International Corporation at Frederick, The National Cancer Institute at Frederick, Frederick, Maryland, United States of America
| | - Eric Le Cam
- Laboratoire de Microscopie Moléculaire, UMR 8126: Interactions moléculaires et cancer, CNRS, Université Paris Sud-Institut de Cancérologie Gustave Roussy, Villejuif, France
- * To whom correspondence should be addressed. E-mail: (GM); (ELC)
| |
Collapse
|
21
|
Lau TS, Li Y, Kameoka M, Ng TB, Wan DCC. Suppression of HIV replication using RNA interference against HIV-1 integrase. FEBS Lett 2007; 581:3253-9. [PMID: 17592732 DOI: 10.1016/j.febslet.2007.06.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2007] [Revised: 05/04/2007] [Accepted: 06/01/2007] [Indexed: 11/22/2022]
Abstract
RNA interference (RNAi) has become one of the most powerful and popular approach on gene silencing in clinical research study especially in virology due to the gene-specific suppression property of small interfering RNA (siRNA). In this report, we demonstrate that expression of vector-mediated small hairpin RNA (shRNA) against human immunodeficiency virus type 1 (HIV-1) integrase (IN), one of the three important enzymes in HIV infection by controlling the integration of viral RNA to host DNA, could suppress the protein synthesis of EGFP-tagged IN in HeLa cell model efficiently. Furthermore, we show that IN shRNA can successfully reduce the HIV particles production in 293T cells at the level similar to the positive control of HIV-1 tat shRNA. These results provide the therapeutic possibility of HIV replication using RNAi against HIV-1 integrase.
Collapse
Affiliation(s)
- Tat San Lau
- Department of Biochemistry, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | | | | | | | | |
Collapse
|
22
|
Song R, Kafaie J, Yang L, Laughrea M. HIV-1 viral RNA is selected in the form of monomers that dimerize in a three-step protease-dependent process; the DIS of stem-loop 1 initiates viral RNA dimerization. J Mol Biol 2007; 371:1084-98. [PMID: 17599354 DOI: 10.1016/j.jmb.2007.06.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2007] [Revised: 05/28/2007] [Accepted: 06/04/2007] [Indexed: 11/29/2022]
Abstract
We have characterized the viral RNA conformation in wild-type, protease-inactive (PR-) and SL1-defective (DeltaDIS) human immunodeficiency virus type 1 (HIV-1), as a function of the age of the viruses, from newly released to grown-up (>or=24 h old). We report evidence for packaging HIV-1 genomic RNA (gRNA) in the form of monomers in PR- virions, viral RNA rearrangement (not maturation) within PR- HIV-1, protease-dependent formation of thermolabile dimeric viral RNAs, a new form of immature gRNA dimer at about 5 h post virion release, and slow-acting dimerization signals in SL1-defective viruses. The rates of gRNA dimer formation were >or=3-fold and >or=10-fold slower in DeltaDIS and PR- viruses than in wild-type, respectively. Thus, the DIS, i.e. the palindrome in the apical loop of SL1, is a dimerization initiation signal, but its role can be masked by one or several slow-acting dimerization site(s) when grown-up SL1-inactive virions are investigated. Grown-up PR- virions are not flawless models for immature virions because gRNA dimerization increases with the age of PR- virions, indicating that the PR- mutation does not "freeze" gRNA conformation in a nascent primordial state. Our study is the first on gRNA conformation in newly released mutant or primate retroviruses. It shows for the first time that the packaged retroviral gRNA matures in more than one step, and that formation of immature dimeric viral RNA requires viral protein maturation. The monomeric viral RNAs isolated from budding HIV-1, as modeled by newly released PR- virions, may be seen as dimers that are much more fragile than thermolabile dimers.
Collapse
Affiliation(s)
- Rujun Song
- McGill AIDS Center, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada H3T 1E2
| | | | | | | |
Collapse
|
23
|
Leeansyah E, Wines BD, Crowe SM, Jaworowski A. The mechanism underlying defective Fcgamma receptor-mediated phagocytosis by HIV-1-infected human monocyte-derived macrophages. THE JOURNAL OF IMMUNOLOGY 2007; 178:1096-104. [PMID: 17202373 DOI: 10.4049/jimmunol.178.2.1096] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Clearance of IgG-opsonized erythrocytes is impaired in HIV-1-infected patients, suggesting defective FcgammaR-mediated phagocytosis in vivo. We have previously shown defective FcgammaR-mediated phagocytosis in HIV-1-infected human monocyte-derived macrophages (MDM), establishing an in vitro model for defective tissue macrophages. Inhibition was associated with decreased protein expression of FcR gamma-chain, which transduces immune receptor signals via ITAM motifs. FcgammaRI and FcgammaRIIIa signal via gamma-chain, whereas FcgammaRIIa does not. In this study, we showed that HIV-1 infection inhibited FcgammaRI-, but not FcgammaRIIa-dependent Syk activation in MDM, showing that inhibition was specific for gamma-chain-dependent signaling. HIV-1 infection did not impair gamma-chain mRNA levels measured by real-time PCR, suggesting a posttranscriptional mechanism of gamma-chain depletion. HIV-1 infection did not affect gamma-chain degradation (n = 7, p = 0.94) measured in metabolic labeling/chase experiments, whereas gamma-chain biosynthesis was inhibited (n = 12, p = 0.0068). Using an enhanced GFP-expressing HIV-1 strain, we showed that FcgammaR-mediated phagocytosis inhibition is predominantly due to a bystander effect. Experiments in which MDM were infected in the presence of the antiretroviral drug 3TC suggest that active viral replication is required for inhibition of phagocytosis in MDM. These data suggest that HIV-1 infection may affect only gamma-chain-dependent FcgammaR functions, but that this is not restricted to HIV-1-infected cells.
Collapse
Affiliation(s)
- Edwin Leeansyah
- AIDS Pathogenesis and Clinical Research Program, The Macfarlane Burnet Institute for Medical Research and Public Health, 85 Commercial Road, Melbourne, Australia 3004
| | | | | | | |
Collapse
|
24
|
Affiliation(s)
- Andrew M L Lever
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| |
Collapse
|
25
|
Mirambeau G, Lyonnais S, Coulaud D, Hameau L, Lafosse S, Jeusset J, Justome A, Delain E, Gorelick RJ, Le Cam E. Transmission electron microscopy reveals an optimal HIV-1 nucleocapsid aggregation with single-stranded nucleic acids and the mature HIV-1 nucleocapsid protein. J Mol Biol 2006; 364:496-511. [PMID: 17020765 DOI: 10.1016/j.jmb.2006.08.065] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2006] [Accepted: 08/14/2006] [Indexed: 11/19/2022]
Abstract
HIV-1 nucleocapsid protein (NCp7) condenses the viral RNA within the mature capsid. In a capsid-free system, NCp7 promotes an efficient mechanism of aggregation with both RNA and DNA. Here, we show an analysis of these macromolecular complexes by dark-field imaging using transmission electron microscopy. Thousands of mature NCp7 proteins co-aggregate with hundreds of single-stranded circular DNA molecules (ssDNA) within minutes, as observed with poly(rA). These co-aggregates are highly stable but dynamic structures, as they dissociate under harsh conditions, and after addition of potent ssDNA or NCp7 competitive ligands. The N-terminal domain and zinc fingers of NCp7 are both required for efficient association. Addition of magnesium slightly increases the avidity of NCp7 for ssDNA, while it strongly inhibits co-aggregation with relaxed circular double-stranded DNA (dsDNA). This DNA selectivity is restricted to mature NCp7, compared to its precursors NCp15 and NCp9. Moreover, for NCp15, the linkage of NCp7 with the Gag C-terminal p6-peptide provokes a deficiency in ssDNA aggregation, but results in DNA spreading similar to prototypical SSB proteins. Finally, this co-aggregation is discussed in a dynamic architectural context with regard to the mature HIV-1 nucleocapsid. On the basis of the present data, we propose that condensation of encapsidated RNA requires the C-terminal processing of NCp. Subsequently, disassembly of the nucleocapsid should be favoured once dsDNA is produced by HIV-1 reverse transcriptase.
Collapse
Affiliation(s)
- Gilles Mirambeau
- Laboratoire de Microscopie Moléculaire et Cellulaire, CNRS UMR 8126, Institut Gustave Roussy, 94805 Villejuif, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Aguiar RS, Pereira HS, Costa LJ, Brindeiro RM, Tanuri A. Gag-Pol bearing a reverse transcriptase drug-resistant mutation influences viral genomic RNA incorporation into human immunodeficiency virus type 1 particles. J Gen Virol 2006; 87:2669-2677. [PMID: 16894207 DOI: 10.1099/vir.0.82046-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The unspliced human immunodeficiency virus type 1 (HIV-1) RNA is both the messenger for Gag and Gag-Pol and the viral genomic RNA (vRNA) that is packaged into the virion. Although Gag alone is sufficient for the incorporation of vRNA into virus particles, Gag-Pol molecules play an important role in vRNA dimerization and virion maturation. Here, a cis model for vRNA packaging was demonstrated, in which nascent Gag-Pol molecules were preferentially co-encapsulated with their cognate RNA used as the template. Genome-incorporation frequencies were evaluated for two distinct HIV-1 proviral clones differing in their ability to respond to nevirapine (NVP) treatment in one round of infection. It was shown that, under NVP selection, there was a twofold-higher incorporation of vRNAs and integration of provirus genome carrying NVP resistance when compared with the wild-type counterpart. Although cis incorporation has been already demonstrated for Gag, the novelty of these findings is that newly acquired resistant mutations in Gag-Pol will select their specific genomic RNA during virus replication, thus rapidly increasing the chance of the emergence of resistant viruses during the course of anti-retroviral treatment.
Collapse
Affiliation(s)
- Renato S Aguiar
- Laboratório de Virologia Molecular, Instituto de Biologia, Universidade Federal do Rio de Janeiro, CCS Bloco A2 sala 121, Cidade Universitária, Ilha do Fundão, 2194421944-970 Rio de Janeiro, Brazil
| | - Helena S Pereira
- Laboratório de Virologia Molecular, Instituto de Biologia, Universidade Federal do Rio de Janeiro, CCS Bloco A2 sala 121, Cidade Universitária, Ilha do Fundão, 2194421944-970 Rio de Janeiro, Brazil
| | - Luciana J Costa
- Laboratório de Virologia Molecular, Instituto de Biologia, Universidade Federal do Rio de Janeiro, CCS Bloco A2 sala 121, Cidade Universitária, Ilha do Fundão, 2194421944-970 Rio de Janeiro, Brazil
| | - Rodrigo M Brindeiro
- Laboratório de Virologia Molecular, Instituto de Biologia, Universidade Federal do Rio de Janeiro, CCS Bloco A2 sala 121, Cidade Universitária, Ilha do Fundão, 2194421944-970 Rio de Janeiro, Brazil
| | - Amilcar Tanuri
- Laboratório de Virologia Molecular, Instituto de Biologia, Universidade Federal do Rio de Janeiro, CCS Bloco A2 sala 121, Cidade Universitária, Ilha do Fundão, 2194421944-970 Rio de Janeiro, Brazil
| |
Collapse
|
27
|
Young KR, Ross TM. Elicitation of immunity to HIV type 1 Gag is determined by Gag structure. AIDS Res Hum Retroviruses 2006; 22:99-108. [PMID: 16438652 DOI: 10.1089/aid.2006.22.99] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The gag gene of the human immunodeficiency virus type 1 (HIV-1) encodes for viral proteins that self-assemble into viral particles. The primary Gag gene products (capsid, matrix, and nucleocapsid) elicit humoral and cellular immune responses during natural infection, and these proteins are included in many preclinical and clinical HIV/AIDS vaccines. However, the structure (particulate or soluble) of these proteins may influence the immunity elicited during vaccination. In this study, mice were inoculated with four different HIV-1 Gag vaccines to compare the elicitation of immune responses by the same Gag immunogen presented to the immune system in different forms. The immunity elicited by particles produced in vivo by DNA plasmid (pGag) was compared to these same proteins retained intracellularly (pGag(DMyr)). In addition, the elicitation of anti- Gag immunity by Gag(p55) virus-like particles (VLPs) or soluble, nonparticulate Gag(p55) proteins was compared. Enhanced cellular responses, but almost no anti-Gag antibodies, were elicited with intracellularly retained Gag proteins. In contrast, DNA vaccines expressing VLPs elicited both anti-Gag antibodies and cellular responses. Mice vaccinated with purified Gag(p55) VLPs elicited robust humoral and cellular immune responses, which were significantly higher than the immunity elicited by soluble, nonparticulate Gag(p55) protein. Overall, purified particles of Gag effectively elicited the broadest and highest titers of anti-Gag immunity. The structural form of Gag influences the elicited immune responses and should be considered in the design of HIV/AIDS vaccines.
Collapse
Affiliation(s)
- Kelly R Young
- Department of Medicine, Division of Infectious Diseases, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania, 15261, USA
| | | |
Collapse
|
28
|
Mulky A, Kappes JC. Analysis of human immunodeficiency virus type 1 reverse transcriptase subunit structure/function in the context of infectious virions and human target cells. Antimicrob Agents Chemother 2005; 49:3762-9. [PMID: 16127051 PMCID: PMC1195396 DOI: 10.1128/aac.49.9.3762-3769.2005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The reverse transcriptase (RT) of all retroviruses is required for synthesis of the viral DNA genome. The human immunodeficiency virus type 1 (HIV-1) RT exists as a heterodimer made up of 51-kDa and 66-kDa subunits. The crystal structure and in vitro biochemical analyses indicate that the p66 subunit of RT is primarily responsible for the enzyme's polymerase and RNase H activities. Since both the p51 and p66 subunits are generated from the same coding region, as part of the Pr160(Gag-Pol) precursor protein, there are inherent limitations for studying subunit-specific function with intact provirus in a virologically relevant context. Our lab has recently described a novel system for studying the RT heterodimer (p51/p66) wherein a LTR-vpr-p51-IRES-p66 expression cassette provided in trans to an RT-deleted HIV-1 genome allows precise molecular analysis of the RT heterodimer. In this report, we describe in detail the specific approaches, alternative strategies, and pitfalls that may affect the application of this novel assay for analyzing RT subunit structure/function in infectious virions and human target cells. The ability to study HIV-1 RT subunit structure/function in a physiologically relevant context will advance our understanding of both RT and the process of reverse transcription. The study of antiretroviral drugs in a subunit-specific virologic context should provide new insights into drug resistance and viral fitness. Finally, we anticipate that this approach will help elucidate determinants that mediate p51-p66 subunit interactions, which is essential for structure-based drug design targeting RT heterodimerization.
Collapse
Affiliation(s)
- Alok Mulky
- University of Alabama at Birmingham, Department of Microbiology, LHRB 613, 701 South 19th Street, Birmingham, AL 35294, USA
| | | |
Collapse
|
29
|
Dulude D, Berchiche YA, Gendron K, Brakier-Gingras L, Heveker N. Decreasing the frameshift efficiency translates into an equivalent reduction of the replication of the human immunodeficiency virus type 1. Virology 2005; 345:127-36. [PMID: 16256163 DOI: 10.1016/j.virol.2005.08.048] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2005] [Revised: 08/23/2005] [Accepted: 08/31/2005] [Indexed: 10/25/2022]
Abstract
The Gag-Pol polyprotein of the human immunodeficiency virus type 1 (HIV-1) is the precursor of the virus enzymatic activities and is produced via a programmed -1 translational frameshift. In this study, we altered the frameshift efficiency by introducing mutations within the slippery sequence and the frameshift stimulatory signal, the two elements that control the frameshift. These mutations decreased the frameshift efficiency to different degrees, ranging from approximately 0.3% to 70% of the wild-type efficiency. These values were mirrored by a reduced incorporation of Gag-Pol into virus-like particles, as assessed by a decrease in the reverse transcriptase activity associated to these particles. Analysis of Gag processing in infectious mutant virions revealed processing defects to various extents, with no clear correlation with frameshift decrease. Nevertheless, the observed frameshift reductions translated into equivalently reduced viral infectivity and replication kinetics. Our results show that even moderate variations in frameshift efficiency, as obtained with mutations in the frameshift stimulatory signal, reduce viral replication. Therapeutic targeting of this structure may therefore result in the attenuation of virus replication and in clinical benefit.
Collapse
Affiliation(s)
- Dominic Dulude
- Département de Biochimie, Université de Montréal, 2900 Boul. Edouard-Montpetit, Montréal, Québec, Canada H3T1J4
| | | | | | | | | |
Collapse
|
30
|
Bukrinskaya AG, Vorkunova GK, Burshteĭn ME, Gorodnicheva TV, Stevenson M. Molecular factors required for human immunodeficiency virus type I infectivity. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2005; 403:320-2. [PMID: 16358585 DOI: 10.1007/s10630-005-0124-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Affiliation(s)
- A G Bukrinskaya
- Ivanovsky Research Institute of Virology, Russian Academy of Medical Sciences, ul. Gamalei 16, Moscow, 123098 Russia
| | | | | | | | | |
Collapse
|
31
|
Buxton P, Tachedjian G, Mak J. Analysis of the contribution of reverse transcriptase and integrase proteins to retroviral RNA dimer conformation. J Virol 2005; 79:6338-48. [PMID: 15858017 PMCID: PMC1091692 DOI: 10.1128/jvi.79.10.6338-6348.2005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
All retroviruses contain two copies of genomic RNA that are linked noncovalently. The dimeric RNA of human immunodeficiency virus type 1 (HIV-1) undergoes rearrangement during virion maturation, whereby the dimeric RNA genome assumes a more stable conformation. Previously, we have shown that the packaging of the HIV-1 polymerase (Pol) proteins reverse transcriptase (RT) and integrase (IN) is essential for the generation of the mature RNA dimer conformation. Analysis of HIV-1 mutants that are defective in processing of Pol showed that these mutant virions contained altered dimeric RNA conformation, indicating that the mature RNA dimer conformation in HIV-1 requires the correct proteolytic processing of Pol. The HIV-1 Pol proteins are multimeric in their mature enzymatically active forms; RT forms a heterodimer, and IN appears to form a homotetramer. Using RT and IN multimerization defective mutants, we have found that dimeric RNA from these mutant virions has the same stability and conformation as wild-type RNA dimers, showing that the mature enzymatically active RT and IN proteins are dispensable for the generation of mature RNA dimer conformation. This also indicated that formation of the mature RNA dimer structure occurs prior to RT or IN maturation. We have also investigated the requirement of Pol for RNA dimerization in both Mason-Pfizer monkey virus (M-PMV) and Moloney murine leukemia virus (MoMuLV) and found that in contrast to HIV-1, Pol is dispensable for RNA dimer maturation in M-PMV and MoMuLV, demonstrating that the requirement of Pol in retroviral RNA dimer maturation is not conserved among all retroviruses.
Collapse
Affiliation(s)
- Penelope Buxton
- The Macfarlane Burnet Institute for Medical Research and Public Health, Cnr Punt & Commercial Rds, Melbourne, Victoria, Australia 3004.
| | | | | |
Collapse
|
32
|
Gendron K, Dulude D, Lemay G, Ferbeyre G, Brakier-Gingras L. The virion-associated Gag-Pol is decreased in chimeric Moloney murine leukemia viruses in which the readthrough region is replaced by the frameshift region of the human immunodeficiency virus type 1. Virology 2005; 334:342-52. [PMID: 15780884 DOI: 10.1016/j.virol.2005.01.044] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2004] [Revised: 01/21/2005] [Accepted: 01/31/2005] [Indexed: 01/15/2023]
Abstract
The human immunodeficiency virus type 1 (HIV-1) requires a programmed -1 translational frameshift event to synthesize the precursor of its enzymes, Gag-Pol, when ribosomes from the infected cells translate the full-length viral messenger RNA. Translation of the same RNA according to conventional translational rules produces Gag, the precursor of the structural proteins of the virus. The efficiency of the frameshift controls the ratio of Gag-Pol to Gag, which is critical for viral infectivity. The Moloney murine leukemia virus (MoMuLV) uses a different strategy, the programmed readthrough of a stop codon, to synthesize Gag-Pol. In this study, we investigated whether different forms of the HIV-1 frameshift region can functionally replace the readthrough signal in MoMuLV. Chimeric proviral DNAs were obtained by inserting into the MoMuLV genome the HIV-1 frameshift region encompassing the slippery sequence where the frameshift occurs, followed by the frameshift stimulatory signal. The inserted signal was either a simple stem-loop, previously considered as the stimulatory signal, or a longer bulged helix, now shown to be the complete stimulatory signal, or a mutated version of the complete signal with a three-nucleotide deletion. Although the three chimeric viruses can propagate essentially as the wild-type virus in NIH 3T3 cells, single-round infectivity assays revealed that the infectivity of the chimeric virions is about three to fivefold lower than that of the wild-type virions, depending upon the nature of the frameshift signal. It was also observed that the Gag-Pol to Gag ratio was decreased about two to threefold in chimeric virions. Comparison of the readthrough efficiency of MoMuLV to the HIV-1 frameshift efficiency, by monitoring the expression of a luciferase reporter in cultured cells, revealed that the frameshift efficiencies were only 30-60% of the readthrough efficiency. Altogether, these observations indicate that replacement of the readthrough region of MoMuLV with the frameshift region of HIV-1 results in virions that are replication competent, although less infectious than wild-type MoMuLV. This type of chimera could provide an interesting tool for in vivo studies of novel drugs targeted against the HIV-1 frameshift event.
Collapse
Affiliation(s)
- Karine Gendron
- Département de Biochimie, Université de Montréal, 2900, Boulevard Edouard-Montpetit, D-353, Montréal, Québec, Canada H3T 1J4
| | | | | | | | | |
Collapse
|
33
|
Marozsan AJ, Fraundorf E, Abraha A, Baird H, Moore D, Troyer R, Nankja I, Arts EJ. Relationships between infectious titer, capsid protein levels, and reverse transcriptase activities of diverse human immunodeficiency virus type 1 isolates. J Virol 2004; 78:11130-41. [PMID: 15452233 PMCID: PMC521859 DOI: 10.1128/jvi.78.20.11130-11141.2004] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Most studies on human immunodeficiency virus type 1 (HIV-1) replication kinetics or fitness must rely on a particular assay to initially standardize inocula from virus stocks. The most accurate measure of infectious HIV-1 titers involves a limiting dilution-infection assay and a calculation of the dose required for 50% infectivity of susceptible cells in tissue culture (TCID(50)). Surrogate assays are now commonly used to measure the amount of p24 capsid, the endogenous reverse transcriptase (RT) activity, or the amount of viral genomic RNA in virus particles. However, a direct comparison of these surrogate assays and actual infectious HIV-1 titers from TCID(50) assays has not been performed with even the most conserved laboratory strains, let alone the highly divergent primary HIV-1 isolates of different subtypes. This study indicates that endogenous RT activity, not p24 content or viral RNA load, is the best surrogate measure of infectious HIV-1 titer in both cell-free supernatants and viruses purified on sucrose cushions. Sequence variation between HIV-1 subtypes did not appear to affect the function or activity of the RT enzyme in this endogenous assay but did affect the detection of p24 capsid by both enzyme immunoassays and Western blots. Clear groupings of non-syncytium-inducing (NSI), CCR5-tropic (R5), and SI/CXCR4-tropic (X4) HIV-1 isolates were observed when we compared the slopes derived from correlations of RT activity with infectious titers. Finally, the replication efficiency or fitness of both the NSI/R5 and SI/X4 HIV-1 isolates was not linked to the titers of the virus stocks.
Collapse
Affiliation(s)
- Andre J Marozsan
- Division of Infectious Diseases, BRB 1029, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Mulky A, Sarafianos SG, Arnold E, Wu X, Kappes JC. Subunit-specific analysis of the human immunodeficiency virus type 1 reverse transcriptase in vivo. J Virol 2004; 78:7089-96. [PMID: 15194785 PMCID: PMC421671 DOI: 10.1128/jvi.78.13.7089-7096.2004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) is a heterodimer comprised of two structurally distinct subunits (p51 and p66). Since p51 and p66 are derived from the same coding region, subunit-specific structure-function studies of RT have been conducted exclusively by in vitro biochemical approaches. To study RT subunit function in the context of infectious virus, we constructed an LTR-vpr-p51-IRES-p66 expression cassette in which the HIV-1 vpr gene was fused in frame with p51, followed by an internal ribosome entry site (IRES) sequence and the p66 coding region. By coexpression with RT-deficient proviral DNA, we demonstrated that the p66 subunit is specifically and selectively packaged into virions as a Vpr-p51/p66 complex. Our analysis showed that cleavage by the viral protease liberates Vpr and generates functional heterodimeric RT (p51/p66) that supports HIV-1 reverse transcription and virus infection. By exploiting this novel trans-complementation approach, we demonstrated, for the first time with infectious virions, that the YMDD aspartates of p66 are both required and sufficient for RT polymerase function. Mutational analyses of the p51 YMDD aspartates indicated that they play an important structural role in p51 folding and subunit interactions that are required for the formation of an active RT heterodimer within infected cells. Understanding the role of the individual RT subunits in RNA- and DNA-dependent DNA synthesis is integral to our understanding of RT function. Our findings will lead to important new insights into the role of the p51 and p66 subunits in HIV-1 reverse transcription.
Collapse
Affiliation(s)
- Alok Mulky
- Department of Microbiology, University of Alabama at Birmingham, 35294, USA
| | | | | | | | | |
Collapse
|
35
|
Padow M, Lai L, Deivanayagam C, DeLucas LJ, Weiss RB, Dunn DM, Wu X, Kappes JC. Replication of chimeric human immunodeficiency virus type 1 (HIV-1) containing HIV-2 integrase (IN): naturally selected mutations in IN augment DNA synthesis. J Virol 2003; 77:11050-9. [PMID: 14512553 PMCID: PMC224969 DOI: 10.1128/jvi.77.20.11050-11059.2003] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) integrase (IN) protein augments the initiation of reverse transcription. Chimeric HIV-1 containing HIV-2 IN (SG3(IN2)) is severely impaired in virus infectivity and DNA synthesis. To analyze the nature of this defect, we infected T cells with the chimeric SG3(IN2) virus and by continuous passage in cell culture selected for virus with improved replication properties. Viruses from two different time points were chosen for further analysis, an early culture-adapted virus (CF-65) that exhibited an intermediate level of infectivity, and a later-passaged virus (CF-131) that was significantly more infectious. Sequence analysis of multiple clones derived from the CF-65 virus culture demonstrated a diversity of mutations in the reverse transcriptase (RT) and a common V204I IN mutation. Analysis of clones derived from the CF-131 virus indicated the selection of two additional IN mutations, Q96H and K127E, and a fixed V179I RT mutation. By cloning RT and/or IN sequences back into the original SG3(IN2) chimeric virus, we demonstrated that mutations in both RT and IN contributed to the improvement in viral fitness. The effect of the HIV-2IN(IN(2)) mutations on virus DNA synthesis was analyzed by packaging IN(2) mutants into HIV-1 as Vpr-IN(2) fusion proteins. This analysis revealed that the Q96H, K127E and V204I mutations increased the infectivity of the chimeric virus by augmenting the initiation of viral cDNA synthesis in infected cells. The Q96H and K127E mutations are present in adjacent helical structures on the surface of the IN protein and together account for most of the increase observed in DNA synthesis. Our findings provide evidence that the IN protein augments the initiation of reverse transcription through specific interactions with other viral components comprising the initiation complex. Moreover, they implicate specific regions on the surface of IN that may help to elucidate mechanisms by which the HIV-1 IN protein augments the initiation of HIV-1 reverse transcription in vivo.
Collapse
Affiliation(s)
- Marcus Padow
- Departments of Microbiology. Medicine. Center for Biophysical Sciences and Engineering, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Hill MK, Shehu-Xhilaga M, Campbell SM, Poumbourios P, Crowe SM, Mak J. The dimer initiation sequence stem-loop of human immunodeficiency virus type 1 is dispensable for viral replication in peripheral blood mononuclear cells. J Virol 2003; 77:8329-35. [PMID: 12857902 PMCID: PMC165254 DOI: 10.1128/jvi.77.15.8329-8335.2003] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2002] [Accepted: 05/14/2003] [Indexed: 11/20/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) contains two copies of genomic RNA that are noncovalently linked via a palindrome sequence within the dimer initiation site (DIS) stem-loop. In contrast to the current paradigm that the DIS stem or stem-loop is critical for HIV-1 infectivity, which arose from studies using T-cell lines, we demonstrate here that HIV-1 mutants with deletions in the DIS stem-loop are replication competent in peripheral blood mononuclear cells (PBMCs). The DIS mutants contained either the wild-type (5'GCGCGC3') or an arbitrary (5'ACGCGT3') palindrome sequence in place of the 39-nucleotide DIS stem-loop (NL(CGCGCG) and NL(ACGCGT)). These DIS mutants were replication defective in SupT1 cells, concurring with the current model in which DIS mutants are replication defective in T-cell lines. All of the HIV-1 DIS mutants were replication competent in PBMCs over a 40-day infection period and had retained their respective DIS mutations at 40 days postinfection. Although the stability of the virion RNA dimer was not affected by our DIS mutations, the RNA dimers exhibited a diffuse migration profile when compared to the wild type. No defect in protein processing of the Gag and GagProPol precursor proteins was found in the DIS mutants. Our data provide direct evidence that the DIS stem-loop is dispensable for viral replication in PBMCs and that the requirement of the DIS stem-loop in HIV-1 replication is cell type dependent.
Collapse
Affiliation(s)
- M K Hill
- AIDS Pathogenesis Research Unit, The Macfarlane Burnet Institute for Medical Research and Public Health, Melbourne, Australia
| | | | | | | | | | | |
Collapse
|