1
|
El-Khobar KE, Tay E, Diefenbach E, Gloss BS, George J, Douglas MW. Polo-like kinase-1 mediates hepatitis C virus-induced cell migration, a drug target for liver cancer. Life Sci Alliance 2023; 6:e202201630. [PMID: 37648284 PMCID: PMC10468647 DOI: 10.26508/lsa.202201630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/04/2023] [Accepted: 08/18/2023] [Indexed: 09/01/2023] Open
Abstract
Polo-like kinase 1 (PLK1) is a regulator of cell mitosis and cytoskeletal dynamics. PLK1 overexpression in liver cancer is associated with tumour progression, metastasis, and vascular invasion. Hepatitis C virus (HCV) NS5A protein stimulates PLK1-mediated phosphorylation of host proteins, so we hypothesised that HCV-PLK1 interactions might be a mechanism for HCV-induced liver cancer. We used a HCV cell-culture model (Jc1) to investigate the effects of virus infection on the cytoskeleton. In HCV-infected cells, a novel posttranslational modification in β-actin was observed with phosphorylation at Ser239. Using in silico and in vitro approaches, we identified PLK1 as the mediating kinase. In functional experiments with a phosphomimetic mutant form of β-actin, Ser239 phosphorylation influences β-actin polymerization and distribution, resulting in increased cell motility. The changes were prevented by treating cells with the PLK1 inhibitor volasertib. In HCV-infected hepatocytes, increased cell motility contributes to cancer cell migration, invasion, and metastasis. PLK1 is an important mediator of these effects and early treatment with PLK1 inhibitors may prevent or reduce HCC progression, particularly in people with HCV-induced HCC.
Collapse
Affiliation(s)
- Korri E El-Khobar
- https://ror.org/04zj3ra44 Storr Liver Centre, Westmead Institute for Medical Researchhttps://ror.org/0384j8v12 , University of Sydney https://ror.org/04gp5yv64 at Westmead Hospital, Westmead, Australia
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | - Enoch Tay
- https://ror.org/04zj3ra44 Storr Liver Centre, Westmead Institute for Medical Researchhttps://ror.org/0384j8v12 , University of Sydney https://ror.org/04gp5yv64 at Westmead Hospital, Westmead, Australia
| | - Eve Diefenbach
- https://ror.org/04zj3ra44 Protein Core Facility, Westmead Institute for Medical Research, Westmead, Australia
| | - Brian S Gloss
- https://ror.org/04zj3ra44 Westmead Research Hub, Westmead Institute for Medical Research, Westmead, Australia
| | - Jacob George
- https://ror.org/04zj3ra44 Storr Liver Centre, Westmead Institute for Medical Researchhttps://ror.org/0384j8v12 , University of Sydney https://ror.org/04gp5yv64 at Westmead Hospital, Westmead, Australia
| | - Mark W Douglas
- https://ror.org/04zj3ra44 Storr Liver Centre, Westmead Institute for Medical Researchhttps://ror.org/0384j8v12 , University of Sydney https://ror.org/04gp5yv64 at Westmead Hospital, Westmead, Australia
- https://ror.org/0384j8v12 Centre for Infectious Diseases and Microbiology, Sydney Infectious Diseases Institute, University of Sydney https://ror.org/04gp5yv64 at Westmead Hospital, Westmead, Australia
| |
Collapse
|
2
|
Ramanathan R, Hatzios SK. Activity-based Tools for Interrogating Host Biology During Infection. Isr J Chem 2023; 63:e202200095. [PMID: 37744997 PMCID: PMC10512441 DOI: 10.1002/ijch.202200095] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Indexed: 02/18/2023]
Abstract
Host cells sense and respond to pathogens by dynamically regulating cell signaling. The rapid modulation of signaling pathways is achieved by post-translational modifications (PTMs) that can alter protein structure, function, and/or binding interactions. By using chemical probes to broadly profile changes in enzyme function or side-chain reactivity, activity-based protein profiling (ABPP) can reveal PTMs that regulate host-microbe interactions. While ABPP has been widely utilized to uncover microbial mechanisms of pathogenesis, in this review, we focus on more recent applications of this technique to the discovery of host PTMs and enzymes that modulate signaling within infected cells. Collectively, these advances underscore the importance of ABPP as a tool for interrogating the host response to infection and identifying potential targets for host-directed therapies.
Collapse
Affiliation(s)
- Renuka Ramanathan
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520 USA
- Microbial Sciences Institute, Yale University, West Haven, CT 06516 USA
| | - Stavroula K. Hatzios
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520 USA
- Microbial Sciences Institute, Yale University, West Haven, CT 06516 USA
- Department of Chemistry, Yale University, New Haven, CT 06520 USA
| |
Collapse
|
3
|
A new host-targeted antiviral cyclolignan (SAU-22.107) for Dengue Virus infection in cell cultures. Potential action mechanisms based on cell imaging. Virus Res 2023; 323:198995. [PMID: 36336130 DOI: 10.1016/j.virusres.2022.198995] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/31/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
Abstract
Dengue virus (DENV) infection is the most arbovirosis in the world. However, medications have not been approved for its treatment. Drug discovery based on the host-targeted antiviral (HTA) constitutes a new promising strategy, considering their high genetic barrier to resistance and the low probability of selecting drug resistance strains. In this study, we have tested fifty-seven podophyllotoxin-related cyclolignans on DENV-2 infected cells and found the most promising compound was S.71. Using cellular and molecular biology experiments, we have discovered that the new lignan altered the distribution of microtubules, induced changes in cell morphology, and caused retraction of the rough endoplasmic reticulum. In addition, the compound alters the viral envelope protein and the double-stranded RNA, while there is a decrease in negative-strand RNA synthesis; especially when the compound was added between 6- and 12-hours post-infection. Altogether, S.71 decreases the viral yield through an HTA-related mechanism of action, possibly altering the DENV genome replication and/or polyprotein translation, through the alteration of microtubule distribution and endoplasmic reticulum deterioration. Finally, pharmacokinetic predictors show that S.71 falls within the standard ranges established for drugs.
Collapse
|
4
|
Zhang H, Zhang XQ, Huang LS, Fang X, Khan M, Xu Y, An J, Schooley RT, Huang Z. Synergistic inhibition of hepatitis C virus infection by a novel microtubule inhibitor in combination with daclatasvir. Biochem Biophys Rep 2022; 30:101283. [PMID: 35647321 PMCID: PMC9136107 DOI: 10.1016/j.bbrep.2022.101283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 11/23/2022] Open
Abstract
Even though substantial progress has been made in the treatment of hepatitis C virus (HCV) infection, viral resistance and relapse still occur in some patients and additional therapeutic approaches may ultimately be needed should viral resistance become more prevalent. Microtubules play important roles in several HCV life cycle events, including cell attachment, entry, cellular transportation, morphogenesis and progeny secretion steps. Therefore, it was hypothesized that microtubular inhibition might be a novel approach for the treatment of HCV infection. Here, the inhibitory effects of our recently developed microtubule inhibitors were studied in the HCV replicon luciferase reporter system and the infectious system. In addition, the combination responses of microtubule inhibitors with daclatasvir, which is a clinically used HCV NS5A inhibitor, were also evaluated. Our results indicated that microtubule targeting had activity against HCV replication and showed synergistic effect with a current clinical drug. Microtubule inhibition affects HCV replication. Compound 9f displays time and concentration dependent inhibitory activities against HCV production. Combination of compound 9f with Daclatasvir shows modest synergistic effects against HCV replication.
Collapse
Affiliation(s)
- Huijun Zhang
- Division of Infectious Diseases and Global Public Health, Department of Medicine, School of Medicine, University of California at San Diego, La Jolla, 92093, California, USA
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, 518172, China
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xing-Quan Zhang
- Division of Infectious Diseases and Global Public Health, Department of Medicine, School of Medicine, University of California at San Diego, La Jolla, 92093, California, USA
| | - Lina S. Huang
- Division of Infectious Diseases and Global Public Health, Department of Medicine, School of Medicine, University of California at San Diego, La Jolla, 92093, California, USA
| | - Xiong Fang
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Mohsin Khan
- Division of Infectious Diseases and Global Public Health, Department of Medicine, School of Medicine, University of California at San Diego, La Jolla, 92093, California, USA
| | - Yan Xu
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, 518172, China
| | - Jing An
- Division of Infectious Diseases and Global Public Health, Department of Medicine, School of Medicine, University of California at San Diego, La Jolla, 92093, California, USA
- Corresponding author.
| | - Robert T. Schooley
- Division of Infectious Diseases and Global Public Health, Department of Medicine, School of Medicine, University of California at San Diego, La Jolla, 92093, California, USA
- Corresponding author.
| | - Ziwei Huang
- Division of Infectious Diseases and Global Public Health, Department of Medicine, School of Medicine, University of California at San Diego, La Jolla, 92093, California, USA
- Corresponding author.
| |
Collapse
|
5
|
Yue L, Li C, Xu M, Wu M, Ding J, Liu J, Zhang X, Yuan Z. Probing the spatiotemporal patterns of HBV multiplication reveals novel features of its subcellular processes. PLoS Pathog 2021; 17:e1009838. [PMID: 34370796 PMCID: PMC8376071 DOI: 10.1371/journal.ppat.1009838] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 08/19/2021] [Accepted: 07/25/2021] [Indexed: 02/06/2023] Open
Abstract
Through evolution, Hepatitis B Virus (HBV) developed highly intricate mechanisms exploiting host resources for its multiplication within a constrained genetic coding capacity. Yet a clear picture of viral hitchhiking of cellular processes with spatial resolution is still largely unsolved. Here, by leveraging bDNA-based fluorescence in situ hybridization (FISH) combined with immunofluorescence, we developed a microscopic approach for multiplex detection of viral nucleic acids and proteins, which enabled us to probe some of the key aspects of HBV life cycle. We confirmed the slow kinetics and revealed the high variability of viral replication at single-cell level. We directly visualized HBV minichromosome in contact with acetylated histone 3 and RNA polymerase II and observed HBV-induced degradation of Smc5/6 complex only in primary hepatocytes. We quantified the frequency of HBV pregenomic RNAs occupied by translating ribosome or capsids. Statistics at molecular level suggested a rapid translation phase followed by a slow encapsidation and maturation phase. Finally, the roles of microtubules (MTs) on nucleocapsid assembly and virion morphogenesis were analyzed. Disruption of MTs resulted in the perinuclear retention of nucleocapsid. Meanwhile, large multivesicular body (MVB) formation was significantly disturbed as evidenced by the increase in number and decrease in volume of CD63+ vesicles, thus inhibiting mature virion secretion. In conclusion, these data provided spatially resolved molecular snapshots in the context of specific subcellular activities. The heterogeneity observed at single-cell level afforded valuable molecular insights which are otherwise unavailable from bulk measurements. HBV is a hepatotropic, enveloped virus with a partially double-stranded relaxed circular DNA genome. Studies on the molecular biology of HBV mainly rely on biochemical extraction and bulk quantification methods. Detailed spatiotemporal information on virus components in subcellular context is still lacking. Here, we re-evaluated the reproduction schemes of HBV by fluorescence in situ hybridization (FISH). We visualized cccDNA minichromosome formation in an epigenetic context, identified pgRNA associated with actively translating ribosomes and capsids. Moreover, the active participation of microtubules in nucleocapsid transport and MVB-mediated virion secretion was identified. These observations have broad implications for understanding the HBV replication cycle and may facilitate the identification of novel antiviral targets.
Collapse
Affiliation(s)
- Lei Yue
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
- Research Unit, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Chang Li
- Research Unit, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Mingzhu Xu
- Research Unit, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Min Wu
- Research Unit, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Jiahui Ding
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jiangxia Liu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaonan Zhang
- Research Unit, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
- Centre for Research in Therapeutic Solutions, Biomedical Sciences, Faculty of Science and Technology, University of Canberra, ACT, Australia
- * E-mail: (XZ); (ZY)
| | - Zhenghong Yuan
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
- Research Unit, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
- * E-mail: (XZ); (ZY)
| |
Collapse
|
6
|
McEwan T, Robinson PC. A systematic review of the infectious complications of colchicine and the use of colchicine to treat infections. Semin Arthritis Rheum 2021; 51:101-112. [PMID: 33360321 PMCID: PMC7832726 DOI: 10.1016/j.semarthrit.2020.11.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/23/2020] [Accepted: 11/02/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Colchicine has been used historically as an anti-inflammatory agent for a wide range of diseases. Little is known regarding the relationship between colchicine use and infectious disease outcomes. The objective of this study was to systematically examine infectious adverse events associated with colchicine usage and the clinical use of colchicine for infectious diseases. METHODS A systematic review was conducted in accordance with PRISMA methodology. PubMed, EMBASE, Scopus and Cochrane Library databases were searched (up to 12th October, 2020) for interventional and observational studies that included colchicine usage associated with infectious adverse events or infectious disease outcomes. RESULTS A total of 9,237 studies were initially identified and after exclusions, 36 articles comprising 21 interventional studies and 15 observational studies were included in this systematic review. There were 19 studies that reported infectious adverse events and 17 studies that examined the efficacy of colchicine in treating infectious disease. Only two out of six studies reported a significant benefit using colchicine in the management of viral liver disease. There was some evidence colchicine is beneficial in managing COVID-19 by reducing time to deterioration, length of stay in hospital and mortality. Colchicine had some benefit in managing malaria, condyloma accuminata and verruca vulgaris, viral myocarditis and erythema nodosum leprosum based on case-series or small, pilot clinical studies. Two of the clinical trials and five of the observational studies reported significant associations between infections adverse events and colchicine usage. Risk of pneumonia was found in three studies and post-operative infections were reported in two studies. Risks of urinary tract infections, H. pylori and C.difficile were only reported by one study each. CONCLUSION There is a current lack of clinical evidence that colchicine has a role in treating or managing infectious diseases. Preliminary studies have demonstrated a possible role in the management of COVID-19 but results from more clinical trials are needed. There is inconclusive evidence that suggests colchicine is associated with increased risk of infections, particularly pneumonia.
Collapse
Affiliation(s)
- Timothy McEwan
- University of Queensland School of Clinical Medicine, Queensland, Australia
| | - Philip C Robinson
- University of Queensland School of Clinical Medicine, Queensland, Australia.
| |
Collapse
|
7
|
HBV Core Promoter Inhibition by Tubulin Polymerization Inhibitor (SRI-32007). Adv Virol 2020; 2020:8844061. [PMID: 33110426 PMCID: PMC7582060 DOI: 10.1155/2020/8844061] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 09/11/2020] [Accepted: 09/22/2020] [Indexed: 12/23/2022] Open
Abstract
Approximately 257 million people chronically infected with hepatitis B virus (HBV) worldwide are at risk of developing hepatocellular carcinoma (HCC). However, despite the availability of potent nucleoside/tide inhibitors, currently there are no curative therapies for chronic HBV infections. To identify potential new antiviral molecules, a select group of compounds previously evaluated in clinical studies were tested against 12 different viruses. Amongst the compounds tested, SRI-32007 (CYT997) demonstrated antiviral activity against HBV (genotype D) in HepG2.2.2.15 cell-based virus yield assay with 50% effective concentration (EC50) and selectivity index (SI) of 60.1 nM and 7.2, respectively. Anti-HBV activity of SRI-32007 was further confirmed against HBV genotype B in huh7 cells with secreted HBe antigen endpoint (EC50 40 nM and SI 250). To determine the stage of HBV life cycle inhibited by SRI-32007, time of addition experiment was conducted in HepG2-NTCP cell-based HBV infectious assay. Results indicated that SRI-32007 retained anti-HBV activity even when added 72 hours postinfection (72 h). Additional mechanism of action studies demonstrated potent inhibition of HBV core promoter activity by SRI-32007 with an EC50 of 40 nM and SI of >250. This study demonstrates anti-HBV activity of a repurposed compound SRI-32007 through inhibition of HBV core promoter activity. Further evaluation of SRI-32007 in HBV animal models is needed to confirm its activity in vivo. Our experiments illustrate the utility of repurposing strategy to identify novel antiviral chemical leads. HBV core promoter inhibitors such as SRI-32007 might enable the development of novel therapeutic strategies to combat HBV infections.
Collapse
|
8
|
Fiorino S, Gallo C, Zippi M, Sabbatani S, Manfredi R, Moretti R, Fogacci E, Maggioli C, Travasoni Loffredo F, Giampieri E, Corazza I, Dickmans C, Denitto C, Cammarosano M, Battilana M, Orlandi PE, Del Forno F, Miceli F, Visani M, Acquaviva G, De Leo A, Leandri P, Hong W, Brand T, Tallini G, Jovine E, Jovine R, de Biase D. Cytokine storm in aged people with CoV-2: possible role of vitamins as therapy or preventive strategy. Aging Clin Exp Res 2020; 32:2115-2131. [PMID: 32865757 PMCID: PMC7456763 DOI: 10.1007/s40520-020-01669-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 07/21/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND In December 2019, a novel human-infecting coronavirus, SARS-CoV-2, had emerged. The WHO has classified the epidemic as a "public health emergency of international concern". A dramatic situation has unfolded with thousands of deaths, occurring mainly in the aged and very ill people. Epidemiological studies suggest that immune system function is impaired in elderly individuals and these subjects often present a deficiency in fat-soluble and hydrosoluble vitamins. METHODS We searched for reviews describing the characteristics of autoimmune diseases and the available therapeutic protocols for their treatment. We set them as a paradigm with the purpose to uncover common pathogenetic mechanisms between these pathological conditions and SARS-CoV-2 infection. Furthermore, we searched for studies describing the possible efficacy of vitamins A, D, E, and C in improving the immune system function. RESULTS SARS-CoV-2 infection induces strong immune system dysfunction characterized by the development of an intense proinflammatory response in the host, and the development of a life-threatening condition defined as cytokine release syndrome (CRS). This leads to acute respiratory syndrome (ARDS), mainly in aged people. High mortality and lethality rates have been observed in elderly subjects with CoV-2-related infection. CONCLUSIONS Vitamins may shift the proinflammatory Th17-mediated immune response arising in autoimmune diseases towards a T-cell regulatory phenotype. This review discusses the possible activity of vitamins A, D, E, and C in restoring normal antiviral immune system function and the potential therapeutic role of these micronutrients as part of a therapeutic strategy against SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Sirio Fiorino
- UO of Internal Medicine Unit, Hospital of Budrio, Via Benni 44, 40065, Budrio, Bologna, Italy.
- Internal Medicine Unit, Maggiore Hospital of Bologna, Bologna, Italy.
| | - Claudio Gallo
- Physician Specialist in Infectious Diseases, AUSL Bologna, Bologna, Italy
| | - Maddalena Zippi
- Unit of Gastroenterology and Digestive Endoscopy, Sandro Petrini Hospital, Rome, Italy
| | | | | | - Renzo Moretti
- UO of Internal Medicine Unit, Hospital of Budrio, Via Benni 44, 40065, Budrio, Bologna, Italy
| | - Elisa Fogacci
- UO of Internal Medicine Unit, Hospital of Budrio, Via Benni 44, 40065, Budrio, Bologna, Italy
| | - Caterina Maggioli
- UO of Internal Medicine Unit, Hospital of Budrio, Via Benni 44, 40065, Budrio, Bologna, Italy
| | | | - Enrico Giampieri
- Experimental, Diagnostic and Specialty Medicine Department, University of Bologna, Bologna, Italy
| | - Ivan Corazza
- Experimental, Diagnostic and Specialty Medicine Department, University of Bologna, Bologna, Italy
| | - Christoph Dickmans
- UO of Internal Medicine Unit, Hospital of Budrio, Via Benni 44, 40065, Budrio, Bologna, Italy
| | - Claudio Denitto
- UO of Internal Medicine Unit, Hospital of Budrio, Via Benni 44, 40065, Budrio, Bologna, Italy
| | - Michele Cammarosano
- UO of Internal Medicine Unit, Hospital of Budrio, Via Benni 44, 40065, Budrio, Bologna, Italy
| | - Michele Battilana
- UO of Internal Medicine Unit, Hospital of Budrio, Via Benni 44, 40065, Budrio, Bologna, Italy
| | | | | | - Francesco Miceli
- UO Farmacia Centralizzata OM, Farmacia Ospedale Di Budrio, Budrio, Bologna, Italy
| | - Michela Visani
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, Bologna, Italy
- Department of Medicine (Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale), Molecular Diagnostic Unit, University of Bologna, Azienda USL di Bologna, Bologna, Italy
| | - Giorgia Acquaviva
- Department of Medicine (Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale), Molecular Diagnostic Unit, University of Bologna, Azienda USL di Bologna, Bologna, Italy
| | - Antonio De Leo
- Department of Medicine (Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale), Molecular Diagnostic Unit, University of Bologna, Azienda USL di Bologna, Bologna, Italy
| | - Paolo Leandri
- Internal Medicine Unit, Maggiore Hospital of Bologna, Bologna, Italy
| | - Wandong Hong
- Department of Gastroenterology and Hepatology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, The People's Republic of China
| | - Thomas Brand
- Regenerative Medicine Center Utrecht, University of Utrecht, Utrecht, Netherlands
| | - Giovanni Tallini
- Department of Medicine (Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale), Molecular Diagnostic Unit, University of Bologna, Azienda USL di Bologna, Bologna, Italy
| | - Elio Jovine
- Surgery Unit, Maggiore Hospital, Bologna, Italy
| | - Roberto Jovine
- Physical Medicine and Rehabilitation Unit, Maggiore Hospital, Bologna, Italy
| | - Dario de Biase
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, Bologna, Italy
| |
Collapse
|
9
|
Neufeldt CJ, Cortese M, Acosta EG, Bartenschlager R. Rewiring cellular networks by members of the Flaviviridae family. Nat Rev Microbiol 2019; 16:125-142. [PMID: 29430005 PMCID: PMC7097628 DOI: 10.1038/nrmicro.2017.170] [Citation(s) in RCA: 247] [Impact Index Per Article: 49.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Members of the Flaviviridae virus family comprise a large group of enveloped viruses with a single-strand RNA genome of positive polarity. Several genera belong to this family, including the Hepacivirus genus, of which hepatitis C virus (HCV) is the prototype member, and the Flavivirus genus, which contains both dengue virus and Zika virus. Viruses of these genera differ in many respects, such as the mode of transmission or the course of infection, which is either predominantly persistent in the case of HCV or acutely self-limiting in the case of flaviviruses. Although the fundamental replication strategy of Flaviviridae members is similar, during the past few years, important differences have been discovered, including the way in which these viruses exploit cellular resources to facilitate viral propagation. These differences might be responsible, at least in part, for the various biological properties of these viruses, thus offering the possibility to learn from comparisons. In this Review, we discuss the current understanding of how Flaviviridae viruses manipulate and usurp cellular pathways in infected cells. Specifically, we focus on comparing strategies employed by flaviviruses with those employed by hepaciviruses, and we discuss the importance of these interactions in the context of viral replication and antiviral therapies.
Collapse
Affiliation(s)
- Christopher J Neufeldt
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, 69120 Heidelberg, Germany
| | - Mirko Cortese
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, 69120 Heidelberg, Germany
| | - Eliana G Acosta
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, 69120 Heidelberg, Germany
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, 69120 Heidelberg, Germany.,German Center for Infection Research, Heidelberg Partner Site, 69120 Heidelberg, Germany
| |
Collapse
|
10
|
Conflict in the Intracellular Lives of Endosymbionts and Viruses: A Mechanistic Look at Wolbachia-Mediated Pathogen-blocking. Viruses 2018; 10:v10040141. [PMID: 29561780 PMCID: PMC5923435 DOI: 10.3390/v10040141] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/14/2018] [Accepted: 03/20/2018] [Indexed: 12/16/2022] Open
Abstract
At the forefront of vector control efforts are strategies that leverage host-microbe associations to reduce vectorial capacity. The most promising of these efforts employs Wolbachia, a maternally transmitted endosymbiotic bacterium naturally found in 40% of insects. Wolbachia can spread through a population of insects while simultaneously inhibiting the replication of viruses within its host. Despite successes in using Wolbachia-transfected mosquitoes to limit dengue, Zika, and chikungunya transmission, the mechanisms behind pathogen-blocking have not been fully characterized. Firstly, we discuss how Wolbachia and viruses both require specific host-derived structures, compounds, and processes to initiate and maintain infection. There is significant overlap in these requirements, and infection with either microbe often manifests as cellular stress, which may be a key component of Wolbachia’s anti-viral effect. Secondly, we discuss the current understanding of pathogen-blocking through this lens of cellular stress and develop a comprehensive view of how the lives of Wolbachia and viruses are fundamentally in conflict with each other. A thorough understanding of the genetic and cellular determinants of pathogen-blocking will significantly enhance the ability of vector control programs to deploy and maintain effective Wolbachia-mediated control measures.
Collapse
|
11
|
Functional association of cellular microtubules with viral capsid assembly supports efficient hepatitis B virus replication. Sci Rep 2017; 7:10620. [PMID: 28878350 PMCID: PMC5587681 DOI: 10.1038/s41598-017-11015-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 08/18/2017] [Indexed: 12/23/2022] Open
Abstract
Viruses exploit host factors and environment for their efficient replication. The virus-host interaction mechanisms for achieving an optimal hepatitis B virus (HBV) replication have been largely unknown. Here, a single cell cloning revealed that HepAD38 cells, a widely-used HBV-inducible cell line, contain cell clones with diverse permissiveness to HBV replication. The HBV permissiveness was impaired upon treatment with microtubule inhibitor nocodazole, which was identified as an HBV replication inhibitor from a pharmacological screening. In the microtubule-disrupted cells, the efficiency of HBV capsid assembly was remarkably decreased without significant change in pre-assembly process. We further found that HBV core interacted with tubulin and co-localized with microtubule-like fibriforms, but this association was abrogated upon microtubule-disassembly agents, resulting in attenuation of capsid formation. Our data thus suggest a significant role of microtubules in the efficient capsid formation during HBV replication. In line with this, a highly HBV permissive cell clone of HepAD38 cells showed a prominent association of core-microtubule and thus a high capacity to support the capsid formation. These findings provide a new aspect of virus-cell interaction for rendering efficient HBV replication.
Collapse
|
12
|
Nagy PD, Strating JRPM, van Kuppeveld FJM. Building Viral Replication Organelles: Close Encounters of the Membrane Types. PLoS Pathog 2016; 12:e1005912. [PMID: 27788266 PMCID: PMC5082816 DOI: 10.1371/journal.ppat.1005912] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Peter D. Nagy
- Department of Plant Pathology, University of Kentucky, Lexington, United States Of America
- * E-mail: ;
| | - Jeroen R. P. M. Strating
- Division of Virology, Department of Infectious Diseases & Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Frank J. M. van Kuppeveld
- Division of Virology, Department of Infectious Diseases & Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- * E-mail: ;
| |
Collapse
|
13
|
Yang Q, Zhang Q, Tang J, Feng WH. Lipid rafts both in cellular membrane and viral envelope are critical for PRRSV efficient infection. Virology 2015; 484:170-180. [PMID: 26115164 PMCID: PMC7125626 DOI: 10.1016/j.virol.2015.06.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 05/28/2015] [Accepted: 06/04/2015] [Indexed: 11/15/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) represents a significantly economical challenge to the swine industry worldwide. In this study, we investigated the importance of cellular and viral lipid rafts in PRRSV infection. First, we demonstrated that PRRSV glycoproteins, Gp3 and Gp4, were associated with lipid rafts during viral entry, and disruption of cellular lipid rafts inhibited PRRSV entry. We also showed the raft-location of CD163, which might contribute to the glycoproteins–raft association. Subsequently, raft disruption caused a significant reduction of viral RNA production. Moreover, Nsp9 was shown to be distributed in rafts, suggesting that rafts probably serve as a platform for PRRSV replication. Finally, we confirmed that disassembly of rafts on the virus envelope may affect the integrity of PRRSV particles and cause the leakage of viral proteins, which impaired PRRSV infectivity. These findings might provide insights on our understanding of the mechanism of PRRSV infection. PRRSV needs lipid rafts to establish successful infection. Cellular lipid rafts function in PRRSV entry, replication, and release. Disassembly of viral lipid rafts adversely affects PRRSV infectivity. Lipid rafts in both cellular and viral membrane are critical to PRRSV infection.
Collapse
Affiliation(s)
- Qian Yang
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China; Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Qiong Zhang
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China; Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jun Tang
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China; Department of Basic Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Wen-Hai Feng
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China; Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
14
|
Chemical proteomic identification of T-plastin as a novel host cell response factor in HCV infection. Sci Rep 2015; 5:9773. [PMID: 25909246 PMCID: PMC4408979 DOI: 10.1038/srep09773] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 03/18/2015] [Indexed: 12/17/2022] Open
Abstract
Hepatitis C virus (HCV) infection is the leading cause of chronic liver disease that
currently affects at least 170 million people worldwide. Although significant
efforts have been focused on discovering inhibitors of a viral polymerase (NS5B) or
protease (NS3), strategies to cure HCV infection have been hampered by the limited
therapeutic target proteins. Thus, discovery of a novel target remains a major
challenge. Here, we report a method that combines transcriptome expression analysis
with unbiased proteome reactivity profiling to identify novel host cell response
factors in HCV infection. A chemical probe for non-directed proteomic profiling was
selected based on genome-wide transcriptome expression analysis after HCV infection,
which revealed noticeable alterations related to disulfide bond metabolism. On the
basis of this result, we screened the proteome reactivity using chemical probes
containing thiol-reactive functional groups and discovered a unique labeling profile
in HCV-infected cells. A subsequent quantitative chemical proteomic mapping study
led to the identification of a target protein, T-plastin (PLST), and its regulation
of HCV replication. Our approach demonstrates both a straightforward strategy for
selecting chemical probes to discriminate disease states using a model system and
its application for proteome reactivity profiling for novel biomarker discovery.
Collapse
|
15
|
Kozlov MV, Kleymenova AA, Konduktorov KA, Malikova AZ, Kochetkov SN. Selective inhibitor of histone deacetylase 6 (tubastatin A) suppresses proliferation of hepatitis C virus replicon in culture of human hepatocytes. BIOCHEMISTRY (MOSCOW) 2015; 79:637-42. [PMID: 25108326 DOI: 10.1134/s0006297914070050] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Acetylation of α-tubulin was studied in cultures of human hepatocytes under the influence of selective inhibitors of histone deacetylases HDAC6 and SIRT-2 - tubastatin A and 2-(3-phenethoxyphenylamino)benzamide, respectively. It was found that in hepatocyte cell line HepG2 acetylated α-tubulin is accumulated preferentially on inhibition of HDAC6 but not of SIRT-2. Under the same conditions, no acetylation of α-tubulin was observed in hepatocyte cell line Huh7. However, the inhibition of HDAC6 with tubastatin A led to hyperacetylation of α-tubulin and simultaneously to decrease in viral RNA concentration in hepatocyte cell line Huh7-luc/neo, which supports propagation of the full genome replicon of hepatitis C virus. The correlation between these two processes points to HDAC6 as a promising cellular target for therapy of hepatitis C.
Collapse
Affiliation(s)
- M V Kozlov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
| | | | | | | | | |
Collapse
|
16
|
Li M, He X, Liu H, Fu Z, He X, Lu X. Proteomic analysis of silkworm midgut cellular proteins interacting with the 5' end of infectious flacherie virus genomic RNA. Acta Biochim Biophys Sin (Shanghai) 2015; 47:80-90. [PMID: 25534780 DOI: 10.1093/abbs/gmu119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The flacherie disease in the silkworm is caused by the infectious flacherie virus (IFV). IFV relies on its 5' region of genomic RNA to recruit host-related factors to implement viral translation and replication. To identify host proteins bound to the 5'-region of IFV RNA and identify proteins important for its function, mass spectrometry was used to identify proteins from silkworm midgut extracts that were obtained using RNA aptamer-labeled 5' region of IFV RNA. We found 325 protein groups (unique peptide≥2) bound to the 5' region of IFV RNA including translation-related factors (16 ribosomal subunits, 3 eukaryotic initiation factor subunits, 1 elongation factor subunit and 6 potential internal ribosome entry site trans-acting factors), cytoskeleton-related proteins, membrane-related proteins, metabolism enzymes, and other proteins. These results can be used to study the translation and replication related factors of IFV interacting with host silkworm and to control flacherie disease in silkworm.
Collapse
Affiliation(s)
- Mingqian Li
- Silkworm Pathology and Disease Control Laboratory, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xinyi He
- Silkworm Pathology and Disease Control Laboratory, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Han Liu
- Silkworm Pathology and Disease Control Laboratory, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhangwuke Fu
- Silkworm Pathology and Disease Control Laboratory, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiangkang He
- Silkworm Pathology and Disease Control Laboratory, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xingmeng Lu
- Silkworm Pathology and Disease Control Laboratory, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
17
|
Lai CK, Saxena V, Tseng CH, Jeng KS, Kohara M, Lai MMC. Nonstructural protein 5A is incorporated into hepatitis C virus low-density particle through interaction with core protein and microtubules during intracellular transport. PLoS One 2014; 9:e99022. [PMID: 24905011 PMCID: PMC4048239 DOI: 10.1371/journal.pone.0099022] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 05/09/2014] [Indexed: 01/16/2023] Open
Abstract
Nonstructural protein 5A (NS5A) of hepatitis C virus (HCV) serves dual functions in viral RNA replication and virus assembly. Here, we demonstrate that HCV replication complex along with NS5A and Core protein was transported to the lipid droplet (LD) through microtubules, and NS5A-Core complexes were then transported from LD through early-to-late endosomes to the plasma membrane via microtubules. Further studies by cofractionation analysis and immunoelectron microscopy of the released particles showed that NS5A-Core complexes, but not NS4B, were present in the low-density fractions, but not in the high-density fractions, of the HCV RNA-containing virions and associated with the internal virion core. Furthermore, exosomal markers CD63 and CD81 were also detected in the low-density fractions, but not in the high-density fractions. Overall, our results suggest that HCV NS5A is associated with the core of the low-density virus particles which exit the cell through a preexisting endosome/exosome pathway and may contribute to HCV natural infection.
Collapse
Affiliation(s)
- Chao-Kuen Lai
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
- Graduate Institute of Toxicology, National Taiwan University, Taipei, Taiwan
| | - Vikas Saxena
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Chung-Hsin Tseng
- Department of Microbiology and Immunology, and Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
| | - King-Song Jeng
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Michinori Kohara
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Michael M. C. Lai
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, California, United States of America
- Department of Microbiology and Immunology, and Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
- * E-mail:
| |
Collapse
|
18
|
Sharma S, Mayank AK, Nailwal H, Tripathi S, Patel JR, Bowzard JB, Gaur P, Donis RO, Katz JM, Cox NJ, Lal RB, Farooqi H, Sambhara S, Lal SK. Influenza A viral nucleoprotein interacts with cytoskeleton scaffolding protein α-actinin-4 for viral replication. FEBS J 2014; 281:2899-914. [PMID: 24802111 PMCID: PMC7164065 DOI: 10.1111/febs.12828] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 04/03/2014] [Accepted: 04/30/2014] [Indexed: 02/03/2023]
Abstract
Influenza A virus (IAV), similar to other viruses, exploits the machinery of human host cells for its survival and replication. We identified α‐actinin‐4, a host cytoskeletal protein, as an interacting partner of IAV nucleoprotein (NP). We confirmed this interaction using co‐immunoprecipitation studies, first in a coupled in vitro transcription‐translation assay and then in cells either transiently co‐expressing the two proteins or infected with whole IAV. Importantly, the NP–actinin‐4 interaction was observed in several IAV subtypes, including the 2009 H1N1 pandemic virus. Moreover, immunofluorescence studies revealed that both NP and actinin‐4 co‐localized largely around the nucleus and also in the cytoplasmic region of virus‐infected A549 cells. Silencing of actinin‐4 expression resulted in not only a significant decrease in NP, M2 and NS1 viral protein expression, but also a reduction of both NP mRNA and viral RNA levels, as well as viral titers, 24 h post‐infection with IAV, suggesting that actinin‐4 was critical for viral replication. Furthermore, actinin‐4 depletion reduced the amount of NP localized in the nucleus. Treatment of infected cells with wortmannin, a known inhibitor of actinin‐4, led to a decrease in NP mRNA levels and also caused the nuclear retention of NP, further strengthening our previous observations. Taken together, the results of the present study indicate that actinin‐4, a novel interacting partner of IAV NP, plays a crucial role in viral replication and this interaction may participate in nuclear localization of NP and/or viral ribonucleoproteins. Structured digital abstract •http://www.uniprot.org/uniprot/P03466 http://www.ebi.ac.uk/ontology-lookup/?termId=MI:0915 with http://www.uniprot.org/uniprot/O43707 by http://www.ebi.ac.uk/ontology-lookup/?termId=MI:0006 (http://www.ebi.ac.uk/intact/interaction/EBI-9512541, http://www.ebi.ac.uk/intact/interaction/EBI-9512553)•http://www.uniprot.org/uniprot/Q8JR21 and http://www.uniprot.org/uniprot/O43707 http://www.ebi.ac.uk/ontology-lookup/?termId=MI:0403 by http://www.ebi.ac.uk/ontology-lookup/?termId=MI:0416 (http://www.ebi.ac.uk/intact/interaction/EBI-9514040)•http://www.uniprot.org/uniprot/Q91U50 http://www.ebi.ac.uk/ontology-lookup/?termId=MI:0915 with http://www.uniprot.org/uniprot/O43707 by http://www.ebi.ac.uk/ontology-lookup/?termId=MI:0006 (http://www.ebi.ac.uk/intact/interaction/EBI-9514006)•http://www.uniprot.org/uniprot/Q5L4H4 http://www.ebi.ac.uk/ontology-lookup/?termId=MI:0407 to http://www.uniprot.org/uniprot/O43707 by http://www.ebi.ac.uk/ontology-lookup/?termId=MI:0007 (http://www.ebi.ac.uk/intact/interaction/EBI-9512166, http://www.ebi.ac.uk/intact/interaction/EBI-9512219)•http://www.uniprot.org/uniprot/C3W6D7 http://www.ebi.ac.uk/ontology-lookup/?termId=MI:0915 with http://www.uniprot.org/uniprot/O43707 by http://www.ebi.ac.uk/ontology-lookup/?termId=MI:0006 (http://www.ebi.ac.uk/intact/interaction/EBI-9513951)•http://www.uniprot.org/uniprot/Q5L4H4 http://www.ebi.ac.uk/ontology-lookup/?termId=MI:0915 with http://www.uniprot.org/uniprot/O43707 by http://www.ebi.ac.uk/ontology-lookup/?termId=MI:0007 (http://www.ebi.ac.uk/intact/interaction/EBI-9512237)•http://www.uniprot.org/uniprot/Q6DPG0 http://www.ebi.ac.uk/ontology-lookup/?termId=MI:0915 with http://www.uniprot.org/uniprot/O43707 by http://www.ebi.ac.uk/ontology-lookup/?termId=MI:0006 (http://www.ebi.ac.uk/intact/interaction/EBI-9513984) •http://www.uniprot.org/uniprot/B2BU63 http://www.ebi.ac.uk/ontology-lookup/?termId=MI:0915 with http://www.uniprot.org/uniprot/O43707 by http://www.ebi.ac.uk/ontology-lookup/?termId=MI:0006 (http://www.ebi.ac.uk/intact/interaction/EBI-9513930) •http://www.uniprot.org/uniprot/Q5L4H4 http://www.ebi.ac.uk/ontology-lookup/?termId=MI:0915 with http://www.uniprot.org/uniprot/O43707 by http://www.ebi.ac.uk/ontology-lookup/?termId=MI:0018 (http://www.ebi.ac.uk/intact/interaction/EBI-9512145, http://www.ebi.ac.uk/intact/interaction/EBI-9512095) •http://www.uniprot.org/uniprot/C9S3S8 http://www.ebi.ac.uk/ontology-lookup/?termId=MI:0915 with http://www.uniprot.org/uniprot/O43707 by http://www.ebi.ac.uk/ontology-lookup/?termId=MI:0006 (http://www.ebi.ac.uk/intact/interaction/EBI-9513909)
Collapse
Affiliation(s)
- Shipra Sharma
- Virology Group, International Centre for Genetic Engineering & Biotechnology, New Delhi, India
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Dynamic imaging of the hepatitis C virus NS5A protein during a productive infection. J Virol 2014; 88:3636-52. [PMID: 24429364 DOI: 10.1128/jvi.02490-13] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
UNLABELLED Hepatitis C virus (HCV) NS5A is essential for viral genome replication within cytoplasmic replication complexes and virus assembly at the lipid droplet (LD) surface, although its definitive functions are poorly understood. We developed approaches to investigate NS5A dynamics during a productive infection. We report here that NS5A motility and efficient HCV RNA replication require the microtubule network and the cytoplasmic motor dynein and demonstrate that both motile and relatively static NS5A-positive foci are enriched with host factors VAP-A and Rab5A. Pulse-chase imaging revealed that newly synthesized NS5A foci are small and distinct from aged foci, while further studies using a unique dual fluorescently tagged infectious HCV chimera showed a relatively stable association of NS5A foci with core-capped LDs. These results reveal new details about the dynamics and maturation of NS5A and the nature of potential sites of convergence of HCV replication and assembly pathways. IMPORTANCE Hepatitis C virus (HCV) is a major cause of serious liver disease worldwide. An improved understanding of the HCV replication cycle will enable development of novel and improved antiviral strategies. Here we have developed complementary fluorescent labeling and imaging approaches to investigate the localization, traffic and interactions of the HCV NS5A protein in living, virus-producing cells. These studies reveal new details as to the traffic, composition and biogenesis of NS5A foci and the nature of their association with putative sites of virus assembly.
Collapse
|
20
|
Bukong TN, Kodys K, Szabo G. Human ezrin-moesin-radixin proteins modulate hepatitis C virus infection. Hepatology 2013; 58:1569-79. [PMID: 23703860 PMCID: PMC3772999 DOI: 10.1002/hep.26500] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 04/26/2013] [Indexed: 12/22/2022]
Abstract
UNLABELLED Host cytoskeletal proteins of the ezrin-moesin-radixin (EMR) family have been shown to modulate single-stranded RNA virus infection through regulating stable microtubule formation. Antibody engagement of CD81, a key receptor for hepatitis C virus (HCV) entry, induces ezrin phosphorylation. Here we tested the role of EMR proteins in regulating HCV infection and explored potential therapeutic targets. We show that HCV E2 protein induces rapid ezrin phosphorylation and its cellular redistribution with F-actin by way of spleen tyrosine kinase (SYK). Therapeutically blocking the functional roles of SYK or F-actin reorganization significantly reduced Huh7.5 cell susceptibility to HCV J6/JFH-1 infection. Using gene regulation, real-time quantitative polymerase chain reaction, western blot, and fluorescent microscopy analysis, we found that proteins of the EMR family differentially regulate HCV infection in the J6/JFH-1/Huh7.5 cell system. Moesin and radixin, but not ezrin, expression were significantly decreased in chronic HCV J6/JFH-1-infected Huh7.5 cells and HCV-infected patient liver biopsies compared to controls. The decreases in moesin and radixin in HCV J6/JFH-1-infected Huh7.5 cells were associated with a significant increase in stable microtubules. Ezrin knockdown inhibited immediate postentry events in HCV infection. Overexpression of moesin or radixin significantly reduced HCV protein expression. In contrast, transient knockdown of moesin or radixin augmented HCV infection. Making use of the Con1 HCV replicon system, we tested the effect of EMR proteins on HCV replication. We found that transient knockdown of moesin increased HCV RNA expression while overexpression of EMR showed no significant effect on HCV replication. CONCLUSION Our findings demonstrate the important role of EMR proteins during HCV infection at the postentry level and highlight possible novel targets for HCV treatment.
Collapse
Affiliation(s)
| | | | - Gyongyi Szabo
- Contact Information: Gyongyi Szabo, MD, PhD, Department of Medicine, University of Massachusetts Medical School, LRB208, 364 Plantation Street, Worcester, MA 01605, USA; Tel: 001-508-856-5275; Fax: 001-508-856-4770;
| |
Collapse
|
21
|
Cell-cell contact-mediated hepatitis C virus (HCV) transfer, productive infection, and replication and their requirement for HCV receptors. J Virol 2013; 87:8545-58. [PMID: 23720720 DOI: 10.1128/jvi.01062-13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Hepatitis C virus (HCV) infection is believed to begin with interactions between cell-free HCV and cell receptors that include CD81, scavenger receptor B1 (SR-B1), claudin-1 (CLDN1), and occludin (OCLN). In this study, we have demonstrated that HCV spreading from infected hepatocytes to uninfected hepatocytes leads to the transfer of HCV and the formation of infection foci and is cell density dependent. This cell-cell contact-mediated (CCCM) HCV transfer occurs readily and requires all these known HCV receptors and an intact actin cytoskeleton. With a fluorescently labeled replication-competent HCV system, the CCCM transfer process was further dissected by live-cell imaging into four steps: donor cell-target cell contact, formation of viral puncta-target cell conjugation, transfer of viral puncta, and posttransfer. Importantly, the CCCM HCV transfer leads to productive infection of target cells. Taken together, these results show that CCCM HCV transfer constitutes an important and effective route for HCV infection and dissemination. These findings will aid in the development of new and novel strategies for preventing and treating HCV infection.
Collapse
|
22
|
Abstract
In the model of Huh-7.5.1 hepatocyte cells infected by the JFH1 hepatitis C virus (HCV) strain, transcriptomic and proteomic studies have revealed modulations of pathways governing mainly apoptosis and cell cycling. Differences between transcriptomic and proteomic studies pointed to regulations occurring at the posttranscriptional level, including the control of mRNA translation. In this study, we investigated at the genome-wide level the translational regulation occurring during HCV infection. Sucrose gradient ultracentrifugation followed by microarray analysis was used to identify translationally regulated mRNAs (mRNAs associated with ribosomes) from JFH1-infected and uninfected Huh-7.5.1 cells. Translationally regulated mRNAs were found to correspond to genes enriched in specific pathways, including vesicular transport and posttranscriptional regulation. Interestingly, the strongest translational regulation was found for mRNAs encoding proteins involved in pre-mRNA splicing, mRNA translation, and protein folding. Strikingly, these pathways were not previously identified, through transcriptomic studies, as being modulated following HCV infection. Importantly, the observed changes in host mRNA translation were directly due to HCV replication rather than to HCV entry, since they were not observed in JFH1-infected Huh-7.5.1 cells treated with a potent HCV NS3 protease inhibitor. Overall, this study highlights the need to consider, beyond transcriptomic or proteomic studies, the modulation of host mRNA translation as an important aspect of HCV infection.
Collapse
|
23
|
Ghosh S, Kaplan KJ, Schrum LW, Bonkovsky HL. Cytoskeletal proteins: shaping progression of hepatitis C virus-induced liver disease. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 302:279-319. [PMID: 23351713 DOI: 10.1016/b978-0-12-407699-0.00005-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hepatitis C virus (HCV) infection, which results in chronic hepatitis C (CHC) in most patients (70-85%), is a major cause of liver disease and remains a major therapeutic challenge. The mechanisms determining liver damage and the key factors that lead to a high rate of CHC remain imperfectly understood. The precise role of cytoskeletal (CS) proteins in HCV infection remains to be determined. Some studies including our recent study have demonstrated that changes occur in the expression of CS proteins in HCV-infected hepatocytes. A variety of host proteins interact with HCV proteins. Association between CS and HCV proteins may have implications in future design of CS protein-targeted therapy for the treatment for HCV infection. This chapter will focus on the interaction between host CS and viral proteins to signify the importance of this event in HCV entry, replication and transportation.
Collapse
Affiliation(s)
- Sriparna Ghosh
- Liver-Biliary-Pancreatic Center, Carolinas Medical Center, and School of Medicine, University of North Carolina, Carolinas Medical Center, Charlotte, NC, USA.
| | | | | | | |
Collapse
|
24
|
Abstract
Coronaviruses are positive-strand RNA viruses that are important infectious agents of both animals and humans. A common feature among positive-strand RNA viruses is their assembly of replication-transcription complexes in association with cytoplasmic membranes. Upon infection, coronaviruses extensively rearrange cellular membranes into organelle-like replicative structures that consist of double-membrane vesicles and convoluted membranes to which the nonstructural proteins involved in RNA synthesis localize. Double-stranded RNA, presumably functioning as replicative intermediate during viral RNA synthesis, has been detected at the double-membrane vesicle interior. Recent studies have provided new insights into the assembly and functioning of the coronavirus replicative structures. This review will summarize the current knowledge on the biogenesis of the replicative structures, the membrane anchoring of the replication-transcription complexes, and the location of viral RNA synthesis, with particular focus on the dynamics of the coronavirus replicative structures and individual replication-associated proteins.
Collapse
|
25
|
Rapid intracellular competition between hepatitis C viral genomes as a result of mitosis. J Virol 2012; 87:581-96. [PMID: 23097449 DOI: 10.1128/jvi.01047-12] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cells infected with hepatitis C virus (HCV) become refractory to further infection by HCV (T. Schaller et al., J. Virol. 81:4591-4603, 2007; D. M. Tscherne et al., J. Virol. 81:3693-3703, 2007). This process, termed superinfection exclusion, does not involve downregulation of surface viral receptors but instead occurs inside the cell at the level of RNA replication. The originally infecting virus may occupy replication niches or sequester host factors necessary for viral growth, preventing effective growth of viruses that enter the cell later. However, there appears to be an additional level of intracellular competition between viral genomes that occurs at or shortly following mitosis. In the setting of cellular division, when two viral replicons of equivalent fitness are present within a cell, each has an equal opportunity to exclude the other. In a population of dividing cells, the competition between viral genomes proceeds apace, randomly clearing one or the other genome from cells in the span of 9 to 12 days. These findings demonstrate a new mechanism of intracellular competition between HCV strains, which may act to further limit HCV's genetic diversity and ability to recombine in vivo.
Collapse
|
26
|
Liu HM, Aizaki H, Machida K, Ou JHJ, Lai MMC. Hepatitis C virus translation preferentially depends on active RNA replication. PLoS One 2012; 7:e43600. [PMID: 22937067 PMCID: PMC3427374 DOI: 10.1371/journal.pone.0043600] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 07/26/2012] [Indexed: 12/19/2022] Open
Abstract
Hepatitis C virus (HCV) RNA initiates its replication on a detergent-resistant membrane structure derived from the endoplasmic reticulum (ER) in the HCV replicon cells. By performing a pulse-chase study of BrU-labeled HCV RNA, we found that the newly-synthesized HCV RNA traveled along the anterograde-membrane traffic and moved away from the ER. Presumably, the RNA moved to the site of translation or virion assembly in the later steps of viral life cycle. In this study, we further addressed how HCV RNA translation was regulated by HCV RNA trafficking. When the movement of HCV RNA from the site of RNA synthesis to the Golgi complex was blocked by nocodazole, an inhibitor of ER-Golgi transport, HCV protein translation was surprisingly enhanced, suggesting that the translation of viral proteins occurred near the site of RNA synthesis. We also found that the translation of HCV proteins was dependent on active RNA synthesis: inhibition of viral RNA synthesis by an NS5B inhibitor resulted in decreased HCV viral protein synthesis even when the total amount of intracellular HCV RNA remained unchanged. Furthermore, the translation activity of the replication-defective HCV replicons or viral RNA with an NS5B mutation was greatly reduced as compared to that of the corresponding wildtype RNA. By performing live cell labeling of newly synthesized HCV RNA and proteins, we further showed that the newly synthesized HCV proteins colocalized with the newly synthesized viral RNA, suggesting that HCV RNA replication and protein translation take place at or near the same site. Our findings together indicate that the translation of HCV RNA is coupled to RNA replication and that the both processes may occur at the same subcellular membrane compartments, which we term the replicasome.
Collapse
Affiliation(s)
- Helene Minyi Liu
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America.
| | | | | | | | | |
Collapse
|
27
|
Papic N, Maxwell CI, Delker DA, Liu S, Heale BSE, Hagedorn CH. RNA-sequencing analysis of 5' capped RNAs identifies many new differentially expressed genes in acute hepatitis C virus infection. Viruses 2012; 4:581-612. [PMID: 22590687 PMCID: PMC3347324 DOI: 10.3390/v4040581] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 03/31/2012] [Accepted: 04/03/2012] [Indexed: 12/28/2022] Open
Abstract
We describe the first report of RNA sequencing of 5' capped (Pol II) RNAs isolated from acutely hepatitis C virus (HCV) infected Huh 7.5 cells that provides a general approach to identifying differentially expressed annotated and unannotated genes that participate in viral-host interactions. We identified 100, 684, and 1,844 significantly differentially expressed annotated genes in acutely infected proliferative Huh 7.5 cells at 6, 48, and 72 hours, respectively (fold change ≥ 1.5 and Bonferroni adjusted p-values < 0.05). Most of the differentially expressed genes (>80%) and biological pathways (such as adipocytokine, Notch, Hedgehog and NOD-like receptor signaling) were not identified by previous gene array studies. These genes are critical components of host immune, inflammatory and oncogenic pathways and provide new information regarding changes that may benefit the virus or mediate HCV induced pathology. RNAi knockdown studies of newly identified highly upregulated FUT1 and KLHDC7B genes provide evidence that their gene products regulate and facilitate HCV replication in hepatocytes. Our approach also identified novel Pol II unannotated transcripts that were upregulated. Results further identify new pathways that regulate HCV replication in hepatocytes and suggest that our approach will have general applications in studying viral-host interactions in model systems and clinical biospecimens.
Collapse
Affiliation(s)
- Neven Papic
- Department of Medicine, University of Utah, 30 N 1900 E #3C310, Salt Lake City, UT 84132, USA; (N.P.); (C.I.M.); (D.A.D.); (S.L.); (B.S.E.H.)
| | - Christopher I. Maxwell
- Department of Medicine, University of Utah, 30 N 1900 E #3C310, Salt Lake City, UT 84132, USA; (N.P.); (C.I.M.); (D.A.D.); (S.L.); (B.S.E.H.)
- Huntsman Cancer Institute, University of Utah, 30 N 1900 E #3C310, Salt Lake City, UT 84132, USA
| | - Don A. Delker
- Department of Medicine, University of Utah, 30 N 1900 E #3C310, Salt Lake City, UT 84132, USA; (N.P.); (C.I.M.); (D.A.D.); (S.L.); (B.S.E.H.)
| | - Shuanghu Liu
- Department of Medicine, University of Utah, 30 N 1900 E #3C310, Salt Lake City, UT 84132, USA; (N.P.); (C.I.M.); (D.A.D.); (S.L.); (B.S.E.H.)
| | - Bret S. E. Heale
- Department of Medicine, University of Utah, 30 N 1900 E #3C310, Salt Lake City, UT 84132, USA; (N.P.); (C.I.M.); (D.A.D.); (S.L.); (B.S.E.H.)
| | - Curt H. Hagedorn
- Department of Medicine, University of Utah, 30 N 1900 E #3C310, Salt Lake City, UT 84132, USA; (N.P.); (C.I.M.); (D.A.D.); (S.L.); (B.S.E.H.)
- Department of Experimental Pathology, University of Utah, 30 N 1900 E #3C310, Salt Lake City, UT 84132, USA
- Author to whom correspondence should be addressed; ; Tel.: +1-801-587-4619; Fax: +1-801-585-0187
| |
Collapse
|
28
|
Gene expression profiling of HCV genotype 3a initial liver fibrosis and cirrhosis patients using microarray. J Transl Med 2012; 10:41. [PMID: 22397681 PMCID: PMC3348056 DOI: 10.1186/1479-5876-10-41] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Accepted: 03/07/2012] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Hepatitis C virus (HCV) causes liver fibrosis that may lead to liver cirrhosis or hepatocellular carcinoma (HCC), and may partially depend on infecting viral genotype. HCV genotype 3a is being more common in Asian population, especially Pakistan; the detail mechanism of infection still needs to be explored. In this study, we investigated and compared the gene expression profile between initial fibrosis stage and cirrhotic 3a genotype patients. METHODS Gene expression profiling of human liver tissues was performed containing more than 22000 known genes. Using Oparray protocol, preparation and hybridization of slides was carried out and followed by scanning with GeneTAC integrator 4.0 software. Normalization of the data was obtained using MIDAS software and Significant Microarray Analysis (SAM) was performed to obtain differentially expressed candidate genes. RESULTS Out of 22000 genes studied, 219 differentially regulated genes found with P ≤ 0.05 between both groups; 107 among those were up-regulated and 112 were down-regulated. These genes were classified into 31 categories according to their biological functions. The main categories included: apoptosis, immune response, cell signaling, kinase activity, lipid metabolism, protein metabolism, protein modulation, metabolism, vision, cell structure, cytoskeleton, nervous system, protein metabolism, protein modulation, signal transduction, transcriptional regulation and transport activity. CONCLUSION This is the first study on gene expression profiling in patients associated with genotype 3a using microarray analysis. These findings represent a broad portrait of genomic changes in early HCV associated fibrosis and cirrhosis. We hope that identified genes in this study will help in future to act as prognostic and diagnostic markers to differentiate fibrotic patients from cirrhotic ones.
Collapse
|
29
|
Bruni R, Marcantonio C, Tritarelli E, Tataseo P, Stellacci E, Costantino A, Villano U, Battistini A, Ciccaglione AR. An integrated approach identifies IFN-regulated microRNAs and targeted mRNAs modulated by different HCV replicon clones. BMC Genomics 2011; 12:485. [PMID: 21970718 PMCID: PMC3224138 DOI: 10.1186/1471-2164-12-485] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Accepted: 10/04/2011] [Indexed: 02/07/2023] Open
Abstract
Background Infections with hepatitis C virus (HCV) progress to chronic phase in 80% of patients. To date, the effect produced by HCV on the expression of microRNAs (miRs) involved in the interferon-β (IFN-β) antiviral pathway has not been explored in details. Thus, we compared the expression profile of 24 selected miRs in IFN-β-treated Huh-7 cells and in three different clones of Huh-7 cells carrying a self-replicating HCV RNA which express all viral proteins (HCV replicon system). Methods The expression profile of 24 selected miRs in IFN-β-treated Huh-7 cells and in HCV replicon 21-5 clone with respect to Huh-7 parental cells was analysed by real-time PCR. To exclude clone specific variations, the level of 16 out of 24 miRs, found to be modulated in 21-5 clone, was evaluated in two other HCV replicon clones, 22-6 and 21-7. Prediction of target genes of 3 miRs, confirmed in all HCV clones, was performed by means of miRGator program. The gene dataset obtained from microarray analysis of HCV clones was farther used to validate target prediction. Results The expression profile revealed that 16 out of 24 miRs were modulated in HCV replicon clone 21-5. Analysis in HCV replicon clones 22-6 and 21-7 indicated that 3 out of 16 miRs, (miR-128a, miR-196a and miR-142-3p) were modulated in a concerted fashion in all three HCV clones. Microarray analysis revealed that 37 out of 1981 genes, predicted targets of the 3 miRs, showed an inverse expression relationship with the corresponding miR in HCV clones, as expected for true targets. Classification of the 37 genes by Panther System indicated that the dataset contains genes involved in biological processes that sustain HCV replication and/or in pathways potentially implicated in the control of antiviral response by HCV infection. Conclusions The present findings reveal that 3 IFN-β-regulated miRs and 37 genes, which are likely their functional targets, were commonly modulated by HCV in three replicon clones. The future use of miR inhibitors or mimics and/or siRNAs might be useful for the development of diagnostic and therapeutic strategies aimed at the recovering of protective innate responses in HCV infections.
Collapse
Affiliation(s)
- Roberto Bruni
- Department of Infectious, Parasitic and Immunomediated Diseases, Istituto Superiore di Sanità, Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Ghosh S, Ahrens WA, Phatak SU, Hwang S, Schrum LW, Bonkovsky HL. Association of filamin A and vimentin with hepatitis C virus proteins in infected human hepatocytes. J Viral Hepat 2011; 18:e568-77. [PMID: 21914078 DOI: 10.1111/j.1365-2893.2011.01487.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Chronic hepatitis C (CHC) infection caused by hepatitis C virus (HCV) is a major cause of liver disease and remains a major therapeutic challenge. A variety of host proteins interact with HCV proteins. The definitive role of cytoskeletal (CS) proteins in HCV infection remains to be determined. In this study, our aim was to determine the expression profile of differentially regulated and expressed selected CS proteins and their association with HCV proteins in infected hepatocytes as possible therapeutic targets. Using proteomics, qRT-PCR, Western blot and immunofluorescence techniques, we revealed that filamin A (fila) and vimentin (vim) were prominently increased proteins in HCV-expressing human hepatoma cells compared with parental cells and in liver biopsies from patients with CHC vs controls. HCV nonstructural (NS) 3 and NS5A proteins were associated with fila, while core protein partially with fila and vim. Immunoprecipitation showed interactions among fila and NS3 and NS5A proteins. Cells treated with interferon-α showed a dose- and time-dependent decrease in CS and HCV proteins. NS proteins clustered at the perinuclear region following cytochalasin b treatment, whereas disperse cytoplasmic and perinuclear distribution was observed in the no-treatment group. This study demonstrates and signifies that changes occur in the expression of CS proteins in HCV-infected hepatocytes and, for the first time, shows the up-regulation and interaction of fila with HCV proteins. Association between CS and HCV proteins may have implications in future design of CS protein-targeted therapy for the treatment for HCV infection.
Collapse
Affiliation(s)
- S Ghosh
- The Liver-Biliary-Pancreatic Center and Liver, Digestive and Metabolic Disorders Laboratory, Carolinas Medical Center, Charlotte, NC 28203, USA.
| | | | | | | | | | | |
Collapse
|
31
|
Role for ADP ribosylation factor 1 in the regulation of hepatitis C virus replication. J Virol 2010; 85:946-56. [PMID: 21068255 DOI: 10.1128/jvi.00753-10] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
We hypothesized that ADP-ribosylation factor 1 (Arf1) plays an important role in the biogenesis and maintenance of infectious hepatitis C virus (HCV). Huh7.5 cells, in which HCV replicates and produces infectious viral particles, were exposed to brefeldin A or golgicide A, pharmacological inhibitors of Arf1 activation. Treatment with these agents caused a reduction in viral RNA levels, the accumulation of infectious particles within the cells, and a reduction in the levels of these particles in the extracellular medium. Fluorescence analyses showed that the viral nonstructural (NS) proteins NS5A and NS3, but not the viral structural protein core, shifted their localization from speckle-like structures in untreated cells to the rims of lipid droplets (LDs) in treated cells. Using pulldown assays, we showed that ectopic overexpression of NS5A in Huh7 cells reduces the levels of GTP-Arf1. Downregulation of Arf1 expression by small interfering RNA (siRNA) decreased both the levels of HCV RNA and the production of infectious viral particles and altered the localization of NS5A to the peripheries of LDs. Together, our data provide novel insights into the role of Arf1 in the regulation of viral RNA replication and the production of infectious HCV.
Collapse
|
32
|
Dengue virus nonstructural protein 3 redistributes fatty acid synthase to sites of viral replication and increases cellular fatty acid synthesis. Proc Natl Acad Sci U S A 2010; 107:17345-50. [PMID: 20855599 DOI: 10.1073/pnas.1010811107] [Citation(s) in RCA: 407] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Dengue virus (DENV) modifies cellular membranes to establish its sites of replication. Although the 3D architecture of these structures has recently been described, little is known about the cellular pathways required for their formation and expansion. In this report, we examine the host requirements for DENV replication using a focused RNAi analysis combined with validation studies using pharmacological inhibitors. This approach identified three cellular pathways required for DENV replication: autophagy, actin polymerization, and fatty acid biosynthesis. Further characterization of the viral modulation of fatty acid biosynthesis revealed that a key enzyme in this pathway, fatty acid synthase (FASN), is relocalized to sites of DENV replication. DENV nonstructural protein 3 (NS3) is responsible for FASN recruitment, inasmuch as (i) NS3 expressed in the absence of other viral proteins colocalizes with FASN and (ii) NS3 interacts with FASN in a two-hybrid assay. There is an associated increase in the rate of fatty acid biosynthesis in DENV-infected cells, and de novo synthesized lipids preferentially cofractionate with DENV RNA. Finally, purified recombinant NS3 stimulates the activity of FASN in vitro. Taken together, these experiments suggest that DENV co-opts the fatty acid biosynthetic pathway to establish its replication complexes. This study provides mechanistic insight into DENV membrane remodeling and highlights the potential for the development of therapeutics that inhibit DENV replication by targeting the fatty acid biosynthetic pathway.
Collapse
|
33
|
Hepatitis C virus egress and release depend on endosomal trafficking of core protein. J Virol 2010; 84:11590-8. [PMID: 20739534 DOI: 10.1128/jvi.00587-10] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hepatitis C virus (HCV) assembly is known to occur in juxtaposition to lipid droplets, but the mechanisms of nascent virion transport and release remain poorly understood. Here we demonstrate that HCV core protein targets to early and late endosomes but not to mitochondria or peroxisomes. Further, by employing inhibitors of early and late endosome motility in HCV-infected cells, we demonstrate that the movement of core protein to the early and late endosomes and virus production require an endosome-based secretory pathway. We also observed that this way is independent of that of the internalization of endocytosed virus particles during virus entry.
Collapse
|
34
|
Backes P, Quinkert D, Reiss S, Binder M, Zayas M, Rescher U, Gerke V, Bartenschlager R, Lohmann V. Role of annexin A2 in the production of infectious hepatitis C virus particles. J Virol 2010; 84:5775-89. [PMID: 20335258 PMCID: PMC2876593 DOI: 10.1128/jvi.02343-09] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Accepted: 03/16/2010] [Indexed: 12/12/2022] Open
Abstract
Hepatitis C virus (HCV) is an important human pathogen affecting 170 million chronically infected individuals. In search for cellular proteins involved in HCV replication, we have developed a purification strategy for viral replication complexes and identified annexin A2 (ANXA2) as an associated host factor. ANXA2 colocalized with viral nonstructural proteins in cells harboring genotype 1 or 2 replicons as well as in infected cells. In contrast, we found no obvious colocalization of ANXA2 with replication sites of other positive-strand RNA viruses. The silencing of ANXA2 expression showed no effect on viral RNA replication but resulted in a significant reduction of extra- and intracellular virus titers. Therefore, it seems likely that ANXA2 plays a role in HCV assembly rather than in genome replication or virion release. Colocalization studies with individually expressed HCV nonstructural proteins indicated that NS5A specifically recruits ANXA2, probably by an indirect mechanism. By the deletion of individual NS5A subdomains, we identified domain III (DIII) as being responsible for ANXA2 recruitment. These data identify ANXA2 as a novel host factor contributing, with NS5A, to the formation of infectious HCV particles.
Collapse
Affiliation(s)
- Perdita Backes
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany, Institute of Medical Biochemistry, Centre for Molecular Biology of Inflammation, University of Muenster, 48149 Muenster, Germany
| | - Doris Quinkert
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany, Institute of Medical Biochemistry, Centre for Molecular Biology of Inflammation, University of Muenster, 48149 Muenster, Germany
| | - Simon Reiss
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany, Institute of Medical Biochemistry, Centre for Molecular Biology of Inflammation, University of Muenster, 48149 Muenster, Germany
| | - Marco Binder
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany, Institute of Medical Biochemistry, Centre for Molecular Biology of Inflammation, University of Muenster, 48149 Muenster, Germany
| | - Margarita Zayas
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany, Institute of Medical Biochemistry, Centre for Molecular Biology of Inflammation, University of Muenster, 48149 Muenster, Germany
| | - Ursula Rescher
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany, Institute of Medical Biochemistry, Centre for Molecular Biology of Inflammation, University of Muenster, 48149 Muenster, Germany
| | - Volker Gerke
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany, Institute of Medical Biochemistry, Centre for Molecular Biology of Inflammation, University of Muenster, 48149 Muenster, Germany
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany, Institute of Medical Biochemistry, Centre for Molecular Biology of Inflammation, University of Muenster, 48149 Muenster, Germany
| | - Volker Lohmann
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany, Institute of Medical Biochemistry, Centre for Molecular Biology of Inflammation, University of Muenster, 48149 Muenster, Germany
| |
Collapse
|
35
|
Gene expression profiling indicates the roles of host oxidative stress, apoptosis, lipid metabolism, and intracellular transport genes in the replication of hepatitis C virus. J Virol 2010; 84:5404-14. [PMID: 20200238 DOI: 10.1128/jvi.02529-09] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Hepatitis C virus (HCV) is a leading cause of chronic liver disease. The identification and characterization of key host cellular factors that play a role in the HCV replication cycle are important for the understanding of disease pathogenesis and the identification of novel antiviral therapeutic targets. Gene expression profiling of JFH-1-infected Huh7 cells by microarray analysis was performed to identify host cellular genes that are transcriptionally regulated by infection. The expression of host genes involved in cellular defense mechanisms (apoptosis, proliferation, and antioxidant responses), cellular metabolism (lipid and protein metabolism), and intracellular transport (vesicle trafficking and cytoskeleton regulation) was significantly altered by HCV infection. The gene expression patterns identified provide insight into the potential mechanisms that contribute to HCV-associated pathogenesis. These include an increase in proinflammatory and proapoptotic signaling and a decrease in the antioxidant response pathways of the infected cell. To investigate whether any of the host genes regulated by infection were required by HCV during replication, small interfering RNA (siRNA) silencing of host gene expression in HCV-infected cells was performed. Decreasing the expression of host genes involved in lipid metabolism (TXNIP and CYP1A1 genes) and intracellular transport (RAB33b and ABLIM3 genes) reduced the replication and secretion of HCV, indicating that they may be important factors for the virus replication cycle. These results show that major changes in the expression of many different genes in target cells may be crucial in determining the outcome of HCV infection.
Collapse
|
36
|
Gouttenoire J, Penin F, Moradpour D. Hepatitis C virus nonstructural protein 4B: a journey into unexplored territory. Rev Med Virol 2010; 20:117-29. [DOI: 10.1002/rmv.640] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
37
|
Global transcriptional profiles in peripheral blood mononuclear cell during classical swine fever virus infection. Virus Res 2009; 148:60-70. [PMID: 20034523 DOI: 10.1016/j.virusres.2009.12.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2009] [Revised: 11/29/2009] [Accepted: 12/10/2009] [Indexed: 01/15/2023]
Abstract
Classical swine fever virus (CSFV) is an etiologic agent that causes a highly contagious disease in pigs. Laying a foundation to solve problems in its pathogenic mechanism, microarray analysis was performed to detect the gene transcriptional profiles in peripheral blood mononuclear cells (PBMC) following infection with a Chinese highly virulent CSFV strain Shimen. Three susceptible pigs were inoculated intramuscularly with a lethal dose (1.0x10(6) TCID(50)) of CSFV. Pigs showed classical CSF signs, depletion of lymphocytes and monocytes consistent with CSFV infection, and the CSFV genome was also confirmed in the PBMC. The PBMC were isolated at 1, 3, 6 and 9 days post-inoculation (dpi). Total RNA were extracted and subjected to microarray analysis. Data showed that expression of 847 genes wherein 467 genes were known function and the remaining 380 genes were unknown function, and 541 up- and 306 down-regulation, altered after infection. There were 54, 181, 438 and 354 up- and 61, 120, 218 and 145 down-regulated genes presented on 1, 3, 6 and 9dpi, respectively. These genes were involved in immune response (14.5%), apoptosis (3.3%), signal transduction (7.6%), transcription (4.4%), metabolism (11%), transport (3.9%), development (6.8%) and cell cycle (3.7%). Results demonstrated its usefulness in exploring the pathogenic mechanisms of CSFV.
Collapse
|
38
|
Abstract
Coronaviruses induce in infected cells the formation of double-membrane vesicles (DMVs) in which the replication-transcription complexes (RTCs) are anchored. To study the dynamics of these coronavirus replicative structures, we generated recombinant murine hepatitis coronaviruses that express tagged versions of the nonstructural protein nsp2. We demonstrated by using immunofluorescence assays and electron microscopy that this protein is recruited to the DMV-anchored RTCs, for which its C terminus is essential. Live-cell imaging of infected cells demonstrated that small nsp2-positive structures move through the cytoplasm in a microtubule-dependent manner. In contrast, large fluorescent structures are rather immobile. Microtubule-mediated transport of DMVs, however, is not required for efficient replication. Biochemical analyses indicated that the nsp2 protein is associated with the cytoplasmic side of the DMVs. Yet, no recovery of fluorescence was observed when (part of) the nsp2-positive foci were bleached. This result was confirmed by the observation that preexisting RTCs did not exchange fluorescence after fusion of cells expressing either a green or a red fluorescent nsp2. Apparently, nsp2, once recruited to the RTCs, is not exchanged with nsp2 present in the cytoplasm or at other DMVs. Our data show a remarkable resemblance to results obtained recently by others with hepatitis C virus. The observations point to intriguing and as yet unrecognized similarities between the RTC dynamics of different plus-strand RNA viruses.
Collapse
|
39
|
Vassilaki N, Mavromara P. The HCV ARFP/F/core+1 protein: production and functional analysis of an unconventional viral product. IUBMB Life 2009; 61:739-52. [PMID: 19548320 DOI: 10.1002/iub.201] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Hepatitis C virus (HCV) is an enveloped positive-strand RNA virus of the Flaviviridae family. It has a genome of about 9,600 nucleotides encoding a large polyprotein (about 3,000 amino acids) that is processed by cellular and viral proteases into at least 10 structural and nonstructural viral proteins. A novel HCV protein has also been identified by our laboratory and others. This protein--known as ARFP (alternative reading frame protein), F (for frameshift) or core+1 (to indicate the position) protein--is synthesized by an open reading frame overlapping the core gene at nucleotide +1 (core+1 ORF). However, almost 10 years after its discovery, we still know little of the biological role of the ARFP/F/core+1 protein. Abolishing core+1 protein production has no affect on HCV replication in cell culture or uPA-SCID mice, suggesting that core+1 protein is probably not important for the HCV reproductive cycle. However, the detection of specific anti-core+1 antibodies and T-cell responses in HCV-infected patients, as reported by many independent laboratories, provides strong evidence that this protein is produced in vivo. Furthermore, analyses of the HCV sequences isolated from patients with hepatocellular carcinoma and in vitro studies have provided strong preliminary evidence to suggest that core+1 protein plays a role in advanced liver disease and liver cancer. The available in vitro data also suggest that certain core function proteins may depend on production of the core+1 protein. We describe here the discovery of the various forms of the core+1 protein and what is currently known about the mechanisms of their production and their biochemical and functional properties. We also provide a detailed summary of the results of patient-based research.
Collapse
Affiliation(s)
- Niki Vassilaki
- Molecular Virology Laboratory, Hellenic Pasteur Institute, Athens, Greece.
| | | |
Collapse
|
40
|
Cochaperone activity of human butyrate-induced transcript 1 facilitates hepatitis C virus replication through an Hsp90-dependent pathway. J Virol 2009; 83:10427-36. [PMID: 19656872 DOI: 10.1128/jvi.01035-09] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Hepatitis C virus (HCV) nonstructural protein 5A (NS5A) is a component of the replication complex consisting of several host and viral proteins. We have previously reported that human butyrate-induced transcript 1 (hB-ind1) recruits heat shock protein 90 (Hsp90) and FK506-binding protein 8 (FKBP8) to the replication complex through interaction with NS5A. To gain more insights into the biological functions of hB-ind1 in HCV replication, we assessed the potential cochaperone-like activity of hB-ind1, because it has significant homology with cochaperone p23, which regulates Hsp90 chaperone activity. The chimeric p23 in which the cochaperone domain was replaced with the p23-like domain of hB-ind1 exhibited cochaperone activity comparable to that of the authentic p23, inhibiting the glucocorticoid receptor signaling in an Hsp90-dependent manner. Conversely, the chimeric hB-ind1 in which the p23-like domain was replaced with the cochaperone domain of p23 resulted in the same level of recovery of HCV propagation as seen in the authentic hB-ind1 in cells with knockdown of the endogenous hB-ind1. Immunofluorescence analyses revealed that hB-ind1 was colocalized with NS5A, FKBP8, and double-stranded RNA in the HCV replicon cells. HCV replicon cells exhibited a more potent unfolded-protein response (UPR) than the parental and the cured cells upon treatment with an inhibitor for Hsp90. These results suggest that an Hsp90-dependent chaperone pathway incorporating hB-ind1 is involved in protein folding in the membranous web for the circumvention of the UPR and that it facilitates HCV replication.
Collapse
|
41
|
Roles for endocytic trafficking and phosphatidylinositol 4-kinase III alpha in hepatitis C virus replication. Proc Natl Acad Sci U S A 2009; 106:7577-82. [PMID: 19376974 DOI: 10.1073/pnas.0902693106] [Citation(s) in RCA: 278] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Hepatitis C virus (HCV) reorganizes cellular membranes to establish sites of replication. The required host pathways and the mechanism of cellular membrane reorganization are poorly characterized. Therefore, we interrogated a customized small interfering RNA (siRNA) library that targets 140 host membrane-trafficking genes to identify genes required for both HCV subgenomic replication and infectious virus production. We identified 7 host cofactors of viral replication, including Cdc42 and Rock2 (actin polymerization), EEA1 and Rab5A (early endosomes), Rab7L1, and PI3-kinase C2gamma and PI4-kinase IIIalpha (phospholipid metabolism). Studies of drug inhibitors indicate actin polymerization and phospholipid kinase activity are required for HCV replication. We found extensive co-localization of the HCV replicase markers NS5A and double-stranded RNA with Rab5A and partial co-localization with Rab7L1. PI4K-IIIalpha co-localized with NS5A and double-stranded RNA in addition to being present in detergent-resistant membranes containing NS5A. In a comparison of type II and type III PI4-kinases, PI4Ks were not required for HCV entry, and only PI4K-IIIalpha was required for HCV replication. Although PI4K-IIIalpha siRNAs decreased HCV replication and virus production by almost 100%, they had no effect on initial HCV RNA translation, suggesting that PI4K-IIIalpha functions at a posttranslational stage. Electron microscopy identified the presence of membranous webs, which are thought to be the site of HCV replication, in HCV-infected cells. Pretreatment with PI4K-IIIalpha siRNAs greatly reduced the accumulation of these membranous web structures in HCV-infected cells. We propose that PI4K-IIIalpha plays an essential role in membrane alterations leading to the formation of HCV replication complexes.
Collapse
|
42
|
Abstract
How much do we really understand about how +RNA viruses usurp and transform the intracellular architecture of host cells when they replicate?
Collapse
Affiliation(s)
- Mark R Denison
- Departments of Pediatrics and Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America.
| |
Collapse
|
43
|
Jin H, Yamashita A, Maekawa S, Yang P, He L, Takayanagi S, Wakita T, Sakamoto N, Enomoto N, Ito M. Griseofulvin, an oral antifungal agent, suppresses hepatitis C virus replication in vitro. Hepatol Res 2008; 38:909-18. [PMID: 18624717 DOI: 10.1111/j.1872-034x.2008.00352.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
AIM Hepatitis C virus (HCV), which infects an estimated 170 million people worldwide, is a major cause of chronic liver disease. The current standard therapy for chronic hepatitis C is based on pegylated interferon (IFN)alpha in combination with ribavirin. However, the success rate remains at approximately 50%. Therefore, alternative agents are needed for the treatment of HCV infection. METHODS Using an HCV-1b subgenomic replicon cell culture system (Huh7/Rep-Feo), we found that griseofulvin, an oral antifungal agent, suppressed HCV-RNA replication and protein expression in a dose-dependent manner. We also found that griseofulvin suppressed the replication of infectious HCV JFH-1. A combination of IFNalpha and griseofulvin exhibited a synergistic inhibitory effect in Huh7/Rep-Feo cells. RESULTS We found that griseofulvin blocked the cell cycle at the G(2)/M phase in the HCV subgenomic replicon cells, but did not inhibit HCV internal ribosome entry site-dependent translation. CONCLUSION Our results suggest that griseofulvin may represent a new approach to the development of a novel therapy for HCV infection.
Collapse
Affiliation(s)
- Haofan Jin
- Department of Microbiology, University of Yamanashi, Yamanashi, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Hepatitis C virus (HCV) replicates its genome in a membrane-associated replication complex (RC). Specific membrane alterations, designated membranous webs, represent predominant sites of HCV RNA replication. The principles governing HCV RC and membranous web formation are poorly understood. Here, we used replicons harboring a green fluorescent protein (GFP) insertion in nonstructural protein 5A (NS5A) to study HCV RCs in live cells. Two distinct patterns of NS5A-GFP were observed. (i) Large structures, representing membranous webs, showed restricted motility, were stable over many hours, were partitioned among daughter cells during cell division, and displayed a static internal architecture without detectable exchange of NS5A-GFP. (ii) In contrast, small structures, presumably representing small RCs, showed fast, saltatory movements over long distances. Both populations were associated with endoplasmic reticulum (ER) tubules, but only small RCs showed ER-independent, microtubule (MT)-dependent transport. We suggest that this MT-dependent transport sustains two distinct RC populations, which are both required during the HCV life cycle.
Collapse
|
45
|
Ciccaglione AR, Marcantonio C, Tritarelli E, Tataseo P, Ferraris A, Bruni R, Dallapiccola B, Gerosolimo G, Costantino A, Rapicetta M. Microarray analysis identifies a common set of cellular genes modulated by different HCV replicon clones. BMC Genomics 2008; 9:309. [PMID: 18590516 PMCID: PMC2474623 DOI: 10.1186/1471-2164-9-309] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2008] [Accepted: 06/30/2008] [Indexed: 02/08/2023] Open
Abstract
Background Hepatitis C virus (HCV) RNA synthesis and protein expression affect cell homeostasis by modulation of gene expression. The impact of HCV replication on global cell transcription has not been fully evaluated. Thus, we analysed the expression profiles of different clones of human hepatoma-derived Huh-7 cells carrying a self-replicating HCV RNA which express all viral proteins (HCV replicon system). Results First, we compared the expression profile of HCV replicon clone 21-5 with both the Huh-7 parental cells and the 21-5 cured (21-5c) cells. In these latter, the HCV RNA has been eliminated by IFN-α treatment. To confirm data, we also analyzed microarray results from both the 21-5 and two other HCV replicon clones, 22-6 and 21-7, compared to the Huh-7 cells. The study was carried out by using the Applied Biosystems (AB) Human Genome Survey Microarray v1.0 which provides 31,700 probes that correspond to 27,868 human genes. Microarray analysis revealed a specific transcriptional program induced by HCV in replicon cells respect to both IFN-α-cured and Huh-7 cells. From the original datasets of differentially expressed genes, we selected by Venn diagrams a final list of 38 genes modulated by HCV in all clones. Most of the 38 genes have never been described before and showed high fold-change associated with significant p-value, strongly supporting data reliability. Classification of the 38 genes by Panther System identified functional categories that were significantly enriched in this gene set, such as histones and ribosomal proteins as well as extracellular matrix and intracellular protein traffic. The dataset also included new genes involved in lipid metabolism, extracellular matrix and cytoskeletal network, which may be critical for HCV replication and pathogenesis. Conclusion Our data provide a comprehensive analysis of alterations in gene expression induced by HCV replication and reveal modulation of new genes potentially useful for selection of antiviral targets.
Collapse
Affiliation(s)
- Anna Rita Ciccaglione
- Department of Infectious, Parasitic and Immunomediated Diseases, Istituto Superiore di Sanità, Rome, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Association of hepatitis C virus replication complexes with microtubules and actin filaments is dependent on the interaction of NS3 and NS5A. J Virol 2008; 82:8838-48. [PMID: 18562541 DOI: 10.1128/jvi.00398-08] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The hepatitis C virus (HCV) RNA replication complex (RC), which is composed of viral nonstructural (NS) proteins and host cellular proteins, replicates the viral RNA genome in association with intracellular membranes. Two viral NS proteins, NS3 and NS5A, are essential elements of the RC. Here, by using immunoprecipitation and fluorescence resonance energy transfer assays, we demonstrated that NS3 and NS5A interact with tubulin and actin. Furthermore, immunofluorescence microscopy and electron microscopy revealed that HCV RCs were aligned along microtubules and actin filaments in both HCV replicon cells and HCV-infected cells. In addition, the movement of RCs was inhibited when microtubules or actin filaments were depolymerized by colchicine and cytochalasin B, respectively. Based on our observations, we propose that microtubules and actin filaments provide the tracks for the movement of HCV RCs to other regions in the cell, and the molecular interactions between RCs and microtubules, or RCs and actin filaments, are mediated by NS3 and NS5A.
Collapse
|
47
|
Rocha-Perugini V, Montpellier C, Delgrange D, Wychowski C, Helle F, Pillez A, Drobecq H, Le Naour F, Charrin S, Levy S, Rubinstein E, Dubuisson J, Cocquerel L. The CD81 partner EWI-2wint inhibits hepatitis C virus entry. PLoS One 2008; 3:e1866. [PMID: 18382656 PMCID: PMC2270906 DOI: 10.1371/journal.pone.0001866] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2007] [Accepted: 02/18/2008] [Indexed: 12/13/2022] Open
Abstract
Two to three percent of the world's population is chronically infected with hepatitis C virus (HCV) and thus at risk of developing liver cancer. Although precise mechanisms regulating HCV entry into hepatic cells are still unknown, several cell surface proteins have been identified as entry factors for this virus. Among these molecules, the tetraspanin CD81 is essential for HCV entry. Here, we have identified a partner of CD81, EWI-2wint, which is expressed in several cell lines but not in hepatocytes. Ectopic expression of EWI-2wint in a hepatoma cell line susceptible to HCV infection blocked viral entry by inhibiting the interaction between the HCV envelope glycoproteins and CD81. This finding suggests that, in addition to the presence of specific entry factors in the hepatocytes, the lack of a specific inhibitor can contribute to the hepatotropism of HCV. This is the first example of a pathogen gaining entry into host cells that lack a specific inhibitory factor.
Collapse
Affiliation(s)
- Vera Rocha-Perugini
- Institut de Biologie de Lille (UMR8161), CNRS, Universités de Lille I et Lille II, Institut Pasteur de Lille, Lille, France
| | - Claire Montpellier
- Institut de Biologie de Lille (UMR8161), CNRS, Universités de Lille I et Lille II, Institut Pasteur de Lille, Lille, France
| | - David Delgrange
- Institut de Biologie de Lille (UMR8161), CNRS, Universités de Lille I et Lille II, Institut Pasteur de Lille, Lille, France
| | - Czeslaw Wychowski
- Institut de Biologie de Lille (UMR8161), CNRS, Universités de Lille I et Lille II, Institut Pasteur de Lille, Lille, France
| | - François Helle
- Institut de Biologie de Lille (UMR8161), CNRS, Universités de Lille I et Lille II, Institut Pasteur de Lille, Lille, France
| | - André Pillez
- Institut de Biologie de Lille (UMR8161), CNRS, Universités de Lille I et Lille II, Institut Pasteur de Lille, Lille, France
| | - Hervé Drobecq
- Institut de Biologie de Lille (UMR8161), CNRS, Universités de Lille I et Lille II, Institut Pasteur de Lille, Lille, France
| | - François Le Naour
- INSERM-U602, Institut André-Lwoff, Université Paris XI, Hôpital Paul Brousse, Villejuif, France
| | - Stéphanie Charrin
- INSERM-U602, Institut André-Lwoff, Université Paris XI, Hôpital Paul Brousse, Villejuif, France
| | - Shoshana Levy
- Division of Oncology, Department of Medicine, Stanford University Medical Center, Stanford, California, United States of America
| | - Eric Rubinstein
- INSERM-U602, Institut André-Lwoff, Université Paris XI, Hôpital Paul Brousse, Villejuif, France
| | - Jean Dubuisson
- Institut de Biologie de Lille (UMR8161), CNRS, Universités de Lille I et Lille II, Institut Pasteur de Lille, Lille, France
- * E-mail: (JD); (LC)
| | - Laurence Cocquerel
- Institut de Biologie de Lille (UMR8161), CNRS, Universités de Lille I et Lille II, Institut Pasteur de Lille, Lille, France
- Division of Oncology, Department of Medicine, Stanford University Medical Center, Stanford, California, United States of America
- * E-mail: (JD); (LC)
| |
Collapse
|
48
|
Human butyrate-induced transcript 1 interacts with hepatitis C virus NS5A and regulates viral replication. J Virol 2007; 82:2631-41. [PMID: 18160438 DOI: 10.1128/jvi.02153-07] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Hepatitis C virus (HCV) nonstructural protein 5A (NS5A) is required for the replication of the viral genome and is involved in several host signaling pathways. To gain further insight into the functional role of NS5A in HCV replication, we screened human cDNA libraries by a yeast two-hybrid system using NS5A as the bait and identified human butyrate-induced transcript 1 (hB-ind1) as a novel NS5A-binding protein. Endogenously and exogenously expressed hB-ind1 was coimmunoprecipitated with NS5A of various genotypes through the coiled-coil domain of hB-ind1. The small interfering RNA (siRNA)-mediated knockdown of hB-ind1 in human hepatoma cell lines suppressed the replication of HCV RNA replicons and the production of infectious particles of HCV genotype 2a strain JFH1. Furthermore, these reductions were canceled by the expression of an siRNA-resistant hB-ind1 mutant. Among the NS5A-binding host proteins involved in HCV replication, hB-ind1 exhibited binding with FKBP8, and hB-ind1 interacted with Hsp90 through the FxxW motif in its N-terminal p23 homology domain. The impairment of the replication of HCV RNA replicons and of the production of infectious particles of JFH1 virus in the hB-ind1 knockdown cell lines was not reversed by the expression of an siRNA-resistant hB-ind1 mutant in which the FxxW motif was replaced by AxxA. These results suggest that hB-ind1 plays a crucial role in HCV RNA replication and the propagation of JFH1 virus through interaction with viral and host proteins.
Collapse
|
49
|
Jung CR, Choi S, Im DS. The NS5A protein of hepatitis C virus represses gene expression of hRPB10alpha, a common subunit of host RNA polymerases, through interferon regulatory factor-1 binding site. Virus Res 2007; 129:155-65. [PMID: 17714821 DOI: 10.1016/j.virusres.2007.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2007] [Revised: 07/09/2007] [Accepted: 07/12/2007] [Indexed: 11/22/2022]
Abstract
The nonstructural (NS) 5A protein of hepatitis C virus (HCV) plays important roles in both viral RNA replication and modulation of the physiology of the host cell. Here we report that NS5A repressed gene expression of hRPB10alpha, a common subunit of host RNA polymerases (Pol), in hepatoma cell lines and Huh-7 cells harboring HCV replicon. Analysis of the hRPB10alpha promoter region revealed that interferon regulatory factor-1 binding element (IRF-E) was essential for its transcription. The IRF-E was responsible for the NS5A-mediated repression of the hRPB10alpha transcription and its induction by IRF-1 that is known to be induced by interferon-alpha. Electrophoretic mobility shift assay showed that IRF-1 bound to the IRF-E and the binding reduced when NS5A was expressed. NS5A appeared to negatively regulate IRF-1 expression, which might be partly responsible for the decrease of hRPB10alpha expression. NS5A expression moderately decreased promoter-independent Pol activity in vitro. Transcription of adenoviral genes that are dependent on Pol II or III and propagation of adenoviral genome were impaired in HeLa cells with stable NS5A expression. The results suggest that NS5A may partly modulate host cell transcription by the down-regulation of hRPB10alpha.
Collapse
Affiliation(s)
- Cho-Rok Jung
- Gene Therapy Research Unit, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yusong, Daejeon 305-806, Republic of Korea
| | | | | |
Collapse
|
50
|
Ishida H, Li K, Yi M, Lemon SM. p21-activated kinase 1 is activated through the mammalian target of rapamycin/p70 S6 kinase pathway and regulates the replication of hepatitis C virus in human hepatoma cells. J Biol Chem 2007; 282:11836-48. [PMID: 17255101 DOI: 10.1074/jbc.m610106200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Cellular mechanisms that regulate the replication of hepatitis C virus (HCV) RNA are poorly understood. p21-activated kinase 1 (PAK1) is a serine/threonine kinase that has been suggested to participate in antiviral signaling. We studied its role in the cellular control of HCV replication. Transfection of PAK1-specific small interfering RNA enhanced viral RNA and protein abundance in established replicon cell lines as well as cells infected with chimeric genotype 1a/2a HCV, despite reducing cellular proliferation, suggesting specific regulation of HCV replication. PAK1 knockdown did not reduce interferon regulatory factor 3-dependent gene expression, indicating that this regulation is independent of the retinoic acid-inducible gene I/interferon regulatory factor 3 pathway. On the other hand, LY294002 and rapamycin abolished PAK1 phosphorylation and enhanced HCV abundance, suggesting that the mammalian target of rapamycin (mTOR) is involved in PAK1 regulation of HCV. Small interfering RNA knockdown of the mTOR substrate p70 S6 kinase abrogated PAK1 phosphorylation and enhanced HCV RNA abundance, whereas overexpression of a constitutively active alternate substrate, eukaryotic translation initiation factor 4E-binding protein 1, increased cap-independent viral translation and viral RNA abundance without influencing PAK1 phosphorylation. Similar data indicated that mTOR is regulated by both phosphatidylinositol 3-kinase/Akt and ERK. Taken together, the data indicate that p70 S6 kinase activates PAK1 and contributes to phosphatidylinositol 3-kinase- and ERK-mediated regulation of HCV RNA replication.
Collapse
Affiliation(s)
- Hisashi Ishida
- Center for Hepatitis Research, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas 77555-1018, USA
| | | | | | | |
Collapse
|