1
|
Lulla V, Sridhar A. Understanding neurotropic enteric viruses: routes of infection and mechanisms of attenuation. Cell Mol Life Sci 2024; 81:413. [PMID: 39365457 PMCID: PMC11452578 DOI: 10.1007/s00018-024-05450-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/03/2024] [Accepted: 09/12/2024] [Indexed: 10/05/2024]
Abstract
The intricate connection between the gut and the brain involves multiple routes. Several viral families begin their infection cycle in the intestinal tract. However, amongst the long list of viral intestinal pathogens, picornaviruses, and astroviruses stand out for their ability to transition from the intestinal epithelia to central or peripheral nervous system cells. In immunocompromised, neonates and young children, these viral infections can manifest as severe diseases, such as encephalitis, meningitis, and acute flaccid paralysis. What confers this remarkable plasticity and makes them efficient in infecting cells of the gut and the brain axes? Here, we review the current understanding of the virus infection along the gut-brain axis for some enteric viruses and discuss the molecular mechanisms of their attenuation.
Collapse
Affiliation(s)
- Valeria Lulla
- Division of Virology, Department of Pathology, Addenbrooke's Hospital, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, UK.
| | - Adithya Sridhar
- OrganoVIR Labs, Department of Pediatric Infectious Diseases, Amsterdam UMC, location Academic Medical Center, Amsterdam Institute for Reproduction and Development, University of Amsterdam, Meibergdreef 9, 1100 AZ, Amsterdam, The Netherlands
- OrganoVIR Labs, Department of Medical Microbiology, Amsterdam UMC, location Academic Medical Center, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Meibergdreef 9, 1100 AZ, Amsterdam, The Netherlands
- Emma Center for Personalized Medicine, Amsterdam UMC, Amsterdam, The Netherlands
| |
Collapse
|
2
|
Tariq A, Piontkivska H. Reovirus infection induces transcriptome-wide unique A-to-I editing changes in the murine fibroblasts. Virus Res 2024; 346:199413. [PMID: 38848818 PMCID: PMC11225029 DOI: 10.1016/j.virusres.2024.199413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/26/2024] [Accepted: 06/02/2024] [Indexed: 06/09/2024]
Abstract
The conversion of Adenosine (A) to Inosine (I), by Adenosine Deaminases Acting on RNA or ADARs, is an essential post-transcriptional modification that contributes to proteome diversity and regulation in metazoans including humans. In addition to its transcriptome-regulating role, ADARs also play a major part in immune response to viral infection, where an interferon response activates interferon-stimulated genes, such as ADARp150, in turn dynamically regulating host-virus interactions. A previous report has shown that infection from reoviruses, despite strong activation of ADARp150, does not influence the editing of some of the major known editing targets, while likely editing others, suggesting a potentially nuanced editing pattern that may depend on different factors. However, the results were based on a handful of selected editing sites and did not cover the entire transcriptome. Thus, to determine whether and how reovirus infection specifically affects host ADAR editing patterns, we analyzed a publicly available deep-sequenced RNA-seq dataset, from murine fibroblasts infected with wild-type and mutant reovirus strains that allowed us to examine changes in editing patterns on a transcriptome-wide scale. To the best of our knowledge, this is the first transcriptome-wide report on host editing changes after reovirus infection. Our results demonstrate that reovirus infection induces unique nuanced editing changes in the host, including introducing sites uniquely edited in infected samples. Genes with edited sites are overrepresented in pathways related to immune regulation, cellular signaling, metabolism, and growth. Moreover, a shift in editing targets has also been observed, where the same genes are edited in infection and control conditions but at different sites, or where the editing rate is increased for some and decreased for other differential targets, supporting the hypothesis of dynamic and condition-specific editing by ADARs.
Collapse
Affiliation(s)
- Ayesha Tariq
- Department of Biological Sciences, Kent State University, Kent, OH, USA
| | - Helen Piontkivska
- Department of Biological Sciences, Kent State University, Kent, OH, USA; Brain Health Research Institute, Kent State University, Kent, OH, USA; Healthy Communities Research Institute, Kent State University, Kent, OH, USA.
| |
Collapse
|
3
|
Tawfeeq C, Song J, Khaniya U, Madej T, Wang J, Youkharibache P, Abrol R. Towards a structural and functional analysis of the immunoglobulin-fold proteome. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 138:135-178. [PMID: 38220423 DOI: 10.1016/bs.apcsb.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
The immunoglobulin fold (Ig fold) domain is a super-secondary structural motif consisting of a sandwich with two layers of β-sheets that is present in many proteins with very diverse biological functions covering a wide range of physiological processes. This domain presents a modular architecture built with β strands connected by variable length loops that has a highly conserved structural core of four β-strands and quite variable β-sheet extensions in the two sandwich layers that enable both divergent and convergent evolutionary mechanisms in the known Ig fold proteome. The central role of this Ig fold's structural plasticity in the evolutionary success of antibodies in our immune system is well established. Nature has also utilized this Ig fold in all domains of life in many different physiological contexts that go way beyond the immune system. Here we will present a structural and functional overview of the utilization of the Ig fold in different biological processes and in different cellular contexts to highlight some of the innumerable ways that this structural motif can interact in multidomain proteins to enable their diversity of functions. This includes shareable specific protein structure visualizations behind those functions that serve as starting points for further explorations of the biomolecular interactions spanning the Ig fold proteome. This overview also highlights how this Ig fold is being utilized through natural adaptation, engineering, and even building from scratch for a range of biotechnological applications.
Collapse
Affiliation(s)
- Caesar Tawfeeq
- Department of Chemistry and Biochemistry, California State University Northridge, Northridge, United States
| | - James Song
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, United States
| | - Umesh Khaniya
- Cancer Data Science Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, United States
| | - Thomas Madej
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, United States
| | - Jiyao Wang
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, United States
| | - Philippe Youkharibache
- Cancer Data Science Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, United States.
| | - Ravinder Abrol
- Department of Chemistry and Biochemistry, California State University Northridge, Northridge, United States.
| |
Collapse
|
4
|
Jiang R, Zhang J, Liao Z, Zhu W, Su H, Zhang Y, Su J. Temperature-regulated type II grass carp reovirus establishes latent infection in Ctenopharyngodon idella brain. Virol Sin 2023:S1995-820X(23)00044-5. [PMID: 37137379 DOI: 10.1016/j.virs.2023.04.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 04/26/2023] [Indexed: 05/05/2023] Open
Abstract
Grass carp reovirus (GCRV) causes extensive infection and death in grass carp and black carp fingerlings, with a highly seasonal prevalence. Previous studies suggested that GCRV can become latent after primary infection. In this study, we investigated type II GCRV (GCRV-II) latency in asymptomatic grass carp with GCRV infection or exposure history. We found that during latent infection, GCRV-II was detectable only in the brain of grass carp, unlike the multi-tissue distribution observed in natural infection. GCRV-II only caused damage to the brain during latent infection, while in natural infection, brain, heart, and eye tissues had relatively higher viral loads. We also discovered viral inclusion bodies in infected fish brains. Additionally, GCRV-II distribution in grass carp was notably affected by ambient temperature, with the virus targeting the brain only during low temperatures and multi-tissue distribution during high temperatures. This study provides insights into the mechanisms of GCRV-II latent infection and reactivation and contributes to the prevention and control of GCRV pandemics.
Collapse
Affiliation(s)
- Rui Jiang
- College of Fisheries, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Jie Zhang
- College of Fisheries, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhiwei Liao
- College of Fisheries, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wentao Zhu
- College of Fisheries, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hang Su
- College of Fisheries, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yongan Zhang
- College of Fisheries, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jianguo Su
- College of Fisheries, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|
5
|
Tugizov S. Virus-associated disruption of mucosal epithelial tight junctions and its role in viral transmission and spread. Tissue Barriers 2021; 9:1943274. [PMID: 34241579 DOI: 10.1080/21688370.2021.19432749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023] Open
Abstract
Oropharyngeal, airway, intestinal, and genital mucosal epithelia are the main portals of entry for the majority of human pathogenic viruses. To initiate systemic infection, viruses must first be transmitted across the mucosal epithelium and then spread across the body. However, mucosal epithelia have well-developed tight junctions, which have a strong barrier function that plays a critical role in preventing the spread and dissemination of viral pathogens. Viruses can overcome these barriers by disrupting the tight junctions of mucosal epithelia, which facilitate paracellular viral penetration and initiate systemic disease. Disruption of tight and adherens junctions may also release the sequestered viral receptors within the junctional areas, and liberation of hidden receptors may facilitate viral infection of mucosal epithelia. This review focuses on possible molecular mechanisms of virus-associated disruption of mucosal epithelial junctions and its role in transmucosal viral transmission and spread.
Collapse
Affiliation(s)
- Sharof Tugizov
- Department of Medicine, School of Medicine, University of California-San Francisco, San Francisco, CA, USA
| |
Collapse
|
6
|
Tugizov S. Virus-associated disruption of mucosal epithelial tight junctions and its role in viral transmission and spread. Tissue Barriers 2021; 9:1943274. [PMID: 34241579 DOI: 10.1080/21688370.2021.1943274] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Oropharyngeal, airway, intestinal, and genital mucosal epithelia are the main portals of entry for the majority of human pathogenic viruses. To initiate systemic infection, viruses must first be transmitted across the mucosal epithelium and then spread across the body. However, mucosal epithelia have well-developed tight junctions, which have a strong barrier function that plays a critical role in preventing the spread and dissemination of viral pathogens. Viruses can overcome these barriers by disrupting the tight junctions of mucosal epithelia, which facilitate paracellular viral penetration and initiate systemic disease. Disruption of tight and adherens junctions may also release the sequestered viral receptors within the junctional areas, and liberation of hidden receptors may facilitate viral infection of mucosal epithelia. This review focuses on possible molecular mechanisms of virus-associated disruption of mucosal epithelial junctions and its role in transmucosal viral transmission and spread.
Collapse
Affiliation(s)
- Sharof Tugizov
- Department of Medicine, School of Medicine, University of California-San Francisco, San Francisco, CA, USA
| |
Collapse
|
7
|
Kellermann M, Scharte F, Hensel M. Manipulation of Host Cell Organelles by Intracellular Pathogens. Int J Mol Sci 2021; 22:ijms22126484. [PMID: 34204285 PMCID: PMC8235465 DOI: 10.3390/ijms22126484] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 12/13/2022] Open
Abstract
Pathogenic intracellular bacteria, parasites and viruses have evolved sophisticated mechanisms to manipulate mammalian host cells to serve as niches for persistence and proliferation. The intracellular lifestyles of pathogens involve the manipulation of membrane-bound organellar compartments of host cells. In this review, we described how normal structural organization and cellular functions of endosomes, endoplasmic reticulum, Golgi apparatus, mitochondria, or lipid droplets are targeted by microbial virulence mechanisms. We focus on the specific interactions of Salmonella, Legionella pneumophila, Rickettsia rickettsii, Chlamydia spp. and Mycobacterium tuberculosis representing intracellular bacterial pathogens, and of Plasmodium spp. and Toxoplasma gondii representing intracellular parasites. The replication strategies of various viruses, i.e., Influenza A virus, Poliovirus, Brome mosaic virus, Epstein-Barr Virus, Hepatitis C virus, severe acute respiratory syndrome virus (SARS), Dengue virus, Zika virus, and others are presented with focus on the specific manipulation of the organelle compartments. We compare the specific features of intracellular lifestyle and replication cycles, and highlight the communalities in mechanisms of manipulation deployed.
Collapse
Affiliation(s)
- Malte Kellermann
- Abt. Mikrobiologie, Fachbereich Biologie/Chemie, Barbarastr 11, Universität Osnabrück, 49076 Osnabrück, Germany; (M.K.); (F.S.)
| | - Felix Scharte
- Abt. Mikrobiologie, Fachbereich Biologie/Chemie, Barbarastr 11, Universität Osnabrück, 49076 Osnabrück, Germany; (M.K.); (F.S.)
| | - Michael Hensel
- Abt. Mikrobiologie, Fachbereich Biologie/Chemie, Barbarastr 11, Universität Osnabrück, 49076 Osnabrück, Germany; (M.K.); (F.S.)
- CellNanOs–Center of Cellular Nanoanalytics Osnabrück, Universität Osnabrück, Barbarastr 11, 49076 Osnabrück, Germany
- Correspondence: ; Tel.: +49-(0)-541-969-3940
| |
Collapse
|
8
|
Sialic Acid Receptors: The Key to Solving the Enigma of Zoonotic Virus Spillover. Viruses 2021; 13:v13020262. [PMID: 33567791 PMCID: PMC7915228 DOI: 10.3390/v13020262] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 01/31/2021] [Accepted: 02/01/2021] [Indexed: 12/14/2022] Open
Abstract
Emerging viral diseases are a major threat to global health, and nearly two-thirds of emerging human infectious diseases are zoonotic. Most of the human epidemics and pandemics were caused by the spillover of viruses from wild mammals. Viruses that infect humans and a wide range of animals have historically caused devastating epidemics and pandemics. An in-depth understanding of the mechanisms of viral emergence and zoonotic spillover is still lacking. Receptors are major determinants of host susceptibility to viruses. Animal species sharing host cell receptors that support the binding of multiple viruses can play a key role in virus spillover and the emergence of novel viruses and their variants. Sialic acids (SAs), which are linked to glycoproteins and ganglioside serve as receptors for several human and animal viruses. In particular, influenza and coronaviruses, which represent two of the most important zoonotic threats, use SAs as cellular entry receptors. This is a comprehensive review of our current knowledge of SA receptor distribution among animal species and the range of viruses that use SAs as receptors. SA receptor tropism and the predicted natural susceptibility to viruses can inform targeted surveillance of domestic and wild animals to prevent the future emergence of zoonotic viruses.
Collapse
|
9
|
Sriwilaijaroen N, Suzuki Y. Sialoglycovirology of Lectins: Sialyl Glycan Binding of Enveloped and Non-enveloped Viruses. Methods Mol Biol 2020; 2132:483-545. [PMID: 32306355 PMCID: PMC7165297 DOI: 10.1007/978-1-0716-0430-4_47] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2023]
Abstract
On the cell sur "face", sialoglycoconjugates act as receptionists that have an important role in the first step of various cellular processes that bridge communication between the cell and its environment. Loss of Sia production can cause the developmental of defects and lethality in most animals; hence, animal cells are less prone to evolution of resistance to interactions by rapidly evolved Sia-binding viruses. Obligative intracellular viruses mostly have rapid evolution that allows escape from host immunity, leading to an epidemic variant, and that allows emergence of a novel strain, occasionally leading to pandemics that cause health-social-economic problems. Recently, much attention has been given to the mutual recognition systems via sialosugar chains between viruses and their host cells and there has been rapid growth of the research field "sialoglycovirology." In this chapter, the structural diversity of sialoglycoconjugates is overviewed, and enveloped and non-enveloped viruses that bind to Sia are reviewed. Also, interactions of viral lectins-host Sia receptors, which determine viral transmission, host range, and pathogenesis, are presented. The future direction of new therapeutic routes targeting viral lectins, development of easy-to-use detection methods for diagnosis and monitoring changes in virus binding specificity, and challenges in the development of suitable viruses to use in virus-based therapies for genetic disorders and cancer are discussed.
Collapse
Affiliation(s)
- Nongluk Sriwilaijaroen
- Department of Preclinical Sciences, Faculty of Medicine, Thammasat University, Pathumthani, Thailand
- College of Life and Health Sciences, Chubu University, Kasugai, Aichi, Japan
| | - Yasuo Suzuki
- College of Life and Health Sciences, Chubu University, Kasugai, Aichi, Japan.
| |
Collapse
|
10
|
Neepa SF, Haque ZF, Sabuj AAM, Islam MA, Saha S. Serological detection of avian reovirus in different poultry flocks of Gazipur and Mymensingh districts of Bangladesh. Vet World 2019; 12:1126-1131. [PMID: 31528043 PMCID: PMC6702560 DOI: 10.14202/vetworld.2019.1126-1131] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 05/28/2019] [Indexed: 01/04/2023] Open
Abstract
Background and Aim: Avian reovirus (ARV) is a constraint to poultry industry in Bangladesh as a cause of several diseases in chickens, especially in broiler. However, the actual status of the viral infection is not known because the large-scale study is not conducted in this country. Therefore, this study aimed to check the presence and distribution of ARV-specific antibody in respect to area, types of chickens (broiler breeder, broiler, and layer), vaccination status, and age of chickens in Gazipur and Mymensingh districts of Bangladesh. Materials and Methods: A total of 276 chickens’ blood samples were collected from two well-organized broiler breeder stock, seven broiler farms, and five layer farms located at two districts, namely Gazipur and Mymensingh of Bangladesh. Blood samples were collected from wing vein of the apparently healthy chickens using 3 ml of syringe and serum was harvested by keeping the syringe at room temperature in slanting position. The sera were transferred to the laboratory by maintaining the cool chain and further processing was performed by indirect enzyme-linked immunosorbent assay using ARV antibody test kit. Results: The results of serological test revealed that an average of 39.5% seropositive against ARV was recorded in chickens of Gazipur and Mymensingh districts. Among these, chickens of Gazipur district had the highest seropositivity of 50.5% than Mymensingh (30.7%). With respect to vaccination status, the seropositivity of vaccinated chickens in both areas was 100% and non-vaccinated chickens was 50.5% in Gazipur and 30.7% in Mymensingh district, respectively. However, regarding age groups, the seropositivity was higher in the age of 4-6 weeks (64.5%). Conclusion: The present serological findings showed a higher prevalence of ARV-specific antibodies in broiler birds. It indicates that the poultry industries of Bangladesh are contaminated with ARV which may naturally be transmitted to chickens either vertically or horizontally.
Collapse
Affiliation(s)
- Syeda Farjana Neepa
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh
| | - Zobayda Farzana Haque
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh
| | - Abdullah Al Momen Sabuj
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh
| | - Md Alimul Islam
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh
| | - Sukumar Saha
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh
| |
Collapse
|
11
|
Zainutdinov SS, Kochneva GV, Netesov SV, Chumakov PM, Matveeva OV. Directed evolution as a tool for the selection of oncolytic RNA viruses with desired phenotypes. Oncolytic Virother 2019; 8:9-26. [PMID: 31372363 PMCID: PMC6636189 DOI: 10.2147/ov.s176523] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 06/07/2019] [Indexed: 12/23/2022] Open
Abstract
Viruses have some characteristics in common with cell-based life. They can evolve and adapt to environmental conditions. Directed evolution can be used by researchers to produce viral strains with desirable phenotypes. Through bioselection, improved strains of oncolytic viruses can be obtained that have better safety profiles, increased specificity for malignant cells, and more efficient spread among tumor cells. It is also possible to select strains capable of killing a broader spectrum of cancer cell variants, so as to achieve a higher frequency of therapeutic responses. This review describes and analyses virus adaptation studies performed with members of four RNA virus families that are used for viral oncolysis: reoviruses, paramyxoviruses, enteroviruses, and rhabdoviruses.
Collapse
Affiliation(s)
- Sergei S Zainutdinov
- State Research Center of Virology and Biotechnology “Vector”
, Koltsovo630559, Russia
| | - Galina V Kochneva
- State Research Center of Virology and Biotechnology “Vector”
, Koltsovo630559, Russia
| | - Sergei V Netesov
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk630090, Russia
| | - Peter M Chumakov
- Engelhardt Institute of Molecular Biology
, Moscow119991, Russia
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products
, Moscow108819, Russia
| | | |
Collapse
|
12
|
Maginnis MS. Virus-Receptor Interactions: The Key to Cellular Invasion. J Mol Biol 2018; 430:2590-2611. [PMID: 29924965 PMCID: PMC6083867 DOI: 10.1016/j.jmb.2018.06.024] [Citation(s) in RCA: 205] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 06/04/2018] [Accepted: 06/08/2018] [Indexed: 11/05/2022]
Abstract
Virus–receptor interactions play a key regulatory role in viral host range, tissue tropism, and viral pathogenesis. Viruses utilize elegant strategies to attach to one or multiple receptors, overcome the plasma membrane barrier, enter, and access the necessary host cell machinery. The viral attachment protein can be viewed as the “key” that unlocks host cells by interacting with the “lock”—the receptor—on the cell surface, and these lock-and-key interactions are critical for viruses to successfully invade host cells. Many common themes have emerged in virus–receptor utilization within and across virus families demonstrating that viruses often target particular classes of molecules in order to mediate these events. Common viral receptors include sialylated glycans, cell adhesion molecules such as immunoglobulin superfamily members and integrins, and phosphatidylserine receptors. The redundancy in receptor usage suggests that viruses target particular receptors or “common locks” to take advantage of their cellular function and also suggests evolutionary conservation. Due to the importance of initial virus interactions with host cells in viral pathogenesis and the redundancy in viral receptor usage, exploitation of these strategies would be an attractive target for new antiviral therapeutics. Viral receptors are key regulators of host range, tissue tropism, and viral pathogenesis. Many viruses utilize common viral receptors including sialic acid, cell adhesion molecules such as immunoglobulin superfamily members and integrins, and phosphatidylserine receptors. Detailed molecular interactions between viruses and receptors have been defined through elegant biochemical analyses including glycan array screens, structural–functional analyses, and cell-based approaches providing tremendous insights into these initial events in viral infection. Commonalities in virus–receptor interactions present promising targets for the development of broad-spectrum antiviral therapies.
Collapse
Affiliation(s)
- Melissa S Maginnis
- Department of Molecular and Biomedical Sciences, The University of Maine, Orono, ME 04469-5735, USA.
| |
Collapse
|
13
|
Conserved Surface Residues on the Feline Calicivirus Capsid Are Essential for Interaction with Its Receptor Feline Junctional Adhesion Molecule A (fJAM-A). J Virol 2018; 92:JVI.00035-18. [PMID: 29386293 DOI: 10.1128/jvi.00035-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 01/24/2018] [Indexed: 12/11/2022] Open
Abstract
Host cell surface receptors are required for attachment, binding, entry, and infection by nonenveloped viruses. Receptor binding can induce conformational changes in the viral capsid and/or the receptor that couple binding with downstream events in the virus life cycle (intracellular signaling, endocytosis and trafficking, and membrane penetration). Virus-receptor interactions also influence viral spread and pathogenicity. The interaction between feline calicivirus (FCV) and its receptor, feline junctional adhesion molecule A (fJAM-A), on host cells is required for infection and induces irreversible, inactivating conformational changes in the capsid of some viral strains. Cryoelectron microscopy (cryo-EM) structures of FCV bound to fJAM-A showed several possible virus-receptor interactions. However, the specific residues on the viral capsid required for binding are not known. Capsid residues that may be involved in postbinding events have been implicated by isolation of soluble receptor-resistant (srr) mutants in which changes in the capsid protein sequence change the capacity of such srr mutants to be inactivated upon incubation with soluble fJAM-A. To clarify which residues on the surface of FCV are required for its interaction with fJAM-A and to potentially identify residues required for postreceptor binding events, we used the existing atomic-resolution structures of FCV and the FCV-fJAM-A cryo-EM structures to select 14 capsid residues for mutation and preparation of recombinant viral capsids. Using this approach, we identified residues on the FCV capsid that are required for fJAM-A binding and other residues that are not required for binding but are required for infection that are likely important for subsequent postbinding events.IMPORTANCE Feline calicivirus (FCV) is a common cause of mild upper respiratory disease in cats. Some FCV isolates can cause virulent systemic disease. The genetic determinants of virulence for FCV are unknown. We previously found that virulent FCV isolates have faster in vitro growth kinetics than less virulent isolates. Differences in viral growth in vitro may correlate with differences in virulence. Here, we investigated the roles of specific FCV capsid residues on the receptor-virus interaction and viral growth in vitro We show that the capsid protein genes of the virulent FCV-5 isolate determine its faster in vitro growth kinetics compared to those of the nonvirulent FCV-Urbana infectious clone. We also identified residues on the capsid VP1 protein that are important for receptor binding or for steps subsequent to receptor binding. Our data provide further insight into the specific molecular interactions between fJAM-A and the FCV capsid that regulate binding and infectious entry.
Collapse
|
14
|
Type III Interferon Restriction by Porcine Epidemic Diarrhea Virus and the Role of Viral Protein nsp1 in IRF1 Signaling. J Virol 2018; 92:JVI.01677-17. [PMID: 29187542 DOI: 10.1128/jvi.01677-17] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 11/21/2017] [Indexed: 01/16/2023] Open
Abstract
Type III interferons (IFNs) play a vital role in maintaining the antiviral state of the mucosal epithelial surface in the gut, and in turn, enteric viruses may have evolved to evade the type III IFN responses during infection. To study the possible immune evasion of the type III IFN response by porcine epidemic diarrhea virus (PEDV), a line of porcine intestinal epithelial cells was developed as a cell model for PEDV replication. IFN-λ1 and IFN-λ3 inhibited PEDV replication, indicating the anti-PEDV activity of type III IFNs. Of the 21 PEDV proteins, nsp1, nsp3, nsp5, nsp8, nsp14, nsp15, nsp16, open reading frame 3 (ORF3), E, M, and N were found to suppress type III IFN activities, and IRF1 (interferon regulatory factor 1) signaling mediated the suppression. PEDV specifically inhibited IRF1 nuclear translocation. The peroxisome is the innate antiviral signaling platform for the activation of IRF1-mediated IFN-λ production, and the numbers of peroxisomes were found to be decreased in PEDV-infected cells. PEDV nsp1 blocked the nuclear translocation of IRF1 and reduced the number of peroxisomes to suppress IRF1-mediated type III IFNs. Mutational studies showed that the conserved residues of nsp1 were crucial for IRF1-mediated IFN-λ suppression. Our study for the first time provides evidence that the porcine enteric virus PEDV downregulates and evades IRF1-mediated type III IFN responses by reducing the number of peroxisomes.IMPORTANCE Porcine epidemic diarrhea virus (PEDV) is a highly contagious enteric coronavirus that emerged in swine in the United States and has caused severe economic losses. PEDV targets intestinal epithelial cells in the gut, and intestinal epithelial cells selectively induce and respond to the production of type III interferons (IFNs). However, little is known about the modulation of the type III IFN response by PEDV in intestinal epithelial cells. In this study, we established a porcine intestinal epithelial cell model for PEDV replication. We found that PEDV inhibited IRF1-mediated type III IFN production by decreasing the number of peroxisomes in porcine intestinal epithelial cells. We also demonstrated that the conserved residues in the PEDV nsp1 protein were crucial for IFN suppression. This study for the first time shows PEDV evasion of the type III IFN response in intestinal epithelial cells, and it provides valuable information on host cell-virus interactions not only for PEDV but also for other enteric viral infections in swine.
Collapse
|
15
|
Pham PH, Tong WWL, Misk E, Jones G, Lumsden JS, Bols NC. Atlantic salmon endothelial cells from the heart were more susceptible than fibroblasts from the bulbus arteriosus to four RNA viruses but protected from two viruses by dsRNA pretreatment. FISH & SHELLFISH IMMUNOLOGY 2017; 70:214-227. [PMID: 28882807 DOI: 10.1016/j.fsi.2017.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 08/23/2017] [Accepted: 09/01/2017] [Indexed: 06/07/2023]
Abstract
Heart diseases caused by viruses are major causes of Atlantic salmon aquaculture loss. Two Atlantic salmon cardiovascular cell lines, an endothelial cell line (ASHe) from the heart and a fibroblast cell line (BAASf) from the bulbus arteriosus, were evaluated for their response to four fish viruses, CSV, IPNV, VHSV IVa and VHSV IVb, and the innate immune agonist, double-stranded RNA mimic poly IC. All four viruses caused cytopathic effects in ASHe and BAASf. However, ASHe was more susceptible to all four viruses than BAASf. When comparing between the viruses, ASHe cells were found to be moderately susceptible to CSV and VHSV IVb, but highly susceptible to IPNV and VHSV IVa induced cell death. All four viruses were capable of propagating in the ASHe cell line, leading to increases in virus titre over time. In BAASf, CSV and IPNV produced more than one log increase in titre from initial infection, but VHSV IVb and IVa did not. When looking at the antiviral response of both cell lines, Mx proteins were induced in ASHe and BAASf by poly IC. All four viruses induced Mx proteins in BAASf, while only CSV and VHSV IVb induced Mx proteins in ASHe. IPNV and VHSV IVa suppressed Mx proteins expression in ASHe. Pretreatment of ASHe with poly IC to allow for Mx proteins accumulation protected the culture from subsequent infections with IPNV and VHSV IVa, resulting in delayed cell death, reduced virus titres and reduced viral proteins expression. These data suggest that endothelial cells potentially can serve as points of infections for viruses in the heart and that two of the four viruses, IPNV and VHSV IVa, have mechanisms to avoid or downregulate antiviral responses in ASHe cells. Furthermore, the high susceptibility of the ASHe cell line to IPNV and VHSV IVa can make it a useful tool for studying antiviral compounds against these viruses and for general detection of fish viruses.
Collapse
Affiliation(s)
- Phuc H Pham
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Winnie W L Tong
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Ehab Misk
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Ginny Jones
- Elanco Canada Limited, Aqua Business R&D, Victoria, PEI, Canada
| | - John S Lumsden
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada; St. George's University, True Blue, Grenada
| | - Niels C Bols
- Department of Biology, University of Waterloo, Waterloo, ON, Canada.
| |
Collapse
|
16
|
Lee S, Baldridge MT. Interferon-Lambda: A Potent Regulator of Intestinal Viral Infections. Front Immunol 2017; 8:749. [PMID: 28713375 PMCID: PMC5491552 DOI: 10.3389/fimmu.2017.00749] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 06/13/2017] [Indexed: 12/12/2022] Open
Abstract
Interferon-lambda (IFN-λ) is a recently described cytokine found to be of critical importance in innate immune regulation of intestinal viruses. Endogenous IFN-λ has potent antiviral effects and has been shown to control multiple intestinal viruses and may represent a factor that contributes to human variability in response to infection. Importantly, recombinant IFN-λ has therapeutic potential against enteric viral infections, many of which lack other effective treatments. In this mini-review, we describe recent advances regarding IFN-λ-mediated regulation of enteric viruses with important clinical relevance including rotavirus, reovirus, and norovirus. We also briefly discuss IFN-λ interactions with other cytokines important in the intestine, and how IFN-λ may play a role in regulation of intestinal viruses by the commensal microbiome. Finally, we indicate currently outstanding questions regarding IFN-λ control of enteric infections that remain to be explored to enhance our understanding of this important immune molecule.
Collapse
Affiliation(s)
- Sanghyun Lee
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States
| | - Megan T Baldridge
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
17
|
Devaney R, Trudgett J, Trudgett A, Meharg C, Smyth V. A metagenomic comparison of endemic viruses from broiler chickens with runting-stunting syndrome and from normal birds. Avian Pathol 2016; 45:616-629. [PMID: 27215546 PMCID: PMC7113909 DOI: 10.1080/03079457.2016.1193123] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Runting-stunting syndrome (RSS) in broiler chickens is an enteric disease that causes significant economic losses to poultry producers worldwide due to elevated feed conversion ratios, decreased body weight during growth, and excessive culling. Of specific interest are the viral agents associated with RSS which have been difficult to fully characterize to date. Past research into the aetiology of RSS has implicated a wide variety of RNA and DNA viruses however, to date, no individual virus has been identified as the main agent of RSS and the current opinion is that it may be caused by a community of viruses, collectively known as the virome. This paper attempts to characterize the viral pathogens associated with 2–3-week-old RSS-affected and unaffected broiler chickens using next-generation sequencing and comparative metagenomics. Analysis of the viromes identified a total of 20 DNA and RNA viral families, along with 2 unidentified categories, comprised of 31 distinct viral genera and 7 unclassified genera. The most abundant viral families identified in this study were the Astroviridae, Caliciviridae, Picornaviridae, Parvoviridae, Coronaviridae, Siphoviridae, and Myoviridae. This study has identified historically significant viruses associated with the disease such as chicken astrovirus, avian nephritis virus, chicken parvovirus, and chicken calicivirus along with relatively novel viruses such as chicken megrivirus and sicinivirus 1 and will help expand the knowledge related to enteric disease in broiler chickens, provide insights into the viral constituents of a healthy avian gut, and identify a variety of enteric viruses and viral communities appropriate for further study.
Collapse
Affiliation(s)
- Ryan Devaney
- a School of Biological Sciences, Queens University Belfast , Belfast , UK
| | | | - Alan Trudgett
- a School of Biological Sciences, Queens University Belfast , Belfast , UK
| | - Caroline Meharg
- a School of Biological Sciences, Queens University Belfast , Belfast , UK
| | | |
Collapse
|
18
|
Sharafeldin TA, Mor SK, Sobhy NM, Xing Z, Reed KM, Goyal SM, Porter RE. A Newly Emergent Turkey Arthritis Reovirus Shows Dominant Enteric Tropism and Induces Significantly Elevated Innate Antiviral and T Helper-1 Cytokine Responses. PLoS One 2015; 10:e0144085. [PMID: 26659460 PMCID: PMC4684236 DOI: 10.1371/journal.pone.0144085] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 11/12/2015] [Indexed: 01/31/2023] Open
Abstract
Newly emergent turkey arthritis reoviruses (TARV) were isolated from tendons of lame 15-week-old tom turkeys that occasionally had ruptured leg tendons. Experimentally, these TARVs induced remarkable tenosynovitis in gastrocnemius tendons of turkey poults. The current study aimed to characterize the location and the extent of virus replication as well as the cytokine response induced by TARV during the first two weeks of infection. One-week-old male turkeys were inoculated orally with TARV (O'Neil strain). Copy numbers of viral genes were estimated in intestines, internal organs and tendons at ½, 1, 2, 3, 4, 7, 14 days Post inoculation (dpi). Cytokine profile was measured in intestines, spleen and leg tendons at 0, 4, 7 and 14 dpi. Viral copy number peaked in jejunum, cecum and bursa of Fabricius at 4 dpi. Copy numbers increased dramatically in leg tendons at 7 and 14 dpi while minimal copies were detected in internal organs and blood during the same period. Virus was detected in cloacal swabs at 1-2 dpi, and peaked at 14 dpi indicating enterotropism of the virus and its early shedding in feces. Elevation of IFN-α and IFN-β was observed in intestines at 7 dpi as well as a prominent T helper-1 response (IFN-γ) at 7 and 14 dpi. IFN-γ and IL-6 were elevated in gastrocnemius tendons at 14 dpi. Elevation of antiviral cytokines in intestines occurred at 7dpi when a significant decline of viral replication in intestines was observed. T helper-1 response in intestines and leg tendons was the dominant T-helper response. These results suggest the possible correlation between viral replication and cytokine response in early infection of TARV in turkeys. Our findings provide novel insights which help elucidate viral pathogenesis in turkey tendons infected with TARV.
Collapse
Affiliation(s)
- Tamer A. Sharafeldin
- Department of Veterinary Population Medicine and Minnesota Veterinary Diagnostic Laboratory University of Minnesota, St. Paul, MN, 55108, United States of America
- Department of Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
- * E-mail:
| | - Sunil K. Mor
- Department of Veterinary Population Medicine and Minnesota Veterinary Diagnostic Laboratory University of Minnesota, St. Paul, MN, 55108, United States of America
| | - Nader M. Sobhy
- Department of Veterinary Population Medicine and Minnesota Veterinary Diagnostic Laboratory University of Minnesota, St. Paul, MN, 55108, United States of America
| | - Zheng Xing
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, 55108, United States of America
- School of Medicine, Nanjing University, Nanjing, 210093, China
| | - Kent M. Reed
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, 55108, United States of America
| | - Sagar M. Goyal
- Department of Veterinary Population Medicine and Minnesota Veterinary Diagnostic Laboratory University of Minnesota, St. Paul, MN, 55108, United States of America
| | - Robert E. Porter
- Department of Veterinary Population Medicine and Minnesota Veterinary Diagnostic Laboratory University of Minnesota, St. Paul, MN, 55108, United States of America
| |
Collapse
|
19
|
Abstract
When type III interferon (IFN-λ; also known as interleukin-28 [IL-28] and IL-29) was discovered in 2003, its antiviral function was expected to be analogous to that of type I IFNs (IFN-α and IFN-β) via the induction of IFN-stimulated genes (ISGs). Although IFN-λ stimulates expression of antiviral ISGs preferentially in cells of epithelial origin, recent studies have defined additional antiviral mechanisms in other cell types and tissues. Viral infection models using mice lacking IFN-λ signaling and SNP associations with human disease have expanded our understanding of the contribution of IFN-λ to the antiviral response at anatomic barriers and the immune response beyond these barriers. In this review, we highlight recent insights into IFN-λ functions, including its ability to restrict virus spread into the brain and to clear chronic viral infections in the gastrointestinal tract. We also discuss how IFN-λ modulates innate and adaptive immunity, autoimmunity, and tumor progression and its possible therapeutic applications in human disease.
Collapse
Affiliation(s)
- Helen M Lazear
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Timothy J Nice
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
20
|
Cho H, Kelsall BL. The role of type I interferons in intestinal infection, homeostasis, and inflammation. Immunol Rev 2015; 260:145-67. [PMID: 24942688 DOI: 10.1111/imr.12195] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Type I interferons are a widely expressed family of effector cytokines that promote innate antiviral and antibacterial immunity. Paradoxically, they can also suppress immune responses by driving production of anti-inflammatory cytokines, and dysregulation of these cytokines can contribute to host-mediated immunopathology and disease progression. Recent studies describe their anti-inflammatory role in intestinal inflammation and the locus containing IFNAR, a heterodimeric receptor for the type I interferons has been identified as a susceptibility region for human inflammatory bowel disease. This review focuses on the role of type I IFNs in the intestine in health and disease and their emerging role as immune modulators. Clear understanding of type I IFN-mediated immune responses may provide avenues for fine-tuning existing IFN treatment for infection and intestinal inflammation.
Collapse
Affiliation(s)
- Hyeseon Cho
- Mucosal Immunobiology Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
21
|
Abstract
ABSTRACT Viruses are a diverse class of nanoparticles. However, they have evolved a few common mechanisms that enable successful infection of their host cells. The first stage of this process involves entry into the cell. For enveloped viruses this process has been well characterized. For nonenveloped viruses, the focus of this review, the entry mechanisms are less well understood. For these viruses, a typical pathway involves receptor attachment followed by internalization into cellular vesicles and subsequent viral escape to the cytosol and transport to the site of genome replication. Significantly, these viruses have evolved numerous mechanisms to fulfill this seemingly simple infection scheme. We focus on the latest observations for several families of nonenveloped viruses and highlight specific members for eukaryotic families: Adenoviridae, Papillomaviridae, Parvoviridae, Picornaviridae, Polyomaviridae and Reoviridae; and prokaryotic families: Microviridae, Myoviridae, Podoviridae and Siphoviridae.
Collapse
Affiliation(s)
- Bridget Lins
- Department of Biochemistry & Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Mavis Agbandje-McKenna
- Department of Biochemistry & Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
22
|
Efficient norovirus and reovirus replication in the mouse intestine requires microfold (M) cells. J Virol 2014; 88:6934-43. [PMID: 24696493 DOI: 10.1128/jvi.00204-14] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
UNLABELLED Microfold (M) cells are specialized intestinal epithelial cells that internalize particulate antigens and aid in the establishment of immune responses to enteric pathogens. M cells have also been suggested as a portal for pathogen entry into the host. While virus particles have been observed in M cells, it is not known whether viruses use M cells to initiate a productive infection. Noroviruses (NoVs) are single-stranded RNA viruses that infect host organisms via the fecal-oral route. Murine NoV (MNV) infects intestinal macrophages and dendritic cells and provides a tractable experimental system for understanding how an enteric virus overcomes the intestinal epithelial barrier to infect underlying target cells. We found that replication of two divergent MNV strains was reduced in mice depleted of M cells. Reoviruses are double-stranded RNA viruses that infect hosts via respiratory or enteric routes. In contrast to MNV, reovirus infects enterocytes in the intestine. Despite differences in cell tropism, reovirus infection was also reduced in M cell-depleted mice. These data demonstrate that M cells are required for the pathogenesis of two unrelated enteric viruses that replicate in different cell types within the intestine. IMPORTANCE To successfully infect their hosts, pathogens that infect via the gastrointestinal tract must overcome the multilayered system of host defenses. Microfold (M) cells are specialized intestinal epithelial cells that internalize particulate antigens and aid in the establishment of immune responses to enteric pathogens. Virus particles have been observed within M cells. However, it is not known whether viruses use M cells to initiate a productive infection. To address this question, we use MNV and reovirus, two enteric viruses that replicate in different cell types in the intestine, intestinal epithelial cells for reovirus and intestinal mononuclear phagocytes for MNV. Interestingly, MNV- and reovirus-infected mice depleted of M cells showed reduced viral loads in the intestine. Thus, our work demonstrates the importance of M cells in the pathogenesis of enteric viruses irrespective of the target cell type in which the virus replicates.
Collapse
|
23
|
Du F, Su J, Huang R, Liao L, Zhu Z, Wang Y. Cloning and preliminary functional studies of the JAM-A gene in grass carp (Ctenopharyngodon idellus). FISH & SHELLFISH IMMUNOLOGY 2013; 34:1476-1484. [PMID: 23542603 DOI: 10.1016/j.fsi.2013.03.352] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Revised: 03/01/2013] [Accepted: 03/11/2013] [Indexed: 06/02/2023]
Abstract
Grass carp (Ctenopharyngodon idellus) is a very important aquaculture species in China and other South-East Asian countries; however, disease outbreaks in this species are frequent, resulting in huge economic losses. Grass carp hemorrhage caused by grass carp reovirus (GCRV) is one of the most serious diseases. Junction adhesion molecule A (JAM-A) is the mammalian receptor for reovirus, and has been well studied. However, the JAM-A gene in grass carp has not been studied so far. In this study, we cloned and elucidated the structure of the JAM-A gene in grass carp (GcJAM-A) and then studied its functions during grass carp hemorrhage. GcJAM-A is composed of 10 exons and 9 introns, and its full-length cDNA is 1833 bp long, with an 888 bp open reading frame (ORF) that encodes a 295 amino acid protein. The GcJAM-A protein is predicted to contain a typical transmembrane domain. Maternal expression pattern of GcJAM-A is observed during early embryogenesis, while zygote expression occurs at 8 h after hatching. GcJAM-A is expressed strongly in the gill, liver, intestine and kidney, while it is expressed poorly in the blood, brain, spleen and head kidney. Moreover, lower expression is observed in the gill, liver, intestine, brain, spleen and kidney of 30-month-old individuals, compared with 6-month-old. In a GcJAM-A-knockdown cell line (CIK) infected with GCRV, the expression of genes involved in the interferon and apoptosis pathways was significantly inhibited. These results suggest that GcJAM-A could be a receptor for GCRV. We have therefore managed to characterize the GcJAM-A gene and provide evidence for its role as a receptor for GCRV.
Collapse
Affiliation(s)
- Fukuan Du
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | | | | | | | | | | |
Collapse
|
24
|
Brochu-Lafontaine V, Lemay G. Addition of exogenous polypeptides on the mammalian reovirus outer capsid using reverse genetics. J Virol Methods 2011; 179:342-50. [PMID: 22155580 DOI: 10.1016/j.jviromet.2011.11.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 11/15/2011] [Accepted: 11/23/2011] [Indexed: 01/17/2023]
Abstract
Addition of exogenous peptide sequences on viral capsids is a powerful approach to study the process of viral infection or to retarget viruses toward defined cell types. Until recently, it was not possible to manipulate the genome of mammalian reovirus and this was an obstacle to the addition of exogenous sequence tags onto the capsid of a replicating virus. This obstacle has now been overcome by the availability of the plasmid-based reverse genetics system. In the present study, reverse genetics was used to introduce different exogenous peptides, up to 40 amino acids long, at the carboxyl-terminal end of the σ1 outer capsid protein. The tagged viruses obtained were infectious, produce plaques of similar size, and could be easily propagated at high titers. However, attempts to introduce a 750 nucleotides-long sequence failed, even when it was added after the stop codon, suggesting a possible size limitation at the nucleic acid level.
Collapse
|
25
|
Henaff D, Salinas S, Kremer EJ. An adenovirus traffic update: from receptor engagement to the nuclear pore. Future Microbiol 2011; 6:179-92. [PMID: 21366418 DOI: 10.2217/fmb.10.162] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Adenoviruses have a bipolar nature: they are ubiquitous pathogens that occasionally cause life-threatening diseases or they can be engineered into powerful gene transfer vectors. The goal of this article is to summarize the most recent advances in adenovirus receptor engagement, internalization, endosomal maturation, endosomal escape and trafficking to the nuclear pore. A better understanding of this initial part of the adenovirus lifecycle may identify new mechanistic-based treatments for adenovirus-induced diseases and help in the engineering of more efficient vectors.
Collapse
Affiliation(s)
- Daniel Henaff
- Institut de Génétique Moléculaire de Montpellier, CNRS UMR 5535, 34293 Montpellier, France
| | | | | |
Collapse
|
26
|
Ooms LS, Kobayashi T, Dermody TS, Chappell JD. A post-entry step in the mammalian orthoreovirus replication cycle is a determinant of cell tropism. J Biol Chem 2010; 285:41604-13. [PMID: 20978124 DOI: 10.1074/jbc.m110.176255] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mammalian reoviruses replicate in a broad range of hosts, cells, and tissues. These viruses display strain-dependent variation in tropism for different types of cells in vivo and ex vivo. Early steps in the reovirus life cycle, attachment, entry, and disassembly, have been identified as pivotal points of virus-cell interaction that determine the fate of infection, either productive or abortive. However, in studies of the differential capacity of reovirus strains type 1 Lang and type 3 Dearing to replicate in Madin-Darby canine kidney (MDCK) cells, we found that replication efficiency is regulated at a late point in the viral life cycle following primary transcription and translation. Results of genetic studies using recombinant virus strains show that reovirus tropism for MDCK cells is primarily regulated by replication protein μ2 and further influenced by the viral RNA-dependent RNA polymerase protein, λ3, depending on the viral genetic background. Furthermore, μ2 residue 347 is a critical determinant of replication efficiency in MDCK cells. These findings indicate that components of the reovirus replication complex are mediators of cell-selective viral replication capacity at a post-entry step. Thus, reovirus cell tropism may be determined at early and late points in the viral replication program.
Collapse
Affiliation(s)
- Laura S Ooms
- Department of Pathology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | | | |
Collapse
|
27
|
Abstract
A wide variety of different viruses use tight junction (TJ) proteins in the course of infection and different mechanisms of pathogen–TJ interactions have been described; pathogens may induce the reorganization or degradation of distinct TJ proteins, reorganization of the cell cytoskeleton, activation of host-cell signaling pathways and/or use TJ proteins as receptors to enter host cells. Most recently, the TJ proteins claudin-1 and occludin have been identified as essential host factors for HCV entry. Furthermore, TJ protein occludin has been shown to play an important role in the species specificity of HCV infection. Recent data suggest that claudin-1 is a promising target for antiviral strategies. The aim of this article is to elucidate the impact of the interplay between pathogens and TJ proteins for pathogen–host interactions, summarize recent findings regarding the role of TJ proteins in HCV entry and highlight the relevance of TJ proteins for the development of novel antiviral strategies.
Collapse
Affiliation(s)
| | - Marine Turek
- Inserm, U748, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Thomas F Baumert
- Inserm, U748, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Pôle Hépato-digestif, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| |
Collapse
|
28
|
Intercellular Junctional Proteins as Receptors and Barriers to Virus Infection and Spread. Cell Host Microbe 2009; 5:517-21. [DOI: 10.1016/j.chom.2009.05.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
29
|
Seiradake E, Henaff D, Wodrich H, Billet O, Perreau M, Hippert C, Mennechet F, Schoehn G, Lortat-Jacob H, Dreja H, Ibanes S, Kalatzis V, Wang JP, Finberg RW, Cusack S, Kremer EJ. The cell adhesion molecule "CAR" and sialic acid on human erythrocytes influence adenovirus in vivo biodistribution. PLoS Pathog 2009; 5:e1000277. [PMID: 19119424 PMCID: PMC2607015 DOI: 10.1371/journal.ppat.1000277] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Accepted: 12/17/2008] [Indexed: 01/20/2023] Open
Abstract
Although it has been known for 50 years that adenoviruses (Ads) interact with erythrocytes ex vivo, the molecular and structural basis for this interaction, which has been serendipitously exploited for diagnostic tests, is unknown. In this study, we characterized the interaction between erythrocytes and unrelated Ad serotypes, human 5 (HAd5) and 37 (HAd37), and canine 2 (CAV-2). While these serotypes agglutinate human erythrocytes, they use different receptors, have different tropisms and/or infect different species. Using molecular, biochemical, structural and transgenic animal-based analyses, we found that the primary erythrocyte interaction domain for HAd37 is its sialic acid binding site, while CAV-2 binding depends on at least three factors: electrostatic interactions, sialic acid binding and, unexpectedly, binding to the coxsackievirus and adenovirus receptor (CAR) on human erythrocytes. We show that the presence of CAR on erythrocytes leads to prolonged in vivo blood half-life and significantly reduced liver infection when a CAR-tropic Ad is injected intravenously. This study provides i) a molecular and structural rationale for Ad-erythrocyte interactions, ii) a basis to improve vector-mediated gene transfer and iii) a mechanism that may explain the biodistribution and pathogenic inconsistencies found between human and animal models.
Collapse
Affiliation(s)
- Elena Seiradake
- European Molecular Biology Laboratory, Grenoble Outstation, Grenoble, France
| | - Daniel Henaff
- Institut de Génétique Moléculaire de Montpellier, CNRS 5535, Montpellier, France
- Universitiés Montpellier I & II, Montpellier, France
| | - Harald Wodrich
- Institut de Génétique Moléculaire de Montpellier, CNRS 5535, Montpellier, France
- Universitiés Montpellier I & II, Montpellier, France
| | - Olivier Billet
- Institut de Génétique Moléculaire de Montpellier, CNRS 5535, Montpellier, France
- Universitiés Montpellier I & II, Montpellier, France
| | - Matthieu Perreau
- Institut de Génétique Moléculaire de Montpellier, CNRS 5535, Montpellier, France
- Universitiés Montpellier I & II, Montpellier, France
| | - Claire Hippert
- Institut de Génétique Moléculaire de Montpellier, CNRS 5535, Montpellier, France
- Universitiés Montpellier I & II, Montpellier, France
| | - Franck Mennechet
- Institut de Génétique Moléculaire de Montpellier, CNRS 5535, Montpellier, France
- Universitiés Montpellier I & II, Montpellier, France
| | - Guy Schoehn
- Unit of Virus-Host Cell Interactions, UMR 5233, UJF-EMBL-CNRS, Grenoble, France
| | | | - Hanna Dreja
- Institut de Génétique Moléculaire de Montpellier, CNRS 5535, Montpellier, France
- Universitiés Montpellier I & II, Montpellier, France
| | - Sandy Ibanes
- Institut de Génétique Moléculaire de Montpellier, CNRS 5535, Montpellier, France
- Universitiés Montpellier I & II, Montpellier, France
| | - Vasiliki Kalatzis
- Institut de Génétique Moléculaire de Montpellier, CNRS 5535, Montpellier, France
- Universitiés Montpellier I & II, Montpellier, France
| | - Jennifer P. Wang
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Robert W. Finberg
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Stephen Cusack
- European Molecular Biology Laboratory, Grenoble Outstation, Grenoble, France
- Unit of Virus-Host Cell Interactions, UMR 5233, UJF-EMBL-CNRS, Grenoble, France
- * E-mail: (SC); (EJK)
| | - Eric J. Kremer
- Institut de Génétique Moléculaire de Montpellier, CNRS 5535, Montpellier, France
- Universitiés Montpellier I & II, Montpellier, France
- * E-mail: (SC); (EJK)
| |
Collapse
|
30
|
Tsunoda I, Libbey JE, Fujinami RS. Theiler's murine encephalomyelitis virus attachment to the gastrointestinal tract is associated with sialic acid binding. J Neurovirol 2008; 15:81-9. [PMID: 19115131 PMCID: PMC2882804 DOI: 10.1080/13550280802380563] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
DA and GDVII are strains of Theiler’s murine encephalomyelitis virus (TMEV). DA virus mutant DApB encodes VP2 puff B of GDVII, whereas DApBL2M contains VP1 loop II of GDVII with a point mutation in VP2 puff B. Neuraminidase treatment of cells inhibited infection by DA and DApB, but not GDVII or DApBL2M viruses; sialic acid (SA) binding correlated with virus persistence. In virus binding assays to intestine sections, all four TMEVs bound goblet cells and the mucus of the epithelium that was SA dependent. Therefore, differences in SA composition on different cell types can affect tropism and infection.
Collapse
Affiliation(s)
- Ikuo Tsunoda
- Department of Pathology, University of Utah School of Medicine, 30 North 1900 East, Salt Lake City, UT 84132, USA
| | | | | |
Collapse
|
31
|
Zhirnov OP, Vorobjeva IV, Saphonova OA, Malyshev NA, Ovcharenko AV, Klenk HD. Specific biochemical features of replication of clinical influenza viruses in human intestinal cell culture. BIOCHEMISTRY (MOSCOW) 2007; 72:398-408. [PMID: 17511604 DOI: 10.1134/s0006297907040062] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Influenza A viruses isolated from the respiratory tract of patients with influenza were cultured in human intestinal epithelium cells (CACO-2 line). The CACO-2 cells were found to be 100-fold more susceptible to the clinical viruses than MDCK cells and chicken embryos. On passaging in CACO-2 cells, clinical isolates of the subtype H3N2 retained the original "human" phenotype and agglutinated human but not chicken erythrocytes, whereas on passaging in MDCK cells the virus phenotype changed to the "avian" one. On comparison with laboratory strains (grown in chicken embryos or MDCK cells), the clinical viruses were characterized by higher stability of the anti-interferon protein NS1 but had a reduced synthesis of the matrix protein M1, and this could facilitate the virus adaptation and escape of the infected cells from immune attack in the human body. The increased tropism to the human CACO-2 cells correlated with higher adsorption of the clinical viruses on cellular receptors. However, in the CACO-2 and MDCK cells the ratio of sialyl-containing glycoreceptors of the 2-3 and 2-6 type was similar. These observations indicated that not only sialic acid residues were involved in the adsorption and penetration of the clinical viruses into human cells, but also the protein moiety of the cellular receptor itself and/or an additional cellular coreceptor. Thus, clinical influenza viruses are shown to possess a specific mechanism of sorption and entry into human epithelial cells, which is responsible for their higher tropism to human cells and is unlike such a mechanism in canine cells.
Collapse
Affiliation(s)
- O P Zhirnov
- Ivanovsky Institute of Virology, Russian Academy of Medical Sciences, ul. Gamalei 16, 123098 Moscow, Russia.
| | | | | | | | | | | |
Collapse
|
32
|
Rapoport EM, Mochalova LV, Gabius HJ, Romanova J, Bovin NV. Search for additional influenza virus to cell interactions. Glycoconj J 2006; 23:115-25. [PMID: 16575529 DOI: 10.1007/s10719-006-5444-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Sialyl oligosaccharides have long been considered to be the sole receptors for influenza virus. However, according to [1] some viruses are able to grow in sialic-free MDCK cells. Here we attempted to reveal a possible second, non-sialic receptor, hypothesizing the involvement of additional carbohydrate lectin recognition in influenza virus reception process, first of all in situations when a lectin of the host cell could recognize the viral carbohydrate ligand. We tested the presence of galactose- and sialic acid-binding lectins, as well as mannoside- and sulfo-N-acetyllactosamine-recognizing properties of MDCK and Vero cells using polyacrylamide neoglycoconjugates and antibodies. MDCK cells bind galactoside probes stronger than Vero cells, whereas Vero cells bind preferentially sialoside, mannoside and various sulfo-oligosaccharide probes. The probing of viruses with the neoglycoconjugates revealed specific 6'-HSO (3) LacNAc (but not other sulfated oligosaccharides) binding property of A and B human strains. Affinity of 6'-HSO (3) LacNAc probe was comparable with affinity of 6'-SiaLac probe but the binding was not inhibited by the sialooligosaccharide.
Collapse
Affiliation(s)
- E M Rapoport
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | | | | | | | | |
Collapse
|
33
|
Coffey CM, Sheh A, Kim IS, Chandran K, Nibert ML, Parker JSL. Reovirus outer capsid protein micro1 induces apoptosis and associates with lipid droplets, endoplasmic reticulum, and mitochondria. J Virol 2006; 80:8422-38. [PMID: 16912293 PMCID: PMC1563861 DOI: 10.1128/jvi.02601-05] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The mechanisms by which reoviruses induce apoptosis have not been fully elucidated. Earlier studies identified the mammalian reovirus S1 and M2 genes as determinants of apoptosis induction. However, no published results have demonstrated the capacities of the proteins encoded by these genes to induce apoptosis, either independently or in combination, in the absence of reovirus infection. Here we report that the mammalian reovirus micro1 protein, encoded by the M2 gene, was sufficient to induce apoptosis in transfected cells. We also found that micro1 localized to lipid droplets, endoplasmic reticulum, and mitochondria in both transfected cells and infected cells. Two small regions encompassing amphipathic alpha-helices within a carboxyl-terminal portion of micro1 were necessary for efficient induction of apoptosis and association with lipid droplets, endoplasmic reticulum, and mitochondria in transfected cells. Induction of apoptosis by micro1 and its association with lipid droplets and intracellular membranes in transfected cells were abrogated when micro1 was coexpressed with sigma3, with which it is known to coassemble. We propose that micro1 plays a direct role in the induction of apoptosis in infected cells and that this property may relate to the capacity of micro1 to associate with intracellular membranes. Moreover, during reovirus infection, association with sigma3 may regulate apoptosis induction by micro1.
Collapse
Affiliation(s)
- Caroline M Coffey
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | | | |
Collapse
|
34
|
Bideshi DK, Demattei MV, Rouleux-Bonnin F, Stasiak K, Tan Y, Bigot S, Bigot Y, Federici BA. Genomic sequence of Spodoptera frugiperda Ascovirus 1a, an enveloped, double-stranded DNA insect virus that manipulates apoptosis for viral reproduction. J Virol 2006; 80:11791-805. [PMID: 16987980 PMCID: PMC1642580 DOI: 10.1128/jvi.01639-06] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Ascoviruses (family Ascoviridae) are double-stranded DNA viruses with circular genomes that attack lepidopterans, where they produce large, enveloped virions, 150 by 400 nm, and cause a chronic, fatal disease with a cytopathology resembling that of apoptosis. After infection, host cell DNA is degraded, the nucleus fragments, and the cell then cleaves into large virion-containing vesicles. These vesicles and virions circulate in the hemolymph, where they are acquired by parasitic wasps during oviposition and subsequently transmitted to new hosts. To develop a better understanding of ascovirus biology, we sequenced the genome of the type species Spodoptera frugiperda ascovirus 1a (SfAV-1a). The genome consisted of 156,922 bp, with a G+C ratio of 49.2%, and contained 123 putative open reading frames coding for a variety of enzymes and virion structural proteins, of which tentative functions were assigned to 44. Among the most interesting enzymes, due to their potential role in apoptosis and viral vesicle formation, were a caspase, a cathepsin B, several kinases, E3 ubiquitin ligases, and especially several enzymes involved in lipid metabolism, including a fatty acid elongase, a sphingomyelinase, a phosphate acyltransferase, and a patatin-like phospholipase. Comparison of SfAV-1a proteins with those of other viruses showed that 10% were orthologs of Chilo iridescent virus proteins, the highest correspondence with any virus, providing further evidence that ascoviruses evolved from a lepidopteran iridovirus. The SfAV-1a genome sequence will facilitate the determination of how ascoviruses manipulate apoptosis to generate the novel virion-containing vesicles characteristic of these viruses and enable study of their origin and evolution.
Collapse
Affiliation(s)
- Dennis K Bideshi
- Department of Entomology, University of California-Riverside, Riverside, CA 92521, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Makino A, Shimojima M, Miyazawa T, Kato K, Tohya Y, Akashi H. Junctional adhesion molecule 1 is a functional receptor for feline calicivirus. J Virol 2006; 80:4482-90. [PMID: 16611908 PMCID: PMC1472022 DOI: 10.1128/jvi.80.9.4482-4490.2006] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The life cycle of calicivirus is not fully understood because most of the viruses cannot be propagated in tissue culture cells. We studied the mechanism of calicivirus entry into cells using feline calicivirus (FCV), a cultivable calicivirus. From the cDNA library of Crandell-Rees feline kidney (CRFK) cells, feline junctional adhesion molecule 1 (JAM-1), an immunoglobulin-like protein present in tight junctions, was identified as a cellular-binding molecule of the FCV F4 strain, a prototype strain in Japan. Feline JAM-1 expression in nonpermissive hamster lung cells led to binding and infection by F4 and all other strains tested. An anti-feline JAM-1 antibody reduced the binding of FCV to permissive CRFK cells and strongly suppressed the cytopathic effect (CPE) and FCV progeny production in infected cells. Some strains of FCV, such as F4 and F25, have the ability to replicate in Vero cells. We found that regardless of replication ability, FCV bound to Vero and 293T cells via simian and human JAM-1, respectively. In Vero cells, an anti-human JAM-1 antibody inhibited binding, CPE, and progeny production by F4 and F25. In addition, feline JAM-1 expression permitted FCV infection in 293T cells. Taken together, our results demonstrate that feline JAM-1 is a functional receptor for FCV, simian JAM-1 also functions as a receptor for some strains of FCV, and the interaction between FCV and JAM-1 molecules may be a determinant of viral tropism. This is the first report concerning a functional receptor for the viruses in the family Caliciviridae.
Collapse
Affiliation(s)
- Akiko Makino
- Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | | | |
Collapse
|
36
|
Smakman N, van der Bilt JDW, van den Wollenberg DJM, Hoeben RC, Borel Rinkes IHM, Kranenburg O. Immunosuppression promotes reovirus therapy of colorectal liver metastases. Cancer Gene Ther 2006; 13:815-8. [PMID: 16543920 DOI: 10.1038/sj.cgt.7700949] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Mortality due to colorectal cancer (CRC) is high and is associated with the development of liver metastases. Approximately 40% of human CRCs harbor an activating mutation in the KRAS oncogene. Tumor cells with activated KRAS are particularly sensitive to Reovirus T3D, a non-pathogenic oncolytic virus. The efficacy of virus-based therapies may be positively or negatively modulated by the host immune system. This study was designed to assess the effect of immunosuppression on Reovirus T3D oncolysis of established colorectal micrometastases in the liver. Mouse C26 CRC cells harbor a mutant Kras gene and are susceptible to Kras-dependent oncolysis by Reovirus T3D in vitro. Isolated C26 liver tumors were established in syngenic immunocompetent BALB/c mice by intrahepatic injection. Reovirus T3D therapy was given as a single intratumoral injection in control mice and in cyclosporin A-treated immunosuppressed mice. Tumor growth was analyzed over time by non-invasive bioluminescence imaging. The outgrowth of established CRC liver metastases in immunocompetent mice was efficiently but temporarily inhibited with a single injection of Reovirus T3D. Immunosuppression with cyclosporin A markedly increased and prolonged the therapeutic effect and allowed complete Reovirus T3D-induced tumor eradication in a subpopulation of the mice. We conclude that Reovirus T3D is an effective therapeutic agent against established C26 colorectal liver metastases and that immunosuppression enhances treatment efficacy. Cancer Gene Therapy (2006) 13, 815-818. doi:10.1038/sj.cgt.7700949; published online 10 March 2006.
Collapse
Affiliation(s)
- N Smakman
- Department of Surgery, University Medical Center Utrecht, GA Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
37
|
Montufar-Solis D, Garza T, Teng BB, Klein JR. Upregulation of ICOS on CD43+ CD4+ murine small intestinal intraepithelial lymphocytes during acute reovirus infection. Biochem Biophys Res Commun 2006; 342:782-90. [PMID: 16500623 PMCID: PMC2894703 DOI: 10.1016/j.bbrc.2006.02.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2006] [Accepted: 02/08/2006] [Indexed: 11/24/2022]
Abstract
Murine intestinal intraepithelial lymphocytes (IELs) can be classified according to expression of a CD43 glycoform recognized by the S7 monoclonal antibody. In this study, we examined the response of S7+ and S7- IELs in mice during acute reovirus serotype 3 (Dearing strain) infection, which was confirmed by virus-specific real-time PCR. In vivo proliferation increased significantly for both S7- and S7+ IELs on day 4 post-infection as determined by BrdU incorporation; however, expression of the inducible costimulatory (ICOS) molecule, which peaked on day 7 post-infection, was upregulated on S7+ CD4+ T cells, most of which were CD4+8- IELs. In vitro ICOS stimulation by syngeneic peritoneal macrophages induced IFN-gamma secretion from IELs from day 7 infected mice, and was suppressed by treatment with anti-ICOS mAb. Additionally, IFN-gamma mRNA increased in CD4+ IELs on day 6 post-infection. These findings indicate that S7- and S7+ IELs are differentially mobilized during the immune response to reovirus infection; that the regulated expression of ICOS is associated with S7+ IELs; and that stimulation of IELs through ICOS enhances IFN-gamma synthesis during infection.
Collapse
Affiliation(s)
- Dina Montufar-Solis
- Department of Diagnostic Sciences, Dental Branch, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
38
|
|
39
|
Tsuruta Y, Pereboeva L, Glasgow JN, Luongo CL, Komarova S, Kawakami Y, Curiel DT. Reovirus sigma1 fiber incorporated into adenovirus serotype 5 enhances infectivity via a CAR-independent pathway. Biochem Biophys Res Commun 2005; 335:205-14. [PMID: 16061208 DOI: 10.1016/j.bbrc.2005.07.054] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2005] [Accepted: 07/18/2005] [Indexed: 11/16/2022]
Abstract
Adenovirus serotype 5 (Ad5) has been used for gene therapy with limited success because of insufficient infectivity in cells with low expression of the primary receptor, the coxsackie and adenovirus receptor (CAR). To enhance infectivity in tissues with low CAR expression, tropism expansion is required via non-CAR pathways. Serotype 3 Dearing reovirus utilizes a fiber-like sigma1 protein to infect cells expressing sialic acid and junction adhesion molecule 1 (JAM1). We hypothesized that replacement of the Ad5 fiber with sigma1 would result in an Ad5 vector with CAR-independent tropism. We therefore constructed a fiber mosaic Ad5 vector, designated as Ad5-sigma1, encoding two fibers: the sigma1 and the wild-type Ad5 fiber. Functionally, Ad5-sigma1 utilized CAR, sialic acid, and JAM1 for cell transduction and achieved maximum infectivity enhancement in cells with or without CAR. Thus, we have developed a new type of Ad5 vector with expanded tropism, possessing fibers from Ad5 and reovirus, that exhibits enhanced infectivity via CAR-independent pathway(s).
Collapse
Affiliation(s)
- Yuko Tsuruta
- Division of Human Gene Therapy, Department of Medicine, and The Gene Therapy Center, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Zhang X, Ji Y, Zhang L, Harrison SC, Marinescu DC, Nibert ML, Baker TS. Features of reovirus outer capsid protein mu1 revealed by electron cryomicroscopy and image reconstruction of the virion at 7.0 Angstrom resolution. Structure 2005; 13:1545-57. [PMID: 16216585 PMCID: PMC4126556 DOI: 10.1016/j.str.2005.07.012] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2005] [Revised: 07/14/2005] [Accepted: 07/16/2005] [Indexed: 12/23/2022]
Abstract
Reovirus is a useful model for addressing the molecular basis of membrane penetration by one of the larger nonenveloped animal viruses. We now report the structure of the reovirus virion at approximately 7.0 A resolution as obtained by electron cryomicroscopy and three-dimensional image reconstruction. Several features of the myristoylated outer capsid protein mu1, not seen in a previous X-ray crystal structure of the mu1-sigma3 heterohexamer, are evident in the virion. These features appear to be important for stabilizing the outer capsid, regulating the conformational changes in mu1 that accompany perforation of target membranes, and contributing directly to membrane penetration during cell entry.
Collapse
Affiliation(s)
- Xing Zhang
- Department of Biological Sciences Purdue University West Lafayette, Indiana 47907
| | - Yongchang Ji
- Computer Sciences Department University of Central Florida Orlando, Florida 32816
| | - Lan Zhang
- Laboratory of Molecular Medicine, Children’s Hospital Boston, Massachusetts 02115
| | - Stephen C. Harrison
- Laboratory of Molecular Medicine, Children’s Hospital Boston, Massachusetts 02115
- Howard Hughes Medical Institute Children’s Hospital Boston, Massachusetts 02115
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School Boston, Massachusetts 02115
| | - Dan C. Marinescu
- Computer Sciences Department University of Central Florida Orlando, Florida 32816
| | - Max L. Nibert
- Department of Microbiology and Molecular Genetics Harvard Medical School Boston, Massachusetts 02115
| | - Timothy S. Baker
- Department of Biological Sciences Purdue University West Lafayette, Indiana 47907
- Department of Chemistry and Biochemistry and Department of Molecular Biology University of California, San Diego La Jolla, California 92093
| |
Collapse
|
41
|
Clarke P, Debiasi RL, Goody R, Hoyt CC, Richardson-Burns S, Tyler KL. Mechanisms of reovirus-induced cell death and tissue injury: role of apoptosis and virus-induced perturbation of host-cell signaling and transcription factor activation. Viral Immunol 2005; 18:89-115. [PMID: 15802955 PMCID: PMC2366905 DOI: 10.1089/vim.2005.18.89] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Reoviruses have provided insight into the roles played by specific viral genes and the proteins they encode in virus-induced cell death and tissue injury. Apoptosis is a major mechanism of cell death induced by reoviruses. Reovirus-induced apoptosis involves both death-receptor and mitochondrial cell death pathways. Reovirus infection is associated with selective activation of mitogen activated protein kinase (MAPK) cascades including JNK/SAPK. Infection also perturbs transcription factor signaling resulting in the activation of c-Jun and initial activation followed by strain-specific inhibition of NF-kappaB. Infection results in changes in the expression of genes encoding proteins involved in cell cycle regulation, apoptosis, and DNA damage and repair processes. Apoptosis is a major mechanism of reovirus-induced injury to key target organs including the CNS and heart. Inhibition of apoptosis through the use of caspase or calpain inhibitors, minocycline, or in caspase 3(-/-) mice all reduce virus-associated tissue injury and enhance survival of infected animals. Reoviruses induce apoptotic cell death (oncolysis) in a wide variety of cancer cells and tumors. The capacity of reoviruses to grow efficiently in transformed cells is enhanced by the presence of an activated Ras signaling pathway likely through mechanisms involving inhibition of antiviral PKR signaling and activation of Ras/RalGEF/p38 pathways. The potential of reovirus-induced oncolysis in therapy of human cancers is currently being investigated in phase I/II clinical trials.
Collapse
Affiliation(s)
- P Clarke
- Department of Neurology, University of Colorado Health Sciences Center, 4200 East 9th Ave., Denver, CO 80262, USA
| | | | | | | | | | | |
Collapse
|
42
|
Steele TA, Hauser CC. The role of interferon-alpha in a successful murine tumor therapy. Exp Biol Med (Maywood) 2005; 230:487-93. [PMID: 15985624 DOI: 10.1177/153537020523000707] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Combination therapy using reovirus type 3 and the chemo-therapeutic agent 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) is sufficient to cure approximately 80% of EL-4 lymphoma tumor-bearing BD2F1 male mice. Cured animals can be challenged with the EL-4 tumor, in the absence of the therapy, to yield 100% survival, whereas those challenged with heterologous tumor produce 0% survival. These results strongly suggest that a host-immune response is responsible for the observed therapeutic effect. Reovirus, a double-stranded RNA virus, is an efficient inducer of type I interferon. In an effort to determine the role of virus in this therapy, we substituted interferon-alpha (IFN-alpha) for reovirus in the therapy. Doses of IFN-alpha from 1000-10,000 U were capable of replacing reovirus to produce cure rates similar to reovirus. Spleen cells isolated from therapy-treated animals demonstrated high levels of cytotoxicity against the natural killer cell-sensitive cell line YAC-1, but not against EL-4 tumor. In vitro stimulation of isolated spleen cells by IFN-alpha resulted in a high level of natural killer cell activity, but no cytotoxicity against the EL-4 tumor. A significant antiproliferative effect against the EL-4 tumor in cell culture was demonstrated by IFN-alpha. Finally, therapy-treated, tumor-bearing mice that were injected with anti-IFN-alpha + -beta antibodies had similar survival levels as control mice, indicating that other cytokines might also play a role in promoting tumor killing. These investigations suggest that IFN-alpha may be a mediator of antitumor activity in the reovirus therapy system.
Collapse
Affiliation(s)
- Timothy A Steele
- Department of Microbiology, Osteopathic Medical Center, Des Moines University, 3200 Grand Avenue, Des Moines, IA 50312, USA.
| | | |
Collapse
|
43
|
Renault S, Stasiak K, Federici B, Bigot Y. Commensal and mutualistic relationships of reoviruses with their parasitoid wasp hosts. JOURNAL OF INSECT PHYSIOLOGY 2005; 51:137-48. [PMID: 15749099 PMCID: PMC7127831 DOI: 10.1016/j.jinsphys.2004.08.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2004] [Accepted: 08/20/2004] [Indexed: 05/16/2023]
Abstract
During evolution, certain endoparasitoid wasps have developed mechanisms to suppress the defence systems of their hosts. For this purpose, these species, all of which belong to the families Ichneumonidae and Braconidae, inject various kinds of virus-like particles. The most studied of these particles are classified as polydnaviruses (family Polydnaviridae) which are symbiotic viruses. Over the past decade, it has also been shown that several wasp species harbour reoviruses (family Reoviridae), and that two of these suppress host defence, allowing the development of the parasitoid eggs. In this paper, we summarize the key features of these viruses and their relationships with their wasp hosts. Five reoviruses are known that appear to be non-pathogenic for the wasps. Three of these, McRVLP, HeRV, OpRVLP, use their wasp hosts as vectors, and do not appear to be involved in host defence suppression. The fourth, DpRV-1, is a commensal reovirus detected in most field populations of the wasp, Diadromus pulchellus. This reovirus is always found associated with an ascovirus, DpAV-4a, which is indispensable for host immune suppression. Although DpRV-1 has not been shown to directly increase D. pulchellus parasitic success, it may contribute to this success by retarding DpAV-4a replication in the wasp. The fifth reovirus, DpRV-2, occurs in a specific population of D. pulchellus in which DpRV-1 and DpAV-4 are absent. This virus has a mutualistic relationship with its wasp host, as its injection by females during oviposition is essential for host immunosuppression. Interestingly, these viruses belong to several different reovirus genera.
Collapse
Affiliation(s)
- Sylvaine Renault
- Laboratoire d'Etude des Parasites Génétiques, Université François Rabelais, UFR Sciences et Techniques, Parc Grandmont, 37200 Tours, France.
| | | | | | | |
Collapse
|
44
|
Abstract
Rotavirus entry into a cell is a complex multistep process in which different domains of the rotavirus surface proteins interact with different cell surface molecules, which act as attachment and entry receptors. These recently described molecules include several integrins and a heat shock protein, which have been found to be associated with cell membrane lipid microdomains. The requirement during viral entry for several cell molecules, which might be required to be present and organized in a precise fashion, could explain the selective cell and tissue tropism of these viruses. This review focuses on recent data describing the virus-receptor interactions, the role of lipid microdomains in rotavirus infection and the mechanism of rotavirus cell entry.
Collapse
Affiliation(s)
- Susana López
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| | | |
Collapse
|
45
|
Lapadat R, Debiasi RL, Johnson GL, Tyler KL, Shah I. Genes Induced by Reovirus Infection Have a Distinct Modular Cis-Regulatory Architecture. Curr Genomics 2005; 6:501-513. [PMID: 23335855 DOI: 10.2174/138920205775067675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The availability of complete genomes and global gene expression profiling has greatly facilitated analysis of complex genetic regulatory systems. We describe the use of a bioinformatics strategy for analyzing the cis-regulatory design of genes diferentially regulated during viral infection of a target cell. The large-scale transcriptional activity of human embryonic kidney (HEK293) cells to reovirus (serotype 3 Abney) infection was measured using the Affymetrix HU-95Av2 gene array. Comparing the 2000 base pairs of 5' upstream sequence for the most differentially expressed genes revealed highly preserved sequence regions, which we call "modules". Higher-order patterns of modules, called "super-modules", were significantly over-represented in the 5' upstream regions of transcriptionally responsive genes. These supermodules contain binding sites for multiple transcription factors and tend to define the role of genes in processes associated with reovirus infection. The supermodular design encodes a cis-regulatory logic for transducing upstream signaling for the control of expression of genes involved in similar biological processes. In the case of reovirus infection, these processes recapitulate the integrated response of cells including signal transduction, transcriptional regulation, cell cycle control, and apoptosis. The computational strategies described for analyzing gene expression data to discover cis-regulatory features and associating them with pathological processes represents a novel approach to studying the interaction of a pathogen with its target cells.
Collapse
Affiliation(s)
- R Lapadat
- Department of Pharmacology, University of Colorado Health Sciences Center, Denver, Colorado
| | | | | | | | | |
Collapse
|
46
|
Chu VC, Whittaker GR. Influenza virus entry and infection require host cell N-linked glycoprotein. Proc Natl Acad Sci U S A 2004; 101:18153-8. [PMID: 15601777 PMCID: PMC535801 DOI: 10.1073/pnas.0405172102] [Citation(s) in RCA: 159] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A widely held view of influenza virus infection is that the viral receptor consists of cell surface carbohydrate sialic acid, which can be present as glycoprotein or glycolipid. Here, we examined influenza virus entry and infection in Lec1 cells, a mutant CHO cell line deficient in terminal N-linked glycosylation caused by a mutation in the N-acetylglucosaminyltransferase I (GnT1) gene. We show that influenza virus cannot infect Lec1 cells, despite having full capacity to undergo virus binding and fusion. Lec1 cells also show no virus replication defect, and infection was restored in Lec1 cells expressing wild-type GnT1. Viruses were apparently arrested at the level of internalization from the plasma membrane and were not endocytosed. Lec1 cells were refractory to infection by several strains of influenza virus, including H1 and H3 strains of influenza A, as well as influenza B virus. Finally, cleavage of N-glycans from wild-type CHO cells markedly reduced infection by influenza virus. We suggest that influenza virus specifically requires N-linked glycoprotein for entry into cells, and that sialic acid, although acting as an efficient attachment factor, is not sufficient as an influenza virus receptor in vivo.
Collapse
Affiliation(s)
- Victor C Chu
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
47
|
Organ EL, Nalbantyan CD, Nanney LB, Woodward SC, Sheng J, Dubois RN, Price J, Sutcliffe M, Coffey RJ, Rubin DH. Effects of transforming growth factor-alpha (TGF-alpha) in vitro and in vivo on reovirus replication. DNA Cell Biol 2004; 23:430-41. [PMID: 15294092 DOI: 10.1089/1044549041474751] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We have utilized growth factors in in vitro and in vivo systems to examine the role of cellular proliferation in reovirus replication. In vitro, proliferating RIE-1 cells can be infected with whole reovirus virions, but are relatively resistant to infection once confluent (Go arrest). It has been shown that TGF-alpha, which signals through the EGF-receptor (EGF-R), is capable of dramatically increasing the number of RIE-1 cells entering the S-phase in the presence of additional serum factors. Stimulation of the EGF-R without serum results in minimal increases in cells entering the S-phase with a restriction in reovirus replication. Therefore, other factors in serum are essential for fully permissive infection. In vivo, we used metallothionein (MT) promoter/enhancer-TGF-alpha transgenic mice to study the effect of cytokine activation on reovirus type 1 infection. Virus replication decreased following oral infection in these transgenic mice at 1 month of age, concordant with increased mucin production. Titers of reovirus obtained from the livers of 1 year old transgenic mice were approximately 10-fold higher than titers obtained in control mice. Taken together, these data indicate that while growth factor activation ultimately leads to an increase in virus infectivity, other factors may be necessary for reovirus replication.
Collapse
Affiliation(s)
- Edward L Organ
- Department of Research Medicine, VA Tennessee Valley Healthcare System, Nashville, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Mortola E, Noad R, Roy P. Bluetongue virus outer capsid proteins are sufficient to trigger apoptosis in mammalian cells. J Virol 2004; 78:2875-83. [PMID: 14990706 PMCID: PMC353771 DOI: 10.1128/jvi.78.6.2875-2883.2004] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bluetongue virus (BTV) is transmitted by Culicoides sp. biting midges to livestock, causing severe hemorrhagic disease in sheep, but is asymptomatic in the insect host. Similarly, BTV causes rapid cell death in infected mammalian cells in culture, whereas infections of insect cells are long-term and unapparent, despite productive virus replication. To assess whether apoptosis plays any role in these two distinct cell responses, we have investigated apoptosis in cultured insect and mammalian cells. Three different mammalian cell lines and three different insect cell lines including Culicoides variipennis (KC) cells were infected with BTV serotype 10, and the key apoptosis indicators of cell morphology, chromosomal DNA fragmentation, and caspase-3 activation were monitored. BTV infection induced apoptosis with the activation of the transcription factor nuclear factor kappaB (NF-kappaB) in all three mammalian cell lines. In contrast, no evidence for apoptosis was detected in any of the three insect cell lines in response to BTV infection. Using inhibitors of endosomal acidification and UV-inactivated virus, we established that virus uncoating, but not productive virus replication, is necessary for BTV to trigger apoptosis in mammalian cells. Intracellular expression of the viral outer capsid proteins VP2 and VP5 or the two major nonstructural proteins NS1 and NS2 was not sufficient to trigger an apoptotic response. However, extracellular treatment with a combination of purified recombinant VP2 and VP5, but not with each protein used separately, resulted in an apoptotic response. Virus- and VP2-VP5-stimulated apoptotic responses were both inhibited by inhibitors of endosomal acidification. Thus, for BTV the viral outer capsid proteins alone are sufficient to trigger apoptosis.
Collapse
Affiliation(s)
- Eduardo Mortola
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, United Kingdom
| | | | | |
Collapse
|
49
|
Kim EJ, Sampathkumar SG, Jones MB, Rhee JK, Baskaran G, Goon S, Yarema KJ. Characterization of the metabolic flux and apoptotic effects of O-hydroxyl- and N-acyl-modified N-acetylmannosamine analogs in Jurkat cells. J Biol Chem 2004; 279:18342-52. [PMID: 14966124 DOI: 10.1074/jbc.m400205200] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The supplementation of the sialic acid biosynthetic pathway with exogenously supplied N-acetylmannosamine (ManNAc) analogs has many potential biomedical and biotechnological applications. In this work, we explore the structure-activity relationship of Man-NAc analogs on cell viability and metabolic flux into the sialic acid biosynthetic pathway to gain a better understanding of the fundamental biology underlying "glycosylation engineering" technology. A panel of ManNAc analogs bearing various modifications on the hydroxyl groups as well as substitutions at the N-acyl position was investigated. Increasing the carbon chain length of ester derivatives attached to the hydroxyl groups increased the metabolic efficiency of sialic acid production, whereas similar modification to the N-acyl group decreased efficiency. In both cases, increases in chain length decreased cell viability; DNA ladder formation, Annexin V-FITC two-dimensional flow cytometry assays, caspase-3 activation, and down-regulation of sialoglycoconjugate-processing enzymes established that the observed growth inhibition and toxicity resulted from apoptosis. Two of the panel of 12 analogs tested, specifically Ac(4)ManNLev and Ac(4) ManNHomoLev, were highly toxic. Interestingly, both of these analogs maintained a ketone functionality in the same position relative to the core monosaccharide structure, and both also inhibited flux through the sialic acid pathway (the remainder of the less toxic analogs either increased or had no measurable impact on flux). These results provide fundamental insights into the role of sialic acid metabolism in apoptosis by demonstrating that ManNAc analogs can modulate apoptosis both indirectly via hydroxylgroup effects and directly through N-acyl-group effects.
Collapse
Affiliation(s)
- Eun Jeong Kim
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | | | | | | | | | | | |
Collapse
|