1
|
Ramachandran D, Mao Q, Liao D, Kamal M, Schürmann P, Eisenblätter R, Geffers R, Balint B, Lecompte L, Servant N, Chérif LL, Lamy C, Baulande S, Legoix P, Le Tourneau C, Latouche A, Hillemanns P, Scholl S, Dörk T. Methylation, Gene Expression, and Risk Genotypes at the TERT-CLPTM1L Locus in Cervical Cancer. Mol Carcinog 2025; 64:14-24. [PMID: 39352309 DOI: 10.1002/mc.23822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/30/2024] [Accepted: 09/11/2024] [Indexed: 10/03/2024]
Abstract
The reverse transcriptase subunit of telomerase, TERT, is frequently activated in high-grade dysplasia and invasive cancers of the uterine cervix. Telomerase activation through hypomethylation of the TERT promoter holds promise as a biomarker for cervical cancer progression, however, specific CpG sites involved in cervical cancer risk remain to be fully defined. A recent genome-wide association study on cervical cancer identified genetic polymorphisms at 5p13.33 (close to TERT-CLPTM1L) but the underlying mechanisms are undetermined. We investigated 529 CpG sites within the TERT promoter region and 3 CpG islands nearby, and 21 CpG sites within CLPTM1L in 190 bisulfite-converted cervical tumor DNA samples from BioRAIDs (NCT02428842). We identified eight CpG sites within TERT intron 2 where methylation was significantly associated with the genotypes of cervical cancer risk variants rs27070 and rs459961 in cervical tumors after multiple testing correction (p < 9.4 × 10E-5). Hypermethylation at chr5:1289663 correlated with decreased TERT mRNA levels. In an independent series of 188 normal or dysplastic cervical tissues, rare alleles of rs27070 and rs459961 were associated with low basal CLPTM1L levels and with the absence of TERT mRNA in HPV-negative samples, consistent with their proposed role as protective variants for cervical cancer. HPV infection was associated with increased CLPTM1L and TERT levels. Collectively, our results provide a link between cervical cancer risk variants, methylation, and gene expression and implicate both TERT and CLPTM1L as genes modulated by genomic background and HPV infection during cervical cancer development.
Collapse
Affiliation(s)
| | - Qianqian Mao
- Gynaecology Research Unit, Hannover Medical School, Hannover, Germany
| | - Dandan Liao
- Gynaecology Research Unit, Hannover Medical School, Hannover, Germany
| | - Maud Kamal
- Department of Drug Development and Innovation (D3i), Institut Curie, Paris and Saint-Cloud, France
| | - Peter Schürmann
- Gynaecology Research Unit, Hannover Medical School, Hannover, Germany
| | | | - Robert Geffers
- Genome Analytics, Helmholtz Center for Infection Research, Braunschweig, Germany
| | | | - Lolita Lecompte
- Institut Curie, INSERM U900, Mines Paris Tech, Paris/Saint-Cloud, France
| | - Nicolas Servant
- Institut Curie, INSERM U900, Mines Paris Tech, Paris/Saint-Cloud, France
| | - Linda Larbi Chérif
- Department of Drug Development and Innovation (D3i), Institut Curie, Paris and Saint-Cloud, France
| | - Constance Lamy
- Department of Drug Development and Innovation (D3i), Institut Curie, Paris and Saint-Cloud, France
| | - Sylvain Baulande
- Institut Curie, ICGex Next-Generation Sequencing platform, Paris, France
| | - Patricia Legoix
- Institut Curie, ICGex Next-Generation Sequencing platform, Paris, France
| | - Christophe Le Tourneau
- Department of Drug Development and Innovation (D3i), Institut Curie, Paris and Saint-Cloud, France
- Institut Curie, INSERM U900, Mines Paris Tech, Paris/Saint-Cloud, France
| | - Aurélien Latouche
- Institut Curie, INSERM U900, Mines Paris Tech, Paris/Saint-Cloud, France
- Conservatoire National des Arts et Métiers, Paris, France
| | - Peter Hillemanns
- Gynaecology Research Unit, Hannover Medical School, Hannover, Germany
| | - Suzy Scholl
- Department of Drug Development and Innovation (D3i), Institut Curie, Paris and Saint-Cloud, France
| | - Thilo Dörk
- Gynaecology Research Unit, Hannover Medical School, Hannover, Germany
| |
Collapse
|
2
|
Skelin J, Tomaić V. Comparative Analysis of Alpha and Beta HPV E6 Oncoproteins: Insights into Functional Distinctions and Divergent Mechanisms of Pathogenesis. Viruses 2023; 15:2253. [PMID: 38005929 PMCID: PMC10674601 DOI: 10.3390/v15112253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Human papillomaviruses (HPVs) represent a diverse group of DNA viruses that infect epithelial cells of mucosal and cutaneous tissues, leading to a wide spectrum of clinical outcomes. Among various HPVs, alpha (α) and beta (β) types have garnered significant attention due to their associations with human health. α-HPVs are primarily linked to infections of the mucosa, with high-risk subtypes, such as HPV16 and HPV18, being the major etiological agents of cervical and oropharyngeal cancers. In contrast, β-HPVs are predominantly associated with cutaneous infections and are commonly found on healthy skin. However, certain β-types, notably HPV5 and HPV8, have been implicated in the development of non-melanoma skin cancers in immunocompromised individuals, highlighting their potential role in pathogenicity. In this review, we comprehensively analyze the similarities and differences between α- and β-HPV E6 oncoproteins, one of the major drivers of viral replication and cellular transformation, and how these impact viral fitness and the capacity to induce malignancy. In particular, we compare the mechanisms these oncoproteins use to modulate common cellular processes-apoptosis, DNA damage repair, cell differentiation, and the immune response-further shedding light on their shared and distinct features, which enable them to replicate at divergent locations of the human body and cause different types of cancer.
Collapse
Affiliation(s)
| | - Vjekoslav Tomaić
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia;
| |
Collapse
|
3
|
Condrat CE, Cretoiu D, Radoi VE, Mihele DM, Tovaru M, Bordea CI, Voinea SC, Suciu N. Unraveling Immunological Dynamics: HPV Infection in Women-Insights from Pregnancy. Viruses 2023; 15:2011. [PMID: 37896788 PMCID: PMC10611104 DOI: 10.3390/v15102011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
During pregnancy, hormonal and immune adaptations are vital for supporting the genetically distinct fetus during elevated infection risks. The global prevalence of HPV necessitates its consideration during pregnancy. Despite a seemingly mild immune response, historical gestational viral infections underscore its significance. Acknowledging the established HPV infection risks during pregnancy, our review explores the unfolding immunological changes in pregnant women with HPV. Our analysis aims to uncover strategies for safely modulating the immune system, mitigating adverse pregnancy consequences, and enhancing maternal and child health. This comprehensive narrative review delves into the existing knowledge and studies on this topic.
Collapse
Affiliation(s)
- Carmen Elena Condrat
- Department of Obstetrics and Gynecology, Polizu Clinical Hospital, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd., 050474 Bucharest, Romania; (C.E.C.)
| | - Dragos Cretoiu
- Department of Genetics, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd., 050474 Bucharest, Romania; (D.C.); (V.E.R.)
- Fetal Medicine Excellence Research Center, Alessandrescu-Rusescu National Institute for Mother and Child Health, 020395 Bucharest, Romania
| | - Viorica Elena Radoi
- Department of Genetics, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd., 050474 Bucharest, Romania; (D.C.); (V.E.R.)
- Fetal Medicine Excellence Research Center, Alessandrescu-Rusescu National Institute for Mother and Child Health, 020395 Bucharest, Romania
| | - Dana Mihaela Mihele
- Department of Dermatology, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd., 050474 Bucharest, Romania
- Dermatology Department, Victor Babes Clinical Hospital of Infectious and Tropical Diseases, 030303 Bucharest, Romania
| | - Mihaela Tovaru
- Department of Dermatology, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd., 050474 Bucharest, Romania
- Dermatology Department, Victor Babes Clinical Hospital of Infectious and Tropical Diseases, 030303 Bucharest, Romania
| | - Cristian Ioan Bordea
- Department of Surgical Oncology, Prof. Dr. Alexandru Trestioreanu Oncology Institute, Carol Davila University of Medicine and Pharmacy, 252 Fundeni Rd., 022328 Bucharest, Romania
| | - Silviu Cristian Voinea
- Department of Surgical Oncology, Prof. Dr. Alexandru Trestioreanu Oncology Institute, Carol Davila University of Medicine and Pharmacy, 252 Fundeni Rd., 022328 Bucharest, Romania
| | - Nicolae Suciu
- Department of Obstetrics and Gynecology, Polizu Clinical Hospital, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd., 050474 Bucharest, Romania; (C.E.C.)
- Fetal Medicine Excellence Research Center, Alessandrescu-Rusescu National Institute for Mother and Child Health, 020395 Bucharest, Romania
- Department of Obstetrics and Gynecology, Polizu Clinical Hospital, Alessandrescu-Rusescu National Institute for Mother and Child Health, 020395 Bucharest, Romania
| |
Collapse
|
4
|
Yapindi L, Bowley T, Kurtaneck N, Bergeson RL, James K, Wilbourne J, Harrod CK, Hernandez BY, Emerling BM, Yates C, Harrod R. Activation of p53-regulated pro-survival signals and hypoxia-independent mitochondrial targeting of TIGAR by human papillomavirus E6 oncoproteins. Virology 2023; 585:1-20. [PMID: 37257253 PMCID: PMC10527176 DOI: 10.1016/j.virol.2023.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 05/02/2023] [Accepted: 05/11/2023] [Indexed: 06/02/2023]
Abstract
The high-risk subtype human papillomaviruses (hrHPVs) infect and oncogenically transform basal epidermal stem cells associated with the development of squamous-cell epithelial cancers. The viral E6 oncoprotein destabilizes the p53 tumor suppressor, inhibits p53 K120-acetylation by the Tat-interacting protein of 60 kDa (TIP60, or Kat5), and prevents p53-dependent apoptosis. Intriguingly, the p53 gene is infrequently mutated in HPV + cervical cancer clinical isolates which suggests a possible paradoxical role for this gatekeeper in viral carcinogenesis. Here, we demonstrate that E6 activates the TP53-induced glycolysis and apoptosis regulator (TIGAR) and protects cells against oncogene-induced oxidative genotoxicity. The E6 oncoprotein induces a Warburg-like stress response and activates PI3K/PI5P4K/AKT-signaling that phosphorylates the TIGAR on serine residues and induces its hypoxia-independent mitochondrial targeting in hrHPV-transformed cells. Primary HPV + cervical cancer tissues contain high levels of TIGAR, p53, and c-Myc and our xenograft studies have further shown that lentiviral-siRNA-knockdown of TIGAR expression inhibits hrHPV-induced tumorigenesis in vivo. These findings suggest the modulation of p53 pro-survival signals and the antioxidant functions of TIGAR could have key ancillary roles during HPV carcinogenesis.
Collapse
Affiliation(s)
- Lacin Yapindi
- Laboratory of Molecular Virology, Department of Biological Sciences and the Dedman College Center for Drug Discovery, Design & Delivery, Southern Methodist University, Dallas, TX, 75275-0376, United States
| | - Tetiana Bowley
- Laboratory of Molecular Virology, Department of Biological Sciences and the Dedman College Center for Drug Discovery, Design & Delivery, Southern Methodist University, Dallas, TX, 75275-0376, United States
| | - Nick Kurtaneck
- Laboratory of Molecular Virology, Department of Biological Sciences and the Dedman College Center for Drug Discovery, Design & Delivery, Southern Methodist University, Dallas, TX, 75275-0376, United States
| | - Rachel L Bergeson
- Laboratory of Molecular Virology, Department of Biological Sciences and the Dedman College Center for Drug Discovery, Design & Delivery, Southern Methodist University, Dallas, TX, 75275-0376, United States
| | - Kylie James
- Laboratory of Molecular Virology, Department of Biological Sciences and the Dedman College Center for Drug Discovery, Design & Delivery, Southern Methodist University, Dallas, TX, 75275-0376, United States
| | - Jillian Wilbourne
- Laboratory of Molecular Virology, Department of Biological Sciences and the Dedman College Center for Drug Discovery, Design & Delivery, Southern Methodist University, Dallas, TX, 75275-0376, United States
| | - Carolyn K Harrod
- Laboratory of Molecular Virology, Department of Biological Sciences and the Dedman College Center for Drug Discovery, Design & Delivery, Southern Methodist University, Dallas, TX, 75275-0376, United States
| | - Brenda Y Hernandez
- Hawaii Tumor Registry, University of Hawaii Cancer Center, Honolulu, HI, 96813, United States
| | | | - Courtney Yates
- Laboratory Animal Resource Center, Southern Methodist University, Dallas, TX, 75275, United States
| | - Robert Harrod
- Laboratory of Molecular Virology, Department of Biological Sciences and the Dedman College Center for Drug Discovery, Design & Delivery, Southern Methodist University, Dallas, TX, 75275-0376, United States.
| |
Collapse
|
5
|
Egawa N. Papillomaviruses and cancer: commonalities and differences in HPV carcinogenesis at different sites of the body. Int J Clin Oncol 2023; 28:956-964. [PMID: 37199886 PMCID: PMC10390352 DOI: 10.1007/s10147-023-02340-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 04/07/2023] [Indexed: 05/19/2023]
Abstract
Human papillomavirus (HPV) is associated with 5% of all cancers globally at a range of body sites, including cervix, anus, penis, vagina, vulva, and oropharynx. These cancers claim > 400,000 lives annually. The persistent infection of HPV and the function of viral oncogenes are the primary causes of HPV-related cancers. However, only some HPV-infected persons or infected lesions will progress to cancer, and the burden of HPV-associated cancer varies widely according to gender and the part of the body infected. The dissimilarity in infection rates at different sites can explain only a small part of the differences observed. Much responsibility likely sits with contributions of specific epithelial cells and the cellular microenvironment at infected sites to the process of malignant transformation, both of which affect the regulation of viral gene expression and the viral life cycle. By understanding the biology of these epithelial sites, better diagnosis/treatment/management of HPV-associated cancer and/or pre-cancer lesions will be provided.
Collapse
Affiliation(s)
- Nagayasu Egawa
- Department of Pathology, University of Cambridge, Cambridge, CB2 1QP, UK.
| |
Collapse
|
6
|
Khalil MI, Yang C, Vu L, Chadha S, Nabors H, Welbon C, James CD, Morgan IM, Spanos WC, Pyeon D. HPV upregulates MARCHF8 ubiquitin ligase and inhibits apoptosis by degrading the death receptors in head and neck cancer. PLoS Pathog 2023; 19:e1011171. [PMID: 36867660 PMCID: PMC10016708 DOI: 10.1371/journal.ppat.1011171] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 03/15/2023] [Accepted: 02/01/2023] [Indexed: 03/04/2023] Open
Abstract
The membrane-associated RING-CH-type finger ubiquitin ligase MARCHF8 is a human homolog of the viral ubiquitin ligases Kaposi's sarcoma herpesvirus K3 and K5 that promote host immune evasion. Previous studies have shown that MARCHF8 ubiquitinates several immune receptors, such as the major histocompatibility complex II and CD86. While human papillomavirus (HPV) does not encode any ubiquitin ligase, the viral oncoproteins E6 and E7 are known to regulate host ubiquitin ligases. Here, we report that MARCHF8 expression is upregulated in HPV-positive head and neck cancer (HNC) patients but not in HPV-negative HNC patients compared to normal individuals. The MARCHF8 promoter is highly activated by HPV oncoprotein E6-induced MYC/MAX transcriptional activation. The knockdown of MARCHF8 expression in human HPV-positive HNC cells restores cell surface expression of the tumor necrosis factor receptor superfamily (TNFRSF) death receptors, FAS, TRAIL-R1, and TRAIL-R2, and enhances apoptosis. MARCHF8 protein directly interacts with and ubiquitinates the TNFRSF death receptors. Further, MARCHF8 knockout in mouse oral cancer cells expressing HPV16 E6 and E7 augments cancer cell apoptosis and suppresses tumor growth in vivo. Our findings suggest that HPV inhibits host cell apoptosis by upregulating MARCHF8 and degrading TNFRSF death receptors in HPV-positive HNC cells.
Collapse
Affiliation(s)
- Mohamed I. Khalil
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
- Department of Molecular Biology, National Research Centre, El-Buhouth St., Cairo, Egypt
| | - Canchai Yang
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Lexi Vu
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Smriti Chadha
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Harrison Nabors
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Craig Welbon
- Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, South Dakota, United States of America
| | - Claire D. James
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Iain M. Morgan
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - William C. Spanos
- Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, South Dakota, United States of America
| | - Dohun Pyeon
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
- * E-mail:
| |
Collapse
|
7
|
Tornesello ML, Cerasuolo A, Starita N, Tornesello AL, Bonelli P, Tuccillo FM, Buonaguro L, Isaguliants MG, Buonaguro FM. The Molecular Interplay between Human Oncoviruses and Telomerase in Cancer Development. Cancers (Basel) 2022; 14:5257. [PMID: 36358677 PMCID: PMC9659228 DOI: 10.3390/cancers14215257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/21/2022] [Accepted: 10/22/2022] [Indexed: 08/29/2023] Open
Abstract
Human oncoviruses are able to subvert telomerase function in cancer cells through multiple strategies. The activity of the catalytic subunit of telomerase (TERT) is universally enhanced in virus-related cancers. Viral oncoproteins, such as high-risk human papillomavirus (HPV) E6, Epstein-Barr virus (EBV) LMP1, Kaposi's sarcoma-associated herpesvirus (HHV-8) LANA, hepatitis B virus (HBV) HBVx, hepatitis C virus (HCV) core protein and human T-cell leukemia virus-1 (HTLV-1) Tax protein, interact with regulatory elements in the infected cells and contribute to the transcriptional activation of TERT gene. Specifically, viral oncoproteins have been shown to bind TERT promoter, to induce post-transcriptional alterations of TERT mRNA and to cause epigenetic modifications, which have important effects on the regulation of telomeric and extra-telomeric functions of the telomerase. Other viruses, such as herpesviruses, operate by integrating their genomes within the telomeres or by inducing alternative lengthening of telomeres (ALT) in non-ALT cells. In this review, we recapitulate on recent findings on virus-telomerase/telomeres interplay and the importance of TERT-related oncogenic pathways activated by cancer-causing viruses.
Collapse
Affiliation(s)
- Maria Lina Tornesello
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, Via Mariano Semmola, 80131 Napoli, Italy
| | - Andrea Cerasuolo
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, Via Mariano Semmola, 80131 Napoli, Italy
| | - Noemy Starita
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, Via Mariano Semmola, 80131 Napoli, Italy
| | - Anna Lucia Tornesello
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, Via Mariano Semmola, 80131 Napoli, Italy
| | - Patrizia Bonelli
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, Via Mariano Semmola, 80131 Napoli, Italy
| | - Franca Maria Tuccillo
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, Via Mariano Semmola, 80131 Napoli, Italy
| | - Luigi Buonaguro
- Cancer Immunoregulation Unit, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, Via Mariano Semmola, 80131 Napoli, Italy
| | | | - Franco M. Buonaguro
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, Via Mariano Semmola, 80131 Napoli, Italy
| |
Collapse
|
8
|
Wei Y, Wei C, Chen L, Liu N, Ou Q, Yin JC, Pang J, Fang Z, Wu X, Wang X, Mu D, Shao Y, Yu J, Yuan S. Genomic Correlates of Unfavorable Outcome in Locally Advanced Cervical Cancer Treated with Neoadjuvant Chemoradiation. Cancer Res Treat 2022; 54:1209-1218. [PMID: 35038823 PMCID: PMC9582489 DOI: 10.4143/crt.2021.963] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 01/13/2022] [Indexed: 11/21/2022] Open
Abstract
PURPOSE Neoadjuvant therapy modality can increase the operability rate and mitigate pathological risks in locally advanced cervical cancer, but treatment response varies widely. It remains unclear whether genetic alterations correlate with the response to neoadjuvant therapy and disease-free survival (DFS) in locally advanced cervical cancer. MATERIALS AND METHODS A total of 62 locally advanced cervical cancer (stage IB-IIA) patients who received neoadjuvant chemoradiation plus radical hysterectomy were retrospectively analyzed. Patients' tumor biopsy samples were comprehensively profiled using targeted next generation sequencing. Pathologic response to neoadjuvant treatment and DFS were evaluated against the association with genomic traits. RESULTS Genetic alterations of PIK3CA were most frequent (37%), comparable to that of Caucasian populations from The Cancer Genome Atlas. The mutation frequency of genes including TERT, POLD1, NOS2, and FGFR3 was significantly higher in Chinese patients whereas RPTOR, EGFR, and TP53 were underrepresented in comparison to Caucasians. Germline mutations were identified in 21% (13/62) of the cohort and more than half (57%) had mutations in DNA damage repair genes, including BRCA1/2, TP53 and PALB2. Importantly, high tumor mutation burden, TP53 polymorphism (rs1042522), and KEAP1 mutations were found to be associated with poor pathologic response to neoadjuvant chemoradiation treatment. KEAP1 mutations, PIK3CA-SOX2 co-amplification, TERC copy number gain, and TYMS polymorphism correlated with an increased risk of disease relapse. CONCLUSION We report the genomic profile of locally advanced cervical cancer patients and the distinction between Asian and Caucasian cohorts. Our findings highlight genomic traits associated with unfavorable neoadjuvant chemoradiation response and a higher risk of early disease recurrence.
Collapse
Affiliation(s)
- Yuchun Wei
- Cheeloo College of Medicine, Shandong University, Jinan,
China
- Department of Radiology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan,
China
| | - Chuqing Wei
- Department of Radiology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan,
China
| | - Liang Chen
- Department of Gynecologic Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan,
China
| | - Ning Liu
- Department of Radiology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan,
China
| | - Qiuxiang Ou
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing,
China
| | - Jiani C. Yin
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing,
China
| | - Jiaohui Pang
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing,
China
| | - Zhenhao Fang
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing,
China
| | - Xue Wu
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing,
China
| | - Xiaonan Wang
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing,
China
| | - Dianbin Mu
- Department of Pathology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan,
China
| | - Yang Shao
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing,
China
- School of Public Health, Nanjing Medical University, Nanjing,
China
| | - Jinming Yu
- Cheeloo College of Medicine, Shandong University, Jinan,
China
- Department of Radiology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan,
China
| | - Shuanghu Yuan
- Cheeloo College of Medicine, Shandong University, Jinan,
China
- Department of Radiology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan,
China
| |
Collapse
|
9
|
Porter VL, Marra MA. The Drivers, Mechanisms, and Consequences of Genome Instability in HPV-Driven Cancers. Cancers (Basel) 2022; 14:4623. [PMID: 36230545 PMCID: PMC9564061 DOI: 10.3390/cancers14194623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/17/2022] [Accepted: 09/19/2022] [Indexed: 11/28/2022] Open
Abstract
Human papillomavirus (HPV) is the causative driver of cervical cancer and a contributing risk factor of head and neck cancer and several anogenital cancers. HPV's ability to induce genome instability contributes to its oncogenicity. HPV genes can induce genome instability in several ways, including modulating the cell cycle to favour proliferation, interacting with DNA damage repair pathways to bring high-fidelity repair pathways to viral episomes and away from the host genome, inducing DNA-damaging oxidative stress, and altering the length of telomeres. In addition, the presence of a chronic viral infection can lead to immune responses that also cause genome instability of the infected tissue. The HPV genome can become integrated into the host genome during HPV-induced tumorigenesis. Viral integration requires double-stranded breaks on the DNA; therefore, regions around the integration event are prone to structural alterations and themselves are targets of genome instability. In this review, we present the mechanisms by which HPV-dependent and -independent genome instability is initiated and maintained in HPV-driven cancers, both across the genome and at regions of HPV integration.
Collapse
Affiliation(s)
- Vanessa L. Porter
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 4S6, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Marco A. Marra
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 4S6, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
10
|
Zhou X, Wang X. Radioimmunotherapy in HPV-Associated Head and Neck Squamous Cell Carcinoma. Biomedicines 2022; 10:1990. [PMID: 36009537 PMCID: PMC9405566 DOI: 10.3390/biomedicines10081990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 12/12/2022] Open
Abstract
HPV-associated head and neck squamous cell carcinoma (HNSCC) is a cancer entity with unique biological and clinical characteristics that requires more personalized treatment strategies. As the backbone of conventional therapeutics, radiation is now harnessed to synergize with immunotherapy in multiple malignancies. Accumulating preclinical and clinical data have suggested the potential of radioimmunotherapy in eliciting local and systemic anti-tumor response via direct killing of tumor cells and immunogenic cell death. However, this effect remains uncertain in HPV-associated HNSCC. Owing to its intrinsic radiosensitivity and distinct tumor microenvironment, HPV-associated HNSCC may represent a good candidate for radioimmunotherapy. In this review, we provide a detailed illustration of the biology, the genomic features, and immune landscapes of HPV-associated HNSCC that support the synergism between radiation and immune agents. The interaction between radiotherapy and immunotherapy is described. We also highlight the present evidence as well as ongoing trials using different combination strategies in the recurrent/metastatic or definitive settings. In addition, we have summarized the challenges and outlook for future trial design, with special emphasis on radiotherapy optimization and novel therapeutic options to incorporate.
Collapse
Affiliation(s)
- Xin Zhou
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai 200032, China
| | - Xiaoshen Wang
- Department of Radiation Oncology, Eye & ENT Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
11
|
Suresh RR, Kulandaisamy AJ, Nesakumar N, Nagarajan S, Lee JH, Rayappan JBB. Graphene Quantum Dots – Hydrothermal Green Synthesis, Material Characterization and Prospects for Cervical Cancer Diagnosis Applications: A Review. ChemistrySelect 2022. [DOI: 10.1002/slct.202200655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Raghavv Raghavender Suresh
- Department of Bioengineering School of Chemical & Biotechnology SASTRA Deemed University Thanjavur 613 401 Tamil Nadu India
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB) SASTRA Deemed University Thanjavur 613 401 Tamil Nadu India
| | - Arockia Jayalatha Kulandaisamy
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB) SASTRA Deemed University Thanjavur 613 401 Tamil Nadu India
- School of Electrical & Electronics Engineering SASTRA Deemed University Thanjavur 613 401 Tamil Nadu India
| | - Noel Nesakumar
- Department of Bioengineering School of Chemical & Biotechnology SASTRA Deemed University Thanjavur 613 401 Tamil Nadu India
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB) SASTRA Deemed University Thanjavur 613 401 Tamil Nadu India
| | - Saisubramanian Nagarajan
- Center for Research in Infectious Diseases (CRID) School of Chemical and Biotechnology SASTRA Deemed University Thanjavur 613 401 Tamil Nadu India
| | - Jung Heon Lee
- Research Center for Advanced Materials Technology School of Advanced Materials Science & Engineering Biomedical Institute for Convergence at SKKU (BICS) Sungkyunkwan University (SKKU) Suwon 16419 South Korea
| | - John Bosco Balaguru Rayappan
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB) SASTRA Deemed University Thanjavur 613 401 Tamil Nadu India
- School of Electrical & Electronics Engineering SASTRA Deemed University Thanjavur 613 401 Tamil Nadu India
| |
Collapse
|
12
|
Momeni-Boroujeni A, Yousefi E, Gupta S, Benayed R, Berger MF, Ladanyi M, Monroe R, Kim J, Jungbluth A, Weigelt B, Park KJ. Evaluation of TERT mRNA expression using RNAscope®: A potential histopathologic diagnostic and prognostic tool. Pathol Res Pract 2022; 233:153892. [DOI: 10.1016/j.prp.2022.153892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/07/2022] [Indexed: 11/29/2022]
|
13
|
Khatami A, Nahand JS, Kiani SJ, Khoshmirsafa M, Moghoofei M, Khanaliha K, Tavakoli A, Emtiazi N, Bokharaei-Salim F. Human papilloma virus (HPV) and prostate cancer (PCa): The potential role of HPV gene expression and selected cellular MiRNAs in PCa development. Microb Pathog 2022; 166:105503. [DOI: 10.1016/j.micpath.2022.105503] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 01/09/2023]
|
14
|
Haręża DA, Wilczyński JR, Paradowska E. Human Papillomaviruses as Infectious Agents in Gynecological Cancers. Oncogenic Properties of Viral Proteins. Int J Mol Sci 2022; 23:1818. [PMID: 35163748 PMCID: PMC8836588 DOI: 10.3390/ijms23031818] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/29/2022] [Accepted: 02/03/2022] [Indexed: 01/25/2023] Open
Abstract
Human papillomaviruses (HPVs), which belong to the Papillomaviridae family, constitute a group of small nonenveloped double-stranded DNA viruses. HPV has a small genome that only encodes a few proteins, and it is also responsible for 5% of all human cancers, including cervical, vaginal, vulvar, penile, anal, and oropharyngeal cancers. HPV types may be classified as high- and low-risk genotypes (HR-HPVs and LR-HPVs, respectively) according to their oncogenic potential. HR-HPV 16 and 18 are the most common types worldwide and are the primary types that are responsible for most HPV-related cancers. The activity of the viral E6 and E7 oncoproteins, which interfere with critical cell cycle points such as suppressive tumor protein p53 (p53) and retinoblastoma protein (pRB), is the major contributor to HPV-induced neoplastic initiation and progression of carcinogenesis. In addition, the E5 protein might also play a significant role in tumorigenesis. The role of HPV in the pathogenesis of gynecological cancers is still not fully understood, which indicates a wide spectrum of potential research areas. This review focuses on HPV biology, the distribution of HPVs in gynecological cancers, the properties of viral oncoproteins, and the molecular mechanisms of carcinogenesis.
Collapse
Affiliation(s)
- Daria A. Haręża
- Laboratory of Virology, Institute of Medical Biology of the Polish Academy of Sciences, 93-232 Lodz, Poland;
- BioMedChem Doctoral School of the University of Lodz and Lodz Institutes of the Polish Academy of Sciences, 90-237 Lodz, Poland
| | - Jacek R. Wilczyński
- Department of Surgical and Oncological Gynecology, Medical University of Lodz, 90-419 Lodz, Poland;
| | - Edyta Paradowska
- Laboratory of Virology, Institute of Medical Biology of the Polish Academy of Sciences, 93-232 Lodz, Poland;
| |
Collapse
|
15
|
Vanajothi R, Srikanth N, Vijayakumar R, Palanisamy M, Bhavaniramya S, Premkumar K. HPV-mediated Cervical Cancer: A Systematic review on Immunological Basis, Molecular Biology and Immune evasion mechanisms. Curr Drug Targets 2021; 23:782-801. [PMID: 34939539 DOI: 10.2174/1389450123666211221160632] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Human papillomavirus (HPV), one of the most frequently transmitted viruses globally, causing several malignancies including cervical cancer. AIM Owing to their unique pathogenicity HPV viruses can persist in the host organism for a longer duration than other virus types, to complete their lifecycle. During its association with the host, HPV causes various pathological conditions affecting the immune system by evading the host immune- mechanisms leading to the progression of various diseases, including cancer. METHOD To date, ~ 150 serotypes were identified, and certain high-risk HPV types are known to be associated with genital warts and cervical cancer. As of now, two prophylactic vaccines are in use for the treatment of HPV infection, however, no effective antiviral drug is available for HPV-associated disease/infections. Numerous clinical and laboratory studies are being investigated to formulate an effective and specific vaccine again HPV infections and associated diseases. RESULT As the immunological basis of HPV infection and associated disease progress persist indistinctly, deeper insights on immune evasion mechanism and molecular biology of disease would aid in developing an effective vaccine. CONCLUSION Thus this review focuses, aiming a systematic review on the immunological aspects of HPV-associated cervical cancer by uncovering immune evasion strategies adapted by HPV.
Collapse
Affiliation(s)
- Ramar Vanajothi
- Department of Biomedical Science, Bharathidasan University, Tiruchirappalli-620024. India
| | - Natarajan Srikanth
- Department of Integrative Biology, Vellore Institute of Technology, Vellore. India
| | - Rajendran Vijayakumar
- Department of Biology, College of Science in Zulfi, Majmaah University, Majmaah 11952. Saudi Arabia
| | - Manikandan Palanisamy
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952. Saudi Arabia
| | - Sundaresan Bhavaniramya
- College of Food and Dairy Technology, Tamil Nadu Veterinary and Animal Sciences, University, Chennai-600052, Tamil Nadu. India
| | - Kumpati Premkumar
- Department of Biomedical Science, Bharathidasan University, Tiruchirappalli-620024. India
| |
Collapse
|
16
|
Basukala O, Banks L. The Not-So-Good, the Bad and the Ugly: HPV E5, E6 and E7 Oncoproteins in the Orchestration of Carcinogenesis. Viruses 2021; 13:1892. [PMID: 34696321 PMCID: PMC8541208 DOI: 10.3390/v13101892] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 12/15/2022] Open
Abstract
Infection with HPV starts with the access of the viral particles to basal cells in the epidermis, potentially via microtraumas to the skin. The basal cells are able to keep away these pathogens in normal circumstances through a robust immune response from the host, as HPV infections are, in general, cleared within 2 to 3 weeks. However, the rare instances of persistent infection and/or in cases where the host immune system is compromised are major risk factors for the development of lesions potentially leading to malignancy. Evolutionarily, obligatory pathogens such as HPVs would not be expected to risk exposing the host to lethal cancer, as this would entail challenging their own life cycle, but infection with these viruses is highly correlated with cancer and malignancy-as in cancer of the cervix, which is almost always associated with these viruses. Despite this key associative cause and the availability of very effective vaccines against these viruses, therapeutic interventions against HPV-induced cancers are still a challenge, indicating the need for focused translational research. In this review, we will consider the key roles that the viral proteins play in driving the host cells to carcinogenesis, mainly focusing on events orchestrated by early proteins E5, E6 and E7-the not-so-good, the bad and the ugly-and discuss and summarize the major events that lead to these viruses mechanistically corrupting cellular homeostasis, giving rise to cancer and malignancy.
Collapse
Affiliation(s)
| | - Lawrence Banks
- Tumour Virology Laboratory, International Centre for Genetic Engineering and Biotechnology, Padriciano 99, I-34149 Trieste, Italy;
| |
Collapse
|
17
|
Salimi-Jeda A, Badrzadeh F, Esghaei M, Abdoli A. The role of telomerase and viruses interaction in cancer development, and telomerase-dependent therapeutic approaches. Cancer Treat Res Commun 2021; 27:100323. [PMID: 33530025 DOI: 10.1016/j.ctarc.2021.100323] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 12/21/2022]
Abstract
Human telomerase reverse transcriptase (hTERT) is an enzyme that is critically involved in elongating and maintaining telomeres length to control cell life span and replicative potential. Telomerase activity is continuously expressed in human germ-line cells and most cancer cells, whereas it is suppressed in most somatic cells. In normal cells, by reducing telomerase activity and progressively shortening the telomeres, the cells progress to the senescence or apoptosis process. However, in cancer cells, telomere lengths remain constant due to telomerase's reactivation, and cells continue to proliferate and inhibit apoptosis, and ultimately lead to cancer development and human death due to metastasis. Studies demonstrated that several DNA and RNA oncoviruses could interact with telomerase by integrating their genome sequence within the host cell telomeres specifically. Through the activation of the hTERT promoter and lengthening the telomere, these cells contributes to cancer development. Since oncoviruses can activate telomerase and increase hTERT expression, there are several therapeutic strategies based on targeting the telomerase of cancer cells like telomerase-targeted peptide vaccines, hTERT-targeting dendritic cells (DCs), hTERT-targeting gene therapy, and hTERT-targeting CRISPR/Cas9 system that can overcome tumor-mediated toleration mechanisms and specifically apoptosis in cancer cells. This study reviews available data on the molecular structure of telomerase and the role of oncoviruses and telomerase interaction in cancer development and telomerase-dependent therapeutic approaches to conquest the cancer cells.
Collapse
Affiliation(s)
- Ali Salimi-Jeda
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Fariba Badrzadeh
- Faculti of Medicine, Golestan University of Medical sciences, Golestan, Iran.
| | - Maryam Esghaei
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Asghar Abdoli
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
18
|
Altamura G, Degli Uberti B, Galiero G, De Luca G, Power K, Licenziato L, Maiolino P, Borzacchiello G. The Small Molecule BIBR1532 Exerts Potential Anti-cancer Activities in Preclinical Models of Feline Oral Squamous Cell Carcinoma Through Inhibition of Telomerase Activity and Down-Regulation of TERT. Front Vet Sci 2021; 7:620776. [PMID: 33553285 PMCID: PMC7855307 DOI: 10.3389/fvets.2020.620776] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/07/2020] [Indexed: 11/26/2022] Open
Abstract
Expression of telomerase reverse transcriptase (TERT) and telomerase activity (TA) is a main feature of cancer, contributing to cell immortalization by causing telomeres dysfunction. BIBR1532 is a potent telomerase inhibitor that showed potential anti-tumor activities in several types of cancer, by triggering replicative senescence and apoptosis. In a previous work, we detected, for the first time, TERT expression and TA in preclinical models of feline oral squamous cell carcinoma (FOSCC); therefore, we aimed at extending our investigation by testing the effects of treatment with BIBR1532, in order to explore the role of telomerase in this tumor and foreshadow the possibility of it being considered as a future therapeutic target. In the present study, treatment of FOSCC cell lines SCCF1, SCCF2, and SCCF3 with BIBR1532 resulted in successful inhibition of TA, with subsequent cell growth stoppage and decrease in cell viability. Molecular data showed that up-regulation of cell cycle inhibitor p21, unbalancing of Bax/Bcl-2 ratio, and down-regulation of survival gene Survivin were mostly involved in the observed cellular events. Moreover, BIBR1532 diminished the expression of TERT and its transcriptional activator cMyc, resulting in the down-regulation of epidermal growth factor receptor (EGFR), phospho-ERK/ERK ratio, and matrix metalloproteinases (MMPs)-1/-2 and−9, likely as a consequence of an impairment of TERT extra-telomeric functions. Taken together, our data suggest that BIBR1532 exerts multiple anti-cancer activities in FOSCC by inhibiting telomerase pathway and interfering with signaling routes involved in cell proliferation, cell survival, and invasion, paving the way for future translational studies aimed at evaluating its possible employment in the treatment of this severe tumor of cats.
Collapse
Affiliation(s)
- Gennaro Altamura
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| | | | - Giorgio Galiero
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Portici, Naples, Italy
| | - Giovanna De Luca
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Portici, Naples, Italy
| | - Karen Power
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| | - Luca Licenziato
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| | - Paola Maiolino
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| | - Giuseppe Borzacchiello
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| |
Collapse
|
19
|
Mir BA, Rahaman PF, Ahmad A. Viral load and interaction of HPV oncoprotein E6 and E7 with host cellular markers in the progression of cervical cancer. AIMS MOLECULAR SCIENCE 2021. [DOI: 10.3934/molsci.2021014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
<abstract>
<p>Cervical cancer is the sequel of a multi-factorial, long-term unresolved disease that includes genetic, epigenetic, and viral components responsible for its development and progression. It is the second most common cancer of females in India. Human papillomavirus (HPV) is considered the primary causative agent of pre-neoplastic and cancerous lesions and 90% of all cervical carcinomas are linked to high-risk HPV type 16 and type 18. Although most HR-HPV infections are asymptomatic, transient, and self-limiting, the persistent infection with a high risk (HR-HPV) may cause precancerous lesions that can progress to cervical cancer. HPV type 16 is the most common HPV in India associated with more than 75% of cervical cancer, followed by HPV type 18 and other high-risk types. Infection with HPV alone is not sufficient for the development of cervical cancer but there is the involvement of some host genetic factors also that are responsible for the development and progression of cervical cancer. This article briefly reviews molecular pathogenesis, viral load, and the interaction of HPV oncoprotein E6 and E7 with host cellular markers in the progression of cervical cancer.</p>
</abstract>
Collapse
|
20
|
Wijetunga NA, Yu Y, Morris LG, Lee N, Riaz N. The head and neck cancer genome in the era of immunotherapy. Oral Oncol 2020; 112:105040. [PMID: 33197752 DOI: 10.1016/j.oraloncology.2020.105040] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/04/2020] [Accepted: 10/04/2020] [Indexed: 12/19/2022]
Abstract
The recent success of immunotherapy in head and neck squamous cell carcinoma (HNSCC) has necessitated a new perspective on the cancer genome. Here we review recent advances in the carcinogenesis and molecular genetics of HNSCC with an eye on their implications for cancer immunity. Newer sequencing technologies have recently facilitated dissection of the complex interaction between the HPV virus, tumor, host factors, and the tumor microenvironment (TME) that help shed light on how the immune system interacts with head and neck malignancies.
Collapse
Affiliation(s)
- N Ari Wijetunga
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yao Yu
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Luc G Morris
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nancy Lee
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Nadeem Riaz
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
21
|
Zhang Q, Chen Y, Hu SQ, Pu YM, Zhang K, Wang YX. A HPV16-related prognostic indicator for head and neck squamous cell carcinoma. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1492. [PMID: 33313237 PMCID: PMC7729314 DOI: 10.21037/atm-20-6338] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background The human papillomavirus (HPV) is emerging as an important risk factor in head and neck squamous cell carcinoma (HNSCC) patients. This has been observed particularly in the case of HPV16. The HPV16+ HNSCC subtype has distinct pathological, clinical, molecular, and prognostic characteristics. This study aimed to identify potential microRNAs (miRNAs) and their roles in HPV16+ HNSCC progression. Method miRNA, mRNA and the clinical data of 519 HNSCC and 44 HNSCC-negative samples were obtained from The Cancer Genome Atlas (TCGA) database. Differentially expressed miRNAs (DEMs) in HPV16-related HNSCC tissues with prognostic value were selected. DEM levels were assessed based on clinicopathological parameters and overall survival (OS). Target genes were also predicted and functional analysis based on Gene Set Enrichment Analysis (GSEA) were then performed. Results In HPV16+ HNSCC tissues, miR-99a-3p and miR-4746-5p were significantly upregulated. In contrast, miR-411-5p was shown to be downregulated. miR-99a-3phighmiR-411-5plowmiR-4746-5phigh expression could estimate improved OS and low frequent perineural invasion (PNI). Predicted target genes were enriched in cell growth, neuroepithelial cell differentiation, MAPK and FoxO signaling pathways. Epithelial mesenchymal transition (EMT) gene set and invasion related genes were downregulated in miR-99a-3phighmiR-411-5plowmiR-4746-5phigh HNSCC patients. Conclusion miR-99a-3p, miR-411-5p and miR-4746-5p might participate in HPV16+ HNSCC progression through EMT related pathways and affect prognosis.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yongfeng Chen
- Department of Stomatology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Shi-Qi Hu
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yu-Mei Pu
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Kai Zhang
- Department of Stomatology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Yu-Xin Wang
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
22
|
Role of Epstein-Barr Virus and Human Papillomavirus Coinfection in Cervical Cancer: Epidemiology, Mechanisms and Perspectives. Pathogens 2020; 9:pathogens9090685. [PMID: 32839399 PMCID: PMC7557835 DOI: 10.3390/pathogens9090685] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/16/2020] [Accepted: 08/18/2020] [Indexed: 12/24/2022] Open
Abstract
High-risk human papillomavirus (HR-HPV) is etiologically associated with the development and progression of cervical cancer, although other factors are involved. Epstein-Barr virus (EBV) detection in premalignant and malignant tissues from uterine cervix has been widely reported; however, its contribution to cervical cancer development is still unclear. Here, a comprehensive analysis regarding EBV presence and its potential role in cervical cancer, the frequency of EBV/HR-HPV coinfection in uterine cervix and EBV infection in tissue-infiltrating lymphocytes were revised. Overall, reports suggest a potential link of EBV to the development of cervical carcinomas in two possible pathways: (1) Infecting epithelial cells, thus synergizing with HR-HPV (direct pathway), and/or (2) infecting tissue-infiltrating lymphocytes that could generate local immunosuppression (indirect pathway). In situ hybridization (ISH) and/or immunohistochemical methods are mandatory for discriminating the cell type infected by EBV. However, further studies are needed for a better understanding of the EBV/HR-HPV coinfection role in cervical carcinogenesis.
Collapse
|
23
|
Perspectives in HPV Secondary Screening and Personalized Therapy Basing on Our Understanding of HPV-Related Carcinogenesis Pathways. Mediators Inflamm 2020; 2020:2607594. [PMID: 32308553 PMCID: PMC7132589 DOI: 10.1155/2020/2607594] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 03/13/2020] [Indexed: 01/10/2023] Open
Abstract
As cervical cancer is one of the most common malignancies in women worldwide even with present screening methods, the incidence in most developed countries is not decreasing for the last 15-20 years. A shift has been observed in the age of diagnosis in favour of younger women, and treatment of already developed cervical cancer is a challenge for surgeons. It is imperative to find new diagnostic methods for accurately pointing out patients at high risk of developing malignant disease and developing personalized treatment. Since cervical cancer is almost exclusively associated with HPV infection, understanding changes happening in an infected cell may prove invaluable for search of such methods, but it may also prove helpful in the diagnosis and treatment of other anogenital and nasopharyngeal region cancers. This review follows HPV-related changes in infected cell biology to point what potential markers and targets for therapy are in option when dealing with HPV-related diseases.
Collapse
|
24
|
Altamura G, Martano M, Licenziato L, Maiolino P, Borzacchiello G. Telomerase Reverse Transcriptase (TERT) Expression, Telomerase Activity, and Expression of Matrix Metalloproteinases (MMP)-1/-2/-9 in Feline Oral Squamous Cell Carcinoma Cell Lines Associated With Felis catus Papillomavirus Type-2 Infection. Front Vet Sci 2020; 7:148. [PMID: 32292795 PMCID: PMC7118734 DOI: 10.3389/fvets.2020.00148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 02/28/2020] [Indexed: 12/11/2022] Open
Abstract
Telomerase activity contributes to cell immortalization by avoiding telomere shortening at each cell division; indeed, its catalytic subunit telomerase reverse transcriptase (TERT) is overexpressed in many tumors, including human oral squamous cell carcinoma (hOSCC). In these tumors, matrix metalloproteinases (MMPs), a group of zinc-dependent endopeptidases involved in cell migration, contribute to invasive potential of cancer cells. A proportion of hOSCC is associated with infection by high-risk human papillomavirus (HR-HPVs), whose E6 oncogene enhances TERT and MMPs expression, thus promoting cancer progression. Feline oral squamous cell carcinoma (FOSCC) is a malignant tumor with highly invasive phenotype; however, studies on telomerase activity, TERT, and MMPs expression are scarce. In this study, we demonstrate telomerase activity, expression of TERT, and its transcriptional activator cMyc along with expression of MMP-1, -2, and -9 in FOSCC-derived cell lines SCCF2 and SCCF3, suggesting a contribution by these pathways in cell immortalization and invasion in these tumors. Recent studies suggest that a sub-group of FOSCC as well as SCCF2 and SCCF3 are associated with Felis catus PV type-2 (FcaPV-2) infection. However, in this work, FcaPV-2 E6 gene knock-down caused no shift in either TERT, cMyc, or MMPs levels, suggesting that, unlike its human counterpart, the viral oncogene plays no role in their regulation.
Collapse
Affiliation(s)
- Gennaro Altamura
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| | - Manuela Martano
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| | - Luca Licenziato
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| | - Paola Maiolino
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| | - Giuseppe Borzacchiello
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| |
Collapse
|
25
|
Vinothkumar V, Arun K, Arunkumar G, Revathidevi S, Ramani R, Bhaskar LVKS, Murugan AK, Munirajan AK. Association between functional TERT promoter polymorphism rs2853669 and cervical cancer risk in South Indian women. Mol Clin Oncol 2020; 12:485-494. [PMID: 32257207 DOI: 10.3892/mco.2020.2003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 07/17/2019] [Indexed: 02/07/2023] Open
Abstract
A single nucleotide polymorphism (SNP) rs2853669 (A>G) in the telomerase reverse transcriptase (TERT) promoter has recently been reported in chr5:1,295,349 T>C (T349C), and was shown to be associated with increased cancer risk and poor survival in a specific population. However, at present, the role of this particular SNP with TERT promoter driver mutations and its genetic association with human papilloma virus (HPV) in patients with cervical cancer has not been determined. In the present study, the genetic association of the functional SNP rs2853669 in the presence/absence of TERT promoter hotspot mutations and HPV in patients with cervical cancer of South Indian origin was evaluated. To understand and compare the frequency of the variant allele and its risk association in different cancer types of various populations, the SNP was genotyped in 257 cervical cancer samples and 295 controls, and its associations with TERT promoter hotspot mutations and HPV were analyzed. Furthermore, an extensive search of previously published articles in PubMed, Embase and Web of Science was conducted; a meta-analysis was carried out to elucidate the association of the SNP with different cancer types in global populations. The SNP analysis showed significantly high frequency (41%) of homozygous variant allele rs2853669 (GG) in patients with cervical cancer compared with control samples [Recessive allele model odds ratio (OR)=1.71; 95% CI=1.20-2.43; P=0.003]. No significant interaction was observed between the TERT SNP rs2853669 and HPV status as well as other hotspot TERT promoter (C228T and C250T) mutations determined in our previous study. In addition, the overall meta-analysis revealed a significant association of the SNP rs2853669 with other cancer types in different ethnic populations (OR=1.09; 95% CI=1.03-1.16; P=0.004). The present results suggested that the TERT SNP rs2853669 could play an important role in the risk of cervical cancer in a South Indian population.
Collapse
Affiliation(s)
- Vilvanathan Vinothkumar
- Department of Genetics, Dr ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Chennai, Tamil Nadu 600113, India
| | - Kanagaraj Arun
- Department of Genetics, Dr ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Chennai, Tamil Nadu 600113, India
| | - Ganesan Arunkumar
- Department of Genetics, Dr ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Chennai, Tamil Nadu 600113, India
| | - Sundaramoorthy Revathidevi
- Department of Genetics, Dr ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Chennai, Tamil Nadu 600113, India
| | - Rajendren Ramani
- Institute of Social Obstetrics and Government Kasturba Gandhi Hospital for Women and Children, Chennai, Tamil Nadu 600005, India
| | | | - Avaniyapuram Kannan Murugan
- Department of Molecular Oncology, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Kingdom of Saudi Arabia
| | - Arasambattu Kannan Munirajan
- Department of Genetics, Dr ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Chennai, Tamil Nadu 600113, India
| |
Collapse
|
26
|
Pal A, Kundu R. Human Papillomavirus E6 and E7: The Cervical Cancer Hallmarks and Targets for Therapy. Front Microbiol 2020; 10:3116. [PMID: 32038557 PMCID: PMC6985034 DOI: 10.3389/fmicb.2019.03116] [Citation(s) in RCA: 280] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 12/24/2019] [Indexed: 01/14/2023] Open
Abstract
Human papillomavirus (HPV)-induced cervical cancer is a major health issue among women from the poorly/under-developed sectors of the world. It accounts for a high-mortality rate because of its late diagnosis and poor prognosis. Initial establishment and subsequent progression of this form of cancer are completely dependent on two major oncogenes E6 and E7, which are expressed constitutively leading to tumorigenesis. Thus, manipulation of these genes represents the most successful form of cervical cancer therapy. In the present article, information on structural, functional, and clinical dimensions of E6 and E7 activity has been reviewed. The genome organization and protein structure of E6 and E7 have been discussed followed by their mechanism to establish the six major cancer hallmarks in cervical tissues for tumor propagation. The later section of this review article deals with the different modes of therapeutics, which functions by deregulating E6 and E7 activity. Since E6 and E7 are the biomarkers of a cervical cancer cell and are the ones driving the cancer progression, therapeutic approaches targeting E6 and E7 have been proved to be highly efficient in terms of focused removal of abnormally propagating malignant cells. Therapeutics including different forms of vaccines to advanced genome editing techniques, which suppress E6 and E7 activity, have been found to successfully bring down the population of cervical cancer cells infected with HPV. T-cell mediated immunotherapy is another upcoming successful form of treatment to eradicate HPV-infected tumorigenic cells. Additionally, therapeutics using natural compounds from plants or other natural repositories, i.e., phytotherapeutic approaches have also been reviewed here, which prove their anticancer potential through E6 and E7 inhibitory effects. Thus, E6 and E7 repression through any of these methods is a significant approach toward cervical cancer therapy, described in details in this review along with an insight into the signaling pathways and molecular mechanistic of E6 and E7 action.
Collapse
Affiliation(s)
| | - Rita Kundu
- Cell Biology Laboratory, Department of Botany, Centre of Advanced Studies, University of Calcutta, Kolkata, India
| |
Collapse
|
27
|
Qiu HZ, Huang J, Xiang CC, Li R, Zuo ED, Zhang Y, Shan L, Cheng X. Screening and Discovery of New Potential Biomarkers and Small Molecule Drugs for Cervical Cancer: A Bioinformatics Analysis. Technol Cancer Res Treat 2020; 19:1533033820980112. [PMID: 33302814 PMCID: PMC7734488 DOI: 10.1177/1533033820980112] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 10/09/2020] [Accepted: 11/04/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Cervical cancer (CC) is the second most common type of malignant tumor survival rate is low in advanced stage, metastatic, and recurrent CC patients. This study aimed at identifying potential genes and drugs for CC diagnosis and targeting therapies. METHODS Three GEO mRNA microarray datasets of CC tissues and non-cancerous tissues were analyzed for differentially expressed genes (DEGs) by limma package. GO (Gene Ontologies) and KEGG (Kyoto Encyclopedia of Genes and Genomes) were used to explore the relationships between the DEGs. Protein-protein interaction (PPI) of these genes was established by the STRING database. MCODE was used for screening significant modules in the PPI networks to select hub genes. Biochemical mechanisms of the hub genes were investigated with Metascape. GEPIA database was used for validating the core genes. According to these DEGs, molecular candidates for CC were recognized from the CMAP database. RESULTS We identified 309 overlapping DEGs in the 2 tissue-types. Pathway analysis revealed that the DEGs were involved in cell cycle, DNA replication, and p53 signaling. PPI networks between overlapping DEGs showed 68 high-connectivity DEGs that were chosen as hub genes. The GEPIA database showed that the expression levels of RRM2, CDC45, GINS2, HELLS, KNTC1, MCM2, MYBL2, PCNA, RAD54 L, RFC4, RFC5, TK1, TOP2A, and TYMS in CC tissues were significantly different from those in the healthy tissues and were significantly relevant to the OS of CC. We found 10 small molecules from the CMAP database that could change the trend of gene expression in CC tissues, including piperlongumine and chrysin. CONCLUSIONS The 14 DEGs identified in this study could serve as novel prognosis biomarkers for the detection and forecasting of CC. Small molecule drugs like piperlongumine and chrysin could be potential therapeutic drugs for CC treatment.
Collapse
Affiliation(s)
- Hui-Zhu Qiu
- Department of Hematology and Oncology, Soochow University Affiliated Taicang Hospital (The First People’s Hospital of Taicang), Jiangsu, China
| | - Ji Huang
- Department of Pharmacy, Soochow University Affiliated Taicang Hospital (The First People’s Hospital of Taicang), Jiangsu, China
| | - Cheng-Cheng Xiang
- Department of Hematology and Oncology, Soochow University Affiliated Taicang Hospital (The First People’s Hospital of Taicang), Jiangsu, China
| | - Rong Li
- Department of Hematology and Oncology, Soochow University Affiliated Taicang Hospital (The First People’s Hospital of Taicang), Jiangsu, China
| | - Er-Dong Zuo
- Department of Hematology and Oncology, Soochow University Affiliated Taicang Hospital (The First People’s Hospital of Taicang), Jiangsu, China
| | - Yuan Zhang
- Department of Hematology and Oncology, Soochow University Affiliated Taicang Hospital (The First People’s Hospital of Taicang), Jiangsu, China
| | - Li Shan
- Department of Hematology and Oncology, Soochow University Affiliated Taicang Hospital (The First People’s Hospital of Taicang), Jiangsu, China
| | - Xu Cheng
- Department of Hematology and Oncology, Soochow University Affiliated Taicang Hospital (The First People’s Hospital of Taicang), Jiangsu, China
| |
Collapse
|
28
|
Gupta SM, Mania-Pramanik J. Molecular mechanisms in progression of HPV-associated cervical carcinogenesis. J Biomed Sci 2019; 26:28. [PMID: 31014351 PMCID: PMC6477741 DOI: 10.1186/s12929-019-0520-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 04/11/2019] [Indexed: 12/13/2022] Open
Abstract
Cervical cancer is the fourth most frequent cancer in women worldwide and a major cause of mortality in developing countries. Persistent infection with high-risk human papillomavirus (HPV) is a necessary cause for the development of cervical cancer. In addition, genetic and epigenetic alterations in host cell genes are crucial for progression of cervical precancerous lesions to invasive cancer. Although much progress has been made in understanding the life cycle of HPV and it’s role in the development of cervical cancer, there is still a critical need for accurate surveillance strategies and targeted therapeutic options to eradicate these cancers in patients. Given the widespread nature of HPV infection and the type specificity of currently available HPV vaccines, it is crucial that molecular details of the natural history of HPV infection as well as the biological activities of viral oncoproteins be elucidated. A better understanding of the mechanisms involved in oncogenesis can provide novel insights and opportunities for designing effective therapeutic approaches against HPV-associated malignancies. In this review, we briefly summarize epigenetic alterations and events that cause alterations in host genomes inducing cell cycle deregulation, aberrant proliferation and genomic instability contributing to tumorigenesis.
Collapse
Affiliation(s)
- Sadhana M Gupta
- Department of Infectious Diseases Biology, National Institute for Research in Reproductive Health, J.M. Street, Parel, Mumbai, 400012, India.
| | - Jayanti Mania-Pramanik
- Department of Infectious Diseases Biology, National Institute for Research in Reproductive Health, J.M. Street, Parel, Mumbai, 400012, India
| |
Collapse
|
29
|
Otter S, Whitaker S, Chatterjee J, Stewart A. The Human Papillomavirus as a Common Pathogen in Oropharyngeal, Anal and Cervical Cancers. Clin Oncol (R Coll Radiol) 2019; 31:81-90. [DOI: 10.1016/j.clon.2018.10.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/07/2018] [Accepted: 09/10/2018] [Indexed: 12/21/2022]
|
30
|
Pańczyszyn A, Boniewska-Bernacka E, Głąb G. Telomeres and Telomerase During Human Papillomavirus-Induced Carcinogenesis. Mol Diagn Ther 2018; 22:421-430. [PMID: 29777397 PMCID: PMC6061425 DOI: 10.1007/s40291-018-0336-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Human papillomaviruses (HPVs) belong to a small spherical virus family and are transmitted through direct contact, most often through sexual behavior. More than 200 types of HPV are known, a dozen or so of which are classified as high-risk viruses (HR HPV) and may contribute to the development of cervical cancer. HPV is a small virus with a capsid composed of L1 and L2 proteins, which are crucial for entry to the cell. The infection begins at the basal cell layer and progresses to involve cells from higher layers of the cervical epithelium. E6 and E7 viral proteins are involved in the process of carcinogenesis. They interact with suppressors of oncogenesis, including p53 and Rb proteins. This leads to DNA replication and intensive cell divisions. The persistent HR HPV infection leads to the development of dysplasia and these changes may progress to invasive cancer. During the initial stage of carcinogenesis, telomeres shorten until telomerase activates. The activation of telomerase, the enzyme necessary to extend chromosome ends (telomeres) is the key step in cell immortalization. Analyzing the expression level of hTERT and hTERC genes encoding telomerase and telomere length measurement may constitute new markers of the early carcinogenesis.
Collapse
Affiliation(s)
- Anna Pańczyszyn
- Department of Biotechnology and Molecular Biology, University of Opole, ul. Kominka 6, 45-035, Opole, Poland.
| | - Ewa Boniewska-Bernacka
- Department of Biotechnology and Molecular Biology, University of Opole, ul. Kominka 6, 45-035, Opole, Poland
| | - Grzegorz Głąb
- Public Higher Medical Professional School in Opole, Opole, Poland
| |
Collapse
|
31
|
Liver X Receptors Suppress Activity of Cholesterol and Fatty Acid Synthesis Pathways To Oppose Gammaherpesvirus Replication. mBio 2018; 9:mBio.01115-18. [PMID: 30018108 PMCID: PMC6050960 DOI: 10.1128/mbio.01115-18] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Gammaherpesviruses are oncogenic pathogens that persist in ~95% of the adult population. Cellular metabolic pathways have emerged as important regulators of many viral infections, including infections by gammaherpesviruses that require several lipid synthetic pathways for optimal replication. Liver X receptors (LXRs) are transcription factors that are critical regulators of cellular fatty acid and cholesterol synthesis pathways. Not surprisingly, LXRs are attractive therapeutic targets in cardiovascular disease. Here we describe an antiviral role for LXRs in the context of gammaherpesvirus infection of primary macrophages. We show that type I interferon increased LXR expression following infection. Surprisingly, there was not a corresponding induction of LXR target genes. Rather, LXRs suppressed the expression of target genes, leading to decreased fatty acid and cholesterol synthesis, two metabolic pathways that support gammaherpesvirus replication. This report defines LXR-mediated restriction of cholesterol and lipid synthesis as an intrinsic metabolic mechanism to restrict viral replication in innate immune cells.IMPORTANCE Fatty acid and cholesterol synthesis pathways of the host play important roles in diverse biological systems. Importantly, these two metabolic pathways are also usurped by a number of viruses to facilitate viral replication. In this report, we show that suppression of these pathways by liver X receptors in primary macrophages creates an intrinsic antiviral state that attenuates gammaherpesvirus replication by limiting viral access to the two metabolic pathways.
Collapse
|
32
|
High-Risk Human Papillomaviral Oncogenes E6 and E7 Target Key Cellular Pathways to Achieve Oncogenesis. Int J Mol Sci 2018; 19:ijms19061706. [PMID: 29890655 PMCID: PMC6032416 DOI: 10.3390/ijms19061706] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 06/04/2018] [Accepted: 06/04/2018] [Indexed: 12/13/2022] Open
Abstract
Infection with high-risk human papillomavirus (HPV) has been linked to several human cancers, the most prominent of which is cervical cancer. The integration of the viral genome into the host genome is one of the manners in which the viral oncogenes E6 and E7 achieve persistent expression. The most well-studied cellular targets of the viral oncogenes E6 and E7 are p53 and pRb, respectively. However, recent research has demonstrated the ability of these two viral factors to target many more cellular factors, including proteins which regulate epigenetic marks and splicing changes in the cell. These have the ability to exert a global change, which eventually culminates to uncontrolled proliferation and carcinogenesis.
Collapse
|
33
|
Gupta S, Kumar P, Das BC. HPV: Molecular pathways and targets. Curr Probl Cancer 2018; 42:161-174. [PMID: 29706467 DOI: 10.1016/j.currproblcancer.2018.03.003] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 03/21/2018] [Indexed: 01/13/2023]
Abstract
Infection of high-risk human papillomaviruses (HPVs) is a prerequisite for the development of cervical carcinoma. HPV infections are also implicated in the development of other types of carcinomas. Chronic or persistent infection of HPV is essential but HPV alone is inadequate, additional endogenous or exogenous cues are needed along with HPV to induce cervical carcinogenesis. The strategies that high-risk HPVs have developed in differentiating epithelial cells to reach a DNA-synthesis competent state leading to tumorigenic transformation are basically due to overexpression of the E6 and E7 oncoproteins and the activation of diverse cellular regulatory or signaling pathways that are targeted by them. Moreover, the Wnt/β-catenin/Notch and phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) pathways are deregulated in various cancers, and have also been implicated in HPV-induced cancers. These are basically related to the "cancer hallmarks," and include sustaining proliferative signals, the evasion of growth suppression and immune destruction, replicative immortality, inflammation, invasion, metastasis and angiogenesis, as well as genome instability, resisting cell death, and deregulation of cellular energetics. These information could eventually aid in identifying or developing new diagnostic, prognostic biomarkers, and may contribute to design more effective targeted therapeutics and treatment strategies. Although surgery, chemotherapy and radiotherapy can cure more than 90% of women with early stage cervical cancer, the recurrent and metastatic disease remains a major cause of cancer mortality. Numerous efforts have been made to design new drugs and develop gene therapies to treat cervical cancer. In recent years, research on treatment strategies has proposed several options, including the role of HPV E5, E6, and E7 oncogenes, which are retained and overexpressed in most of the cervical cancers and whose respective oncoproteins are critical to the induction and maintenance of the malignant phenotype. Other efforts have been focused on antitumor immunotherapy strategies. It is known that during the development of cervical cancer, a cascade of abnormal events is induced, including disruption of cell cycle control, perturbation of antitumor immune response, alteration of gene expression, deregulation of microRNA and cancer stem cell and stemness related markers expression could serve as novel molecular targets for reliable diagnosis and treatment of HPV-positive cancers. However, the search for new proposals for disease control and prevention has brought new findings and approaches in the context of molecular biology indicating innovations and perspectives in the early detection and prevention of the disease. Thus, in this article, we discuss molecular signaling pathways activated by HPV and potential targets or biomarkers for early detection or prevention and the treatment of HPV-associated cancers.
Collapse
Affiliation(s)
- Shilpi Gupta
- Stem Cell and Cancer Research Lab, Amity Institute of Molecular Medicine & Stem Cell Research (AIMMSCR), Amity University, Noida, Uttar Pradesh, India
| | - Prabhat Kumar
- Stem Cell and Cancer Research Lab, Amity Institute of Molecular Medicine & Stem Cell Research (AIMMSCR), Amity University, Noida, Uttar Pradesh, India
| | - Bhudev C Das
- Stem Cell and Cancer Research Lab, Amity Institute of Molecular Medicine & Stem Cell Research (AIMMSCR), Amity University, Noida, Uttar Pradesh, India.
| |
Collapse
|
34
|
Sannigrahi MK, Sharma R, Panda NK, Khullar M. Role of non-coding RNAs in head and neck squamous cell carcinoma: A narrative review. Oral Dis 2017; 24:1417-1427. [PMID: 28941018 DOI: 10.1111/odi.12782] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 08/23/2017] [Accepted: 09/08/2017] [Indexed: 12/13/2022]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide with high recurrence, metastasis, and poor treatment outcome. Recent studies have reported that non-coding RNA (ncRNA) might play critical role in regulating different types of cancer. MicroRNAs (miRs) are short ncRNAs (20-25 nucleotides) responsible for post-transcriptional regulation of gene expression and may have a role in oncogenesis by acting as oncomiRs or tumor suppressor miRs. Long non-coding RNAs (lncRNAs) are heterogenous group of ncRNAs more than 200 nucleotides long, can act in cis and/or in trans, and have been also implicated in carcinogenesis. These molecules have been suggested to be promising candidates as diagnostic and prognostic biomarkers and for development of novel therapeutic approaches. In this review, we have summarized recent findings on role of these ncRNAs in HPV-negative (HPV-ve) and HPV-positive (HPV+ve) HNSCC. The available literature supports differential expression of both microRNAs and long non-coding RNAs, which include oncogenic ncRNAs (miR-21, miR-31, miR-155, miR-211, HOTAIR, and MALAT1) and tumor suppressor ncRNAs (let7d, miR-17, miR-375, miR-139, and MEG3) in HPV+ve HNSCC tumors as compared to HPV-ve tumors and they have distinct role in the pathophysiology of these two types of HNSCCs.
Collapse
Affiliation(s)
- M K Sannigrahi
- Department of Otolaryngology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - R Sharma
- Department of Experimental Medicine and Biotechnology, PGIMER, Chandigarh, India
| | - N K Panda
- Department of Otolaryngology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - M Khullar
- Department of Experimental Medicine and Biotechnology, PGIMER, Chandigarh, India
| |
Collapse
|
35
|
Zhang Y, Dakic A, Chen R, Dai Y, Schlegel R, Liu X. Direct HPV E6/Myc interactions induce histone modifications, Pol II phosphorylation, and hTERT promoter activation. Oncotarget 2017; 8:96323-96339. [PMID: 29221209 PMCID: PMC5707103 DOI: 10.18632/oncotarget.22036] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 09/15/2017] [Indexed: 11/25/2022] Open
Abstract
Human Papillomavirus Viruses (HPVs) are associated with the majority of human cervical and anal cancers and 10-30% of head and neck squamous carcinomas. E6 oncoprotein from high risk HPVs interacts with the p53 tumor suppressor protein to facilitate its degradation and increases telomerase activity for extending the life span of host cells. We published previously that the Myc cellular transcription factor associates with the high-risk HPV E6 protein in vivo and participates in the transactivation of the hTERT promoter. In the present study, we further analyzed the role of E6 and the Myc-Max-Mad network in regulating the hTERT promoter. We confirmed that E6 and Myc interact independently and that Max can also form a complex with E6. However, the E6/Max complex is observed only in the presence of Myc, suggesting that E6 associates with Myc/Max dimers. Consistent with the hypothesis that Myc is required for E6 induction of the hTERT promoter, Myc antagonists (Mad or Mnt) significantly blocked E6-mediated transactivation of the hTERT promoter. Analysis of Myc mutants demonstrated that both the transactivation domain and HLH domain of Myc protein were required for binding E6 and for the consequent transactivation of the hTERT promoter, by either Myc or E6. We also showed that E6 increased phosphorylation of Pol II on the hTERT promoter and induced epigenetic histone modifications of the hTERT promoter. More important, knockdown of Myc expression dramatically decreased engagement of acetyl-histones and Pol II at the hTERT promoter in E6-expressing cells. Thus, E6/Myc interaction triggers the transactivation of the hTERT promoter by modulating both histone modifications, Pol II phosphorylation and promoter engagement, suggesting a novel mechanism for telomerase activation and a new target for HPV- associated human cancer.
Collapse
Affiliation(s)
- Yiyu Zhang
- Department of Pathology, Center for Cell Reprogramming, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Aleksandra Dakic
- Department of Pathology, Center for Cell Reprogramming, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Renxiang Chen
- Department of Pathology, Center for Cell Reprogramming, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Yuhai Dai
- Department of Pathology, Center for Cell Reprogramming, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Richard Schlegel
- Department of Pathology, Center for Cell Reprogramming, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Xuefeng Liu
- Department of Pathology, Center for Cell Reprogramming, Georgetown University Medical Center, Washington, DC 20057, USA
| |
Collapse
|
36
|
Rajagopalan D, Pandey AK, Xiuzhen MC, Lee KK, Hora S, Zhang Y, Chua BH, Kwok HS, Bhatia SS, Deng LW, Tenen DG, Kappei D, Jha S. TIP60 represses telomerase expression by inhibiting Sp1 binding to the TERT promoter. PLoS Pathog 2017; 13:e1006681. [PMID: 29045464 PMCID: PMC5662243 DOI: 10.1371/journal.ppat.1006681] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 10/30/2017] [Accepted: 10/04/2017] [Indexed: 12/13/2022] Open
Abstract
HIV1-TAT interactive protein (TIP60) is a haploinsufficient tumor suppressor. However, the potential mechanisms endowing its tumor suppressor ability remain incompletely understood. It plays a vital role in virus-induced cancers where TIP60 down-regulates the expression of human papillomavirus (HPV) oncoprotein E6 which in turn destabilizes TIP60. This intrigued us to identify the role of TIP60, in the context of a viral infection, where it is targeted by oncoproteins. Through an array of molecular biology techniques such as Chromatin immunoprecipitation, expression analysis and mass spectrometry, we establish the hitherto unknown role of TIP60 in repressing the expression of the catalytic subunit of the human telomerase complex, TERT, a key driver for immortalization. TIP60 acetylates Sp1 at K639, thus inhibiting Sp1 binding to the TERT promoter. We identified that TIP60-mediated growth suppression of HPV-induced cervical cancer is mediated in part due to TERT repression through Sp1 acetylation. In summary, our study has identified a novel substrate for TIP60 catalytic activity and a unique repressive mechanism acting at the TERT promoter in virus-induced malignancies.
Collapse
Affiliation(s)
- Deepa Rajagopalan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Amit Kumar Pandey
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Magdalene Claire Xiuzhen
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Kwok Kin Lee
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Shainan Hora
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Yanzhou Zhang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Boon Haow Chua
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Hui Si Kwok
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | | | - Lih Wen Deng
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Daniel G. Tenen
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, United States of America
| | - Dennis Kappei
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Sudhakar Jha
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
37
|
Telomerase Induction in HPV Infection and Oncogenesis. Viruses 2017; 9:v9070180. [PMID: 28698524 PMCID: PMC5537672 DOI: 10.3390/v9070180] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 07/05/2017] [Accepted: 07/07/2017] [Indexed: 12/11/2022] Open
Abstract
Telomerase extends the repetitive DNA at the ends of linear chromosomes, and it is normally active in stem cells. When expressed in somatic diploid cells, it can lead to cellular immortalization. Human papillomaviruses (HPVs) are associated with and high-risk for cancer activate telomerase through the catalytic subunit of telomerase, human telomerase reverse transcriptase (hTERT). The expression of hTERT is affected by both high-risk HPVs, E6 and E7. Seminal studies over the last two decades have identified the transcriptional, epigenetic, and post-transcriptional roles high-risk E6 and E7 have in telomerase induction. This review will summarize these findings during infection and highlight the importance of telomerase activation as an oncogenic pathway in HPV-associated cancer development and progression.
Collapse
|
38
|
Katzenellenbogen RA. Activation of telomerase by HPVs. Virus Res 2017; 231:50-55. [DOI: 10.1016/j.virusres.2016.11.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 10/27/2016] [Accepted: 11/03/2016] [Indexed: 10/20/2022]
|
39
|
Abstract
The E6 and E7 proteins are the major oncogenic drivers encoded by high-risk human papillomaviruses (HPVs). While many aspects of the transforming activities of these proteins have been extensively studied, there are fewer studies that have investigated how HPV E6/E7 expression affects the expression of cellular noncoding RNAs. The goal of our study was to investigate HPV16 E6/E7 modulation of cellular microRNA (miR) levels and to determine the potential consequences for cellular gene expression. We performed deep sequencing of small and large cellular RNAs in primary undifferentiated cultures of human foreskin keratinocytes (HFKs) with stable expression of HPV16 E6/E7 or a control vector. After integration of the two data sets, we identified 51 differentially expressed cellular miRs associated with the modulation of 1,456 potential target mRNAs in HPV16 E6/E7-expressing HFKs. We discovered that the degree of differential miR expression in HFKs expressing HPV16 E6/E7 was not necessarily predictive of the number of corresponding mRNA targets or the potential impact on gene expression. Additional analyses of the identified miR-mRNA pairs suggest modulation of specific biological activities and biochemical pathways. Overall, our study supports the model that perturbation of cellular miR expression by HPV16 E6/E7 importantly contributes to the rewiring of cellular regulatory circuits by the high-risk HPV E6 and E7 proteins that contribute to oncogenic transformation. IMPORTANCE High-risk human papillomaviruses (HPVs) are the causative agents of almost all cervical cancers and many other cancers, including anal, vaginal, vulvar, penile, and oropharyngeal cancers. Despite the availability of efficacious HPV vaccines, it is critical to determine how HPVs cause cancer, as many people remain unvaccinated and the vaccine does not prevent cancer development in individuals who are already infected. Two HPV proteins, E6 and E7, are the major drivers of cancer development, and much remains to be learned about how the expression of these viral proteins reprograms infected cells, ultimately resulting in cancer development. Small, noncoding human RNAs, termed microRNAs (miRs), regulate gene expression and have been implicated in almost all human cancers, including HPV-associated cancers. Our study provides a comprehensive analysis of how E6 and E7 alter the expression of human miRs and how this potentially impacts cellular gene expression, which may contribute to cancer development.
Collapse
|
40
|
Xu J, Fang Y, Qin J, Chen X, Liang X, Xie X, Lu W. A transcriptomic landscape of human papillomavirus 16 E6-regulated gene expression and splicing events. FEBS Lett 2016; 590:4594-4605. [PMID: 27859058 DOI: 10.1002/1873-3468.12486] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 10/12/2016] [Accepted: 10/31/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Junfen Xu
- Department of Gynecologic Oncology; Women's Hospital; School of Medicine; Zhejiang University; Hangzhou China
| | - Yifeng Fang
- Department of General Surgery; Sir Run Run Shaw Hospital; School of Medicine; Zhejiang University; Hangzhou China
| | - Jiale Qin
- Department of Ultrasound; Women's Hospital; School of Medicine; Zhejiang University; Hangzhou China
| | - Xiaojing Chen
- Women's Reproductive Health Laboratory of Zhejiang Province; Women's Hospital; School of Medicine; Zhejiang University; Hangzhou China
| | - Xiao Liang
- Department of General Surgery; Sir Run Run Shaw Hospital; School of Medicine; Zhejiang University; Hangzhou China
| | - Xing Xie
- Department of Gynecologic Oncology; Women's Hospital; School of Medicine; Zhejiang University; Hangzhou China
| | - Weiguo Lu
- Department of Gynecologic Oncology; Women's Hospital; School of Medicine; Zhejiang University; Hangzhou China
| |
Collapse
|
41
|
Ohba S, Mukherjee J, Johannessen TC, Mancini A, Chow TT, Wood M, Jones L, Mazor T, Marshall RE, Viswanath P, Walsh KM, Perry A, Bell RJA, Phillips JJ, Costello JF, Ronen SM, Pieper RO. Mutant IDH1 Expression Drives TERT Promoter Reactivation as Part of the Cellular Transformation Process. Cancer Res 2016; 76:6680-6689. [PMID: 27758882 PMCID: PMC5290072 DOI: 10.1158/0008-5472.can-16-0696] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 07/13/2016] [Accepted: 07/25/2016] [Indexed: 02/02/2023]
Abstract
Mutations in the isocitrate dehydrogenase gene IDH1 are common in low-grade glioma, where they result in the production of 2-hydroxyglutarate (2HG), disrupted patterns of histone methylation, and gliomagenesis. IDH1 mutations also cosegregate with mutations in the ATRX gene and the TERT promoter, suggesting that IDH mutation may drive the creation or selection of telomere-stabilizing events as part of immortalization/transformation process. To determine whether and how this may occur, we investigated the phenotype of pRb-/p53-deficient human astrocytes engineered with IDH1 wild-type (WT) or R132H-mutant (IDH1mut) genes as they progressed through their lifespan. IDH1mut expression promoted 2HG production and altered histone methylation within 20 population doublings (PD) but had no effect on telomerase expression or telomere length. Accordingly, cells expressing either IDH1WT or IDH1mut entered a telomere-induced crisis at PD 70. In contrast, only IDH1mut cells emerged from crisis, grew indefinitely in culture, and formed colonies in soft agar and tumors in vivo Clonal populations of postcrisis IDH1mut cells displayed shared genetic alterations, but no mutations in ATRX or the TERT promoter were detected. Instead, these cells reactivated telomerase and stabilized their telomeres in association with increased histone lysine methylation (H3K4me3) and c-Myc/Max binding at the TERT promoter. Overall, these results show that although IDH1mut does not create or select for ATRX or TERT promoter mutations, it can indirectly reactivate TERT, and in doing so contribute to astrocytic immortalization and transformation. Cancer Res; 76(22); 6680-9. ©2016 AACR.
Collapse
Affiliation(s)
- Shigeo Ohba
- Department of Neurological Surgery, Fujita Health University, Toyoake, Aichi, Japan
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California
| | - Joydeep Mukherjee
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California
| | - Tor-Christian Johannessen
- Department of Biomedicine, The Kristian Gerhard Jebsen Brain Tumor Research Centre, University of Bergen, Bergen, Norway
| | - Andrew Mancini
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California
| | - Tracy T Chow
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California
| | - Matthew Wood
- Department of Pathology, University of California, San Francisco, San Francisco, California
| | - Lindsey Jones
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California
| | - Tali Mazor
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California
| | - Roxanne E Marshall
- Department of Pathology, University of California, San Francisco, San Francisco, California
| | - Pavithra Viswanath
- Department of Radiology, University of California, San Francisco, San Francisco, California
| | - Kyle M Walsh
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California
| | - Arie Perry
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California
- Department of Pathology, University of California, San Francisco, San Francisco, California
| | - Robert J A Bell
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California
| | - Joanna J Phillips
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California
- Department of Pathology, University of California, San Francisco, San Francisco, California
| | - Joseph F Costello
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California
| | - Sabrina M Ronen
- Department of Radiology, University of California, San Francisco, San Francisco, California
| | - Russell O Pieper
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California.
| |
Collapse
|
42
|
Woodby B, Scott M, Bodily J. The Interaction Between Human Papillomaviruses and the Stromal Microenvironment. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 144:169-238. [PMID: 27865458 PMCID: PMC5727914 DOI: 10.1016/bs.pmbts.2016.09.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Human papillomaviruses (HPVs) are small, double-stranded DNA viruses that replicate in stratified squamous epithelia and cause a variety of malignancies. Current efforts in HPV biology are focused on understanding the virus-host interactions that enable HPV to persist for years or decades in the tissue. The importance of interactions between tumor cells and the stromal microenvironment has become increasingly apparent in recent years, but how stromal interactions impact the normal, benign life cycle of HPVs, or progression of lesions to cancer is less understood. Furthermore, how productively replicating HPV impacts cells in the stromal environment is also unclear. Here we bring together some of the relevant literature on keratinocyte-stromal interactions and their impacts on HPV biology, focusing on stromal fibroblasts, immune cells, and endothelial cells. We discuss how HPV oncogenes in infected cells manipulate other cells in their environment, and, conversely, how neighboring cells may impact the efficiency or course of HPV infection.
Collapse
Affiliation(s)
- B Woodby
- Louisiana State University Health Sciences Center, Shreveport, LA, United States
| | - M Scott
- Louisiana State University Health Sciences Center, Shreveport, LA, United States
| | - J Bodily
- Louisiana State University Health Sciences Center, Shreveport, LA, United States.
| |
Collapse
|
43
|
Transcription Regulation of the Human Telomerase Reverse Transcriptase (hTERT) Gene. Genes (Basel) 2016; 7:genes7080050. [PMID: 27548225 PMCID: PMC4999838 DOI: 10.3390/genes7080050] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 07/23/2016] [Accepted: 08/01/2016] [Indexed: 12/11/2022] Open
Abstract
Embryonic stem cells and induced pluripotent stem cells have the ability to maintain their telomere length via expression of an enzymatic complex called telomerase. Similarly, more than 85%–90% of cancer cells are found to upregulate the expression of telomerase, conferring them with the potential to proliferate indefinitely. Telomerase Reverse Transcriptase (TERT), the catalytic subunit of telomerase holoenzyme, is the rate-limiting factor in reconstituting telomerase activity in vivo. To date, the expression and function of the human Telomerase Reverse Transcriptase (hTERT) gene are known to be regulated at various molecular levels (including genetic, mRNA, protein and subcellular localization) by a number of diverse factors. Among these means of regulation, transcription modulation is the most important, as evident in its tight regulation in cancer cell survival as well as pluripotent stem cell maintenance and differentiation. Here, we discuss how hTERT gene transcription is regulated, mainly focusing on the contribution of trans-acting factors such as transcription factors and epigenetic modifiers, as well as genetic alterations in hTERT proximal promoter.
Collapse
|
44
|
Abstract
High-risk human papillomaviruses (HPVs) are causative agents of anogenital cancers and a fraction of head and neck cancers. The mechanisms involved in the progression of HPV neoplasias to cancers remain largely unknown. Here, we report that O-linked GlcNAcylation (O-GlcNAc) and O-GlcNAc transferase (OGT) were markedly increased in HPV-caused cervical neoplasms relative to normal cervix, whereas O-GlcNAcase (OGA) levels were not altered. Transduction of HPV16 oncogene E6 or E6/E7 into mouse embryonic fibroblasts (MEFs) up-regulated OGT mRNA and protein, elevated the level of O-GlcNAc, and promoted cell proliferation while reducing cellular senescence. Conversely, in HPV-18-transformed HeLa cervical carcinoma cells, inhibition of O-GlcNAc with a low concentration of a chemical inhibitor impaired the transformed phenotypes in vitro. We showed that E6 elevated c-MYC via increased protein stability attributable to O-GlcNAcylation on Thr58. Reduction of HPV-mediated cell viability by a high concentration of O-GlcNAc inhibitor was partially rescued by elevated c-MYC. Finally, knockdown of OGT or O-GlcNAc inhibition in HeLa cells or in TC-1 cells, a mouse cell line transformed by HPV16 E6/E7 and activated K-RAS, reduced c-MYC and suppressed tumorigenesis and metastasis. Thus, we have uncovered a mechanism for HPV oncoprotein-mediated transformation. These findings may eventually aid in the development of effective therapeutics for HPV-associated malignancies by targeting aberrant O-GlcNAc.
Collapse
|
45
|
Wu Y, Yu DD, Hu Y, Yan D, Chen X, Cao HX, Yu SR, Wang Z, Feng JF. Genome-wide profiling of long non-coding RNA expression patterns in the EGFR-TKI resistance of lung adenocarcinoma by microarray. Oncol Rep 2016; 35:3371-86. [PMID: 27108960 DOI: 10.3892/or.2016.4758] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Accepted: 01/27/2016] [Indexed: 11/06/2022] Open
Abstract
Mutations in the epidermal growth factor receptor (EGFR) make lung adenocarcinoma cells sensitive to EGFR tyrosine kinase inhibitors (TKIs). Long-term cancer therapy may cause the occurrence of acquired resistance to EGFR TKIs. Long non-coding RNAs (lncRNAs) play important roles in tumor formation, tumor metastasis and the development of EGFR-TKI resistance in lung cancer. To gain insight into the molecular mechanisms of EGFR-TKI resistance, we generated an EGFR-TKI-resistant HCC827-8-1 cell line and analyzed expression patterns by lncRNA microarray and compared it with its parental HCC827 cell line. A total of 1,476 lncRNA transcripts and 1,026 mRNA transcripts were dysregulated in the HCC827‑8-1 cells. The expression levels of 7 chosen lncRNAs were validated by real-time quantitative PCR. As indicated by functional analysis, several groups of lncRNAs may be involved in the bio-pathways associated with EGFR-TKI resistance through their cis- and/or trans‑regulation of protein-coding genes. Thus, lncRNAs may be used as novel candidate biomarkers and potential targets in EGFR-TKI therapy in the future.
Collapse
Affiliation(s)
- Ying Wu
- The First Clinical School of Nanjing Medical University, Nanjing, Jiangsu 210009, P.R. China
| | - Dan-Dan Yu
- The First Clinical School of Nanjing Medical University, Nanjing, Jiangsu 210009, P.R. China
| | - Yong Hu
- Department of Chemotherapy, Nanjing Medical University Affiliated Cancer Hospital Cancer Institute of Jiangsu Province, Nanjing, Jiangsu 210009, P.R. China
| | - Dali Yan
- Department of Chemotherapy, Nanjing Medical University Affiliated Cancer Hospital Cancer Institute of Jiangsu Province, Nanjing, Jiangsu 210009, P.R. China
| | - Xiu Chen
- Department of Chemotherapy, Nanjing Medical University Affiliated Cancer Hospital Cancer Institute of Jiangsu Province, Nanjing, Jiangsu 210009, P.R. China
| | - Hai-Xia Cao
- The Fourth Clinical School of Nanjing Medical University, Nanjing, Jiangsu 210009, P.R. China
| | - Shao-Rong Yu
- The Fourth Clinical School of Nanjing Medical University, Nanjing, Jiangsu 210009, P.R. China
| | - Zhuo Wang
- The Fourth Clinical School of Nanjing Medical University, Nanjing, Jiangsu 210009, P.R. China
| | - Ji-Feng Feng
- Department of Chemotherapy, Nanjing Medical University Affiliated Cancer Hospital Cancer Institute of Jiangsu Province, Nanjing, Jiangsu 210009, P.R. China
| |
Collapse
|
46
|
Yuan Q, Bu Q, Li G, Zhang J, Cui T, Zhu R, Mu D. Association between single nucleotide polymorphisms of upstream transcription factor 1 (USF1) and susceptibility to papillary thyroid cancer. Clin Endocrinol (Oxf) 2016; 84:564-70. [PMID: 26052935 DOI: 10.1111/cen.12832] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 01/02/2015] [Accepted: 06/01/2015] [Indexed: 11/27/2022]
Abstract
BACKGROUND Thyroid cancer, predominantly by papillary thyroid cancer (PTC), is a malignant tumour of endocrine system with increasing incidence rate worldwide. Upstream transcription factor 1 (USF1) regulates a variety of biological processes by transactivation of functional genes. In this study, we investigated the association between USF1 polymorphisms and PTC risk. MATERIAL & METHODS A total of 334 patients with PTC, 186 patients with benign nodules (BN) and 668 healthy controls were enrolled in our study. Tag-SNPs were identified in Chinese Han in Beijing (CHB) from International HapMap Project Databases. Genomic DNAs were extracted by TaqMan Blood DNA kits. SNPs of USF1 were genotyped by TaqMan SNPs genotyping assay. Odds ratios (OR) and corresponding 95% confidence interval (CI) were used to assess the association between USF1 genetic variants and PTC risk. The statistical analyses were carried out with spss 13.0 software. RESULTS Five tag-SNPs were retrieved to capture all the genetic variants of USF1. Among the five tag-SNPs, genetic variants in rs2516838, rs3737787 and rs2516839 have significant association with PTC risk. The rs2516838 polymorphisms dominant model (CG+GG vs CC: OR = 0·71; 95% CI: 0·52-0·97; P = 0·033) and allelic model (C vs G: OR = 0·031; 95% CI: 0·56-0·97; P = 0·031) indicated it may act as a protective factor against PTC. On the contrary, the results of rs3737787 polymorphisms: dominant model (CT+TT vs CC: OR = 1·55; 95%CI: 1·09-2·02; P = 0·001) and allelic model (C vs T: OR = 1·35; 95%CI: 1·10-1·64; P = 0·003), as well as the results of rs2516839 polymorphisms: dominant model (GA+AA vs GG: OR = 1·77; 95%CI: 1·31-2·38; P < 0·001) and allelic model (G vs A: OR = 1·36; 95%CI: 1·13-1·63; P = 0·014), revealed that they may act as risk factors for PTC. CONCLUSION In this study, we found the SNPs of rs2516838 (mutant G alleles vs wild C alleles), rs3737787 (mutant T alleles vs wild C alleles) and rs2516839 (mutant A alleles vs wild G alleles) were significantly associated with PTC risk. Further large-scale studies with different ethnicities are still needed to validate our findings and explore the underlying mechanism of USF1 in PTC development.
Collapse
Affiliation(s)
- Qingzhong Yuan
- Department of Hepatobiliary Breast Thyroid Surgery, Shengli Oilfield Central Hospital, Dongying, China
| | - Qingao Bu
- Department of Hepatobiliary Breast Thyroid Surgery, Shengli Oilfield Central Hospital, Dongying, China
| | - Guoqiang Li
- Department of Hepatobiliary Breast Thyroid Surgery, Shengli Oilfield Central Hospital, Dongying, China
| | - Jun Zhang
- Department of Hepatobiliary Breast Thyroid Surgery, Shengli Oilfield Central Hospital, Dongying, China
| | - Tao Cui
- Department of Hepatobiliary Breast Thyroid Surgery, Shengli Oilfield Central Hospital, Dongying, China
| | - Rui Zhu
- Department of Hepatobiliary Breast Thyroid Surgery, Shengli Oilfield Central Hospital, Dongying, China
| | - Dongpo Mu
- Department of Hepatobiliary Breast Thyroid Surgery, Shengli Oilfield Central Hospital, Dongying, China
| |
Collapse
|
47
|
Ovarian cancer treatment with a tumor-targeting and gene expression-controllable lipoplex. Sci Rep 2016; 6:23764. [PMID: 27026065 PMCID: PMC4824455 DOI: 10.1038/srep23764] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 03/14/2016] [Indexed: 02/05/2023] Open
Abstract
Overexpression of folate receptor alpha (FRα) and high telomerase activity are considered to be the characteristics of ovarian cancers. In this study, we developed FRα-targeted lipoplexes loaded with an hTERT promoter-regulated plasmid that encodes a matrix protein (MP) of the vesicular stomatitis virus, F-LP/pMP(2.5), for application in ovarian cancer treatment. We first characterized the pharmaceutical properties of F-LP/pMP(2.5). The efficient expression of the MP-driven hTERT promoter in SKOV-3 cells was determined after an in-vitro transfection assay, which was significantly increased compared with a non-modified LP/pMP(2.5) group. F-LP/pMP(2.5) treatment significantly inhibited the growth of tumors and extended the survival of mice in a SKOV-3 tumor model compared with other groups. Such an anti-tumor effect was due to the increased expression of MP in tumor tissue, which led to the induction of tumor cell apoptosis, inhibition of tumor cell proliferation and suppression of tumor angiogenesis. Furthermore, a preliminary safety evaluation demonstrated a good safety profile of F-LP/pMP(2.5) as a gene therapy agent. Therefore, FRα-targeted lipoplexes with therapeutic gene expression regulated by an hTERT promoter might be a promising gene therapy agent and a potential translational candidate for the clinical treatment of ovarian cancer.
Collapse
|
48
|
El-Shinawi M, Mohamed HT, Abdel-Fattah HH, Ibrahim SAA, El-Halawany MS, Nouh MA, Schneider RJ, Mohamed MM. Inflammatory and Non-inflammatory Breast Cancer: A Potential Role for Detection of Multiple Viral DNAs in Disease Progression. Ann Surg Oncol 2015; 23:494-502. [PMID: 26508152 DOI: 10.1245/s10434-015-4888-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Indexed: 12/23/2022]
Abstract
BACKGROUND Inflammatory breast cancer (IBC) is the most lethal form of breast cancer. Multiple viral infections in IBC tissues were found to be associated with disease pathogenesis. OBJECTIVE The aim of the present study was to correlate the incidence of viral DNA with breast cancer progression. MATERIALS AND METHODS Overall, 135 women diagnosed with breast cancer were enrolled in this study. Using polymerase chain reaction and sequencing assays, we determined the incidence of human papillomavirus types 16 and 18 (HPV-16 and -18), human cytomegalovirus (HCMV), Epstein-Barr virus, human herpes simplex virus type 1 and 2, and human herpes virus type 8 (HHV-8) in breast carcinoma tissue biopsies. We also assessed the expression of the cell proliferation marker Ki-67 by immunohistochemistry in association with the incidence of viral DNA. RESULTS HCMV and HPV-16 were the most detected viral DNAs in breast carcinoma tissues; however, the frequency of HCMV and HHV-8 DNA were significantly higher in IBC than non-IBC tissues. Moreover, the prevalence of multiple viral DNAs was higher in IBC than non-IBC tissues. The incidence of multiple viral DNAs positively correlates with tumor size and number of metastatic lymph nodes in both non-IBC and IBC patients. The expression of Ki-67 was found to be significantly higher in both non-IBC and IBC tissues in which multiple viral DNAs were detected. CONCLUSIONS The incidence of multiple viral DNAs in IBC tissues was higher compared with non-IBC tissues. The present results suggest the possibility of a functional relationship between the presence of multiple viral DNAs and disease pathogenesis.
Collapse
Affiliation(s)
- Mohamed El-Shinawi
- Department of General Surgery, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Hossam Taha Mohamed
- Cancer Biology Research Lab, Department of Zoology, Faculty of Science, Cairo University, Giza, Egypt.
| | | | - Sherif Abdel Aziz Ibrahim
- Cancer Biology Research Lab, Department of Zoology, Faculty of Science, Cairo University, Giza, Egypt
| | - Medhat S El-Halawany
- Cancer Biology Research Lab, Department of Zoology, Faculty of Science, Cairo University, Giza, Egypt
| | - M Akram Nouh
- Department of Pathology, National Cancer Institute, Cairo University, Giza, Egypt
| | - Robert J Schneider
- Department of Microbiology, School of Medicine, New York University, New York, NY, USA
| | - Mona Mostafa Mohamed
- Cancer Biology Research Lab, Department of Zoology, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
49
|
Human telomerase reverse transcriptase regulates vascular endothelial growth factor expression via human papillomavirus oncogene E7 in HPV-18-positive cervical cancer cells. Med Oncol 2015; 32:199. [PMID: 26067630 DOI: 10.1007/s12032-015-0649-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 06/03/2015] [Indexed: 01/03/2023]
Abstract
Human papillomavirus (HPV) infection induces chronic and precancerous lesions and results in invasive cervical cancer. Human telomerase as well as inflammatory and angiogenic factors such as telomerase reverse transcriptase (hTERT) or vascular endothelial growth factor (VEGF) could play a role in regulating HPV-induced cervical cancer. This study investigated underlying molecular events in HPV-induced HPV-positive cervical cancer through hTERT and VEGF in vitro. Expressions of hTERT, a rate-limiting subunit of telomerase, and VEGF mRNA and proteins were, respectively, assessed by qRT-PCR, ELISA, and TRAP-ELISA in HPV-positive tissue samples and cervical cancer cell lines. To assess hTERT and VEGF secretion, hTERT overexpression and knockdown were conducted in HPV-18-positive Hela cells by hTERT cDNA and shRNA transfection, respectively. Then, the effect of HPV E6 and E7 on VEGF expressions was assessed in HPV-negative cervical cancer cells. Data have shown that VEGF expression levels are associated with hTERT expressions and telomerase activity in HPV-positive cervical cancer tissues and cells. Knockdown of hTERT expression down-regulated VEGF expressions, whereas overexpression of hTERT up-regulated VEGF expressions in HPV-18-positive Hela cells. Furthermore, HPV E7 oncoprotein was necessary for hTERT to up-regulate VEGF expressions in HPV-negative cervical cancer cells. Data from this current study indicate that HPV oncoproteins up-regulated hTERT and telomerase activity and in turn promoted VEGF expressions, which could be a key mechanism for HPV-induced cervical cancer development and progression.
Collapse
|
50
|
Chen J. Signaling pathways in HPV-associated cancers and therapeutic implications. Rev Med Virol 2015; 25 Suppl 1:24-53. [DOI: 10.1002/rmv.1823] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Revised: 10/15/2014] [Accepted: 12/27/2014] [Indexed: 12/19/2022]
Affiliation(s)
- Jiezhong Chen
- School of Biomedical Sciences and Australian Institute for Bioengineering and Nanotechnology; The University of Queensland; Brisbane Queensland Australia
| |
Collapse
|