1
|
Wilde THC, Shukla RK, Madden C, Vodovotz Y, Sharma A, McGraw WS, Hale VL. Simian immunodeficiency virus and storage buffer: Field-friendly preservation methods for RNA viral detection in primate feces. mSphere 2023; 8:e0048423. [PMID: 38032220 PMCID: PMC10732032 DOI: 10.1128/msphere.00484-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
IMPORTANCE Simian immunodeficiency virus (SIV), which originated in African monkeys, crossed the species barrier into humans and ultimately gave rise to HIV and the global HIV/AIDS epidemic. While SIV infects over 40 primate species in sub-Saharan Africa, testing for RNA viruses in wild primate populations can be challenging. Optimizing field-friendly methods for assessing viral presence/abundance in non-invasively collected biological samples facilitates the study of viruses, including potentially zoonotic viruses, in wild primate populations. This study compares SIV RNA preservation and recovery from non-human primate feces stored in four different buffers. Our results will inform future fieldwork and facilitate improved approaches to characterizing prevalence, shedding, and transmission of RNA viruses like SIV in natural hosts including wild-living non-human primates.
Collapse
Affiliation(s)
- Tessa H. C. Wilde
- Department of Anthropology, The Ohio State University, Columbus, Ohio, USA
| | - Rajni Kant Shukla
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | - Christopher Madden
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Yael Vodovotz
- Department of Food Science and Technology, The Ohio State University, Columbus, Ohio, USA
| | - Amit Sharma
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | - W. Scott McGraw
- Department of Anthropology, The Ohio State University, Columbus, Ohio, USA
| | - Vanessa L. Hale
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
2
|
Smiley Evans T, Gilardi KVK, Barry PA, Ssebide BJ, Kinani JF, Nizeyimana F, Noheri JB, Byarugaba DK, Mudakikwa A, Cranfield MR, Mazet JAK, Johnson CK. Detection of viruses using discarded plants from wild mountain gorillas and golden monkeys. Am J Primatol 2016; 78:1222-1234. [PMID: 27331804 DOI: 10.1002/ajp.22576] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 06/03/2016] [Accepted: 06/04/2016] [Indexed: 01/03/2023]
Abstract
Infectious diseases pose one of the most significant threats to the survival of great apes in the wild. The critically endangered mountain gorilla (Gorilla beringei beringei) is at high risk for contracting human pathogens because approximately 60% of the population is habituated to humans to support a thriving ecotourism program. Disease surveillance for human and non-human primate pathogens is important for population health and management of protected primate species. Here, we evaluate discarded plants from mountain gorillas and sympatric golden monkeys (Cercopithecus mitis kandti), as a novel biological sample to detect viruses that are shed orally. Discarded plant samples were tested for the presence of mammalian-specific genetic material and two ubiquitous DNA and RNA primate viruses, herpesviruses, and simian foamy virus. We collected discarded plant samples from 383 wild human-habituated mountain gorillas and from 18 habituated golden monkeys. Mammalian-specific genetic material was recovered from all plant species and portions of plant bitten or chewed by gorillas and golden monkeys. Gorilla herpesviral DNA was most consistently recovered from plants in which leafy portions were eaten by gorillas. Simian foamy virus nucleic acid was recovered from plants discarded by golden monkeys, indicating that it is also possible to detect RNA viruses from bitten or chewed plants. Our findings show that discarded plants are a useful non-invasive sampling method for detection of viruses that are shed orally in mountain gorillas, sympatric golden monkeys, and potentially other species. This method of collecting specimens from discarded plants is a new non-invasive sampling protocol that can be combined with collection of feces and urine to evaluate the most common routes of viral shedding in wild primates. Am. J. Primatol. 78:1222-1234, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Tierra Smiley Evans
- Gorilla Doctors, Karen C. Drayer Wildlife Health Center, School of Veterinary Medicine, University of California, Davis, California.
| | - Kirsten V K Gilardi
- Gorilla Doctors, Karen C. Drayer Wildlife Health Center, School of Veterinary Medicine, University of California, Davis, California
| | - Peter A Barry
- California National Primate Research Center, Center for Comparative Medicine, University of California, Davis, California
| | | | | | - Fred Nizeyimana
- Gorilla Doctors, Mountain Gorilla Veterinary Project, Inc., Davis, California
| | - Jean Bosco Noheri
- Gorilla Doctors, Mountain Gorilla Veterinary Project, Inc., Davis, California
| | | | | | - Michael R Cranfield
- Gorilla Doctors, Karen C. Drayer Wildlife Health Center, School of Veterinary Medicine, University of California, Davis, California
| | - Jonna A K Mazet
- Gorilla Doctors, Karen C. Drayer Wildlife Health Center, School of Veterinary Medicine, University of California, Davis, California
| | - Christine K Johnson
- Gorilla Doctors, Karen C. Drayer Wildlife Health Center, School of Veterinary Medicine, University of California, Davis, California
| |
Collapse
|
3
|
Wroblewski EE, Norman PJ, Guethlein LA, Rudicell RS, Ramirez MA, Li Y, Hahn BH, Pusey AE, Parham P. Signature Patterns of MHC Diversity in Three Gombe Communities of Wild Chimpanzees Reflect Fitness in Reproduction and Immune Defense against SIVcpz. PLoS Biol 2015; 13:e1002144. [PMID: 26020813 PMCID: PMC4447270 DOI: 10.1371/journal.pbio.1002144] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 04/02/2015] [Indexed: 11/19/2022] Open
Abstract
Major histocompatibility complex (MHC) class I molecules determine immune responses to viral infections. These polymorphic cell-surface glycoproteins bind peptide antigens, forming ligands for cytotoxic T and natural killer cell receptors. Under pressure from rapidly evolving viruses, hominoid MHC class I molecules also evolve rapidly, becoming diverse and species-specific. Little is known of the impact of infectious disease epidemics on MHC class I variant distributions in human populations, a context in which the chimpanzee is the superior animal model. Population dynamics of the chimpanzees inhabiting Gombe National Park, Tanzania have been studied for over 50 years. This population is infected with SIVcpz, the precursor of human HIV-1. Because HLA-B is the most polymorphic human MHC class I molecule and correlates strongly with HIV-1 progression, we determined sequences for its ortholog, Patr-B, in 125 Gombe chimpanzees. Eleven Patr-B variants were defined, as were their frequencies in Gombe's three communities, changes in frequency with time, and effect of SIVcpz infection. The growing populations of the northern and central communities, where SIVcpz is less prevalent, have stable distributions comprising a majority of low-frequency Patr-B variants and a few high-frequency variants. Driving the latter to high frequency has been the fecundity of immigrants to the northern community, whereas in the central community, it has been the fecundity of socially dominant individuals. In the declining population of the southern community, where greater SIVcpz prevalence is associated with mortality and emigration, Patr-B variant distributions have been changing. Enriched in this community are Patr-B variants that engage with natural killer cell receptors. Elevated among SIVcpz-infected chimpanzees, the Patr-B*06:03 variant has striking structural and functional similarities to HLA-B*57, the human allotype most strongly associated with delayed HIV-1 progression. Like HLA-B*57, Patr-B*06:03 correlates with reduced viral load, as assessed by detection of SIVcpz RNA in feces.
Collapse
Affiliation(s)
- Emily E. Wroblewski
- Department of Structural Biology and Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail: (EEW); (PP)
| | - Paul J. Norman
- Department of Structural Biology and Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Lisbeth A. Guethlein
- Department of Structural Biology and Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Rebecca S. Rudicell
- Vaccine Research Center, National Institutes of Health, Bethesda, Maryland, United States of America
- Sanofi, Cambridge, Massachusetts, United States of America
| | - Miguel A. Ramirez
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Yingying Li
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Beatrice H. Hahn
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Anne E. Pusey
- Department of Evolutionary Anthropology, Duke University, Durham, North Carolina, United States of America
| | - Peter Parham
- Department of Structural Biology and Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail: (EEW); (PP)
| |
Collapse
|
4
|
Reed PE, Mulangu S, Cameron KN, Ondzie AU, Joly D, Bermejo M, Rouquet P, Fabozzi G, Bailey M, Shen Z, Keele BF, Hahn B, Karesh WB, Sullivan NJ. A new approach for monitoring ebolavirus in wild great apes. PLoS Negl Trop Dis 2014; 8:e3143. [PMID: 25232832 PMCID: PMC4169258 DOI: 10.1371/journal.pntd.0003143] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 07/22/2014] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Central Africa is a "hotspot" for emerging infectious diseases (EIDs) of global and local importance, and a current outbreak of ebolavirus is affecting multiple countries simultaneously. Ebolavirus is suspected to have caused recent declines in resident great apes. While ebolavirus vaccines have been proposed as an intervention to protect apes, their effectiveness would be improved if we could diagnostically confirm Ebola virus disease (EVD) as the cause of die-offs, establish ebolavirus geographical distribution, identify immunologically naïve populations, and determine whether apes survive virus exposure. METHODOLOGY/PRINCIPAL FINDINGS Here we report the first successful noninvasive detection of antibodies against Ebola virus (EBOV) from wild ape feces. Using this method, we have been able to identify gorillas with antibodies to EBOV with an overall prevalence rate reaching 10% on average, demonstrating that EBOV exposure or infection is not uniformly lethal in this species. Furthermore, evidence of antibodies was identified in gorillas thought previously to be unexposed to EBOV (protected from exposure by rivers as topological barriers of transmission). CONCLUSIONS/SIGNIFICANCE Our new approach will contribute to a strategy to protect apes from future EBOV infections by early detection of increased incidence of exposure, by identifying immunologically naïve at-risk populations as potential targets for vaccination, and by providing a means to track vaccine efficacy if such intervention is deemed appropriate. Finally, since human EVD is linked to contact with infected wildlife carcasses, efforts aimed at identifying great ape outbreaks could have a profound impact on public health in local communities, where EBOV causes case-fatality rates of up to 88%.
Collapse
Affiliation(s)
- Patricia E. Reed
- Wildlife Conservation Society, Bronx, New York, New York, United States of America
| | - Sabue Mulangu
- Vaccine Research Center, National Institute for Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Kenneth N. Cameron
- Wildlife Conservation Society, Bronx, New York, New York, United States of America
| | - Alain U. Ondzie
- Wildlife Conservation Society, Bronx, New York, New York, United States of America
| | - Damien Joly
- Wildlife Conservation Society, Bronx, New York, New York, United States of America
| | - Magdalena Bermejo
- Departamento Biologia Animal (Vertebrados), Facultad de Biologia, Universidad de Barcelona, Barcelona, Spain
| | | | - Giulia Fabozzi
- Vaccine Research Center, National Institute for Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Michael Bailey
- Vaccine Research Center, National Institute for Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Zhimin Shen
- Vaccine Research Center, National Institute for Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Brandon F. Keele
- AIDS and Cancer Virus Program, Frederick National Laboratory, Frederick, Maryland, United States of America
| | - Beatrice Hahn
- University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - William B. Karesh
- Wildlife Conservation Society, Bronx, New York, New York, United States of America
| | - Nancy J. Sullivan
- Vaccine Research Center, National Institute for Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
5
|
Eastern chimpanzees, but not bonobos, represent a simian immunodeficiency virus reservoir. J Virol 2012; 86:10776-91. [PMID: 22837215 DOI: 10.1128/jvi.01498-12] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Chimpanzees in west central Africa (Pan troglodytes troglodytes) are endemically infected with simian immunodeficiency viruses (SIVcpzPtt) that have crossed the species barrier to humans and gorillas on at least five occasions, generating pandemic and nonpandemic forms of human immunodeficiency virus type 1 (HIV-1) as well as gorilla SIV (SIVgor). Chimpanzees in east Africa (Pan troglodytes schweinfurthii) are also infected with SIVcpz; however, their viruses (SIVcpzPts) have never been found in humans. To examine whether this is due to a paucity of natural infections, we used noninvasive methods to screen wild-living eastern chimpanzees in the Democratic Republic of the Congo (DRC), Uganda, and Rwanda. We also screened bonobos (Pan paniscus) in the DRC, a species not previously tested for SIV in the wild. Fecal samples (n = 3,108) were collected at 50 field sites, tested for species and subspecies origin, and screened for SIVcpz antibodies and nucleic acids. Of 2,565 samples from eastern chimpanzees, 323 were antibody positive and 92 contained viral RNA. The antibody-positive samples represented 76 individuals from 19 field sites, all sampled north of the Congo River in an area spanning 250,000 km(2). In this region, SIVcpzPts was common and widespread, with seven field sites exhibiting infection rates of 30% or greater. The overall prevalence of SIVcpzPts infection was 13.4% (95% confidence interval, 10.7% to 16.5%). In contrast, none of the 543 bonobo samples from six sites was antibody positive. All newly identified SIVcpzPts strains clustered in strict accordance to their subspecies origin; however, they exhibited considerable genetic diversity, especially in protein domains known to be under strong host selection pressure. Thus, the absence of SIVcpzPts zoonoses cannot be explained by an insufficient primate reservoir. Instead, greater adaptive hurdles may have prevented the successful colonization of humans by P. t. schweinfurthii viruses.
Collapse
|
6
|
Goffe AS, Blasse A, Mundry R, Leendertz FH, Calvignac-Spencer S. Detection of retroviral super-infection from non-invasive samples. PLoS One 2012; 7:e36570. [PMID: 22590569 PMCID: PMC3348140 DOI: 10.1371/journal.pone.0036570] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Accepted: 04/10/2012] [Indexed: 01/08/2023] Open
Abstract
While much attention has been focused on the molecular epidemiology of retroviruses in wild primate populations, the correlated question of the frequency and nature of super-infection events, i.e., the simultaneous infection of the same individual host with several strains of the same virus, has remained largely neglected. In particular, methods possibly allowing the investigation of super-infection from samples collected non-invasively (such as faeces) have never been properly compared. Here, we fill in this gap by assessing the costs and benefits of end-point dilution PCR (EPD-PCR) and multiple bulk-PCR cloning, as applied to a case study focusing on simian foamy virus super-infection in wild chimpanzees (Pan troglodytes). We show that, although considered to be the gold standard, EPD-PCR can lead to massive consumption of biological material when only low copy numbers of the target are expected. This constitutes a serious drawback in a field in which rarity of biological material is a fundamental constraint. In addition, we demonstrate that EPD-PCR results (single/multiple infection; founder strains) can be well predicted from multiple bulk-PCR clone experiments, by applying simple statistical and network analyses to sequence alignments. We therefore recommend the implementation of the latter method when the focus is put on retroviral super-infection and only low retroviral loads are encountered.
Collapse
Affiliation(s)
- Adeelia S. Goffe
- Research Group Emerging Zoonoses, Robert Koch-Institut, Berlin, Germany
- Wildlife Conservation Research Unit, University of Oxford, Oxford, United Kingdom
| | - Anja Blasse
- Research Group Emerging Zoonoses, Robert Koch-Institut, Berlin, Germany
| | - Roger Mundry
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | | | | |
Collapse
|
7
|
Antiviral antibodies and T cells are present in the foreskin of simian immunodeficiency virus-infected rhesus macaques. J Virol 2012; 86:7098-106. [PMID: 22532691 DOI: 10.1128/jvi.00410-12] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
No information exists regarding immune responses to human immunodeficiency virus (HIV) infection in the foreskin or glans of the human penis, although this is a key tissue for HIV transmission. To address this gap, we characterized antiviral immune responses in foreskin of male rhesus macaques (RMs) inoculated with simian immunodeficiency virus (SIV) strain SIVmac251 by penile foreskin exposure. We found a complete population of immune cells in the foreskin and glans of normal RMs, although B cells were less common than CD4(+) and CD8(+) T cells. IgG-secreting cells were detected by enzyme-linked immunospot (ELISPOT) assay in cell suspensions made from the foreskin. In the foreskin and glans of SIV-infected RMs, although B cells were less common than CD4(+) and CD8(+) T cells, SIV-specific IgG antibody was present in foreskin secretions. In addition, cytokine-secreting SIV-specific CD8(+) T cells were readily found in cell suspensions made from the foreskin. Although potential HIV target cells were found in and under the epithelium covering all penile surfaces, the presence of antiviral effector B and T cells in the foreskin suggests that vaccines may be able to elicit immunity in this critical site to protect men from acquiring HIV.
Collapse
|
8
|
Leendertz SAJ, Locatelli S, Boesch C, Kücherer C, Formenty P, Liegeois F, Ayouba A, Peeters M, Leendertz FH. No evidence for transmission of SIVwrc from western red colobus monkeys (Piliocolobus badius badius) to wild West African chimpanzees (Pan troglodytes verus) despite high exposure through hunting. BMC Microbiol 2011; 11:24. [PMID: 21284842 PMCID: PMC3041994 DOI: 10.1186/1471-2180-11-24] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Accepted: 02/01/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Simian Immunodeficiency Viruses (SIVs) are the precursors of Human Immunodeficiency Viruses (HIVs) which have led to the worldwide HIV/AIDS pandemic. By studying SIVs in wild primates we can better understand the circulation of these viruses in their natural hosts and habitat, and perhaps identify factors that influence susceptibility and transmission within and between various host species. We investigated the SIV status of wild West African chimpanzees (Pan troglodytes verus) which frequently hunt and consume the western red colobus monkey (Piliocolobus badius badius), a species known to be infected to a high percentage with its specific SIV strain (SIVwrc). RESULTS Blood and plasma samples from 32 wild chimpanzees were tested with INNO-LIA HIV I/II Score kit to detect cross-reactive antibodies to HIV antigens. Twenty-three of the samples were also tested for antibodies to 43 specific SIV and HIV lineages, including SIVwrc. Tissue samples from all but two chimpanzees were tested for SIV by PCRs using generic SIV primers that detect all known primate lentiviruses as well as primers designed to specifically detect SIVwrc. Seventeen of the chimpanzees showed varying degrees of cross-reactivity to the HIV specific antigens in the INNO-LIA test; however no sample had antibodies to SIV or HIV strain- and lineage-specific antigens in the Luminex test. No SIV DNA was found in any of the samples. CONCLUSIONS We could not detect any conclusive trace of SIV infection from the red colobus monkeys in the chimpanzees, despite high exposure to this virus through frequent hunting. The results of our study raise interesting questions regarding the host-parasite relationship of SIVwrc and wild chimpanzees in their natural habitat.
Collapse
|
9
|
Lack of Evidence of Simian Immunodeficiency Virus Infection Among Nonhuman Primates in Taï National Park, Côte d'Ivoire: Limitations of Noninvasive Methods and SIV Diagnostic Tools for Studies of Primate Retroviruses. INT J PRIMATOL 2010; 32:288-307. [PMID: 23950618 DOI: 10.1007/s10764-010-9466-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
It is now well established that the human immunodeficiency viruses, HIV-1 and HIV-2, are the results of cross-species transmissions of simian immunodeficiency viruses (SIV) naturally infecting nonhuman primates in sub-Saharan Africa. SIVs are found in many African primates, and humans continue to be exposed to these viruses by hunting and handling primate bushmeat. Sooty mangabeys (Cercocebus atys) and western red colobus (Piliocolobus badius badius) are infected with SIV at a high rate in the Taï Forest, Côte d'Ivoire. We investigated the SIV infection and prevalence in 6 other monkey species living in the Taï Forest using noninvasive methods. We collected 127 fecal samples from 2 colobus species (Colobus polykomos and Procolobus verus) and 4 guenon species (C. diana, C. campbelli, C. petaurista, and C. nictitans). We tested these samples for HIV cross-reactive antibodies and performed reverse transcriptase-polymerase chain reactions (RT-PCR) targeting the gag, pol, and env regions of the SIV genome. We screened 16 human microsatellites for use in individual discrimination and identified 4-6 informative markers per species. Serological analysis of 112 samples yielded negative (n=86) or uninterpretable (n=26) results. PCR analysis on 74 samples confirmed the negative results. These results may reflect either the limited number of individuals sampled or a low prevalence of infection. Further research is needed to improve the sensitivity of noninvasive methods for SIV detection.
Collapse
|
10
|
High prevalence, coinfection rate, and genetic diversity of retroviruses in wild red colobus monkeys (Piliocolobus badius badius) in Tai National Park, Cote d'Ivoire. J Virol 2010; 84:7427-36. [PMID: 20484508 DOI: 10.1128/jvi.00697-10] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Simian retroviruses are precursors of all human retroviral pathogens. However, little is known about the prevalence and coinfection rates or the genetic diversity of major retroviruses-simian immunodeficiency virus (SIV), simian T-cell lymphotropic virus type 1 (STLV-1), and simian foamy virus (SFV)-in wild populations of nonhuman primates. Such information would contribute to the understanding of the natural history of retroviruses in various host species. Here, we estimate these parameters for wild West African red colobus monkeys (Piliocolobus badius badius) in the Taï National Park, Côte d'Ivoire. We collected samples from a total of 54 red colobus monkeys; samples consisted of blood and/or internal organs from 22 monkeys and additionally muscle and other tissue samples from another 32 monkeys. PCR analyses revealed a high prevalence of SIV, STLV-1, and SFV in this population, with rates of 82%, 50%, and 86%, respectively. Forty-five percent of the monkeys were coinfected with all three viruses while another 32% were coinfected with SIV in combination with either STLV or SFV. As expected, phylogenetic analyses showed a host-specific pattern for SIV and SFV strains. In contrast, STLV-1 strains appeared to be distributed in genetically distinct and distant clades, which are unique to the Taï forest and include strains previously described from wild chimpanzees in the same area. The high prevalence of all three retroviral infections in P. b. badius represents a source of infection to chimpanzees and possibly to humans, who hunt them.
Collapse
|
11
|
Veazey RS, Ling B, Green LC, Ribka EP, Lifson JD, Piatak M, Lederman MM, Mosier D, Offord R, Hartley O. Topically applied recombinant chemokine analogues fully protect macaques from vaginal simian-human immunodeficiency virus challenge. J Infect Dis 2009; 199:1525-7. [PMID: 19331577 DOI: 10.1086/598685] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Effective strategies for preventing human immunodeficiency virus infection are urgently needed, but recent failures in key clinical trials of vaccines and microbicides highlight the need for new approaches validated in relevant animal models. Here, we show that 2 new chemokine (C-C motif) receptor 5 inhibitors, 5P12-RANTES (regulated on activation, normal T cell expressed and secreted) and 6P4-RANTES, fully protect against infection in the rhesus vaginal challenge model. These highly potent molecules, which are amenable to low-cost production, represent promising new additions to the microbicides pipeline.
Collapse
Affiliation(s)
- Ronald S Veazey
- Tulane National Primate Research Center, Covington, Louisiana, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Gillespie TR, Nunn CL, Leendertz FH. Integrative approaches to the study of primate infectious disease: implications for biodiversity conservation and global health. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2009; Suppl 47:53-69. [PMID: 19003885 DOI: 10.1002/ajpa.20949] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The close phylogenetic relationship between humans and nonhuman primates, coupled with the exponential expansion of human populations and human activities within primate habitats, has resulted in exceptionally high potential for pathogen exchange. Emerging infectious diseases are a consequence of this process that has the capacity to threaten global health and drive primate population declines. Integration of standardized empirical data collection, state-of-the-art diagnostics, and the comparative approach offers the opportunity to create a baseline for patterns of infection in wild primate populations; to better understand the role of disease in primate ecology, behavior, and evolution; and to examine how anthropogenic effects alter the zoonotic potential of various pathogenic organisms. We review these technologies and approaches, including noninvasive sampling in field conditions, and we identify ways in which integrative research activities are likely to fuel future discoveries in primate disease ecology. In addition to considering applied aspects of disease research in primate health and conservation, we review how these approaches are shedding light on parasite biodiversity and the drivers of disease risk across primate species.
Collapse
Affiliation(s)
- Thomas R Gillespie
- Department of Environmental Studies, Emory University, Atlanta, GA 30322, USA.
| | | | | |
Collapse
|
13
|
Abstract
TRIM5alpha is a potent barrier to cross-species retroviral transmission, and TRIM5alphas from different species have divergent antiretroviral specificities. Multiple TRIM5 alleles circulate within rhesus macaque populations. Here we show that they too have different antiretroviral specificities, highlighting how TRIM5 genotypes contribute to protection in an individual or a population.
Collapse
|
14
|
Locatelli S, Lafay B, Liegeois F, Ting N, Delaporte E, Peeters M. Full molecular characterization of a simian immunodeficiency virus, SIVwrcpbt from Temminck's red colobus (Piliocolobus badius temminckii) from Abuko Nature Reserve, The Gambia. Virology 2008; 376:90-100. [PMID: 18442839 DOI: 10.1016/j.virol.2008.01.049] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Revised: 01/16/2008] [Accepted: 01/29/2008] [Indexed: 11/26/2022]
Abstract
Simian immunodeficiency viruses (SIVs) are found in an extensive number of African primates, and humans continue to be exposed to these viruses by hunting and handling of primate bushmeat. The purpose of our study was to examine to what extent Piliocolobus badius subspecies are infected with SIV in order to better characterize SIVwrc in general and to gain further insight into the impact of geographic barriers and subspeciation on the evolution of SIVwrc. We analysed sixteen faecal samples and two tissue samples of the P. b. temminckii subspecies collected in the Abuko Nature Reserve (The Gambia, West Africa). SIV infection could only be identified in one tissue sample, and phylogenetic tree analyses of partial pol and env sequences showed that the new SIVwrcPbt virus is closely related to SIVwrcPbb strains from P. b. badius in the Taï forest (Côte d'Ivoire), thus suggesting that geographically separated subspecies are infected with a closely related virus. Molecular characterization and phylogenetic analysis of the full-length genome sequence confirmed that SIVwrcPbt is a species-specific SIV lineage, although it is distantly related to the SIVlho and SIVsun lineages across its entire genome. Characterization of additional SIVwrc viruses is needed to understand the ancestral phylogenetic relation to SIVs from l'Hoest and sun-tailed monkeys and whether recombination occurred between ancestors of the SIVwrc and SIVlho/sun lineages.
Collapse
Affiliation(s)
- Sabrina Locatelli
- UMR 145, Institut de Recherche pour le Développement (IRD) and University of Montpellier 1, Montpellier, France
| | | | | | | | | | | |
Collapse
|
15
|
Locatelli S, Liegeois F, Lafay B, Roeder AD, Bruford MW, Formenty P, Noë R, Delaporte E, Peeters M. Prevalence and genetic diversity of simian immunodeficiency virus infection in wild-living red colobus monkeys (Piliocolobus badius badius) from the Taï forest, Côte d'Ivoire SIVwrc in wild-living western red colobus monkeys. INFECTION GENETICS AND EVOLUTION 2007; 8:1-14. [PMID: 17916449 DOI: 10.1016/j.meegid.2007.08.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2007] [Revised: 08/29/2007] [Accepted: 08/30/2007] [Indexed: 10/22/2022]
Abstract
Numerous African primates are infected with simian immunodeficiency viruses (SIVs). It is now well established that the clade of SIVs infecting west-central African chimpanzees (Pan troglodytes troglodytes) and western gorillas (Gorilla gorilla gorilla) represent the progenitors of human immunodeficiency virus type 1 (HIV-1), whereas HIV-2 results from different cross-species transmissions of SIVsmm from sooty mangabeys (Cercocebus atys atys). We present here the first molecular epidemiological survey of simian immunodeficiency virus (SIVwrc) in wild-living western red colobus monkeys (Piliocolobus badius badius) which are frequently hunted by the human population and represent a favourite prey of western chimpanzees (Pan troglodytes verus). We collected faecal samples (n=88) and we assessed individual discrimination by microsatellite analyses and visual observation. We tested the inferred 53 adult individuals belonging to two neighbouring habituated groups for presence of SIVwrc infection by viral RNA (vRNA) detection. We amplified viral polymerase (pol) (650 bp) and/or envelope (env) (570 bp) sequences in 14 individuals, resulting in a minimal prevalence of 26% among the individuals sampled, possibly reaching 50% when considering the relatively low sensitivity of viral RNA detection in faecal samples. With a few exceptions, phylogenetic analysis of pol and env sequences revealed a low degree of intragroup genetic diversity and a general viral clustering related to the social group of origin. However, we found a higher intergroup diversity. Behavioural and demographic data collected previously from these communities indicate that red colobus monkeys live in promiscuous multi-male societies, where females leave their natal group at the sub-adult stage of their lives and where extra-group copulations or male immigration have been rarely observed. The phylogenetic data we obtained seem to reflect these behavioural characteristics. Overall, our results indicate that wild-living red colobus represent a substantial reservoir of SIVwrc. Moreover, because of their frequent association with other monkey species, the predation pressure exerted by chimpanzees (Pan troglodytes verus) and by poachers around and inside the park, simian to simian and simian to human SIVwrc cross-species transmission cannot be excluded.
Collapse
Affiliation(s)
- Sabrina Locatelli
- UMR 145, Institut de Recherche pour le Développement, and University of Montpellier 1, Montpellier, France
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Gautam R, Carter AC, Katz N, Butler IF, Barnes M, Hasegawa A, Ratterree M, Silvestri G, Marx PA, Hirsch VM, Pandrea I, Apetrei C. In vitro characterization of primary SIVsmm isolates belonging to different lineages. In vitro growth on rhesus macaque cells is not predictive for in vivo replication in rhesus macaques. Virology 2007; 362:257-70. [PMID: 17303205 PMCID: PMC1936220 DOI: 10.1016/j.virol.2006.12.037] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2006] [Revised: 09/12/2006] [Accepted: 12/27/2006] [Indexed: 12/12/2022]
Abstract
We report in vitro characterization of 11 SIVsmm strains of six lineages co-circulating in naturally infected sooty mangabeys (SMs) from US Primate Centers and showed no major differences in the in vitro replication pattern between different SIVsmm lineages. Primary SIVsmm isolates utilized CCR5 and Bonzo co-receptors in vitro. SIVsmm growth in human T cell lines was isolate-, not lineage-specific, with poor replication on Molt4-Clone8, CEMss and PM1 cells and better replication on MT2, SupT1 and CEMx174 cells. All primary SIVsmm isolates replicated on SM and human PBMCs. In vitro replication in macaques varied widely, with moderate to high replication in pig-tailed macaque PBMCs, enhanced by CD8+ T cell depletion, and highly variable replication on rhesus macaque (Rh) PBMCs. Primary SIVsmm isolates replicated in Rh monocyte-derived dendritic cells (MDDCs) and monocyte-derived macrophages (MDMs). In vivo, SIVsmm isolates replicated at high levels in all SIVsmm-infected Rh. The poor in vitro replication of primary SIVsmm isolates in Rh cells did not correlate with in vivo replication, emphasizing the value of in vivo studies.
Collapse
Affiliation(s)
- Rajeev Gautam
- Division of Microbiology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
VandeWoude S, Apetrei C. Going wild: lessons from naturally occurring T-lymphotropic lentiviruses. Clin Microbiol Rev 2006; 19:728-62. [PMID: 17041142 PMCID: PMC1592692 DOI: 10.1128/cmr.00009-06] [Citation(s) in RCA: 176] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Over 40 nonhuman primate (NHP) species harbor species-specific simian immunodeficiency viruses (SIVs). Similarly, more than 20 species of nondomestic felids and African hyenids demonstrate seroreactivity against feline immunodeficiency virus (FIV) antigens. While it has been challenging to study the biological implications of nonfatal infections in natural populations, epidemiologic and clinical studies performed thus far have only rarely detected increased morbidity or impaired fecundity/survival of naturally infected SIV- or FIV-seropositive versus -seronegative animals. Cross-species transmissions of these agents are rare in nature but have been used to develop experimental systems to evaluate mechanisms of pathogenicity and to develop animal models of HIV/AIDS. Given that felids and primates are substantially evolutionarily removed yet demonstrate the same pattern of apparently nonpathogenic lentiviral infections, comparison of the biological behaviors of these viruses can yield important implications for host-lentiviral adaptation which are relevant to human HIV/AIDS infection. This review therefore evaluates similarities in epidemiology, lentiviral genotyping, pathogenicity, host immune responses, and cross-species transmission of FIVs and factors associated with the establishment of lentiviral infections in new species. This comparison of consistent patterns in lentivirus biology will expose new directions for scientific inquiry for understanding the basis for virulence versus avirulence.
Collapse
Affiliation(s)
- Sue VandeWoude
- Department of Microbiology, Immunology and Pathology, College of Veterinary and Biomedical Sciences, Colorado State University, Fort Collins, CO 80538-1619, USA
| | | |
Collapse
|
18
|
Pandrea I, Silvestri G, Onanga R, Veazey RS, Marx PA, Hirsch V, Apetrei C. Simian immunodeficiency viruses replication dynamics in African non-human primate hosts: common patterns and species-specific differences. J Med Primatol 2006; 35:194-201. [PMID: 16872282 DOI: 10.1111/j.1600-0684.2006.00168.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
METHODS To define potential common features of simian immunodeficiency virus (SIV) infections in different naturally infected host species, we compared the dynamics of viral replication in 31 African green monkeys (10 sabeus, 15 vervets and seven Caribbean AGMs), 14 mandrills and three sooty mangabeys (SMs) that were experimentally infected with their species-specific viruses. RESULTS After infection, these SIVs replicated rapidly reaching viral loads (VLs) of 10(5)-10(9) copies/ml of plasma between days 9-14 post-infection (p.i). Set point viremia was established between days 42 and 60 p.i., with levels of approximately 10(5)-10(6) copies/ml in SM and mandrills, and lower levels (10(3)-10(5) copies/ml) in AGMs. VL during the chronic phase did not correlate with viral genome structure: SIVmnd-2 (a vpx-containing virus) and SIVmnd-1 (which does not contain vpu or vpx) replicated to similar levels in mandrills. VL was dependent on virus strain: vervets infected with three different viral strains showed different patterns of viral replication. The pattern of viral replication of SIVagm.sab, which uses both CCR5 and CXCR4 co-receptors was similar to those of the other viruses. CONCLUSIONS Our results show a common pattern of SIV replication in naturally and experimentally infected hosts. This is similar overall to that observed in pathogenic SIV infection of macaques. This result indicates that differences in clinical outcome between pathogenic and non-pathogenic infections rely on host responses rather than the characteristics of the virus itself.
Collapse
Affiliation(s)
- Ivona Pandrea
- Tulane National Primate Research Center, Covington, LA 70433, USA.
| | | | | | | | | | | | | |
Collapse
|
19
|
Pandrea I, Apetrei C, Dufour J, Dillon N, Barbercheck J, Metzger M, Jacquelin B, Bohm R, Marx PA, Barre-Sinoussi F, Hirsch VM, Müller-Trutwin MC, Lackner AA, Veazey RS. Simian immunodeficiency virus SIVagm.sab infection of Caribbean African green monkeys: a new model for the study of SIV pathogenesis in natural hosts. J Virol 2006; 80:4858-67. [PMID: 16641277 PMCID: PMC1472068 DOI: 10.1128/jvi.80.10.4858-4867.2006] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Caribbean-born African green monkeys (AGMs) were classified as Chlorocebus sabaeus by cytochrome b sequencing. Guided by these phylogenetic analyses, we developed a new model for the study of simian immunodeficiency virus (SIV) infection in natural hosts by inoculating Caribbean AGMs with their species-specific SIVagm.sab. SIVagm.sab replicated efficiently in Caribbean AGM peripheral blood mononuclear cells in vitro. During SIVagm.sab primary infection of six Caribbean AGMs, the virus replicated at high levels, with peak viral loads (VLs) of 10(7) to 10(8) copies/ml occurring by day 8 to 10 postinfection (p.i.). Set-point values of up to 2 x 10(5) copies/ml were reached by day 42 p.i. and maintained throughout follow-up (through day 450 p.i.). CD4(+) T-cell counts in the blood showed a transient depletion at the peak of VL, and then returned to near preinfection values by day 28 p.i. and remained relatively stable during the chronic infection. Preservation of CD4 T cells was also found in lymph nodes (LNs) of chronic SIVagm.sab-infected Caribbean AGMs. No activation of CD4(+) T cells was detected in the periphery in SIV-infected Caribbean AGMs. These virological and immunological profiles from peripheral blood and LNs were identical to those previously reported in African-born AGMs infected with the same viral strain (SIVagm.sab92018). Due to these similarities, we conclude that Caribbean AGMs are a useful alternative to AGMs of African origin as a model for the study of SIV infection in natural African hosts.
Collapse
Affiliation(s)
- Ivona Pandrea
- Tulane National Primate Research Center, Covington, LA 70433, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Santiago ML, Range F, Keele BF, Li Y, Bailes E, Bibollet-Ruche F, Fruteau C, Noë R, Peeters M, Brookfield JFY, Shaw GM, Sharp PM, Hahn BH. Simian immunodeficiency virus infection in free-ranging sooty mangabeys (Cercocebus atys atys) from the Taï Forest, Côte d'Ivoire: implications for the origin of epidemic human immunodeficiency virus type 2. J Virol 2005; 79:12515-27. [PMID: 16160179 PMCID: PMC1211554 DOI: 10.1128/jvi.79.19.12515-12527.2005] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Simian immunodeficiency virus of sooty mangabeys (SIVsmm) is recognized as the progenitor of human immunodeficiency virus type 2 (HIV-2) and has been transmitted to humans on multiple occasions, yet the epidemiology and genetic diversity of SIVsmm infection in wild-living populations remain largely unknown. Here, we report the first molecular epidemiological survey of SIVsmm in a community of approximately 120 free-ranging sooty mangabeys in the Taï Forest, Côte d'Ivoire. Fecal samples (n = 39) were collected from 35 habituated animals (27 females and 8 males) and tested for SIVsmm virion RNA (vRNA). Viral gag (800 bp) and/or env (490 bp) sequences were amplified from 11 different individuals (eight females and three males). Based on the sensitivity of fecal vRNA detection and the numbers of samples analyzed, the prevalence of SIVsmm infection was estimated to be 59% (95% confidence interval, 0.35 to 0.88). Behavioral data collected from this community indicated that SIVsmm infection occurred preferentially in high-ranking females. Phylogenetic analysis of gag and env sequences revealed an extraordinary degree of genetic diversity, including evidence for frequent recombination events in both the recent and distant past. Some sooty mangabeys harbored near-identical viruses (<2% interstrain distance), indicating epidemiologically linked infections. These transmissions were identified by microsatellite analyses to involve both related (mother/daughter) and unrelated individuals, thus providing evidence for vertical and horizontal transmission in the wild. Finally, evolutionary tree analyses revealed significant clustering of the Taï SIVsmm strains with five of the eight recognized groups of HIV-2, including the epidemic groups A and B, thus pointing to a likely geographic origin of these human infections in the eastern part of the sooty mangabey range.
Collapse
Affiliation(s)
- Mario L Santiago
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Traina-Dorge VL, Lorino R, Gormus BJ, Metzger M, Telfer P, Richardson D, Robertson DL, Marx PA, Apetrei C. Molecular epidemiology of simian T-cell lymphotropic virus type 1 in wild and captive sooty mangabeys. J Virol 2005; 79:2541-8. [PMID: 15681454 PMCID: PMC546543 DOI: 10.1128/jvi.79.4.2541-2548.2005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A study was conducted to evaluate the prevalence and diversity of simian T-cell lymphotropic virus (STLV) isolates within the long-established Tulane National Primate Research Center (TNPRC) colony of sooty mangabeys (SMs; Cercocebus atys). Serological analysis determined that 22 of 39 animals (56%) were positive for STLV type 1 (STLV-1). A second group of thirteen SM bush meat samples from Sierra Leone in Africa was also included and tested only by PCR. Twenty-two of 39 captive animals (56%) and 3 of 13 bush meat samples (23%) were positive for STLV-1, as shown by testing with PCR. Nucleotide sequencing and phylogenetic analysis of viral strains obtained demonstrated that STLV-1 strains from SMs (STLV-1sm strains) from the TNPRC colony and Sierra Leone formed a single cluster together with the previously reported STLV-1sm strain from the Yerkes National Primate Research Center. These data confirm that Africa is the origin for TNPRC STLV-1sm and suggest that Sierra Leone is the origin for the SM colonies in the United States. The TNPRC STLV-1sm strains further divided into two subclusters, suggesting STLV-1sm infection of two original founder SMs at the time of their importation into the United States. STLV-1sm diversity in the TNPRC colony matches the high diversity of SIVsm in the already reported colony. The lack of correlation between the lineage of the simian immunodeficiency virus from SMs (SIVsm) and the STLV-1sm subcluster distribution of the TNPRC strains suggests that intracolony transmissions of both viruses were independent events.
Collapse
Affiliation(s)
- Vicki L Traina-Dorge
- Division of Microbiology and Immunology, Tulane National Primate Research Center, 18703 Three Rivers Rd., Covington, LA 70433, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Apetrei C, Kaur A, Lerche NW, Metzger M, Pandrea I, Hardcastle J, Falkenstein S, Bohm R, Koehler J, Traina-Dorge V, Williams T, Staprans S, Plauche G, Veazey RS, McClure H, Lackner AA, Gormus B, Robertson DL, Marx PA. Molecular epidemiology of simian immunodeficiency virus SIVsm in U.S. primate centers unravels the origin of SIVmac and SIVstm. J Virol 2005; 79:8991-9005. [PMID: 15994793 PMCID: PMC1168739 DOI: 10.1128/jvi.79.14.8991-9005.2005] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Retrospective molecular epidemiology was performed on samples from four sooty mangabey (SM) colonies in the United States to characterize simian immunodeficiency virus SIVsm diversity in SMs and to trace virus circulation among different primate centers (PCs) over the past 30 years. The following SIVsm sequences were collected from different monkeys: 55 SIVsm isolates from the Tulane PC sampled between 1984 and 2004, 10 SIVsm isolates from the Yerkes PC sampled in 2002, 7 SIVsm isolates from the New Iberia PC sampled between 1979 and 1986, and 8 SIVsm isolates from the California PC sampled between 1975 and 1977. PCR and sequencing were done to characterize the gag, pol, and env gp36 genes. Phylogenetic analyses were correlated with the epidemiological data. Our analysis identified nine different divergent phylogenetic lineages that cocirculated in these four SM colonies in the Unites States in the past 30 years. Lineages 1 to 5 have been identified previously. Two of the newly identified SIVsm lineages found in SMs are ancestral to SIVmac251/SIVmac239/SIVmne and SIVstm. We further identified the origin of these two macaque viruses in SMs from the California National Primate Research Center. The diversity of SIVsm isolates in PCs in the United States mirrors that of human immunodeficiency virus type 1 (HIV-1) group M subtypes and offers a model for the molecular epidemiology of HIV and a new approach to vaccine testing. The cocirculation of divergent SIVsm strains in PCs resulted in founder effects, superinfections, and recombinations. This large array of SIVsm strains showing the same magnitude of diversity as HIV-1 group M subtypes should be extremely useful for modeling the efficacy of vaccination strategies under the real-world conditions of HIV-1 diversity. The genetic variability of SIVsm strains among PCs may influence the diagnosis and monitoring of SIVsm infection and, consequently, may bias the results of pathogenesis studies.
Collapse
Affiliation(s)
- Cristian Apetrei
- Division of Microbiology and Immunology, Tulane National Primate Research Center, 18703 Three Rivers Road, Covington, LA 70433, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Pandrea I, Kornfeld C, Ploquin MJY, Apetrei C, Faye A, Rouquet P, Roques P, Simon F, Barré-Sinoussi F, Müller-Trutwin MC, Diop OM. Impact of viral factors on very early in vivo replication profiles in simian immunodeficiency virus SIVagm-infected African green monkeys. J Virol 2005; 79:6249-59. [PMID: 15858009 PMCID: PMC1091729 DOI: 10.1128/jvi.79.10.6249-6259.2005] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To better understand which factors govern the levels of viral loads in early lentiviral infections of primates, we developed a model that allows distinguishing between the influences of host and viral factors on viremia. Herein we report that two species of African green monkeys (Chlorocebus sabaeus and C. pygerythrus) infected with their respective wild-type simian immunodeficiency virus SIVagm viruses (SIVagm.sab92018 and SIVagm.ver644) consistently showed reproducible differences in viremia during primary infection but not at later stages of infection. Cross-infections of SIVagm.sab92018 and SIVagm.ver644 into, respectively, C. pygerythrus and C. sabaeus revealed that the dynamics of viral replication during primary infection were dependent on the viral strain used for the infection but not on the host. Hence, the kinetics of SIVagm.sab92018 and SIVagm.ver644 were similar in both sabaeus and vervet animals, indicating that the difference in viremia levels between the two groups during the early phase of infection was not associated with the host. Coreceptor usage for these two strains showed a larger coreceptor repertoire for SIVagm.sab92018, which is able to efficiently use CXCR4 in addition to CCR5, than for SIVagm.ver644, which showed a classical CCR5 coreceptor usage pattern. These differences could not be explained by different charges of the V3 loop for SIVagm.sab92018 and for SIVagm.ver644. In conclusion, our study showed that the extent of virus replication during the primary infection is primarily dependent on viral determinants.
Collapse
Affiliation(s)
- Ivona Pandrea
- Division of Comparative Pathology, Tulane National Primate Research Center, 18703 Three Rivers Road, Covington, LA 70433, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Affiliation(s)
- Paul M Sharp
- Institute of Genetics, University of Nottingham, Queens Medical Centre, Nottingham, United Kingdom
| | | | | |
Collapse
|
25
|
Ling B, Telfer P, Reed P, Robertson DL, Marx PA. A link between SIVsm in sooty mangabeys (SM) in wild-living monkeys in Sierra Leone and SIVsm in an American-based SM colony. AIDS Res Hum Retroviruses 2004; 20:1348-51. [PMID: 15650427 DOI: 10.1089/aid.2004.20.1348] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We have developed a noninvasive method for SIVsm virion RNA detection in feces of captive sooty mangabeys (SMs) (Cercocebus atys). Employing this method to investigate the natural history of SIVsm in endangered SMs is useful for understanding the diversity and evolution of SIVsm and HIV-2. The fecal samples of 61 wild-living SMs and 14 chimpanzees (Pan troglodytes verus) were studied. Samples were collected in rural Sierra Leone in 1993. One SM sample tested positive by reverse transcriptase-PCR. No viral sequence was detected in the feces of 14 chimpanzees. Phylogenetic analysis of the env sequence obtained from SM#13 showed that it clustered within the SIVsm lineage that includes SIVsmH4, B670, and PBj, confirming a direct connection between SIVsm from West Africa and an American-based colony of SM. The virus, designated as SIVsmSL93g, supports a link between the SIVB670/SIVsmH4/SIVPbj lineage and SMs living in Northern Sierra Leone in 1993. The discovery of this strain in a wild-living SM also indicates that noninvasive methods can be used for SIV detection from monkey feces collected in the field.
Collapse
Affiliation(s)
- Binhua Ling
- Tulane National Primate Research Center, Covington, Louisiana 70433, USA
| | | | | | | | | |
Collapse
|
26
|
Apetrei C, Gormus B, Pandrea I, Metzger M, ten Haaft P, Martin LN, Bohm R, Alvarez X, Koopman G, Murphey-Corb M, Veazey RS, Lackner AA, Baskin G, Heeney J, Marx PA. Direct inoculation of simian immunodeficiency virus from sooty mangabeys in black mangabeys (Lophocebus aterrimus): first evidence of AIDS in a heterologous African species and different pathologic outcomes of experimental infection. J Virol 2004; 78:11506-18. [PMID: 15479792 PMCID: PMC523258 DOI: 10.1128/jvi.78.21.11506-11518.2004] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A unique opportunity for the study of the role of serial passage and cross-species transmission was offered by a series of experiments carried out at the Tulane National Primate Research Center in 1990. To develop an animal model for leprosy, three black mangabeys (BkMs) (Lophocebus aterrimus) were inoculated with lepromatous tissue that had been serially passaged in four sooty mangabeys (SMs) (Cercocebus atys). All three BkMs became infected with simian immunodeficiency virus from SMs (SIVsm) by day 30 postinoculation (p.i.) with lepromatous tissue. One (BkMG140) died 2 years p.i. from causes unrelated to SIV, one (BkMG139) survived for 10 years, whereas the third (BkMG138) was euthanized with AIDS after 5 years. Histopathology revealed a high number of giant cells in tissues from BkMG138, but no SIV-related lesions were found in the remaining two BkMs. Four-color immunofluorescence revealed high levels of SIVsm associated with both giant cells and T lymphocytes in BkMG138 and no detectable SIV in the remaining two. Serum viral load (VL) showed a significant increase (>1 log) during the late stage of the disease in BkMG138, as opposed to a continuous decline in VL in the remaining two BkMs. With the progression to AIDS, neopterin levels increased in BkMG138. This study took on new significance when phylogenetic analysis unexpectedly showed that all four serially inoculated SMs were infected with different SIVsm lineages prior to the beginning of the experiment. Furthermore, the strain infecting the BkMs originated from the last SM in the series. Therefore, the virus infecting BkMs has not been serially passaged. In conclusion, we present the first compelling evidence that direct cross-species transmission of SIV may induce AIDS in heterologous African nonhuman primate (NHP) species. The results showed that cross-species-transmitted SIVsm was well controlled in two of three BkMs for 2 and 10 years, respectively. Finally, this case of AIDS in an African monkey suggests that the dogma of SIV nonpathogenicity in African NHP hosts should be reconsidered.
Collapse
Affiliation(s)
- Cristian Apetrei
- Division of Microbiology and Immunology, Tulane National Primate Research Center, 18703 Three Rivers Rd., Covington, LA 70433, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Leendertz FH, Boesch C, Ellerbrok H, Rietschel W, Couacy-Hymann E, Pauli G. Non-invasive testing reveals a high prevalence of simian T-lymphotropic virus type 1 antibodies in wild adult chimpanzees of the Taï National Park, Côte d'Ivoire. J Gen Virol 2004; 85:3305-3312. [PMID: 15483244 DOI: 10.1099/vir.0.80052-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Little information is available on the prevalence of retrovirus infections in populations of non-human primates living in their natural habitats. To gain such information, methods were developed to detect antibodies to simian T-lymphotropic virus type 1 (STLV-1) in urine from wild chimpanzees. Samples from more than 74 chimpanzees living in three communities in the Taï National Park, Côte d'Ivoire, were analysed. The prevalence of STLV-1 antibodies in adults and adolescents was significantly higher (35/49, 71·4 %) than that in infant and juvenile chimpanzees (3/31, 9·7 %).
Collapse
Affiliation(s)
- Fabian H Leendertz
- Institute for Parasitology and International Animal Health, Freie Universität Berlin, Königsweg 67, 14163 Berlin, Germany
- Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany
- Zentrum für Biologische Sicherheit, Robert Koch-Institut, Nordufer 20, 13353 Berlin, Germany
| | - Christophe Boesch
- Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany
| | - Heinz Ellerbrok
- Zentrum für Biologische Sicherheit, Robert Koch-Institut, Nordufer 20, 13353 Berlin, Germany
| | | | | | - Georg Pauli
- Zentrum für Biologische Sicherheit, Robert Koch-Institut, Nordufer 20, 13353 Berlin, Germany
| |
Collapse
|
28
|
Ling B, Apetrei C, Pandrea I, Veazey RS, Lackner AA, Gormus B, Marx PA. Classic AIDS in a sooty mangabey after an 18-year natural infection. J Virol 2004; 78:8902-8. [PMID: 15280498 PMCID: PMC479084 DOI: 10.1128/jvi.78.16.8902-8908.2004] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Prevailing theory holds that simian immunodeficiency virus (SIV) infections are nonpathogenic in their natural simian hosts and that lifelong infections persist without disease. Numerous studies have reported that SIV-infected sooty mangabeys (SMs; Cercocebus atys) remain disease free for up to 24 years despite relatively high levels of viral replication. Here, we report that classic AIDS developed after an 18-year incubation in an SM (E041) with a natural SIVsm infection. Unlike that described in previous reports of SIV-related disease in SMs, the SIVsm infecting E041 was not first passaged through macaques; moreover, SM E041 was simian T-cell leukemia virus antibody negative. SM E041 was euthanized in 2002 after being diagnosed with severe disseminated B-cell lymphoma. The plasma virus load had been approximately the same for 16 years when a 100-fold increase in virus load occurred in years 17 and 18. Additional findings associated with AIDS were CD4(+)-cell decline, loss of p27 core antibody, and loss of control of SIVsm replication with disseminated giant cell disease. These findings suggest that the time to development of AIDS exceeds the average lifetime of SMs in the wild and that the principal adaptation of SIV to its natural African hosts does not include complete resistance to disease. Instead, AIDS may develop slowly, even in the presence of high virus loads. However, a long-term relatively high virus load, such as that in SM E041, is consistent with AIDS development in less than 18 years in humans and macaques. Therefore, the results also suggest that SMs have a special mechanism for resisting AIDS development.
Collapse
Affiliation(s)
- Binhua Ling
- Tulane National Primate Research Center, 18703 Three Rivers Rd., Covington, LA 70433, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Bibollet-Ruche F, Bailes E, Gao F, Pourrut X, Barlow KL, Clewley JP, Mwenda JM, Langat DK, Chege GK, McClure HM, Mpoudi-Ngole E, Delaporte E, Peeters M, Shaw GM, Sharp PM, Hahn BH. New simian immunodeficiency virus infecting De Brazza's monkeys (Cercopithecus neglectus): evidence for a cercopithecus monkey virus clade. J Virol 2004; 78:7748-62. [PMID: 15220449 PMCID: PMC434087 DOI: 10.1128/jvi.78.14.7748-7762.2004] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nearly complete sequences of simian immunodeficiency viruses (SIVs) infecting 18 different nonhuman primate species in sub-Saharan Africa have now been reported; yet, our understanding of the origins, evolutionary history, and geographic distribution of these viruses still remains fragmentary. Here, we report the molecular characterization of a lentivirus (SIVdeb) naturally infecting De Brazza's monkeys (Cercopithecus neglectus). Complete SIVdeb genomes (9,158 and 9227 bp in length) were amplified from uncultured blood mononuclear cell DNA of two wild-caught De Brazza's monkeys from Cameroon. In addition, partial pol sequences (650 bp) were amplified from four offspring of De Brazza's monkeys originally caught in the wild in Uganda. Full-length (9068 bp) and partial pol (650 bp) SIVsyk sequences were also amplified from Sykes's monkeys (Cercopithecus albogularis) from Kenya. Analysis of these sequences identified a new SIV clade (SIVdeb), which differed from previously characterized SIVs at 40 to 50% of sites in Pol protein sequences. The viruses most closely related to SIVdeb were SIVsyk and members of the SIVgsn/SIVmus/SIVmon group of viruses infecting greater spot-nosed monkeys (Cercopithecus nictitans), mustached monkeys (Cercopithecus cephus), and mona monkeys (Cercopithecus mona), respectively. In phylogenetic trees of concatenated protein sequences, SIVdeb, SIVsyk, and SIVgsn/SIVmus/SIVmon clustered together, and this relationship was highly significant in all major coding regions. Members of this virus group also shared the same number of cysteine residues in their extracellular envelope glycoprotein and a high-affinity AIP1 binding site (YPD/SL) in their p6 Gag protein, as well as a unique transactivation response element in their viral long terminal repeat; however, SIVdeb and SIVsyk, unlike SIVgsn, SIVmon, and SIVmus, did not encode a vpu gene. These data indicate that De Brazza's monkeys are naturally infected with SIVdeb, that this infection is prevalent in different areas of the species' habitat, and that geographically diverse SIVdeb strains cluster in a single virus group. The consistent clustering of SIVdeb with SIVsyk and the SIVmon/SIVmus/SIVgsn group also suggests that these viruses have evolved from a common ancestor that likely infected a Cercopithecus host in the distant past. The vpu gene appears to have been acquired by a subset of these Cercopithecus viruses after the divergence of SIVdeb and SIVsyk.
Collapse
|
30
|
Whittier CA, Horne W, Slenning B, Loomis M, Stoskopf MK. Comparison of storage methods for reverse-transcriptase PCR amplification of rotavirus RNA from gorilla (Gorilla g. gorilla) fecal samples. J Virol Methods 2004; 116:11-7. [PMID: 14715302 DOI: 10.1016/j.jviromet.2003.10.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Detection of enteric viral nucleic acids in preserved gorilla fecal specimens was investigated using reverse transcription polymerase chain reaction (rt-PCR). A commercially available viral RNA extraction kit was used to isolate nucleic acids from captive gorilla fecal samples seeded with rotavirus and stored in ethanol, formalin, a commercial RNA preservation solution, guanidine thiocyanate buffer (GT), and samples dried in tubes containing silica gel. Nucleic acids were extracted at 1, 7, 70 and 180 days and used for rt-PCR amplification of specific rotavirus RNA sequences. Successful rt-PCR amplification of the target product varied according to storage conditions, and storage time. Only samples stored in GT gave 100% positive results at 180 days. It is recommended that fecal samples be collected in GT for viral RNA analysis.
Collapse
Affiliation(s)
- Christopher A Whittier
- Environmental Medicine Consortium, College of Veterinary Medicine, North Carolina State University, 4700 Hillsborough Street, Raleigh, NC 27606, USA.
| | | | | | | | | |
Collapse
|
31
|
Pandrea I, Onanga R, Kornfeld C, Rouquet P, Bourry O, Clifford S, Telfer PT, Abernethy K, White LTW, Ngari P, Müller-Trutwin M, Roques P, Marx PA, Simon F, Apetrei C. High levels of SIVmnd-1 replication in chronically infected Mandrillus sphinx. Virology 2004; 317:119-27. [PMID: 14675630 DOI: 10.1016/j.virol.2003.08.015] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Viral loads were investigated in SIVmnd-1 chronically infected mandrills and the results were compared with those previously observed in other nonpathogenic natural SIV infections. Four naturally and 11 experimentally SIVmnd-1-infected mandrills from a semi-free-ranging colony were studied during the chronic phase of infection. Four SIVmnd-1-infected wild mandrills were also included for comparison. Twelve uninfected mandrills were used as controls. Viral loads in all chronically infected mandrills ranged from 10(5) to 9 x 10(5) copies/ml and antibody titers ranged from 200 to 14,400 and 200 to 12,800 for anti-V3 and anti-gp36, respectively. There were no differences between groups of wild and captive mandrills. Both parameters were stable during the follow-up, and no clinical signs of immune suppression were observed. Chronic SIVmnd-1-infected mandrills presented slight increases in CD20+ and CD28+/CD8+ cell counts, and a slight decrease in CD4+/CD3+ cell counts. A slight CD4+/CD3+ cell depletion was also observed in old uninfected controls. Similar to other nonpathogenic models of lentiviral infection, these results show a persistent high level of SIVmnd-1 replication during chronic infection of mandrills, with minimal effects on T cell subpopulations.
Collapse
Affiliation(s)
- Ivona Pandrea
- Laboratoire de Virologie, UGENET, SEGC, Réserve de la Lopé, Centre de Primatologie, Centre International de Recherches Médicales, BP769, Franceville, Gabon, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Di Fiore A. Molecular genetic approaches to the study of primate behavior, social organization, and reproduction. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2003; Suppl 37:62-99. [PMID: 14666534 DOI: 10.1002/ajpa.10382] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
In the past several decades, the development of novel molecular techniques and the advent of noninvasive DNA sampling, coupled with the ease and speed with which molecular analyses can now be performed, have made it possible for primatologists to directly examine the fitness effects of individual behavior and to explore how variation in behavior and social systems influences primate population genetic structure. This review describes the theoretical connections between individual behavior and primate social systems on the one hand and population genetic structure on the other, discusses the kinds of molecular markers typically employed in genetic studies of primates, and summarizes what primatologists have learned from molecular studies over the past few decades about dispersal patterns, mating systems, reproductive strategies, and the influence of kinship on social behavior. Several important conclusions can be drawn from this overview. First, genetic data confirm that, in many species, male dominance rank and fitness are positively related, at least over the short term, though this relationship need not simply be a reflection of male-male contest competition over mates. More importantly, genetic research reveals the significance of female choice in determining male reproductive success, and documents the efficacy of alternative mating tactics among males. Second, genetic data suggest that the presumed importance of kinship in structuring primate social relationships needs to be evaluated further, at least for some taxa such as chimpanzees in which demographic factors may be more important than relatedness. I conclude this paper by offering several suggestions of additional ways in which molecular techniques might be employed in behavioral and ecological studies of primates (e.g., for conducting "molecular censuses" of unhabituated populations, for studying disease and host-parasite interactions, or for tracking seed fate in studies of seed dispersal) and by providing a brief introduction to the burgeoning field of nonhuman primate behavioral genetics.
Collapse
Affiliation(s)
- Anthony Di Fiore
- Department of Anthropology, New York University and New York Consortium in Evolutionary Primatology, New York, New York 10003, USA
| |
Collapse
|
33
|
Santiago ML, Bibollet-Ruche F, Gross-Camp N, Majewski AC, Masozera M, Munanura I, Kaplin BA, Sharp PM, Shaw GM, Hahn BH. Noninvasive detection of Simian immunodeficiency virus infection in a wild-living L'Hoest's monkey (Cercopithecus Ihoesti). AIDS Res Hum Retroviruses 2003; 19:1163-6. [PMID: 14717118 DOI: 10.1089/088922203771881275] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
L'Hoest's monkey's (Cercopithecus Ihoesti) are believed to be naturally infected with a simian immunodeficiency virus (SIV), termed SIVIho, but only a handful of isolates, all derived from captive animals from the Democratic Republic of Congo (DCR), have thus far been characterized. Here, we report the noninvasive detection and molecular characterization of SIVIho in a wild L'Hoest's monkey from the Nyungwe Forest in Rwanda. Screening four L'Hoest's monkey fecal samples collected opportunistically as part of a larger noninvasive survey of SIV prevalence in Nyungwe National Park we identified one to be vRNA positive. Reverse transcriptase polymerase chain reaction (RT-PCR) amplification of a subgenomic pol fragment (598 bp) identified a new SIVIho strain (RW30) that differed from previously reported SIVIho isolates in 17-22% of its nucleotide sequence. In a phylogenic tree of partial Pol protein sequences, RW30 fell well within the SIVIho radiation, but was not particularly closely related to any of the other strains. These results provide the first direct evidence that L'Hoewst's monkeys harbor SIVIho in the wild, that infection is prevalent in different areas of the species' habitat, and that geographically diverse SIVIho strains cluster in a single group according to their species of origin. L'Hoest's monkeys represent the third primate species for which the utility of noninvasive SIV testing has been documented.
Collapse
Affiliation(s)
- Mario L Santiago
- Department of Medicine and Microbiology, University of Alabama at Birmingham, Alabama 35294, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Santiago ML, Lukasik M, Kamenya S, Li Y, Bibollet-Ruche F, Bailes E, Muller MN, Emery M, Goldenberg DA, Lwanga JS, Ayouba A, Nerrienet E, McClure HM, Heeney JL, Watts DP, Pusey AE, Collins DA, Wrangham RW, Goodall J, Brookfield JFY, Sharp PM, Shaw GM, Hahn BH. Foci of endemic simian immunodeficiency virus infection in wild-living eastern chimpanzees (Pan troglodytes schweinfurthii). J Virol 2003; 77:7545-62. [PMID: 12805455 PMCID: PMC164799 DOI: 10.1128/jvi.77.13.7545-7562.2003] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2003] [Accepted: 04/12/2003] [Indexed: 11/20/2022] Open
Abstract
Simian immunodeficiency virus of chimpanzees (SIVcpz) is the immediate precursor to human immunodeficiency virus type 1 (HIV-1), yet remarkably, the distribution and prevalence of SIVcpz in wild ape populations are unknown. Studies of SIVcpz infection rates in wild chimpanzees are complicated by the species' endangered status and by its geographic location in remote areas of sub-Saharan Africa. We have developed sensitive and specific urine and fecal tests for SIVcpz antibody and virion RNA (vRNA) detection and describe herein the first comprehensive prevalence study of SIVcpz infection in five wild Pan troglodytes schweinfurthii communities in east Africa. In Kibale National Park in Uganda, 31 (of 52) members of the Kanyawara community and 39 (of approximately 145) members of the Ngogo community were studied; none were found to be positive for SIVcpz infection. In Gombe National Park in Tanzania, 15 (of 20) members of the Mitumba community, 51 (of 55) members of the Kasekela community, and at least 10 (of approximately 20) members of the Kalande community were studied. Seven individuals were SIVcpz antibody and/or vRNA positive, and two others had indeterminate antibody results. Based on assay sensitivities and the numbers and types of specimens analyzed, we estimated the prevalence of SIVcpz infection to be 17% in Mitumba (95% confidence interval, 10 to 40%), 5% in Kasekela (95% confidence interval, 4 to 7%), and 30% in Kalande (95% confidence interval, 15 to 60%). For Gombe as a whole, the SIVcpz prevalence was estimated to be 13% (95% confidence interval, 7 to 25%). SIVcpz infection was confirmed in five chimpanzees by PCR amplification of partial pol and gp41/nef sequences which revealed a diverse group of viruses that formed a monophyletic lineage within the SIVcpzPts radiation. Although none of the 70 Kibale chimpanzees tested SIVcpz positive, we estimated the likelihood that a 10% or higher prevalence existed but went undetected because of sampling and assay limitations; this possibility was ruled out with 95% certainty. These results indicate that SIVcpz is unevenly distributed among P. t. schweinfurthii in east Africa, with foci or "hot spots" of SIVcpz endemicity in some communities and rare or absent infection in others. This situation contrasts with that for smaller monkey species, in which infection rates by related SIVs are generally much higher and more uniform among different groups and populations. The basis for the wide variability in SIVcpz infection rates in east African apes and the important question of SIVcpz prevalence in west central African chimpanzees (Pan troglodytes troglodytes) remain to be elucidated.
Collapse
Affiliation(s)
- Mario L Santiago
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Santiago ML, Bibollet-Ruche F, Bailes E, Kamenya S, Muller MN, Lukasik M, Pusey AE, Collins DA, Wrangham RW, Goodall J, Shaw GM, Sharp PM, Hahn BH. Amplification of a complete simian immunodeficiency virus genome from fecal RNA of a wild chimpanzee. J Virol 2003; 77:2233-42. [PMID: 12525658 PMCID: PMC140993 DOI: 10.1128/jvi.77.3.2233-2242.2003] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Current knowledge of the genetic diversity of simian immunodeficiency virus (SIVcpz) infection of wild chimpanzees (Pan troglodytes) is incomplete since few isolates, mostly from captive apes from Cameroon and Gabon, have been characterized; yet this information is critical for understanding the origins of human immunodeficiency virus type 1 (HIV-1) and the circumstances leading to the HIV-1 pandemic. Here, we report the first full-length SIVcpz sequence (TAN1) from a wild chimpanzee (Pan troglodytes schweinfurthii) from Gombe National Park (Tanzania), which was obtained noninvasively by amplification of virion RNA from fecal samples collected under field conditions. Using reverse transcription-PCR and a combination of generic and strain-specific primers, we amplified 13 subgenomic fragments which together spanned the entire TAN1 genome (9,326 bp). Distance and phylogenetic tree analyses identified TAN1 unambiguously as a member of the HIV-1/SIVcpz group of viruses but also revealed an extraordinary degree of divergence from all previously characterized SIVcpz and HIV-1 strains. In Gag, Pol, and Env proteins, TAN1 differed from west-central African SIVcpz and HIV-1 strains on average by 36, 30, and 51% of amino acid sequences, respectively, approaching distance values typically found for SIVs from different primate species. The closest relative was SIVcpzANT, also from a P. t. schweinfurthii ape, which differed by 30, 25, and 44%, respectively, in these same protein sequences but clustered with TAN1 in all major coding regions in a statistically highly significant manner. These data indicate that east African chimpanzees, like those from west-central Africa, are naturally infected by SIVcpz but that their viruses comprise a second, divergent SIVcpz lineage which appears to have evolved in relative isolation for an extended period of time. Our data also demonstrate that noninvasive molecular epidemiological studies of SIVcpz in wild chimpanzees are feasible and that such an approach may prove essential for unraveling the evolutionary history of SIVcpz/HIV-1 as well as that of other pathogens naturally infecting wild primate populations.
Collapse
Affiliation(s)
- Mario L Santiago
- Departments of Medicine and Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|