1
|
Mullon PJ, Maldonado-Luevano E, Mehta KPM, Mohni KN. The herpes simplex virus alkaline nuclease is required to maintain replication fork progression. J Virol 2024; 98:e0183624. [PMID: 39508568 DOI: 10.1128/jvi.01836-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 10/21/2024] [Indexed: 11/15/2024] Open
Abstract
Herpes simplex virus is a large double-strand DNA virus that replicates in the nucleus of the host cell and interacts with host DNA replication and repair proteins. The viral 5' to 3' alkaline nuclease, UL12, is required for production of DNA that can be packaged into infectious virus. The UL12-deleted virus, AN-1, exhibits near wild-type levels of viral DNA replication, but the DNA cannot be packaged into capsids, suggesting it is structurally aberrant. To better understand the DNA replication defect observed in AN-1, we utilized isolation of proteins on nascent DNA (iPOND), a powerful tool to study all the proteins at a DNA replication fork. Combining iPOND with stable isotope labeling of amino acids in cell culture (SILAC) allows for a quantitative assessment of protein abundance when comparing wild type to mutant replication forks. We performed five replicates of iPOND-SILAC comparing AN-1 to the wild-type virus, KOS. We observed 60 proteins that were significantly lost from AN-1 forks out of over 1,000 quantified proteins. These proteins largely represent host DNA replication proteins including MCM2-7, RFC1-5, MSH2/6, MRN, and proliferating cell nuclear antigen. These observations are reminiscent of how these proteins behave at stalled human replication forks. We also observed similar protein changes when we stalled KOS forks with hydroxyurea. Additionally, we observed a decrease in the rate of AN-1 replication fork progression at the single-molecule level. These data indicate that UL12 is required for DNA replication fork progression and that forks stall in the absence of UL12. IMPORTANCE Herpes simplex virus 1 (HSV-1) is a near-ubiquitous pathogen within the global population, causing a lifelong latent infection with sporadic reactivation throughout the life of the host. Within at-risk and immunocompromised communities, HSV-1 infection can cause serious morbidities including herpes keratitis and encephalitis. With the possibility of herpesviruses to evade established antiviral therapies and there being no approved HSV-1 vaccine, there comes a need to investigate potential targets for intervention against infection and subsequent disease. UL12 is the viral 5'-3' exonuclease, which is required for the production of infectious progeny. In this study, we show that in the absence of UL12, viral replication fork progression is abrogated. These data point to UL12 as an attractive target for intervention, which could lead to better clinical outcomes of HSV-1-associated disease in the future.
Collapse
Affiliation(s)
- Patrick J Mullon
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Kavi P M Mehta
- Department of Comparative Biosciences, University of Wisconsin, Madison, Wisconsin, USA
| | - Kareem N Mohni
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
2
|
Saddoris SM, Schang LM. The opportunities and challenges of epigenetic approaches to manage herpes simplex infections. Expert Rev Anti Infect Ther 2024; 22:1123-1142. [PMID: 39466139 PMCID: PMC11634640 DOI: 10.1080/14787210.2024.2420329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 09/24/2024] [Accepted: 10/20/2024] [Indexed: 10/29/2024]
Abstract
INTRODUCTION Despite the existence of antivirals that potently and efficiently inhibit the replication of herpes simplex virus 1 and 2 (HSV-1, -2), their ability to establish and maintain, and reactivate from, latency has precluded the development of curative therapies. Several groups are exploring the opportunities of targeting epigenetic regulation to permanently silence latent HSV genomes or induce their simultaneous reactivation in the presence of antivirals to flush the latent reservoirs, as has been explored for HIV. AREAS COVERED This review covers the basic principles of epigenetic regulation with an emphasis on those mechanisms relevant to the regulation of herpes simplex viruses, as well as the current knowledge on the regulation of lytic infections and the establishment and maintenance of, and reactivation from, latency, with an emphasis on epigenetic regulation. The differences with the epigenetic regulation of viral and cellular gene expression are highlighted as are the effects of known epigenetic regulators on herpes simplex viruses. The major limitations of current models to the development of novel antiviral strategies targeting latency are highlighted. EXPERT OPINION We provide an update on the epigenetic regulation during lytic and latent HSV-1 infection, highlighting the commonalities and differences with cellular gene expression and the potential of epigenetic drugs as antivirals, including the opportunities, challenges, and potential future directions.
Collapse
Affiliation(s)
- Sarah M Saddoris
- Department of Microbiology and Immunology and Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University. 235 Hungerford Hill Road, Ithaca, NY, 14850-USA
| | - Luis M Schang
- Department of Microbiology and Immunology and Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University. 235 Hungerford Hill Road, Ithaca, NY, 14850-USA
| |
Collapse
|
3
|
Whisnant AW, Dyck Dionisi O, Salazar Sanchez V, Rappold JM, Djakovic L, Grothey A, Marante AL, Fischer P, Peng S, Wolf K, Hennig T, Dölken L. Herpes simplex virus 1 inhibits phosphorylation of RNA polymerase II CTD serine-7. J Virol 2024; 98:e0117824. [PMID: 39316591 PMCID: PMC11494995 DOI: 10.1128/jvi.01178-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 08/28/2024] [Indexed: 09/26/2024] Open
Abstract
Transcriptional activity of RNA polymerase II (Pol II) is influenced by post-translational modifications of the C-terminal domain (CTD) of the largest Pol II subunit, RPB1. Herpes simplex virus type 1 (HSV-1) usurps the cellular transcriptional machinery during lytic infection to efficiently express viral mRNA and shut down host gene expression. The viral immediate-early protein ICP22 interferes with serine 2 phosphorylation (pS2) by targeting CDK9 and other CDKs, but the full functional implications of this are not well understood. Using Western blotting, we report that HSV-1 also induces a loss of serine 7 phosphorylation (pS7) of the CTD during lytic infection, requiring expression of the two immediate-early proteins ICP22 and ICP27. ICP27 has also been proposed to target RPB1 for degradation, but we show that pS2/S7 loss precedes the drop in total protein levels. Cells with the RPB1 polyubiquitination site mutation K1268R, preventing proteasomal degradation during transcription-coupled DNA repair, displayed loss of pS2/S7 but retained higher overall RPB1 protein levels later in infection, indicating this pathway is not involved in early CTD dysregulation but may mediate bulk protein loss later. Using α-amanitin-resistant CTD mutants, we observed differential requirements for Ser2 and Ser7 for the production of viral proteins, with Ser2 facilitating viral immediate-early genes and Ser7 appearing dispensable. Despite dysregulation of CTD phosphorylation and different requirements for Ser2/7, all CTD modifications tested could be visualized in viral replication compartments with immunofluorescence. These data expand the known means that HSV employs to create pro-viral transcriptional environments at the expense of host responses.IMPORTANCECells rapidly induce changes in the transcription of RNA in response to stress and pathogens. Herpes simplex virus (HSV) disrupts many processes of host mRNA transcription, and it is necessary to separate the actions of viral proteins from cellular responses. Here, we demonstrate that viral proteins inhibit two key phosphorylation patterns on the C-terminal domain (CTD) of cellular RNA polymerase II and that this is separate from the degradation of polymerases later in infection. Furthermore, we show that viral genes do not require the full "CTD code." Together, these data distinguish multiple steps in the remodeling of RNA polymerase during infection and suggest that shared transcriptional phenotypes during stress responses do not revolve around a core disruption of CTD modifications.
Collapse
Affiliation(s)
- Adam W Whisnant
- Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, Würzburg, Germany
- Hannover Medical School, Institute of Virology, Hannover, Germany
| | - Oliver Dyck Dionisi
- Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Valeria Salazar Sanchez
- Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Julia M Rappold
- Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Lara Djakovic
- Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Arnhild Grothey
- Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, Würzburg, Germany
- Hannover Medical School, Institute of Virology, Hannover, Germany
| | - Ana Luiza Marante
- Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Patrick Fischer
- Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Shitao Peng
- Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Katharina Wolf
- Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Thomas Hennig
- Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, Würzburg, Germany
- Hannover Medical School, Institute of Virology, Hannover, Germany
| | - Lars Dölken
- Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, Würzburg, Germany
- Hannover Medical School, Institute of Virology, Hannover, Germany
| |
Collapse
|
4
|
Packard JE, Kumar N, Weitzman MD, Dembowski JA. Identifying Protein Interactions with Viral DNA Genomes during Virus Infection. Viruses 2024; 16:845. [PMID: 38932138 PMCID: PMC11209293 DOI: 10.3390/v16060845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/14/2024] [Accepted: 05/14/2024] [Indexed: 06/28/2024] Open
Abstract
Viruses exploit the host cell machinery to enable infection and propagation. This review discusses the complex landscape of DNA virus-host interactions, focusing primarily on herpesviruses and adenoviruses, which replicate in the nucleus of infected cells, and vaccinia virus, which replicates in the cytoplasm. We discuss experimental approaches used to discover and validate interactions of host proteins with viral genomes and how these interactions impact processes that occur during infection, including the host DNA damage response and viral genome replication, repair, and transcription. We highlight the current state of knowledge regarding virus-host protein interactions and also outline emerging areas and future directions for research.
Collapse
Affiliation(s)
- Jessica E. Packard
- Department of Biological Sciences, School of Science and Engineering, Duquesne University, Pittsburgh, PA 15282, USA
| | - Namrata Kumar
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Protective Immunity, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Matthew D. Weitzman
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Protective Immunity, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Jill A. Dembowski
- Department of Biological Sciences, School of Science and Engineering, Duquesne University, Pittsburgh, PA 15282, USA
| |
Collapse
|
5
|
Packard JE, Williams MR, Fromuth DP, Dembowski JA. Proliferating cell nuclear antigen inhibitors block distinct stages of herpes simplex virus infection. PLoS Pathog 2023; 19:e1011539. [PMID: 37486931 PMCID: PMC10399828 DOI: 10.1371/journal.ppat.1011539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/03/2023] [Accepted: 07/05/2023] [Indexed: 07/26/2023] Open
Abstract
Proliferating cell nuclear antigen (PCNA) forms a homotrimer that encircles replicating DNA and is bound by DNA polymerases to add processivity to cellular DNA synthesis. In addition, PCNA acts as a scaffold to recruit DNA repair and chromatin remodeling proteins to replicating DNA via its interdomain connecting loop (IDCL). Despite encoding a DNA polymerase processivity factor UL42, it was previously found that PCNA associates with herpes simplex virus type 1 (HSV-1) replication forks and is necessary for productive HSV-1 infection. To define the role that PCNA plays during viral DNA replication or a replication-coupled process, we investigated the effects that two mechanistically distinct PCNA inhibitors, PCNA-I1 and T2AA, have on the HSV-1 infectious cycle. PCNA-I1 binds at the interface between PCNA monomers, stabilizes the homotrimer, and may interfere with protein-protein interactions. T2AA inhibits select protein-protein interactions within the PCNA IDCL. Here we demonstrate that PCNA-I1 treatment results in reduced HSV-1 DNA replication, late gene expression, and virus production, while T2AA treatment results in reduced late viral gene expression and infectious virus production. To pinpoint the mechanisms by which PCNA inhibitors affect viral processes and protein recruitment to replicated viral DNA, we performed accelerated native isolation of proteins on nascent DNA (aniPOND). Results indicate that T2AA inhibits recruitment of the viral uracil glycosylase UL2 and transcription regulatory factors to viral DNA, likely leading to a defect in viral base excision repair and the observed defect in late viral gene expression and infectious virus production. In addition, PCNA-I1 treatment results in decreased association of the viral DNA polymerase UL30 and known PCNA-interacting proteins with viral DNA, consistent with the observed block in viral DNA replication and subsequent processes. Together, we conclude that inhibitors of cellular PCNA block recruitment of key viral and cellular factors to viral DNA to inhibit viral DNA synthesis and coupled processes.
Collapse
Affiliation(s)
- Jessica E. Packard
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania, United States of America
| | - Maya R. Williams
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania, United States of America
| | - Daniel P. Fromuth
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania, United States of America
| | - Jill A. Dembowski
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
6
|
Suicidal Phenotype of Proofreading-Deficient Herpes Simplex Virus 1 Polymerase Mutants. J Virol 2023; 97:e0135922. [PMID: 36598203 PMCID: PMC9888220 DOI: 10.1128/jvi.01359-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Herpes simplex virus 1 (HSV-1) encodes a family B DNA polymerase (Pol) capable of exonucleolytic proofreading whose functions have been extensively studied in the past. Early studies on the in vitro activity of purified Pol protein found that the enzymatic functions of the holoenzyme are largely separate. Consequently, exonuclease activity can be reduced or abolished by certain point mutations within catalytically important regions, with no or only minor effects on polymerase activity. Despite unimpaired polymerase activity, the recovery of HSV-1 mutants with a catalytically inactive exonuclease has been so far unsuccessful. Hence, mutations such as D368A, which abolish exonuclease activity, are believed to be lethal. Here, we show that HSV-1 can be recovered in the absence of Pol intrinsic exonuclease activity and demonstrate that a lack of proofreading causes the rapid accumulation of likely detrimental mutations. Although mutations that abolish exonuclease activity do not appear to be lethal, the lack of proofreading yields viruses with a suicidal phenotype that cease to replicate within few passages following reconstitution. Hence, we conclude that high replication fidelity conferred by proofreading is essential to maintain HSV-1 genome integrity and that a lack of exonuclease activity produces an initially viable but rapidly suicidal phenotype. However, stably replicating viruses with reduced exonuclease activity and therefore elevated mutation rates can be generated by mutating a catalytically less important site located within a conserved exonuclease domain. IMPORTANCE Recovery of fully exonuclease-deficient herpes simplex virus 1 (HSV-1) DNA polymerase mutants has been so far unsuccessful. However, exonuclease activity is not known to be directly essential for virus replication, and the lethal phenotype of certain HSV-1 polymerase mutants is thus attributed to factors other than exonuclease activity. Here, we showed that the recovery of a variety of exonuclease-deficient HSV-1 polymerase mutants is possible and that these mutants are initially replication competent. We, however, observed a progressive loss of mutant viability upon cell culture passaging, which coincided with the rapid accumulation of mutations in exonuclease-deficient viruses. We thus concluded that a lack of DNA proofreading in exonuclease-deficient viruses causes an initially viable but rapidly suicidal hypermutator phenotype and, consequently, the extinction of mutant viruses within few generations following recovery. This would make the absence of exonuclease activity the primary reason for the long-reported difficulties in culturing exonuclease-deficient HSV-1 mutants.
Collapse
|
7
|
Shen X, Xu X, Guo Y, Yang H, He J, Xie P. Borna disease virus 1 impairs DNA double-strand break repair through the ATR/Chk1 signalling pathway, resulting in learning and memory impairment in rats. J Gen Virol 2022; 103. [PMID: 36748530 DOI: 10.1099/jgv.0.001813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Borna disease virus 1 (BoDV-1) is a highly neurotropic RNA virus that can establish persistent infection in the central nervous system and cause cognitive dysfunction in neonatally infected rats. However, the mechanisms that lead to this cognitive impairment remain unclear. DNA double-strand breaks (DSBs) and their repair are associated with brain development and cognition. If DNA repair in the brain is reduced or delayed and DNA damage accumulates, abnormal cognitive function may result. We generated a rat model of BoDV-1 infection during the neonatal period and assessed behavioural changes using the open field test and Morris water maze. The levels of DSBs were determined by immunofluorescence and comet assays. Western blotting assessed proteins associated with DNA repair pathways. The results showed that BoDV-1 downregulated the ATR/Chk1 signalling pathway in the brain, impairing DNA damage repair and increasing the number of DSBs, which ultimately leads to cognitive dysfunction. Our findings suggest a molecular mechanism by which BoDV-1 interferes with DNA damage repair to cause learning and memory impairment. This provides a theoretical basis for elucidating BoDV-1-induced neurodevelopmental impairment.
Collapse
Affiliation(s)
- Xia Shen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, PR China.,NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Xiaoyan Xu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, PR China.,Department of Pathology, College of Basic Medicine, Chongqing Medical University, Chongqing, PR China
| | - Yujie Guo
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, PR China.,Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing, PR China
| | - Hongli Yang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, PR China.,NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Juan He
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, Chongqing, PR China
| | - Peng Xie
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, PR China.,NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| |
Collapse
|
8
|
Zhou L, Cheng A, Wang M, Wu Y, Yang Q, Tian B, Ou X, Sun D, Zhang S, Mao S, Zhao XX, Huang J, Gao Q, Zhu D, Jia R, Liu M, Chen S. Mechanism of herpesvirus protein kinase UL13 in immune escape and viral replication. Front Immunol 2022; 13:1088690. [PMID: 36531988 PMCID: PMC9749954 DOI: 10.3389/fimmu.2022.1088690] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 11/15/2022] [Indexed: 12/05/2022] Open
Abstract
Upon infection, the herpes viruses create a cellular environment suitable for survival, but innate immunity plays a vital role in cellular resistance to viral infection. The UL13 protein of herpesviruses is conserved among all herpesviruses and is a serine/threonine protein kinase, which plays a vital role in escaping innate immunity and promoting viral replication. On the one hand, it can target various immune signaling pathways in vivo, such as the cGAS-STING pathway and the NF-κB pathway. On the other hand, it phosphorylates regulatory many cellular and viral proteins for promoting the lytic cycle. This paper reviews the research progress of the conserved herpesvirus protein kinase UL13 in immune escape and viral replication to provide a basis for elucidating the pathogenic mechanism of herpesviruses, as well as providing insights into the potential means of immune escape and viral replication of other herpesviruses that have not yet resolved the function of it.
Collapse
Affiliation(s)
- Lin Zhou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,*Correspondence: Mingshu Wang,
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Bin Tian
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xumin Ou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Di Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Sai Mao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xin-Xin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Juan Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Qun Gao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Dekang Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
9
|
Knipe DM, Prichard A, Sharma S, Pogliano J. Replication Compartments of Eukaryotic and Bacterial DNA Viruses: Common Themes Between Different Domains of Host Cells. Annu Rev Virol 2022; 9:307-327. [PMID: 36173697 DOI: 10.1146/annurev-virology-012822-125828] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Subcellular organization is essential for life. Cells organize their functions into organelles to concentrate their machinery and supplies for optimal efficiency. Likewise, viruses organize their replication machinery into compartments or factories within their host cells for optimal replicative efficiency. In this review, we discuss how DNA viruses that infect both eukaryotic cells and bacteria assemble replication compartments for synthesis of progeny viral DNA and transcription of the viral genome. Eukaryotic DNA viruses assemble replication compartments in the nucleus of the host cell while DNA bacteriophages assemble compartments called phage nuclei in the bacterial cytoplasm. Thus, DNA viruses infecting host cells from different domains of life share common replication strategies.
Collapse
Affiliation(s)
- David M Knipe
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA;
| | - Amy Prichard
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, USA;
| | - Surendra Sharma
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA;
| | - Joe Pogliano
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, USA;
| |
Collapse
|
10
|
Kumar S, Kumar GS, Maitra SS, Malý P, Bharadwaj S, Sharma P, Dwivedi VD. Viral informatics: bioinformatics-based solution for managing viral infections. Brief Bioinform 2022; 23:6659740. [PMID: 35947964 DOI: 10.1093/bib/bbac326] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 06/26/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Several new viral infections have emerged in the human population and establishing as global pandemics. With advancements in translation research, the scientific community has developed potential therapeutics to eradicate or control certain viral infections, such as smallpox and polio, responsible for billions of disabilities and deaths in the past. Unfortunately, some viral infections, such as dengue virus (DENV) and human immunodeficiency virus-1 (HIV-1), are still prevailing due to a lack of specific therapeutics, while new pathogenic viral strains or variants are emerging because of high genetic recombination or cross-species transmission. Consequently, to combat the emerging viral infections, bioinformatics-based potential strategies have been developed for viral characterization and developing new effective therapeutics for their eradication or management. This review attempts to provide a single platform for the available wide range of bioinformatics-based approaches, including bioinformatics methods for the identification and management of emerging or evolved viral strains, genome analysis concerning the pathogenicity and epidemiological analysis, computational methods for designing the viral therapeutics, and consolidated information in the form of databases against the known pathogenic viruses. This enriched review of the generally applicable viral informatics approaches aims to provide an overview of available resources capable of carrying out the desired task and may be utilized to expand additional strategies to improve the quality of translation viral informatics research.
Collapse
Affiliation(s)
- Sanjay Kumar
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India.,Center for Bioinformatics, Computational and Systems Biology, Pathfinder Research and Training Foundation, Greater Noida, India
| | - Geethu S Kumar
- Department of Life Science, School of Basic Science and Research, Sharda University, Greater Noida, Uttar Pradesh, India.,Center for Bioinformatics, Computational and Systems Biology, Pathfinder Research and Training Foundation, Greater Noida, India
| | | | - Petr Malý
- Laboratory of Ligand Engineering, Institute of Biotechnology of the Czech Academy of Sciences v.v.i., BIOCEV Research Center, Vestec, Czech Republic
| | - Shiv Bharadwaj
- Laboratory of Ligand Engineering, Institute of Biotechnology of the Czech Academy of Sciences v.v.i., BIOCEV Research Center, Vestec, Czech Republic
| | - Pradeep Sharma
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Vivek Dhar Dwivedi
- Center for Bioinformatics, Computational and Systems Biology, Pathfinder Research and Training Foundation, Greater Noida, India.,Institute of Advanced Materials, IAAM, 59053 Ulrika, Sweden
| |
Collapse
|
11
|
Replication Compartments-The Great Survival Strategy for Epstein-Barr Virus Lytic Replication. Microorganisms 2022; 10:microorganisms10050896. [PMID: 35630341 PMCID: PMC9144946 DOI: 10.3390/microorganisms10050896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/14/2022] [Accepted: 04/23/2022] [Indexed: 12/04/2022] Open
Abstract
During Epstein–Barr virus (EBV) lytic replication, viral DNA synthesis is carried out in viral replication factories called replication compartments (RCs), which are located at discrete sites in the nucleus. Viral proteins constituting the viral replication machinery are accumulated in the RCs to amplify viral genomes. Newly synthesized viral DNA is stored in a subdomain of the RC termed the BMRF1-core, matured by host factors, and finally packed into assembled viral capsids. Late (L) genes are transcribed from DNA stored in the BMRF1-core through a process that is mainly dependent on the viral pre-initiation complex (vPIC). RC formation is a well-regulated system and strongly advantageous for EBV survival because of the following aspects: (1) RCs enable the spatial separation of newly synthesized viral DNA from the cellular chromosome for protection and maturation of viral DNA; (2) EBV-coded proteins and their interaction partners are recruited to RCs, which enhances the interactions among viral proteins, cellular proteins, and viral DNA; (3) the formation of RCs benefits continuous replication, leading to L gene transcription; and (4) DNA storage and maturation leads to efficient progeny viral production. Here, we review the state of knowledge of this important viral structure and discuss its roles in EBV survival.
Collapse
|
12
|
Mattola S, Salokas K, Aho V, Mäntylä E, Salminen S, Hakanen S, Niskanen EA, Svirskaite J, Ihalainen TO, Airenne KJ, Kaikkonen-Määttä M, Parrish CR, Varjosalo M, Vihinen-Ranta M. Parvovirus nonstructural protein 2 interacts with chromatin-regulating cellular proteins. PLoS Pathog 2022; 18:e1010353. [PMID: 35395063 PMCID: PMC9020740 DOI: 10.1371/journal.ppat.1010353] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 04/20/2022] [Accepted: 03/15/2022] [Indexed: 11/28/2022] Open
Abstract
Autonomous parvoviruses encode at least two nonstructural proteins, NS1 and NS2. While NS1 is linked to important nuclear processes required for viral replication, much less is known about the role of NS2. Specifically, the function of canine parvovirus (CPV) NS2 has remained undefined. Here we have used proximity-dependent biotin identification (BioID) to screen for nuclear proteins that associate with CPV NS2. Many of these associations were seen both in noninfected and infected cells, however, the major type of interacting proteins shifted from nuclear envelope proteins to chromatin-associated proteins in infected cells. BioID interactions revealed a potential role for NS2 in DNA remodeling and damage response. Studies of mutant viral genomes with truncated forms of the NS2 protein suggested a change in host chromatin accessibility. Moreover, further studies with NS2 mutants indicated that NS2 performs functions that affect the quantity and distribution of proteins linked to DNA damage response. Notably, mutation in the splice donor site of the NS2 led to a preferred formation of small viral replication center foci instead of the large coalescent centers seen in wild-type infection. Collectively, our results provide insights into potential roles of CPV NS2 in controlling chromatin remodeling and DNA damage response during parvoviral replication. Parvoviruses are small, nonenveloped DNA viruses, that besides being noteworthy pathogens in many animal species, including humans, are also being developed as vectors for gene and cancer therapy. Canine parvovirus is an autonomously replicating parvovirus that encodes two nonstructural proteins, NS1 and NS2. NS1 is required for viral DNA replication and packaging, as well as gene expression. However, very little is known about the function of NS2. Our studies indicate that NS2 serves a previously undefined important function in chromatin modification and DNA damage responses. Therefore, it appears that although both NS1 and NS2 are needed for a productive infection they play very different roles in the process.
Collapse
Affiliation(s)
- Salla Mattola
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Kari Salokas
- Institute of Biotechnology and Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Vesa Aho
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Elina Mäntylä
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Sami Salminen
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Satu Hakanen
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Einari A. Niskanen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Julija Svirskaite
- Institute of Biotechnology and Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Teemu O. Ihalainen
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Kari J. Airenne
- Kuopio Center for Gene and Cell Therapy (KCT), Kuopio, Finland
| | | | - Colin R. Parrish
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, University of Cornell, Ithaca, New York, United States of America
| | - Markku Varjosalo
- Institute of Biotechnology and Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Maija Vihinen-Ranta
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
- * E-mail:
| |
Collapse
|
13
|
van Gent M, Chiang JJ, Muppala S, Chiang C, Azab W, Kattenhorn L, Knipe DM, Osterrieder N, Gack MU. The US3 Kinase of Herpes Simplex Virus Phosphorylates the RNA Sensor RIG-I To Suppress Innate Immunity. J Virol 2022; 96:e0151021. [PMID: 34935440 PMCID: PMC8865413 DOI: 10.1128/jvi.01510-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 12/10/2021] [Indexed: 11/20/2022] Open
Abstract
Recent studies have demonstrated that the signaling activity of the cytosolic pathogen sensor retinoic acid-inducible gene-I (RIG-I) is modulated by a variety of posttranslational modifications (PTMs) to fine-tune the antiviral type I interferon (IFN) response. Whereas K63-linked ubiquitination of the RIG-I caspase activation and recruitment domains (CARDs) catalyzed by TRIM25 or other E3 ligases activates RIG-I, phosphorylation of RIG-I at S8 and T170 represses RIG-I signal transduction by preventing the TRIM25-RIG-I interaction and subsequent RIG-I ubiquitination. While strategies to suppress RIG-I signaling by interfering with its K63-polyubiquitin-dependent activation have been identified for several viruses, evasion mechanisms that directly promote RIG-I phosphorylation to escape antiviral immunity are unknown. Here, we show that the serine/threonine (Ser/Thr) kinase US3 of herpes simplex virus 1 (HSV-1) binds to RIG-I and phosphorylates RIG-I specifically at S8. US3-mediated phosphorylation suppressed TRIM25-mediated RIG-I ubiquitination, RIG-I-MAVS binding, and type I IFN induction. We constructed a mutant HSV-1 encoding a catalytically-inactive US3 protein (K220A) and found that, in contrast to the parental virus, the US3 mutant HSV-1 was unable to phosphorylate RIG-I at S8 and elicited higher levels of type I IFNs, IFN-stimulated genes (ISGs), and proinflammatory cytokines in a RIG-I-dependent manner. Finally, we show that this RIG-I evasion mechanism is conserved among the alphaherpesvirus US3 kinase family. Collectively, our study reveals a novel immune evasion mechanism of herpesviruses in which their US3 kinases phosphorylate the sensor RIG-I to keep it in the signaling-repressed state. IMPORTANCE Herpes simplex virus 1 (HSV-1) establishes lifelong latency in the majority of the human population worldwide. HSV-1 occasionally reactivates to produce infectious virus and to facilitate dissemination. While often remaining subclinical, both primary infection and reactivation occasionally cause debilitating eye diseases, which can lead to blindness, as well as life-threatening encephalitis and newborn infections. To identify new therapeutic targets for HSV-1-induced diseases, it is important to understand the HSV-1-host interactions that may influence infection outcome and disease. Our work uncovered direct phosphorylation of the pathogen sensor RIG-I by alphaherpesvirus-encoded kinases as a novel viral immune escape strategy and also underscores the importance of RNA sensors in surveilling DNA virus infection.
Collapse
Affiliation(s)
- Michiel van Gent
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, Florida, USA
- Department of Microbiology, The University of Chicago, Chicago, Illinois, USA
| | - Jessica J. Chiang
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Santoshi Muppala
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, Florida, USA
| | - Cindy Chiang
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, Florida, USA
- Department of Microbiology, The University of Chicago, Chicago, Illinois, USA
| | - Walid Azab
- Institut für Virologie, Robert von Ostertag-Haus, Zentrum für Infektionsmedizin, Freie Universität Berlin, Berlin, Germany
| | - Lisa Kattenhorn
- Department of Pathology, Harvard Medical School, Boston, Massachusetts, USA
| | - David M. Knipe
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Nikolaus Osterrieder
- Institut für Virologie, Robert von Ostertag-Haus, Zentrum für Infektionsmedizin, Freie Universität Berlin, Berlin, Germany
| | - Michaela U. Gack
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, Florida, USA
- Department of Microbiology, The University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
14
|
Romero N, Favoreel HW. Pseudorabies Virus Infection Triggers NF-κB Activation via the DNA Damage Response but Actively Inhibits NF-κB-Dependent Gene Expression. J Virol 2021; 95:e0166621. [PMID: 34613805 PMCID: PMC8610585 DOI: 10.1128/jvi.01666-21] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 10/01/2021] [Indexed: 12/22/2022] Open
Abstract
The nuclear factor kappa B (NF-κB) pathway is known to integrate signaling associated with very diverse intra- and extracellular stressors, including virus infections, and triggers a powerful (proinflammatory) response through the expression of NF-κB-regulated genes. Typically, the NF-κB pathway collects and transduces threatening signals at the cell surface or in the cytoplasm leading to nuclear import of activated NF-κB transcription factors. In the current work, we demonstrate that the swine alphaherpesvirus pseudorabies virus (PRV) induces a peculiar mode of NF-κB activation known as "inside-out" NF-κB activation. We show that PRV triggers the DNA damage response (DDR) and that this DDR response drives NF-κB activation since inhibition of the nuclear ataxia telangiectasia-mutated (ATM) kinase, a chief controller of DDR, abolished PRV-induced NF-κB activation. Initiation of the DDR-NF-κB signaling axis requires viral protein synthesis but occurs before active viral genome replication. In addition, the initiation of the DDR-NF-κB signaling axis is followed by a virus-induced complete shutoff of NF-κB-dependent gene expression that depends on viral DNA replication. In summary, the results presented in this study reveal that PRV infection triggers a noncanonical DDR-NF-κB activation signaling axis and that the virus actively inhibits the (potentially antiviral) consequences of this pathway, by inhibiting NF-κB-dependent gene expression. IMPORTANCE The NF-κB signaling pathway plays a critical role in coordination of innate immune responses that are of vital importance in the control of infections. The current report generates new insights into the interaction of the alphaherpesvirus pseudorabies virus (PRV) with the NF-κB pathway, as they reveal that (i) PRV infection leads to NF-κB activation via a peculiar "inside-out" nucleus-to-cytoplasm signal that is triggered via the DNA damage response (DDR), (ii) the DDR-NF-κB signaling axis requires expression of viral proteins but is initiated before active PRV replication, and (iii) late viral factor(s) allow PRV to actively and efficiently inhibit NF-κB-dependent (proinflammatory) gene expression. These data suggest that activation of the DDR-NF-κB during PRV infection is host driven and that its potential antiviral consequences are actively inhibited by the virus.
Collapse
Affiliation(s)
- Nicolás Romero
- Department of Virology, Parasitology, Immunology, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Herman W. Favoreel
- Department of Virology, Parasitology, Immunology, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| |
Collapse
|
15
|
Virus-induced FoxO factor facilitates replication of human cytomegalovirus. Arch Virol 2021; 167:109-121. [PMID: 34751815 DOI: 10.1007/s00705-021-05279-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/06/2021] [Indexed: 10/19/2022]
Abstract
Recently, it was reported that the forkhead box O (FoxO) transcription factor promotes human cytomegalovirus (HCMV) replication via direct binding to the promoters of the major immediate-early (MIE) genes, but how the FoxO factor impacts HCMV replication remains unknown. Here, it is reported that FoxO1 expression is strongly induced by HCMV infection in cells of fibroblast origin. Suppression of the FoxO1 gene by specific RNA interference significantly inhibited HCMV growth and replication, but viral DNA synthesis was not affected considerably. Interestingly, depletion or overexpression of FoxO1 had a significant effect on the expression of viral early/late transcripts. FoxO1 was found to colocalize with the pUL44 protein subunit of viral replication compartments without direct association with DNA. This study highlights how FoxO enhances HCMV gene transcription and viral replication to promote infection.
Collapse
|
16
|
Packard JE, Dembowski JA. HSV-1 DNA Replication-Coordinated Regulation by Viral and Cellular Factors. Viruses 2021; 13:v13102015. [PMID: 34696446 PMCID: PMC8539067 DOI: 10.3390/v13102015] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/02/2021] [Accepted: 10/04/2021] [Indexed: 12/14/2022] Open
Abstract
DNA replication is an integral step in the herpes simplex virus type 1 (HSV-1) life cycle that is coordinated with the cellular DNA damage response, repair and recombination of the viral genome, and viral gene transcription. HSV-1 encodes its own DNA replication machinery, including an origin binding protein (UL9), single-stranded DNA binding protein (ICP8), DNA polymerase (UL30), processivity factor (UL42), and a helicase/primase complex (UL5/UL8/UL52). In addition, HSV-1 utilizes a combination of accessory viral and cellular factors to coordinate viral DNA replication with other viral and cellular processes. The purpose of this review is to outline the roles of viral and cellular proteins in HSV-1 DNA replication and replication-coupled processes, and to highlight how HSV-1 may modify and adapt cellular proteins to facilitate productive infection.
Collapse
|
17
|
Hennig T, Djakovic L, Dölken L, Whisnant AW. A Review of the Multipronged Attack of Herpes Simplex Virus 1 on the Host Transcriptional Machinery. Viruses 2021; 13:1836. [PMID: 34578417 PMCID: PMC8473234 DOI: 10.3390/v13091836] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 12/31/2022] Open
Abstract
During lytic infection, herpes simplex virus (HSV) 1 induces a rapid shutoff of host RNA synthesis while redirecting transcriptional machinery to viral genes. In addition to being a major human pathogen, there is burgeoning clinical interest in HSV as a vector in gene delivery and oncolytic therapies, necessitating research into transcriptional control. This review summarizes the array of impacts that HSV has on RNA Polymerase (Pol) II, which transcribes all mRNA in infected cells. We discuss alterations in Pol II holoenzymes, post-translational modifications, and how viral proteins regulate specific activities such as promoter-proximal pausing, splicing, histone repositioning, and termination with respect to host genes. Recent technological innovations that have reshaped our understanding of previous observations are summarized in detail, along with specific research directions and technical considerations for future studies.
Collapse
Affiliation(s)
- Thomas Hennig
- Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, 97078 Würzburg, Germany; (T.H.); (L.D.)
| | - Lara Djakovic
- Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, 97078 Würzburg, Germany; (T.H.); (L.D.)
| | - Lars Dölken
- Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, 97078 Würzburg, Germany; (T.H.); (L.D.)
- Helmholtz Center for Infection Research (HZI), Helmholtz Institute for RNA-Based Infection Research (HIRI), 97080 Würzburg, Germany
| | - Adam W. Whisnant
- Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, 97078 Würzburg, Germany; (T.H.); (L.D.)
| |
Collapse
|
18
|
Rais Y, Fu Z, Drabovich AP. Mass spectrometry-based proteomics in basic and translational research of SARS-CoV-2 coronavirus and its emerging mutants. Clin Proteomics 2021; 18:19. [PMID: 34384361 PMCID: PMC8358260 DOI: 10.1186/s12014-021-09325-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 08/07/2021] [Indexed: 01/08/2023] Open
Abstract
Molecular diagnostics of the coronavirus disease of 2019 (COVID-19) now mainly relies on the measurements of viral RNA by RT-PCR, or detection of anti-viral antibodies by immunoassays. In this review, we discussed the perspectives of mass spectrometry-based proteomics as an analytical technique to identify and quantify proteins of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and to enable basic research and clinical studies on COVID-19. While RT-PCR and RNA sequencing are indisputably powerful techniques for the detection of SARS-CoV-2 and identification of the emerging mutations, proteomics may provide confirmatory diagnostic information and complimentary biological knowledge on protein abundance, post-translational modifications, protein-protein interactions, and the functional impact of the emerging mutations. Pending advances in sensitivity and throughput of mass spectrometry and liquid chromatography, shotgun and targeted proteomic assays may find their niche for the differential quantification of viral proteins in clinical and environmental samples. Targeted proteomic assays in combination with immunoaffinity enrichments also provide orthogonal tools to evaluate cross-reactivity of serology tests and facilitate development of tests with the nearly perfect diagnostic specificity, this enabling reliable testing of broader populations for the acquired immunity. The coronavirus pandemic of 2019-2021 is another reminder that the future global pandemics may be inevitable, but their impact could be mitigated with the novel tools and assays, such as mass spectrometry-based proteomics, to enable continuous monitoring of emerging viruses, and to facilitate rapid response to novel infectious diseases.
Collapse
Affiliation(s)
- Yasmine Rais
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Zhiqiang Fu
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Andrei P Drabovich
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
19
|
Meier AF, Tobler K, Michaelsen K, Vogt B, Henckaerts E, Fraefel C. Herpes Simplex Virus 1 Coinfection Modifies Adeno-associated Virus Genome End Recombination. J Virol 2021; 95:e0048621. [PMID: 33853961 PMCID: PMC8315985 DOI: 10.1128/jvi.00486-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 04/05/2021] [Indexed: 11/20/2022] Open
Abstract
Wild-type adeno-associated virus (AAV) can only replicate in the presence of helper factors, which can be provided by coinfecting helper viruses such as adenoviruses and herpesviruses. The AAV genome consists of a linear, single-stranded DNA (ssDNA), which is converted into different molecular structures within the host cell. Using high-throughput sequencing, we found that herpes simplex virus 1 (HSV-1) coinfection leads to a shift in the type of AAV genome end recombination. In particular, open-end inverted terminal repeat (ITR) recombination was enhanced, whereas open-closed ITR recombination was reduced in the presence of HSV-1. We demonstrate that the HSV-1 protein ICP8 plays an essential role in HSV-1-mediated interference with AAV genome end recombination, indicating that the previously described ICP8-driven mechanism of HSV-1 genome recombination may be underlying the observed changes. We also provide evidence that additional factors, such as products of true late genes, are involved. Although HSV-1 coinfection significantly changed the type of AAV genome end recombination, no significant change in the amount of circular AAV genomes was identified. IMPORTANCE Adeno-associated virus (AAV)-mediated gene therapy represents one of the most promising approaches for the treatment of genetic diseases. Currently, various GMP-compatible production methods can be applied to manufacture clinical-grade vector, including methods that employ helper factors derived from herpes simplex virus 1 (HSV-1). Yet, to date, we do not fully understand how HSV-1 interacts with AAV. We observed that HSV-1 modulates AAV genome ends similarly to the genome recombination events observed during HSV-1 replication and postulate that further improvements of the HSV-1 production platform may enhance packaging of the recombinant AAV particles.
Collapse
Affiliation(s)
| | - Kurt Tobler
- Institute of Virology, University of Zürich, Zurich, Switzerland
| | - Kevin Michaelsen
- Institute of Virology, University of Zürich, Zurich, Switzerland
| | - Bernd Vogt
- Institute of Virology, University of Zürich, Zurich, Switzerland
| | - Els Henckaerts
- Laboratory of Viral Cell Biology & Therapeutics, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
| | - Cornel Fraefel
- Institute of Virology, University of Zürich, Zurich, Switzerland
| |
Collapse
|
20
|
Justice JL, Kennedy MA, Hutton JE, Liu D, Song B, Phelan B, Cristea IM. Systematic profiling of protein complex dynamics reveals DNA-PK phosphorylation of IFI16 en route to herpesvirus immunity. SCIENCE ADVANCES 2021; 7:eabg6680. [PMID: 34144993 PMCID: PMC8213230 DOI: 10.1126/sciadv.abg6680] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 05/06/2021] [Indexed: 05/05/2023]
Abstract
Dynamically shifting protein-protein interactions (PPIs) regulate cellular responses to viruses and the resulting immune signaling. Here, we use thermal proximity coaggregation (TPCA) mass spectrometry to characterize the on-off behavior of PPIs during infection with herpes simplex virus 1 (HSV-1), a virus with an ancient history of coevolution with hosts. Advancing the TPCA analysis to infer associations de novo, we build a time-resolved portrait of thousands of host-host, virus-host, and virus-virus PPIs. We demonstrate that, early in infection, the DNA sensor IFI16 recruits the active DNA damage response kinase, DNA-dependent protein kinase (DNA-PK), to incoming viral DNA at the nuclear periphery. We establish IFI16 T149 as a substrate of DNA-PK upon viral infection or DNA damage. This phosphorylation promotes IFI16-driven cytokine responses. Together, we characterize the global dynamics of PPIs during HSV-1 infection, uncovering the co-regulation of IFI16 and DNA-PK functions as a missing link in immunity to herpesvirus infection.
Collapse
Affiliation(s)
- Joshua L Justice
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA
| | - Michelle A Kennedy
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA
| | - Josiah E Hutton
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA
| | - Dawei Liu
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA
| | - Bokai Song
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA
| | - Brett Phelan
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA
| | - Ileana M Cristea
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA.
| |
Collapse
|
21
|
Abstract
Cells activate their DNA damage response (DDR) in response to DNA virus infection, including adenoviruses, papillomaviruses, polyomaviruses, and herpesviruses. In this study, we found that the DDR kinase pathways activated in normal human fibroblasts by herpes simplex virus 1 (HSV-1) input genomic DNA, HSV-1 replicating DNA, and progeny DNA and in uninfected cells treated with etoposide are different. We also found using clustered regularly interspaced palindromic repeat (CRISPR)-Cas9 technology that different host gene products are required for the DDR in uninfected versus infected cells. Individual DDR components can be proviral or antiviral in that ataxia-telangiectasia mutated (ATM) and p53 promote and Mre11 restricts replication of ICP0-null HSV-1, but ICP0 expression eliminates these DDR effects. Thus, in total, these results argue that HSV-1 manipulates the host cell DDR to utilize specific components for its optimal replication while inactivating the antiviral aspects of the DDR.IMPORTANCE We investigated the relationship between the DNA damage response, a collection of vital cellular pathways that repair potentially lethal damage to the genome, and the DNA virus herpes simplex virus 1. We found that infection by the virus triggers the DNA damage response, and key proteins that mediate this response have opposing effects on the replication and production of progeny viruses. Our work provides novel insights into the relationship between DNA virus infection and the cellular response to the viral genome. We speculate that viral gene products modulate this response, providing potentially novel targets for therapeutic intervention against the virus.
Collapse
|
22
|
Nevers Q, Albertini AA, Lagaudrière-Gesbert C, Gaudin Y. Negri bodies and other virus membrane-less replication compartments. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2020; 1867:118831. [PMID: 32835749 PMCID: PMC7442162 DOI: 10.1016/j.bbamcr.2020.118831] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/14/2020] [Accepted: 08/14/2020] [Indexed: 12/25/2022]
Abstract
Viruses reshape the organization of the cell interior to achieve different steps of their cellular cycle. Particularly, viral replication and assembly often take place in viral factories where specific viral and cellular proteins as well as nucleic acids concentrate. Viral factories can be either membrane-delimited or devoid of any cellular membranes. In the latter case, they are referred as membrane-less replication compartments. The most emblematic ones are the Negri bodies, which are inclusion bodies that constitute the hallmark of rabies virus infection. Interestingly, Negri bodies and several other viral replication compartments have been shown to arise from a liquid-liquid phase separation process and, thus, constitute a new class of liquid organelles. This is a paradigm shift in the field of virus replication. Here, we review the different aspects of membrane-less virus replication compartments with a focus on the Mononegavirales order and discuss their interactions with the host cell machineries and the cytoskeleton. We particularly examine the interplay between viral factories and the cellular innate immune response, of which several components also form membrane-less condensates in infected cells.
Collapse
Affiliation(s)
- Quentin Nevers
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Aurélie A Albertini
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Cécile Lagaudrière-Gesbert
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Yves Gaudin
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France.
| |
Collapse
|
23
|
Hristova DB, Lauer KB, Ferguson BJ. Viral interactions with non-homologous end-joining: a game of hide-and-seek. J Gen Virol 2020; 101:1133-1144. [PMID: 32735206 PMCID: PMC7879558 DOI: 10.1099/jgv.0.001478] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 07/14/2020] [Indexed: 02/06/2023] Open
Abstract
There are extensive interactions between viruses and the host DNA damage response (DDR) machinery. The outcome of these interactions includes not only direct effects on viral nucleic acids and genome replication, but also the activation of host stress response signalling pathways that can have further, indirect effects on viral life cycles. The non-homologous end-joining (NHEJ) pathway is responsible for the rapid and imprecise repair of DNA double-stranded breaks in the nucleus that would otherwise be highly toxic. Whilst directly repairing DNA, components of the NHEJ machinery, in particular the DNA-dependent protein kinase (DNA-PK), can activate a raft of downstream signalling events that activate antiviral, cell cycle checkpoint and apoptosis pathways. This combination of possible outcomes results in NHEJ being pro- or antiviral depending on the infection. In this review we will describe the broad range of interactions between NHEJ components and viruses and their consequences for both host and pathogen.
Collapse
Affiliation(s)
- Dayana B. Hristova
- Department of Pathology, Division of Immunology, University of Cambridge, Cambridge, UK
| | - Katharina B. Lauer
- Department of Pathology, Division of Immunology, University of Cambridge, Cambridge, UK
- Present address: ELIXIR Hub, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Brian J. Ferguson
- Department of Pathology, Division of Immunology, University of Cambridge, Cambridge, UK
| |
Collapse
|
24
|
Razin SV, Gavrilov AA, Iarovaia OV. Modification of Nuclear Compartments and the 3D Genome in the Course of a Viral Infection. Acta Naturae 2020; 12:34-46. [PMID: 33456976 PMCID: PMC7800604 DOI: 10.32607/actanaturae.11041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 07/07/2020] [Indexed: 12/17/2022] Open
Abstract
The review addresses the question of how the structural and functional compartmentalization of the cell nucleus and the 3D organization of the cellular genome are modified during the infection of cells with various viruses. Particular attention is paid to the role of the introduced changes in the implementation of the viral strategy to evade the antiviral defense systems and provide conditions for viral replication. The discussion focuses on viruses replicating in the cell nucleus. Cytoplasmic viruses are mentioned in cases when a significant reorganization of the nuclear compartments or the 3D genome structure occurs during an infection with these viruses.
Collapse
Affiliation(s)
- S. V. Razin
- Institute of Gene Biology Russian Academy of Sciences
| | | | | |
Collapse
|
25
|
Elrashdy F, Redwan EM, Uversky VN. Why COVID-19 Transmission Is More Efficient and Aggressive Than Viral Transmission in Previous Coronavirus Epidemics? Biomolecules 2020; 10:E1312. [PMID: 32933047 PMCID: PMC7565143 DOI: 10.3390/biom10091312] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 09/08/2020] [Indexed: 12/19/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is causing a pandemic of coronavirus disease 2019 (COVID-19). The worldwide transmission of COVID-19 from human to human is spreading like wildfire, affecting almost every country in the world. In the past 100 years, the globe did not face a microbial pandemic similar in scale to COVID-19. Taken together, both previous outbreaks of other members of the coronavirus family (severe acute respiratory syndrome (SARS-CoV) and middle east respiratory syndrome (MERS-CoV)) did not produce even 1% of the global harm already inflicted by COVID-19. There are also four other CoVs capable of infecting humans (HCoVs), which circulate continuously in the human population, but their phenotypes are generally mild, and these HCoVs received relatively little attention. These dramatic differences between infection with HCoVs, SARS-CoV, MERS-CoV, and SARS-CoV-2 raise many questions, such as: Why is COVID-19 transmitted so quickly? Is it due to some specific features of the viral structure? Are there some specific human (host) factors? Are there some environmental factors? The aim of this review is to collect and concisely summarize the possible and logical answers to these questions.
Collapse
Affiliation(s)
- Fatma Elrashdy
- Department of Endemic Medicine and Hepatogastroenterology, Kasr Alainy School of Medicine, Cairo University, Cairo 11562, Egypt;
| | - Elrashdy M. Redwan
- Biological Science Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Vladimir N. Uversky
- Biological Science Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
- Department of Molecular Medicine and USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Pushchino, 142290 Moscow, Russia
| |
Collapse
|
26
|
Milewska A, Ner‐Kluza J, Dabrowska A, Bodzon‐Kulakowska A, Pyrc K, Suder P. MASS SPECTROMETRY IN VIROLOGICAL SCIENCES. MASS SPECTROMETRY REVIEWS 2020; 39:499-522. [PMID: 31876329 PMCID: PMC7228374 DOI: 10.1002/mas.21617] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 12/15/2019] [Indexed: 05/24/2023]
Abstract
Virology, as a branch of the life sciences, discovered mass spectrometry (MS) to be the pivotal tool around two decades ago. The technique unveiled the complex network of interactions between the living world of pro- and eukaryotes and viruses, which delivered "a piece of bad news wrapped in protein" as defined by Peter Medawar, Nobel Prize Laureate, in 1960. However, MS is constantly evolving, and novel approaches allow for a better understanding of interactions in this micro- and nanoworld. Currently, we can investigate the interplay between the virus and the cell by analyzing proteomes, interactomes, virus-cell interactions, and search for the compounds that build viral structures. In addition, by using MS, it is possible to look at the cell from the broader perspective and determine the role of viral infection on the scale of the organism, for example, monitoring the crosstalk between infected tissues and the immune system. In such a way, MS became one of the major tools for the modern virology, allowing us to see the infection in the context of the whole cell or the organism. © 2019 John Wiley & Sons Ltd. Mass Spec Rev.
Collapse
Affiliation(s)
- Aleksandra Milewska
- Malopolska Centre of BiotechnologyJagiellonian UniversityGronostajowa 7A30‐387KrakowPoland
| | - Joanna Ner‐Kluza
- Department of Biochemistry and Neurobiology, Faculty of Materials Sciences and CeramicsAGH University of Science and TechnologyMickiewicza 30 Ave.30‐059KrakowPoland
| | - Agnieszka Dabrowska
- Malopolska Centre of BiotechnologyJagiellonian UniversityGronostajowa 7A30‐387KrakowPoland
- Faculty of Biochemistry, Biophysics and BiotechnologyJagiellonian UniversityGronostajowa 730‐387KrakowPoland
| | - Anna Bodzon‐Kulakowska
- Department of Biochemistry and Neurobiology, Faculty of Materials Sciences and CeramicsAGH University of Science and TechnologyMickiewicza 30 Ave.30‐059KrakowPoland
| | - Krzysztof Pyrc
- Malopolska Centre of BiotechnologyJagiellonian UniversityGronostajowa 7A30‐387KrakowPoland
| | - Piotr Suder
- Department of Biochemistry and Neurobiology, Faculty of Materials Sciences and CeramicsAGH University of Science and TechnologyMickiewicza 30 Ave.30‐059KrakowPoland
| |
Collapse
|
27
|
Replication Compartments of DNA Viruses in the Nucleus: Location, Location, Location. Viruses 2020; 12:v12020151. [PMID: 32013091 PMCID: PMC7077188 DOI: 10.3390/v12020151] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/26/2020] [Accepted: 01/26/2020] [Indexed: 02/08/2023] Open
Abstract
DNA viruses that replicate in the nucleus encompass a range of ubiquitous and clinically important viruses, from acute pathogens to persistent tumor viruses. These viruses must co-opt nuclear processes for the benefit of the virus, whilst evading host processes that would otherwise attenuate viral replication. Accordingly, DNA viruses induce the formation of membraneless assemblies termed viral replication compartments (VRCs). These compartments facilitate the spatial organization of viral processes and regulate virus–host interactions. Here, we review advances in our understanding of VRCs. We cover their initiation and formation, their function as the sites of viral processes, and aspects of their composition and organization. In doing so, we highlight ongoing and emerging areas of research highly pertinent to our understanding of nuclear-replicating DNA viruses.
Collapse
|
28
|
Full F, Ensser A. Early Nuclear Events after Herpesviral Infection. J Clin Med 2019; 8:jcm8091408. [PMID: 31500286 PMCID: PMC6780142 DOI: 10.3390/jcm8091408] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/29/2019] [Accepted: 09/03/2019] [Indexed: 12/18/2022] Open
Abstract
Herpesviruses are important pathogens that can cause significant morbidity and mortality in the human population. Herpesviruses have a double-stranded DNA genome, and viral genome replication takes place inside the nucleus. Upon entering the nucleus, herpesviruses have to overcome the obstacle of cellular proteins in order to enable viral gene expression and genome replication. In this review, we want to highlight cellular proteins that sense incoming viral genomes of the DNA-damage repair (DDR) pathway and of PML-nuclear bodies (PML-NBs) that all can act as antiviral restriction factors within the first hours after the viral genome is released into the nucleus. We show the function and significance of both nuclear DNA sensors, the DDR and PML-NBs, and demonstrate for three human herpesviruses of the alpha-, beta- and gamma-subfamilies, HSV-1, HCMV and KSHV respectively, how viral tegument proteins antagonize these pathways.
Collapse
Affiliation(s)
- Florian Full
- Institute for Clinical and Molecular Virology, University Hospital Erlangen, Friedrich Alexander University Erlangen-Nuremberg, 91054 Erlangen, Germany.
| | - Armin Ensser
- Institute for Clinical and Molecular Virology, University Hospital Erlangen, Friedrich Alexander University Erlangen-Nuremberg, 91054 Erlangen, Germany.
| |
Collapse
|
29
|
Tomer E, Cohen EM, Drayman N, Afriat A, Weitzman MD, Zaritsky A, Kobiler O. Coalescing replication compartments provide the opportunity for recombination between coinfecting herpesviruses. FASEB J 2019; 33:9388-9403. [PMID: 31107607 PMCID: PMC6662979 DOI: 10.1096/fj.201900032r] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 04/23/2019] [Indexed: 12/15/2022]
Abstract
Homologous recombination (HR) is considered a major driving force of evolution because it generates and expands genetic diversity. Evidence of HR between coinfecting herpesvirus DNA genomes can be found frequently both in vitro and in clinical isolates. Each herpes simplex virus type 1 (HSV-1) replication compartment (RC) derives from a single incoming genome and maintains a specific territory within the nucleus. This raises intriguing questions about where and when coinfecting viral genomes interact. To study the spatiotemporal requirements for intergenomic recombination, we developed an assay with dual-color FISH that enables detection of HR between different pairs of coinfecting HSV-1 genomes. Our results revealed that HR increases intermingling of RCs derived from different genomes. Furthermore, inhibition of RC movement reduces the rate of HR events among coinfecting viruses. Finally, we observed correlation between nuclear size and the number of RCs per nucleus. Our findings suggest that both viral replication and recombination are subject to nuclear spatial constraints. Other DNA viruses and cellular DNA are likely to encounter similar restrictions.-Tomer, E., Cohen, E. M., Drayman, N., Afriat, A., Weitzman, M. D., Zaritsky, A., Kobiler, O. Coalescing replication compartments provide the opportunity for recombination between coinfecting herpesviruses.
Collapse
Affiliation(s)
- Enosh Tomer
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Efrat M. Cohen
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Nir Drayman
- Institute for Genomics and Systems Biology and Institute for Molecular Engineering, University of Chicago, Chicago, Illinois, USA
| | - Amichay Afriat
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Matthew D. Weitzman
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Division of Protective Immunity, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Assaf Zaritsky
- Department of Software and Information Systems Engineering, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Oren Kobiler
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
30
|
Gillen J, Nita-Lazar A. Experimental Analysis of Viral-Host Interactions. Front Physiol 2019; 10:425. [PMID: 31031644 PMCID: PMC6470254 DOI: 10.3389/fphys.2019.00425] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 03/27/2019] [Indexed: 12/16/2022] Open
Abstract
Viral and pathogen protein complexity is often limited by their relatively small genomes, thus critical functions are often accomplished by complexes of host and pathogen proteins. This requirement makes the study of host-pathogen interactions critical for the understanding of pathogenicity and virology. This review article discusses proteomic methods that offer an opportunity to experimentally identify and analyze the binding partners of a target protein and presents the representative studies performed with these methods. These methods divide into two classes: ex situ and in situ. Ex situ assays depend on bindings that occur outside of the normal cellular environment and include yeast two hybrids, pull-downs, and nucleic acid-programmable protein arrays (NAPPA). In situ assays depend on bindings that occur inside of host cells and include affinity purification (AP) and proximity dependent labeling (PDL). Either ex or in situ methods can be reliably used for generating protein-protein interactions networks but it is important to understand and recognize the limitations of the chosen methods when developing an interactomic network. In summary, proteomic methods can be extremely useful for interactomics but it is important to recognize the nature of the method when designing and analyzing an experiment.
Collapse
Affiliation(s)
| | - Aleksandra Nita-Lazar
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
31
|
Herpes simplex virus 1 ICP8 mutant lacking annealing activity is deficient for viral DNA replication. Proc Natl Acad Sci U S A 2018; 116:1033-1042. [PMID: 30598436 DOI: 10.1073/pnas.1817642116] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Most DNA viruses that use recombination-dependent mechanisms to replicate their DNA encode a single-strand annealing protein (SSAP). The herpes simplex virus (HSV) single-strand DNA binding protein (SSB), ICP8, is the central player in all stages of DNA replication. ICP8 is a classical replicative SSB and interacts physically and/or functionally with the other viral replication proteins. Additionally, ICP8 can promote efficient annealing of complementary ssDNA and is thus considered to be a member of the SSAP family. The role of annealing during HSV infection has been difficult to assess in part, because it has not been possible to distinguish between the role of ICP8 as an SSAP from its role as a replicative SSB during viral replication. In this paper, we have characterized an ICP8 mutant, Q706A/F707A (QF), that lacks annealing activity but retains many other functions characteristic of replicative SSBs. Like WT ICP8, the QF mutant protein forms filaments in vitro, binds ssDNA cooperatively, and stimulates the activities of other replication proteins including the viral polymerase, helicase-primase complex, and the origin binding protein. Interestingly, the QF mutant does not complement an ICP8-null virus for viral growth, replication compartment formation, or DNA replication. Thus, we have been able to separate the activities of ICP8 as a replicative SSB from its annealing activity. Taken together, our data indicate that the annealing activity of ICP8 is essential for viral DNA replication in the context of infection and support the notion that HSV-1 uses recombination-dependent mechanisms during DNA replication.
Collapse
|
32
|
Abstract
Viral DNA genomes have limited coding capacity and therefore harness cellular factors to facilitate replication of their genomes and generate progeny virions. Studies of viruses and how they interact with cellular processes have historically provided seminal insights into basic biology and disease mechanisms. The replicative life cycles of many DNA viruses have been shown to engage components of the host DNA damage and repair machinery. Viruses have evolved numerous strategies to navigate the cellular DNA damage response. By hijacking and manipulating cellular replication and repair processes, DNA viruses can selectively harness or abrogate distinct components of the cellular machinery to complete their life cycles. Here, we highlight consequences for viral replication and host genome integrity during the dynamic interactions between virus and host.
Collapse
Affiliation(s)
- Matthew D Weitzman
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
- Division of Protective Immunity and Division of Cancer Pathobiology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104;
| | - Amélie Fradet-Turcotte
- Department of Molecular Biology, Medical Biochemistry, and Pathology, Faculty of Medicine, Université Laval, Québec G1V 0A6, Canada;
- CHU de Québec Research Center-Université Laval (L'Hôtel-Dieu de Québec), Cancer Research Center, Québec G1R 2J6, Canada
| |
Collapse
|
33
|
Valledor M, Myers RS, Schiller PC. Herpes ICP8 protein stimulates homologous recombination in human cells. PLoS One 2018; 13:e0200955. [PMID: 30110337 PMCID: PMC6093641 DOI: 10.1371/journal.pone.0200955] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 07/04/2018] [Indexed: 12/11/2022] Open
Abstract
Recombineering has transformed functional genomic analysis. Genome modification by recombineering using the phage lambda Red homologous recombination protein Beta in Escherichia coli has approached 100% efficiency. While highly efficient in E. coli, recombineering using the Red Synaptase/Exonuclease pair (SynExo) in other organisms declines in efficiency roughly correlating with phylogenetic distance from E. coli. SynExo recombinases are common to double-stranded DNA viruses infecting a variety of organisms, including humans. Human Herpes virus 1 (HHV1) encodes a SynExo comprised of ICP8 synaptase and UL12 exonuclease. In a previous study, the Herpes SynExo was reconstituted in vitro and shown to catalyze a model recombination reaction. Here we describe stimulation of gene targeting to edit a novel fluorescent protein gene in the human genome using ICP8 and compared its efficiency to that of a "humanized" version of Beta protein from phage λ. ICP8 significantly enhanced gene targeting rates in HEK 293T cells while Beta was not only unable to catalyze recombineering but inhibited gene targeting using endogenous recombination functions, despite both synaptases being well-expressed and localized to the nucleus. This proof of concept encourages developing species-specific SynExo recombinases for genome engineering.
Collapse
Affiliation(s)
- Melvys Valledor
- Department of Neurology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Richard S. Myers
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Paul C. Schiller
- Department of Orthopaedics, University of Miami Miller School of Medicine, Miami, Florida, United States of America
- Geriatric Research, Education, and Clinical Center and Research Service, Bruce W. Carter VAMC, Miami, Florida, United States of America
| |
Collapse
|
34
|
Abstract
Viral DNA genomes have limited coding capacity and therefore harness cellular factors to facilitate replication of their genomes and generate progeny virions. Studies of viruses and how they interact with cellular processes have historically provided seminal insights into basic biology and disease mechanisms. The replicative life cycles of many DNA viruses have been shown to engage components of the host DNA damage and repair machinery. Viruses have evolved numerous strategies to navigate the cellular DNA damage response. By hijacking and manipulating cellular replication and repair processes, DNA viruses can selectively harness or abrogate distinct components of the cellular machinery to complete their life cycles. Here, we highlight consequences for viral replication and host genome integrity during the dynamic interactions between virus and host.
Collapse
Affiliation(s)
- Matthew D Weitzman
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104.,Division of Protective Immunity and Division of Cancer Pathobiology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104;
| | - Amélie Fradet-Turcotte
- Department of Molecular Biology, Medical Biochemistry, and Pathology, Faculty of Medicine, Université Laval, Québec G1V 0A6, Canada; .,CHU de Québec Research Center-Université Laval (L'Hôtel-Dieu de Québec), Cancer Research Center, Québec G1R 2J6, Canada
| |
Collapse
|
35
|
Chothe SK, Sebastian A, Thomas A, Nissly RH, Wolfgang D, Byukusenge M, Mor SK, Goyal SM, Albert I, Tewari D, Jayarao BM, Kuchipudi SV. Whole-genome sequence analysis reveals unique SNP profiles to distinguish vaccine and wild-type strains of bovine herpesvirus-1 (BoHV-1). Virology 2018; 522:27-36. [PMID: 30014855 DOI: 10.1016/j.virol.2018.06.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/03/2018] [Accepted: 06/26/2018] [Indexed: 01/02/2023]
Abstract
Bovine herpesvirus-1 (BoHV-1) is a major pathogen affecting cattle worldwide causing primarily respiratory illness referred to as infectious bovine rhinotracheitis (IBR), along with reproductive disorders including abortion and infertility in cattle. While modified live vaccines (MLVs) effectively induce immune response against BoHV-1, they are implicated in disease outbreaks in cattle. Current diagnostic methods cannot distinguish between MLVs and field strains of BoHV-1. We performed whole genome sequencing of 18 BoHV-1 isolates from Pennsylvania and Minnesota along with five BoHV-1 vaccine strains using the Illumina Miseq platform. Based on nucleotide polymorphisms (SNPs) the sequences were clustered into three groups with two different vaccine groups and one distinct cluster of field isolates. Using this information, we developed a novel SNP-based PCR assay that can allow differentiation of vaccine and clinical strains and help accurately determine the incidence of BoHV-1 and the association of MLVs with clinical disease in cattle.
Collapse
Affiliation(s)
- Shubhada K Chothe
- Penn State Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA, United States
| | - Aswathy Sebastian
- Dept of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, United States
| | - Asha Thomas
- Penn State Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA, United States
| | - Ruth H Nissly
- Penn State Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA, United States
| | - David Wolfgang
- Pennsylvania Department of Agriculture, Bureau of Animal Health and Diagnostic Services, Harrisburg, PA, United States
| | - Maurice Byukusenge
- Penn State Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA, United States
| | - Sunil Kumar Mor
- Veterinary Population Medicine, University of Minnesota, St. Paul, MN, United States
| | - Sagar M Goyal
- Veterinary Population Medicine, University of Minnesota, St. Paul, MN, United States
| | - Istvan Albert
- Dept of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, United States
| | - Deepanker Tewari
- Pennsylvania Department of Agriculture, Bureau of Animal Health and Diagnostic Services, Harrisburg, PA, United States
| | - Bhushan M Jayarao
- Penn State Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA, United States
| | - Suresh V Kuchipudi
- Penn State Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA, United States.
| |
Collapse
|
36
|
Chan YL, Liao CL, Lin YL. Human Kinase/Phosphatase-Wide RNAi Screening Identified Checkpoint Kinase 2 as a Cellular Factor Facilitating Japanese Encephalitis Virus Infection. Front Cell Infect Microbiol 2018; 8:142. [PMID: 29868498 PMCID: PMC5966567 DOI: 10.3389/fcimb.2018.00142] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 04/20/2018] [Indexed: 11/15/2022] Open
Abstract
Japanese encephalitis virus (JEV), a mosquito-borne flavivirus, causes acute encephalitis in humans with high mortality. Not much is known about the interactions between viral and cellular factors that regulate JEV infection. By using a kinase/phosphatase-wide RNAi screening approach, we identified a cell cycle-regulating molecule, checkpoint kinase 2 (CHK2), that plays a role in regulating JEV replication. JEV infection induced G1 arrest and activated CHK2. Inactivation of CHK2 and its upstream ataxia-telangiectasia mutated kinase in JEV-infected cells by using inhibitors reduced virus replication. Likewise, JEV replication was significantly decreased by knockdown of CHK2 expression with shRNA-producing lentiviral transduction. We identified CHK2 as a cellular factor participating in JEV replication, for a new strategy in addressing JEV infection.
Collapse
Affiliation(s)
- Yi-Lin Chan
- Department of Life Science, Chinese Culture University, Taipei, Taiwan.,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ching-Len Liao
- Department of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan.,National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Yi-Ling Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Department of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan.,Genomics Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
37
|
Mao F, Lei J, Enoch O, Wei M, Zhao C, Quan Y, Yu W. Quantitative proteomics of Bombyx mori after BmNPV challenge. J Proteomics 2018; 181:142-151. [PMID: 29674014 DOI: 10.1016/j.jprot.2018.04.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/30/2018] [Accepted: 04/04/2018] [Indexed: 01/07/2023]
Abstract
The domesticated silkworm is an ideal and economic insect model that plays crucial roles in sericulture and bioreactor. Bombyx mori nucleopolyhedrovirus (BmNPV) is not only an infectious pathogen to B. mori, but also an efficient vector expressing recombinant proteins. Although, the proteomics of silkworm and BmN cell membrane lipid raft towards BmNPV infection had been investigated, proteome results of BmN cells upon BmNPV challenge currently remain ambiguous. In order to explore the interaction between silkworm and BmNPV, we analyzed several pivotal processes of BmNPV infected BmN cell by quantitative mass spectrometry. Our study indicated that a total of 4205 identified proteins, among which 4194 were with quantitative level. Concretely, during BmNPV infection, several transcription factors and epigenetically modified proteins showed substantially different abundance levels. Especially, proteins with binding activity, displayed significant changes in their molecular functions. Disabled non-homologous end joining by BmNPV reflects irreversible breakage of DNA. Nevertheless, highly abundant superoxide dismutase suggests that the cellular defense system is persistently functional in maintaining biochemical homeostasis. Our comparative and quantitative proteomics will be helpful to unravel the dynamics of B.mori after BmNPV infection and could provide new insights to decipher the mechanism of interaction between BmN cell and BmNPV.
Collapse
Affiliation(s)
- Fuxiang Mao
- Institute of Biochemistry, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang Province, PR China; Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou 310018, Zhejiang Province, PR China
| | - Jihai Lei
- Institute of Biochemistry, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang Province, PR China; Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou 310018, Zhejiang Province, PR China
| | - Obeng Enoch
- Institute of Biochemistry, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang Province, PR China; Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou 310018, Zhejiang Province, PR China
| | - Ming Wei
- Institute of Biochemistry, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang Province, PR China; Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou 310018, Zhejiang Province, PR China
| | - Cui Zhao
- Institute of Biochemistry, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang Province, PR China; Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou 310018, Zhejiang Province, PR China
| | - Yanping Quan
- Institute of Biochemistry, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang Province, PR China; Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou 310018, Zhejiang Province, PR China
| | - Wei Yu
- Institute of Biochemistry, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang Province, PR China; Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou 310018, Zhejiang Province, PR China.
| |
Collapse
|
38
|
Tada S, Hamada M, Yura Y. Proteomic Analysis of Secretomes of Oncolytic Herpes Simplex Virus-Infected Squamous Cell Carcinoma Cells. Cancers (Basel) 2018; 10:cancers10020028. [PMID: 29360750 PMCID: PMC5836060 DOI: 10.3390/cancers10020028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/03/2018] [Accepted: 01/15/2018] [Indexed: 01/06/2023] Open
Abstract
Oncolytic herpes simplex virus type 1 (HSV-1) strain RH2 induced immunogenic cell death (ICD) with the release and surface exposure of damage-associated molecular patterns (DAMPs) in squamous cell carcinoma (SCC) SCCVII cells. The supernatants of RH2-infected SCCVII cells also exhibited antitumor ability by intratumoral administration in SCCVII tumor-bearing mice. The supernatants of RH2-infected cells and mock-infected cells were concentrated to produce Med24 and MedC for proteomic analyses. In Med24, the up- and down-regulated proteins were observed. Proteins including filamin, tubulin, t-complex protein 1 (TCP-1), and heat shock proteins (HSPs), were up-regulated, while extracellular matrix (ECM) proteins were markedly down-regulated. Viral proteins were detected in Med 24. These results indicate that HSV-1 RH2 infection increases the release of danger signal proteins and viral gene products, but decreases the release of ECM components. These changes may alter the tumor microenvironment (TME) and contribute to enhancement of anti-tumor immunity against SCC.
Collapse
Affiliation(s)
- Shinya Tada
- Department of Oral and Maxillofacial Surgery, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan.
| | - Masakazu Hamada
- Department of Oral and Maxillofacial Surgery, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan.
| | - Yoshiaki Yura
- Department of Oral and Maxillofacial Surgery, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
39
|
Trigg BJ, Lauer KB, Fernandes Dos Santos P, Coleman H, Balmus G, Mansur DS, Ferguson BJ. The Non-Homologous End Joining Protein PAXX Acts to Restrict HSV-1 Infection. Viruses 2017; 9:E342. [PMID: 29144403 PMCID: PMC5707549 DOI: 10.3390/v9110342] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 11/02/2017] [Accepted: 11/06/2017] [Indexed: 01/27/2023] Open
Abstract
Herpes simplex virus 1 (HSV-1) has extensive interactions with the host DNA damage response (DDR) machinery that can be either detrimental or beneficial to the virus. Proteins in the homologous recombination pathway are known to be required for efficient replication of the viral genome, while different members of the classical non-homologous end-joining (c-NHEJ) pathway have opposing effects on HSV-1 infection. Here, we have investigated the role of the recently-discovered c-NHEJ component, PAXX (Paralogue of XRCC4 and XLF), which we found to be excluded from the nucleus during HSV-1 infection. We have established that cells lacking PAXX have an intact innate immune response to HSV-1 but show a defect in viral genome replication efficiency. Counterintuitively, PAXX-/- cells were able to produce greater numbers of infectious virions, indicating that PAXX acts to restrict HSV-1 infection in a manner that is different from other c-NHEJ factors.
Collapse
Affiliation(s)
- Ben J Trigg
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK.
| | - Katharina B Lauer
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK.
| | - Paula Fernandes Dos Santos
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Parasitology, Universidade Federal de Santa Catarina, Santa Catarina 88040-900, Brazil.
| | - Heather Coleman
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK.
| | - Gabriel Balmus
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK.
- Wellcome Trust Sanger Institute, Cambridge CB10 1HH, UK.
| | - Daniel S Mansur
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Parasitology, Universidade Federal de Santa Catarina, Santa Catarina 88040-900, Brazil.
| | - Brian J Ferguson
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK.
| |
Collapse
|
40
|
Hollingworth R, Horniblow RD, Forrest C, Stewart GS, Grand RJ. Localization of Double-Strand Break Repair Proteins to Viral Replication Compartments following Lytic Reactivation of Kaposi's Sarcoma-Associated Herpesvirus. J Virol 2017; 91:e00930-17. [PMID: 28855246 PMCID: PMC5660498 DOI: 10.1128/jvi.00930-17] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 08/10/2017] [Indexed: 12/11/2022] Open
Abstract
Double-strand breaks (DSBs) in DNA are recognized by the Ku70/80 heterodimer and the MRE11-RAD50-NBS1 (MRN) complex and result in activation of the DNA-PK and ATM kinases, which play key roles in regulating the cellular DNA damage response (DDR). DNA tumor viruses such as Kaposi's sarcoma-associated herpesvirus (KSHV) are known to interact extensively with the DDR during the course of their replicative cycles. Here we show that during lytic amplification of KSHV DNA, the Ku70/80 heterodimer and the MRN complex consistently colocalize with viral genomes in replication compartments (RCs), whereas other DSB repair proteins form foci outside RCs. Depletion of MRE11 and abrogation of its exonuclease activity negatively impact viral replication, while in contrast, knockdown of Ku80 and inhibition of the DNA-PK enzyme, which are involved in nonhomologous end joining (NHEJ) repair, enhance amplification of viral DNA. Although the recruitment of DSB-sensing proteins to KSHV RCs is a consistent occurrence across multiple cell types, activation of the ATM-CHK2 pathway during viral replication is a cell line-specific event, indicating that recognition of viral DNA by the DDR does not necessarily result in activation of downstream signaling pathways. We have also observed that newly replicated viral DNA is not associated with cellular histones. Since the presence and modification of these DNA-packaging proteins provide a scaffold for docking of multiple DNA repair factors, the absence of histone deposition may allow the virus to evade localization of DSB repair proteins that would otherwise have a detrimental effect on viral replication.IMPORTANCE Tumor viruses are known to interact with machinery responsible for detection and repair of double-strand breaks (DSBs) in DNA, although detail concerning how Kaposi's sarcoma-associated herpesvirus (KSHV) modulates these cellular pathways during its lytic replication phase was previously lacking. By undertaking a comprehensive assessment of the localization of DSB repair proteins during KSHV replication, we have determined that a DNA damage response (DDR) is directed to viral genomes but is distinct from the response to cellular DNA damage. We also demonstrate that although recruitment of the MRE11-RAD50-NBS1 (MRN) DSB-sensing complex to viral genomes and activation of the ATM kinase can promote KSHV replication, proteins involved in nonhomologous end joining (NHEJ) repair restrict amplification of viral DNA. Overall, this study extends our understanding of the virus-host interactions that occur during lytic replication of KSHV and provides a deeper insight into how the DDR is manipulated during viral infection.
Collapse
Affiliation(s)
- Robert Hollingworth
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Richard D Horniblow
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Calum Forrest
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Grant S Stewart
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Roger J Grand
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
41
|
The Exonuclease Activity of Herpes Simplex Virus 1 UL12 Is Required for Production of Viral DNA That Can Be Packaged To Produce Infectious Virus. J Virol 2017; 91:JVI.01380-17. [PMID: 28956767 DOI: 10.1128/jvi.01380-17] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 09/21/2017] [Indexed: 01/23/2023] Open
Abstract
The herpes simplex virus (HSV) type I alkaline nuclease, UL12, has 5'-to-3' exonuclease activity and shares homology with nucleases from other members of the Herpesviridae family. We previously reported that a UL12-null virus exhibits a severe defect in viral growth. To determine whether the growth defect was a result of loss of nuclease activity or another function of UL12, we introduced an exonuclease-inactivating mutation into the viral genome. The recombinant virus, UL12 D340E (the D340E mutant), behaved identically to the null virus (AN-1) in virus yield experiments, exhibiting a 4-log decrease in the production of infectious virus. Furthermore, both viruses were severely defective in cell-to-cell spread and produced fewer DNA-containing capsids and more empty capsids than wild-type virus. In addition, DNA packaged by the viral mutants was aberrant, as determined by infectivity assays and pulsed-field gel electrophoresis. We conclude that UL12 exonuclease activity is essential for the production of viral DNA that can be packaged to produce infectious virus. This conclusion was bolstered by experiments showing that a series of natural and synthetic α-hydroxytropolones recently reported to inhibit HSV replication also inhibit the nuclease activity of UL12. Taken together, our results demonstrate that the exonuclease activity of UL12 is essential for the production of infectious virus and may be considered a target for development of antiviral agents.IMPORTANCE Herpes simplex virus is a major pathogen, and although nucleoside analogs such as acyclovir are highly effective in controlling HSV-1 or -2 infections in immunocompetent individuals, their use in immunocompromised patients is complicated by the development of resistance. Identification of additional proteins essential for viral replication is necessary to develop improved therapies. In this communication, we confirm that the exonuclease activity of UL12 is essential for viral replication through the analysis of a nuclease-deficient viral mutant. We demonstrate that the exonuclease activity of UL12 is essential for the production of viral progeny and thus provides an attractive, druggable enzymatic target.
Collapse
|
42
|
Reyes ED, Kulej K, Pancholi NJ, Akhtar LN, Avgousti DC, Kim ET, Bricker DK, Spruce LA, Koniski SA, Seeholzer SH, Isaacs SN, Garcia BA, Weitzman MD. Identifying Host Factors Associated with DNA Replicated During Virus Infection. Mol Cell Proteomics 2017; 16:2079-2097. [PMID: 28972080 DOI: 10.1074/mcp.m117.067116] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 07/14/2017] [Indexed: 01/22/2023] Open
Abstract
Viral DNA genomes replicating in cells encounter a myriad of host factors that facilitate or hinder viral replication. Viral proteins expressed early during infection modulate host factors interacting with viral genomes, recruiting proteins to promote viral replication, and limiting access to antiviral repressors. Although some host factors manipulated by viruses have been identified, we have limited knowledge of pathways exploited during infection and how these differ between viruses. To identify cellular processes manipulated during viral replication, we defined proteomes associated with viral genomes during infection with adenovirus, herpes simplex virus and vaccinia virus. We compared enrichment of host factors between virus proteomes and confirmed association with viral genomes and replication compartments. Using adenovirus as an illustrative example, we uncovered host factors deactivated by early viral proteins, and identified a subgroup of nucleolar proteins that aid virus replication. Our data sets provide valuable resources of virus-host interactions that affect proteins on viral genomes.
Collapse
Affiliation(s)
- Emigdio D Reyes
- From the ‡Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania.,§Division of Protective Immunity and Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Katarzyna Kulej
- From the ‡Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania.,§Division of Protective Immunity and Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Neha J Pancholi
- §Division of Protective Immunity and Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,¶Cell and Molecular Biology Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Lisa N Akhtar
- ‖Division of Infectious Diseases, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Daphne C Avgousti
- From the ‡Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania.,§Division of Protective Immunity and Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Eui Tae Kim
- §Division of Protective Immunity and Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Daniel K Bricker
- From the ‡Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania.,§Division of Protective Immunity and Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Lynn A Spruce
- **Protein and Proteomics Core, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Sarah A Koniski
- §Division of Protective Immunity and Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Steven H Seeholzer
- **Protein and Proteomics Core, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Stuart N Isaacs
- ‡‡Division of Infectious Diseases, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Benjamin A Garcia
- §§Epigenetics Program, Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Matthew D Weitzman
- From the ‡Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania; .,§Division of Protective Immunity and Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| |
Collapse
|
43
|
Dembowski JA, Deluca NA. Purification of Viral DNA for the Identification of Associated Viral and Cellular Proteins. J Vis Exp 2017. [PMID: 28892026 DOI: 10.3791/56374] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The goal of this protocol is to isolate herpes simplex virus type 1 (HSV-1) DNA from infected cells for the identification of associated viral and cellular proteins by mass spectrometry. Although proteins that interact with viral genomes play major roles in determining the outcome of infection, a comprehensive analysis of viral genome associated proteins was not previously feasible. Here we demonstrate a method that enables the direct purification of HSV-1 genomes from infected cells. Replicating viral DNA is selectively labeled with modified nucleotides that contain an alkyne functional group. Labeled DNA is then specifically and irreversibly tagged via the covalent attachment of biotin azide via a copper(I)-catalyzed azide-alkyne cycloaddition or click reaction. Biotin-tagged DNA is purified on streptavidin-coated beads and associated proteins are eluted and identified by mass spectrometry. This method enables the selective targeting and isolation of HSV-1 replication forks or whole genomes from complex biological environments. Furthermore, adaptation of this approach will allow for the investigation of various aspects of herpesviral infection, as well as the examination of the genomes of other DNA viruses.
Collapse
Affiliation(s)
- Jill A Dembowski
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine;
| | - Neal A Deluca
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine;
| |
Collapse
|
44
|
Wang Z, Deng Z, Tutton S, Lieberman PM. The Telomeric Response to Viral Infection. Viruses 2017; 9:v9080218. [PMID: 28792463 PMCID: PMC5580475 DOI: 10.3390/v9080218] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 08/06/2017] [Accepted: 08/06/2017] [Indexed: 12/16/2022] Open
Abstract
The ends of linear genomes, whether viral or cellular, can elicit potent DNA damage and innate immune signals. DNA viruses entering the nucleus share many features with telomeres in their ability to either suppress or co-opt these pathways. Here, we review some of the common mechanisms that viruses and telomeres use to manage the DNA damage and innate immune response pathways. We highlight recent studies on the role of the telomere repeat-containing RNA (TERRA) in response to viral infection. We discuss how TERRA can be activated through a p53-response element embedded in a retrotransposon-like repeat found in human subtelomeres. We consider how TERRA can function as a danger signal when secreted in extracellular vesicles to induce inflammatory cytokines in neighboring cells. These findings suggest that TERRA may be part of the innate immune response to viral infection, and support the hypothesis that telomeres and viruses utilize common mechanisms to maintain genome integrity and regulate innate immunity.
Collapse
Affiliation(s)
- Zhuo Wang
- The Wistar Institute, Philadelphia, PA 19104, USA.
| | - Zhong Deng
- The Wistar Institute, Philadelphia, PA 19104, USA.
| | - Steve Tutton
- The Wistar Institute, Philadelphia, PA 19104, USA.
| | | |
Collapse
|
45
|
Dong X, Guan J, Zheng C, Zheng X. The herpes simplex virus 1 UL36USP deubiquitinase suppresses DNA repair in host cells via deubiquitination of proliferating cell nuclear antigen. J Biol Chem 2017; 292:8472-8483. [PMID: 28348081 DOI: 10.1074/jbc.m117.778076] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 03/24/2017] [Indexed: 12/18/2022] Open
Abstract
Herpes simplex virus 1 (HSV-1) infection manipulates distinct host DNA-damage responses to facilitate virus proliferation, but the molecular mechanisms remain to be elucidated. One possible HSV-1 target might be DNA damage-tolerance mechanisms, such as the translesion synthesis (TLS) pathway. In TLS, proliferating cell nuclear antigen (PCNA) is monoubiquitinated in response to DNA damage-caused replication fork stalling. Ubiquitinated PCNA then facilitates the error-prone DNA polymerase η (polη)-mediated TLS, allowing the fork to bypass damaged sites. Because of the involvement of PCNA ubiquitination in DNA-damage repair, we hypothesized that the function of PCNA might be altered by HSV-1. Here we show that PCNA is a substrate of the HSV-1 deubiquitinase UL36USP, which has previously been shown to be involved mainly in virus uptake and maturation. In HSV-1-infected cells, viral infection-associated UL36USP consistently reduced PCNA ubiquitination. The deubiquitination of PCNA inhibited the formation of polη foci and also increased cell sensitivity to DNA-damage agents. Moreover, the catalytically inactive mutant UL36C40A failed to deubiquitinate PCNA. Of note, the levels of virus marker genes increased strikingly in cells infected with wild-type HSV-1, but only moderately in UL36C40A mutant virus-infected cells, indicating that the UL36USP deubiquitinating activity supports HSV-1 virus replication during infection. These findings suggest a role of UL36USP in the DNA damage-response pathway.
Collapse
Affiliation(s)
- Xiaodong Dong
- State Key Lab of Protein and Plant Gene Research; Department of Biochemistry and Molecular Biology, School of Life Sciences, Peking University, Beijing 100871, China
| | - Junhong Guan
- State Key Lab of Protein and Plant Gene Research; Department of Biochemistry and Molecular Biology, School of Life Sciences, Peking University, Beijing 100871, China
| | - Chunfu Zheng
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China; Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Xiaofeng Zheng
- State Key Lab of Protein and Plant Gene Research; Department of Biochemistry and Molecular Biology, School of Life Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
46
|
Medina GN, Knudsen GM, Greninger AL, Kloc A, Díaz-San Segundo F, Rieder E, Grubman MJ, DeRisi JL, de Los Santos T. Interaction between FMDV L pro and transcription factor ADNP is required for optimal viral replication. Virology 2017; 505:12-22. [PMID: 28219017 DOI: 10.1016/j.virol.2017.02.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 02/12/2017] [Accepted: 02/13/2017] [Indexed: 10/20/2022]
Abstract
The foot-and-mouth disease virus (FMDV) leader protease (Lpro) inhibits host translation and transcription affecting the expression of several factors involved in innate immunity. In this study, we have identified the host transcription factor ADNP (activity dependent neuroprotective protein) as an Lpro interacting protein by mass spectrometry. We show that Lpro can bind to ADNP in vitro and in cell culture. RNAi of ADNP negatively affected virus replication and higher levels of interferon (IFN) and IFN-stimulated gene expression were detected. Importantly, infection with FMDV wild type but not with a virus lacking Lpro (leaderless), induced recruitment of ADNP to IFN-α promoter sites early during infection. Furthermore, we found that Lpro and ADNP are in a protein complex with the ubiquitous chromatin remodeling factor Brg-1. Our results uncover a novel role of FMDV Lpro in targeting ADNP and modulation of its transcription repressive function to decrease the expression of IFN and ISGs.
Collapse
Affiliation(s)
- Gisselle N Medina
- Plum Island Animal Disease Center (PIADC), North Atlantic Area, Agricultural Research Service US Department of Agriculture, Greenport, NY 11944, USA
| | - Giselle M Knudsen
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158, USA
| | - Alexander L Greninger
- Howard Hughes Medical Institute and the Department of Biochemistry & Biophysics, University of California, San Francisco, CA 94158, USA
| | - Anna Kloc
- Plum Island Animal Disease Center (PIADC), North Atlantic Area, Agricultural Research Service US Department of Agriculture, Greenport, NY 11944, USA; Oak Ridge Institute for Science and Education, PIADC Research Participation Program, Oak Ridge, TN 37831, USA
| | - Fayna Díaz-San Segundo
- Plum Island Animal Disease Center (PIADC), North Atlantic Area, Agricultural Research Service US Department of Agriculture, Greenport, NY 11944, USA
| | - Elizabeth Rieder
- Plum Island Animal Disease Center (PIADC), North Atlantic Area, Agricultural Research Service US Department of Agriculture, Greenport, NY 11944, USA
| | - Marvin J Grubman
- Plum Island Animal Disease Center (PIADC), North Atlantic Area, Agricultural Research Service US Department of Agriculture, Greenport, NY 11944, USA
| | - Joseph L DeRisi
- Howard Hughes Medical Institute and the Department of Biochemistry & Biophysics, University of California, San Francisco, CA 94158, USA
| | - Teresa de Los Santos
- Plum Island Animal Disease Center (PIADC), North Atlantic Area, Agricultural Research Service US Department of Agriculture, Greenport, NY 11944, USA.
| |
Collapse
|
47
|
Abstract
Coronaviruses (CoV) comprise a large group of emerging human and animal pathogens, including the highly pathogenic severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV) strains. The molecular mechanisms regulating emerging coronavirus pathogenesis are complex and include virus–host interactions associated with entry, replication, egress and innate immune control. Epigenetics research investigates the genetic and non-genetic factors that regulate phenotypic variation, usually caused by external and environmental factors that alter host expression patterns and performance without any change in the underlying genotype. Epigenetic modifications, such as histone modifications, DNA methylation, chromatin remodeling, and non-coding RNAs, function as important regulators that remodel host chromatin, altering host expression patterns and networks in a highly flexible manner. For most of the past two and a half decades, research has focused on the molecular mechanisms by which RNA viruses antagonize the signaling and sensing components that regulate induction of the host innate immune and antiviral defense programs upon infection. More recently, a growing body of evidence supports the hypothesis that viruses, even lytic RNA viruses that replicate in the cytoplasm, have developed intricate, highly evolved, and well-coordinated processes that are designed to regulate the host epigenome, and control host innate immune antiviral defense processes, thereby promoting robust virus replication and pathogenesis. In this article, we discuss the strategies that are used to evaluate the mechanisms by which viruses regulate the host epigenome, especially focusing on highly pathogenic respiratory RNA virus infections as a model. By combining measures of epigenome reorganization with RNA and proteomic datasets, we articulate a spatial-temporal data integration approach to identify regulatory genomic clusters and regions that play a crucial role in the host’s innate immune response, thereby defining a new viral antagonism mechanism following emerging coronavirus infection.
Collapse
|
48
|
Kulej K, Avgousti DC, Sidoli S, Herrmann C, Della Fera AN, Kim ET, Garcia BA, Weitzman MD. Time-resolved Global and Chromatin Proteomics during Herpes Simplex Virus Type 1 (HSV-1) Infection. Mol Cell Proteomics 2017; 16:S92-S107. [PMID: 28179408 DOI: 10.1074/mcp.m116.065987] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 02/03/2017] [Indexed: 11/06/2022] Open
Abstract
Herpes simplex virus (HSV-1) lytic infection results in global changes to the host cell proteome and the proteins associated with host chromatin. We present a system level characterization of proteome dynamics during infection by performing a multi-dimensional analysis during HSV-1 lytic infection of human foreskin fibroblast (HFF) cells. Our study includes identification and quantification of the host and viral proteomes, phosphoproteomes, chromatin bound proteomes and post-translational modifications (PTMs) on cellular histones during infection. We analyzed proteomes across six time points of virus infection (0, 3, 6, 9, 12 and 15 h post-infection) and clustered trends in abundance using fuzzy c-means. Globally, we accurately quantified more than 4000 proteins, 200 differently modified histone peptides and 9000 phosphorylation sites on cellular proteins. In addition, we identified 67 viral proteins and quantified 571 phosphorylation events (465 with high confidence site localization) on viral proteins, which is currently the most comprehensive map of HSV-1 phosphoproteome. We investigated chromatin bound proteins by proteomic analysis of the high-salt chromatin fraction and identified 510 proteins that were significantly different in abundance during infection. We found 53 histone marks significantly regulated during virus infection, including a steady increase of histone H3 acetylation (H3K9ac and H3K14ac). Our data provide a resource of unprecedented depth for human and viral proteome dynamics during infection. Collectively, our results indicate that the proteome composition of the chromatin of HFF cells is highly affected during HSV-1 infection, and that phosphorylation events are abundant on viral proteins. We propose that our epi-proteomics approach will prove to be important in the characterization of other model infectious systems that involve changes to chromatin composition.
Collapse
Affiliation(s)
- Katarzyna Kulej
- From the ‡Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania.,§Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Daphne C Avgousti
- From the ‡Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania.,§Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Simone Sidoli
- ¶Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania.,‖Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Christin Herrmann
- §Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,**Cell and Molecular Biology Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Ashley N Della Fera
- §Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Eui Tae Kim
- From the ‡Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania.,§Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Benjamin A Garcia
- ¶Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania; .,‖Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Matthew D Weitzman
- From the ‡Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania; .,§Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| |
Collapse
|
49
|
Greco TM, Cristea IM. Proteomics Tracing the Footsteps of Infectious Disease. Mol Cell Proteomics 2017; 16:S5-S14. [PMID: 28163258 DOI: 10.1074/mcp.o116.066001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/25/2017] [Indexed: 01/20/2023] Open
Abstract
Every year, a major cause of human disease and death worldwide is infection with the various pathogens-viruses, bacteria, fungi, and protozoa-that are intrinsic to our ecosystem. In efforts to control the prevalence of infectious disease and develop improved therapies, the scientific community has focused on building a molecular picture of pathogen infection and spread. These studies have been aimed at defining the cellular mechanisms that allow pathogen entry into hosts cells, their replication and transmission, as well as the core mechanisms of host defense against pathogens. The past two decades have demonstrated the valuable implementation of proteomic methods in all these areas of infectious disease research. Here, we provide a perspective on the contributions of mass spectrometry and other proteomics approaches to understanding the molecular details of pathogen infection. Specifically, we highlight methods used for defining the composition of viral and bacterial pathogens and the dynamic interaction with their hosts in space and time. We discuss the promise of MS-based proteomics in supporting the development of diagnostics and therapies, and the growing need for multiomics strategies for gaining a systems view of pathogen infection.
Collapse
Affiliation(s)
- Todd M Greco
- From the ‡Department of Molecular Biology, Princeton University, Princeton, New Jersey, 08544
| | - Ileana M Cristea
- From the ‡Department of Molecular Biology, Princeton University, Princeton, New Jersey, 08544
| |
Collapse
|
50
|
Herpes Simplex Virus Latency: The DNA Repair-Centered Pathway. Adv Virol 2017; 2017:7028194. [PMID: 28255301 PMCID: PMC5309397 DOI: 10.1155/2017/7028194] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 01/16/2017] [Indexed: 12/11/2022] Open
Abstract
Like all herpesviruses, herpes simplex virus 1 (HSV1) is able to produce lytic or latent infections depending on the host cell type. Lytic infections occur in a broad range of cells while latency is highly specific for neurons. Although latency suggests itself as an attractive target for novel anti-HSV1 therapies, progress in their development has been slowed due in part to a lack of agreement about the basic biochemical mechanisms involved. Among the possibilities being considered is a pathway in which DNA repair mechanisms play a central role. Repair is suggested to be involved in both HSV1 entry into latency and reactivation from it. Here I describe the basic features of the DNA repair-centered pathway and discuss some of the experimental evidence supporting it. The pathway is particularly attractive because it is able to account for important features of the latent response, including the specificity for neurons, the specificity for neurons of the peripheral compared to the central nervous system, the high rate of genetic recombination in HSV1-infected cells, and the genetic identity of infecting and reactivated virus.
Collapse
|