1
|
Reinke PYA, Schubert R, Oberthür D, Galchenkova M, Rahmani Mashhour A, Günther S, Chretien A, Round A, Seychell BC, Norton-Baker B, Kim C, Schmidt C, Koua FHM, Tolstikova A, Ewert W, Peña Murillo GE, Mills G, Kirkwood H, Brognaro H, Han H, Koliyadu J, Schulz J, Bielecki J, Lieske J, Maracke J, Knoska J, Lorenzen K, Brings L, Sikorski M, Kloos M, Vakili M, Vagovic P, Middendorf P, de Wijn R, Bean R, Letrun R, Han S, Falke S, Geng T, Sato T, Srinivasan V, Kim Y, Yefanov OM, Gelisio L, Beck T, Doré AS, Mancuso AP, Betzel C, Bajt S, Redecke L, Chapman HN, Meents A, Turk D, Hinrichs W, Lane TJ. SARS-CoV-2 M pro responds to oxidation by forming disulfide and NOS/SONOS bonds. Nat Commun 2024; 15:3827. [PMID: 38714735 PMCID: PMC11076503 DOI: 10.1038/s41467-024-48109-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 04/19/2024] [Indexed: 05/10/2024] Open
Abstract
The main protease (Mpro) of SARS-CoV-2 is critical for viral function and a key drug target. Mpro is only active when reduced; turnover ceases upon oxidation but is restored by re-reduction. This suggests the system has evolved to survive periods in an oxidative environment, but the mechanism of this protection has not been confirmed. Here, we report a crystal structure of oxidized Mpro showing a disulfide bond between the active site cysteine, C145, and a distal cysteine, C117. Previous work proposed this disulfide provides the mechanism of protection from irreversible oxidation. Mpro forms an obligate homodimer, and the C117-C145 structure shows disruption of interactions bridging the dimer interface, implying a correlation between oxidation and dimerization. We confirm dimer stability is weakened in solution upon oxidation. Finally, we observe the protein's crystallization behavior is linked to its redox state. Oxidized Mpro spontaneously forms a distinct, more loosely packed lattice. Seeding with crystals of this lattice yields a structure with an oxidation pattern incorporating one cysteine-lysine-cysteine (SONOS) and two lysine-cysteine (NOS) bridges. These structures further our understanding of the oxidative regulation of Mpro and the crystallization conditions necessary to study this structurally.
Collapse
Affiliation(s)
- Patrick Y A Reinke
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Robin Schubert
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Dominik Oberthür
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Marina Galchenkova
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Aida Rahmani Mashhour
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Sebastian Günther
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Anaïs Chretien
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Adam Round
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Brandon Charles Seychell
- Institute of Physical Chemistry, Department of Chemistry, Universität Hamburg, Grindelallee 117, 20146, Hamburg, Germany
| | - Brenna Norton-Baker
- Max Plank Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761, Hamburg, Germany
- Department of Chemistry, University of California at Irvine, Irvine, CA, 92697-2025, USA
| | - Chan Kim
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | | | - Faisal H M Koua
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Alexandra Tolstikova
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Wiebke Ewert
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Gisel Esperanza Peña Murillo
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
- Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Grant Mills
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Henry Kirkwood
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Hévila Brognaro
- Institute of Biochemistry and Molecular Biology, Laboratory for Structural Biology of Infection and Inflammation, Department of Chemistry, Universität Hamburg, Build. 22a, c/o DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Huijong Han
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | | | - Joachim Schulz
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Johan Bielecki
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Julia Lieske
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Julia Maracke
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Juraj Knoska
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
- Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
| | | | - Lea Brings
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Marcin Sikorski
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Marco Kloos
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Mohammad Vakili
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Patrik Vagovic
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Philipp Middendorf
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Raphael de Wijn
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Richard Bean
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Romain Letrun
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Seonghyun Han
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
- Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Sven Falke
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Tian Geng
- Sosei Heptares, Steinmetz Building, Granta Park, Great Abington, CB21 6DG, Cambridge, UK
| | - Tokushi Sato
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Vasundara Srinivasan
- Institute of Biochemistry and Molecular Biology, Laboratory for Structural Biology of Infection and Inflammation, Department of Chemistry, Universität Hamburg, Build. 22a, c/o DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Yoonhee Kim
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Oleksandr M Yefanov
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Luca Gelisio
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Tobias Beck
- Institute of Physical Chemistry, Department of Chemistry, Universität Hamburg, Grindelallee 117, 20146, Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Andrew S Doré
- Sosei Heptares, Steinmetz Building, Granta Park, Great Abington, CB21 6DG, Cambridge, UK
- CHARM Therapeutics Ltd., B900 Babraham Research Campus, CB22 3AT, Cambridge, UK
| | - Adrian P Mancuso
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
- La Trobe Institute for Molecular Science, Department of Chemistry and Physics, La Trobe University, Melbourne, VIC, 3086, Australia
- Diamond Light Source, Harwell Science and Innovation Campus, OX11 0DE, Didcot, UK
| | - Christian Betzel
- Institute of Biochemistry and Molecular Biology, Laboratory for Structural Biology of Infection and Inflammation, Department of Chemistry, Universität Hamburg, Build. 22a, c/o DESY, Notkestr. 85, 22607, Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Saša Bajt
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Lars Redecke
- Institute of Biochemistry, Universität zu Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Henry N Chapman
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
- Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Alke Meents
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Dušan Turk
- Jožef Stefan Institute, Jamova cesta 39, 1000, Ljubljana, Slovenia
- Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins Jamova 39, 1000, Ljubljana, Slovenia
| | - Winfried Hinrichs
- Universität Greifswald, Institute of Biochemistry, Felix-Hausdorff-Str. 4, 17489, Greifswald, Germany
| | - Thomas J Lane
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany.
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761, Hamburg, Germany.
- CHARM Therapeutics Ltd., B900 Babraham Research Campus, CB22 3AT, Cambridge, UK.
| |
Collapse
|
2
|
Werner AD, Schauflinger M, Norris MJ, Klüver M, Trodler A, Herwig A, Brandstädter C, Dillenberger M, Klebe G, Heine A, Saphire EO, Becker K, Becker S. The C-terminus of Sudan ebolavirus VP40 contains a functionally important CX nC motif, a target for redox modifications. Structure 2023; 31:1038-1051.e7. [PMID: 37392738 DOI: 10.1016/j.str.2023.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/10/2023] [Accepted: 06/06/2023] [Indexed: 07/03/2023]
Abstract
The Ebola virus matrix protein VP40 mediates viral budding and negatively regulates viral RNA synthesis. The mechanisms by which these two functions are exerted and regulated are unknown. Using a high-resolution crystal structure of Sudan ebolavirus (SUDV) VP40, we show here that two cysteines in the flexible C-terminal arm of VP40 form a stabilizing disulfide bridge. Notably, the two cysteines are targets of posttranslational redox modifications and interact directly with the host`s thioredoxin system. Mutation of the cysteines impaired the budding function of VP40 and relaxed its inhibitory role for viral RNA synthesis. In line with these results, the growth of recombinant Ebola viruses carrying cysteine mutations was impaired and the released viral particles were elongated. Our results revealed the exact positions of the cysteines in the C-terminal arm of SUDV VP40. The cysteines and/or their redox status are critically involved in the differential regulation of viral budding and viral RNA synthesis.
Collapse
Affiliation(s)
| | | | - Michael J Norris
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Michael Klüver
- Institute for Virology, Philipps-University of Marburg, Marburg, Germany
| | - Anna Trodler
- Institute for Virology, Philipps-University of Marburg, Marburg, Germany
| | - Astrid Herwig
- Institute for Virology, Philipps-University of Marburg, Marburg, Germany
| | - Christina Brandstädter
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University Giessen, Giessen, Germany
| | - Melissa Dillenberger
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University Giessen, Giessen, Germany
| | - Gerhard Klebe
- Institute for Pharmaceutical Chemistry, Philipps-University of Marburg, Marburg, Germany
| | - Andreas Heine
- Institute for Pharmaceutical Chemistry, Philipps-University of Marburg, Marburg, Germany
| | | | - Katja Becker
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University Giessen, Giessen, Germany
| | - Stephan Becker
- Institute for Virology, Philipps-University of Marburg, Marburg, Germany.
| |
Collapse
|
3
|
Checconi P, Coni C, Limongi D, Baldelli S, Ciccarone F, De Angelis M, Mengozzi M, Ghezzi P, Ciriolo MR, Nencioni L, Palamara AT. Influenza virus replication is affected by glutaredoxin1-mediated protein deglutathionylation. FASEB J 2023; 37:e22729. [PMID: 36583688 DOI: 10.1096/fj.202201239rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 12/01/2022] [Accepted: 12/12/2022] [Indexed: 12/31/2022]
Abstract
Several redox modifications have been described during viral infection, including influenza virus infection, but little is known about glutathionylation and this respiratory virus. Glutathionylation is a reversible, post-translational modification, in which protein cysteine forms transient disulfides with glutathione (GSH), catalyzed by cellular oxidoreductases and in particular by glutaredoxin (Grx). We show here that (i) influenza virus infection induces protein glutathionylation, including that of viral proteins such as hemagglutinin (HA); (ii) Grx1-mediated deglutathionylation is important for the viral life cycle, as its inhibition, either with an inhibitor of its enzymatic activity or by siRNA, decreases viral replication. Overall these data contribute to the characterization of the complex picture of redox regulation of the influenza virus replication cycle and could help to identify new targets to control respiratory viral infection.
Collapse
Affiliation(s)
- Paola Checconi
- Department of Human Sciences and Quality of Life Promotion, San Raffaele University, Rome, Italy.,Laboratory of Microbiology of Chronic-Neurodegenerative Diseases, IRCCS San Raffaele Roma, Rome, Italy
| | - Cristiana Coni
- Department of Human Sciences and Quality of Life Promotion, San Raffaele University, Rome, Italy.,Laboratory of Microbiology of Chronic-Neurodegenerative Diseases, IRCCS San Raffaele Roma, Rome, Italy
| | - Dolores Limongi
- Department of Human Sciences and Quality of Life Promotion, San Raffaele University, Rome, Italy.,Laboratory of Microbiology of Chronic-Neurodegenerative Diseases, IRCCS San Raffaele Roma, Rome, Italy
| | - Sara Baldelli
- Department of Human Sciences and Quality of Life Promotion, San Raffaele University, Rome, Italy.,Laboratory of Biochemistry of Aging, IRCCS San Raffaele Roma, Rome, Italy
| | - Fabio Ciccarone
- Laboratory of Biochemistry of Aging, IRCCS San Raffaele Roma, Rome, Italy.,Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Marta De Angelis
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Manuela Mengozzi
- Department of Clinical and Experimental Medicine, Brighton and Sussex Medical School, Brighton, UK
| | - Pietro Ghezzi
- Department of Biomolecular Sciences, University of Urbino, Urbino, Italy
| | - Maria Rosa Ciriolo
- Laboratory of Biochemistry of Aging, IRCCS San Raffaele Roma, Rome, Italy.,Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Lucia Nencioni
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Anna Teresa Palamara
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy.,Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
4
|
Mitochondria-mediated oxidative stress during viral infection. Trends Microbiol 2022; 30:679-692. [DOI: 10.1016/j.tim.2021.12.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 12/20/2022]
|
5
|
Lyonnais S, Sadiq SK, Lorca-Oró C, Dufau L, Nieto-Marquez S, Escribà T, Gabrielli N, Tan X, Ouizougun-Oubari M, Okoronkwo J, Reboud-Ravaux M, Gatell JM, Marquet R, Paillart JC, Meyerhans A, Tisné C, Gorelick RJ, Mirambeau G. The HIV-1 Nucleocapsid Regulates Its Own Condensation by Phase-Separated Activity-Enhancing Sequestration of the Viral Protease during Maturation. Viruses 2021; 13:v13112312. [PMID: 34835118 PMCID: PMC8625067 DOI: 10.3390/v13112312] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/09/2021] [Accepted: 11/11/2021] [Indexed: 02/07/2023] Open
Abstract
A growing number of studies indicate that mRNAs and long ncRNAs can affect protein populations by assembling dynamic ribonucleoprotein (RNP) granules. These phase-separated molecular ‘sponges’, stabilized by quinary (transient and weak) interactions, control proteins involved in numerous biological functions. Retroviruses such as HIV-1 form by self-assembly when their genomic RNA (gRNA) traps Gag and GagPol polyprotein precursors. Infectivity requires extracellular budding of the particle followed by maturation, an ordered processing of ∼2400 Gag and ∼120 GagPol by the viral protease (PR). This leads to a condensed gRNA-NCp7 nucleocapsid and a CAp24-self-assembled capsid surrounding the RNP. The choreography by which all of these components dynamically interact during virus maturation is one of the missing milestones to fully depict the HIV life cycle. Here, we describe how HIV-1 has evolved a dynamic RNP granule with successive weak–strong–moderate quinary NC-gRNA networks during the sequential processing of the GagNC domain. We also reveal two palindromic RNA-binding triads on NC, KxxFxxQ and QxxFxxK, that provide quinary NC-gRNA interactions. Consequently, the nucleocapsid complex appears properly aggregated for capsid reassembly and reverse transcription, mandatory processes for viral infectivity. We show that PR is sequestered within this RNP and drives its maturation/condensation within minutes, this process being most effective at the end of budding. We anticipate such findings will stimulate further investigations of quinary interactions and emergent mechanisms in crowded environments throughout the wide and growing array of RNP granules.
Collapse
Affiliation(s)
- Sébastien Lyonnais
- Infectious Disease & AIDS Research Unit, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Villaroel 170, 08036 Barcelona, Spain; (C.L.-O.); (S.N.-M.); (T.E.); (N.G.); (X.T.); (M.O.-O.); (J.O.); (J.M.G.)
- Centre d’Etudes des Maladies Infectieuses et Pharmacologie Anti-Infectieuse (CEMIPAI), CNRS UAR 3725, Université de Montpellier, 1919 Route de Mende, CEDEX 05, 34293 Montpellier, France
- Correspondence: (S.L.); (S.K.S.); (G.M.)
| | - S. Kashif Sadiq
- Infection Biology Laboratory, Department of Experimental and Health Sciences (DCEXS), Universitat Pompeu Fabra, Carrer Doctor Aiguader 88, 08003 Barcelona, Spain;
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany
- Genome Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
- Correspondence: (S.L.); (S.K.S.); (G.M.)
| | - Cristina Lorca-Oró
- Infectious Disease & AIDS Research Unit, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Villaroel 170, 08036 Barcelona, Spain; (C.L.-O.); (S.N.-M.); (T.E.); (N.G.); (X.T.); (M.O.-O.); (J.O.); (J.M.G.)
| | - Laure Dufau
- Biological Adaptation and Ageing (B2A), CNRS UMR 8256 & INSERM ERL U1164, Institut de Biologie Paris-Seine (IBPS), Faculté des Sciences et d’Ingénierie (FSI), Sorbonne Université, 7 Quai St Bernard, CEDEX 05, 75252 Paris, France; (L.D.); (M.R.-R.)
| | - Sara Nieto-Marquez
- Infectious Disease & AIDS Research Unit, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Villaroel 170, 08036 Barcelona, Spain; (C.L.-O.); (S.N.-M.); (T.E.); (N.G.); (X.T.); (M.O.-O.); (J.O.); (J.M.G.)
| | - Tuixent Escribà
- Infectious Disease & AIDS Research Unit, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Villaroel 170, 08036 Barcelona, Spain; (C.L.-O.); (S.N.-M.); (T.E.); (N.G.); (X.T.); (M.O.-O.); (J.O.); (J.M.G.)
| | - Natalia Gabrielli
- Infectious Disease & AIDS Research Unit, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Villaroel 170, 08036 Barcelona, Spain; (C.L.-O.); (S.N.-M.); (T.E.); (N.G.); (X.T.); (M.O.-O.); (J.O.); (J.M.G.)
| | - Xiao Tan
- Infectious Disease & AIDS Research Unit, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Villaroel 170, 08036 Barcelona, Spain; (C.L.-O.); (S.N.-M.); (T.E.); (N.G.); (X.T.); (M.O.-O.); (J.O.); (J.M.G.)
- Biological Adaptation and Ageing (B2A), CNRS UMR 8256 & INSERM ERL U1164, Institut de Biologie Paris-Seine (IBPS), Faculté des Sciences et d’Ingénierie (FSI), Sorbonne Université, 7 Quai St Bernard, CEDEX 05, 75252 Paris, France; (L.D.); (M.R.-R.)
| | - Mohamed Ouizougun-Oubari
- Infectious Disease & AIDS Research Unit, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Villaroel 170, 08036 Barcelona, Spain; (C.L.-O.); (S.N.-M.); (T.E.); (N.G.); (X.T.); (M.O.-O.); (J.O.); (J.M.G.)
| | - Josephine Okoronkwo
- Infectious Disease & AIDS Research Unit, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Villaroel 170, 08036 Barcelona, Spain; (C.L.-O.); (S.N.-M.); (T.E.); (N.G.); (X.T.); (M.O.-O.); (J.O.); (J.M.G.)
| | - Michèle Reboud-Ravaux
- Biological Adaptation and Ageing (B2A), CNRS UMR 8256 & INSERM ERL U1164, Institut de Biologie Paris-Seine (IBPS), Faculté des Sciences et d’Ingénierie (FSI), Sorbonne Université, 7 Quai St Bernard, CEDEX 05, 75252 Paris, France; (L.D.); (M.R.-R.)
| | - José Maria Gatell
- Infectious Disease & AIDS Research Unit, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Villaroel 170, 08036 Barcelona, Spain; (C.L.-O.); (S.N.-M.); (T.E.); (N.G.); (X.T.); (M.O.-O.); (J.O.); (J.M.G.)
- Facultat de Medicina y Ciencias de la Salud, Universitat de Barcelona, Carrer de Casanova 143, 08036 Barcelona, Spain
| | - Roland Marquet
- Architecture et Réactivité de l’ARN, CNRS UPR 9002, Université de Strasbourg, 2 Allée Conrad Roentgen, 67000 Strasbourg, France; (R.M.); (J.-C.P.)
| | - Jean-Christophe Paillart
- Architecture et Réactivité de l’ARN, CNRS UPR 9002, Université de Strasbourg, 2 Allée Conrad Roentgen, 67000 Strasbourg, France; (R.M.); (J.-C.P.)
| | - Andreas Meyerhans
- Infection Biology Laboratory, Department of Experimental and Health Sciences (DCEXS), Universitat Pompeu Fabra, Carrer Doctor Aiguader 88, 08003 Barcelona, Spain;
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig de Lluís Companys 23, 08010 Barcelona, Spain
| | - Carine Tisné
- Expression Génétique Microbienne, CNRS UMR 8261, Institut de Biologie Physico-Chimique (IBPC), Université de Paris, 13 Rue Pierre et Marie Curie, 75005 Paris, France;
| | - Robert J. Gorelick
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA;
| | - Gilles Mirambeau
- Infectious Disease & AIDS Research Unit, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Villaroel 170, 08036 Barcelona, Spain; (C.L.-O.); (S.N.-M.); (T.E.); (N.G.); (X.T.); (M.O.-O.); (J.O.); (J.M.G.)
- Biologie Intégrative des Organismes Marins (BIOM), CNRS UMR 7232, Observatoire Océanologique de Banyuls (OOB), Faculté des Sciences et d’Ingénierie (FSI), Sorbonne Université, 1 Avenue Pierre Fabre, 66650 Banyuls-sur-Mer, France
- Correspondence: (S.L.); (S.K.S.); (G.M.)
| |
Collapse
|
6
|
Regulation of the Dimerization and Activity of SARS-CoV-2 Main Protease through Reversible Glutathionylation of Cysteine 300. mBio 2021; 12:e0209421. [PMID: 34399606 PMCID: PMC8406260 DOI: 10.1128/mbio.02094-21] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent for coronavirus disease 2019 (COVID-19), encodes two proteases required for replication. The main protease (Mpro), encoded as part of two polyproteins, pp1a and pp1ab, is responsible for 11 different cleavages of these viral polyproteins to produce mature proteins required for viral replication. Mpro is therefore an attractive target for therapeutic interventions. Certain proteins in cells under oxidative stress undergo modification of reactive cysteines. We show Mpro is susceptible to glutathionylation, leading to inhibition of dimerization and activity. Activity of glutathionylated Mpro could be restored with reducing agents or glutaredoxin. Analytical studies demonstrated that glutathionylated Mpro primarily exists as a monomer and that modification of a single cysteine with glutathione is sufficient to block dimerization and inhibit its activity. Gel filtration studies as well as analytical ultracentrifugation confirmed that glutathionylated Mpro exists as a monomer. Tryptic and chymotryptic digestions of Mpro as well as experiments using a C300S Mpro mutant revealed that Cys300, which is located at the dimer interface, is a primary target of glutathionylation. Moreover, Cys300 is required for inhibition of activity upon Mpro glutathionylation. These findings indicate that Mpro dimerization and activity can be regulated through reversible glutathionylation of a non-active site cysteine, Cys300, which itself is not required for Mpro activity, and provides a novel target for the development of agents to block Mpro dimerization and activity. This feature of Mpro may have relevance to the pathophysiology of SARS-CoV-2 and related bat coronaviruses.
Collapse
|
7
|
Davis DA, Bulut H, Shrestha P, Yaparla A, Jaeger HK, Hattori SI, Wingfield PT, Mitsuya H, Yarchoan R. Regulation of the Dimerization and Activity of SARS-CoV-2 Main Protease through Reversible Glutathionylation of Cysteine 300. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 33851157 PMCID: PMC8043447 DOI: 10.1101/2021.04.09.439169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
SARS-CoV-2 encodes main protease (Mpro), an attractive target for therapeutic interventions. We show Mpro is susceptible to glutathionylation leading to inhibition of dimerization and activity. Activity of glutathionylated Mpro could be restored with reducing agents or glutaredoxin. Analytical studies demonstrated that glutathionylated Mpro primarily exists as a monomer and that a single modification with glutathione is sufficient to block dimerization and loss of activity. Proteolytic digestions of Mpro revealed Cys300 as a primary target of glutathionylation, and experiments using a C300S Mpro mutant revealed that Cys300 is required for inhibition of activity upon Mpro glutathionylation. These findings indicate that Mpro dimerization and activity can be regulated through reversible glutathionylation of Cys300 and provides a novel target for the development of agents to block Mpro dimerization and activity. This feature of Mpro may have relevance to human disease and the pathophysiology of SARS-CoV-2 in bats, which develop oxidative stress during flight.
Collapse
Affiliation(s)
- David A Davis
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892
| | - Haydar Bulut
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892
| | - Prabha Shrestha
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892
| | - Amulya Yaparla
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892
| | - Hannah K Jaeger
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892
| | - Shin-Ichiro Hattori
- Department of Refractory Viral Infections, National Center for Global Health and Medicine Research Institute, Tokyo, Japan
| | - Paul T Wingfield
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Hiroaki Mitsuya
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892.,Department of Refractory Viral Infections, National Center for Global Health and Medicine Research Institute, Tokyo, Japan
| | - Robert Yarchoan
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892
| |
Collapse
|
8
|
Dimer Interface Organization is a Main Determinant of Intermonomeric Interactions and Correlates with Evolutionary Relationships of Retroviral and Retroviral-Like Ddi1 and Ddi2 Proteases. Int J Mol Sci 2020; 21:ijms21041352. [PMID: 32079302 PMCID: PMC7072860 DOI: 10.3390/ijms21041352] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/11/2020] [Accepted: 02/14/2020] [Indexed: 02/07/2023] Open
Abstract
The life cycles of retroviruses rely on the limited proteolysis catalyzed by the viral protease. Numerous eukaryotic organisms also express endogenously such proteases, which originate from retrotransposons or retroviruses, including DNA damage-inducible 1 and 2 (Ddi1 and Ddi2, respectively) proteins. In this study, we performed a comparative analysis based on the structural data currently available in Protein Data Bank (PDB) and Structural summaries of PDB entries (PDBsum) databases, with a special emphasis on the regions involved in dimerization of retroviral and retroviral-like Ddi proteases. In addition to Ddi1 and Ddi2, at least one member of all seven genera of the Retroviridae family was included in this comparison. We found that the studied retroviral and non-viral proteases show differences in the mode of dimerization and density of intermonomeric contacts, and distribution of the structural characteristics is in agreement with their evolutionary relationships. Multiple sequence and structure alignments revealed that the interactions between the subunits depend mainly on the overall organization of the dimer interface. We think that better understanding of the general and specific features of proteases may support the characterization of retroviral-like proteases.
Collapse
|
9
|
Hepatitis C Virus RNA-Dependent RNA Polymerase Is Regulated by Cysteine S-Glutathionylation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:3196140. [PMID: 31687077 PMCID: PMC6800943 DOI: 10.1155/2019/3196140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 08/05/2019] [Indexed: 12/24/2022]
Abstract
Hepatitis C virus (HCV) triggers massive production of reactive oxygen species (ROS) and affects expression of genes encoding ROS-scavenging enzymes. Multiple lines of evidence show that levels of ROS production contribute to the development of various virus-associated pathologies. However, investigation of HCV redox biology so far remained in the paradigm of oxidative stress, whereas no attention was given to the identification of redox switches among viral proteins. Here, we report that one of such redox switches is the NS5B protein that exhibits RNA-dependent RNA polymerase (RdRp) activity. Treatment of the recombinant protein with reducing agents significantly increases its enzymatic activity. Moreover, we show that the NS5B protein is subjected to S-glutathionylation that affects cysteine residues 89, 140, 170, 223, 274, 521, and either 279 or 295. Substitution of these cysteines except C89 and C223 with serine residues led to the reduction of the RdRp activity of the recombinant protein in a primer-dependent assay. The recombinant protein with a C279S mutation was almost inactive in vitro and could not be activated with reducing agents. In contrast, cysteine substitutions in the NS5B region in the context of a subgenomic replicon displayed opposite effects: most of the mutations enhanced HCV replication. This difference may be explained by the deleterious effect of oxidation of NS5B cysteine residues in liver cells and by the protective role of S-glutathionylation. Based on these data, redox-sensitive posttranslational modifications of HCV NS5B and other proteins merit a more detailed investigation and analysis of their role(s) in the virus life cycle and associated pathogenesis.
Collapse
|
10
|
Role of Glutathionylation in Infection and Inflammation. Nutrients 2019; 11:nu11081952. [PMID: 31434242 PMCID: PMC6723385 DOI: 10.3390/nu11081952] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/09/2019] [Accepted: 08/16/2019] [Indexed: 12/31/2022] Open
Abstract
Glutathionylation, that is, the formation of mixed disulfides between protein cysteines and glutathione (GSH) cysteines, is a reversible post-translational modification catalyzed by different cellular oxidoreductases, by which the redox state of the cell modulates protein function. So far, most studies on the identification of glutathionylated proteins have focused on cellular proteins, including proteins involved in host response to infection, but there is a growing number of reports showing that microbial proteins also undergo glutathionylation, with modification of their characteristics and functions. In the present review, we highlight the signaling role of GSH through glutathionylation, particularly focusing on microbial (viral and bacterial) glutathionylated proteins (GSSPs) and host GSSPs involved in the immune/inflammatory response to infection; moreover, we discuss the biological role of the process in microbial infections and related host responses.
Collapse
|
11
|
Saisawang C, Kuadkitkan A, Smith DR, Ubol S, Ketterman AJ. Glutathionylation of chikungunya nsP2 protein affects protease activity. Biochim Biophys Acta Gen Subj 2016; 1861:106-111. [PMID: 27984114 DOI: 10.1016/j.bbagen.2016.10.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 09/24/2016] [Accepted: 10/28/2016] [Indexed: 01/08/2023]
Abstract
BACKGROUND Chikungunya fever is an emerging disease caused by the chikungunya virus and is now being spread worldwide by the mosquito Aedes albopictus. The infection can cause a persistent severe joint pain and recent reports link high levels of viremia to neuropathologies and fatalities. The viral protein nsP2 is a multifunctional enzyme that plays several critical roles in virus replication. Virus infection induces oxidative stress in host cells which the virus utilizes to aid viral propagation. Cellular oxidative stress also triggers glutathionylation which is a post-translational protein modification that can modulate physiological roles of affected proteins. METHODS The nsP2 protease is necessary for processing of the virus nonstructural polyprotein generated during replication. We use the recombinant nsP2 protein to measure protease activity before and after glutathionylation. Mass spectrometry allowed the identification of the glutathione-modified cysteines. Using immunoblots, we show that the glutathionylation of nsP2 occurs in virus-infected cells. RESULTS We show that in virus-infected cells, the chikungunya nsP2 can be glutathionylated and we show this modification can impact on the protease activity. We also identify 6 cysteine residues that are glutathionylated of the 20 cysteines in the protein. CONCLUSIONS The virus-induced oxidative stress causes modification of viral proteins which appears to modulate virus protein function. GENERAL SIGNIFICANCE Viruses generate oxidative stress to regulate and hijack host cell systems and this environment also appears to modulate virus protein function. This may be a general target for intervention in viral pathogenesis.
Collapse
Affiliation(s)
- Chonticha Saisawang
- Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Thailand
| | - Atichat Kuadkitkan
- Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Thailand
| | - Duncan R Smith
- Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Thailand; Center for Emerging and Neglected Infectious Diseases, Mahidol University, Thailand
| | - Sukathida Ubol
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand; Center for Emerging and Neglected Infectious Diseases, Mahidol University, Thailand
| | - Albert J Ketterman
- Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Thailand.
| |
Collapse
|
12
|
Basal Glutathionylation of Na,K-ATPase α-Subunit Depends on Redox Status of Cells during the Enzyme Biosynthesis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:9092328. [PMID: 27239254 PMCID: PMC4863110 DOI: 10.1155/2016/9092328] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 03/06/2016] [Accepted: 03/28/2016] [Indexed: 11/17/2022]
Abstract
Many viruses induce oxidative stress and cause S-glutathionylation of Cys residues of the host and viral proteins. Changes in cell functioning during viral infection may be associated with glutathionylation of a number of key proteins including Na,K-ATPase which creates a gradient of sodium and potassium ions. It was found that Na,K-ATPase α-subunit has a basal glutathionylation which is not abrogated by reducing agent. We have shown that acute hypoxia leads to increase of total glutathionylation level of Na,K-ATPase α-subunit; however, basal glutathionylation of α-subunit increases under prolonged hypoxia only. The role of basal glutathionylation in Na,K-ATPase function remains unclear. Understanding significance of basal glutathionylation is complicated by the fact that there are no X-ray structures of Na,K-ATPase with the identified glutathione molecules. We have analyzed all X-ray structures of the Na,K-ATPase α-subunit from pig kidney and found that there are a number of isolated cavities with unresolved electron density close to the relevant cysteine residues. Analysis of the structures showed that this unresolved density in the structure can be occupied by glutathione associated with cysteine residues. Here, we discuss the role of basal glutathionylation of Na,K-ATPase α-subunit and provide evidence supporting the view that this modification is cotranslational.
Collapse
|
13
|
Mathys L, Balzarini J. The role of cellular oxidoreductases in viral entry and virus infection-associated oxidative stress: potential therapeutic applications. Expert Opin Ther Targets 2015; 20:123-43. [PMID: 26178644 DOI: 10.1517/14728222.2015.1068760] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Cellular oxidoreductases catalyze thiol/disulfide exchange reactions in susceptible proteins and contribute to the cellular defense against oxidative stress. Oxidoreductases and oxidative stress are also involved in viral infections. In this overview, different aspects of the role of cellular oxidoreductases and oxidative stress during viral infections are discussed from a chemotherapeutic viewpoint. AREAS COVERED Entry of enveloped viruses into their target cells is triggered by the interaction of viral envelope glycoproteins with cellular (co)receptor(s) and depends on obligatory conformational changes in these viral envelope glycoproteins and/or cellular receptors. For some viruses, these conformational changes are mediated by cell surface-associated cellular oxidoreductases, which mediate disulfide bridge reductions in viral envelope glycoprotein(s). Therefore, targeting these oxidoreductases using oxidoreductase inhibitors might yield an interesting strategy to block viral entry of these viruses. Furthermore, since viral infections are often associated with systemic oxidative stress, contributing to disease progression, the enhancement of the cellular antioxidant defense systems might have potential as an adjuvant antiviral strategy, slowing down disease progression. EXPERT OPINION Promising antiviral data were obtained for both strategies. However, potential pitfalls have also been identified for these strategies, indicating that it is important to carefully assess the benefits versus risks of these antiviral strategies.
Collapse
Affiliation(s)
- Leen Mathys
- a 1 Rega Institute for Medical Research, KU Leuven , Minderbroedersstraat 10 blok x - bus 1030, Leuven, Belgium
| | - Jan Balzarini
- b 2 Rega Institute for Medical Research, KU Leuven , Minderbroedersstraat 10 blok x - bus 1030, Leuven, Belgium +32 16 3 37352 ; +32 16 3 37340 ;
| |
Collapse
|
14
|
Trujillo JA, Croft NP, Dudek NL, Channappanavar R, Theodossis A, Webb AI, Dunstone MA, Illing PT, Butler NS, Fett C, Tscharke DC, Rossjohn J, Perlman S, Purcell AW. The cellular redox environment alters antigen presentation. J Biol Chem 2014; 289:27979-91. [PMID: 25135637 DOI: 10.1074/jbc.m114.573402] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cysteine-containing peptides represent an important class of T cell epitopes, yet their prevalence remains underestimated. We have established and interrogated a database of around 70,000 naturally processed MHC-bound peptides and demonstrate that cysteine-containing peptides are presented on the surface of cells in an MHC allomorph-dependent manner and comprise on average 5-10% of the immunopeptidome. A significant proportion of these peptides are oxidatively modified, most commonly through covalent linkage with the antioxidant glutathione. Unlike some of the previously reported cysteine-based modifications, this represents a true physiological alteration of cysteine residues. Furthermore, our results suggest that alterations in the cellular redox state induced by viral infection are communicated to the immune system through the presentation of S-glutathionylated viral peptides, resulting in altered T cell recognition. Our data provide a structural basis for how the glutathione modification alters recognition by virus-specific T cells. Collectively, these results suggest that oxidative stress represents a mechanism for modulating the virus-specific T cell response.
Collapse
Affiliation(s)
- Jonathan A Trujillo
- From the Department of Microbiology and the Interdisciplinary Program in Immunology, University of Iowa, Iowa City, Iowa 52242
| | - Nathan P Croft
- the Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia, the Department of Biochemistry and Molecular Biology and
| | - Nadine L Dudek
- the Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia, the Department of Biochemistry and Molecular Biology and
| | | | | | - Andrew I Webb
- the Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | | | - Patricia T Illing
- the Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Noah S Butler
- From the Department of Microbiology and the Research School of Biology, Australian National University, Canberra, Australian Capital Territory 0200, Australia, and
| | | | - David C Tscharke
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia
| | - Jamie Rossjohn
- the Department of Biochemistry and Molecular Biology and Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia, the Institute of Infection and Immunity, Cardiff University, School of Medicine, Heath Park, Cardiff CF14 4XN, United Kingdom
| | - Stanley Perlman
- From the Department of Microbiology and the Interdisciplinary Program in Immunology, University of Iowa, Iowa City, Iowa 52242,
| | - Anthony W Purcell
- the Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia, the Department of Biochemistry and Molecular Biology and
| |
Collapse
|
15
|
Understanding HIV-1 protease autoprocessing for novel therapeutic development. Future Med Chem 2014; 5:1215-29. [PMID: 23859204 DOI: 10.4155/fmc.13.89] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In the infected cell, HIV-1 protease (PR) is initially synthesized as part of the GagPol polyprotein. PR autoprocessing is a virus-specific process by which the PR domain embedded in the precursor catalyzes proteolytic reactions responsible for liberation of free mature PRs, which then recognize and cleave at least ten different peptide sequences in the Gag and GagPol polyproteins. Despite extensive structure and function studies of the mature PRs as well as the successful development of ten US FDA-approved catalytic-site inhibitors, the precursor autoprocessing mechanism remains an intriguing yet-to-be-solved puzzle. This article discusses current understanding of the autoprocessing mechanism, in an effort to prompt the development of novel anti-HIV drugs that selectively target precursor autoprocessing.
Collapse
|
16
|
Aggarwal A, Turville SG. Imaging of HIV entry and egress. MICROBIOLOGY AUSTRALIA 2014. [DOI: 10.1071/ma14035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
17
|
Kil IS, Shin SW, Park JW. S-glutathionylation regulates GTP-binding of Rac2. Biochem Biophys Res Commun 2012; 425:892-6. [PMID: 22902632 DOI: 10.1016/j.bbrc.2012.07.169] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 07/31/2012] [Indexed: 11/29/2022]
Abstract
Phagocyte NADPH oxidase catalyzes the reduction of molecular oxygen to superoxide and is essential for defense against microbes. Rac2 is a low molecular weight GTP-binding protein that has been implicated in the regulation of phagocyte NADPH oxidase. Here we report that Cys(157) of Rac2 is a target of S-glutathionylation and that this modification is reversed by dithiothreitol as well as enzymatically by thioltransferase in the presence of GSH. S-glutathionylated Rac2 enhanced the binding of GTP, presumably due to structural alterations. These results elucidate the redox regulation of cysteine in Rac2 and a possible mechanism for regulating NADPH oxidase activation.
Collapse
Affiliation(s)
- In Sup Kil
- School of Life Sciences and Biotechnology, College of Natural Sciences, Kyungpook National University, Taegu 702701, Republic of Korea
| | | | | |
Collapse
|
18
|
Santos S, Obukhov Y, Nekhai S, Bukrinsky M, Iordanskiy S. Virus-producing cells determine the host protein profiles of HIV-1 virion cores. Retrovirology 2012; 9:65. [PMID: 22889230 PMCID: PMC3432596 DOI: 10.1186/1742-4690-9-65] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 07/15/2012] [Indexed: 11/10/2022] Open
Abstract
Background Upon HIV entry into target cells, viral cores are released and rearranged into reverse transcription complexes (RTCs), which support reverse transcription and also protect and transport viral cDNA to the site of integration. RTCs are composed of viral and cellular proteins that originate from both target and producer cells, the latter entering the target cell within the viral core. However, the proteome of HIV-1 viral cores in the context of the type of producer cells has not yet been characterized. Results We examined the proteomic profiles of the cores purified from HIV-1 NL4-3 virions assembled in Sup-T1 cells (T lymphocytes), PMA and vitamin D3 activated THP1 (model of macrophages, mMΦ), and non-activated THP1 cells (model of monocytes, mMN) and assessed potential involvement of identified proteins in the early stages of infection using gene ontology information and data from genome-wide screens on proteins important for HIV-1 replication. We identified 202 cellular proteins incorporated in the viral cores (T cells: 125, mMΦ: 110, mMN: 90) with the overlap between these sets limited to 42 proteins. The groups of RNA binding (29), DNA binding (17), cytoskeleton (15), cytoskeleton regulation (21), chaperone (18), vesicular trafficking-associated (12) and ubiquitin-proteasome pathway-associated proteins (9) were most numerous. Cores of the virions from SupT1 cells contained twice as many RNA binding proteins as cores of THP1-derived virus, whereas cores of virions from mMΦ and mMN were enriched in components of cytoskeleton and vesicular transport machinery, most probably due to differences in virion assembly pathways between these cells. Spectra of chaperones, cytoskeletal proteins and ubiquitin-proteasome pathway components were similar between viral cores from different cell types, whereas DNA-binding and especially RNA-binding proteins were highly diverse. Western blot analysis showed that within the group of overlapping proteins, the level of incorporation of some RNA binding (RHA and HELIC2) and DNA binding proteins (MCM5 and Ku80) in the viral cores from T cells was higher than in the cores from both mMΦ and mMN and did not correlate with the abundance of these proteins in virus producing cells. Conclusions Profiles of host proteins packaged in the cores of HIV-1 virions depend on the type of virus producing cell. The pool of proteins present in the cores of all virions is likely to contain factors important for viral functions. Incorporation ratio of certain RNA- and DNA-binding proteins suggests their more efficient, non-random packaging into virions in T cells than in mMΦ and mMN.
Collapse
Affiliation(s)
- Steven Santos
- Department of Microbiology, Immunology and Tropical Medicine, George Washington University School of Medicine and Health Sciences, 2300 I Street NW, Ross Hall, Washington, DC 20037, USA
| | | | | | | | | |
Collapse
|
19
|
Tew KD, Manevich Y, Grek C, Xiong Y, Uys J, Townsend DM. The role of glutathione S-transferase P in signaling pathways and S-glutathionylation in cancer. Free Radic Biol Med 2011; 51:299-313. [PMID: 21558000 PMCID: PMC3125017 DOI: 10.1016/j.freeradbiomed.2011.04.013] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 04/07/2011] [Accepted: 04/07/2011] [Indexed: 12/12/2022]
Abstract
Glutathione S-transferase P is abundantly expressed in some mammalian tissues, particularly those associated with malignancies. While the enzyme can catalyze thioether bond formation between some electrophilic chemicals and GSH, novel nondetoxification functions are now ascribed to it. This review summarizes recent material that implicates GSTP in mediating S-glutathionylation of specific clusters of target proteins and in reactions that define a negative regulatory role in some kinase pathways through ligand or protein:protein interactions. It is becoming apparent that GSTP participates in the maintenance of cellular redox homeostasis through a number of convergent and divergent mechanisms. Moreover, drug platforms that have GSTP as a target have produced some interesting preclinical and clinical candidates.
Collapse
Affiliation(s)
- Kenneth D Tew
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA.
| | | | | | | | | | | |
Collapse
|
20
|
Daniels SI, Davis DA, Soule EE, Stahl SJ, Tebbs IR, Wingfield P, Yarchoan R. The initial step in human immunodeficiency virus type 1 GagProPol processing can be regulated by reversible oxidation. PLoS One 2010; 5:e13595. [PMID: 21042582 PMCID: PMC2962637 DOI: 10.1371/journal.pone.0013595] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Accepted: 09/26/2010] [Indexed: 01/14/2023] Open
Abstract
Background Maturation of human immunodeficiency virus type 1 (HIV-1) occurs upon activation of HIV-1 protease embedded within GagProPol precursors and cleavage of Gag and GagProPol polyproteins. Although reversible oxidation can regulate mature protease activity as well as retrovirus maturation, it is possible that the effects of oxidation on viral maturation are mediated in whole, or part, through effects on the initial intramolecular cleavage event of GagProPol. In order assess the effect of reversible oxidation on this event, we developed a system to isolate the first step in protease activation involving GagProPol. Methodology/Principal Findings To determine if oxidation influences this step, we created a GagProPol plasmid construct (pGPfs-1C) that encoded mutations at all cleavage sites except p2/NC, the initial cleavage site in GagProPol. pGPfs-1C was used in an in vitro translation assay to observe the behavior of this initial step without interference from subsequent processing events. Diamide, a sulfhydral oxidizing agent, inhibited processing at p2/NC by >60% for pGPfs-1C and was readily reversed with the reductant, dithiothreitol. The ability to regulate processing by reversible oxidation was lost when the cysteines of the embedded protease were mutated to alanine. Unlike mature protease, which requires only oxidation of cys95 for inhibition, both cysteines of the embedded protease contributed to this inhibition. Conclusions/Significance We developed a system that can be used to study the first step in the cascade of HIV-1 GagProPol processing and show that reversible oxidation of cysteines of HIV-1 protease embedded in GagProPol can block this initial GagProPol autoprocessing. This type of regulation may be broadly applied to the majority of retroviruses.
Collapse
Affiliation(s)
- Sarah I. Daniels
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - David A. Davis
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| | - Erin E. Soule
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Stephen J. Stahl
- Protein Expression Laboratory, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Irene R. Tebbs
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Paul Wingfield
- Protein Expression Laboratory, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Robert Yarchoan
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
21
|
Analysis and characterization of dimerization inhibition of a multi-drug-resistant human immunodeficiency virus type 1 protease using a novel size-exclusion chromatographic approach. Biochem J 2009; 419:497-506. [PMID: 19149765 DOI: 10.1042/bj20082068] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Active-site inhibitors of HIV-1 PR (protease) block viral replication by preventing viral maturation. However, HIV-1 often develops resistance to active-site inhibitors through multiple mutations in PR and therefore recent efforts have focused on inhibiting PR dimerization as an alternative approach. Dimerization inhibitors have been identified using kinetic analysis, but additional characterization of the effect of these inhibitors on PR by physical methods has been difficult. In the present study, we identified a PR(MDR) (multi-drug-resistant HIV-1 PR) that was highly resistant to autoproteolysis. Using this PR and a novel size-exclusion chromatographic approach that incorporated fluorescence and MS detection, we were able to demonstrate inhibition of dimerization using P27 (peptide 27), a peptide dimerization inhibitor of PR previously identified on the basis of kinetic analysis. Incubation of PR(MDR) with P27, or other dimerization inhibitors, led to a dose- and time-dependent formation of PR monomers based on the change in elution time by size exclusion and its similar elution time to engineered forms of monomeric PR, namely PR(T26A) and glutathionylated PR. In contrast, incubation of PR(MDR) with a potent active-site inhibitor did not change the elution time for the PR(MDR) dimer. The monomeric PR induced by P27 had fluorescent characteristics which were consistent with unfolded PR. Structure-activity studies identified the active regions of P27 and experiments were performed to examine the effect of other dimerization inhibitors on PR. The present study is the first characterization of dimerization inhibition of PR(MDR), a prime target for these inhibitors, using a novel size-exclusion chromatographic approach.
Collapse
|
22
|
Shin SW, Oh CJ, Kil IS, Park JW. Glutathionylation regulates cytosolic NADP+-dependent isocitrate dehydrogenase activity. Free Radic Res 2009; 43:409-16. [PMID: 19291592 DOI: 10.1080/10715760902801525] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Cytosolic NADP+-dependent isocitrate dehydrogenase (IDPc) is susceptible to inactivation by numerous thiol-modifying reagents. This study now reports that Cys269 of IDPc is a target for S-glutathionylation and that this modification is reversed by dithiothreitol as well as enzymatically by cytosolic glutaredoxin in the presence of GSH. Glutathionylated IDPc was significantly less susceptible than native protein to peptide fragmentation by reactive oxygen species and proteolytic digestion. Glutathionylation may play a protective role in the degradation of protein through the structural alterations of IDPc. HEK293 cells treated with diamide displayed decreased IDPc activity and accumulated glutathionylated enzyme. Using immunoprecipitation with an anti-IDPc IgG and immunoblotting with an anti-GSH IgG, we purified and positively identified glutathionylated IDPc from the kidneys of mice subjected to ischemia/reperfusion injury and from the livers of ethanol-administered rats. These results suggest that IDPc activity is modulated through enzymatic glutathionylation and deglutathionylation during oxidative stress.
Collapse
Affiliation(s)
- Seoung Woo Shin
- School of Life Sciences and Biotechnology, College of Natural Sciences, Kyungpook National University, Taegu 702-701, Korea
| | | | | | | |
Collapse
|
23
|
Abstract
It has been known for some time that HIV-1 virions contain cellular proteins in addition to proteins encoded by the viral genome. Recent studies have vastly increased the number of host proteins detected in HIV-1. This review summarises the current findings on several cellular proteins present in these virions, including some functional studies on their potential roles in the viral replication cycle and pathogenesis. Because retroviruses require extensive assistance from host proteins and pathways, the data from biochemical characterisations of HIV-1 serve as an important starting point for understanding the role of cellular proteins that act in or influence the biology of HIV-1. Additionally, a better understanding of the interactions between cellular proteins and viral components might provide more targets for anti-HIV therapeutic intervention and provide for a better understanding of how HIV-1 alters the immune system. The extensive study of HIV-1 has already brought new insights to the fields of immunology and vaccine science. In the same way, knowledge of viral--cellular protein interactions might assist our understanding of important cellular pathways.
Collapse
Affiliation(s)
- David E Ott
- AIDS Vaccine Program, SAIC-Frederick, Inc., National Cancer Institute at Frederick, Frederick, MD 21702-1201, USA.
| |
Collapse
|
24
|
Shelton MD, Mieyal JJ. Regulation by reversible S-glutathionylation: molecular targets implicated in inflammatory diseases. Mol Cells 2008; 25:332-46. [PMID: 18483468 PMCID: PMC3367451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023] Open
Abstract
S-glutathionylation is a reversible post-translational modification that continues to gain eminence as a redox regulatory mechanism of protein activity and associated cellular functions. Many diverse cellular proteins such as transcription factors, adhesion molecules, enzymes, and cytokines are reported to undergo glutathionylation, although the functional impact has been less well characterized. De-glutathionylation is catalyzed specifically and efficiently by glutaredoxin (GRx, aka thioltransferase), and facile reversibility is critical in determining the physiological relevance of glutathionylation as a means of protein regulation. Thus, studies with cohesive themes addressing both the glutathionylation of proteins and the corresponding impact of GRx are especially useful in advancing understanding. Reactive oxygen species (ROS) and redox regulation are well accepted as playing a role in inflammatory processes, such as leukostasis and the destruction of foreign particles by macrophages. We discuss in this review the current implications of GRx and/or glutathionylation in the inflammatory response and in diseases associated with chronic inflammation, namely diabetes, atherosclerosis, inflammatory lung disease, cancer, and Alzheimer's disease, and in viral infections.
Collapse
Affiliation(s)
- Melissa D Shelton
- Department of Pharmacology, School of Medicine, Case Western Reserve University, and Louis Stokes Cleveland Veterans Affairs Medical Research Center, Cleveland, Ohio 44106-4965, USA
| | | |
Collapse
|
25
|
Dalle-Donne I, Rossi R, Giustarini D, Colombo R, Milzani A. S-glutathionylation in protein redox regulation. Free Radic Biol Med 2007; 43:883-98. [PMID: 17697933 DOI: 10.1016/j.freeradbiomed.2007.06.014] [Citation(s) in RCA: 330] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2007] [Revised: 06/06/2007] [Accepted: 06/06/2007] [Indexed: 10/23/2022]
Abstract
Protein S-glutathionylation, the reversible formation of mixed disulfides between glutathione and low-pKa cysteinyl residues, not only is a cellular response to mild oxidative/nitrosative stress, but also occurs under basal (physiological) conditions. S-glutathionylation has now emerged as a potential mechanism for dynamic, posttranslational regulation of a variety of regulatory, structural, and metabolic proteins. Moreover, substantial recent studies have implicated S-glutathionylation in the regulation of signaling and metabolic pathways in intact cellular systems. The growing list of S-glutathionylated proteins, in both animal and plant cells, attests to the occurrence of S-glutathionylation in cellular response pathways. The existence of antioxidant enzymes that specifically regulate S-glutathionylation would emphasize its importance in modulating protein function, suggesting that this protein modification too might have a role in cell signaling. The continued development of proteomic and analytical methods for disulfide analysis will help us better understand the full extent of the roles these modifications play in the regulation of cell function. In this review, we describe recent breakthroughs in our understanding of the potential role of protein S-glutathionylation in the redox regulation of signal transduction.
Collapse
|
26
|
Zábranská H, Tůma R, Kluh I, Svatos A, Ruml T, Hrabal R, Pichová I. The Role of the S-S Bridge in Retroviral Protease Function and Virion Maturation. J Mol Biol 2007; 365:1493-504. [PMID: 17140600 DOI: 10.1016/j.jmb.2006.11.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2006] [Revised: 10/31/2006] [Accepted: 11/01/2006] [Indexed: 10/23/2022]
Abstract
Retroviral proteases are translated as a part of Gag-related polyproteins, and are released and activated during particle release. Mason-Pfizer monkey virus (M-PMV) Gag polyproteins assemble into immature capsids within the cytoplasm of the host cells; however, their processing occurs only after transport to the plasma membrane and subsequent release. Thus, the activity of M-PMV protease is expected to be highly regulated during the replication cycle. It has been proposed that reversible oxidation of protease cysteine residues might be responsible for such regulation. We show that cysteine residues in M-PMV protease can form an intramolecular S-S bridge. The disulfide bridge shifts the monomer/dimer equilibrium in favor of the dimer, and increases the proteolytic activity significantly. To investigate the role of this disulfide bridge in virus maturation and replication, we engineered an M-PMV clone in which both protease cysteine residues were replaced by alanine (M-PMV(PRC7A/C106A)). Surprisingly, the cysteine residues were dispensable for Gag polyprotein processing within the virus, indicating that even low levels of protease activity are sufficient for polyprotein processing during maturation. However, the long-term infectivity of M-PMV(PRC7A/C106A) was noticeably compromised. These results show clearly that the proposed redox mechanism does not rely solely on the formation of the stabilizing S-S bridge in the protease. Thus, in addition to the protease disulfide bridge, reversible oxidation of cysteine and/or methionine residues in other domains of the Gag polyprotein or in related cellular proteins must be involved in the regulation of maturation.
Collapse
Affiliation(s)
- Helena Zábranská
- Gilead Sciences Research Centre, Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo námestí 2, 166 10 Prague 6, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
27
|
Michelet L, Zaffagnini M, Massot V, Keryer E, Vanacker H, Miginiac-Maslow M, Issakidis-Bourguet E, Lemaire SD. Thioredoxins, glutaredoxins, and glutathionylation: new crosstalks to explore. PHOTOSYNTHESIS RESEARCH 2006; 89:225-45. [PMID: 17089213 DOI: 10.1007/s11120-006-9096-2] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2006] [Accepted: 08/17/2006] [Indexed: 05/12/2023]
Abstract
Oxidants are widely considered as toxic molecules that cells have to scavenge and detoxify efficiently and continuously. However, emerging evidence suggests that these oxidants can play an important role in redox signaling, mainly through a set of reversible post-translational modifications of thiol residues on proteins. The most studied redox system in photosynthetic organisms is the thioredoxin (TRX) system, involved in the regulation of a growing number of target proteins via thiol/disulfide exchanges. In addition, recent studies suggest that glutaredoxins (GRX) could also play an important role in redox signaling especially by regulating protein glutathionylation, a post-translational modification whose importance begins to be recognized in mammals while much less is known in photosynthetic organisms. This review focuses on oxidants and redox signaling with particular emphasis on recent developments in the study of functions, regulation mechanisms and targets of TRX, GRX and glutathionylation. This review will also present the complex emerging interplay between these three components of redox-signaling networks.
Collapse
Affiliation(s)
- Laure Michelet
- Institut de Biotechnologie des Plantes, Unité Mixte de Recherche 8618, Centre National de la Recherche Scientifique/Université Paris-Sud, Bâtiment 630, Orsay Cedex, 91405, France
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Masutani H, Ueda S, Yodoi J. The thioredoxin system in retroviral infection and apoptosis. Cell Death Differ 2006; 12 Suppl 1:991-8. [PMID: 15818395 DOI: 10.1038/sj.cdd.4401625] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Human thioredoxin (TRX) was first identified in human T-cell leukemia virus type I (HTLV-I)-positive T-cell lines and is associated with the pathophysiology of retroviral infections. TRX is a vital component of the thiol-reducing system and regulates various cellular function (redox regulation). Members of the TRX system regulate apoptosis through a wide variety of mechanisms. A family of thioredoxin-dependent peroxidases (peroxiredoxins) protects against apoptosis by scavenging hydrogen peroxide. Thioredoxin 2 is a critical regulator of cytochrome c release and mitochondrial apoptosis; transmembrane thioredoxin-related molecule (TMX) has a protective role in endoplasmic reticulum (ER) stress-induced apoptosis. TRX interacts with apoptosis signal-regulating kinase 1 (ASK1) and is a sensor of oxidative stress. Thioredoxin binding protein-2/vitamin D(3) upregulated protein 1 is a growth suppressor and its expression is suppressed in HTLV-I-transformed cells. Studies of these molecules of the TRX system provide novel insights into the apoptosis associated with retroviral diseases.
Collapse
Affiliation(s)
- H Masutani
- Institute for Virus Research, Kyoto University, Sakyo, Kyoto, Japan.
| | | | | |
Collapse
|
29
|
Niture SK, Velu CS, Bailey NI, Srivenugopal KS. S-thiolation mimicry: quantitative and kinetic analysis of redox status of protein cysteines by glutathione-affinity chromatography. Arch Biochem Biophys 2005; 444:174-84. [PMID: 16297848 DOI: 10.1016/j.abb.2005.10.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2005] [Revised: 10/04/2005] [Accepted: 10/14/2005] [Indexed: 11/26/2022]
Abstract
S-Glutathionylation is emerging as a novel regulatory and adoptive mechanism by which glutathione (GSH or GSSG) conjugation can modify functionally important reactive cysteines in redox-sensitive proteins. The dynamics of generation and reversal of this modification in cells is poorly understood. This study describes the ability and applicability of GSH- and GSSG-affinity matrices to quantitatively bind proteins which harbor reactive cysteines and undergo glutathionylation. We showed that purified proteins, known to be modified by S-thiolation, bind to these matrices, are selectively eluted by dithiothreitol and rapidly incorporate biotin-labeled GSH or GSSG in vitro. Chromatography of extracts from tumor cells that had been treated with oxidants (diamide, H(2)O(2), tert-butyl hydroperoxide) on GSH-Sepharose showed the specific binding of many proteins, whose levels increased transiently (2- to 6-fold) soon after treatments. However, when these cells were post-incubated in drug/oxidant-free media, protein binding decreased gradually to control levels over 3-12h, thereby demonstrating the central role of cysteine redox status in the binding. Immunoblotting of eluates from GSH-Sepharose showed the presence of known (actin, ubiquitin-activating enzyme E1, NF-kappaB, and proteasome) and putative (p53, glutathione-S-transferase P1) targets for glutathionation. After oxidant withdrawal, many of these proteins displayed unique kinetics in their loss of binding to GSH-matrix, reflecting their differential abilities to recover from cysteine redox changes in cellular milieu. Further, we correlated the kinetics of S-thiolation susceptibility of the proteasome and ubiquitin-E1 proteins with altered levels of protein ubiquitination in H(2)O(2)-treated cells. Our study reveals the hitherto underutilized ability of glutathione matrices for analyzing the kinetics of cysteine redox in cellular proteins and allows easy identification of S-thiolatable proteins.
Collapse
Affiliation(s)
- Suryakant K Niture
- Center for Cancer Biology, Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, 79106, USA
| | | | | | | |
Collapse
|
30
|
Lockwood TD. The transfer of reductive energy and pace of proteome turnover: a theory of integrated catabolic control. Antioxid Redox Signal 2005; 7:982-98. [PMID: 15998253 DOI: 10.1089/ars.2005.7.982] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Hundreds of cell proteins undergo reversible transitions among redox states. Coordinate control and common functions served by redox-modified proteins are unknown. The suspect "redox code" integrating metabolome, proteome, and genome remains undefined. Protein redox control involves coupling of the population redox partition to transfer of reductive energy from source to sink. Lessons in metabolic programs under redox coordination might be found in nutritional desperation where reductive transfer from fuel fails to feed pathways to protein reduction. Upon nutritional interruption, proteolysis initially increases. However, catabolism secondarily declines in later starvation so as to postpone loss of the minimal proteome under synthetic failure and delay death. Integrated proteome turnover is paced by reductive transfer coupled to redox states of proteins serving diverse functions. Some continuing proteolysis is redox-independent. Cathepsin B is a model, redox-responsive, catabolic machine among proteins involved in turnover. The CysHis pair is simultaneously a redox-responsive site, an inhibitory metal-binding site, and a peptidolytic reaction mechanism. Pro-region cleavage generates permissive reaction conditions, but not necessarily the maximal peptidolytic rate. Mature cathepsin B can be inactivated by partition into multiple oxidation states. Cathepsin B can be reductively activated by glutathione or disulfhydryl reductases, and redox-buffered by glutathione homodisulfide/glutathione. Topics in protease regulation include: (a) the rate of total cell transfer of nutrient reductive energy from NADPH source potential to reductive pathways, (b) the distribution of reductive energy routed through parallel interactive pathways to protease, (c) the rate of transfer from protease through pathways to oxygen (reactive oxygen species) acceptor at sink potential, and (d) the linkage of protease state partition to relative rates of reductions and oxidations. Cell iron, sulfur, and oxygen redox are inseparable. The interaction of the CysHis site with iron provides a sensor, integrator, and effector switch coupling cathepsin B to metal-sulfuroxygen redox. Artificial metal-redox-proton switching is a new concept in protein engineering; however, nature has already applied "nanotechnology" to protein redox control.
Collapse
Affiliation(s)
- Thomas D Lockwood
- Department of Pharmacology and Toxicology, School of Medicine, Wright State University, Dayton, OH 45429, USA.
| |
Collapse
|
31
|
Shelton MD, Chock PB, Mieyal JJ. Glutaredoxin: role in reversible protein s-glutathionylation and regulation of redox signal transduction and protein translocation. Antioxid Redox Signal 2005; 7:348-66. [PMID: 15706083 DOI: 10.1089/ars.2005.7.348] [Citation(s) in RCA: 299] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Reversible posttranslational modifications on specific amino acid residues can efficiently regulate protein functions. O-Phosphorylation is the prototype and analogue to the rapidly emerging mechanism of regulation known as S-glutathionylation. The latter is being recognized as a potentially widespread form of modulation of the activities of redox-sensitive thiol proteins, especially those involved in signal transduction pathways and translocation. The abundance of reduced glutathione in cells and the ready conversion of sulfenic acids and S-nitroso derivatives to S-glutathione mixed disulfides support the notion that reversible S-glutathionylation is likely to be the preponderant mode of redox signal transduction. The glutaredoxin enzyme has served as a focal point and important tool for evolution of this regulatory mechanism because of its characterization as a specific and efficient catalyst of protein-SSG de-glutathionylation (akin to phosphatases). Identification of specific mechanisms and enzyme(s) that catalyze formation of protein-SSG intermediates, however, is largely unknown and represents a prime objective for furthering understanding of this evolving mechanism of cellular regulation. Several proteomic approaches, including the use of cysteine-reactive fluorescent and radiolabel probes, have been developed to detect arrays of proteins whose cysteine residues are modified in response to oxidants, thus identifying them as potential interconvertible proteins to be regulated by redox signaling (glutathionylation). Specific criteria were used to evaluate current data on cellular regulation via S-glutathionylation. Among many proteins under consideration, actin, protein tyrosine phosphatase-1B, and Ras stand out as the best current examples for establishing this regulatory mechanism.
Collapse
Affiliation(s)
- Melissa D Shelton
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 2109 Adelbert Road, Cleveland, OH 44106-4965, USA
| | | | | |
Collapse
|
32
|
Sahaf B, Heydari K, Herzenberg LA, Herzenberg LA. The extracellular microenvironment plays a key role in regulating the redox status of cell surface proteins in HIV-infected subjects. Arch Biochem Biophys 2005; 434:26-32. [PMID: 15629105 DOI: 10.1016/j.abb.2004.11.015] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2004] [Revised: 09/20/2004] [Indexed: 02/06/2023]
Abstract
There is an overwhelming interest in the study of the redox status of the cell surface affecting redox signaling in the cells and also predicting the total redox status of the cells. Measuring the total surface thiols (cell surface molecule thiols, csm-SH) we have shown that the overall level of surface thiols is tightly controlled. In vitro, the total concentration of intracellular glutathione (iGSH) seems to play a regulatory role in determination of the amounts of reduced proteins on cells. In addition, short term exposure of the cell surface to glutathione disulfide (GSSG, oxidized GSH) seems to reduce the overall levels of csm-SH suggesting that the function of some cysteine containing proteins on the cell surface may be regulated by the amount of GSSG secreted from the cells or the GSSG available in the extracellular environment. Examination of peripheral blood mononuclear cells (PBMCs) from healthy or HIV-infected subjects failed to reveal a similar correlation between the intra- and extracellular thiol status of cells. Although there is a relatively wide variation between individuals in both csm-SH and iGSH there is no correlation between the iGSH and csm-SH levels measured for healthy and HIV-infected individuals. There are many reports suggesting different redox active proteins on the cell surface to be the key players in the total cell surface redox regulation. However, we suggest that the redox status of the cells is regulated through a complex and tightly regulated mechanism that needs further investigation. In the mean time, overall surface thiol measurements together with case specific protein determinations may offer the most informative approach. In this review, we discuss our own results as well as results from other laboratories to argue that the overall levels of surface thiols on the exofacial membrane are regulated primarily by redox status of the cell surface microenvironment.
Collapse
Affiliation(s)
- Bita Sahaf
- Herzenberg Laboratory, Department of Genetics, Beckman Center, B-007 Stanford University School of Medicine Stanford, CA 94304-5318, USA.
| | | | | | | |
Collapse
|
33
|
Giustarini D, Rossi R, Milzani A, Colombo R, Dalle-Donne I. S-glutathionylation: from redox regulation of protein functions to human diseases. J Cell Mol Med 2005; 8:201-12. [PMID: 15256068 PMCID: PMC6740303 DOI: 10.1111/j.1582-4934.2004.tb00275.x] [Citation(s) in RCA: 224] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Reactive oxygen species (ROS) and reactive nitrogen species (RNS) play an integral role in the modulation of several physiological functions but can also be potentially destructive if produced in excessive amounts. Protein cysteinyl thiols appear especially sensitive to ROS/RNS attack. Experimental evidence started to accumulate recently, documenting that S-glutathionylation occurs in a number of physiologically relevant situations, where it can produce discrete modulatory effects on protein function. The increasing evidence of functional changes resulting from this modification, and the growing number of proteins shown to be S-glutathionylated both in vitro and in vivo support this contention, and confirm this as an attractive area of research. S-glutathionylated proteins are now actively investigated with reference to problems of biological interest and as possible biomarkers of human diseases associated with oxidative/nitrosative stress.
Collapse
|
34
|
Lockwood TD. Cys-His proteases are among the wired proteins of the cell. Arch Biochem Biophys 2004; 432:12-24. [PMID: 15519292 DOI: 10.1016/j.abb.2004.09.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2004] [Revised: 09/13/2004] [Indexed: 10/26/2022]
Abstract
Integrated cell protein degradation can be paced by the transfer of reductive energy, as revealed by experimental agents of informative actions. The peptidolytic pair of Cys-His proteases can undergo oxidative reactions to inactive derivatives and inhibitory metal binding. Proton-dependent ionizations can modify ongoing activity. If the reaction rate of a Cys-His protease were found responsive to the ranges of metal/redox/proton factors regulated within the cell, then these factors might serve to link the peptidolytic reaction rate to cell controls. Here, cathepsin B (cat B) was found to be inhibited by Zn2+, Fe3+, and Cu2+ (1-50 microM) under excess GSH or DTT protease activators (6 mM). Under DTT or GSH (6 mM) the initial inhibitory action of Zn2+ is stable indefinitely; however, the inhibitory actions of Fe3+ and Cu2+ are reversed over approximately 1h. The 12-14 min half time of reversal of initial protease inhibition is correlated with the measured reduction of Fe3+ to Fe2+ by DTT or GSH (pH 5.5 or 6.5). Endogenous Fe2+ concentrations (100 microM) inhibit cat B only marginally. However, the inhibitory threshold of several microM Fe3+ is only a few percent oxidation of the endogenous pool. Without metals cat B reaction is reportedly proportional to GSH concentration, and is inhibited by increasing GSSG/GSH redox ratio. Following activation with GSH, cat B can be influenced by Fe3+/Fe2+, Cu2+/Cu+, and GSSG/GSH ratios and concentrations. Results are interpreted in relation to properties of the thiolate-imidazolium pair as illustrated by Dock modeling of their shared Fe3+ binding. It is proposed that the interaction of Cys-His with 1 electron transition between Fe2+ and Fe3+ serves as a sensor, signal integrator and switch wiring cat B reaction rate to the transfer of reductive energy in the presence of excess GSH. Speciated metals might also serve among electron acceptors transferring from reduced protease to oxygen. Results provide a model for pharmacologic redox switching of protease functions with metal-interactive drugs, and other nano-technology engineering.
Collapse
Affiliation(s)
- Thomas D Lockwood
- Department of Pharmacology and Toxicology, School of Medicine, Wright State University, Cox Building, 3525 Southern Blvd, Kettering, OH 45429, USA.
| |
Collapse
|
35
|
Prashar V, Hosur MV. 1.8A X-ray structure of C95M/C1095F double mutant of tethered HIV-1 protease dimer complexed with acetyl pepstatin. Biochem Biophys Res Commun 2004; 323:1229-35. [PMID: 15451428 DOI: 10.1016/j.bbrc.2004.08.226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2004] [Indexed: 11/21/2022]
Abstract
Under the selection pressure of drugs, mutations appear in HIV-1 protease even at the sites, which are conserved in the untreated individuals. Cysteine 95 is a highly conserved residue and is believed to be involved in regulation of HIV-1 protease. In some of the virus isolates from patients undergoing heavy treatment with anti-HIV protease drugs, C95F mutation has appeared. The present study reports 1.8A X-ray structure of C95M/C1095F double mutant of tethered HIV-1 protease dimer complexed with acetyl pepstatin. It is found that in this mutant, dimer interface has become more rigid and that the packing at the interface of terminal and core domains is altered. These alterations may be relevant to C95F mutation conferring drug resistance to HIV-1 protease.
Collapse
Affiliation(s)
- Vishal Prashar
- Solid State Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | | |
Collapse
|
36
|
Veverka V, Bauerová H, Zábranský A, Lang J, Ruml T, Pichová I, Hrabal R. Three-dimensional structure of a monomeric form of a retroviral protease. J Mol Biol 2003; 333:771-80. [PMID: 14568536 DOI: 10.1016/j.jmb.2003.08.049] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The assembly of Mason-Pfizer monkey virus Gag polyproteins into immature capsids and their cleavage by the encoded protease are temporally and spatially separated processes, making the virus a particularly useful model for investigation of protease activation. Here we present a high resolution NMR structure of a fully folded monomer of a 12 kDa M-PMV protease (wt 12 PR) and of a Cys7Ala/Asp26Asn/Cys106Ala mutant (12 PR(D26N/C7A/C106A)). The overall structures of both wt 12 PR and 12 PR(D26N/C7A/C106A) follow the conservative structural motif of other retroviral proteases. The most prominent difference from the canonical fold of retroviral proteases is the absence of the interfacial beta-sheet, which leads to the loss of the principal force stabilizing the dimer of M-PMV PR. The monomer-dimer equilibrium can be shifted in favor of the dimer by adding a substrate or an inhibitor, partially compensating for the missing role of the beta-sheet. We also show that cysteines C7 and C106 play a crucial role in stabilizing the dimer and consequently increasing the proteolytic activity of M-PMV PR. This is consistent with the role of reversible oxidative modification of the cysteine residues in the regulation of the maturation of assembled M-PMV capsids in the cytoplasm.
Collapse
Affiliation(s)
- Václav Veverka
- NMR Laboratory, Institute of Chemical Technology in Prague, Technická, 5, Prague CZ-166 28, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
37
|
Dalle-Donne I, Rossi R, Giustarini D, Colombo R, Milzani A. Actin S-glutathionylation: evidence against a thiol-disulphide exchange mechanism. Free Radic Biol Med 2003; 35:1185-93. [PMID: 14607517 DOI: 10.1016/s0891-5849(03)00504-5] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Many proteins, including actin, are targets for S-glutathionylation, the reversible formation of mixed disulphides between protein cysteinyl thiol groups and glutathione (GSH) that can be induced in cells by oxidative stress. Proposed mechanisms of protein S-glutathionylation follow mainly two distinct pathways. One route involves the initial oxidative modification of a reduced protein thiol to an activated protein, which may then react with GSH to the mixed disulphide. The second route involves the oxidative modification of GSH to an activated form such as glutathione disulphide (GSSG), which may then react with a reduced protein thiol, yielding the corresponding protein mixed disulphide. We show here that physiological levels of GSSG induce a little extent of actin S-glutathionylation. Instead, actin with the exposed cysteine thiol activated by diamide or 5,5'-dithiobis(2-nitrobenzoic acid) reacts with physiological levels of GSH, incorporating about 0.7 mol GSH/mol protein. Differently, an extremely high concentration of GSSG induces an increased level of S-glutathionylation that causes a 50% inhibition in actin polymerization not reversed by dithiotreitol. In mammalian cells, GSH is present in millimolar concentrations and is in about 100-fold excess over GSSG. The high concentration of GSSG required for obtaining a significant actin S-glutathionylation as well as attendant irreversible changes in protein functions make unlikely that actin may be S-glutathionylated by a thiol-disulphide exchange mechanism within the cell.
Collapse
|