1
|
Wang J. Genome-Wide Identification of Stable RNA Secondary Structures Across Multiple Organisms Using Chemical Probing Data: Insights into Short Structural Motifs and RNA-Targeting Therapeutics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.08.617329. [PMID: 39416040 PMCID: PMC11482745 DOI: 10.1101/2024.10.08.617329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Small molecules targeting specific RNA binding sites, including stable and transient RNA structures, are emerging as effective pharmacological approaches for modulating gene expression. However, little is understood about how stable RNA secondary structures are shared across organisms, an important factor in controlling drug selectivity. In this study, I provide an analytical pipeline named RNA Secondary Structure Finder (R2S-Finder) to discover short, stable RNA structural motifs for humans, Escherichia coli ( E. coli ), SARS-CoV-2, and Zika virus by leveraging existing in vivo and in vitro genome-wide chemical RNA-probing datasets. I found several common features across organisms. For example, apart from the well-documented tetraloops, AU-rich tetraloops are widely present in different organisms. I also found that the 5' untranslated region (UTR) contains a higher proportion of stable structures than the coding sequences in humans, SARS-CoV-2, and Zika virus. In general, stable structures predicted from in vitro (protein-free) and in vivo datasets are consistent in humans, E. coli , and SARS-CoV-2, indicating that most stable structure formation were driven by RNA folding alone, while a larger variation was found between in vitro and in vivo data with certain RNA types, such as human long intergenic non-coding RNAs (lincRNAs). Finally, I predicted stable three- and four-way RNA junctions that exist both in vivo and in vitro conditions, which can potentially serve as drug targets. All results of stable sequences, stem-loops, internal loops, bulges, and three- and four-way junctions have been collated in the R2S-Finder database ( https://github.com/JingxinWangLab/R2S-Finder ), which is coded in hyperlinked HTML pages and tabulated in CSV files.
Collapse
|
2
|
Tang S, Conte V, Zhang DJ, Žedaveinytė R, Lampe GD, Wiegand T, Tang LC, Wang M, Walker MWG, George JT, Berchowitz LE, Jovanovic M, Sternberg SH. De novo gene synthesis by an antiviral reverse transcriptase. Science 2024; 386:eadq0876. [PMID: 39116258 DOI: 10.1126/science.adq0876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/17/2024] [Indexed: 08/10/2024]
Abstract
Defense-associated reverse transcriptase (DRT) systems perform DNA synthesis to protect bacteria against viral infection, but the identities and functions of their DNA products remain largely unknown. We show that DRT2 systems encode an unprecedented immune pathway that involves de novo gene synthesis through rolling circle reverse transcription of a noncoding RNA (ncRNA). Programmed template jumping on the ncRNA generates a concatemeric cDNA, which becomes double-stranded upon viral infection. This DNA product constitutes a protein-coding, nearly endless open reading frame (neo) gene whose expression leads to potent cell growth arrest, restricting the viral infection. Our work highlights an elegant expansion of genome coding potential through RNA-templated gene creation and challenges conventional paradigms of genetic information encoded along the one-dimensional axis of genomic DNA.
Collapse
Affiliation(s)
- Stephen Tang
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Valentin Conte
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Dennis J Zhang
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Rimantė Žedaveinytė
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - George D Lampe
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Tanner Wiegand
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Lauren C Tang
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Megan Wang
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Matt W G Walker
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Jerrin Thomas George
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Luke E Berchowitz
- Department of Genetics and Development, Columbia University, New York, NY, USA
- Taub Institute for Research on Alzheimer's and the Aging Brain, New York, NY, USA
| | - Marko Jovanovic
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Samuel H Sternberg
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| |
Collapse
|
3
|
Bezerra PR, Almeida FCL. Structural basis for the participation of the SARS-CoV-2 nucleocapsid protein in the template switch mechanism and genomic RNA reorganization. J Biol Chem 2024; 300:107834. [PMID: 39343000 PMCID: PMC11541846 DOI: 10.1016/j.jbc.2024.107834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 10/01/2024] Open
Abstract
The COVID-19 pandemic has resulted in a significant toll of deaths worldwide, exceeding seven million individuals, prompting intensive research efforts aimed at elucidating the molecular mechanisms underlying the pathogenesis of SARS-CoV-2 infection. Despite the rapid development of effective vaccines and therapeutic interventions, COVID-19 remains a threat to humans due to the emergence of novel variants and largely unknown long-term consequences. Among the viral proteins, the nucleocapsid protein (N) stands out as the most conserved and abundant, playing the primary role in nucleocapsid assembly and genome packaging. The N protein is promiscuous for the recognition of RNA, yet it can perform specific functions. Here, we discuss the structural basis of specificity, which is directly linked to its regulatory role. Notably, the RNA chaperone activity of N is central to its multiple roles throughout the viral life cycle. This activity encompasses double-stranded RNA (dsRNA) annealing and melting and facilitates template switching, enabling discontinuous transcription. N also promotes the formation of membrane-less compartments through liquid-liquid phase separation, thereby facilitating the congregation of the replication and transcription complex. Considering the information available regarding the catalytic activities and binding signatures of the N protein-RNA interaction, this review focuses on the regulatory role of the SARS-CoV-2 N protein. We emphasize the participation of the N protein in discontinuous transcription, template switching, and RNA chaperone activity, including double-stranded RNA melting and annealing activities.
Collapse
Affiliation(s)
- Peter R Bezerra
- Program of Structural Biology, Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; National Center of Nuclear Magnetic Resonance (CNRMN), CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fabio C L Almeida
- Program of Structural Biology, Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; National Center of Nuclear Magnetic Resonance (CNRMN), CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
4
|
Terada Y, Amarbayasgalan S, Matsuura Y, Kamitani W. Regulation viral RNA transcription and replication by higher-order RNA structures within the nsp1 coding region of MERS coronavirus. Sci Rep 2024; 14:19594. [PMID: 39179600 PMCID: PMC11343750 DOI: 10.1038/s41598-024-70601-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 08/19/2024] [Indexed: 08/26/2024] Open
Abstract
Coronavirus (CoV) possesses numerous functional cis-acting elements in its positive-strand genomic RNA. Although most of these RNA structures participate in viral replication, the functions of RNA structures in the genomic RNA of CoV in viral replication remain unclear. In this study, we investigated the functions of the higher-order RNA stem-loop (SL) structures SL5B, SL5C, and SL5D in the ORF1a coding region of Middle East respiratory syndrome coronavirus (MERS-CoV) in viral replication. Our approach, using reverse genetics of a bacterial artificial chromosome system, revealed that SL5B and SL5C play essential roles in the discontinuous transcription of MERS-CoV. In silico analyses predicted that SL5C interacts with a bulged stem-loop (BSL) in the 3' untranslated region, suggesting that the RNA structure of SL5C is important for viral RNA transcription. Conversely, SL5D did not affect transcription, but mediated the synthesis of positive-strand genomic RNA. Additionally, the RNA secondary structure of SL5 in the revertant virus of the SL5D mutant was similar to that of the wild-type, indicating that the RNA structure of SL5D can finely tune RNA replication in MERS-CoV. Our data indicate novel regulatory mechanisms of viral RNA transcription and replication by higher-order RNA structures in the MERS-CoV genomic RNA.
Collapse
Affiliation(s)
- Yutaka Terada
- Laboratory of Clinical Research on Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
- Center for Vaccine Research and Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sodbayasgalan Amarbayasgalan
- Department of Infectious Diseases and Host Defense, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Yoshiharu Matsuura
- Center for Infectious Disease Education and Research (CiDER), Suita, Japan
- Research Institute for Microbial Diseases (RIMD), Suita, Japan
- Center for Advanced Modalities and DDS (CAMaD), Osaka University, Suita, Japan
| | - Wataru Kamitani
- Laboratory of Clinical Research on Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Suita, Japan.
- Department of Infectious Diseases and Host Defense, Graduate School of Medicine, Gunma University, Maebashi, Japan.
| |
Collapse
|
5
|
Snyder LR, Kilde I, Nemudryi A, Wiedenheft B, Koutmos M, Koutmou KS. Adenosine modifications impede SARS-CoV-2 RNA-dependent RNA transcription. RNA (NEW YORK, N.Y.) 2024; 30:1141-1150. [PMID: 38942480 PMCID: PMC11331411 DOI: 10.1261/rna.079991.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/20/2024] [Indexed: 06/30/2024]
Abstract
SARS-CoV-2, the causative virus of the COVID-19 pandemic, follows SARS and MERS as recent zoonotic coronaviruses causing severe respiratory illness and death in humans. The recurrent impact of zoonotic coronaviruses demands a better understanding of their fundamental molecular biochemistry. Nucleoside modifications, which modulate many steps of the RNA life cycle, have been found in SARS-CoV-2 RNA, although whether they confer a pro- or antiviral effect is unknown. Regardless, the viral RNA-dependent RNA polymerase will encounter these modifications as it transcribes through the viral genomic RNA. We investigated the functional consequences of nucleoside modification on the pre-steady state kinetics of SARS-CoV-2 RNA-dependent RNA transcription using an in vitro reconstituted transcription system with modified RNA templates. Our findings show that N 6-methyladenosine and 2'-O-methyladenosine modifications slow the rate of viral transcription at magnitudes specific to each modification, which has the potential to impact SARS-CoV-2 genome maintenance.
Collapse
Affiliation(s)
- Laura R Snyder
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Ingrid Kilde
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Artem Nemudryi
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana 59717, USA
| | - Blake Wiedenheft
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana 59717, USA
| | - Markos Koutmos
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
- Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Kristin S Koutmou
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
6
|
Wang J, Zhang XZ, Sun XY, Tian WJ, Wang XJ. Cellular RNA-binding proteins LARP4 and PABPC1 synergistically facilitate viral translation of coronavirus PEDV. Vet Microbiol 2024; 298:110219. [PMID: 39182469 DOI: 10.1016/j.vetmic.2024.110219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/10/2024] [Accepted: 08/13/2024] [Indexed: 08/27/2024]
Abstract
Coronaviruses are causing epizootic diseases and thus are a substantial threat for both domestic and wild animals. These viruses depend on the host translation machinery to complete their life cycle. The current paper identified cellular RNA-binding proteins (RBPs), La-related protein 4 (LARP4) and polyadenylate-binding protein cytoplasmic 1 (PABPC1), as critical regulators of efficient translation of the coronavirus porcine epidemic diarrhea virus (PEDV) mRNA. In Vero cells, PEDV infection caused LARP4 to migrate from the nucleus to the cytoplasm in a chromosome region maintenance1 (CRM1)-independent pathway. In the absence of the nuclear export signal of LARP4, viral translation was not promoted by LARP4. A further study unveiled that the cytoplasmic LARP4 binds to the 3'-terminal untranslated region (3'UTR) of PEDV mRNA with the assistance of PABPC1 to facilitate viral translation. LARP4 knockdown reduced the promotion of the PABPC1-induced 3'UTR translation activity. Moreover, the rabbit reticulocyte lysate (RRL) system revealed that the prokaryotic expressed protein LARP4 and PABPC1 enhance PEDV mRNA translation. To our knowledge, this is the first study demonstrating that PEDV induces nucleo-cytoplasmic shuttling of LARP4 to enhance its own replication, which broadens our insights into how viruses use host's RBPs for the efficient translation of viral mRNA.
Collapse
Affiliation(s)
- Jing Wang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xiu-Zhong Zhang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xin-Yue Sun
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Wen-Jun Tian
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xiao-Jia Wang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
7
|
Becker MA, Meiser N, Schmidt-Dengler M, Richter C, Wacker A, Schwalbe H, Hengesbach M. m 6A Methylation of Transcription Leader Sequence of SARS-CoV-2 Impacts Discontinuous Transcription of Subgenomic mRNAs. Chemistry 2024; 30:e202401897. [PMID: 38785102 DOI: 10.1002/chem.202401897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 05/25/2024]
Abstract
The SARS-CoV-2 genome has been shown to be m6A methylated at several positions in vivo. Strikingly, a DRACH motif, the recognition motif for adenosine methylation, resides in the core of the transcriptional regulatory leader sequence (TRS-L) at position A74, which is highly conserved and essential for viral discontinuous transcription. Methylation at position A74 correlates with viral pathogenicity. Discontinuous transcription produces a set of subgenomic mRNAs that function as templates for translation of all structural and accessory proteins. A74 is base-paired in the short stem-loop structure 5'SL3 that opens during discontinuous transcription to form long-range RNA-RNA interactions with nascent (-)-strand transcripts at complementary TRS-body sequences. A74 can be methylated by the human METTL3/METTL14 complex in vitro. Here, we investigate its impact on the structural stability of 5'SL3 and the long-range TRS-leader:TRS-body duplex formation necessary for synthesis of subgenomic mRNAs of all four viral structural proteins. Methylation uniformly destabilizes 5'SL3 and long-range duplexes and alters their relative equilibrium populations, suggesting that the m6A74 modification acts as a regulator for the abundance of viral structural proteins due to this destabilization.
Collapse
Affiliation(s)
- Matthias A Becker
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
| | - Nathalie Meiser
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
| | - Martina Schmidt-Dengler
- Institute of Pharmaceutical and Biomedical Sciences (IPBS), Johannes Gutenberg-University Mainz, Staudingerweg 5, 55128, Mainz, Germany
| | - Christian Richter
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
| | - Anna Wacker
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
| | - Harald Schwalbe
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
| | - Martin Hengesbach
- Institute of Pharmaceutical and Biomedical Sciences (IPBS), Johannes Gutenberg-University Mainz, Staudingerweg 5, 55128, Mainz, Germany
| |
Collapse
|
8
|
Tang S, Conte V, Zhang DJ, Žedaveinytė R, Lampe GD, Wiegand T, Tang LC, Wang M, Walker MW, George JT, Berchowitz LE, Jovanovic M, Sternberg SH. De novo gene synthesis by an antiviral reverse transcriptase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.08.593200. [PMID: 38766058 PMCID: PMC11100668 DOI: 10.1101/2024.05.08.593200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Bacteria defend themselves from viral infection using diverse immune systems, many of which sense and target foreign nucleic acids. Defense-associated reverse transcriptase (DRT) systems provide an intriguing counterpoint to this immune strategy by instead leveraging DNA synthesis, but the identities and functions of their DNA products remain largely unknown. Here we show that DRT2 systems execute an unprecedented immunity mechanism that involves de novo gene synthesis via rolling-circle reverse transcription of a non-coding RNA (ncRNA). Unbiased profiling of RT-associated RNA and DNA ligands in DRT2-expressing cells revealed that reverse transcription generates concatenated cDNA repeats through programmed template jumping on the ncRNA. The presence of phage then triggers second-strand cDNA synthesis, leading to the production of long double-stranded DNA. Remarkably, this DNA product is efficiently transcribed, generating messenger RNAs that encode a stop codon-less, never-ending ORF (neo) whose translation causes potent growth arrest. Phylogenetic analyses and screening of diverse DRT2 homologs further revealed broad conservation of rolling-circle reverse transcription and Neo protein function. Our work highlights an elegant expansion of genome coding potential through RNA-templated gene creation, and challenges conventional paradigms of genetic information encoded along the one-dimensional axis of genomic DNA.
Collapse
Affiliation(s)
- Stephen Tang
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Valentin Conte
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Dennis J. Zhang
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Rimantė Žedaveinytė
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - George D. Lampe
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Tanner Wiegand
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Lauren C. Tang
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Megan Wang
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Matt W.G. Walker
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Jerrin Thomas George
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Luke E. Berchowitz
- Department of Genetics and Development, Columbia University, New York, NY, USA
- Taub Institute for Research on Alzheimer’s and the Aging Brain, New York, NY, USA
| | - Marko Jovanovic
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Samuel H. Sternberg
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| |
Collapse
|
9
|
Ueki H, Kiso M, Furusawa Y, Iida S, Yamayoshi S, Nakajima N, Imai M, Suzuki T, Kawaoka Y. Development of a Mouse-Adapted Reporter SARS-CoV-2 as a Tool for Two-Photon In Vivo Imaging. Viruses 2024; 16:537. [PMID: 38675880 PMCID: PMC11053786 DOI: 10.3390/v16040537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) often causes severe viral pneumonia. Although many studies using mouse models have examined the pathogenicity of SARS-CoV-2, COVID-19 pathogenesis remains poorly understood. In vivo imaging analysis using two-photon excitation microscopy (TPEM) is useful for elucidating the pathology of COVID-19, providing pathological insights that are not available from conventional histological analysis. However, there is no reporter SARS-CoV-2 that demonstrates pathogenicity in C57BL/6 mice and emits sufficient light intensity for two-photon in vivo imaging. Here, we generated a mouse-adapted strain of SARS-CoV-2 (named MASCV2-p25) and demonstrated its efficient replication in the lungs of C57BL/6 mice, causing fatal pneumonia. Histopathologic analysis revealed the severe inflammation and infiltration of immune cells in the lungs of MASCV2-p25-infected C57BL/6 mice, not unlike that observed in COVID-19 patients with severe pneumonia. Subsequently, we generated a mouse-adapted reporter SARS-CoV-2 (named MASCV-Venus-p9) by inserting the fluorescent protein-encoding gene Venus into MASCV2-p25 and sequential lung-to-lung passages in C57BL/6 mice. C57BL/6 mice infected with MASCV2-Venus-p9 exhibited severe pneumonia. In addition, the TPEM of the lungs of the infected C57BL/6J mice showed that the infected cells emitted sufficient levels of fluorescence for easy observation. These findings suggest that MASCV2-Venus-p9 will be useful for two-photon in vivo imaging studies of the pathogenesis of severe COVID-19 pneumonia.
Collapse
Affiliation(s)
- Hiroshi Ueki
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan; (H.U.); (M.K.); (Y.F.); (S.Y.); (M.I.)
- Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo 162-8655, Japan
- Pandemic Preparedness, Infection and Advanced Research Center (UTOPIA), University of Tokyo, Minato-ku, Tokyo 108-8639, Japan; (S.I.); (N.N.); (T.S.)
| | - Maki Kiso
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan; (H.U.); (M.K.); (Y.F.); (S.Y.); (M.I.)
- Pandemic Preparedness, Infection and Advanced Research Center (UTOPIA), University of Tokyo, Minato-ku, Tokyo 108-8639, Japan; (S.I.); (N.N.); (T.S.)
| | - Yuri Furusawa
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan; (H.U.); (M.K.); (Y.F.); (S.Y.); (M.I.)
- Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo 162-8655, Japan
| | - Shun Iida
- Pandemic Preparedness, Infection and Advanced Research Center (UTOPIA), University of Tokyo, Minato-ku, Tokyo 108-8639, Japan; (S.I.); (N.N.); (T.S.)
- Department of Pathology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Seiya Yamayoshi
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan; (H.U.); (M.K.); (Y.F.); (S.Y.); (M.I.)
- Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo 162-8655, Japan
- Pandemic Preparedness, Infection and Advanced Research Center (UTOPIA), University of Tokyo, Minato-ku, Tokyo 108-8639, Japan; (S.I.); (N.N.); (T.S.)
| | - Noriko Nakajima
- Pandemic Preparedness, Infection and Advanced Research Center (UTOPIA), University of Tokyo, Minato-ku, Tokyo 108-8639, Japan; (S.I.); (N.N.); (T.S.)
- Department of Pathology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Masaki Imai
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan; (H.U.); (M.K.); (Y.F.); (S.Y.); (M.I.)
- Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo 162-8655, Japan
| | - Tadaki Suzuki
- Pandemic Preparedness, Infection and Advanced Research Center (UTOPIA), University of Tokyo, Minato-ku, Tokyo 108-8639, Japan; (S.I.); (N.N.); (T.S.)
- Department of Pathology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Yoshihiro Kawaoka
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan; (H.U.); (M.K.); (Y.F.); (S.Y.); (M.I.)
- Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo 162-8655, Japan
- Pandemic Preparedness, Infection and Advanced Research Center (UTOPIA), University of Tokyo, Minato-ku, Tokyo 108-8639, Japan; (S.I.); (N.N.); (T.S.)
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53711, USA
| |
Collapse
|
10
|
Liao Y, Wang H, Liao H, Sun Y, Tan L, Song C, Qiu X, Ding C. Classification, replication, and transcription of Nidovirales. Front Microbiol 2024; 14:1291761. [PMID: 38328580 PMCID: PMC10847374 DOI: 10.3389/fmicb.2023.1291761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/06/2023] [Indexed: 02/09/2024] Open
Abstract
Nidovirales is one order of RNA virus, with the largest single-stranded positive sense RNA genome enwrapped with membrane envelope. It comprises four families (Arterividae, Mesoniviridae, Roniviridae, and Coronaviridae) and has been circulating in humans and animals for almost one century, posing great threat to livestock and poultry,as well as to public health. Nidovirales shares similar life cycle: attachment to cell surface, entry, primary translation of replicases, viral RNA replication in cytoplasm, translation of viral proteins, virion assembly, budding, and release. The viral RNA synthesis is the critical step during infection, including genomic RNA (gRNA) replication and subgenomic mRNAs (sg mRNAs) transcription. gRNA replication requires the synthesis of a negative sense full-length RNA intermediate, while the sg mRNAs transcription involves the synthesis of a nested set of negative sense subgenomic intermediates by a discontinuous strategy. This RNA synthesis process is mediated by the viral replication/transcription complex (RTC), which consists of several enzymatic replicases derived from the polyprotein 1a and polyprotein 1ab and several cellular proteins. These replicases and host factors represent the optimal potential therapeutic targets. Hereby, we summarize the Nidovirales classification, associated diseases, "replication organelle," replication and transcription mechanisms, as well as related regulatory factors.
Collapse
Affiliation(s)
- Ying Liao
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Huan Wang
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Huiyu Liao
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yingjie Sun
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Lei Tan
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Cuiping Song
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Xusheng Qiu
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Chan Ding
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| |
Collapse
|
11
|
Niu X, Liu M, Yang S, Xu J, Hou YJ, Liu D, Tang Q, Zhu H, Wang Q. A recombination-resistant genome for live attenuated and stable PEDV vaccines by engineering the transcriptional regulatory sequences. J Virol 2023; 97:e0119323. [PMID: 37971221 PMCID: PMC10734454 DOI: 10.1128/jvi.01193-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/23/2023] [Indexed: 11/19/2023] Open
Abstract
IMPORTANCE Coronaviruses are important pathogens of humans and animals, and vaccine developments against them are imperative. Due to the ability to induce broad and prolonged protective immunity and the convenient administration routes, live attenuated vaccines (LAVs) are promising arms for controlling the deadly coronavirus infections. However, potential recombination events between vaccine and field strains raise a safety concern for LAVs. The porcine epidemic diarrhea virus (PEDV) remodeled TRS (RMT) mutant generated in this study replicated efficiently in both cell culture and in pigs and retained protective immunogenicity against PEDV challenge in pigs. Furthermore, the RMT PEDV was resistant to recombination and genetically stable. Therefore, RMT PEDV can be further optimized as a backbone for the development of safe LAVs.
Collapse
Affiliation(s)
- Xiaoyu Niu
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, Ohio, USA
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Mingde Liu
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, Ohio, USA
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Shaomin Yang
- Department of Pain Medicine, Shenzhen Nanshan People’s Hospital and the 6th Affiliated Hospital of Guangdong Medical University, Shenzhen, China
| | - Jiayu Xu
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Yixuan J. Hou
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, Ohio, USA
| | - Dongxiao Liu
- Department of Microbiology, Howard University College of Medicine, Washington, DC, USA
| | - Qiyi Tang
- Department of Microbiology, Howard University College of Medicine, Washington, DC, USA
| | - Hua Zhu
- Department of Microbiology and Molecular Genetics, UMDNJ-New Jersey Medical School, Newark, New Jersey, USA
| | - Qiuhong Wang
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, Ohio, USA
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
12
|
Tang Z, Hegde S, Hao S, Selvaraju M, Qiu J, Wang J. Chemical-guided SHAPE sequencing (cgSHAPE-seq) informs the binding site of RNA-degrading chimeras targeting SARS-CoV-2 5' untranslated region. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.03.535453. [PMID: 37066172 PMCID: PMC10103992 DOI: 10.1101/2023.04.03.535453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
One of the hallmarks of RNA viruses is highly structured untranslated regions (UTRs) in their genomes. These conserved RNA structures are often essential for viral replication, transcription, or translation. In this report, we discovered and optimized a new type of coumarin derivatives, such as C30 and C34, which bind to a four-way RNA helix called SL5 in the 5' UTR of the SARS-CoV-2 RNA genome. To locate the binding site, we developed a novel sequencing-based method namely cgSHAPE-seq, in which the acylating chemical probe was directed to crosslink with the 2'-OH groups of ribose at the ligand binding site. This crosslinked RNA could then create read-through mutations during reverse transcription (i.e., primer extension) at single-nucleotide resolution to uncover the acylation locations. cgSHAPE-seq unambiguously determined that a bulged G in SL5 was the primary binding site of C30 in the SARS-CoV-2 5' UTR, which was validated through mutagenesis and in vitro binding experiments. C30 was further used as a warhead in RNA-degrading chimeras to reduce viral RNA expression levels. We demonstrated that replacing the acylating moiety in the cgSHAPE probe with ribonuclease L recruiter (RLR) moieties yielded RNA degraders active in the in vitro RNase L degradation assay and SARS-CoV-2 5' UTR expressing cells. We further explored another RLR conjugation site on the E ring of C30/C34 and discovered improved RNA degradation activities in vitro and in cells. The optimized RNA-degrading chimera C64 inhibited live virus replication in lung epithelial carcinoma cells.
Collapse
Affiliation(s)
- Zhichao Tang
- Department of Medicinal Chemistry, University of Kansas, Lawrence, KS, USA
| | - Shalakha Hegde
- Department of Medicinal Chemistry, University of Kansas, Lawrence, KS, USA
| | - Siyuan Hao
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS, USA
| | | | - Jianming Qiu
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Jingxin Wang
- Department of Medicinal Chemistry, University of Kansas, Lawrence, KS, USA
| |
Collapse
|
13
|
Fritch EJ, Sanders W, Sims AC, Herring LE, Barker NK, Schepmoes AA, Weitz KK, Texier JR, Dittmer DP, Graves LM, Smith RD, Waters KM, Moorman NJ, Baric RS, Graham RL. Metatranscriptomics analysis reveals a novel transcriptional and translational landscape during Middle East respiratory syndrome coronavirus infection. iScience 2023; 26:106780. [PMID: 37193127 PMCID: PMC10152751 DOI: 10.1016/j.isci.2023.106780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 01/31/2023] [Accepted: 04/25/2023] [Indexed: 05/18/2023] Open
Abstract
Among all RNA viruses, coronavirus RNA transcription is the most complex and involves a process termed "discontinuous transcription" that results in the production of a set of 3'-nested, co-terminal genomic and subgenomic RNAs during infection. While the expression of the classic canonical set of subgenomic RNAs depends on the recognition of a 6- to 7-nt transcription regulatory core sequence (TRS), here, we use deep sequence and metagenomics analysis strategies and show that the coronavirus transcriptome is even more vast and more complex than previously appreciated and involves the production of leader-containing transcripts that have canonical and noncanonical leader-body junctions. Moreover, by ribosome protection and proteomics analyses, we show that both positive- and negative-sense transcripts are translationally active. The data support the hypothesis that the coronavirus proteome is much vaster than previously noted in the literature.
Collapse
Affiliation(s)
- Ethan J. Fritch
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Wes Sanders
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Amy C. Sims
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Laura E. Herring
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- UNC Michael Hooker Proteomics Core Facility, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Natalie K. Barker
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- UNC Michael Hooker Proteomics Core Facility, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Athena A. Schepmoes
- Biological Sciences Division, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99394, USA
| | - Karl K. Weitz
- Biological Sciences Division, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99394, USA
| | - Jordan R. Texier
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Dirk P. Dittmer
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Lee M. Graves
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- UNC Michael Hooker Proteomics Core Facility, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Richard D. Smith
- Biological Sciences Division, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99394, USA
| | - Katrina M. Waters
- Biological Sciences Division, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99394, USA
| | - Nathaniel J. Moorman
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ralph S. Baric
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Rachel L. Graham
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
14
|
Bokolia NP, Gadepalli R. Identification of consensus hairpin loop structure among the negative sense subgenomic RNAs of SARS-CoV-2. BULLETIN OF THE NATIONAL RESEARCH CENTRE 2023; 47:28. [PMID: 36852284 PMCID: PMC9947893 DOI: 10.1186/s42269-023-01002-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND SARS-CoV-2 is the causative agent of worldwide pandemic disease coronavirus disease 19. SARS-CoV-2 bears positive sense RNA genome that has organized and complex pattern of replication/transcription process including the generation of subgenomic RNAs. Transcription regulatory sequences have important role in the pausing of replication/transcription and generation of subgenomic RNAs. RESULTS In the present bioinformatics analysis, a consensus secondary structure was identified among negative sense subgenomic RNAs of SARS-CoV-2. This consensus region is present at the adjacent of initiation codon. CONCLUSIONS This study proposed that consensus structured domain could involve in mediating the long pausing of replication/transcription complex and responsible for subgenomic RNA production. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1186/s42269-023-01002-3.
Collapse
Affiliation(s)
- Naveen Prakash Bokolia
- Viral Research and Diagnostic Laboratory, Microbiology Department, All India Institute of Medical Sciences, Jodhpur, 342001 India
| | - Ravisekhar Gadepalli
- Viral Research and Diagnostic Laboratory, Microbiology Department, All India Institute of Medical Sciences, Jodhpur, 342001 India
| |
Collapse
|
15
|
Mohseni N, Royster A, Ren S, Ma Y, Pintado M, Mir M, Mir S. A novel compound targets the feline infectious peritonitis virus nucleocapsid protein and inhibits viral replication in cell culture. J Biol Chem 2023; 299:102976. [PMID: 36738790 PMCID: PMC10011503 DOI: 10.1016/j.jbc.2023.102976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/26/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
Feline infectious peritonitis (FIP) is a serious viral illness in cats, caused by feline coronavirus. Once a cat develops clinical FIP, the prognosis is poor. The effective treatment strategy for coronavirus infections with immunopathological complications such as SARS-CoV-2, MERS, and FIP is focused on antiviral and immunomodulatory agents to inhibit virus replication and enhance the protective immune response. In this article we report the binding and conformational alteration of feline alphacoronavirus (FCoV) nucleocapsid protein by a novel compound K31. K31 noncompetitively inhibited the interaction between the purified nucleocapsid protein and the synthetic 5' terminus of viral genomic RNA in vitro. K31 was well tolerated by cells and inhibited FCoV replication in cell culture with a selective index of 115. A single dose of K31inhibited FCoV replication to an undetectable level in 24 h post treatment. K31 did not affect the virus entry to the host cell but inhibited the postentry steps of virus replication. The nucleocapsid protein forms ribonucleocapsid in association with the viral genomic RNA that serves as a template for transcription and replication of the viral genome. Our results show that K31 treatment disrupted the structural integrity of ribonucleocapsid in virus-infected cells. After the COVID-19 pandemic, most of the antiviral drug development strategies have focused on RdRp and proteases encoded by the viral genome. Our results have shown that nucleocapsid protein is a druggable target for anticoronavirus drug discovery.
Collapse
Affiliation(s)
- Nazleen Mohseni
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, California, USA
| | - Austin Royster
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, California, USA
| | - Songyang Ren
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, California, USA
| | - Yutian Ma
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, California, USA
| | - Melissa Pintado
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, California, USA
| | - Mohammad Mir
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, California, USA
| | - Sheema Mir
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, California, USA.
| |
Collapse
|
16
|
Lamkiewicz K, Esquivel Gomez LR, Kühnert D, Marz M. Genome Structure, Life Cycle, and Taxonomy of Coronaviruses and the Evolution of SARS-CoV-2. Curr Top Microbiol Immunol 2023; 439:305-339. [PMID: 36592250 DOI: 10.1007/978-3-031-15640-3_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Coronaviruses have a broad host range and exhibit high zoonotic potential. In this chapter, we describe their genomic organization in terms of encoded proteins and provide an introduction to the peculiar discontinuous transcription mechanism. Further, we present evolutionary conserved genomic RNA secondary structure features, which are involved in the complex replication mechanism. With a focus on computational methods, we review the emergence of SARS-CoV-2 starting with the 2019 strains. In that context, we also discuss the debated hypothesis of whether SARS-CoV-2 was created in a laboratory. We focus on the molecular evolution and the epidemiological dynamics of this recently emerged pathogen and we explain how variants of concern are detected and characterised. COVID-19, the disease caused by SARS-CoV-2, can spread through different transmission routes and also depends on a number of risk factors. We describe how current computational models of viral epidemiology, or more specifically, phylodynamics, have facilitated and will continue to enable a better understanding of the epidemic dynamics of SARS-CoV-2.
Collapse
Affiliation(s)
- Kevin Lamkiewicz
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, Leutragraben 1, 07743, Jena, Germany
- European Virus Bioinformatics Center, Leutragraben 1, 07743, Jena, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, 04103, Leipzig, Germany
| | - Luis Roger Esquivel Gomez
- Transmission, Infection, Diversification and Evolution Group, Max Planck Institute for the Science of Human History, Kahlaische Straße 10, 07745, Jena, Germany
| | - Denise Kühnert
- Transmission, Infection, Diversification and Evolution Group, Max Planck Institute for the Science of Human History, Kahlaische Straße 10, 07745, Jena, Germany
- European Virus Bioinformatics Center, Leutragraben 1, 07743, Jena, Germany
| | - Manja Marz
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, Leutragraben 1, 07743, Jena, Germany.
- European Virus Bioinformatics Center, Leutragraben 1, 07743, Jena, Germany.
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, 04103, Leipzig, Germany.
- FLI Leibniz Institute for Age Research, Beutenbergstraße 11, 07745, Jena, Germany.
| |
Collapse
|
17
|
Bahoussi AN, Wang PH, Shah PT, Bu H, Wu C, Xing L. Evolutionary plasticity of zoonotic porcine Deltacoronavirus (PDCoV): genetic characteristics and geographic distribution. BMC Vet Res 2022; 18:444. [PMID: 36550483 PMCID: PMC9772601 DOI: 10.1186/s12917-022-03554-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
The emergence and rapid spread of the acute respiratory syndrome coronavirus-2 have confirmed that animal coronaviruses represent a potential zoonotic source. Porcine deltacoronavirus is a worldwide evolving enteropathogen of swine, detected first in Hong Kong, China, before its global identification. Following the recent detection of PDCoV in humans, we attempted in this report to re-examine the status of PDCoV phylogenetic classification and evolutionary characteristics. A dataset of 166 complete PDCoV genomes was analyzed using the Maximum Likelihood method in IQ-TREE with the best-fitting model GTR + F + I + G4, revealing two major genogroups (GI and GII), with further seven and two sub-genogroups, (GI a-g) and (GII a-b), respectively. PDCoV strains collected in China exhibited the broadest genetic diversity, distributed in all subgenotypes. Thirty-one potential natural recombination events were identified, 19 of which occurred between China strains, and seven involved at least one China strain as a parental sequence. Importantly, we identified a human Haiti PDCoV strain as recombinant, alarming a possible future spillover that could become a critical threat to human health. The similarity and recombination analysis showed that PDCoV spike ORF is highly variable compared to ORFs encoding other structural proteins. Prediction of linear B cell epitopes of the spike glycoprotein and the 3D structural mapping of amino acid variations of two representative strains of GI and GII showed that the receptor-binding domain (RBD) of spike glycoprotein underwent a significant antigenic drift, suggesting its contribution in the genetic diversity and the wider spread of PDCoV.
Collapse
Affiliation(s)
- Amina Nawal Bahoussi
- grid.163032.50000 0004 1760 2008Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan, 030006 Shanxi province China
| | - Pei-Hua Wang
- grid.163032.50000 0004 1760 2008Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan, 030006 Shanxi province China
| | - Pir Tariq Shah
- grid.163032.50000 0004 1760 2008Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan, 030006 Shanxi province China
| | - Hongli Bu
- grid.477987.2Department of Laboratory Medicine, The Fourth People’s Hospital of Taiyuan, 231 Xikuang St, Taiyuan, 030053 Shanxi province China
| | - Changxin Wu
- grid.163032.50000 0004 1760 2008Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan, 030006 Shanxi province China ,grid.163032.50000 0004 1760 2008Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Shanxi University, 92 Wucheng Road, Taiyuan, 030006 China ,Shanxi Provincial Key Laboratory for Prevention and Treatment of Major Infectious Diseases, 92 Wucheng Road, Taiyuan, 030006 China ,grid.163032.50000 0004 1760 2008The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, 030006 China
| | - Li Xing
- grid.163032.50000 0004 1760 2008Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan, 030006 Shanxi province China ,grid.163032.50000 0004 1760 2008Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Shanxi University, 92 Wucheng Road, Taiyuan, 030006 China ,Shanxi Provincial Key Laboratory for Prevention and Treatment of Major Infectious Diseases, 92 Wucheng Road, Taiyuan, 030006 China ,grid.163032.50000 0004 1760 2008The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, 030006 China
| |
Collapse
|
18
|
Xu T, Li LX, Jia Y, Wu Q, Zhu W, Xu Z, Zheng B, Lu X. One microRNA has the potential to target whole viral mRNAs in a given human coronavirus. Front Microbiol 2022; 13:1035044. [PMID: 36439806 PMCID: PMC9686371 DOI: 10.3389/fmicb.2022.1035044] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/24/2022] [Indexed: 09/29/2023] Open
Abstract
MicroRNAs (miRNAs) can repress viral replication by targeting viral messenger RNA (mRNA), which makes them potential antiviral agents. The antiviral effects of miRNAs on infectious viruses have been explored extensively; however, recent studies mainly considered the action modes of miRNAs, neglecting another key factor, the molecular biology of viruses, which may be particularly important in the study of miRNA actions against a given virus. In this paper, the action modes of miRNAs and the molecular biology of viruses are jointly considered for the first time and based on the reported roles of miRNAs on viruses and human coronaviruses (HCoVs) molecular biology, the general and specific interaction modes of miRNAs-HCoVs are systematically reviewed. It was found that HCoVs transcriptome is a nested set of subgenomic mRNAs, sharing the same 5' leader, 3' untranslated region (UTR) and open reading frame (ORF). For a given HCoV, one certain miRNA with a target site in the 5' leader or 3' UTR has the potential to target all viral mRNAs, indicating tremendous antiviral effects against HCoVs. However, for the shared ORFs, some parts are untranslatable attributed to the translation pattern of HCoVs mRNA, and it is unknown whether the base pairing between the untranslated ORFs and miRNAs plays a regulatory effect on the local mRNAs where the untranslated ORFs are located; therefore, the regulatory effects of miRNAs with targets within the shared ORFs are complicated and need to be confirmed. Collectively, miRNAs may bepromising antiviral agents against HCoVs due to their intrinsically nested set of mRNAs, and some gaps are waiting to be filled. In this review, insight is provided into the exploration of miRNAs that can interrupt HCoVs infection.
Collapse
Affiliation(s)
- Tielong Xu
- Evidence-Based Medicine Research Center Department, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Long-xue Li
- Laboratory Animal Science and Technology Center, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Yao Jia
- Evidence-Based Medicine Research Center Department, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Qingni Wu
- Evidence-Based Medicine Research Center Department, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Weifeng Zhu
- Evidence-Based Medicine Research Center Department, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Zhou Xu
- Evidence-Based Medicine Research Center Department, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Bin Zheng
- National Institute of Parasitic Diseases Chinese Center for Disease Control and Prevention, and WHO Collaborating Center for Tropical Diseases, Shanghai, China
| | - Xuexin Lu
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
19
|
Aly A, Scott G, Calderon M, Haghighi AP. N6-Adenosine Methylation of SARS-CoV-2 5'-UTR Regulates Translation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.10.17.512569. [PMID: 36299421 PMCID: PMC9603819 DOI: 10.1101/2022.10.17.512569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The coronavirus disease 2019 (COVID19) continues to spread despite global vaccination efforts (1). This, alongside the rapid emergence of vaccine resistant variants, creates a need for orthogonal therapeutic strategies targeting more conserved facets of severe acute respiratory syndrome coronavirus (SARS-CoV-2) (2-4). One conserved feature of all coronaviruses is their ability to undergo discontinuous transcription wherein individual open reading frames fuse with the 5'-UTR leader sequence during negative-strand RNA synthesis (5). As such all viral protein coding genes use the same 5'-UTR for translation (6). Using in vitro reporter assays, we demonstrate that the SARS-CoV-2 5'-UTR efficiently initiates protein translation despite its predicted structural complexity. Through a combination of bioinformatic and biochemical assays, we demonstrate that a single METTL3-dependent m6A methylation event in SARS-CoV-2 5'-UTR regulates the rate of translation initiation. We show that m6A likely exerts this effect by destabilizing secondary structure in the 5'-UTR, thereby facilitating access to the ribosomal pre-initiation complex. This discovery opens new avenues for novel therapeutic strategies aimed at controlling the ability of SARS-CoV-2 to replicate in host cells.
Collapse
|
20
|
Hu Q, Xiong Y, Zhu G, Zhang Y, Zhang Y, Huang P, Ge G. The SARS-CoV-2 main protease (M pro): Structure, function, and emerging therapies for COVID-19. MedComm (Beijing) 2022; 3:e151. [PMID: 35845352 PMCID: PMC9283855 DOI: 10.1002/mco2.151] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/06/2022] [Accepted: 06/06/2022] [Indexed: 12/21/2022] Open
Abstract
The main proteases (Mpro), also termed 3-chymotrypsin-like proteases (3CLpro), are a class of highly conserved cysteine hydrolases in β-coronaviruses. Increasing evidence has demonstrated that 3CLpros play an indispensable role in viral replication and have been recognized as key targets for preventing and treating coronavirus-caused infectious diseases, including COVID-19. This review is focused on the structural features and biological function of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) main protease Mpro (also known as 3CLpro), as well as recent advances in discovering and developing SARS-CoV-2 3CLpro inhibitors. To better understand the characteristics of SARS-CoV-2 3CLpro inhibitors, the inhibition activities, inhibitory mechanisms, and key structural features of various 3CLpro inhibitors (including marketed drugs, peptidomimetic, and non-peptidomimetic synthetic compounds, as well as natural compounds and their derivatives) are summarized comprehensively. Meanwhile, the challenges in this field are highlighted, while future directions for designing and developing efficacious 3CLpro inhibitors as novel anti-coronavirus therapies are also proposed. Collectively, all information and knowledge presented here are very helpful for understanding the structural features and inhibitory mechanisms of SARS-CoV-2 3CLpro inhibitors, which offers new insights or inspiration to medicinal chemists for designing and developing more efficacious 3CLpro inhibitors as novel anti-coronavirus agents.
Collapse
Affiliation(s)
- Qing Hu
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
- Clinical Pharmacy CenterCancer CenterDepartment of PharmacyZhejiang Provincial People's HospitalAffiliated People's HospitalHangzhou Medical College, HangzhouZhejiangChina
| | - Yuan Xiong
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Guang‐Hao Zhu
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Ya‐Ni Zhang
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Yi‐Wen Zhang
- Clinical Pharmacy CenterCancer CenterDepartment of PharmacyZhejiang Provincial People's HospitalAffiliated People's HospitalHangzhou Medical College, HangzhouZhejiangChina
| | - Ping Huang
- Clinical Pharmacy CenterCancer CenterDepartment of PharmacyZhejiang Provincial People's HospitalAffiliated People's HospitalHangzhou Medical College, HangzhouZhejiangChina
| | - Guang‐Bo Ge
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| |
Collapse
|
21
|
Liu Y, Zhang X, Liu J, Xia H, Zou J, Muruato AE, Periasamy S, Kurhade C, Plante JA, Bopp NE, Kalveram B, Bukreyev A, Ren P, Wang T, Menachery VD, Plante KS, Xie X, Weaver SC, Shi PY. A live-attenuated SARS-CoV-2 vaccine candidate with accessory protein deletions. Nat Commun 2022; 13:4337. [PMID: 35896528 PMCID: PMC9326133 DOI: 10.1038/s41467-022-31930-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 07/08/2022] [Indexed: 12/27/2022] Open
Abstract
We report a live-attenuated SARS-CoV-2 vaccine candidate with (i) re-engineered viral transcription regulator sequences and (ii) deleted open-reading-frames (ORF) 3, 6, 7, and 8 (∆3678). The ∆3678 virus replicates about 7,500-fold lower than wild-type SARS-CoV-2 on primary human airway cultures, but restores its replication on interferon-deficient Vero-E6 cells that are approved for vaccine production. The ∆3678 virus is highly attenuated in both hamster and K18-hACE2 mouse models. A single-dose immunization of the ∆3678 virus protects hamsters from wild-type virus challenge and transmission. Among the deleted ORFs in the ∆3678 virus, ORF3a accounts for the most attenuation through antagonizing STAT1 phosphorylation during type-I interferon signaling. We also developed an mNeonGreen reporter ∆3678 virus for high-throughput neutralization and antiviral testing. Altogether, the results suggest that ∆3678 SARS-CoV-2 may serve as a live-attenuated vaccine candidate and a research tool for potential biosafety level-2 use.
Collapse
Affiliation(s)
- Yang Liu
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Xianwen Zhang
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Jianying Liu
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Hongjie Xia
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Jing Zou
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Antonio E Muruato
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Sivakumar Periasamy
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
- Galveston National Laboratory, Galveston, TX, USA
| | - Chaitanya Kurhade
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Jessica A Plante
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX, USA
| | - Nathen E Bopp
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Birte Kalveram
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Alexander Bukreyev
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
- Galveston National Laboratory, Galveston, TX, USA
| | - Ping Ren
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Tian Wang
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, USA
| | - Vineet D Menachery
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Kenneth S Plante
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA.
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA.
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX, USA.
| | - Xuping Xie
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA.
| | - Scott C Weaver
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA.
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA.
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX, USA.
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, USA.
| | - Pei-Yong Shi
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA.
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA.
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, USA.
- Sealy Institute for Drug Discovery, University of Texas Medical Branch, Galveston, TX, USA.
- Sealy Center for Structural Biology & Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
22
|
Parker MD, Stewart H, Shehata OM, Lindsey BB, Shah DR, Hsu S, Keeley AJ, Partridge DG, Leary S, Cope A, State A, Johnson K, Ali N, Raghei R, Heffer J, Smith N, Zhang P, Gallis M, Louka SF, Hornsby HR, Alamri H, Whiteley M, Foulkes BH, Christou S, Wolverson P, Pohare M, Hansford SE, Green LR, Evans C, Raza M, Wang D, Firth AE, Edgar JR, Gaudieri S, Mallal S, Collins MO, Peden AA, de Silva TI. Altered subgenomic RNA abundance provides unique insight into SARS-CoV-2 B.1.1.7/Alpha variant infections. Commun Biol 2022; 5:666. [PMID: 35790808 PMCID: PMC9255483 DOI: 10.1038/s42003-022-03565-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 06/07/2022] [Indexed: 12/15/2022] Open
Abstract
B.1.1.7 lineage SARS-CoV-2 is more transmissible, leads to greater clinical severity, and results in modest reductions in antibody neutralization. Subgenomic RNA (sgRNA) is produced by discontinuous transcription of the SARS-CoV-2 genome. Applying our tool (periscope) to ARTIC Network Oxford Nanopore Technologies genomic sequencing data from 4400 SARS-CoV-2 positive clinical samples, we show that normalised sgRNA is significantly increased in B.1.1.7 (alpha) infections (n = 879). This increase is seen over the previous dominant lineage in the UK, B.1.177 (n = 943), which is independent of genomic reads, E cycle threshold and days since symptom onset at sampling. A noncanonical sgRNA which could represent ORF9b is found in 98.4% of B.1.1.7 SARS-CoV-2 infections compared with only 13.8% of other lineages, with a 16-fold increase in median sgRNA abundance. We demonstrate that ORF9b protein levels are increased 6-fold in B.1.1.7 compared to a B lineage virus in vitro. We hypothesise that increased ORF9b in B.1.1.7 is a direct consequence of a triple nucleotide mutation in nucleocapsid (28280:GAT > CAT, D3L) creating a transcription regulatory-like sequence complementary to a region 3' of the genomic leader. These findings provide a unique insight into the biology of B.1.1.7 and support monitoring of sgRNA profiles to evaluate emerging potential variants of concern.
Collapse
Affiliation(s)
- Matthew D Parker
- Sheffield Biomedical Research Centre, The University of Sheffield, Sheffield, UK
- Sheffield Bioinformatics Core, The University of Sheffield, Sheffield, UK
| | - Hazel Stewart
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Ola M Shehata
- Department of Biomedical Science, The University of Sheffield, Western Bank, Sheffield, UK
| | - Benjamin B Lindsey
- Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
- The Florey Institute for Host-Pathogen Interactions & Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, UK
| | - Dhruv R Shah
- The Florey Institute for Host-Pathogen Interactions & Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, UK
| | - Sharon Hsu
- Sheffield Bioinformatics Core, The University of Sheffield, Sheffield, UK
- The Florey Institute for Host-Pathogen Interactions & Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, UK
| | - Alexander J Keeley
- Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
- The Florey Institute for Host-Pathogen Interactions & Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, UK
| | | | - Shay Leary
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, WA, Australia
| | - Alison Cope
- Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Amy State
- Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Katie Johnson
- Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Nasar Ali
- Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Rasha Raghei
- Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Joe Heffer
- IT Services, The University of Sheffield, Sheffield, UK
| | - Nikki Smith
- The Florey Institute for Host-Pathogen Interactions & Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, UK
| | - Peijun Zhang
- The Florey Institute for Host-Pathogen Interactions & Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, UK
| | - Marta Gallis
- The Florey Institute for Host-Pathogen Interactions & Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, UK
| | - Stavroula F Louka
- The Florey Institute for Host-Pathogen Interactions & Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, UK
| | - Hailey R Hornsby
- The Florey Institute for Host-Pathogen Interactions & Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, UK
| | - Hatoon Alamri
- Department of Biomedical Science, The University of Sheffield, Western Bank, Sheffield, UK
| | - Max Whiteley
- The Florey Institute for Host-Pathogen Interactions & Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, UK
| | - Benjamin H Foulkes
- The Florey Institute for Host-Pathogen Interactions & Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, UK
| | - Stella Christou
- The Florey Institute for Host-Pathogen Interactions & Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, UK
| | - Paige Wolverson
- The Florey Institute for Host-Pathogen Interactions & Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, UK
| | - Manoj Pohare
- The Florey Institute for Host-Pathogen Interactions & Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, UK
| | - Samantha E Hansford
- The Florey Institute for Host-Pathogen Interactions & Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, UK
| | - Luke R Green
- The Florey Institute for Host-Pathogen Interactions & Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, UK
| | - Cariad Evans
- Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Mohammad Raza
- Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Dennis Wang
- Sheffield Biomedical Research Centre, The University of Sheffield, Sheffield, UK
- Sheffield Bioinformatics Core, The University of Sheffield, Sheffield, UK
- Department of Computer Science, The University of Sheffield, Sheffield, UK
| | - Andrew E Firth
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - James R Edgar
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Silvana Gaudieri
- Department of Computer Science, The University of Sheffield, Sheffield, UK
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- School of Human Sciences, University of Western Australia, Crawley, WA, Australia
| | - Simon Mallal
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- School of Human Sciences, University of Western Australia, Crawley, WA, Australia
| | - Mark O Collins
- Department of Biomedical Science, The University of Sheffield, Western Bank, Sheffield, UK
| | - Andrew A Peden
- Department of Biomedical Science, The University of Sheffield, Western Bank, Sheffield, UK
| | - Thushan I de Silva
- Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK.
- The Florey Institute for Host-Pathogen Interactions & Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, UK.
| |
Collapse
|
23
|
Niu X, Wang Q. Prevention and Control of Porcine Epidemic Diarrhea: The Development of Recombination-Resistant Live Attenuated Vaccines. Viruses 2022; 14:v14061317. [PMID: 35746788 PMCID: PMC9227446 DOI: 10.3390/v14061317] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 11/04/2022] Open
Abstract
Porcine epidemic diarrhea (PED), causing up to 100% mortality in neonatal pigs, is a highly contagious enteric disease caused by PED virus (PEDV). The highly virulent genogroup 2 (G2) PEDV emerged in 2010 and has caused huge economic losses to the pork industry globally. It was first reported in the US in 2013, caused country-wide outbreaks, and posed tremendous hardship for many pork producers in 2013–2014. Vaccination of pregnant sows/gilts with live attenuated vaccines (LAVs) is the most effective strategy to induce lactogenic immunity in the sows/gilts and provide a passive protection via the colostrum and milk to suckling piglets against PED. However, there are still no safe and effective vaccines available after about one decade of endeavor. One of the biggest concerns is the potential reversion to virulence of an LAV in the field. In this review, we summarize the status and the major obstacles in PEDV LAV development. We also discuss the function of the transcriptional regulatory sequences in PEDV transcription, contributing to recombination, and possible strategies to prevent the reversion of LAVs. This article provides insights into the rational design of a promising LAV without safety issues.
Collapse
Affiliation(s)
- Xiaoyu Niu
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA;
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Qiuhong Wang
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA;
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
- Correspondence: ; Tel.: +1-330-263-3960
| |
Collapse
|
24
|
de Klerk A, Swanepoel P, Lourens R, Zondo M, Abodunran I, Lytras S, MacLean OA, Robertson D, Kosakovsky Pond SL, Zehr JD, Kumar V, Stanhope MJ, Harkins G, Murrell B, Martin DP. Conserved recombination patterns across coronavirus subgenera. Virus Evol 2022; 8:veac054. [PMID: 35814334 PMCID: PMC9261289 DOI: 10.1093/ve/veac054] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 03/03/2022] [Accepted: 06/10/2022] [Indexed: 11/12/2022] Open
Abstract
Recombination contributes to the genetic diversity found in coronaviruses and is known to be a prominent mechanism whereby they evolve. It is apparent, both from controlled experiments and in genome sequences sampled from nature, that patterns of recombination in coronaviruses are non-random and that this is likely attributable to a combination of sequence features that favour the occurrence of recombination break points at specific genomic sites, and selection disfavouring the survival of recombinants within which favourable intra-genome interactions have been disrupted. Here we leverage available whole-genome sequence data for six coronavirus subgenera to identify specific patterns of recombination that are conserved between multiple subgenera and then identify the likely factors that underlie these conserved patterns. Specifically, we confirm the non-randomness of recombination break points across all six tested coronavirus subgenera, locate conserved recombination hot- and cold-spots, and determine that the locations of transcriptional regulatory sequences are likely major determinants of conserved recombination break-point hotspot locations. We find that while the locations of recombination break points are not uniformly associated with degrees of nucleotide sequence conservation, they display significant tendencies in multiple coronavirus subgenera to occur in low guanine-cytosine content genome regions, in non-coding regions, at the edges of genes, and at sites within the Spike gene that are predicted to be minimally disruptive of Spike protein folding. While it is apparent that sequence features such as transcriptional regulatory sequences are likely major determinants of where the template-switching events that yield recombination break points most commonly occur, it is evident that selection against misfolded recombinant proteins also strongly impacts observable recombination break-point distributions in coronavirus genomes sampled from nature.
Collapse
Affiliation(s)
- Arné de Klerk
- Institute of Infectious Diseases and Molecular Medicine, Division Of Computational Biology, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town 7701, South Africa
| | - Phillip Swanepoel
- Institute of Infectious Diseases and Molecular Medicine, Division Of Computational Biology, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town 7701, South Africa
| | - Rentia Lourens
- Division of Neurosurgery, Neuroscience Institute, Department of Surgery, University of Cape Town, Cape Town, 7701, South Africa
| | - Mpumelelo Zondo
- Institute of Infectious Diseases and Molecular Medicine, Division Of Computational Biology, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town 7701, South Africa
| | - Isaac Abodunran
- Institute of Infectious Diseases and Molecular Medicine, Division Of Computational Biology, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town 7701, South Africa
| | - Spyros Lytras
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow G61 1QH, UK
| | - Oscar A MacLean
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow G61 1QH, UK
| | - David Robertson
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow G61 1QH, UK
| | - Sergei L Kosakovsky Pond
- Department of Biology, Temple University, Institute for Genomics and Evolutionary Medicine, Philadelphia, PA 19122, USA
| | - Jordan D Zehr
- Department of Biology, Temple University, Institute for Genomics and Evolutionary Medicine, Philadelphia, PA 19122, USA
| | - Venkatesh Kumar
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, 14186, Sweden
| | - Michael J Stanhope
- Department of Population and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Gordon Harkins
- South African National Bioinformatics Institute, University of the Western Cape, Cape Town, 7535, South Africa
| | - Ben Murrell
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, 14186, Sweden
| | - Darren P Martin
- Institute of Infectious Diseases and Molecular Medicine, Division Of Computational Biology, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town 7701, South Africa
| |
Collapse
|
25
|
Chen Z, Ng RWY, Lui G, Ling L, Chow C, Yeung ACM, Boon SS, Wang MH, Chan KCC, Chan RWY, Hui DSC, Chan PKS. Profiling of SARS-CoV-2 Subgenomic RNAs in Clinical Specimens. Microbiol Spectr 2022; 10:e0018222. [PMID: 35311586 PMCID: PMC9045320 DOI: 10.1128/spectrum.00182-22] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 02/24/2022] [Indexed: 12/19/2022] Open
Abstract
SARS-CoV-2 transcribes a set of subgenomic RNAs (sgRNAs) essential for the translation of structural and accessory proteins to sustain its life cycle. We applied RNA-seq on 375 respiratory samples from individual COVID-19 patients and revealed that the majority of the sgRNAs were canonical transcripts with N being the most abundant (36.2%), followed by S (11.6%), open reading frame 7a (ORF7a; 10.3%), M (8.4%), ORF3a (7.9%), ORF8 (6.0%), E (4.6%), ORF6 (2.5%), and ORF7b (0.3%); but ORF10 was not detected. The profile of most sgRNAs, except N, showed an independent association with viral load, time of specimen collection after onset, age of the patient, and S-614D/G variant with ORF7b and then ORF6 being the most sensitive to changes in these characteristics. Monitoring of 124 serial samples from 10 patients using sgRNA-specific real-time RT-PCR revealed a potential of adopting sgRNA as a marker of viral activity. Respiratory samples harboring a full set of canonical sgRNAs were mainly collected early within 1 to 2 weeks from onset, and most of the stool samples (90%) were negative for sgRNAs despite testing positive by diagnostic PCR targeting genomic RNA. ORF7b was the first to become undetectable and again being the most sensitive surrogate marker for a full set of canonical sgRNAs in clinical samples. The potential of using sgRNA to monitor viral activity and progression of SARS-CoV-2 infection, and hence as one of the objective indicators to triage patients for isolation and treatment should be considered. IMPORTANCE Attempts to use subgenomic RNAs (sgRNAs) of SARS-CoV-2 to identify active infection of COVID-19 have produced diverse results. In this work, we applied next-generation sequencing and RT-PCR to profile the full spectrum of SARS-CoV-2 sgRNAs in a large cohort of respiratory and stool samples collected throughout infection. Numerous known and novel discontinuous transcription events potentially encoding full-length, deleted and frameshift proteins were observed. In particular, the expression profile of canonical sgRNAs was associated with genomic RNA level and clinical characteristics. Our study found sgRNAs as potential biomarkers for monitoring infectivity and progression of SARS-CoV-2 infection, which provides an alternative target for the management and treatment of COVID-19 patients.
Collapse
Affiliation(s)
- Zigui Chen
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Rita Way Yin Ng
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Grace Lui
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Lowell Ling
- Department of Anaesthesia and Intensive Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Chit Chow
- Department of Anatomical and Cellular Pathology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Apple Chung Man Yeung
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Siaw Shi Boon
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Maggie Haitian Wang
- Jockey Club School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Kate Ching Ching Chan
- Department of Paediatrics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Renee Wan Yi Chan
- Department of Paediatrics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - David Shu Cheong Hui
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
- Stanley Ho Centre for Emerging Infectious Diseases, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Paul Kay Sheung Chan
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
- Stanley Ho Centre for Emerging Infectious Diseases, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| |
Collapse
|
26
|
Caruso IP, Dos Santos Almeida V, do Amaral MJ, de Andrade GC, de Araújo GR, de Araújo TS, de Azevedo JM, Barbosa GM, Bartkevihi L, Bezerra PR, Dos Santos Cabral KM, de Lourenço IO, Malizia-Motta CLF, de Luna Marques A, Mebus-Antunes NC, Neves-Martins TC, de Sá JM, Sanches K, Santana-Silva MC, Vasconcelos AA, da Silva Almeida M, de Amorim GC, Anobom CD, Da Poian AT, Gomes-Neto F, Pinheiro AS, Almeida FCL. Insights into the specificity for the interaction of the promiscuous SARS-CoV-2 nucleocapsid protein N-terminal domain with deoxyribonucleic acids. Int J Biol Macromol 2022; 203:466-480. [PMID: 35077748 PMCID: PMC8783401 DOI: 10.1016/j.ijbiomac.2022.01.121] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 12/23/2022]
Abstract
The SARS-CoV-2 nucleocapsid protein (N) is a multifunctional promiscuous nucleic acid-binding protein, which plays a major role in nucleocapsid assembly and discontinuous RNA transcription, facilitating the template switch of transcriptional regulatory sequences (TRS). Here, we dissect the structural features of the N protein N-terminal domain (N-NTD) and N-NTD plus the SR-rich motif (N-NTD-SR) upon binding to single and double-stranded TRS DNA, as well as their activities for dsTRS melting and TRS-induced liquid-liquid phase separation (LLPS). Our study gives insights on the specificity for N-NTD(-SR) interaction with TRS. We observed an approximation of the triple-thymidine (TTT) motif of the TRS to β-sheet II, giving rise to an orientation difference of ~25° between dsTRS and non-specific sequence (dsNS). It led to a local unfavorable energetic contribution that might trigger the melting activity. The thermodynamic parameters of binding of ssTRSs and dsTRS suggested that the duplex dissociation of the dsTRS in the binding cleft is entropically favorable. We showed a preference for TRS in the formation of liquid condensates when compared to NS. Moreover, our results on DNA binding may serve as a starting point for the design of inhibitors, including aptamers, against N, a possible therapeutic target essential for the virus infectivity.
Collapse
Affiliation(s)
- Icaro Putinhon Caruso
- Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Multiuser Center for Biomolecular Innovation (CMIB), Department of Physics, São Paulo State University (UNESP), São José do Rio Preto, Brazil; Rio BioNMR Network, Rio de Janeiro, Brazil.
| | - Vitor Dos Santos Almeida
- National Center of Nuclear Magnetic Resonance (CNRMN), CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Rio BioNMR Network, Rio de Janeiro, Brazil
| | - Mariana Juliani do Amaral
- Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Protein Advanced Biochemistry (PAB), CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Rio BioNMR Network, Rio de Janeiro, Brazil
| | - Guilherme Caldas de Andrade
- Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; National Center of Nuclear Magnetic Resonance (CNRMN), CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Rio BioNMR Network, Rio de Janeiro, Brazil
| | - Gabriela Rocha de Araújo
- Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; National Center of Nuclear Magnetic Resonance (CNRMN), CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Rio BioNMR Network, Rio de Janeiro, Brazil
| | - Talita Stelling de Araújo
- Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Protein Advanced Biochemistry (PAB), CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Rio BioNMR Network, Rio de Janeiro, Brazil
| | - Jéssica Moreira de Azevedo
- Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Protein Advanced Biochemistry (PAB), CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Rio BioNMR Network, Rio de Janeiro, Brazil
| | - Glauce Moreno Barbosa
- Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; National Center of Nuclear Magnetic Resonance (CNRMN), CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Rio BioNMR Network, Rio de Janeiro, Brazil
| | - Leonardo Bartkevihi
- Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; National Center of Nuclear Magnetic Resonance (CNRMN), CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Rio BioNMR Network, Rio de Janeiro, Brazil
| | - Peter Reis Bezerra
- Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; National Center of Nuclear Magnetic Resonance (CNRMN), CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Rio BioNMR Network, Rio de Janeiro, Brazil
| | - Katia Maria Dos Santos Cabral
- Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Protein Advanced Biochemistry (PAB), CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Rio BioNMR Network, Rio de Janeiro, Brazil
| | - Isabella Otênio de Lourenço
- Multiuser Center for Biomolecular Innovation (CMIB), Department of Physics, São Paulo State University (UNESP), São José do Rio Preto, Brazil; Rio BioNMR Network, Rio de Janeiro, Brazil
| | - Clara L F Malizia-Motta
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Rio BioNMR Network, Rio de Janeiro, Brazil
| | - Aline de Luna Marques
- Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Multidisciplinary Center for Research in Biology (NUMPEX), Campus Duque de Caxias Federal University of Rio de Janeiro, Duque de Caxias, Brazil; Rio BioNMR Network, Rio de Janeiro, Brazil
| | - Nathane Cunha Mebus-Antunes
- Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Rio BioNMR Network, Rio de Janeiro, Brazil
| | - Thais Cristtina Neves-Martins
- Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Rio BioNMR Network, Rio de Janeiro, Brazil
| | - Jéssica Maróstica de Sá
- Multiuser Center for Biomolecular Innovation (CMIB), Department of Physics, São Paulo State University (UNESP), São José do Rio Preto, Brazil; Rio BioNMR Network, Rio de Janeiro, Brazil
| | - Karoline Sanches
- Multiuser Center for Biomolecular Innovation (CMIB), Department of Physics, São Paulo State University (UNESP), São José do Rio Preto, Brazil; Rio BioNMR Network, Rio de Janeiro, Brazil
| | - Marcos Caique Santana-Silva
- Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Multidisciplinary Center for Research in Biology (NUMPEX), Campus Duque de Caxias Federal University of Rio de Janeiro, Duque de Caxias, Brazil; Rio BioNMR Network, Rio de Janeiro, Brazil
| | - Ariana Azevedo Vasconcelos
- Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; National Center of Nuclear Magnetic Resonance (CNRMN), CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Rio BioNMR Network, Rio de Janeiro, Brazil
| | - Marcius da Silva Almeida
- Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Protein Advanced Biochemistry (PAB), CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Rio BioNMR Network, Rio de Janeiro, Brazil
| | - Gisele Cardoso de Amorim
- Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Multidisciplinary Center for Research in Biology (NUMPEX), Campus Duque de Caxias Federal University of Rio de Janeiro, Duque de Caxias, Brazil; Rio BioNMR Network, Rio de Janeiro, Brazil
| | - Cristiane Dinis Anobom
- National Center of Nuclear Magnetic Resonance (CNRMN), CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Rio BioNMR Network, Rio de Janeiro, Brazil
| | - Andrea T Da Poian
- Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Rio BioNMR Network, Rio de Janeiro, Brazil
| | - Francisco Gomes-Neto
- National Center of Nuclear Magnetic Resonance (CNRMN), CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Laboratory of Toxinology, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil; Rio BioNMR Network, Rio de Janeiro, Brazil
| | - Anderson S Pinheiro
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Rio BioNMR Network, Rio de Janeiro, Brazil
| | - Fabio C L Almeida
- Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; National Center of Nuclear Magnetic Resonance (CNRMN), CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Rio BioNMR Network, Rio de Janeiro, Brazil.
| |
Collapse
|
27
|
Galkin SO, Anisenko AN, Shadrina OA, Gottikh MB. Genetic Engineering Systems to Study Human Viral Pathogens from the Coronaviridae Family. Mol Biol 2022; 56:72-89. [PMID: 35194246 PMCID: PMC8853348 DOI: 10.1134/s0026893322010022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/09/2021] [Accepted: 06/14/2021] [Indexed: 12/02/2022]
Abstract
The COVID-19 pandemic caused by the previously unknown SARS-CoV-2 Betacoronavirus made it extremely important to develop simple and safe cellular systems which allow manipulation of the viral genome and high-throughput screening of its potential inhibitors. In this review, we made an attempt at summarizing the currently existing data on genetic engineering systems used to study not only SARS-CoV-2, but also other viruses from the Coronaviridae family. In addition, the review covers the basic knowledge about the structure and the life cycle of coronaviruses.
Collapse
Affiliation(s)
- S. O. Galkin
- Bioengineering and Bioinformatics Department, Moscow State University, 119991 Moscow, Russia
- Chemistry Department, Moscow State University, 119991 Moscow, Russia
| | - A. N. Anisenko
- Bioengineering and Bioinformatics Department, Moscow State University, 119991 Moscow, Russia
- Chemistry Department, Moscow State University, 119991 Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119991 Moscow, Russia
| | - O. A. Shadrina
- Chemistry Department, Moscow State University, 119991 Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119991 Moscow, Russia
| | - M. B. Gottikh
- Chemistry Department, Moscow State University, 119991 Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
28
|
Bignon E, Miclot T, Terenzi A, Barone G, Monari A. Structure of the 5' untranslated region in SARS-CoV-2 genome and its specific recognition by innate immune system via the human oligoadenylate synthase 1. Chem Commun (Camb) 2022; 58:2176-2179. [PMID: 35060977 DOI: 10.1039/d1cc07006a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
2'-5'-Oligoadenylate synthetase 1 (OAS1) is one of the key enzymes driving the innate immune system response to SARS-CoV-2 infection whose activity has been related to COVID-19 severity. OAS1 is a sensor of endogenous RNA that triggers the 2'-5'-oligoadenylate/RNase L pathway. Upon SARS-CoV-2 infection, OAS1 is responsible for the recognition of viral RNA and has been shown to possess a particularly high sensitivity for the 5'-untranslated (5'-UTR) RNA region, which is organized in a double-strand stem loop motif (SL1). Here we report the structure of the SL1/OAS1 complex also rationalizing the high affinity for OAS1.
Collapse
Affiliation(s)
- Emmanuelle Bignon
- Université de Lorraine and CNRS, LPCT UMR 7019, F-54000 Nancy, France.
| | - Tom Miclot
- Université de Lorraine and CNRS, LPCT UMR 7019, F-54000 Nancy, France. .,Department of Biological, Chemical and Pharmaceutical Sciences, Universitá degli Studi di Palermo, via delle Scienze 90126, Palermo, Italy
| | - Alessio Terenzi
- Department of Biological, Chemical and Pharmaceutical Sciences, Universitá degli Studi di Palermo, via delle Scienze 90126, Palermo, Italy
| | - Giampaolo Barone
- Department of Biological, Chemical and Pharmaceutical Sciences, Universitá degli Studi di Palermo, via delle Scienze 90126, Palermo, Italy
| | - Antonio Monari
- Université de Paris, CNRS, ITODYS, F-75006, Paris, France.
| |
Collapse
|
29
|
Hegde S, Tang Z, Zhao J, Wang J. Inhibition of SARS-CoV-2 by Targeting Conserved Viral RNA Structures and Sequences. Front Chem 2021; 9:802766. [PMID: 35004621 PMCID: PMC8733332 DOI: 10.3389/fchem.2021.802766] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 11/29/2021] [Indexed: 01/18/2023] Open
Abstract
The ongoing COVID-19/Severe Acute Respiratory Syndrome CoV-2 (SARS-CoV-2) pandemic has become a significant threat to public health and has hugely impacted societies globally. Targeting conserved SARS-CoV-2 RNA structures and sequences essential for viral genome translation is a novel approach to inhibit viral infection and progression. This new pharmacological modality compasses two classes of RNA-targeting molecules: 1) synthetic small molecules that recognize secondary or tertiary RNA structures and 2) antisense oligonucleotides (ASOs) that recognize the RNA primary sequence. These molecules can also serve as a "bait" fragment in RNA degrading chimeras to eliminate the viral RNA genome. This new type of chimeric RNA degrader is recently named ribonuclease targeting chimera or RIBOTAC. This review paper summarizes the sequence conservation in SARS-CoV-2 and the current development of RNA-targeting molecules to combat this virus. These RNA-binding molecules will also serve as an emerging class of antiviral drug candidates that might pivot to address future viral outbreaks.
Collapse
Affiliation(s)
| | | | | | - Jingxin Wang
- Department of Medicinal Chemistry, University of Kansas, Lawrence, KS, United States
| |
Collapse
|
30
|
Tian Z, Pan Q, Zheng M, Deng Y, Guo P, Cong F, Hu X. Molecular characterization of the FCoV-like canine coronavirus HLJ-071 in China. BMC Vet Res 2021; 17:364. [PMID: 34838001 PMCID: PMC8626285 DOI: 10.1186/s12917-021-03073-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 11/05/2021] [Indexed: 11/10/2022] Open
Abstract
Background According to the differences of antigen and genetic composition, canine coronavirus (CCoV) consists of two genotypes, CCoV-I and CCoV-II. Since 2004, CCoVs with point mutations or deletions of NSPs are contributing to the changes in tropism and virulence in dogs. Results In this study, we isolated a CCoV, designated HLJ-071, from a dead 5-week-old female Welsh Corgi with severe diarrhea and vomit. Sequence analysis suggested that HLJ-071 bearing a complete ORF3abc compared with classic CCoV isolates (1-71, K378 and S378). In addition, a variable region was located between S gene and ORF 3a gene, in which a deletion with 104 nts for HLJ-071 when compared with classic CCoV strains 1-71, S378 and K378. Phylogenetic analysis based on the S gene and complete sequences showed that HLJ-071 was closely related to FCoV II. Recombination analysis suggested that HLJ-071 originated from the recombination of FCoV 79-1683, FCoV DF2 and CCoV A76. Finally, according to cell tropism experiments, it suggested that HLJ-071 could replicate in canine macrophages/monocytes cells. Conclusion The present study involved the isolation and genetic characterization of a variant CCoV strain and spike protein and ORF3abc of CCoV might play a key role in viral tropism, which could affect the replication in monocyte/macrophage cells. It will provide essential information for further understanding the evolution in China. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-021-03073-8.
Collapse
Affiliation(s)
- Zhige Tian
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China.,Yibin Key Laboratory of Zoological Diversity and Ecological Conservation, Yibin, 644000, China
| | - Qing Pan
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001, People's Republic of China
| | - Miaomiao Zheng
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China.,Yibin Key Laboratory of Zoological Diversity and Ecological Conservation, Yibin, 644000, China
| | - Ying Deng
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China.,Yibin Key Laboratory of Zoological Diversity and Ecological Conservation, Yibin, 644000, China
| | - Peng Guo
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China.,Yibin Key Laboratory of Zoological Diversity and Ecological Conservation, Yibin, 644000, China
| | - Feng Cong
- Guangdong Laboratory Animals Monitoring Institute and Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, 510633, China.
| | - Xiaoliang Hu
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China. .,Yibin Key Laboratory of Zoological Diversity and Ecological Conservation, Yibin, 644000, China.
| |
Collapse
|
31
|
Singh S, Pandey R, Tomar S, Varshney R, Sharma D, Gangenahalli G. A brief molecular insight of COVID-19: epidemiology, clinical manifestation, molecular mechanism, cellular tropism and immuno-pathogenesis. Mol Cell Biochem 2021; 476:3987-4002. [PMID: 34195882 PMCID: PMC8244678 DOI: 10.1007/s11010-021-04217-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 06/23/2021] [Indexed: 02/06/2023]
Abstract
In December 2019, the emergence and expansion of novel and infectious respiratory virus SARS-CoV-2 originated from Wuhan, China caused an unprecedented threat to the public health and became a global pandemic. SARS-CoV-2 is an enveloped, positive sense and single stranded RNA virus belonging to genera betacoronavirus, of Coronaviridae family. The viral genome sequencing studies revealed 75-80% similarity with SARS-CoV. SARS-CoV-2 mainly affects the lower respiratory system and may progress to pneumonia and Acute Respiratory Distress Syndrome (ARDS). Apart from life-threatening situations and burden on the global healthcare system, the COVID-19 pandemic has imposed several challenges on the worldwide economics and livelihood. The novel pathogen is highly virulent, rapidly mutating and has a tendency to cross the species boundaries such as from bats to humans through the evolution and natural selection from intermediate host. In this review we tried to summarize the overall picture of SARS-CoV-2 including origin/ emergence, epidemiology, pathogenesis, genome organization, comparative analysis with other CoVs, infection and replication mechanism along with cellular tropism and immunopathogenesis which will provide a brief panoramic view about the virus and disease.
Collapse
Affiliation(s)
- Sweta Singh
- Division of Stem Cell and Gene Therapy, Institute of Nuclear Medicine and Allied Sciences, Brig. S. K. Mazumdar Road, Delhi, 110054, India
| | - Rakesh Pandey
- Division of Stem Cell and Gene Therapy, Institute of Nuclear Medicine and Allied Sciences, Brig. S. K. Mazumdar Road, Delhi, 110054, India
| | - Sarika Tomar
- Division of Stem Cell and Gene Therapy, Institute of Nuclear Medicine and Allied Sciences, Brig. S. K. Mazumdar Road, Delhi, 110054, India
| | - Raunak Varshney
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences, Brig. S. K. Mazumdar Road, Delhi, 110054, India
| | - Darshika Sharma
- Division of Stem Cell and Gene Therapy, Institute of Nuclear Medicine and Allied Sciences, Brig. S. K. Mazumdar Road, Delhi, 110054, India
- Meerut Institute of Engineering and Technology, Meerut, India
| | - Gurudutta Gangenahalli
- Division of Stem Cell and Gene Therapy, Institute of Nuclear Medicine and Allied Sciences, Brig. S. K. Mazumdar Road, Delhi, 110054, India.
| |
Collapse
|
32
|
Abstract
The ongoing Covid-19 pandemic has spurred research in the biology of the nidovirus severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Much focus has been on the viral RNA synthesis machinery due to its fundamental role in viral propagation. The central and essential enzyme of the RNA synthesis process, the RNA-dependent RNA polymerase (RdRp), functions in conjunction with a coterie of viral-encoded enzymes that mediate crucial nucleic acid transactions. Some of these enzymes share common features with other RNA viruses, while others play roles unique to nidoviruses or CoVs. The RdRps are proven targets for viral pathogens, and many of the other nucleic acid processing enzymes are promising targets. The purpose of this review is to summarize recent advances in our understanding of the mechanisms of RNA synthesis in CoVs. By reflecting on these studies, we hope to emphasize the remaining gaps in our knowledge. The recent onslaught of structural information related to SARS-CoV-2 RNA synthesis, in combination with previous structural, genetic and biochemical studies, have vastly improved our understanding of how CoVs replicate and process their genomic RNA. Structural biology not only provides a blueprint for understanding the function of the enzymes and cofactors in molecular detail, but also provides a basis for drug design and optimization. The concerted efforts of researchers around the world, in combination with the renewed urgency toward understanding this deadly family of viruses, may eventually yield new and improved antivirals that provide relief to the current global devastation.
Collapse
Affiliation(s)
- Brandon Malone
- The Rockefeller University, New York, New York, United States
| | | | - Seth A Darst
- The Rockefeller University, New York, New York, United States.
| |
Collapse
|
33
|
D’Souza AR, Buckingham AB, Salasc F, Ingemarsdotter CK, Iaconis G, Jarvis I, Groom HCT, Kenyon JC, Lever AML. Duplex formation between the template and the nascent strand in the transcription-regulating sequences is associated with the site of template switching in SARS - CoV-2. RNA Biol 2021; 18:148-156. [PMID: 34541994 PMCID: PMC8459930 DOI: 10.1080/15476286.2021.1975388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 08/23/2021] [Accepted: 08/26/2021] [Indexed: 11/23/2022] Open
Abstract
Recently published transcriptomic data of the SARS-CoV-2 coronavirus show that there is a large variation in the frequency and steady state levels of subgenomic mRNA sequences. This variation is derived from discontinuous subgenomic RNA synthesis, where the polymerase switches template from a 3' proximal genome body sequence to a 5' untranslated leader sequence. This leads to a fusion between the common 5' leader sequence and a 3' proximal body sequence in the RNA product. This process revolves around a common core sequence (CS) that is present at both the template sites that make up the fusion junction. Base-pairing between the leader CS and the nascent complementary minus strand body CS, and flanking regions (together called the transcription regulating sequence, TRS) is vital for this template switching event. However, various factors can influence the site of template switching within the same TRS duplex. Here, we model the duplexes formed between the leader and complementary body TRS regions, hypothesizing the role of the stability of the TRS duplex in determining the major sites of template switching for the most abundant mRNAs. We indicate that the stability of secondary structures and the speed of transcription play key roles in determining the probability of template switching in the production of subgenomic RNAs. We speculate on the effect of reported variant nucleotide substitutions on our models.
Collapse
Affiliation(s)
- Aaron R. D’Souza
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | - Fanny Salasc
- Department of Medicine, University of Cambridge, Cambridge, UK
| | | | - Gennaro Iaconis
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Isobel Jarvis
- Department of Medicine, University of Cambridge, Cambridge, UK
| | | | - Julia C. Kenyon
- Department of Medicine, University of Cambridge, Cambridge, UK
- Homerton College, Cambridge, UK
- Department of Microbiology and Immunology, National University of Singapore, Singapore
| | - Andrew M. L. Lever
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Medicine, University of Cambridge, Cambridge, UK
| |
Collapse
|
34
|
Jaworski E, Langsjoen RM, Mitchell B, Judy B, Newman P, Plante JA, Plante KS, Miller AL, Zhou Y, Swetnam D, Sotcheff S, Morris V, Saada N, Machado RR, McConnell A, Widen SG, Thompson J, Dong J, Ren P, Pyles RB, Ksiazek TG, Menachery VD, Weaver SC, Routh AL. Tiled-ClickSeq for targeted sequencing of complete coronavirus genomes with simultaneous capture of RNA recombination and minority variants. eLife 2021; 10:68479. [PMID: 34581669 PMCID: PMC8478411 DOI: 10.7554/elife.68479] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 09/08/2021] [Indexed: 12/13/2022] Open
Abstract
High-throughput genomics of SARS-CoV-2 is essential to characterize virus evolution and to identify adaptations that affect pathogenicity or transmission. While single-nucleotide variations (SNVs) are commonly considered as driving virus adaption, RNA recombination events that delete or insert nucleic acid sequences are also critical. Whole genome targeting sequencing of SARS-CoV-2 is typically achieved using pairs of primers to generate cDNA amplicons suitable for next-generation sequencing (NGS). However, paired-primer approaches impose constraints on where primers can be designed, how many amplicons are synthesized and requires multiple PCR reactions with non-overlapping primer pools. This imparts sensitivity to underlying SNVs and fails to resolve RNA recombination junctions that are not flanked by primer pairs. To address these limitations, we have designed an approach called ‘Tiled-ClickSeq’, which uses hundreds of tiled-primers spaced evenly along the virus genome in a single reverse-transcription reaction. The other end of the cDNA amplicon is generated by azido-nucleotides that stochastically terminate cDNA synthesis, removing the need for a paired-primer. A sequencing adaptor containing a Unique Molecular Identifier (UMI) is appended to the cDNA fragment using click-chemistry and a PCR reaction generates a final NGS library. Tiled-ClickSeq provides complete genome coverage, including the 5’UTR, at high depth and specificity to the virus on both Illumina and Nanopore NGS platforms. Here, we analyze multiple SARS-CoV-2 isolates and clinical samples to simultaneously characterize minority variants, sub-genomic mRNAs (sgmRNAs), structural variants (SVs) and D-RNAs. Tiled-ClickSeq therefore provides a convenient and robust platform for SARS-CoV-2 genomics that captures the full range of RNA species in a single, simple assay.
Collapse
Affiliation(s)
- Elizabeth Jaworski
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, United States.,ClickSeq Technologies LLC, Galveston, United States
| | - Rose M Langsjoen
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, United States
| | - Brooke Mitchell
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, United States.,Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, United States
| | - Barbara Judy
- Department of Pediatrics, University of Texas Medical Branch, Galveston, United States
| | - Patrick Newman
- Department of Pediatrics, University of Texas Medical Branch, Galveston, United States
| | - Jessica A Plante
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, United States.,Department of Pathology, University of Texas Medical Branch, Galveston, United States.,Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, United States
| | - Kenneth S Plante
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, United States.,Department of Pathology, University of Texas Medical Branch, Galveston, United States.,Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, United States
| | - Aaron L Miller
- Department of Pediatrics, University of Texas Medical Branch, Galveston, United States
| | - Yiyang Zhou
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, United States
| | - Daniele Swetnam
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, United States
| | - Stephanea Sotcheff
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, United States
| | - Victoria Morris
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, United States
| | - Nehad Saada
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, United States.,Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, United States
| | - Rafael Rg Machado
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, United States.,Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, United States
| | - Allan McConnell
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, United States.,Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, United States
| | - Steven G Widen
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, United States.,Next-Generation Sequencing Core, The University of Texas Medical Branch, Galveston, United States
| | - Jill Thompson
- Next-Generation Sequencing Core, The University of Texas Medical Branch, Galveston, United States
| | - Jianli Dong
- Department of Pediatrics, University of Texas Medical Branch, Galveston, United States.,Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, United States
| | - Ping Ren
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, United States
| | - Rick B Pyles
- Department of Pediatrics, University of Texas Medical Branch, Galveston, United States
| | - Thomas G Ksiazek
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, United States.,Department of Pathology, University of Texas Medical Branch, Galveston, United States
| | - Vineet D Menachery
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, United States.,Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, United States.,Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, United States
| | - Scott C Weaver
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, United States.,Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, United States.,Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, United States
| | - Andrew L Routh
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, United States.,Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, United States.,Sealy Centre for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, United States
| |
Collapse
|
35
|
Zhang Y, Huang K, Xie D, Lau JY, Shen W, Li P, Wang D, Zou Z, Shi S, Ren H, Wang Y, Mao Y, Jin M, Kudla G, Zhao Z. In vivo structure and dynamics of the SARS-CoV-2 RNA genome. Nat Commun 2021; 12:5695. [PMID: 34584097 PMCID: PMC8478942 DOI: 10.1038/s41467-021-25999-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 09/10/2021] [Indexed: 02/08/2023] Open
Abstract
The dynamics of SARS-CoV-2 RNA structure and their functional relevance are largely unknown. Here we develop a simplified SPLASH assay and comprehensively map the in vivo RNA-RNA interactome of SARS-CoV-2 genome across viral life cycle. We report canonical and alternative structures including 5'-UTR and 3'-UTR, frameshifting element (FSE) pseudoknot and genome cyclization in both cells and virions. We provide direct evidence of interactions between Transcription Regulating Sequences, which facilitate discontinuous transcription. In addition, we reveal alternative short and long distance arches around FSE. More importantly, we find that within virions, while SARS-CoV-2 genome RNA undergoes intensive compaction, genome domains remain stable but with strengthened demarcation of local domains and weakened global cyclization. Taken together, our analysis reveals the structural basis for the regulation of replication, discontinuous transcription and translational frameshifting, the alternative conformations and the maintenance of global genome organization during the whole life cycle of SARS-CoV-2, which we anticipate will help develop better antiviral strategies.
Collapse
Affiliation(s)
- Yan Zhang
- Beijing institute of Biotechnology, Beijing, China
| | - Kun Huang
- Unit of Animal Infectious Diseases, National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Dejian Xie
- Wuhan Frasergen Bioinformatics Co., Ltd, Wuhan, China
| | - Jian You Lau
- MRC Human Genetics Unit, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Wenlong Shen
- Beijing institute of Biotechnology, Beijing, China
| | - Ping Li
- Beijing institute of Biotechnology, Beijing, China
| | - Dong Wang
- Department of Microbiology, University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong, China
| | - Zhong Zou
- Unit of Animal Infectious Diseases, National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shu Shi
- Beijing institute of Biotechnology, Beijing, China
| | | | | | - Youzhi Mao
- Wuhan Frasergen Bioinformatics Co., Ltd, Wuhan, China
| | - Meilin Jin
- Unit of Animal Infectious Diseases, National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Grzegorz Kudla
- MRC Human Genetics Unit, University of Edinburgh, Edinburgh, EH4 2XU, UK.
| | - Zhihu Zhao
- Beijing institute of Biotechnology, Beijing, China.
| |
Collapse
|
36
|
Long S. SARS-CoV-2 Subgenomic RNAs: Characterization, Utility, and Perspectives. Viruses 2021; 13:1923. [PMID: 34696353 PMCID: PMC8539008 DOI: 10.3390/v13101923] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/12/2021] [Accepted: 09/16/2021] [Indexed: 12/11/2022] Open
Abstract
SARS-CoV-2, the etiologic agent at the root of the ongoing COVID-19 pandemic, harbors a large RNA genome from which a tiered ensemble of subgenomic RNAs (sgRNAs) is generated. Comprehensive definition and investigation of these RNA products are important for understanding SARS-CoV-2 pathogenesis. This review summarizes the recent progress on SARS-CoV-2 sgRNA identification, characterization, and application as a viral replication marker. The significance of these findings and potential future research areas of interest are discussed.
Collapse
Affiliation(s)
- Samuel Long
- Independent Researcher, Clarksburg, MD 20871, USA
| |
Collapse
|
37
|
Sharma HN, Latimore COD, Matthews QL. Biology and Pathogenesis of SARS-CoV-2: Understandings for Therapeutic Developments against COVID-19. Pathogens 2021; 10:1218. [PMID: 34578250 PMCID: PMC8470303 DOI: 10.3390/pathogens10091218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/10/2021] [Accepted: 09/15/2021] [Indexed: 01/18/2023] Open
Abstract
Coronaviruses are positive sense, single-stranded, enveloped, and non-segmented RNA viruses that belong to the Coronaviridae family within the order Nidovirales and suborder Coronavirinae. Two Alphacoronavirus strains: HCoV-229E and HCoV-NL63 and five Betacoronaviruses: HCoV-HKU1, HCoV-OC43, SARS-CoV, MERS-CoV, and SARS-CoV-2 have so far been recognized as Human Coronaviruses (HCoVs). Coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 is currently the greatest concern for humanity. Despite the overflow of research on SARS-CoV-2 and other HCoVs published every week, existing knowledge in this area is insufficient for the complete understanding of the viruses and the diseases caused by them. This review is based on the analysis of 210 published works, and it attempts to cover the basic biology of coronaviruses, including the genetic characteristics, life cycle, and host-pathogen interaction, pathogenesis, the antiviral drugs, and vaccines against HCoVs, especially focusing on SARS-CoV-2. Furthermore, we will briefly discuss the potential link between extracellular vesicles (EVs) and SARS-CoV-2/COVID-19 pathophysiology.
Collapse
Affiliation(s)
- Homa Nath Sharma
- Microbiology Program, Department of Biological Sciences, Alabama State University, Montgomery, AL 36104, USA;
| | | | - Qiana L. Matthews
- Microbiology Program, Department of Biological Sciences, Alabama State University, Montgomery, AL 36104, USA;
- Department of Biological Sciences, Alabama State University, Montgomery, AL 36104, USA;
| |
Collapse
|
38
|
Jaworski E, Langsjoen RM, Mitchell B, Judy B, Newman P, Plante JA, Plante KS, Miller AL, Zhou Y, Swetnam D, Sotcheff S, Morris V, Saada N, Machado R, McConnell A, Widen S, Thompson J, Dong J, Ren P, Pyles RB, Ksiazek T, Menachery VD, Weaver SC, Routh A. Tiled-ClickSeq for targeted sequencing of complete coronavirus genomes with simultaneous capture of RNA recombination and minority variants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.03.10.434828. [PMID: 33758846 PMCID: PMC7987005 DOI: 10.1101/2021.03.10.434828] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
High-throughput genomics of SARS-CoV-2 is essential to characterize virus evolution and to identify adaptations that affect pathogenicity or transmission. While single-nucleotide variations (SNVs) are commonly considered as driving virus adaption, RNA recombination events that delete or insert nucleic acid sequences are also critical. Whole genome targeting sequencing of SARS-CoV-2 is typically achieved using pairs of primers to generate cDNA amplicons suitable for Next-Generation Sequencing (NGS). However, paired-primer approaches impose constraints on where primers can be designed, how many amplicons are synthesized and requires multiple PCR reactions with non-overlapping primer pools. This imparts sensitivity to underlying SNVs and fails to resolve RNA recombination junctions that are not flanked by primer pairs. To address these limitations, we have designed an approach called 'Tiled-ClickSeq', which uses hundreds of tiled-primers spaced evenly along the virus genome in a single reverse-transcription reaction. The other end of the cDNA amplicon is generated by azido-nucleotides that stochastically terminate cDNA synthesis, removing the need for a paired-primer. A sequencing adaptor containing a Unique Molecular Identifier (UMI) is appended to the cDNA fragment using click-chemistry and a PCR reaction generates a final NGS library. Tiled-ClickSeq provides complete genome coverage, including the 5'UTR, at high depth and specificity to the virus on both Illumina and Nanopore NGS platforms. Here, we analyze multiple SARS-CoV-2 isolates and clinical samples to simultaneously characterize minority variants, sub-genomic mRNAs (sgmRNAs), structural variants (SVs) and D-RNAs. Tiled-ClickSeq therefore provides a convenient and robust platform for SARS-CoV-2 genomics that captures the full range of RNA species in a single, simple assay.
Collapse
Affiliation(s)
- Elizabeth Jaworski
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX, USA
- ClickSeq Technologies LLC, Galveston, TX, USA
| | - Rose M. Langsjoen
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Brooke Mitchell
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Barbara Judy
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, USA
| | - Patrick Newman
- Department of Pathology, University of Texas Medical Branch, Galveston TX, USA
| | - Jessica A. Plante
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX, USA
- Department of Pathology, University of Texas Medical Branch, Galveston TX, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Kenneth S. Plante
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX, USA
- Department of Pathology, University of Texas Medical Branch, Galveston TX, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Aaron L. Miller
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, USA
| | - Yiyang Zhou
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Daniele Swetnam
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Stephanea Sotcheff
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Victoria Morris
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Nehad Saada
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Rafael Machado
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Allan McConnell
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Steve Widen
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX, USA
- Next-Generation Sequencing Core, The University of Texas Medical Branch, Galveston, TX, USA
| | - Jill Thompson
- Next-Generation Sequencing Core, The University of Texas Medical Branch, Galveston, TX, USA
| | - Jianli Dong
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Ping Ren
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Rick B. Pyles
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, USA
| | - Thomas Ksiazek
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX, USA
- Department of Pathology, University of Texas Medical Branch, Galveston TX, USA
| | - Vineet D. Menachery
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Scott C. Weaver
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Andrew Routh
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
- Sealy Centre for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
39
|
Jochheim FA, Tegunov D, Hillen HS, Schmitzová J, Kokic G, Dienemann C, Cramer P. The structure of a dimeric form of SARS-CoV-2 polymerase. Commun Biol 2021; 4:999. [PMID: 34429502 PMCID: PMC8385044 DOI: 10.1038/s42003-021-02529-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/28/2021] [Indexed: 01/18/2023] Open
Abstract
The coronavirus SARS-CoV-2 uses an RNA-dependent RNA polymerase (RdRp) to replicate and transcribe its genome. Previous structures of the RdRp revealed a monomeric enzyme composed of the catalytic subunit nsp12, two copies of subunit nsp8, and one copy of subunit nsp7. Here we report an alternative, dimeric form of the enzyme and resolve its structure at 5.5 Å resolution. In this structure, the two RdRps contain only one copy of nsp8 each and dimerize via their nsp7 subunits to adopt an antiparallel arrangement. We speculate that the RdRp dimer facilitates template switching during production of sub-genomic RNAs.
Collapse
Affiliation(s)
- Florian A Jochheim
- Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, Göttingen, Germany
| | - Dimitry Tegunov
- Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, Göttingen, Germany
| | - Hauke S Hillen
- Max Planck Institute for Biophysical Chemistry, Research Group Structure and Function of Molecular Machines, Göttingen, Germany
- University Medical Center Göttingen, Department of Cellular Biochemistry, Göttingen, Germany
| | - Jana Schmitzová
- Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, Göttingen, Germany
| | - Goran Kokic
- Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, Göttingen, Germany
| | - Christian Dienemann
- Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, Göttingen, Germany
| | - Patrick Cramer
- Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, Göttingen, Germany.
| |
Collapse
|
40
|
Zhao Y, Sun J, Li Y, Li Z, Xie Y, Feng R, Zhao J, Hu Y. The strand-biased transcription of SARS-CoV-2 and unbalanced inhibition by remdesivir. iScience 2021; 24:102857. [PMID: 34278249 PMCID: PMC8277956 DOI: 10.1016/j.isci.2021.102857] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/13/2021] [Accepted: 07/12/2021] [Indexed: 01/18/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a positive single-stranded RNA virus, causes the coronavirus disease 19 pandemic. During the viral replication and transcription, the RNA-dependent RNA polymerase "jumps" along the genome template, resulting in discontinuous negative-stranded transcripts. Although the sense-mRNA architectures of SARS-CoV-2 were reported, its negative strand was unexplored. Here, we deeply sequenced both strands of RNA and found SARS-CoV-2 transcription is strongly biased to form the sense strand with variable transcription efficiency for different genes. During negative strand synthesis, numerous non-canonical fusion transcripts are also formed, driven by 3-15 nt sequence homology scattered along the genome but more prone to be inhibited by SARS-CoV-2 RNA polymerase inhibitor remdesivir. The drug also represses more of the negative than the positive strand synthesis as supported by a mathematic simulation model and experimental quantifications. Overall, this study opens new sights into SARS-CoV-2 biogenesis and may facilitate the antiviral vaccine development and drug design.
Collapse
Affiliation(s)
- Yan Zhao
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518005, China.,Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518005, China.,Department of Computational Molecular Biology, Max-Planck-Institute for Molecular Genetics, Berlin 14195, Germany.,Department of Mathematics and Computer Science, Free University Berlin, Berlin 14195, Germany
| | - Jing Sun
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510182, Guangdong, China
| | - Yunfei Li
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518005, China.,Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518005, China
| | - Zhengxuan Li
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518005, China.,Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518005, China
| | - Yu Xie
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518005, China.,Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518005, China
| | - Ruoqing Feng
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518005, China.,Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518005, China
| | - Jincun Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510182, Guangdong, China
| | - Yuhui Hu
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518005, China.,Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518005, China.,Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| |
Collapse
|
41
|
Caruso ÍP, Sanches K, Da Poian AT, Pinheiro AS, Almeida FCL. Dynamics of the SARS-CoV-2 nucleoprotein N-terminal domain triggers RNA duplex destabilization. Biophys J 2021; 120:2814-2827. [PMID: 34197802 PMCID: PMC8239202 DOI: 10.1016/j.bpj.2021.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 04/25/2021] [Accepted: 06/03/2021] [Indexed: 12/23/2022] Open
Abstract
The nucleocapsid (N) protein of betacoronaviruses is responsible for nucleocapsid assembly and other essential regulatory functions. The N protein N-terminal domain (N-NTD) interacts and melts the double-stranded transcriptional regulatory sequences (dsTRSs), regulating the discontinuous subgenome transcription process. Here, we used molecular dynamics (MD) simulations to study the binding of the severe acute respiratory syndrome coronavirus 2 N-NTD to nonspecific (NS) and TRS dsRNAs. We probed dsRNAs' Watson-Crick basepairing over 25 replicas of 100 ns MD simulations, showing that only one N-NTD of dimeric N is enough to destabilize dsRNAs, triggering melting initiation. dsRNA destabilization driven by N-NTD was more efficient for dsTRSs than dsNS. N-NTD dynamics, especially a tweezer-like motion of β2-β3 and Δ2-β5 loops, seems to play a key role in Watson-Crick basepairing destabilization. Based on experimental information available in the literature, we constructed kinetics models for N-NTD-mediated dsRNA melting. Our results support a 1:1 stoichiometry (N-NTD/dsRNA), matching MD simulations and raising different possibilities for N-NTD action: 1) two N-NTD arms of dimeric N would bind to two different RNA sites, either closely or spatially spaced in the viral genome, in a cooperative manner; and 2) monomeric N-NTD would be active, opening up the possibility of a regulatory dissociation event.
Collapse
Affiliation(s)
- Ícaro P Caruso
- Multiuser Center for Biomolecular Innovation and Department of Physics, Institute of Biosciences, Letters and Exact Sciences, São Paulo State University (UNESP), São José do Rio Preto, São Paulo, Brazil; Institute of Medical Biochemistry Leopoldo de Meis and National Center for Structural Biology and Bioimaging, Rio de Janeiro, Brazil.
| | - Karoline Sanches
- Multiuser Center for Biomolecular Innovation and Department of Physics, Institute of Biosciences, Letters and Exact Sciences, São Paulo State University (UNESP), São José do Rio Preto, São Paulo, Brazil; Institute of Medical Biochemistry Leopoldo de Meis and National Center for Structural Biology and Bioimaging, Rio de Janeiro, Brazil
| | - Andrea T Da Poian
- Institute of Medical Biochemistry Leopoldo de Meis and National Center for Structural Biology and Bioimaging, Rio de Janeiro, Brazil
| | - Anderson S Pinheiro
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fabio C L Almeida
- Institute of Medical Biochemistry Leopoldo de Meis and National Center for Structural Biology and Bioimaging, Rio de Janeiro, Brazil.
| |
Collapse
|
42
|
Wang D, Jiang A, Feng J, Li G, Guo D, Sajid M, Wu K, Zhang Q, Ponty Y, Will S, Liu F, Yu X, Li S, Liu Q, Yang XL, Guo M, Li X, Chen M, Shi ZL, Lan K, Chen Y, Zhou Y. The SARS-CoV-2 subgenome landscape and its novel regulatory features. Mol Cell 2021; 81:2135-2147.e5. [PMID: 33713597 PMCID: PMC7927579 DOI: 10.1016/j.molcel.2021.02.036] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 10/28/2020] [Accepted: 02/24/2021] [Indexed: 12/31/2022]
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is currently a global pandemic. CoVs are known to generate negative subgenomes (subgenomic RNAs [sgRNAs]) through transcription-regulating sequence (TRS)-dependent template switching, but the global dynamic landscapes of coronaviral subgenomes and regulatory rules remain unclear. Here, using next-generation sequencing (NGS) short-read and Nanopore long-read poly(A) RNA sequencing in two cell types at multiple time points after infection with SARS-CoV-2, we identified hundreds of template switches and constructed the dynamic landscapes of SARS-CoV-2 subgenomes. Interestingly, template switching could occur in a bidirectional manner, with diverse SARS-CoV-2 subgenomes generated from successive template-switching events. The majority of template switches result from RNA-RNA interactions, including seed and compensatory modes, with terminal pairing status as a key determinant. Two TRS-independent template switch modes are also responsible for subgenome biogenesis. Our findings reveal the subgenome landscape of SARS-CoV-2 and its regulatory features, providing a molecular basis for understanding subgenome biogenesis and developing novel anti-viral strategies.
Collapse
Affiliation(s)
- Dehe Wang
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Ao Jiang
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jiangpeng Feng
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Guangnan Li
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Dong Guo
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Muhammad Sajid
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Kai Wu
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Qiuhan Zhang
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yann Ponty
- CNRS UMR 7161 LIX, Ecole Polytechnique, Institut Polytechnique de Paris, Paris, France
| | - Sebastian Will
- CNRS UMR 7161 LIX, Ecole Polytechnique, Institut Polytechnique de Paris, Paris, France
| | - Feiyan Liu
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Xinghai Yu
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Shaopeng Li
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Qianyun Liu
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xing-Lou Yang
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Ming Guo
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xingqiao Li
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Mingzhou Chen
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Zheng-Li Shi
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Ke Lan
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China.
| | - Yu Chen
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China.
| | - Yu Zhou
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China.
| |
Collapse
|
43
|
Zou W, Xiong M, Hao S, Zhang EY, Baumlin N, Kim MD, Salathe M, Yan Z, Qiu J. The SARS-CoV-2 Transcriptome and the Dynamics of the S Gene Furin Cleavage Site in Primary Human Airway Epithelia. mBio 2021; 12:e01006-21. [PMID: 33975939 PMCID: PMC8262919 DOI: 10.1128/mbio.01006-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 04/08/2021] [Indexed: 02/01/2023] Open
Abstract
The spike (S) polypeptide of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) consists of the S1 and S2 subunits and is processed by cellular proteases at the S1/S2 boundary that contains a furin cleavage site (FCS), 682RRAR↓S686 Various deletions surrounding the FCS have been identified in patients. When SARS-CoV-2 propagated in Vero cells, it acquired deletions surrounding the FCS. We studied the viral transcriptome in Vero cell-derived SARS-CoV-2-infected primary human airway epithelia (HAE) cultured at an air-liquid interface (ALI) with an emphasis on the viral genome stability of the FCS. While we found overall the viral transcriptome is similar to that generated from infected Vero cells, we identified a high percentage of mutated viral genome and transcripts in HAE-ALI. Two highly frequent deletions were found at the FCS region: a 12 amino acid deletion (678TNSPRRAR↓SVAS689) that contains the underlined FCS and a 5 amino acid deletion (675QTQTN679) that is two amino acids upstream of the FCS. Further studies on the dynamics of the FCS deletions in apically released virions from 11 infected HAE-ALI cultures of both healthy and lung disease donors revealed that the selective pressure for the FCS maintains the FCS stably in 9 HAE-ALI cultures but with 2 exceptions, in which the FCS deletions are retained at a high rate of >40% after infection of ≥13 days. Our study presents evidence for the role of unique properties of human airway epithelia in the dynamics of the FCS region during infection of human airways, which is likely donor dependent.IMPORTANCE Polarized human airway epithelia at an air-liquid interface (HAE-ALI) are an in vitro model that supports efficient infection of SARS-CoV-2. The spike (S) protein of SARS-CoV-2 contains a furin cleavage site (FCS) at the boundary of the S1 and S2 domains which distinguishes it from SARS-CoV. However, FCS deletion mutants have been identified in patients and in vitro cell cultures, and how the airway epithelial cells maintain the unique FCS remains unknown. We found that HAE-ALI cultures were capable of suppressing two prevalent FCS deletion mutants (Δ678TNSPRRAR↓SVAS689 and Δ675QTQTN679) that were selected during propagation in Vero cells. While such suppression was observed in 9 out of 11 of the tested HAE-ALI cultures derived from independent donors, 2 exceptions that retained a high rate of FCS deletions were also found. Our results present evidence of the donor-dependent properties of human airway epithelia in the evolution of the FCS during infection.
Collapse
Affiliation(s)
- Wei Zou
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Min Xiong
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Siyuan Hao
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | | | - Nathalie Baumlin
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Michael D Kim
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Matthias Salathe
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Ziying Yan
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa, USA
| | - Jianming Qiu
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
44
|
Ryder SP, Morgan BR, Coskun P, Antkowiak K, Massi F. Analysis of Emerging Variants in Structured Regions of the SARS-CoV-2 Genome. Evol Bioinform Online 2021; 17:11769343211014167. [PMID: 34017166 PMCID: PMC8114311 DOI: 10.1177/11769343211014167] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/29/2021] [Indexed: 01/11/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has motivated a widespread effort to understand its epidemiology and pathogenic mechanisms. Modern high-throughput sequencing technology has led to the deposition of vast numbers of SARS-CoV-2 genome sequences in curated repositories, which have been useful in mapping the spread of the virus around the globe. They also provide a unique opportunity to observe virus evolution in real time. Here, we evaluate two sets of SARS-CoV-2 genomic sequences to identify emerging variants within structured cis-regulatory elements of the SARS-CoV-2 genome. Overall, 20 variants are present at a minor allele frequency of at least 0.5%. Several enhance the stability of Stem Loop 1 in the 5' untranslated region (UTR), including a group of co-occurring variants that extend its length. One appears to modulate the stability of the frameshifting pseudoknot between ORF1a and ORF1b, and another perturbs a bi-ss molecular switch in the 3'UTR. Finally, 5 variants destabilize structured elements within the 3'UTR hypervariable region, including the S2M (stem loop 2 m) selfish genetic element, raising questions as to the functional relevance of these structures in viral replication. Two of the most abundant variants appear to be caused by RNA editing, suggesting host-viral defense contributes to SARS-CoV-2 genome heterogeneity. Our analysis has implications for the development of therapeutics that target viral cis-regulatory RNA structures or sequences.
Collapse
Affiliation(s)
- Sean P Ryder
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Brittany R Morgan
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Peren Coskun
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Katianna Antkowiak
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Francesca Massi
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| |
Collapse
|
45
|
Shang J, Han N, Chen Z, Peng Y, Li L, Zhou H, Ji C, Meng J, Jiang T, Wu A. Compositional diversity and evolutionary pattern of coronavirus accessory proteins. Brief Bioinform 2021; 22:1267-1278. [PMID: 33126244 PMCID: PMC7665327 DOI: 10.1093/bib/bbaa262] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/29/2020] [Indexed: 12/11/2022] Open
Abstract
Accessory proteins play important roles in the interaction between coronaviruses and their hosts. Accordingly, a comprehensive study of the compositional diversity and evolutionary patterns of accessory proteins is critical to understanding the host adaptation and epidemic variation of coronaviruses. Here, we developed a standardized genome annotation tool for coronavirus (CoroAnnoter) by combining open reading frame prediction, transcription regulatory sequence recognition and homologous alignment. Using CoroAnnoter, we annotated 39 representative coronavirus strains to form a compositional profile for all of the accessary proteins. Large variations were observed in the number of accessory proteins of 1–10 for different coronaviruses, with SARS-CoV-2 and SARS-CoV having the most (9 and 10, respectively). The variation between SARS-CoV and SARS-CoV-2 accessory proteins could be traced back to related coronaviruses in other hosts. The genomic distribution of accessory proteins had significant intra-genus conservation and inter-genus diversity and could be grouped into 1, 4, 2 and 1 types for alpha-, beta-, gamma-, and delta-coronaviruses, respectively. Evolutionary analysis suggested that accessory proteins are more conservative locating before the N-terminal of proteins E and M (E-M), while they are more diverse after these proteins. Furthermore, comparison of virus-host interaction networks of SARS-CoV-2 and SARS-CoV accessory proteins showed that they share multiple antiviral signaling pathways, those involved in the apoptotic process, viral life cycle and response to oxidative stress. In summary, our study provides a tool for coronavirus genome annotation and builds a comprehensive profile for coronavirus accessory proteins covering their composition, classification, evolutionary pattern and host interaction.
Collapse
Affiliation(s)
- Jingzhe Shang
- Suzhou Institute of Systems Medicine, Center for Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Jiangsu, Suzhou, China
| | - Na Han
- Suzhou Institute of Systems Medicine, Center for Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Jiangsu, Suzhou, China
| | - Ziyi Chen
- Suzhou Institute of Systems Medicine, Center for Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Jiangsu, Suzhou, China
| | | | - Liang Li
- Linyi people's hospital, Shandong, China
| | - Hangyu Zhou
- Suzhou Institute of Systems Medicine, Center for Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Jiangsu, Suzhou, China
| | - Chengyang Ji
- Suzhou Institute of Systems Medicine, Center for Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Jiangsu, Suzhou, China
| | - Jing Meng
- Suzhou Institute of Systems Medicine, Center for Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Jiangsu, Suzhou, China
| | - Taijiao Jiang
- Center for Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Aiping Wu
- Suzhou Institute of Systems Medicine, Center for Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Jiangsu, Suzhou, China
| |
Collapse
|
46
|
Yang Y, Yan W, Hall AB, Jiang X. Characterizing Transcriptional Regulatory Sequences in Coronaviruses and Their Role in Recombination. Mol Biol Evol 2021; 38:1241-1248. [PMID: 33146390 PMCID: PMC7665640 DOI: 10.1093/molbev/msaa281] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Novel coronaviruses, including SARS-CoV-2, SARS, and MERS, often originate from recombination events. The mechanism of recombination in RNA viruses is template switching. Coronavirus transcription also involves template switching at specific regions, called transcriptional regulatory sequences (TRS). It is hypothesized but not yet verified that TRS sites are prone to recombination events. Here, we developed a tool called SuPER to systematically identify TRS in coronavirus genomes and then investigated whether recombination is more common at TRS. We ran SuPER on 506 coronavirus genomes and identified 465 TRS-L and 3,509 TRS-B. We found that the TRS-L core sequence (CS) and the secondary structure of the leader sequence are generally conserved within coronavirus genera but different between genera. By examining the location of recombination breakpoints with respect to TRS-B CS, we observed that recombination hotspots are more frequently colocated with TRS-B sites than expected.
Collapse
Affiliation(s)
- Yiyan Yang
- National Library of Medicine, National Institutes of Health, Bethesda, MD
| | - Wei Yan
- National Library of Medicine, National Institutes of Health, Bethesda, MD
| | - A Brantley Hall
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD
| | - Xiaofang Jiang
- National Library of Medicine, National Institutes of Health, Bethesda, MD
| |
Collapse
|
47
|
Parker MD, Lindsey BB, Leary S, Gaudieri S, Chopra A, Wyles M, Angyal A, Green LR, Parsons P, Tucker RM, Brown R, Groves D, Johnson K, Carrilero L, Heffer J, Partridge DG, Evans C, Raza M, Keeley AJ, Smith N, Filipe ADS, Shepherd JG, Davis C, Bennett S, Sreenu VB, Kohl A, Aranday-Cortes E, Tong L, Nichols J, Thomson EC, Wang D, Mallal S, de Silva TI. Subgenomic RNA identification in SARS-CoV-2 genomic sequencing data. Genome Res 2021; 31:645-658. [PMID: 33722935 PMCID: PMC8015849 DOI: 10.1101/gr.268110.120] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 02/02/2021] [Indexed: 12/20/2022]
Abstract
We have developed periscope, a tool for the detection and quantification of subgenomic RNA (sgRNA) in SARS-CoV-2 genomic sequence data. The translation of the SARS-CoV-2 RNA genome for most open reading frames (ORFs) occurs via RNA intermediates termed "subgenomic RNAs." sgRNAs are produced through discontinuous transcription, which relies on homology between transcription regulatory sequences (TRS-B) upstream of the ORF start codons and that of the TRS-L, which is located in the 5' UTR. TRS-L is immediately preceded by a leader sequence. This leader sequence is therefore found at the 5' end of all sgRNA. We applied periscope to 1155 SARS-CoV-2 genomes from Sheffield, United Kingdom, and validated our findings using orthogonal data sets and in vitro cell systems. By using a simple local alignment to detect reads that contain the leader sequence, we were able to identify and quantify reads arising from canonical and noncanonical sgRNA. We were able to detect all canonical sgRNAs at the expected abundances, with the exception of ORF10. A number of recurrent noncanonical sgRNAs are detected. We show that the results are reproducible using technical replicates and determine the optimum number of reads for sgRNA analysis. In VeroE6 ACE2+/- cell lines, periscope can detect the changes in the kinetics of sgRNA in orthogonal sequencing data sets. Finally, variants found in genomic RNA are transmitted to sgRNAs with high fidelity in most cases. This tool can be applied to all sequenced COVID-19 samples worldwide to provide comprehensive analysis of SARS-CoV-2 sgRNA.
Collapse
Affiliation(s)
- Matthew D. Parker
- Sheffield Bioinformatics Core, The University of Sheffield, Sheffield S10 2HQ, United Kingdom;,Sheffield Institute for Translational Neuroscience, The University of Sheffield, Sheffield S10 2HQ, United Kingdom;,Sheffield Biomedical Research Centre, The University of Sheffield, Sheffield S10 2JF, United Kingdom
| | - Benjamin B. Lindsey
- Sheffield Teaching Hospitals NHS Foundation Trust, Department of Virology/Microbiology, Sheffield S10 2JF, United Kingdom;,The Florey Institute for Host-Pathogen Interactions and Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Shay Leary
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch WA 6150, Western Australia, Australia
| | - Silvana Gaudieri
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch WA 6150, Western Australia, Australia;,Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA;,School of Human Sciences, University of Western Australia, Crawley WA 6009, Western Australia, Australia
| | - Abha Chopra
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch WA 6150, Western Australia, Australia
| | - Matthew Wyles
- Sheffield Institute for Translational Neuroscience, The University of Sheffield, Sheffield S10 2HQ, United Kingdom
| | - Adrienn Angyal
- The Florey Institute for Host-Pathogen Interactions and Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Luke R. Green
- The Florey Institute for Host-Pathogen Interactions and Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Paul Parsons
- Department of Animal and Plant Sciences, The University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Rachel M. Tucker
- Department of Animal and Plant Sciences, The University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Rebecca Brown
- The Florey Institute for Host-Pathogen Interactions and Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Danielle Groves
- The Florey Institute for Host-Pathogen Interactions and Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Katie Johnson
- Sheffield Teaching Hospitals NHS Foundation Trust, Department of Virology/Microbiology, Sheffield S10 2JF, United Kingdom
| | - Laura Carrilero
- Department of Animal and Plant Sciences, The University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Joe Heffer
- IT Services, The University of Sheffield, Sheffield S10 2FN, United Kingdom
| | - David G. Partridge
- Sheffield Teaching Hospitals NHS Foundation Trust, Department of Virology/Microbiology, Sheffield S10 2JF, United Kingdom;,The Florey Institute for Host-Pathogen Interactions and Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Cariad Evans
- Sheffield Teaching Hospitals NHS Foundation Trust, Department of Virology/Microbiology, Sheffield S10 2JF, United Kingdom
| | - Mohammad Raza
- Sheffield Teaching Hospitals NHS Foundation Trust, Department of Virology/Microbiology, Sheffield S10 2JF, United Kingdom
| | - Alexander J. Keeley
- Sheffield Teaching Hospitals NHS Foundation Trust, Department of Virology/Microbiology, Sheffield S10 2JF, United Kingdom;,The Florey Institute for Host-Pathogen Interactions and Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Nikki Smith
- The Florey Institute for Host-Pathogen Interactions and Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Ana Da Silva Filipe
- Centre for Virus Research, The University of Glasgow, Glasgow G61 1QH, United Kingdom
| | - James G. Shepherd
- Centre for Virus Research, The University of Glasgow, Glasgow G61 1QH, United Kingdom
| | - Chris Davis
- Centre for Virus Research, The University of Glasgow, Glasgow G61 1QH, United Kingdom
| | - Sahan Bennett
- Centre for Virus Research, The University of Glasgow, Glasgow G61 1QH, United Kingdom
| | - Vattipally B. Sreenu
- Centre for Virus Research, The University of Glasgow, Glasgow G61 1QH, United Kingdom
| | - Alain Kohl
- Centre for Virus Research, The University of Glasgow, Glasgow G61 1QH, United Kingdom
| | - Elihu Aranday-Cortes
- Centre for Virus Research, The University of Glasgow, Glasgow G61 1QH, United Kingdom
| | - Lily Tong
- Centre for Virus Research, The University of Glasgow, Glasgow G61 1QH, United Kingdom
| | - Jenna Nichols
- Centre for Virus Research, The University of Glasgow, Glasgow G61 1QH, United Kingdom
| | - Emma C. Thomson
- Centre for Virus Research, The University of Glasgow, Glasgow G61 1QH, United Kingdom
| | | | - Dennis Wang
- Sheffield Bioinformatics Core, The University of Sheffield, Sheffield S10 2HQ, United Kingdom;,Sheffield Institute for Translational Neuroscience, The University of Sheffield, Sheffield S10 2HQ, United Kingdom;,Sheffield Biomedical Research Centre, The University of Sheffield, Sheffield S10 2JF, United Kingdom;,Department of Computer Science, The University of Sheffield, Sheffield S1 4DP, United Kingdom
| | - Simon Mallal
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch WA 6150, Western Australia, Australia;,Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | - Thushan I. de Silva
- Sheffield Teaching Hospitals NHS Foundation Trust, Department of Virology/Microbiology, Sheffield S10 2JF, United Kingdom;,The Florey Institute for Host-Pathogen Interactions and Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield S10 2TN, United Kingdom
| |
Collapse
|
48
|
Chrisman BS, Paskov K, Stockham N, Tabatabaei K, Jung JY, Washington P, Varma M, Sun MW, Maleki S, Wall DP. Indels in SARS-CoV-2 occur at template-switching hotspots. BioData Min 2021; 14:20. [PMID: 33743803 PMCID: PMC7980745 DOI: 10.1186/s13040-021-00251-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 02/23/2021] [Indexed: 11/10/2022] Open
Abstract
The evolutionary dynamics of SARS-CoV-2 have been carefully monitored since the COVID-19 pandemic began in December 2019. However, analysis has focused primarily on single nucleotide polymorphisms and largely ignored the role of insertions and deletions (indels) as well as recombination in SARS-CoV-2 evolution. Using sequences from the GISAID database, we catalogue over 100 insertions and deletions in the SARS-CoV-2 consensus sequences. We hypothesize that these indels are artifacts of recombination events between SARS-CoV-2 replicates whereby RNA-dependent RNA polymerase (RdRp) re-associates with a homologous template at a different loci ("imperfect homologous recombination"). We provide several independent pieces of evidence that suggest this. (1) The indels from the GISAID consensus sequences are clustered at specific regions of the genome. (2) These regions are also enriched for 5' and 3' breakpoints in the transcription regulatory site (TRS) independent transcriptome, presumably sites of RNA-dependent RNA polymerase (RdRp) template-switching. (3) Within raw reads, these indel hotspots have cases of both high intra-host heterogeneity and intra-host homogeneity, suggesting that these indels are both consequences of de novo recombination events within a host and artifacts of previous recombination. We briefly analyze the indels in the context of RNA secondary structure, noting that indels preferentially occur in "arms" and loop structures of the predicted folded RNA, suggesting that secondary structure may be a mechanism for TRS-independent template-switching in SARS-CoV-2 or other coronaviruses. These insights into the relationship between structural variation and recombination in SARS-CoV-2 can improve our reconstructions of the SARS-CoV-2 evolutionary history as well as our understanding of the process of RdRp template-switching in RNA viruses.
Collapse
Affiliation(s)
| | - Kelley Paskov
- Department of Biomedical Data Science, Stanford University, Stanford, USA
| | - Nate Stockham
- Department of Neuroscience, Stanford University, Stanford, USA
| | - Kevin Tabatabaei
- Faculty of Health Sciences, McMaster University, Hamilton, Canada
| | - Jae-Yoon Jung
- Department of Biomedical Data Science, Stanford University, Stanford, USA
| | - Peter Washington
- Department of Bioengineering, Stanford University, Stanford, USA
| | - Maya Varma
- Department of Computer Science, Stanford University, Stanford, USA
| | - Min Woo Sun
- Department of Biomedical Data Science, Stanford University, Stanford, USA
| | - Sepideh Maleki
- Department of Computer Science, University of Texas Austin, Austin, USA
| | - Dennis P Wall
- Department of Biomedical Data Science, Stanford University, Stanford, USA.
- Department of Pediatrics (Systems Medicine), Stanford University, Stanford, USA.
| |
Collapse
|
49
|
Ujike M, Taguchi F. Recent Progress in Torovirus Molecular Biology. Viruses 2021; 13:435. [PMID: 33800523 PMCID: PMC7998386 DOI: 10.3390/v13030435] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/24/2021] [Accepted: 02/24/2021] [Indexed: 11/16/2022] Open
Abstract
Torovirus (ToV) has recently been classified into the new family Tobaniviridae, although it belonged to the Coronavirus (CoV) family historically. ToVs are associated with enteric diseases in animals and humans. In contrast to CoVs, which are recognised as pathogens of veterinary and medical importance, little attention has been paid to ToVs because their infections are usually asymptomatic or not severe; for a long time, only one equine ToV could be propagated in cultured cells. However, bovine ToVs, which predominantly cause diarrhoea in calves, have been detected worldwide, leading to economic losses. Porcine ToVs have also spread globally; although they have not caused serious economic losses, coinfections with other pathogens can exacerbate their symptoms. In addition, frequent inter- or intra-recombination among ToVs can increase pathogenesis or unpredicted host adaptation. These findings have highlighted the importance of ToVs as pathogens and the need for basic ToV research. Here, we review recent progress in the study of ToV molecular biology including reverse genetics, focusing on the similarities and differences between ToVs and CoVs.
Collapse
Affiliation(s)
- Makoto Ujike
- Laboratory of Veterinary Infectious Diseases, Faculty of Veterinary Medicine, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino, Tokyo 180-8602, Japan;
- Research Center for Animal Life Science, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino, Tokyo 180-8602, Japan
| | - Fumihiro Taguchi
- Laboratory of Veterinary Infectious Diseases, Faculty of Veterinary Medicine, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino, Tokyo 180-8602, Japan;
| |
Collapse
|
50
|
Tavares RDCA, Mahadeshwar G, Wan H, Huston NC, Pyle AM. The global and local distribution of RNA structure throughout the SARS-CoV-2 genome. J Virol 2021; 95:JVI.02190-20. [PMID: 33268519 PMCID: PMC8092842 DOI: 10.1128/jvi.02190-20] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 11/30/2020] [Indexed: 02/08/2023] Open
Abstract
SARS-CoV-2 is the causative viral agent of COVID-19, the disease at the center of the current global pandemic. While knowledge of highly structured regions is integral for mechanistic insights into the viral infection cycle, very little is known about the location and folding stability of functional elements within the massive, ∼30kb SARS-CoV-2 RNA genome. In this study, we analyze the folding stability of this RNA genome relative to the structural landscape of other well-known viral RNAs. We present an in-silico pipeline to predict regions of high base pair content across long genomes and to pinpoint hotspots of well-defined RNA structures, a method that allows for direct comparisons of RNA structural complexity within the several domains in SARS-CoV-2 genome. We report that the SARS-CoV-2 genomic propensity for stable RNA folding is exceptional among RNA viruses, superseding even that of HCV, one of the most structured viral RNAs in nature. Furthermore, our analysis suggests varying levels of RNA structure across genomic functional regions, with accessory and structural ORFs containing the highest structural density in the viral genome. Finally, we take a step further to examine how individual RNA structures formed by these ORFs are affected by the differences in genomic and subgenomic contexts, which given the technical difficulty of experimentally separating cellular mixtures of sgRNA from gRNA, is a unique advantage of our in-silico pipeline. The resulting findings provide a useful roadmap for planning focused empirical studies of SARS-CoV-2 RNA biology, and a preliminary guide for exploring potential SARS-CoV-2 RNA drug targets.Importance The RNA genome of SARS-CoV-2 is among the largest and most complex viral genomes, and yet its RNA structural features remain relatively unexplored. Since RNA elements guide function in most RNA viruses, and they represent potential drug targets, it is essential to chart the architectural features of SARS-CoV-2 and pinpoint regions that merit focused study. Here we show that RNA folding stability of SARS-CoV-2 genome is exceptional among viral genomes and we develop a method to directly compare levels of predicted secondary structure across SARS-CoV-2 domains. Remarkably, we find that coding regions display the highest structural propensity in the genome, forming motifs that differ between the genomic and subgenomic contexts. Our approach provides an attractive strategy to rapidly screen for candidate structured regions based on base pairing potential and provides a readily interpretable roadmap to guide functional studies of RNA viruses and other pharmacologically relevant RNA transcripts.
Collapse
Affiliation(s)
| | - Gandhar Mahadeshwar
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
| | - Han Wan
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Nicholas C Huston
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
| | - Anna Marie Pyle
- Department of Chemistry, Yale University, New Haven, CT 06511, USA
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| |
Collapse
|