1
|
Malouli D, Taher H, Mansouri M, Iyer RF, Reed J, Papen C, Schell JB, Beechwood T, Martinson T, Morrow D, Hughes CM, Gilbride RM, Randall K, Ford JC, Belica K, Ojha S, Sacha JB, Bimber BN, Hansen SG, Picker LJ, Früh K. Human cytomegalovirus UL18 prevents priming of MHC-E- and MHC-II-restricted CD8 + T cells. Sci Immunol 2024; 9:eadp5216. [PMID: 39392895 DOI: 10.1126/sciimmunol.adp5216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 09/19/2024] [Indexed: 10/13/2024]
Abstract
Rhesus cytomegalovirus (RhCMV) vectors elicit major histocompatibility complex (MHC)-E-restricted CD8+ T cells that stringently control simian immunodeficiency virus (SIV) in rhesus macaques. These responses require deletion of eight RhCMV chemokine-like open reading frames (ORFs) that are conserved in human cytomegalovirus (HCMV). To determine whether HCMV encodes additional, nonconserved inhibitors of unconventional T cell priming, we inserted 41 HCMV-specific ORFs into a chemokine-deficient strain (68-1 RhCMV). Monitoring of epitope recognition revealed that HCMV UL18 prevented unconventional T cell priming, resulting in MHC-Ia-targeted responses. UL18 is homologous to MHC-I but does not engage T cell receptors and, instead, binds with high affinity to inhibitory leukocyte immunoglobulin-like receptor-1 (LIR-1). UL18 lacking LIR-1 binding no longer interfered with MHC-E-restricted T cell stimulation by RhCMV-infected cells or the induction of unconventionally restricted T cells. Thus, LIR-1 binding needs to be deleted from UL18 of HCMV/HIV vaccines to allow for the induction of protective MHC-E-restricted T cells.
Collapse
Affiliation(s)
- Daniel Malouli
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Husam Taher
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Mandana Mansouri
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Ravi F Iyer
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Jason Reed
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Courtney Papen
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - John B Schell
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Teresa Beechwood
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Thomas Martinson
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - David Morrow
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Colette M Hughes
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Roxanne M Gilbride
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Kurt Randall
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Julia C Ford
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Karina Belica
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Sohita Ojha
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Jonah B Sacha
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Benjamin N Bimber
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Scott G Hansen
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Louis J Picker
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Klaus Früh
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| |
Collapse
|
2
|
Kasem S, Yu MHH, Alkhalefa N, Ata EB, Nayel M, Abdo W, Abdel-Moneim AS, Fukushi H. Impact of equine herpesvirus-1 ORF15 (EUL45) on viral replication and neurovirulence. Vet Microbiol 2024; 298:110234. [PMID: 39180797 DOI: 10.1016/j.vetmic.2024.110234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/16/2024] [Accepted: 08/17/2024] [Indexed: 08/27/2024]
Abstract
Equine herpesvirus 1 (EHV-1) causes respiratory illness, fetal loss, perinatal mortality, and myeloencephalopathy. This study investigated ORF15's impact on virus infectivity and neurovirulence. The Ab4p neurovirulent strain of EHV1 was used as a backbone to create Ab4p attB, Ab4p∆ORF15, and Ab4p∆ORF15R chimeras via BAC DNA transfection into RK-13 cells. Viral growth kinetics, plaque size, transcription, and growth were assessed in MDBK cells, mouse neurons, and fetal equine brain cells. Neurovirulence was evaluated post-intranasal inoculation into male CBA/N1 SPF mice, measuring signs, virus titers, and histopathological changes. Deletion of EUL45 (Ab4p-∆EUL45) reduced viral replication efficiency, resulting in decreased release and smaller plaques. EUL45 deletion also upregulated neighbouring genes (EUL46 and EUL44). Ab4p-∆EUL45 exhibited reduced virulence and poor growth in neural cells compared to wild-type viruses. This study sheds light on EUL45's role in EHV-1, viral replication, and regulation of EUL46 and EUL44 expression, suggesting potential as a vaccine candidate.
Collapse
Affiliation(s)
- Samy Kasem
- Department of Applied Veterinary Sciences, United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; Department of Virology, Faculty of Veterinary Medicine, Kafrelsheikh University, Elgeish Street, Kafr El Sheikh 33516, Egypt.
| | - Mi Htay Htay Yu
- Department of Applied Veterinary Sciences, United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Noura Alkhalefa
- Department of Virology, Faculty of Veterinary Medicine, Kafrelsheikh University, Elgeish Street, Kafr El Sheikh 33516, Egypt
| | - Emad B Ata
- Department of Parasitology and Animal Diseases, Veterinary Research Division, National Research Centre (NRC), Egypt
| | - Mohamed Nayel
- Department of Internal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Sadat City University, Egypt
| | - Walied Abdo
- Department of Pathology, Faculty of Veterinary Medicine, Kafrelsheikh University, Elgeish Street, Kafr El Sheikh 33516, Egypt
| | - Ahmed S Abdel-Moneim
- Department of Microbiology, College of Medicine, Taif University, Al-Taif 21944, Saudi Arabia.
| | - Hideto Fukushi
- Department of Applied Veterinary Sciences, United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; Laboratory of Veterinary Microbiology, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| |
Collapse
|
3
|
Wang HY, Taher H, Kreklywich CN, Schmidt KA, Scheef EA, Barfield R, Otero CE, Valencia SM, Crooks CM, Mirza A, Woods K, Burgt NV, Kowalik TF, Barry PA, Hansen SG, Tarantal AF, Chan C, Streblow DN, Picker LJ, Kaur A, Früh K, Permar SR, Malouli D. The pentameric complex is not required for vertical transmission of cytomegalovirus in seronegative pregnant rhesus macaques. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.15.545169. [PMID: 37398229 PMCID: PMC10312687 DOI: 10.1101/2023.06.15.545169] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Congenital cytomegalovirus (cCMV) infection is the leading infectious cause of neonatal neurological impairment but essential virological determinants of transplacental CMV transmission remain unclear. The pentameric complex (PC), composed of five subunits, glycoproteins H (gH), gL, UL128, UL130, and UL131A, is essential for efficient entry into non-fibroblast cells in vitro . Based on this role in cell tropism, the PC is considered a possible target for CMV vaccines and immunotherapies to prevent cCMV. To determine the role of the PC in transplacental CMV transmission in a non-human primate model of cCMV, we constructed a PC-deficient rhesus CMV (RhCMV) by deleting the homologues of the HCMV PC subunits UL128 and UL130 and compared congenital transmission to PC-intact RhCMV in CD4+ T cell-depleted or immunocompetent RhCMV-seronegative, pregnant rhesus macaques (RM). Surprisingly, we found that the transplacental transmission rate was similar for PC-intact and PC-deleted RhCMV based on viral genomic DNA detection in amniotic fluid. Moreover, PC-deleted and PC-intact RhCMV acute infection led to similar peak maternal plasma viremia. However, there was less viral shedding in maternal urine and saliva and less viral dissemination in fetal tissues in the PC-deleted group. As expected, dams inoculated with PC-deleted RhCMV demonstrated lower plasma IgG binding to PC-intact RhCMV virions and soluble PC, as well as reduced neutralization of PC-dependent entry of the PC-intact RhCMV isolate UCD52 into epithelial cells. In contrast, binding to gH expressed on the cell surface and neutralization of entry into fibroblasts by the PC-intact RhCMV was higher for dams infected with PC-deleted RhCMV compared to those infected with PC-intact RhCMV. Our data demonstrates that the PC is dispensable for transplacental CMV infection in our non-human primate model. One Sentence Summary Congenital CMV transmission frequency in seronegative rhesus macaques is not affected by the deletion of the viral pentameric complex.
Collapse
|
4
|
Dong N, Nichols H, Sun Q, Chen X, Zheng J, Guan Z, Zhang H, Davison A, Wezel Y, Li Z, Li B, Liu K, Shao D, Qiu Y, Sun J, Li X, Upton M, Ma Z, Jarvis MA, Wei J. Bovine Herpesvirus-4 Based Vaccine Provides Protective Immunity against Streptococcus suis Disease in a Rabbit Model. Vaccines (Basel) 2023; 11:vaccines11051004. [PMID: 37243109 DOI: 10.3390/vaccines11051004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Streptococcus suis (S. suis) is a bacterial pathogen of pigs that has a major animal health and economic impact on the pig industry. Bovine herpesvirus-4 (BoHV-4) is a new virus-based vaccine vector that has been used for the immunogenic delivery of antigens from a variety of pathogens. In the present study, two recombinant BoHV-4-based vectors were evaluated for their ability to induce immunity and protection against S. suis in a rabbit model. The GMD protein is a fusion protein consisting of multiple dominant B-cell epitopes ((B-cell dominant epitopes of GAPDH, MRP, and DLDH antigens) (BoHV-4/GMD)) and the second suilysin (SLY) (BoHV-4/SLY) from S. suis serotype 2 (SS2). Both GMD and SLY delivered by the BoHV-4 vectors were recognized by sera from SS2-infected rabbits. The vaccination of rabbits with the BoHV-4 vectors induced antibodies against SS2, as well as against additional S. suis serotypes, SS7 and SS9. However, sera from BoHV-4/GMD-vaccinated animals promoted a significant level of phagocytic activity by pulmonary alveolar macrophages (PAMs) against SS2, SS7, and SS9. In contrast, sera from rabbits immunized with BoHV-4/SLY induced PAM phagocytic activity against only SS2. In addition, BoHV-4 vaccines differed in the associated level of protection against lethal SS2 challenge, which ranged from high (71.4%) to low (12.5%) for BoHV-4/GMD and BoHV-4/SLY, respectively. These data suggest BoHV-4/GMD as a promising vaccine candidate against S. suis disease.
Collapse
Affiliation(s)
- Nihua Dong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China
| | - Hester Nichols
- The Vaccine Group Ltd., Derriford Research Facility, Plymouth PL6 8BX, UK
| | - Qing Sun
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China
| | - Xiaojun Chen
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China
| | - Jiayang Zheng
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China
| | - Zhixin Guan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China
| | - Hailong Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China
| | - Andrew Davison
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK
| | - Yvonne Wezel
- The Vaccine Group Ltd., Derriford Research Facility, Plymouth PL6 8BX, UK
| | - Zongjie Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China
| | - Beibei Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China
| | - Ke Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China
| | - Donghua Shao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China
| | - Yafeng Qiu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China
| | - Jianhe Sun
- Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiangdong Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Mathew Upton
- School of Biomedical Sciences, University of Plymouth, Plymouth PL4 8AA, UK
| | - Zhiyong Ma
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China
| | - Michael A Jarvis
- The Vaccine Group Ltd., Derriford Research Facility, Plymouth PL6 8BX, UK
- School of Biomedical Sciences, University of Plymouth, Plymouth PL4 8AA, UK
| | - Jianchao Wei
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China
| |
Collapse
|
5
|
Malouli D, Gilbride RM, Wu HL, Hwang JM, Maier N, Hughes CM, Newhouse D, Morrow D, Ventura AB, Law L, Tisoncik-Go J, Whitmore L, Smith E, Golez I, Chang J, Reed JS, Waytashek C, Weber W, Taher H, Uebelhoer LS, Womack JL, McArdle MR, Gao J, Papen CR, Lifson JD, Burwitz BJ, Axthelm MK, Smedley J, Früh K, Gale M, Picker LJ, Hansen SG, Sacha JB. Cytomegalovirus-vaccine-induced unconventional T cell priming and control of SIV replication is conserved between primate species. Cell Host Microbe 2022; 30:1207-1218.e7. [PMID: 35981532 PMCID: PMC9927879 DOI: 10.1016/j.chom.2022.07.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 06/01/2022] [Accepted: 07/19/2022] [Indexed: 01/26/2023]
Abstract
Strain 68-1 rhesus cytomegalovirus expressing simian immunodeficiency virus (SIV) antigens (RhCMV/SIV) primes MHC-E-restricted CD8+ T cells that control SIV replication in 50%-60% of the vaccinated rhesus macaques. Whether this unconventional SIV-specific immunity and protection is unique to rhesus macaques or RhCMV or is intrinsic to CMV remains unknown. Here, using cynomolgus CMV vectors expressing SIV antigens (CyCMV/SIV) and Mauritian cynomolgus macaques, we demonstrate that the induction of MHC-E-restricted CD8+ T cells requires matching CMV to its host species. RhCMV does not elicit MHC-E-restricted CD8+ T cells in cynomolgus macaques. However, cynomolgus macaques vaccinated with species-matched 68-1-like CyCMV/SIV mounted MHC-E-restricted CD8+ T cells, and half of the vaccinees stringently controlled SIV post-challenge. Protected animals manifested a vaccine-induced IL-15 transcriptomic signature that is associated with efficacy in rhesus macaques. These findings demonstrate that the ability of species-matched CMV vectors to elicit MHC-E-restricted CD8+ T cells that are required for anti-SIV efficacy is conserved in nonhuman primates, and these data support the development of HCMV/HIV for a prophylactic HIV vaccine.
Collapse
Affiliation(s)
- Daniel Malouli
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Roxanne M Gilbride
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Helen L Wu
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Joseph M Hwang
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Nicholas Maier
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Colette M Hughes
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Daniel Newhouse
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, WA 98109, USA
| | - David Morrow
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Abigail B Ventura
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Lynn Law
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, WA 98109, USA
| | - Jennifer Tisoncik-Go
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, WA 98109, USA
| | - Leanne Whitmore
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, WA 98109, USA
| | - Elise Smith
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, WA 98109, USA
| | - Inah Golez
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, WA 98109, USA
| | - Jean Chang
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, WA 98109, USA
| | - Jason S Reed
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Courtney Waytashek
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Whitney Weber
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Husam Taher
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Luke S Uebelhoer
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Jennie L Womack
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Matthew R McArdle
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Junwei Gao
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Courtney R Papen
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Jeffrey D Lifson
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Benjamin J Burwitz
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Michael K Axthelm
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Jeremy Smedley
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Klaus Früh
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Michael Gale
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, WA 98109, USA
| | - Louis J Picker
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Scott G Hansen
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006, USA.
| | - Jonah B Sacha
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006, USA; Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, 97006, USA.
| |
Collapse
|
6
|
Chaturvedi S, Pablo M, Wolf M, Rosas-Rivera D, Calia G, Kumar AJ, Vardi N, Du K, Glazier J, Ke R, Chan MF, Perelson AS, Weinberger LS. Disrupting autorepression circuitry generates "open-loop lethality" to yield escape-resistant antiviral agents. Cell 2022; 185:2086-2102.e22. [PMID: 35561685 PMCID: PMC9097017 DOI: 10.1016/j.cell.2022.04.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 03/01/2022] [Accepted: 04/14/2022] [Indexed: 12/27/2022]
Abstract
Across biological scales, gene-regulatory networks employ autorepression (negative feedback) to maintain homeostasis and minimize failure from aberrant expression. Here, we present a proof of concept that disrupting transcriptional negative feedback dysregulates viral gene expression to therapeutically inhibit replication and confers a high evolutionary barrier to resistance. We find that nucleic-acid decoys mimicking cis-regulatory sites act as "feedback disruptors," break homeostasis, and increase viral transcription factors to cytotoxic levels (termed "open-loop lethality"). Feedback disruptors against herpesviruses reduced viral replication >2-logs without activating innate immunity, showed sub-nM IC50, synergized with standard-of-care antivirals, and inhibited virus replication in mice. In contrast to approved antivirals where resistance rapidly emerged, no feedback-disruptor escape mutants evolved in long-term cultures. For SARS-CoV-2, disruption of a putative feedback circuit also generated open-loop lethality, reducing viral titers by >1-log. These results demonstrate that generating open-loop lethality, via negative-feedback disruption, may yield a class of antimicrobials with a high genetic barrier to resistance.
Collapse
Affiliation(s)
- Sonali Chaturvedi
- Gladstone/UCSF Center for Cell Circuitry, Gladstone Institutes, San Francisco, CA 94158, USA; Gladstone Institute of Virology, Gladstone Institutes, San Francisco, CA 94158, USA.
| | - Michael Pablo
- Gladstone/UCSF Center for Cell Circuitry, Gladstone Institutes, San Francisco, CA 94158, USA; Gladstone Institute of Virology, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Marie Wolf
- Gladstone/UCSF Center for Cell Circuitry, Gladstone Institutes, San Francisco, CA 94158, USA; Gladstone Institute of Virology, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Daniel Rosas-Rivera
- Gladstone/UCSF Center for Cell Circuitry, Gladstone Institutes, San Francisco, CA 94158, USA; Gladstone Institute of Virology, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Giuliana Calia
- Gladstone/UCSF Center for Cell Circuitry, Gladstone Institutes, San Francisco, CA 94158, USA; Gladstone Institute of Virology, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Arjun J Kumar
- Gladstone/UCSF Center for Cell Circuitry, Gladstone Institutes, San Francisco, CA 94158, USA; Gladstone Institute of Virology, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Noam Vardi
- Gladstone/UCSF Center for Cell Circuitry, Gladstone Institutes, San Francisco, CA 94158, USA; Gladstone Institute of Virology, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Kelvin Du
- Gladstone/UCSF Center for Cell Circuitry, Gladstone Institutes, San Francisco, CA 94158, USA; Gladstone Institute of Virology, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Joshua Glazier
- Gladstone/UCSF Center for Cell Circuitry, Gladstone Institutes, San Francisco, CA 94158, USA; Gladstone Institute of Virology, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Ruian Ke
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Matilda F Chan
- Francis I. Proctor Foundation, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Ophthalmology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Alan S Perelson
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Leor S Weinberger
- Gladstone/UCSF Center for Cell Circuitry, Gladstone Institutes, San Francisco, CA 94158, USA; Gladstone Institute of Virology, Gladstone Institutes, San Francisco, CA 94158, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
7
|
Verweij MC, Hansen SG, Iyer R, John N, Malouli D, Morrow D, Scholz I, Womack J, Abdulhaqq S, Gilbride RM, Hughes CM, Ventura AB, Ford JC, Selseth AN, Oswald K, Shoemaker R, Berkemeier B, Bosche WJ, Hull M, Shao J, Sacha JB, Axthelm MK, Edlefsen PT, Lifson JD, Picker LJ, Früh K. Modulation of MHC-E transport by viral decoy ligands is required for RhCMV/SIV vaccine efficacy. Science 2021; 372:eabe9233. [PMID: 33766941 PMCID: PMC8354429 DOI: 10.1126/science.abe9233] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 03/15/2021] [Indexed: 12/15/2022]
Abstract
Strain 68-1 rhesus cytomegalovirus (RhCMV) vectors expressing simian immunodeficiency virus (SIV) antigens elicit CD8+ T cells recognizing epitopes presented by major histocompatibility complex II (MHC-II) and MHC-E but not MHC-Ia. These immune responses mediate replication arrest of SIV in 50 to 60% of monkeys. We show that the peptide VMAPRTLLL (VL9) embedded within the RhCMV protein Rh67 promotes intracellular MHC-E transport and recognition of RhCMV-infected fibroblasts by MHC-E-restricted CD8+ T cells. Deletion or mutation of viral VL9 abrogated MHC-E-restricted CD8+ T cell priming, resulting in CD8+ T cell responses exclusively targeting MHC-II-restricted epitopes. These responses were comparable in magnitude and differentiation to responses elicited by 68-1 vectors but did not protect against SIV. Thus, Rh67-enabled direct priming of MHC-E-restricted T cells is crucial for RhCMV/SIV vaccine efficacy.
Collapse
Affiliation(s)
- Marieke C Verweij
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Scott G Hansen
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Ravi Iyer
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Nessy John
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Daniel Malouli
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - David Morrow
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Isabel Scholz
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Jennie Womack
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Shaheed Abdulhaqq
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Roxanne M Gilbride
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Colette M Hughes
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Abigail B Ventura
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Julia C Ford
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Andrea N Selseth
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Kelli Oswald
- AIDS and Cancer Virus Program, Frederick National Laboratory, Frederick, MD 21702, USA
| | - Rebecca Shoemaker
- AIDS and Cancer Virus Program, Frederick National Laboratory, Frederick, MD 21702, USA
| | - Brian Berkemeier
- AIDS and Cancer Virus Program, Frederick National Laboratory, Frederick, MD 21702, USA
| | - William J Bosche
- AIDS and Cancer Virus Program, Frederick National Laboratory, Frederick, MD 21702, USA
| | - Michael Hull
- AIDS and Cancer Virus Program, Frederick National Laboratory, Frederick, MD 21702, USA
| | - Jason Shao
- Population Sciences and Computational Biology Programs, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Jonah B Sacha
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Michael K Axthelm
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Paul T Edlefsen
- Population Sciences and Computational Biology Programs, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Jeffrey D Lifson
- AIDS and Cancer Virus Program, Frederick National Laboratory, Frederick, MD 21702, USA
| | - Louis J Picker
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA.
| | - Klaus Früh
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA.
| |
Collapse
|
8
|
Child SJ, Greninger AL, Geballe AP. Rapid adaptation to human protein kinase R by a unique genomic rearrangement in rhesus cytomegalovirus. PLoS Pathog 2021; 17:e1009088. [PMID: 33497413 PMCID: PMC7864422 DOI: 10.1371/journal.ppat.1009088] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/05/2021] [Accepted: 01/04/2021] [Indexed: 02/07/2023] Open
Abstract
Cytomegaloviruses (CMVs) are generally unable to cross species barriers, in part because prolonged coevolution with one host species limits their ability to evade restriction factors in other species. However, the limitation in host range is incomplete. For example, rhesus CMV (RhCMV) can replicate in human cells, albeit much less efficiently than in rhesus cells. Previously we reported that the protein kinase R (PKR) antagonist encoded by RhCMV, rTRS1, has limited activity against human PKR but is nonetheless necessary and sufficient to enable RhCMV replication in human fibroblasts (HF). We now show that knockout of PKR in human cells or treatment with the eIF2B agonist ISRIB, which overcomes the translational inhibition resulting from PKR activation, augments RhCMV replication in HF, indicating that human PKR contributes to the inefficiency of RhCMV replication in HF. Serial passage of RhCMV in HF reproducibly selected for viruses with improved ability to replicate in human cells. The evolved viruses contain an inverted duplication of the terminal 6.8 kb of the genome, including rTRS1. The duplication replaces ~11.8 kb just downstream of an internal sequence element, pac1-like, which is very similar to the pac1 cleavage and packaging signal found near the terminus of the genome. Plaque-purified evolved viruses produced at least twice as much rTRS1 as the parental RhCMV and blocked the PKR pathway more effectively in HF. Southern blots revealed that unlike the parental RhCMV, viruses with the inverted duplication isomerize in a manner similar to HCMV and other herpesviruses that have internal repeat sequences. The apparent ease with which this duplication event occurs raises the possibility that the pac1-like site, which is conserved in Old World monkey CMV genomes, may serve a function in facilitating rapid adaptation to evolutionary obstacles.
Collapse
Affiliation(s)
- Stephanie J. Child
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Alexander L. Greninger
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, United States of America
| | - Adam P. Geballe
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Departments of Medicine and Microbiology, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
9
|
Taher H, Mahyari E, Kreklywich C, Uebelhoer LS, McArdle MR, Moström MJ, Bhusari A, Nekorchuk M, E X, Whitmer T, Scheef EA, Sprehe LM, Roberts DL, Hughes CM, Jackson KA, Selseth AN, Ventura AB, Cleveland-Rubeor HC, Yue Y, Schmidt KA, Shao J, Edlefsen PT, Smedley J, Kowalik TF, Stanton RJ, Axthelm MK, Estes JD, Hansen SG, Kaur A, Barry PA, Bimber BN, Picker LJ, Streblow DN, Früh K, Malouli D. In vitro and in vivo characterization of a recombinant rhesus cytomegalovirus containing a complete genome. PLoS Pathog 2020; 16:e1008666. [PMID: 33232376 PMCID: PMC7723282 DOI: 10.1371/journal.ppat.1008666] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 12/08/2020] [Accepted: 09/30/2020] [Indexed: 02/07/2023] Open
Abstract
Cytomegaloviruses (CMVs) are highly adapted to their host species resulting in strict species specificity. Hence, in vivo examination of all aspects of CMV biology employs animal models using host-specific CMVs. Infection of rhesus macaques (RM) with rhesus CMV (RhCMV) has been established as a representative model for infection of humans with HCMV due to the close evolutionary relationships of both host and virus. However, the only available RhCMV clone that permits genetic modifications is based on the 68-1 strain which has been passaged in fibroblasts for decades resulting in multiple genomic changes due to tissue culture adaptations. As a result, 68-1 displays reduced viremia in RhCMV-naïve animals and limited shedding compared to non-clonal, low passage isolates. To overcome this limitation, we used sequence information from primary RhCMV isolates to construct a full-length (FL) RhCMV by repairing all mutations affecting open reading frames (ORFs) in the 68-1 bacterial artificial chromosome (BAC). Inoculation of adult, immunocompetent, RhCMV-naïve RM with the reconstituted virus resulted in significant viremia in the blood similar to primary isolates of RhCMV and furthermore led to high viral genome copy numbers in many tissues at day 14 post infection. In contrast, viral dissemination was greatly reduced upon deletion of genes also lacking in 68-1. Transcriptome analysis of infected tissues further revealed that chemokine-like genes deleted in 68-1 are among the most highly expressed viral transcripts both in vitro and in vivo consistent with an important immunomodulatory function of the respective proteins. We conclude that FL-RhCMV displays in vitro and in vivo characteristics of a wildtype virus while being amenable to genetic modifications through BAC recombineering techniques.
Collapse
Affiliation(s)
- Husam Taher
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Eisa Mahyari
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Craig Kreklywich
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Luke S. Uebelhoer
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Matthew R. McArdle
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Matilda J. Moström
- Tulane National Primate Research Center, Tulane University, Covington, Louisiana, United States of America
| | - Amruta Bhusari
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Michael Nekorchuk
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Xiaofei E
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Travis Whitmer
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Elizabeth A. Scheef
- Tulane National Primate Research Center, Tulane University, Covington, Louisiana, United States of America
| | - Lesli M. Sprehe
- Tulane National Primate Research Center, Tulane University, Covington, Louisiana, United States of America
| | - Dawn L. Roberts
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Colette M. Hughes
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Kerianne A. Jackson
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Andrea N. Selseth
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Abigail B. Ventura
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Hillary C. Cleveland-Rubeor
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Yujuan Yue
- Center for Comparative Medicine and Department of Medical Pathology, University of California, Davis, California, United States of America
| | - Kimberli A. Schmidt
- Center for Comparative Medicine and Department of Medical Pathology, University of California, Davis, California, United States of America
| | - Jason Shao
- Statistical Center for HIV/AIDS Research and Prevention, Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Paul T. Edlefsen
- Statistical Center for HIV/AIDS Research and Prevention, Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Jeremy Smedley
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Timothy F. Kowalik
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Richard J. Stanton
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Michael K. Axthelm
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Jacob D. Estes
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Scott G. Hansen
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Amitinder Kaur
- Tulane National Primate Research Center, Tulane University, Covington, Louisiana, United States of America
| | - Peter A. Barry
- Center for Comparative Medicine and Department of Medical Pathology, University of California, Davis, California, United States of America
| | - Benjamin N. Bimber
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Louis J. Picker
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Daniel N. Streblow
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Klaus Früh
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Daniel Malouli
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| |
Collapse
|
10
|
Repair of an Attenuated Low-Passage Murine Cytomegalovirus Bacterial Artificial Chromosome Identifies a Novel Spliced Gene Essential for Salivary Gland Tropism. J Virol 2020; 94:JVI.01456-20. [PMID: 32847854 DOI: 10.1128/jvi.01456-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 08/23/2020] [Indexed: 01/22/2023] Open
Abstract
The cloning of herpesviruses as bacterial artificial chromosomes (BACs) has revolutionized the study of herpesvirus biology, allowing rapid and precise manipulation of viral genomes. Several clinical strains of human cytomegalovirus (HCMV) have been cloned as BACs; however, no low-passage strains of murine CMV (MCMV), which provide a model mimicking these isolates, have been cloned. Here, the low-passage G4 strain of was BAC cloned. G4 carries an m157 gene that does not ligate the natural killer (NK) cell-activating receptor, Ly49H, meaning that unlike laboratory strains of MCMV, this virus replicates well in C57BL/6 mice. This BAC clone exhibited normal replication during acute infection in the spleen and liver but was attenuated for salivary gland tropism. Next-generation sequencing revealed a C-to-A mutation at nucleotide position 188422, located in the 3' untranslated region of sgg1, a spliced gene critical for salivary gland tropism. Repair of this mutation restored tropism for the salivary glands. Transcriptional analysis revealed a novel spliced gene within the sgg1 locus. This small open reading frame (ORF), sgg1.1, starts at the 3' end of the first exon of sgg1 and extends exon 2 of sgg1. This shorter spliced gene is prematurely terminated by the nonsense mutation at nt 188422. Sequence analysis of tissue culture-passaged virus demonstrated that sgg1.1 was stable, although other mutational hot spots were identified. The G4 BAC will allow in vivo studies in a broader range of mice, avoiding the strong NK cell responses seen in B6 mice with other MCMV BAC-derived MCMVs.IMPORTANCE Murine cytomegalovirus (MCMV) is widely used as a model of human CMV (HCMV) infection. However, this model relies on strains of MCMV that have been serially passaged in the laboratory for over four decades. These laboratory strains have been cloned as bacterial artificial chromosomes (BACs), which permits rapid and precise manipulation. Low-passage strains of MCMV add to the utility of the mouse model of HCMV infection but do not exist as cloned BACs. This study describes the first such low-passage MCMV BAC. This BAC-derived G4 was initially attenuated in vivo, with subsequent full genomic sequencing revealing a novel spliced transcript required for salivary gland tropism. These data suggest that MCMV, like HCMV, undergoes tissue culture adaptation that can limit in vivo growth and supports the use of BAC clones as a way of standardizing viral strains and minimizing interlaboratory strain variation.
Collapse
|
11
|
Burwitz BJ, Hashiguchi PK, Mansouri M, Meyer C, Gilbride RM, Biswas S, Womack JL, Reed JS, Wu HL, Axthelm MK, Hansen SG, Picker LJ, Früh K, Sacha JB. MHC-E-Restricted CD8 + T Cells Target Hepatitis B Virus-Infected Human Hepatocytes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 204:2169-2176. [PMID: 32161099 PMCID: PMC8109620 DOI: 10.4049/jimmunol.1900795] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 02/05/2020] [Indexed: 12/30/2022]
Abstract
Currently 247 million people are living with chronic hepatitis B virus infection (CHB), and the development of novel curative treatments is urgently needed. Immunotherapy is an attractive approach to treat CHB, yet therapeutic approaches to augment the endogenous hepatitis B virus (HBV)-specific T cell response in CHB patients have demonstrated little success. In this study, we show that strain 68-1 rhesus macaque (RM) CMV vaccine vectors expressing HBV Ags engender HBV-specific CD8+ T cells unconventionally restricted by MHC class II and the nonclassical MHC-E molecule in RM. Surface staining of human donor and RM primary hepatocytes (PH) ex vivo revealed the majority of PH expressed MHC-E but not MHC class II. HBV-specific, MHC-E-restricted CD8+ T cells from RM vaccinated with RM CMV vaccine vectors expressing HBV Ags recognized HBV-infected PH from both human donor and RM. These results provide proof-of-concept that MHC-E-restricted CD8+ T cells could be harnessed for the treatment of CHB, either through therapeutic vaccination or adoptive immunotherapy.
Collapse
Affiliation(s)
- Benjamin J Burwitz
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006; and
| | - Patrick K Hashiguchi
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006
| | - Mandana Mansouri
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006
| | | | - Roxanne M Gilbride
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006
| | - Sreya Biswas
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006
| | - Jennie L Womack
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006
| | - Jason S Reed
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006
| | - Helen L Wu
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006
| | - Michael K Axthelm
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006; and
| | - Scott G Hansen
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006; and
| | - Louis J Picker
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006; and
| | - Klaus Früh
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006;
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006; and
| | - Jonah B Sacha
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006;
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006; and
| |
Collapse
|
12
|
Abstract
: The use of cytomegalovirus (CMV) as a vaccine vector to express antigens against multiple infectious diseases, including simian immunodeficiency virus, Ebola virus, plasmodium, and mycobacterium tuberculosis, in rhesus macaques has generated extraordinary levels of protective immunity against subsequent pathogenic challenge. Moreover, the mechanisms of immune protection have altered paradigms about viral vector-mediated immunity against ectopically expressed vaccine antigens. Further optimization of CMV-vectored vaccines, particularly as this approach moves to human clinical trials will be augmented by a more complete understanding of how CMV engenders mechanisms of immune protection. This review summarizes the particulars of the specific CMV vaccine vector that has been used to date (rhesus CMV strain 68-1) in relation to CMV natural history.
Collapse
|
13
|
Zhang H, Read C, Nguyen CC, Siddiquey MNA, Shang C, Hall CM, von Einem J, Kamil JP. The Human Cytomegalovirus Nonstructural Glycoprotein UL148 Reorganizes the Endoplasmic Reticulum. mBio 2019; 10:e02110-19. [PMID: 31822584 PMCID: PMC6904874 DOI: 10.1128/mbio.02110-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 10/29/2019] [Indexed: 12/17/2022] Open
Abstract
Human cytomegalovirus (HCMV) encodes an endoplasmic reticulum (ER)-resident glycoprotein, UL148, which activates the unfolded protein response (UPR) but is fully dispensable for viral replication in cultured cells. Hence, its previously ascribed roles in immune evasion and modulation of viral cell tropism are hypothesized to cause ER stress. Here, we show that UL148 is necessary and sufficient to drive the formation of prominent ER-derived structures that on average occupy 5% of the infected cell cytoplasm. The structures are sites where UL148 coalesces with cellular proteins involved in ER quality control, such as HRD1 and EDEM1. Electron microscopy revealed that cells infected with wild-type but not UL148-null HCMV show prominent accumulations of densely packed ruffled ER membranes which connect to distended cisternae of smooth and partially rough ER. During ectopic expression of UL148-green fluorescent protein (GFP) fusion protein, punctate signals traffic to accumulate at conspicuous structures. The structures exhibit poor recovery of fluorescence after photobleaching, which suggests that their contents are poorly mobile and do not efficiently exchange with the rest of the ER. Small-molecule blockade of the integrated stress response (ISR) prevents the formation of puncta, leading to a uniform reticular fluorescent signal. Accordingly, ISR inhibition during HCMV infection abolishes the coalescence of UL148 and HRD1 into discrete structures, which argues that UL148 requires the ISR to cause ER reorganization. Given that UL148 stabilizes immature forms of a receptor binding subunit for a viral envelope glycoprotein complex important for HCMV infectivity, our results imply that stress-dependent ER remodeling contributes to viral cell tropism.IMPORTANCE Perturbations to endoplasmic reticulum (ER) morphology occur during infection with various intracellular pathogens and in certain genetic disorders. We identify that a human cytomegalovirus (HCMV) gene product, UL148, profoundly reorganizes the ER during infection and is sufficient to do so when expressed on its own. Our results reveal that UL148-dependent reorganization of the ER is a prominent feature of HCMV-infected cells. Moreover, we find that this example of virally induced organelle remodeling requires the integrated stress response (ISR), a stress adaptation pathway that contributes to a number of disease states. Since ER reorganization accompanies roles of UL148 in modulation of HCMV cell tropism and in evasion of antiviral immune responses, our results may have implications for understanding the mechanisms involved. Furthermore, our findings provide a basis to utilize UL148 as a tool to investigate organelle responses to stress and to identify novel drugs targeting the ISR.
Collapse
Affiliation(s)
- Hongbo Zhang
- Department of Microbiology and Immunology, LSU Health Sciences Center, Shreveport, Louisiana, USA
| | - Clarissa Read
- Institute of Virology, Ulm University Medical Center, Ulm, Germany
- Central Facility for Electron Microscopy, Ulm University, Ulm, Germany
| | - Christopher C Nguyen
- Department of Microbiology and Immunology, LSU Health Sciences Center, Shreveport, Louisiana, USA
| | - Mohammed N A Siddiquey
- Department of Microbiology and Immunology, LSU Health Sciences Center, Shreveport, Louisiana, USA
| | - Chaowei Shang
- Research Core Facility, LSU Health Sciences Center, Shreveport, Louisiana, USA
| | - Cameron M Hall
- Department of Microbiology and Immunology, LSU Health Sciences Center, Shreveport, Louisiana, USA
| | - Jens von Einem
- Institute of Virology, Ulm University Medical Center, Ulm, Germany
| | - Jeremy P Kamil
- Department of Microbiology and Immunology, LSU Health Sciences Center, Shreveport, Louisiana, USA
- Center for Molecular and Tumor Virology, LSU Health Sciences Center, Shreveport, Louisiana, USA
| |
Collapse
|
14
|
Marshall EE, Malouli D, Hansen SG, Gilbride RM, Hughes CM, Ventura AB, Ainslie E, Selseth AN, Ford JC, Burke D, Kreklywich CN, Womack J, Legasse AW, Axthelm MK, Kahl C, Streblow D, Edlefsen PT, Picker LJ, Früh K. Enhancing safety of cytomegalovirus-based vaccine vectors by engaging host intrinsic immunity. Sci Transl Med 2019; 11:eaaw2603. [PMID: 31316006 PMCID: PMC6830438 DOI: 10.1126/scitranslmed.aaw2603] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 03/14/2019] [Accepted: 06/13/2019] [Indexed: 12/29/2022]
Abstract
Rhesus cytomegalovirus (RhCMV)-based vaccines maintain effector memory T cell responses (TEM) that protect ~50% of rhesus monkeys (RMs) challenged with simian immunodeficiency virus (SIV). Because human CMV (HCMV) causes disease in immunodeficient subjects, clinical translation will depend upon attenuation strategies that reduce pathogenic potential without sacrificing CMV's unique immunological properties. We demonstrate that "intrinsic" immunity can be used to attenuate strain 68-1 RhCMV vectors without impairment of immunogenicity. The tegument proteins pp71 and UL35 encoded by UL82 and UL35 of HCMV counteract cell-intrinsic restriction via degradation of host transcriptional repressors. When the corresponding RhCMV genes, Rh110 and Rh59, were deleted from 68-1 RhCMV (ΔRh110 and ΔRh59), we observed only a modest growth defect in vitro, but in vivo, these modified vectors manifested little to no amplification at the injection site and dissemination to distant sites, in contrast to parental 68-1 RhCMV. ΔRh110 was not shed at any time after infection and was not transmitted to naïve hosts either by close contact (mother to infant) or by leukocyte transfusion. In contrast, ΔRh59 was both shed and transmitted by leukocyte transfusion, indicating less effective attenuation than pp71 deletion. The T cell immunogenicity of ΔRh110 was essentially identical to 68-1 RhCMV with respect to magnitude, TEM phenotype, epitope targeting, and durability. Thus, pp71 deletion preserves CMV vector immunogenicity while stringently limiting vector spread, making pp71 deletion an attractive attenuation strategy for HCMV vectors.
Collapse
Affiliation(s)
- Emily E Marshall
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Daniel Malouli
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Scott G Hansen
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Roxanne M Gilbride
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Colette M Hughes
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Abigail B Ventura
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Emily Ainslie
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Andrea N Selseth
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Julia C Ford
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - David Burke
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Craig N Kreklywich
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Jennie Womack
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Alfred W Legasse
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Michael K Axthelm
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Christoph Kahl
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Daniel Streblow
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Paul T Edlefsen
- Statistical Center for HIV/AIDS Research and Prevention, Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Louis J Picker
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA.
| | - Klaus Früh
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA.
| |
Collapse
|
15
|
Hansen SG, Womack J, Scholz I, Renner A, Edgel KA, Xu G, Ford JC, Grey M, St Laurent B, Turner JM, Planer S, Legasse AW, Richie TL, Aguiar JC, Axthelm MK, Villasante ED, Weiss W, Edlefsen PT, Picker LJ, Früh K. Cytomegalovirus vectors expressing Plasmodium knowlesi antigens induce immune responses that delay parasitemia upon sporozoite challenge. PLoS One 2019; 14:e0210252. [PMID: 30673723 PMCID: PMC6343944 DOI: 10.1371/journal.pone.0210252] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 12/19/2018] [Indexed: 12/12/2022] Open
Abstract
The development of a sterilizing vaccine against malaria remains one of the highest priorities for global health research. While sporozoite vaccines targeting the pre-erythrocytic stage show great promise, it has not been possible to maintain efficacy long-term, likely due to an inability of these vaccines to maintain effector memory T cell responses in the liver. Vaccines based on human cytomegalovirus (HCMV) might overcome this limitation since vectors based on rhesus CMV (RhCMV), the homologous virus in rhesus macaques (RM), elicit and indefinitely maintain high frequency, non-exhausted effector memory T cells in extralymphoid tissues, including the liver. Moreover, RhCMV strain 68-1 elicits CD8+ T cells broadly recognizing unconventional epitopes exclusively restricted by MHC-II and MHC-E. To evaluate the potential of these unique immune responses to protect against malaria, we expressed four Plasmodium knowlesi (Pk) antigens (CSP, AMA1, SSP2/TRAP, MSP1c) in RhCMV 68-1 or in Rh189-deleted 68-1, which additionally elicits canonical MHC-Ia-restricted CD8+ T cells. Upon inoculation of RM with either of these Pk Ag expressing RhCMV vaccines, we obtained T cell responses to each of the four Pk antigens. Upon challenge with Pk sporozoites we observed a delayed appearance of blood stage parasites in vaccinated RM consistent with a 75-80% reduction of parasite release from the liver. Moreover, the Rh189-deleted RhCMV/Pk vectors elicited sterile protection in one RM. Once in the blood, parasite growth was not affected. In contrast to T cell responses induced by Pk infection, RhCMV vectors maintained sustained T cell responses to all four malaria antigens in the liver post-challenge. The delayed appearance of blood stage parasites is thus likely due to a T cell-mediated inhibition of liver stage parasite development. As such, this vaccine approach can be used to efficiently test new T cell antigens, improve current vaccines targeting the liver stage and complement vaccines targeting erythrocytic antigens.
Collapse
Affiliation(s)
- Scott G Hansen
- Oregon Health & Science University, Vaccine & Gene Therapy Institute, Beaverton, OR, United States of America
- Oregon Health & Science University, Oregon National Primate Research Center, Beaverton, OR, United States of America
| | - Jennie Womack
- Oregon Health & Science University, Vaccine & Gene Therapy Institute, Beaverton, OR, United States of America
| | - Isabel Scholz
- Oregon Health & Science University, Vaccine & Gene Therapy Institute, Beaverton, OR, United States of America
| | - Andrea Renner
- US Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, MD, United States of America
| | - Kimberly A Edgel
- US Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, MD, United States of America
| | - Guangwu Xu
- Oregon Health & Science University, Vaccine & Gene Therapy Institute, Beaverton, OR, United States of America
| | - Julia C Ford
- Oregon Health & Science University, Vaccine & Gene Therapy Institute, Beaverton, OR, United States of America
| | - Mikayla Grey
- Oregon Health & Science University, Vaccine & Gene Therapy Institute, Beaverton, OR, United States of America
| | - Brandyce St Laurent
- National Institutes of Health, Laboratory of Malaria and Vector Research, Malaria Pathogenesis and Human Immunity Unit, Rockville, MD, United States of America
| | - John M Turner
- Oregon Health & Science University, Oregon National Primate Research Center, Beaverton, OR, United States of America
| | - Shannon Planer
- Oregon Health & Science University, Oregon National Primate Research Center, Beaverton, OR, United States of America
| | - Al W Legasse
- Oregon Health & Science University, Oregon National Primate Research Center, Beaverton, OR, United States of America
| | - Thomas L Richie
- US Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, MD, United States of America
| | - Joao C Aguiar
- US Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, MD, United States of America
| | - Michael K Axthelm
- Oregon Health & Science University, Vaccine & Gene Therapy Institute, Beaverton, OR, United States of America
- Oregon Health & Science University, Oregon National Primate Research Center, Beaverton, OR, United States of America
| | - Eileen D Villasante
- US Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, MD, United States of America
| | - Walter Weiss
- US Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, MD, United States of America
| | - Paul T Edlefsen
- Statistical Center for HIV/AIDS Research and Prevention, Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - Louis J Picker
- Oregon Health & Science University, Vaccine & Gene Therapy Institute, Beaverton, OR, United States of America
- Oregon Health & Science University, Oregon National Primate Research Center, Beaverton, OR, United States of America
| | - Klaus Früh
- Oregon Health & Science University, Vaccine & Gene Therapy Institute, Beaverton, OR, United States of America
- Oregon Health & Science University, Oregon National Primate Research Center, Beaverton, OR, United States of America
| |
Collapse
|
16
|
Grzesik P, Ko N, Oldfield LM, Vashee S, Desai PJ. Rapid and efficient in vitro excision of BAC sequences from herpesvirus genomes using Cre-mediated recombination. J Virol Methods 2018; 261:67-70. [PMID: 30092252 DOI: 10.1016/j.jviromet.2018.08.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 08/02/2018] [Accepted: 08/04/2018] [Indexed: 01/09/2023]
Abstract
Cre-mediated recombination is a widely used technique for the re-arrangement of DNA sequences that are bracketed by loxP recognition sites. This bacteriophage P1 enzyme is commonly used to excise the bacterial artificial chromosome (BAC) sequence, a vector sequence used for large herpesvirus genomes for the purposes of propagation and manipulation in Escherichia coli. Most methods utilize cell lines that can be induced for the expression of Cre enzyme to facilitate this excision. In addition, methods have been developed that express Cre from the virus genome and enable auto-excision of the BAC plasmid. We report a versatile and rapid in vitro method based on purified Cre enzyme to carry out the same process in a test tube and does not require cell line generation or cloning into the virus genome. This method greatly increases the repertoire of methods available to modify the genome prior to reconstitution of virus infectivity in a mammalian host.
Collapse
Affiliation(s)
- Peter Grzesik
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nathan Ko
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lauren M Oldfield
- Department of Synthetic Biology and Bioenergy, J. Craig Venter Institute, 9605 Medical Center Drive, Rockville, MD, USA
| | - Sanjay Vashee
- Department of Synthetic Biology and Bioenergy, J. Craig Venter Institute, 9605 Medical Center Drive, Rockville, MD, USA
| | - Prashant J Desai
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
17
|
Antagonism of the Protein Kinase R Pathway in Human Cells by Rhesus Cytomegalovirus. J Virol 2018; 92:JVI.01793-17. [PMID: 29263260 DOI: 10.1128/jvi.01793-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 12/12/2017] [Indexed: 01/19/2023] Open
Abstract
While cytomegalovirus (CMV) infections are often limited in host range by lengthy coevolution with a single host species, a few CMVs are known to deviate from this rule. For example, rhesus macaque CMV (RhCMV), a model for human CMV (HCMV) pathogenesis and vaccine development, can replicate in human cells, as well as in rhesus cells. Both HCMV and RhCMV encode species-specific antagonists of the broadly acting host cell restriction factor protein kinase R (PKR). Although the RhCMV antagonist of PKR, rTRS1, has very limited activity against human PKR, here, we show it is essential for RhCMV replication in human cells because it prevents human PKR from phosphorylating the translation initiation factor eIF2α, thereby allowing continued translation and viral replication. Although rTRS1 is necessary for RhCMV replication, it is not sufficient to rescue replication of HCMV lacking its own PKR antagonists in human fibroblasts. However, overexpression of rTRS1 in human fibroblasts enabled HCMV expressing rTRS1 to replicate, indicating that elevated levels or early expression of a weak antagonist can counteract a resistant restriction factor like human PKR. Exploring potential mechanisms that might allow RhCMV to replicate in human cells revealed that RhCMV makes no less double-stranded RNA than HCMV. Rather, in human cells, RhCMV expresses rTRS1 at levels 2 to 3 times higher than those of the HCMV-encoded PKR antagonists during HCMV infection. These data suggest that even a modest increase in expression of this weak PKR antagonist is sufficient to enable RhCMV replication in human cells.IMPORTANCE Rhesus macaque cytomegalovirus (RhCMV) offers a valuable model for studying congenital human cytomegalovirus (HCMV) pathogenesis and vaccine development. Therefore, it is critical to understand variations in how each virus infects and affects its host species to be able to apply insights gained from the RhCMV model to HCMV. While HCMV is capable only of infecting cells from humans and very closely related species, RhCMV displays a wider host range, including human as well as rhesus cells. RhCMV expresses an antagonist of a broadly acting antiviral factor present in all mammalian cells, and its ability to counter both the rhesus and human versions of this host factor is a key component of RhCMV's ability to cross species barriers. Here, we examine the molecular mechanisms that allow this RhCMV antagonist to function against a human restriction factor.
Collapse
|
18
|
Cicin-Sain L, Arens R. Exhaustion and Inflation at Antipodes of T Cell Responses to Chronic Virus Infection. Trends Microbiol 2017; 26:498-509. [PMID: 29249600 DOI: 10.1016/j.tim.2017.11.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 11/22/2017] [Accepted: 11/30/2017] [Indexed: 12/21/2022]
Abstract
Viruses that have coevolved with their host establish chronic infections that are well tolerated by the host. Other viruses, that are partly adapted to their host, may induce chronic infections where persistent replication and viral antigen expression occur. The former induce highly functional and resilient CD8T cell responses called memory inflation. The latter induce dysfunctional and exhausted responses. The reasons compelling T cell responses towards inflationary or exhausted responses are only partly understood. In this review we compare the two conditions and describe mechanistic similarities and differences. We also provide a list of potential reasons why exhaustion or inflation occur in different virus infections. We propose that T cell-mediated transcriptional repression of viral gene expression provides a critical feature of inflation that allows peaceful virus and host coexistence. The virus is controlled, but its genome is not eradicated. If this mechanism is not available, as in the case of RNA viruses, the virus and the host are compelled to an arms race. If virus proliferation and spread proceed uncontrolled for too long, T cells are forced to strike a balance between viral control and tissue destruction, losing antiviral potency and facilitating virus persistence.
Collapse
Affiliation(s)
- Luka Cicin-Sain
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany; Institute for Virology, Medical School Hannover, Hannover, Germany; German Center for Infection Research (DZIF), Partner site Hannover/Braunschweig, Germany.
| | - Ramon Arens
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
19
|
Chang WLW, Gonzalez DF, Kieu HT, Castillo LD, Messaoudi I, Shen X, Tomaras GD, Shacklett BL, Barry PA, Sparger EE. Changes in Circulating B Cell Subsets Associated with Aging and Acute SIV Infection in Rhesus Macaques. PLoS One 2017; 12:e0170154. [PMID: 28095513 PMCID: PMC5240950 DOI: 10.1371/journal.pone.0170154] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 12/29/2016] [Indexed: 12/21/2022] Open
Abstract
Aging and certain viral infections can negatively impact humoral responses in humans. To further develop the nonhuman primate (NHP) model for investigating B cell dynamics in human aging and infectious disease, a flow cytometric panel was developed to characterize circulating rhesus B cell subsets. Significant differences between human and macaque B cells included the proportions of cells within IgD+ and switched memory populations and a prominent CD21-CD27+ unswitched memory population detected only in macaques. We then utilized the expanded panel to analyze B cell alterations associated with aging and acute simian immunodeficiency virus (SIV) infection in the NHP model. In the aging study, distinct patterns of B cell subset frequencies were observed for macaques aged one to five years compared to those between ages 5 and 30 years. In the SIV infection study, B cell frequencies and absolute number were dramatically reduced following acute infection, but recovered within four weeks of infection. Thereafter, the frequencies of activated memory B cells progressively increased; these were significantly correlated with the magnitude of SIV-specific IgG responses, and coincided with impaired maturation of anti-SIV antibody avidity, as previously reported for HIV-1 infection. These observations further validate the NHP model for investigation of mechanisms responsible for B cells alterations associated with immunosenescence and infectious disease.
Collapse
Affiliation(s)
- W. L. William Chang
- Center for Comparative Medicine, University of California Davis, Davis, California, United States of America
- * E-mail:
| | - Denise F. Gonzalez
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
| | - Hung T. Kieu
- Center for Comparative Medicine, University of California Davis, Davis, California, United States of America
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
| | - Luis D. Castillo
- Center for Comparative Medicine, University of California Davis, Davis, California, United States of America
| | - Ilhem Messaoudi
- Department of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, California, United States of America
| | - Xiaoying Shen
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Georgia D. Tomaras
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Barbara L. Shacklett
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, Davis, California, United States of America
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of California Davis, Davis, California, United States of America
| | - Peter A. Barry
- Center for Comparative Medicine, University of California Davis, Davis, California, United States of America
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California Davis, Davis, California, United States of America
- California National Primate Research Center, University of California Davis, Davis, California, United States of America
| | - Ellen E. Sparger
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
| |
Collapse
|
20
|
Burwitz BJ, Malouli D, Bimber BN, Reed JS, Ventura AB, Hancock MH, Uebelhoer LS, Bhusari A, Hammond KB, Espinosa Trethewy RG, Klug A, Legasse AW, Axthelm MK, Nelson JA, Park BS, Streblow DN, Hansen SG, Picker LJ, Früh K, Sacha JB. Cross-Species Rhesus Cytomegalovirus Infection of Cynomolgus Macaques. PLoS Pathog 2016; 12:e1006014. [PMID: 27829026 PMCID: PMC5102353 DOI: 10.1371/journal.ppat.1006014] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 10/20/2016] [Indexed: 12/14/2022] Open
Abstract
Cytomegaloviruses (CMV) are highly species-specific due to millennia of co-evolution and adaptation to their host, with no successful experimental cross-species infection in primates reported to date. Accordingly, full genome phylogenetic analysis of multiple new CMV field isolates derived from two closely related nonhuman primate species, Indian-origin rhesus macaques (RM) and Mauritian-origin cynomolgus macaques (MCM), revealed distinct and tight lineage clustering according to the species of origin, with MCM CMV isolates mirroring the limited genetic diversity of their primate host that underwent a population bottleneck 400 years ago. Despite the ability of Rhesus CMV (RhCMV) laboratory strain 68-1 to replicate efficiently in MCM fibroblasts and potently inhibit antigen presentation to MCM T cells in vitro, RhCMV 68-1 failed to productively infect MCM in vivo, even in the absence of host CD8+ T and NK cells. In contrast, RhCMV clone 68-1.2, genetically repaired to express the homologues of the HCMV anti-apoptosis gene UL36 and epithelial cell tropism genes UL128 and UL130 absent in 68-1, efficiently infected MCM as evidenced by the induction of transgene-specific T cells and virus shedding. Recombinant variants of RhCMV 68-1 and 68-1.2 revealed that expression of either UL36 or UL128 together with UL130 enabled productive MCM infection, indicating that multiple layers of cross-species restriction operate even between closely related hosts. Cumulatively, these results implicate cell tropism and evasion of apoptosis as critical determinants of CMV transmission across primate species barriers, and extend the macaque model of human CMV infection and immunology to MCM, a nonhuman primate species with uniquely simplified host immunogenetics.
Collapse
Affiliation(s)
- Benjamin J. Burwitz
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Daniel Malouli
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Benjamin N. Bimber
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Jason S. Reed
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Abigail B. Ventura
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Meaghan H. Hancock
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Luke S. Uebelhoer
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Amruta Bhusari
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Katherine B. Hammond
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Renee G. Espinosa Trethewy
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Alex Klug
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Alfred W. Legasse
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Michael K. Axthelm
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Jay A. Nelson
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Byung S. Park
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Daniel N. Streblow
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Scott G. Hansen
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Louis J. Picker
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Klaus Früh
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Jonah B. Sacha
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, United States of America
- * E-mail:
| |
Collapse
|
21
|
Sturgill ER, Malouli D, Hansen SG, Burwitz BJ, Seo S, Schneider CL, Womack JL, Verweij MC, Ventura AB, Bhusari A, Jeffries KM, Legasse AW, Axthelm MK, Hudson AW, Sacha JB, Picker LJ, Früh K. Natural Killer Cell Evasion Is Essential for Infection by Rhesus Cytomegalovirus. PLoS Pathog 2016; 12:e1005868. [PMID: 27580123 PMCID: PMC5006984 DOI: 10.1371/journal.ppat.1005868] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 08/12/2016] [Indexed: 02/06/2023] Open
Abstract
The natural killer cell receptor NKG2D activates NK cells by engaging one of several ligands (NKG2DLs) belonging to either the MIC or ULBP families. Human cytomegalovirus (HCMV) UL16 and UL142 counteract this activation by retaining NKG2DLs and US18 and US20 act via lysomal degradation but the importance of NK cell evasion for infection is unknown. Since NKG2DLs are highly conserved in rhesus macaques, we characterized how NKG2DL interception by rhesus cytomegalovirus (RhCMV) impacts infection in vivo. Interestingly, RhCMV lacks homologs of UL16 and UL142 but instead employs Rh159, the homolog of UL148, to prevent NKG2DL surface expression. Rh159 resides in the endoplasmic reticulum and retains several NKG2DLs whereas UL148 does not interfere with NKG2DL expression. Deletion of Rh159 releases human and rhesus MIC proteins, but not ULBPs, from retention while increasing NK cell stimulation by infected cells. Importantly, RhCMV lacking Rh159 cannot infect CMV-naïve animals unless CD8+ cells, including NK cells, are depleted. However, infection can be rescued by replacing Rh159 with HCMV UL16 suggesting that Rh159 and UL16 perform similar functions in vivo. We therefore conclude that cytomegaloviral interference with NK cell activation is essential to establish but not to maintain chronic infection. Natural killer (NK) cells are an important subset of the innate immune system that rapidly responds to cellular transformation and infection. The importance of NK cell control of viral infection is dramatically illustrated by our results revealing that cytomegalovirus (CMV) is unable to establish infections in healthy individuals unless NK cell responses are subverted. By studying infection of rhesus macaques with rhesus CMV, a highly representative animal model for human CMV, we identified a key viral factor that allows RhCMV to limit NK cell activation by preventing NK cell activating ligands from trafficking to the cell surface. Importantly, we observed that this avoidance of NK cell activation is essential to establish infection in vivo because RhCMV lacking the NK cell evasion factor was unable to infect animals unless NK cells were depleted. By unmasking such viral stealth strategies it might be possible to harness innate immunity to prevent viral infection, the primary goal of CMV vaccine development.
Collapse
Affiliation(s)
- Elizabeth R. Sturgill
- Vaccine and Gene Therapy Institute, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Daniel Malouli
- Vaccine and Gene Therapy Institute, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Scott G. Hansen
- Vaccine and Gene Therapy Institute, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Benjamin J. Burwitz
- Vaccine and Gene Therapy Institute, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Seongkyung Seo
- Vaccine and Gene Therapy Institute, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Christine L. Schneider
- Department of Life Sciences, Carroll University, Waukesha, Wisconsin, United States of America
| | - Jennie L. Womack
- Vaccine and Gene Therapy Institute, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Marieke C. Verweij
- Vaccine and Gene Therapy Institute, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Abigail B. Ventura
- Vaccine and Gene Therapy Institute, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Amruta Bhusari
- Vaccine and Gene Therapy Institute, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Krystal M. Jeffries
- Vaccine and Gene Therapy Institute, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Alfred W. Legasse
- Vaccine and Gene Therapy Institute, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Michael K. Axthelm
- Vaccine and Gene Therapy Institute, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Amy W. Hudson
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Jonah B. Sacha
- Vaccine and Gene Therapy Institute, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Louis J. Picker
- Vaccine and Gene Therapy Institute, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Klaus Früh
- Vaccine and Gene Therapy Institute, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, United States of America
- * E-mail:
| |
Collapse
|
22
|
Targeted Mutagenesis of Guinea Pig Cytomegalovirus Using CRISPR/Cas9-Mediated Gene Editing. J Virol 2016; 90:6989-6998. [PMID: 27226370 DOI: 10.1128/jvi.00139-16] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 05/17/2016] [Indexed: 12/20/2022] Open
Abstract
UNLABELLED The cytomegaloviruses (CMVs) are among the most genetically complex mammalian viruses, with viral genomes that often exceed 230 kbp. Manipulation of cytomegalovirus genomes is largely performed using infectious bacterial artificial chromosomes (BACs), which necessitates the maintenance of the viral genome in Escherichia coli and successful reconstitution of virus from permissive cells after transfection of the BAC. Here we describe an alternative strategy for the mutagenesis of guinea pig cytomegalovirus that utilizes clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9)-mediated genome editing to introduce targeted mutations to the viral genome. Transient transfection and drug selection were used to restrict lytic replication of guinea pig cytomegalovirus to cells that express Cas9 and virus-specific guide RNA. The result was highly efficient editing of the viral genome that introduced targeted insertion or deletion mutations to nonessential viral genes. Cotransfection of multiple virus-specific guide RNAs or a homology repair template was used for targeted, markerless deletions of viral sequence or to introduce exogenous sequence by homology-driven repair. As CRISPR/Cas9 mutagenesis occurs directly in infected cells, this methodology avoids selective pressures that may occur during propagation of the viral genome in bacteria and may facilitate genetic manipulation of low-passage or clinical CMV isolates. IMPORTANCE The cytomegalovirus genome is complex, and viral adaptations to cell culture have complicated the study of infection in vivo Recombineering of viral bacterial artificial chromosomes enabled the study of recombinant cytomegaloviruses. Here we report the development of an alternative approach using CRISPR/Cas9-based mutagenesis in guinea pig cytomegalovirus, a small-animal model of congenital cytomegalovirus disease. CRISPR/Cas9 mutagenesis can introduce the same types of mutations to the viral genome as bacterial artificial chromosome recombineering but does so directly in virus-infected cells. CRISPR/Cas9 mutagenesis is not dependent on a bacterial intermediate, and defined viral mutants can be recovered after a limited number of viral genome replications, minimizing the risk of spontaneous mutation.
Collapse
|
23
|
Deere JD, Chang WLW, Castillo LD, Schmidt KA, Kieu HT, Renzette N, Kowalik T, Barthold SW, Shacklett BL, Barry PA, Sparger EE. Utilizing a TLR5-Adjuvanted Cytomegalovirus as a Lentiviral Vaccine in the Nonhuman Primate Model for AIDS. PLoS One 2016; 11:e0155629. [PMID: 27182601 PMCID: PMC4868283 DOI: 10.1371/journal.pone.0155629] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 05/01/2016] [Indexed: 01/09/2023] Open
Abstract
Despite tremendous progress in our understanding of human immunodeficiency virus (HIV) natural history and advances in HIV treatment, there is neither an approved vaccine nor a cure for infection. Here, we describe the development and characterization of a novel replicating vaccine vector utilizing Cytomegalovirus (CMV) and a TLR5 adjuvant. After partial truncation of the central, immunodominant hypervariable domain, flagellin (fliC) from Salmonella was cloned downstream of a codon optimized gag gene from simian immunodeficiency virus (SIV) and transiently expressed in telomerized rhesus fibroblast (TeloRF) cells in culture. Lysates generated from these transfected cells induced the tumor necrosis factor alpha (TNF-α), in a mouse macrophage cell line, in a TLR5-dependent manner. The Gag/FliC expression construct was cloned into a bacterial artificial chromosome encoding the rhesus CMV (RhCMV) genome, and infectious RhCMV was generated following transfection of TeloRF cells. This virus stably expressed an SIV Gag/FliC fusion protein through four serial passages. Lysates generated from infected cells induced TNF-α in a TLR5-dependent manner. Western blot analysis of infected cell lysates verified expression of a Gag/FliC fusion protein using a SIV p27 capsid monoclonal antibody. Lastly, rhesus macaques inoculated with this novel RhCMV virus demonstrated increased inflammatory responses at the site of inoculation seven days post-infection when compared to the parental RhCMV. These results demonstrate that an artificially constructed replicating RhCMV expressing an SIV Gag/FliC fusion protein is capable of activating TLR5 in a macrophage cell line in vitro and induction of an altered inflammatory response in vivo. Ongoing animals studies are aimed at determining vaccine efficacy, including subsequent challenge with pathogenic SIV.
Collapse
Affiliation(s)
- Jesse D. Deere
- Center for Comparative Medicine, University of California Davis, Davis, California, United States of America
| | - W. L. William Chang
- Center for Comparative Medicine, University of California Davis, Davis, California, United States of America
| | - Luis D. Castillo
- Center for Comparative Medicine, University of California Davis, Davis, California, United States of America
| | - Kim A. Schmidt
- Center for Comparative Medicine, University of California Davis, Davis, California, United States of America
| | - Hung T. Kieu
- Department of Veterinary Medicine and Epidemiology, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
| | - Nicholas Renzette
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Timothy Kowalik
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Stephen W. Barthold
- Department of Veterinary Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
| | - Barbara L. Shacklett
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, Davis, California, United States of America
| | - Peter A. Barry
- Center for Comparative Medicine, University of California Davis, Davis, California, United States of America
- * E-mail: (PAB); (EES)
| | - Ellen E. Sparger
- Department of Veterinary Medicine and Epidemiology, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
- * E-mail: (PAB); (EES)
| |
Collapse
|
24
|
Yue Y, Kaur A, Lilja A, Diamond DJ, Walter MR, Barry PA. The susceptibility of primary cultured rhesus macaque kidney epithelial cells to rhesus cytomegalovirus strains. J Gen Virol 2016; 97:1426-1438. [PMID: 26974598 DOI: 10.1099/jgv.0.000455] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Kidney epithelial cells are common targets for human and rhesus cytomegalovirus (HCMV and RhCMV) in vivo, and represent an important reservoir for long-term CMV shedding in urine. To better understand the role of kidney epithelial cells in primate CMV natural history, primary cultures of rhesus macaque kidney epithelial cells (MKE) were established and tested for infectivity by five RhCMV strains, including two wild-type strains (UCD52 and UCD59) and three strains containing different coding contents in UL/b'. The latter strains included 180.92 [containing an intact RhUL128-RhUL130-R hUL131 (RhUL128L) locus but deleted for the UL/b' RhUL148-rh167-loci], 68-1 (RhUL128L-defective and fibroblast-tropic) and BRh68-1.2 (the RhUL128L-repaired version of 68-1). As demonstrated by RhCMV cytopathic effect, plaque formation, growth kinetics and early virus entry, we showed that MKE were differentially susceptible to RhCMV infection, related to UL/b' coding contents of the different strains. UCD52 and UCD59 replicated vigorously in MKE, 68-1 replicated poorly, and 180.92 grew with intermediate kinetics. Reconstitution of RhUL128L in 68-1 (BRh68-1.2) restored its replication efficiency in MKE as compared to UCD52 and UCD59, consistent with the essential role of UL128L for HCMV epithelial tropism. Further analysis revealed that the UL/b' UL148-rh167-loci deletion in 180.92 impaired RhUL132 (rh160) expression. Given that 180.92 retains an intact RhUL128L, but genetically or functionally lacks genes from RhUL132 (rh160) to rh167 in UL/b', its attenuated infection efficiency indicated that, along with RhUL128L, an additional protein(s) encoded within the UL/b' RhUL132 (rh160)-rh167 region (potentially, RhUL132 and/or RhUL148) is indispensable for efficient replication in MKE.
Collapse
Affiliation(s)
- Yujuan Yue
- Center for Comparative Medicine, University of California, Davis, CA, USA
| | - Amitinder Kaur
- Department of Immunology, Tulane National Primate Research Center, Tulane University, Covington, LA, USA
| | - Anders Lilja
- Hookipa Biotech AG, Helmut-Qualtinger-Gasse 2, Vienna, Austria.,Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, NJ 08544, USA
| | - Don J Diamond
- Division of Translational Vaccine Research, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | - Mark R Walter
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Peter A Barry
- Center for Comparative Medicine, University of California, Davis, CA, USA.,Department of Pathology and Laboratory Medicine, University of California, Davis, CA, USA.,California National Primate Research Center, University of California, Davis, CA, USA
| |
Collapse
|
25
|
Cytomegalovirus-based vaccine expressing Ebola virus glycoprotein protects nonhuman primates from Ebola virus infection. Sci Rep 2016; 6:21674. [PMID: 26876974 PMCID: PMC4753684 DOI: 10.1038/srep21674] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 01/28/2016] [Indexed: 11/08/2022] Open
Abstract
Ebolaviruses pose significant public health problems due to their high lethality, unpredictable emergence, and localization to the poorest areas of the world. In addition to implementation of standard public health control procedures, a number of experimental human vaccines are being explored as a further means for outbreak control. Recombinant cytomegalovirus (CMV)-based vectors are a novel vaccine platform that have been shown to induce substantial levels of durable, but primarily T-cell-biased responses against the encoded heterologous target antigen. Herein, we demonstrate the ability of rhesus CMV (RhCMV) expressing Ebola virus (EBOV) glycoprotein (GP) to provide protective immunity to rhesus macaques against lethal EBOV challenge. Surprisingly, vaccination was associated with high levels of GP-specific antibodies, but with no detectable GP-directed cellular immunity.
Collapse
|
26
|
Use of a current varicella vaccine as a live polyvalent vaccine vector. Vaccine 2016; 34:296-298. [DOI: 10.1016/j.vaccine.2014.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 10/03/2014] [Accepted: 10/15/2014] [Indexed: 11/18/2022]
|
27
|
Marsh AK, Ambagala AP, Perciani CT, Russell JNH, Chan JK, Janes M, Antony JM, Pilon R, Sandstrom P, Willer DO, MacDonald KS. Examining the species-specificity of rhesus macaque cytomegalovirus (RhCMV) in cynomolgus macaques. PLoS One 2015; 10:e0121339. [PMID: 25822981 PMCID: PMC4378995 DOI: 10.1371/journal.pone.0121339] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 01/30/2015] [Indexed: 11/27/2022] Open
Abstract
Cytomegalovirus (CMV) is a highly species-specific virus that has co-evolved with its host over millions of years and thus restricting cross-species infection. To examine the extent to which host restriction may prevent cross-species research between closely related non-human primates, we evaluated experimental infection of cynomolgus macaques with a recombinant rhesus macaque-derived CMV (RhCMV-eGFP). Twelve cynomolgus macaques were randomly allocated to three groups: one experimental group (RhCMV-eGFP) and two control groups (UV-inactivated RhCMV-eGFP or media alone). The animals were given two subcutaneous inoculations at week 0 and week 8, and a subset of animals received an intravenous inoculation at week 23. No overt clinical or haematological changes were observed and PBMCs isolated from RhCMV-eGFP inoculated animals had comparable eGFP- and IE-1-specific cellular responses to the control animals. Following inoculation with RhCMV-eGFP, we were unable to detect evidence of infection in any blood or tissue samples up to 4 years post-inoculation, using sensitive viral co-culture, qPCR, and Western blot assays. Co-culture of urine and saliva samples demonstrated the presence of endogenous cynomolgus CMV (CyCMV) cytopathic effect, however no concomitant eGFP expression was observed. The absence of detectable RhCMV-eGFP suggests that the CyCMV-seropositive cynomolgus macaques were not productively infected with RhCMV-eGFP under these inoculation conditions. In a continued effort to develop CMV as a viral vector for an HIV/SIV vaccine, these studies demonstrate that CMV is highly restricted to its host species and can be highly affected by laboratory cell culture. Consideration of the differences between lab-adapted and primary viruses with respect to species range and cell tropism should be a priority in evaluating CMV as vaccine vector for HIV or other pathogens at the preclinical development stage.
Collapse
Affiliation(s)
- Angie K. Marsh
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Aruna P. Ambagala
- Department of Microbiology, Mount Sinai Hospital, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Catia T. Perciani
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | | | | | - Michelle Janes
- National HIV & Retrovirology Laboratories, National HIV and Retrovirology Laboratories, Public Health Agency of Canada, Ottawa, ON, Canada
| | - Joseph M. Antony
- Department of Microbiology, Mount Sinai Hospital, Toronto, ON, Canada
| | - Richard Pilon
- National HIV & Retrovirology Laboratories, National HIV and Retrovirology Laboratories, Public Health Agency of Canada, Ottawa, ON, Canada
| | - Paul Sandstrom
- National HIV & Retrovirology Laboratories, National HIV and Retrovirology Laboratories, Public Health Agency of Canada, Ottawa, ON, Canada
| | - David O. Willer
- Department of Microbiology, Mount Sinai Hospital, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Kelly S. MacDonald
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
- * E-mail:
| |
Collapse
|
28
|
Tobler K, Fraefel C. Infectious delivery of alphaherpesvirus bacterial artificial chromosomes. Methods Mol Biol 2015; 1227:217-230. [PMID: 25239748 DOI: 10.1007/978-1-4939-1652-8_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Bacterial artificial chromosomes (BACs) can accommodate and stably propagate the genomes of large DNA viruses in E. coli. As DNA virus genomes are often per se infectious upon transfection into mammalian cells, their cloning in BACs and easy modification by homologous recombination in bacteria has become an important strategy to investigate the functions of individual virus genes. This chapter describes a strategy to clone the genomes of viruses of the Alphaherpesvirinae subfamily within the family of the Herpesviridae, which is a group of large DNA viruses that can establish both lytic and latent infections in most animal species including humans. The cloning strategy includes the following steps: (1) Construction of a transfer plasmid that contains the BAC backbone with selection and screening markers, and targeting sequences which support homologous recombination between the transfer plasmid and the alphaherpesvirus genome. (2) Introduction of the transfer plasmid sequences into the alphaherpesvirus genome via homologous recombination in mammalian cells. (3) Isolation of recombinant virus genomes containing the BAC backbone sequences from infected mammalian cells and electroporation into E. coli. (4) Preparation of infectious BAC DNA from bacterial cultures and transfection into mammalian cells. (5) Isolation and characterization of progeny virus.
Collapse
Affiliation(s)
- Kurt Tobler
- Vetsuisse Faculty, Institute for Virology, University of Zurich, Winterthurerstrasse 266a, Zurich, CH-8057, Switzerland
| | | |
Collapse
|
29
|
Robinson KE, Mahony TJ. Herpesvirus mutagenesis facilitated by infectious bacterial artificial chromosomes (iBACs). Methods Mol Biol 2015; 1227:181-97. [PMID: 25239746 DOI: 10.1007/978-1-4939-1652-8_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A critical factor in the study of herpesviruses, their genes and gene functions is the capacity to derive mutants that harbor deletions, truncations, or insertions within the genetic elements of interest. Once constructed the impact of the introduced mutation on the phenotypic properties of the rescued virus can be determined in either in vitro or in vivo systems. However, the construction of such mutants by traditional virological mutagenesis techniques can be a difficult and laborious undertaking. The maintenance of a viral genome as an infectious bacterial artificial chromosome (iBAC), however, endows the capacity to manipulate the viral genome for mutagenesis studies with relative ease. Here, the construction and characterization of two gene deletion mutants of an alphaherpesvirus maintained as iBAC in combination with an inducible homologous recombination system in Escherichia coli is detailed. The methodology is generally applicable to any iBAC and is demonstrated to be a highly efficient and informative approach for mutant virus construction.
Collapse
Affiliation(s)
- Karl E Robinson
- Queensland Alliance for Agriculture and Food Innovation, Centre for Animal Science, The University of Queensland, Level 3, Ritchie Building (64C), Research Road, St Lucia, QLD, 4072, Australia
| | | |
Collapse
|
30
|
Malouli D, Hansen SG, Nakayasu ES, Marshall EE, Hughes CM, Ventura AB, Gilbride RM, Lewis MS, Xu G, Kreklywich C, Whizin N, Fischer M, Legasse AW, Viswanathan K, Siess D, Camp DG, Axthelm MK, Kahl C, DeFilippis VR, Smith RD, Streblow DN, Picker LJ, Früh K. Cytomegalovirus pp65 limits dissemination but is dispensable for persistence. J Clin Invest 2014; 124:1928-44. [PMID: 24691437 DOI: 10.1172/jci67420] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 02/13/2014] [Indexed: 11/17/2022] Open
Abstract
The most abundantly produced virion protein in human cytomegalovirus (HCMV) is the immunodominant phosphoprotein 65 (pp65), which is frequently included in CMV vaccines. Although it is nonessential for in vitro CMV growth, pp65 displays immunomodulatory functions that support a potential role in primary and/or persistent infection. To determine the contribution of pp65 to CMV infection and immunity, we generated a rhesus CMV lacking both pp65 orthologs (RhCMVΔpp65ab). While deletion of pp65ab slightly reduced growth in vitro and increased defective particle formation, the protein composition of secreted virions was largely unchanged. Interestingly, pp65 was not required for primary and persistent infection in animals. Immune responses induced by RhCMVΔpp65ab did not prevent reinfection with rhesus CMV; however, reinfection with RhCMVΔUS2-11, which lacks viral-encoded MHC-I antigen presentation inhibitors, was prevented. Unexpectedly, induction of pp65b-specific T cells alone did not protect against RhCMVΔUS2-11 challenge, suggesting that T cells targeting multiple CMV antigens are required for protection. However, pp65-specific immunity was crucial for controlling viral dissemination during primary infection, as indicated by the marked increase of RhCMVΔpp65ab genome copies in CMV-naive, but not CMV-immune, animals. Our data provide rationale for inclusion of pp65 into CMV vaccines but also demonstrate that pp65-induced T cell responses alone do not recapitulate the protective effect of natural infection.
Collapse
|
31
|
A herpes simplex virus 2 glycoprotein D mutant generated by bacterial artificial chromosome mutagenesis is severely impaired for infecting neuronal cells and infects only Vero cells expressing exogenous HVEM. J Virol 2012; 86:12891-902. [PMID: 22993162 DOI: 10.1128/jvi.01055-12] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We constructed a herpes simplex virus 2 (HSV-2) bacterial artificial chromosome (BAC) clone, bHSV2-BAC38, which contains full-length HSV-2 inserted into a BAC vector. Unlike previously reported HSV-2 BAC clones, the virus genome inserted into this BAC clone has no known gene disruptions. Virus derived from the BAC clone had a wild-type phenotype for growth in vitro and for acute infection, latency, and reactivation in mice. HVEM, expressed on epithelial cells and lymphocytes, and nectin-1, expressed on neurons and epithelial cells, are the two principal receptors used by HSV to enter cells. We used the HSV-2 BAC clone to construct an HSV-2 glycoprotein D mutant (HSV2-gD27) with point mutations in amino acids 215, 222, and 223, which are critical for the interaction of gD with nectin-1. HSV2-gD27 infected cells expressing HVEM, including a human epithelial cell line. However, the virus lost the ability to infect cells expressing only nectin-1, including neuronal cell lines, and did not infect ganglia in mice. Surprisingly, we found that HSV2-gD27 could not infect Vero cells unless we transduced the cells with a retrovirus expressing HVEM. High-level expression of HVEM in Vero cells also resulted in increased syncytia and enhanced cell-to-cell spread in cells infected with wild-type HSV-2. The inability of the HSV2-gD27 mutant to infect neuronal cells in vitro or sensory ganglia in mice after intramuscular inoculation suggests that this HSV-2 mutant might be an attractive candidate for a live attenuated HSV-2 vaccine.
Collapse
|
32
|
Reevaluation of the coding potential and proteomic analysis of the BAC-derived rhesus cytomegalovirus strain 68-1. J Virol 2012; 86:8959-73. [PMID: 22718821 DOI: 10.1128/jvi.01132-12] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Cytomegaloviruses are highly host restricted, resulting in cospeciation with their hosts. As a natural pathogen of rhesus macaques (RM), rhesus cytomegalovirus (RhCMV) has therefore emerged as a highly relevant experimental model for pathogenesis and vaccine development due to its close evolutionary relationship to human CMV (HCMV). Most in vivo experiments performed with RhCMV employed strain 68-1 cloned as a bacterial artificial chromosome (BAC). However, the complete genome sequence of the 68-1 BAC has not been determined. Furthermore, the gene content of the RhCMV genome is unknown, and previous open reading frame (ORF) predictions relied solely on uninterrupted ORFs with an arbitrary cutoff of 300 bp. To obtain a more precise picture of the actual proteins encoded by the most commonly used molecular clone of RhCMV, we reevaluated the RhCMV 68-1 BAC genome by whole-genome shotgun sequencing and determined the protein content of the resulting RhCMV virions by proteomics. By comparing the RhCMV genome to those of several related Old World monkey (OWM) CMVs, we were able to filter out many unlikely ORFs and obtain a simplified map of the RhCMV genome. This comparative genomics analysis suggests a high degree of ORF conservation among OWM CMVs, thus decreasing the likelihood that ORFs found only in RhCMV comprise true genes. Moreover, virion proteomics independently validated the revised ORF predictions, since only proteins that were conserved across OWM CMVs could be detected. Taken together, these data suggest a much higher conservation of genome and virion structure between CMVs of humans, apes, and OWMs than previously assumed.
Collapse
|
33
|
Willer DO, Ambagala APN, Pilon R, Chan JK, Fournier J, Brooks J, Sandstrom P, MacDonald KS. Experimental infection of Cynomolgus Macaques (Macaca fascicularis) with human varicella-zoster virus. J Virol 2012; 86:3626-34. [PMID: 22258257 PMCID: PMC3302534 DOI: 10.1128/jvi.06264-11] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Accepted: 01/06/2012] [Indexed: 11/20/2022] Open
Abstract
Varicella-zoster virus (VZV) is a member of the alphaherpesvirus family and the causative agent of chickenpox and shingles. To determine the utility of cynomolgus macaques (Macaca fascicularis) as a nonhuman primate model to evaluate VZV-based simian immunodeficiency virus/human immunodeficiency virus (SIV/HIV) vaccines, we experimentally inoculated 10 animals with the parental Oka (Oka-P) strain of VZV derived from MeWo or Telo-RF cells. VZV DNA could be detected in the lungs as late as 4 days postinfection, with replicating virus detected by shell vial culture assay in one case. Infection did not result in any overt clinical symptoms but was characterized by humoral and cell-mediated immunity in a time frame and at a magnitude similar to those observed following VZV vaccination in humans. The cell line source of VZV inoculum influenced both the magnitude and polyfunctionality of cell-mediated immunity. Animals mounted a vigorous anamnestic antibody response following a second inoculation 12 weeks later. Inoculations resulted in transient increases in CD4(+) T-cell activation and proliferation, as well as a sustained increase in CD4(+) T cells coexpressing CCR5 and α4β7 integrin. In contrast to previous failed attempts to successfully utilize attenuated VZV-Oka as an SIV vaccine vector in rhesus macaques due to suboptimal infectivity and cellular immunogenicity, the ability to infect cynomolgus macaques with Oka-P VZV should provide a valuable tool for evaluating VZV-vectored SIV/HIV vaccines.
Collapse
Affiliation(s)
- David O. Willer
- Department of Microbiology, Mount Sinai Hospital, Toronto, Ontario, Canada
- Clinical Sciences Division, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Aruna P. N. Ambagala
- Department of Microbiology, Mount Sinai Hospital, Toronto, Ontario, Canada
- Clinical Sciences Division, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Richard Pilon
- National HIV and Retrovirology Laboratories, National Microbiology Laboratory, Public Health Agency of Canada, Ottawa, Ontario, Canada
| | - Jacqueline K. Chan
- Department of Microbiology, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Jocelyn Fournier
- Scientific Services Division, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada
| | - James Brooks
- National Laboratory for HIV Genetics, Public Health Agency of Canada, Ottawa, Ontario, Canada
| | - Paul Sandstrom
- National HIV and Retrovirology Laboratories, National Microbiology Laboratory, Public Health Agency of Canada, Ottawa, Ontario, Canada
| | - Kelly S. MacDonald
- Department of Microbiology, Mount Sinai Hospital, Toronto, Ontario, Canada
- Clinical Sciences Division, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
34
|
Viral bacterial artificial chromosomes: generation, mutagenesis, and removal of mini-F sequences. J Biomed Biotechnol 2012; 2012:472537. [PMID: 22496607 PMCID: PMC3303620 DOI: 10.1155/2012/472537] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 10/21/2011] [Accepted: 10/27/2011] [Indexed: 12/29/2022] Open
Abstract
Maintenance and manipulation of large DNA and RNA virus genomes had presented an obstacle for virological research. BAC vectors provided a solution to both problems as they can harbor large DNA sequences and can efficiently be modified using well-established mutagenesis techniques in Escherichia coli. Numerous DNA virus genomes of herpesvirus and pox virus were cloned into mini-F vectors. In addition, several reverse genetic systems for RNA viruses such as members of Coronaviridae and Flaviviridae could be established based on BAC constructs. Transfection into susceptible eukaryotic cells of virus DNA cloned as a BAC allows reconstitution of recombinant viruses. In this paper, we provide an overview on the strategies that can be used for the generation of virus BAC vectors and also on systems that are currently available for various virus species. Furthermore, we address common mutagenesis techniques that allow modification of BACs from single-nucleotide substitutions to deletion of viral genes or insertion of foreign sequences. Finally, we review the reconstitution of viruses from BAC vectors and the removal of the bacterial sequences from the virus genome during this process.
Collapse
|
35
|
Back to BAC: the use of infectious clone technologies for viral mutagenesis. Viruses 2012; 4:211-35. [PMID: 22470833 PMCID: PMC3315213 DOI: 10.3390/v4020211] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 01/26/2012] [Accepted: 01/30/2012] [Indexed: 12/18/2022] Open
Abstract
Bacterial artificial chromosome (BAC) vectors were first developed to facilitate the propagation and manipulation of large DNA fragments in molecular biology studies for uses such as genome sequencing projects and genetic disease models. To facilitate these studies, methodologies have been developed to introduce specific mutations that can be directly applied to the mutagenesis of infectious clones (icBAC) using BAC technologies. This has resulted in rapid identification of gene function and expression at unprecedented rates. Here we review the major developments in BAC mutagenesis in vitro. This review summarises the technologies used to construct and introduce mutations into herpesvirus icBAC. It also explores developing technologies likely to provide the next leap in understanding these important viruses.
Collapse
|
36
|
Abstract
INTRODUCTION Cytomegalovirus (CMV) is a ubiquitous pathogen that establishes a lifelong asymptomatic infection in healthy individuals. Infection of immunesuppressed individuals causes serious illness. Transplant and AIDS patients are highly susceptible to CMV leading to life-threatening end-organ disease. Another vulnerable population is the developing fetus in utero, where congenital infection can result in surviving newborns with long-term developmental problems. There is no vaccine licensed for CMV and current antivirals suffer from complications associated with prolonged treatment. These include drug toxicity and emergence of resistant strains. There is an obvious need for new antivirals. Candidate intervention strategies are tested in controlled preclinical animal models but species specificity of human CMV precludes the direct study of the virus in an animal model. AREAS COVERED This review explores the current status of CMV antivirals and development of new drugs. This includes the use of animal models and the development of new improved models such as humanized animal CMV and bioluminescent imaging of virus in animals in real time. EXPERT OPINION Various new CMV antivirals are in development, some with greater spectrum of activity against other viruses. Although the greatest need is in the setting of transplant patients, there remains an unmet need for a safe antiviral strategy against congenital CMV. This is especially important as an effective CMV vaccine remains an elusive goal. In this regard, greater emphasis should be placed on suitable preclinical animal models and greater collaboration between industry and academia.
Collapse
Affiliation(s)
- Alistair McGregor
- University of Minnesota Medical School, Center for Infectious Diseases and Microbiology Translational Research, 2001 6th Street SE, MN 55455, USA.
| | | |
Collapse
|
37
|
Generation of an infectious clone of duck enteritis virus (DEV) and of a vectored DEV expressing hemagglutinin of H5N1 avian influenza virus. Virus Res 2011; 159:23-31. [DOI: 10.1016/j.virusres.2011.04.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 04/19/2011] [Accepted: 04/19/2011] [Indexed: 12/27/2022]
|
38
|
Hansen SG, Ford JC, Lewis MS, Ventura AB, Hughes CM, Coyne-Johnson L, Whizin N, Oswald K, Shoemaker R, Swanson T, Legasse AW, Chiuchiolo MJ, Parks CL, Axthelm MK, Nelson JA, Jarvis MA, Piatak M, Lifson JD, Picker LJ. Profound early control of highly pathogenic SIV by an effector memory T-cell vaccine. Nature 2011; 473:523-7. [PMID: 21562493 PMCID: PMC3102768 DOI: 10.1038/nature10003] [Citation(s) in RCA: 800] [Impact Index Per Article: 61.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 03/17/2011] [Indexed: 02/05/2023]
Abstract
The acquired immunodeficiency syndrome (AIDS)-causing lentiviruses human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) effectively evade host immunity and, once established, infections with these viruses are only rarely controlled by immunological mechanisms. However, the initial establishment of infection in the first few days after mucosal exposure, before viral dissemination and massive replication, may be more vulnerable to immune control. Here we report that SIV vaccines that include rhesus cytomegalovirus (RhCMV) vectors establish indefinitely persistent, high-frequency, SIV-specific effector memory T-cell (T(EM)) responses at potential sites of SIV replication in rhesus macaques and stringently control highly pathogenic SIV(MAC239) infection early after mucosal challenge. Thirteen of twenty-four rhesus macaques receiving either RhCMV vectors alone or RhCMV vectors followed by adenovirus 5 (Ad5) vectors (versus 0 of 9 DNA/Ad5-vaccinated rhesus macaques) manifested early complete control of SIV (undetectable plasma virus), and in twelve of these thirteen animals we observed long-term (≥1 year) protection. This was characterized by: occasional blips of plasma viraemia that ultimately waned; predominantly undetectable cell-associated viral load in blood and lymph node mononuclear cells; no depletion of effector-site CD4(+) memory T cells; no induction or boosting of SIV Env-specific antibodies; and induction and then loss of T-cell responses to an SIV protein (Vif) not included in the RhCMV vectors. Protection correlated with the magnitude of the peak SIV-specific CD8(+) T-cell responses in the vaccine phase, and occurred without anamnestic T-cell responses. Remarkably, long-term RhCMV vector-associated SIV control was insensitive to either CD8(+) or CD4(+) lymphocyte depletion and, at necropsy, cell-associated SIV was only occasionally measurable at the limit of detection with ultrasensitive assays, observations that indicate the possibility of eventual viral clearance. Thus, persistent vectors such as CMV and their associated T(EM) responses might significantly contribute to an efficacious HIV/AIDS vaccine.
Collapse
Affiliation(s)
- Scott G Hansen
- Vaccine and Gene Therapy Institute, Department of Molecular Microbiology, Oregon Health & Science University, Beaverton, Oregon 97006, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Ambagala AP, Marsh A, Chan J, Pilon R, Fournier J, Mazzulli T, Sandstrom P, Willer DO, MacDonald KS. Isolation and characterization of cynomolgus macaque (Macaca fascicularis) cytomegalovirus (CyCMV). Virology 2011; 412:125-35. [DOI: 10.1016/j.virol.2010.12.049] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Revised: 10/11/2010] [Accepted: 12/24/2010] [Indexed: 11/16/2022]
|
40
|
Zhou F, Gao SJ. Recent advances in cloning herpesviral genomes as infectious bacterial artificial chromosomes. Cell Cycle 2011; 10:434-40. [PMID: 21245660 DOI: 10.4161/cc.10.3.14708] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Herpesviruses are common but important pathogens in humans and animals. These viruses have large complex genomes encoding genes with diverse functions in different phases of their life cycle and associated diseases. In the last decade, genomes of herpesviruses cloned as infectious bacterial artificial chromosomes (BACs) have become powerful tools for delineating the functions of viral genes and understanding the pathogenesis of their associated diseases. Here we review the history of herpesviral genetics and recent advances in methods for cloning herpesviral genomes as infectious BACs.
Collapse
Affiliation(s)
- Fuchun Zhou
- Tumor virology Program, Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | | |
Collapse
|
41
|
Azab W, Kato K, Abdel-Gawad A, Tohya Y, Akashi H. Equine herpesvirus 4: recent advances using BAC technology. Vet Microbiol 2011; 150:1-14. [PMID: 21292410 DOI: 10.1016/j.vetmic.2011.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 12/17/2010] [Accepted: 01/03/2011] [Indexed: 10/18/2022]
Abstract
The equine herpesviruses are major infectious pathogens that threaten equine health. Equine herpesvirus 4 (EHV-4) is an important equine pathogen that causes respiratory tract disease, known as rhinopneumonitis, among horses worldwide. EHV-4 genome manipulation with subsequent understanding of the viral gene functions has always been difficult due to the limited number of susceptible cell lines and the absence of small-animal models of the infection. Efficient generation of mutants of EHV-4 would significantly contribute to the rapid and accurate characterization of the viral genes. This problem has been solved recently by the cloning of the genome of EHV-4 as a stable and infectious bacterial artificial chromosome (BAC) without any deletions of the viral genes. Very low copy BAC vectors are the mainstay of present genomic research because of the high stability of inserted clones and the possibility of mutating any gene target in a relatively short time. Manipulation of EHV-4 genome is now feasible using the power of BAC technology, and should aid greatly in assessing the role of viral genes in the virus-host interaction.
Collapse
Affiliation(s)
- Walid Azab
- Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| | | | | | | | | |
Collapse
|
42
|
Rhesus and human cytomegalovirus glycoprotein L are required for infection and cell-to-cell spread of virus but cannot complement each other. J Virol 2010; 85:2089-99. [PMID: 21191007 DOI: 10.1128/jvi.01970-10] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Rhesus cytomegalovirus (RhCMV), the homolog of human cytomegalovirus (HCMV), serves as a model for understanding the pathogenesis of HCMV and for developing candidate vaccines. In order to develop a replication-defective virus as a vaccine candidate, we constructed RhCMV with glycoprotein L (gL) deleted. RhCMV gL was essential for viral replication, and virus with gL deleted could only replicate in cells expressing RhCMV gL. Noncomplementing cells infected with RhCMV with gL deleted released intact, noninfectious RhCMV particles that were indistinguishable from wild-type RhCMV by electron microscopy and could be rescued by treatment of cells with polyethylene glycol. In addition, noncomplementing cells infected with RhCMV with gL deleted produced levels of gB, the major target of neutralizing antibodies, at levels similar to those observed in cells infected with wild-type RhCMV. Since RhCMV and HCMV gL share 53% amino acid identity, we determined whether the two proteins could complement the heterologous virus. Cells transfected with an HCMV bacterial artificial chromosome with gL deleted yielded virus that could replicate in human cells expressing HCMV gL. This is the second HCMV mutant with an essential glycoprotein deleted that has been complemented in cell culture. Finally, we found that HCMV gL could not complement the replication of RhCMV with gL deleted and that RhCMV gL could not complement the replication of HCMV with gL deleted. These data indicate that RhCMV and HCMV gL are both essential for replication of their corresponding viruses and, although the two gLs are highly homologous, they are unable to complement each another.
Collapse
|
43
|
Attenuation of innate immunity by cytomegalovirus IL-10 establishes a long-term deficit of adaptive antiviral immunity. Proc Natl Acad Sci U S A 2010; 107:22647-52. [PMID: 21149711 DOI: 10.1073/pnas.1013794108] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Human cytomegalovirus (HCMV) and many other pathogens exploit the IL-10 pathway, as part of their infectious cycle, either through their own encoded IL-10 (hcmvIL-10 for HCMV) or manipulation of the cellular IL-10 signaling cascade. Based on the in vitro demonstrations of its pleiotropic and cell type-dependent modulatory nature, hcmvIL-10 could profoundly attenuate host immunity, facilitating the establishment and maintenance of a persistent infection in an immune-competent host. To investigate the impact of extrinsic IL-10 on the induction and maintenance of antiviral immune responses in vivo, rhesus macaques were inoculated with variants of rhesus cytomegalovirus (RhCMV) either expressing or lacking the RhCMV ortholog of hcmvIL-10 (rhcmvIL-10). The results show that rhcmvIL-10 alters the earliest host responses to viral antigens by dampening the magnitude and specificity of innate effector cells to primary RhCMV infection. In addition, there is a commensurate reduction in the quality and quantity of early and long-term, RhCMV-specific adaptive immune responses. These findings provide a mechanistic basis of how early interactions between a newly infected host and HCMV could shape the long-term virus-host balance, which may facilitate the development of new prevention and intervention strategies for HCMV.
Collapse
|
44
|
Feederle R, Bartlett EJ, Delecluse HJ. Epstein-Barr virus genetics: talking about the BAC generation. HERPESVIRIDAE 2010; 1:6. [PMID: 21429237 PMCID: PMC3063228 DOI: 10.1186/2042-4280-1-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Accepted: 12/07/2010] [Indexed: 01/29/2023]
Abstract
Genetic mutant organisms pervade all areas of Biology. Early on, herpesviruses (HV) were found to be amenable to genetic analysis using homologous recombination techniques in eukaryotic cells. More recently, HV genomes cloned onto a bacterial artificial chromosome (BAC) have become available. HV BACs can be easily modified in E.coli and reintroduced in eukaryotic cells to produce infectious viruses. Mutants derived from HV BACs have been used both to understand the functions of all types of genetic elements present on the virus genome, but also to generate mutants with potentially medically relevant properties such as preventative vaccines. Here we retrace the development of the BAC technology applied to the Epstein-Barr virus (EBV) and review the strategies available for the construction of mutants. We expand on the appropriate controls required for proper use of the EBV BACs, and on the technical hurdles researchers face in working with these recombinants. We then discuss how further technological developments might successfully overcome these difficulties. Finally, we catalog the EBV BAC mutants that are currently available and illustrate their contributions to the field using a few representative examples.
Collapse
Affiliation(s)
- Regina Feederle
- German Cancer Research Centre, Im Neuenheimer Feld 242, 69120 Heidelberg, Germany.
| | | | | |
Collapse
|
45
|
Cloning of the Epstein-Barr virus-related rhesus lymphocryptovirus as a bacterial artificial chromosome: a loss-of-function mutation of the rhBARF1 immune evasion gene. J Virol 2010; 85:1330-9. [PMID: 21084476 DOI: 10.1128/jvi.01411-10] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Rhesus macaques are naturally infected with a gammaherpesvirus which is in the same lymphocryptovirus (LCV) genus as and closely related to Epstein-Barr virus (EBV). The rhesus macaque LCV (rhLCV) contains a repertoire of genes identical to that of EBV, and experimental rhLCV infection of naive rhesus macaques accurately models acute and persistent EBV infection of humans. We cloned the LCL8664 rhLCV strain as a bacterial artificial chromosome to create recombinant rhLCV for investigation in this animal model system. A recombinant rhLCV (clone 16 rhLCV) carrying a mutation in the putative immune evasion gene rhBARF1 was created along with a rescued wild-type (rWT) rhLCV in which the rhBARF1 open reading frame (ORF) was repaired. The rWT rhLCV molecular clone demonstrated viral replication and B-cell immortalization properties comparable to those of the naturally derived LCL8664 rhLCV. Qualitatively, clone 16 rhLCV carrying a mutated rhBARF1 was competent for viral replication and B-cell immortalization, but quantitative assays showed that clone 16 rhLCV immortalized B cells less efficiently than LCL8664 and rWT rhLCV. Functional studies showed that rhBARF1 could block CSF-1 cytokine signaling as well as EBV BARF1, whereas the truncated rhBARF1 from clone 16 rhLCV was a loss-of-function mutant. These recombinant rhLCV can be used in the rhesus macaque animal model system to better understand how a putative viral immune evasion gene contributes to the pathogenesis of acute and persistent EBV infection. The development of a genetic system for making recombinant rhLCV constitutes a major advance in the study of EBV pathogenesis in the rhesus macaque animal model.
Collapse
|
46
|
Herpesvirus BACs: past, present, and future. J Biomed Biotechnol 2010; 2011:124595. [PMID: 21048927 PMCID: PMC2965428 DOI: 10.1155/2011/124595] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Accepted: 08/19/2010] [Indexed: 12/12/2022] Open
Abstract
The herpesviridae are a large family of DNA viruses with large and complicated genomes. Genetic manipulation and the generation of recombinant viruses have been extremely difficult. However, herpesvirus bacterial artificial chromosomes (BACs) that were developed approximately 10 years ago have become useful and powerful genetic tools for generating recombinant viruses to study the biology and pathogenesis of herpesviruses. For example, BAC-directed deletion mutants are commonly used to determine the function and essentiality of viral genes. In this paper, we discuss the creation of herpesvirus BACs, functional analyses of herpesvirus mutants, and future applications for studies of herpesviruses. We describe commonly used methods to create and mutate herpesvirus BACs (such as site-directed mutagenesis and transposon mutagenesis). We also evaluate the potential future uses of viral BACs, including vaccine development and gene therapy.
Collapse
|
47
|
Kasem S, Yu MHH, Yamada S, Kodaira A, Matsumura T, Tsujimura K, Madbouly H, Yamaguchi T, Ohya K, Fukushi H. The ORF37 (UL24) is a neuropathogenicity determinant of equine herpesvirus 1 (EHV-1) in the mouse encephalitis model. Virology 2010; 400:259-70. [DOI: 10.1016/j.virol.2010.02.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Revised: 01/21/2010] [Accepted: 02/05/2010] [Indexed: 10/19/2022]
|
48
|
Sparger EE, Gardner MB, Barry PA. Exploiting the natural history of cytomegalovirus to vaccinate against HIV. Expert Rev Vaccines 2009; 8:993-7. [PMID: 19627183 DOI: 10.1586/erv.09.70] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ellen E Sparger
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA.
| | | | | |
Collapse
|
49
|
Properties of virion transactivator proteins encoded by primate cytomegaloviruses. Virol J 2009; 6:65. [PMID: 19473490 PMCID: PMC2693105 DOI: 10.1186/1743-422x-6-65] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Accepted: 05/27/2009] [Indexed: 11/25/2022] Open
Abstract
Background Human cytomegalovirus (HCMV) is a betaherpesvirus that causes severe disease in situations where the immune system is immature or compromised. HCMV immediate early (IE) gene expression is stimulated by the virion phosphoprotein pp71, encoded by open reading frame (ORF) UL82, and this transactivation activity is important for the efficient initiation of viral replication. It is currently recognized that pp71 acts to overcome cellular intrinsic defences that otherwise block viral IE gene expression, and that interactions of pp71 with the cell proteins Daxx and ATRX are important for this function. A further property of pp71 is the ability to enable prolonged gene expression from quiescent herpes simplex virus type 1 (HSV-1) genomes. Non-human primate cytomegaloviruses encode homologs of pp71, but there is currently no published information that addresses their effects on gene expression and modes of action. Results The UL82 homolog encoded by simian cytomegalovirus (SCMV), strain Colburn, was identified and cloned. This ORF, named S82, was cloned into an HSV-1 vector, as were those from baboon, rhesus monkey and chimpanzee cytomegaloviruses. The use of an HSV-1 vector enabled expression of the UL82 homologs in a range of cell types, and permitted investigation of their abilities to direct prolonged gene expression from quiescent genomes. The results show that all UL82 homologs activate gene expression, and that neither host cell type nor promoter target sequence has major effects on these activities. Surprisingly, the UL82 proteins specified by non-human primate cytomegaloviruses, unlike pp71, did not direct long term expression from quiescent HSV-1 genomes. In addition, significant differences were observed in the intranuclear localization of the UL82 homologs, and in their effects on Daxx. Strikingly, S82 mediated the release of Daxx from nuclear domain 10 substructures much more rapidly than pp71 or the other proteins tested. All UL82 homologs stimulated the early release of ATRX from nuclear domain 10. Conclusion All of the UL82 homolog proteins analysed activated gene expression, but surprising differences in other aspects of their properties were revealed. The results provide new information on early events in infection with cytomegaloviruses.
Collapse
|
50
|
Cloning of the genome of equine herpesvirus 4 strain TH20p as an infectious bacterial artificial chromosome. Arch Virol 2009; 154:833-42. [DOI: 10.1007/s00705-009-0382-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Accepted: 03/25/2009] [Indexed: 11/27/2022]
|