1
|
Sotcheff S, Zhou Y, Yeung J, Sun Y, Johnson JE, Torbett BE, Routh AL. ViReMa: a virus recombination mapper of next-generation sequencing data characterizes diverse recombinant viral nucleic acids. Gigascience 2023; 12:giad009. [PMID: 36939008 PMCID: PMC10025937 DOI: 10.1093/gigascience/giad009] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 11/30/2022] [Accepted: 02/03/2023] [Indexed: 03/21/2023] Open
Abstract
BACKGROUND Genetic recombination is a tremendous source of intrahost diversity in viruses and is critical for their ability to rapidly adapt to new environments or fitness challenges. While viruses are routinely characterized using high-throughput sequencing techniques, characterizing the genetic products of recombination in next-generation sequencing data remains a challenge. Viral recombination events can be highly diverse and variable in nature, including simple duplications and deletions, or more complex events such as copy/snap-back recombination, intervirus or intersegment recombination, and insertions of host nucleic acids. Due to the variable mechanisms driving virus recombination and the different selection pressures acting on the progeny, recombination junctions rarely adhere to simple canonical sites or sequences. Furthermore, numerous different events may be present simultaneously in a viral population, yielding a complex mutational landscape. FINDINGS We have previously developed an algorithm called ViReMa (Virus Recombination Mapper) that bootstraps the bowtie short-read aligner to capture and annotate a wide range of recombinant species found within virus populations. Here, we have updated ViReMa to provide an "error density" function designed to accurately detect recombination events in the longer reads now routinely generated by the Illumina platforms and provide output reports for multiple types of recombinant species using standardized formats. We demonstrate the utility and flexibility of ViReMa in different settings to report deletion events in simulated data from Flock House virus, copy-back RNA species in Sendai viruses, short duplication events in HIV, and virus-to-host recombination in an archaeal DNA virus.
Collapse
Affiliation(s)
- Stephanea Sotcheff
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Yiyang Zhou
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Jason Yeung
- John Sealy School of Medicine, The University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Yan Sun
- Department of Microbiology and Immunology, The University of Rochester Medical Center, Rochester, NY 14642, USA
| | - John E Johnson
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA 92037, USA
| | - Bruce E Torbett
- Department of Pediatrics, School of Medicine, University of Washington, Seattle, WA 98105, USA
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98105, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98195, USA
| | - Andrew L Routh
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX 77555, USA
- Sealy Center for Structural Biology and Molecular Biophysics, The University of Texas Medical Branch, Galveston, TX 77555, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
2
|
Enhanced Transmissibility and Decreased Virulence of HIV-1 CRF07_BC May Explain Its Rapid Expansion in China. Microbiol Spectr 2022; 10:e0014622. [PMID: 35727067 PMCID: PMC9431131 DOI: 10.1128/spectrum.00146-22] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
HIV-1 CRF07_BC is one of the most common circulating recombinant forms (CRFs) in China and is becoming increasingly prevalent especially in HIV-infected men who have sex with men (MSM). The reason why this strain expanded so quickly in China remains to be defined. We previously observed that individuals infected with HIV-1 CRF07_BC showed slower disease progression than those infected with HIV-1 subtype B or CRF01_AE. CRF07_BC viruses carry two unique mutations in the p6Gag protein: insertion of PTAPPE sequences downstream of the original Tsg101 binding domain, and deletion of a seven-amino-acid sequence (30PIDKELY36) that partially overlaps with the Alix binding domain. In this study, we confirmed the enhanced transmission capability of CRF07_BC over HIV-1 subtype B or CRF01_AE by constructing HIV-1 transmission networks to quantitatively evaluate the growth rate of transmission clusters of different HIV-1 genotypes. We further determined lower virus infectivity and slower replication of CRF07_BC with aforementioned PTAPPE insertion (insPTAP) and/or PIDKELY deletion (Δ7) in the p6Gag protein, which in turn may increase the pool of people infected with CRF07_BC and the risk of HIV-1 transmission. These new features of CRF07_BC may explain its quick spread and will help adjust prevention strategy of HIV-1 epidemic. IMPORTANCE HIV-1 CRF07_BC is one of the most common circulating recombinant forms (CRFs) in China. The question is why and how CRF07_BC expanded so rapidly remains unknown. To address the question, we explored the transmission capability of CRF07_BC by constructing HIV-1 transmission networks to quantitatively evaluate the growth rate of transmission clusters of different HIV-1 genotypes. We further characterized the role of two unique mutations in CRF07_BC, PTAPPE insertion (insPTAP) and/or PIDKELY deletion (Δ7) in the p6Gag in virus replication. Our results help define the molecular mechanism regarding the association between the unique mutations and the slower disease progression of CRF07_BC as well as the quick spread of CRF07_BC in China.
Collapse
|
3
|
Wang S, Sotcheff SL, Gallardo CM, Jaworski E, Torbett B, Routh A. Covariation of viral recombination with single nucleotide variants during virus evolution revealed by CoVaMa. Nucleic Acids Res 2022; 50:e41. [PMID: 35018461 PMCID: PMC9023271 DOI: 10.1093/nar/gkab1259] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/29/2021] [Accepted: 12/09/2021] [Indexed: 11/17/2022] Open
Abstract
Adaptation of viruses to their environments occurs through the acquisition of both novel single-nucleotide variants (SNV) and recombination events including insertions, deletions, and duplications. The co-occurrence of SNVs in individual viral genomes during their evolution has been well-described. However, unlike covariation of SNVs, studying the correlation between recombination events with each other or with SNVs has been hampered by their inherent genetic complexity and a lack of bioinformatic tools. Here, we expanded our previously reported CoVaMa pipeline (v0.1) to measure linkage disequilibrium between recombination events and SNVs within both short-read and long-read sequencing datasets. We demonstrate this approach using long-read nanopore sequencing data acquired from Flock House virus (FHV) serially passaged in vitro. We found SNVs that were either correlated or anti-correlated with large genomic deletions generated by nonhomologous recombination that give rise to Defective-RNAs. We also analyzed NGS data from longitudinal HIV samples derived from a patient undergoing antiretroviral therapy who proceeded to virological failure. We found correlations between insertions in the p6Gag and mutations in Gag cleavage sites. This report confirms previous findings and provides insights on novel associations between SNVs and specific recombination events within the viral genome and their role in viral evolution.
Collapse
Affiliation(s)
- Shiyi Wang
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Stephanea L Sotcheff
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Christian M Gallardo
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, USA
| | - Elizabeth Jaworski
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Bruce E Torbett
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
| | - Andrew L Routh
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
- Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
4
|
Yeo JY, Koh DWS, Yap P, Goh GR, Gan SKE. Spontaneous Mutations in HIV-1 Gag, Protease, RT p66 in the First Replication Cycle and How They Appear: Insights from an In Vitro Assay on Mutation Rates and Types. Int J Mol Sci 2020; 22:E370. [PMID: 33396460 PMCID: PMC7796399 DOI: 10.3390/ijms22010370] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 12/25/2020] [Accepted: 12/29/2020] [Indexed: 02/07/2023] Open
Abstract
While drug resistant mutations in HIV-1 are largely credited to its error prone HIV-1 RT, the time point in the infection cycle that these mutations can arise and if they appear spontaneously without selection pressures both remained enigmatic. Many HIV-1 RT mutational in vitro studies utilized reporter genes (LacZ) as a template to investigate these questions, thereby not accounting for the possible contribution of viral codon usage. To address this gap, we investigated HIV-1 RT mutation rates and biases on its own Gag, protease, and RT p66 genes in an in vitro selection pressure free system. We found rare clinical mutations with a general avoidance of crucial functional sites in the background mutations rates for Gag, protease, and RT p66 at 4.71 × 10-5, 6.03 × 10-5, and 7.09 × 10-5 mutations/bp, respectively. Gag and p66 genes showed a large number of 'A to G' mutations. Comparisons with silently mutated p66 sequences showed an increase in mutation rates (1.88 × 10-4 mutations/bp) and that 'A to G' mutations occurred in regions reminiscent of ADAR neighbor sequence preferences. Mutational free energies of the 'A to G' mutations revealed an avoidance of destabilizing effects, with the natural p66 gene codon usage providing barriers to disruptive amino acid changes. Our study demonstrates the importance of studying mutation emergence in HIV genes in a RT-PCR in vitro selection pressure free system to understand how fast drug resistance can emerge, providing transferable applications to how new viral diseases and drug resistances can emerge.
Collapse
Affiliation(s)
- Joshua Yi Yeo
- Bioinformatics Institute, A*STAR, 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Singapore; (J.Y.Y.); (D.W.-S.K.); (P.Y.); (G.-R.G.)
- Experimental Drug Development Centre, A*STAR, 10 Biopolis Road Chromos #05-01, Singapore 138670, Singapore
| | - Darius Wen-Shuo Koh
- Bioinformatics Institute, A*STAR, 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Singapore; (J.Y.Y.); (D.W.-S.K.); (P.Y.); (G.-R.G.)
- Experimental Drug Development Centre, A*STAR, 10 Biopolis Road Chromos #05-01, Singapore 138670, Singapore
| | - Ping Yap
- Bioinformatics Institute, A*STAR, 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Singapore; (J.Y.Y.); (D.W.-S.K.); (P.Y.); (G.-R.G.)
| | - Ghin-Ray Goh
- Bioinformatics Institute, A*STAR, 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Singapore; (J.Y.Y.); (D.W.-S.K.); (P.Y.); (G.-R.G.)
| | - Samuel Ken-En Gan
- Bioinformatics Institute, A*STAR, 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Singapore; (J.Y.Y.); (D.W.-S.K.); (P.Y.); (G.-R.G.)
- Experimental Drug Development Centre, A*STAR, 10 Biopolis Road Chromos #05-01, Singapore 138670, Singapore
- p53 Laboratory, A*STAR, 8A Biomedical Grove, #06-04/05 Neuros/Immunos, Singapore 138648, Singapore
| |
Collapse
|
5
|
Nucleocapsid Protein Precursors NCp9 and NCp15 Suppress ATP-Mediated Rescue of AZT-Terminated Primers by HIV-1 Reverse Transcriptase. Antimicrob Agents Chemother 2020; 64:AAC.00958-20. [PMID: 32747359 DOI: 10.1128/aac.00958-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/29/2020] [Indexed: 01/20/2023] Open
Abstract
In HIV-1, development of resistance to AZT (3'-azido-3'-deoxythymidine) is mediated by the acquisition of thymidine analogue resistance mutations (TAMs) (i.e., M41L, D67N, K70R, L210W, T215F/Y, and K219E/Q) in the viral reverse transcriptase (RT). Clinically relevant combinations of TAMs, such as M41L/T215Y or D67N/K70R/T215F/K219Q, enhance the ATP-mediated excision of AZT monophosphate (AZTMP) from the 3' end of the primer, allowing DNA synthesis to continue. Additionally, during HIV-1 maturation, the Gag polyprotein is cleaved to release a mature nucleocapsid protein (NCp7) and two intermediate precursors (NCp9 and NCp15). NC proteins interact with the viral genome and facilitate the reverse transcription process. Using wild-type and TAM-containing RTs, we showed that both NCp9 and NCp15 inhibited ATP-mediated rescue of AZTMP-terminated primers annealed to RNA templates but not DNA templates, while NCp7 had no effect on rescue activity. RNase H inactivation by introducing the active-site mutation E478Q led to the loss of the inhibitory effect shown by NCp9. NCp15 had a stimulatory effect on the RT's RNase H activity not observed with NCp7 and NCp9. However, analysis of RNase H cleavage patterns revealed that in the presence of NCp9, RNA/DNA complexes containing duplexes of 12 bp had reduced stability in comparison with those obtained in the absence of NC or with NCp7 or NCp15. These effects are expected to have a strong influence on the inhibitory action of NCp9 and NCp15 by affecting the efficiency of RNA-dependent DNA polymerization after unblocking DNA primers terminated with AZTMP and other nucleotide analogues.
Collapse
|
6
|
Zondagh J, Basson AE, Achilonu I, Morris L, Dirr HW, Sayed Y. Drug susceptibility and replication capacity of a rare HIV-1 subtype C protease hinge region variant. Antivir Ther 2020; 24:333-342. [PMID: 30958309 DOI: 10.3851/imp3308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2019] [Indexed: 10/27/2022]
Abstract
BACKGROUND Protease inhibitors form the main component of second-line antiretroviral treatment in South Africa. Despite their efficacy, mutations arising within the HIV-1 gag and protease coding regions contribute to the development of resistance against this class of drug. In this paper we investigate a South African HIV-1 subtype C Gag-protease that contains a hinge region mutation and insertion (N37T↑V). METHODS In vitro single-cycle drug susceptibility and viral replication capacity assays were performed on W1201i, a wild-type reference isolate (MJ4) and a chimeric construct (MJ4GagN37T↑VPR). Additionally, enzyme assays were performed on the N37T↑V protease and a wild-type reference protease. RESULTS W1201i showed a small (threefold), but significant (P<0.0001) reduction in drug susceptibility to darunavir compared with MJ4. Substitution of W1201i-Gag with MJ4-Gag resulted in an additional small (twofold), but significant (P<0.01) reduction in susceptibility to lopinavir and atazanavir. The W1201i pseudovirus had a significantly (P<0.01) reduced replication capacity (16.4%) compared with the MJ4. However, this was dramatically increased to 164% (P<0.05) when W1201i-Gag was substituted with MJ4-Gag. Furthermore, the N37T↑V protease displayed reduced catalytic processing compared with the SK154 protease. CONCLUSIONS Collectively, these data suggest that the N37T↑V mutation and insertion increases viral infectivity and decreases drug susceptibility. These variations are classified as secondary mutations, and indirectly impact inhibitor binding, enzyme fitness and enzyme stability. Additionally, polymorphisms arising in Gag can modify the impact of protease with regards to viral replication and susceptibility to protease inhibitors.
Collapse
Affiliation(s)
- Jake Zondagh
- Protein Structure-Function Research Unit, School of Molecular and Cell Biology, University of Witwatersrand, Johannesburg, South Africa
| | - Adriaan E Basson
- HIV Pathogenesis Research Unit, Department of Molecular Medicine and Haematology, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa.,Centre for HIV and STIs, National Institute for Communicable Diseases (NICD) of the National Health Laboratory Service (NHLS), Johannesburg, South Africa
| | - Ikechukwu Achilonu
- Protein Structure-Function Research Unit, School of Molecular and Cell Biology, University of Witwatersrand, Johannesburg, South Africa
| | - Lynn Morris
- Centre for HIV and STIs, National Institute for Communicable Diseases (NICD) of the National Health Laboratory Service (NHLS), Johannesburg, South Africa.,Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Heini W Dirr
- Protein Structure-Function Research Unit, School of Molecular and Cell Biology, University of Witwatersrand, Johannesburg, South Africa
| | - Yasien Sayed
- Protein Structure-Function Research Unit, School of Molecular and Cell Biology, University of Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
7
|
Maeda K, Das D, Kobayakawa T, Tamamura H, Takeuchi H. Discovery and Development of Anti-HIV Therapeutic Agents: Progress Towards Improved HIV Medication. Curr Top Med Chem 2019; 19:1621-1649. [PMID: 31424371 PMCID: PMC7132033 DOI: 10.2174/1568026619666190712204603] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/14/2019] [Accepted: 06/21/2019] [Indexed: 01/09/2023]
Abstract
The history of the human immunodeficiency virus (HIV)/AIDS therapy, which spans over 30 years, is one of the most dramatic stories of science and medicine leading to the treatment of a disease. Since the advent of the first AIDS drug, AZT or zidovudine, a number of agents acting on different drug targets, such as HIV enzymes (e.g. reverse transcriptase, protease, and integrase) and host cell factors critical for HIV infection (e.g. CD4 and CCR5), have been added to our armamentarium to combat HIV/AIDS. In this review article, we first discuss the history of the development of anti-HIV drugs, during which several problems such as drug-induced side effects and the emergence of drug-resistant viruses became apparent and had to be overcome. Nowadays, the success of Combination Antiretroviral Therapy (cART), combined with recently-developed powerful but nonetheless less toxic drugs has transformed HIV/AIDS from an inevitably fatal disease into a manageable chronic infection. However, even with such potent cART, it is impossible to eradicate HIV because none of the currently available HIV drugs are effective in eliminating occult “dormant” HIV cell reservoirs. A number of novel unique treatment approaches that should drastically improve the quality of life (QOL) of patients or might actually be able to eliminate HIV altogether have also been discussed later in the review.
Collapse
Affiliation(s)
- Kenji Maeda
- National Center for Global Health and Medicine (NCGM) Research Institute, Tokyo 162-8655, Japan
| | - Debananda Das
- Experimental Retrovirology Section, HIV and AIDS Malignancy Branch, National Cancer Institute, National Institutes of Health (NCI/NIH), Bethesda, MD, United States
| | - Takuya Kobayakawa
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Tokyo 101-0062, Japan
| | - Hirokazu Tamamura
- Department of Molecular Virology, Tokyo Medical and Dental University (TMDU), Tokyo 113-8519, Japan
| | - Hiroaki Takeuchi
- Department of Molecular Virology, Tokyo Medical and Dental University (TMDU), Tokyo 113-8519, Japan
| |
Collapse
|
8
|
Aoki M, Chang SB, Das D, Martyr C, Delino NS, Takamatsu Y, Ghosh AK, Mitsuya H. A novel HIV-1 protease inhibitor, GRL-044, has potent activity against various HIV-1s with an extremely high genetic barrier to the emergence of HIV-1 drug resistance. Glob Health Med 2019; 1:36-48. [PMID: 33330753 DOI: 10.35772/ghm.2019.01003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/09/2019] [Accepted: 10/15/2019] [Indexed: 12/12/2022]
Abstract
We designed, synthesized, and identified two novel nonpeptidic HIV-1 protease inhibitors (PIs), GRL- 037 and GRL-044, containing P2-tetrahydropyrano-tetrahydrofuran (Tp-THF), P1-benzene and P1-methoxybenzene, respectively, and P2'-isopropyl-aminobenzothiazole (Ip-Abt), based on the structure of the prototypic PI, darunavir (DRV). The 50% inhibitory concentrations (IC50s) of GRL-037 and GRL-044 against wild-type HIV-1NL4-3 were 0.042 and 0.0028-0.0033 nM with minimal cytotoxicity profiles compared to the IC50 values of four most potent FDA-approved PIs, ranging from 2.6 to 70 nM. GRL-044 was also potent against HIV-2EHO (IC50=0.0004 nM) and various PI-resistant HIV-1 variants (IC50 ranging from 0.065 to 19 nM). In the selection assays we conducted, the emergence of HIV-1 variants resistant to GRL-044 was significantly delayed compared to that against DRV. Thermal stability test using differential scanning fluorimetry employing purified HIV-1 protease (PR) and SYPRO® Orange showed that both GRL-037 and GRL-044 tightly bound to PR. A28S substitution emerged in the homologous recombination-based selection assays with GRL-044. Structural analyses showed that the larger size of GRL-044 over DRV, enabling GRL-044 to fit better to the hydrophobic cavity of protease, contributed to the greater potency of GRL- 044 against HIV-1. Structural analyses also suggested that the van der Waals surface contact of GRL-044 with A28' appears to be better compared to that of DRV because of the larger surface of Ip-Abt of GRL-044, which may be partially responsible for the emergence of A28S. The present antiviral data and structural features of GRL-044 should provide molecular insights for further design and development of potent and "resistance-repellant" novel PIs.
Collapse
Affiliation(s)
- Manabu Aoki
- Experimental Retrovirology Section, HIV and AIDS Malignancy Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.,Department of Refractory Viral Infections, National Center for Global Health and Medicine Research Institute, Tokyo, Japan
| | - Simon B Chang
- Experimental Retrovirology Section, HIV and AIDS Malignancy Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Debananda Das
- Experimental Retrovirology Section, HIV and AIDS Malignancy Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Cuthbert Martyr
- Departments of Chemistry and Medicinal Chemistry, Purdue University, West Lafayette, IN, USA
| | - Nicole S Delino
- Experimental Retrovirology Section, HIV and AIDS Malignancy Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yuki Takamatsu
- Experimental Retrovirology Section, HIV and AIDS Malignancy Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Arun K Ghosh
- Departments of Chemistry and Medicinal Chemistry, Purdue University, West Lafayette, IN, USA
| | - Hiroaki Mitsuya
- Experimental Retrovirology Section, HIV and AIDS Malignancy Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.,Department of Refractory Viral Infections, National Center for Global Health and Medicine Research Institute, Tokyo, Japan.,Deprtment of Clinical Sciences, Kumamoto University Hospital, Kumamoto, Japan
| |
Collapse
|
9
|
Su CTT, Koh DWS, Gan SKE. Reviewing HIV-1 Gag Mutations in Protease Inhibitors Resistance: Insights for Possible Novel Gag Inhibitor Designs. Molecules 2019; 24:molecules24183243. [PMID: 31489889 PMCID: PMC6767625 DOI: 10.3390/molecules24183243] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 09/03/2019] [Accepted: 09/04/2019] [Indexed: 12/31/2022] Open
Abstract
HIV protease inhibitors against the viral protease are often hampered by drug resistance mutations in protease and in the viral substrate Gag. To overcome this drug resistance and inhibit viral maturation, targeting Gag alongside protease rather than targeting protease alone may be more efficient. In order to successfully inhibit Gag, understanding of its drug resistance mutations and the elicited structural changes on protease binding needs to be investigated. While mutations on Gag have already been mapped to protease inhibitor resistance, there remain many mutations, particularly the non-cleavage mutations, that are not characterized. Through structural studies to unravel how Gag mutations contributes to protease drug resistance synergistically, it is thus possible to glean insights to design novel Gag inhibitors. In this review, we discuss the structural role of both novel and previously reported Gag mutations in PI resistance, and how new Gag inhibitors can be designed.
Collapse
Affiliation(s)
- Chinh Tran-To Su
- Antibody & Product Development Lab, Bioinformatics Institute, A*STAR, Singapore 138671, Singapore
| | - Darius Wen-Shuo Koh
- Antibody & Product Development Lab, Bioinformatics Institute, A*STAR, Singapore 138671, Singapore
| | - Samuel Ken-En Gan
- Antibody & Product Development Lab, Bioinformatics Institute, A*STAR, Singapore 138671, Singapore.
- p53 Laboratory, A*STAR, Singapore 138648, Singapore.
| |
Collapse
|
10
|
Novel Protease Inhibitors Containing C-5-Modified bis-Tetrahydrofuranylurethane and Aminobenzothiazole as P2 and P2' Ligands That Exert Potent Antiviral Activity against Highly Multidrug-Resistant HIV-1 with a High Genetic Barrier against the Emergence of Drug Resistance. Antimicrob Agents Chemother 2019; 63:AAC.00372-19. [PMID: 31085520 DOI: 10.1128/aac.00372-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 04/25/2019] [Indexed: 02/08/2023] Open
Abstract
Combination antiretroviral therapy has achieved dramatic reductions in the mortality and morbidity in people with HIV-1 infection. Darunavir (DRV) represents a most efficacious and well-tolerated protease inhibitor (PI) with a high genetic barrier to the emergence of drug-resistant HIV-1. However, highly DRV-resistant variants have been reported in patients receiving long-term DRV-containing regimens. Here, we report three novel HIV-1 PIs (GRL-057-14, GRL-058-14, and GRL-059-14), all of which contain a P2-amino-substituted-bis-tetrahydrofuranylurethane (bis-THF) and a P2'-cyclopropyl-amino-benzothiazole (Cp-Abt). These PIs not only potently inhibit the replication of wild-type HIV-1 (50% effective concentration [EC50], 0.22 nM to 10.4 nM) but also inhibit multi-PI-resistant HIV-1 variants, including highly DRV-resistant HIVDRV R P51 (EC50, 1.6 nM to 30.7 nM). The emergence of HIV-1 variants resistant to the three compounds was much delayed in selection experiments compared to resistance to DRV, using a mixture of 11 highly multi-PI-resistant HIV-1 isolates as a starting HIV-1 population. GRL-057-14 showed the most potent anti-HIV-1 activity and greatest thermal stability with wild-type protease, and potently inhibited HIV-1 protease's proteolytic activity (Ki value, 0.10 nM) among the three PIs. Structural models indicate that the C-5-isopropylamino-bis-THF moiety of GRL-057-14 forms additional polar interactions with the active site of HIV-1 protease. Moreover, GRL-057-14's P1-bis-fluoro-methylbenzene forms strong hydrogen bonding and effective van der Waals interactions. The present data suggest that the combination of C-5-aminoalkyl-bis-THF, P1-bis-fluoro-methylbenzene, and P2'-Cp-Abt confers highly potent activity against wild-type and multi-PI-resistant HIV strains and warrant further development of the three PIs, in particular, that of GRL-057-14, as potential therapeutic for HIV-1 infection and AIDS.
Collapse
|
11
|
Amano M, Bulut H, Tamiya S, Nakamura T, Koh Y, Mitsuya H. Amino-acid inserts of HIV-1 capsid (CA) induce CA degradation and abrogate viral infectivity: Insights for the dynamics and mechanisms of HIV-1 CA decomposition. Sci Rep 2019; 9:9806. [PMID: 31285456 PMCID: PMC6614453 DOI: 10.1038/s41598-019-46082-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 06/18/2019] [Indexed: 11/09/2022] Open
Abstract
Accumulation of amino acid (AA) insertions/substitutions are observed in the Gag-protein of HIV-1 variants resistant to HIV-1 protease inhibitors. Here, we found that HIV-1 carrying AA insertions in capsid protein (CA) undergoes aberrant CA degradation. When we generated recombinant HIV-1s (rHIV-1s) containing 19-AAs in Gag, such insertions caused significant CA degradation, which initiated in CA's C-terminal. Such rHIV-1s had remarkable morphological abnormality, decreased infectivity, and no replicative ability, which correlated with levels of CA degradation. The CA degradation observed was energy-independent and had no association with cellular/viral proteolytic mechanisms, suggesting that the CA degradation occurs due to conformational/structural incompatibility caused by the 19-AA insertions. The incorporation of degradation-prone CA into the wild-type CA resulted in significant disruption of replication competence in "chimeric" virions. The data should allow better understanding of the dynamics and mechanisms of CA decomposition/degradation and retroviral uncoating, which may lead to new approach for antiretroviral modalities.
Collapse
Affiliation(s)
- Masayuki Amano
- Department of Hematology, Rheumatology, and Infectious Diseases, Kumamoto University School of Medicine, Kumamoto, 860-8556, Japan.,Experimental Retrovirology Section, HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.,Department of Refractory Viral Infection, National Center for Global Health and Medicine Research Institute, Tokyo, 162-8655, Japan
| | - Haydar Bulut
- Experimental Retrovirology Section, HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Sadahiro Tamiya
- Department of Hematology, Rheumatology, and Infectious Diseases, Kumamoto University School of Medicine, Kumamoto, 860-8556, Japan.,Experimental Retrovirology Section, HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Tomofumi Nakamura
- Department of Hematology, Rheumatology, and Infectious Diseases, Kumamoto University School of Medicine, Kumamoto, 860-8556, Japan
| | - Yasuhiro Koh
- Department of Hematology, Rheumatology, and Infectious Diseases, Kumamoto University School of Medicine, Kumamoto, 860-8556, Japan
| | - Hiroaki Mitsuya
- Department of Hematology, Rheumatology, and Infectious Diseases, Kumamoto University School of Medicine, Kumamoto, 860-8556, Japan. .,Experimental Retrovirology Section, HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA. .,Department of Refractory Viral Infection, National Center for Global Health and Medicine Research Institute, Tokyo, 162-8655, Japan.
| |
Collapse
|
12
|
The N-Terminus of the HIV-1 p6 Gag Protein Regulates Susceptibility to Degradation by IDE. Viruses 2018; 10:v10120710. [PMID: 30545091 PMCID: PMC6316412 DOI: 10.3390/v10120710] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/07/2018] [Accepted: 12/09/2018] [Indexed: 12/14/2022] Open
Abstract
As part of the Pr55Gag polyprotein, p6 fulfills an essential role in the late steps of the replication cycle. However, almost nothing is known about the functions of the mature HIV-1 p6 protein. Recently, we showed that p6 is a bona fide substrate of the insulin-degrading enzyme (IDE), a ubiquitously expressed zinc metalloprotease. This phenomenon appears to be specific for HIV-1, since p6 homologs of HIV-2, SIV and EIAV were IDE-insensitive. Furthermore, abrogation of the IDE-mediated degradation of p6 reduces the replication capacity of HIV-1 in an Env-dependent manner. However, it remained unclear to which extent the IDE mediated degradation is phylogenetically conserved among HIV-1. Here, we describe two HIV-1 isolates with IDE resistant p6 proteins. Sequence comparison allowed deducing one single amino acid regulating IDE sensitivity of p6. Exchanging the N-terminal leucine residue of p6 derived from the IDE sensitive isolate HIV-1NL4-3 with proline enhances its stability, while replacing Pro-1 of p6 from the IDE insensitive isolate SG3 with leucine restores susceptibility towards IDE. Phylogenetic analyses of this natural polymorphism revealed that the N-terminal leucine is characteristic for p6 derived from HIV-1 group M except for subtype A, which predominantly expresses p6 with an N-terminal proline. Consequently, p6 peptides derived from subtype A are not degraded by IDE. Thus, IDE mediated degradation of p6 is specific for HIV-1 group M isolates and not occasionally distributed among HIV-1.
Collapse
|
13
|
Wymant C, Blanquart F, Golubchik T, Gall A, Bakker M, Bezemer D, Croucher NJ, Hall M, Hillebregt M, Ong SH, Ratmann O, Albert J, Bannert N, Fellay J, Fransen K, Gourlay A, Grabowski MK, Gunsenheimer-Bartmeyer B, Günthard HF, Kivelä P, Kouyos R, Laeyendecker O, Liitsola K, Meyer L, Porter K, Ristola M, van Sighem A, Berkhout B, Cornelissen M, Kellam P, Reiss P, Fraser C. Easy and accurate reconstruction of whole HIV genomes from short-read sequence data with shiver. Virus Evol 2018; 4:vey007. [PMID: 29876136 PMCID: PMC5961307 DOI: 10.1093/ve/vey007] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Studying the evolution of viruses and their molecular epidemiology relies on accurate viral sequence data, so that small differences between similar viruses can be meaningfully interpreted. Despite its higher throughput and more detailed minority variant data, next-generation sequencing has yet to be widely adopted for HIV. The difficulty of accurately reconstructing the consensus sequence of a quasispecies from reads (short fragments of DNA) in the presence of large between- and within-host diversity, including frequent indels, may have presented a barrier. In particular, mapping (aligning) reads to a reference sequence leads to biased loss of information; this bias can distort epidemiological and evolutionary conclusions. De novo assembly avoids this bias by aligning the reads to themselves, producing a set of sequences called contigs. However contigs provide only a partial summary of the reads, misassembly may result in their having an incorrect structure, and no information is available at parts of the genome where contigs could not be assembled. To address these problems we developed the tool shiver to pre-process reads for quality and contamination, then map them to a reference tailored to the sample using corrected contigs supplemented with the user's choice of existing reference sequences. Run with two commands per sample, it can easily be used for large heterogeneous data sets. We used shiver to reconstruct the consensus sequence and minority variant information from paired-end short-read whole-genome data produced with the Illumina platform, for sixty-five existing publicly available samples and fifty new samples. We show the systematic superiority of mapping to shiver's constructed reference compared with mapping the same reads to the closest of 3,249 real references: median values of 13 bases called differently and more accurately, 0 bases called differently and less accurately, and 205 bases of missing sequence recovered. We also successfully applied shiver to whole-genome samples of Hepatitis C Virus and Respiratory Syncytial Virus. shiver is publicly available from https://github.com/ChrisHIV/shiver.
Collapse
Affiliation(s)
- Chris Wymant
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK.,Medical Research Council Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, Imperial College London, London, UK
| | - François Blanquart
- Medical Research Council Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, Imperial College London, London, UK
| | - Tanya Golubchik
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK.,Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Astrid Gall
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK.,Virus Genomics, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Margreet Bakker
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center of the University of Amsterdam, Amsterdam, The Netherlands
| | | | - Nicholas J Croucher
- Medical Research Council Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, Imperial College London, London, UK
| | - Matthew Hall
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK.,Medical Research Council Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, Imperial College London, London, UK
| | | | - Swee Hoe Ong
- Virus Genomics, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Oliver Ratmann
- Medical Research Council Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, Imperial College London, London, UK.,Department of Mathematics, Imperial College London, London, UK
| | - Jan Albert
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| | - Norbert Bannert
- Division for HIV and Other Retroviruses, Robert Koch Institute, Berlin, Germany
| | - Jacques Fellay
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Katrien Fransen
- HIV/STI Reference Laboratory, Department of Clinical Science, WHO Collaborating Centre, Institute of Tropical Medicine, Antwerpen, Belgium
| | - Annabelle Gourlay
- Institute for Global Health, University College London, London, UK.,Department of Population Health, Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, UK
| | - M Kate Grabowski
- Department of Pathology, John Hopkins University, Baltimore, MD, USA
| | | | - Huldrych F Günthard
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland.,Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Pia Kivelä
- Department of Infectious Diseases, Helsinki University Hospital, Helsinki, Finland
| | - Roger Kouyos
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland.,Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | | | - Kirsi Liitsola
- Department of Infectious Diseases, Helsinki University Hospital, Helsinki, Finland
| | - Laurence Meyer
- INSERM CESP U1018, Université Paris Sud, Université Paris Saclay, APHP, Service de Santé Publique, Hôpital de Bicêtre, Le Kremlin-Bicêtre, France
| | - Kholoud Porter
- Institute for Global Health, University College London, London, UK
| | - Matti Ristola
- Department of Infectious Diseases, Helsinki University Hospital, Helsinki, Finland
| | | | - Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center of the University of Amsterdam, Amsterdam, The Netherlands
| | - Marion Cornelissen
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center of the University of Amsterdam, Amsterdam, The Netherlands
| | - Paul Kellam
- Kymab Ltd, Cambridge, UK.,Division of Infectious Diseases, Department of Medicine, Imperial College London, London, UK
| | - Peter Reiss
- Stichting HIV Monitoring, Amsterdam, The Netherlands.,Department of Global Health, Academic Medical Center and Amsterdam Institute for Global Health and Development, Amsterdam, The Netherlands
| | - Christophe Fraser
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK.,Medical Research Council Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, Imperial College London, London, UK
| | | |
Collapse
|
14
|
Sharma S, Arunachalam PS, Menon M, Ragupathy V, Satya RV, Jebaraj J, Aralaguppe SG, Rao C, Pal S, Saravanan S, Murugavel KG, Balakrishnan P, Solomon S, Hewlett I, Ranga U. PTAP motif duplication in the p6 Gag protein confers a replication advantage on HIV-1 subtype C. J Biol Chem 2018; 293:11687-11708. [PMID: 29773649 DOI: 10.1074/jbc.m117.815829] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 04/30/2018] [Indexed: 11/06/2022] Open
Abstract
HIV-1 subtype C (HIV-1C) may duplicate longer amino acid stretches in the p6 Gag protein, leading to the creation of an additional Pro-Thr/Ser-Ala-Pro (PTAP) motif necessary for viral packaging. However, the biological significance of a duplication of the PTAP motif for HIV-1 replication and pathogenesis has not been experimentally validated. In a longitudinal study of two different clinical cohorts of select HIV-1 seropositive, drug-naive individuals from India, we found that 8 of 50 of these individuals harbored a mixed infection of viral strains discordant for the PTAP duplication. Conventional and next-generation sequencing of six primary viral quasispecies at multiple time points disclosed that in a mixed infection, the viral strains containing the PTAP duplication dominated the infection. The dominance of the double-PTAP viral strains over a genetically similar single-PTAP viral clone was confirmed in viral proliferation and pairwise competition assays. Of note, in the proximity ligation assay, double-PTAP Gag proteins exhibited a significantly enhanced interaction with the host protein tumor susceptibility gene 101 (Tsg101). Moreover, Tsg101 overexpression resulted in a biphasic effect on HIV-1C proliferation, an enhanced effect at low concentration and an inhibitory effect only at higher concentrations, unlike a uniformly inhibitory effect on subtype B strains. In summary, our results indicate that the duplication of the PTAP motif in the p6 Gag protein enhances the replication fitness of HIV-1C by engaging the Tsg101 host protein with a higher affinity. Our results have implications for HIV-1 pathogenesis, especially of HIV-1C.
Collapse
Affiliation(s)
- Shilpee Sharma
- From the Jawaharlal Nehru Centre for Advanced Scientific Research, HIV-AIDS Laboratory, Bengaluru 56006, India
| | - Prabhu S Arunachalam
- From the Jawaharlal Nehru Centre for Advanced Scientific Research, HIV-AIDS Laboratory, Bengaluru 56006, India
| | - Malini Menon
- From the Jawaharlal Nehru Centre for Advanced Scientific Research, HIV-AIDS Laboratory, Bengaluru 56006, India
| | - Viswanath Ragupathy
- the Laboratory of Molecular Virology, Division of Emerging and Transmission Transmitted Diseases, Office of Blood Review and Research, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland 20993
| | | | - Joshua Jebaraj
- From the Jawaharlal Nehru Centre for Advanced Scientific Research, HIV-AIDS Laboratory, Bengaluru 56006, India
| | | | - Chaitra Rao
- From the Jawaharlal Nehru Centre for Advanced Scientific Research, HIV-AIDS Laboratory, Bengaluru 56006, India
| | - Sreshtha Pal
- From the Jawaharlal Nehru Centre for Advanced Scientific Research, HIV-AIDS Laboratory, Bengaluru 56006, India
| | - Shanmugam Saravanan
- the Y. R. Gaitonde Centre for AIDS Research and Education, Chennai 600113, India
| | | | | | - Suniti Solomon
- the Y. R. Gaitonde Centre for AIDS Research and Education, Chennai 600113, India
| | - Indira Hewlett
- the Laboratory of Molecular Virology, Division of Emerging and Transmission Transmitted Diseases, Office of Blood Review and Research, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland 20993
| | - Udaykumar Ranga
- From the Jawaharlal Nehru Centre for Advanced Scientific Research, HIV-AIDS Laboratory, Bengaluru 56006, India,
| |
Collapse
|
15
|
Su CTT, Kwoh CK, Verma CS, Gan SKE. Modeling the full length HIV-1 Gag polyprotein reveals the role of its p6 subunit in viral maturation and the effect of non-cleavage site mutations in protease drug resistance. J Biomol Struct Dyn 2017; 36:4366-4377. [PMID: 29237328 DOI: 10.1080/07391102.2017.1417160] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
HIV polyprotein Gag is increasingly found to contribute to protease inhibitor resistance. Despite its role in viral maturation and in developing drug resistance, there remain gaps in the knowledge of the role of certain Gag subunits (e.g. p6), and that of non-cleavage mutations in drug resistance. As p6 is flexible, it poses a problem for structural experiments, and is hence often omitted in experimental Gag structural studies. Nonetheless, as p6 is an indispensable component for viral assembly and maturation, we have modeled the full length Gag structure based on several experimentally determined constraints and studied its structural dynamics. Our findings suggest that p6 can mechanistically modulate Gag conformations. In addition, the full length Gag model reveals that allosteric communication between the non-cleavage site mutations and the first Gag cleavage site could possibly result in protease drug resistance, particularly in the absence of mutations in Gag cleavage sites. Our study provides a mechanistic understanding to the structural dynamics of HIV-1 Gag, and also proposes p6 as a possible drug target in anti-HIV therapy.
Collapse
Affiliation(s)
- Chinh Tran-To Su
- a Bioinformatics Institute , Agency for Science, Technology, and Research (A*STAR) , Singapore 138671 , Singapore
| | - Chee-Keong Kwoh
- b School of Computer Science and Engineering , Nanyang Technological University , Singapore 639798 , Singapore
| | - Chandra Shekhar Verma
- a Bioinformatics Institute , Agency for Science, Technology, and Research (A*STAR) , Singapore 138671 , Singapore
| | - Samuel Ken-En Gan
- a Bioinformatics Institute , Agency for Science, Technology, and Research (A*STAR) , Singapore 138671 , Singapore.,c p53 Laboratory , Agency for Science, Technology, and Research (A*STAR) , Singapore 138648 , Singapore
| |
Collapse
|
16
|
Aoki M, Hayashi H, Rao KV, Das D, Higashi-Kuwata N, Bulut H, Aoki-Ogata H, Takamatsu Y, Yedidi RS, Davis DA, Hattori SI, Nishida N, Hasegawa K, Takamune N, Nyalapatla PR, Osswald HL, Jono H, Saito H, Yarchoan R, Misumi S, Ghosh AK, Mitsuya H. A novel central nervous system-penetrating protease inhibitor overcomes human immunodeficiency virus 1 resistance with unprecedented aM to pM potency. eLife 2017; 6. [PMID: 29039736 PMCID: PMC5644950 DOI: 10.7554/elife.28020] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Accepted: 10/04/2017] [Indexed: 12/30/2022] Open
Abstract
Antiretroviral therapy for HIV-1 infection/AIDS has significantly extended the life expectancy of HIV-1-infected individuals and reduced HIV-1 transmission at very high rates. However, certain individuals who initially achieve viral suppression to undetectable levels may eventually suffer treatment failure mainly due to adverse effects and the emergence of drug-resistant HIV-1 variants. Here, we report GRL-142, a novel HIV-1 protease inhibitor containing an unprecedented 6-5-5-ring-fused crown-like tetrahydropyranofuran, which has extremely potent activity against all HIV-1 strains examined with IC50 values of attomolar-to-picomolar concentrations, virtually no effects on cellular growth, extremely high genetic barrier against the emergence of drug-resistant variants, and favorable intracellular and central nervous system penetration. GRL-142 forms optimum polar, van der Waals, and halogen bond interactions with HIV-1 protease and strongly blocks protease dimerization, demonstrating that combined multiple optimizing elements significantly enhance molecular and atomic interactions with a target protein and generate unprecedentedly potent and practically favorable agents.
Collapse
Affiliation(s)
- Manabu Aoki
- Experimental Retrovirology Section, HIV and AIDS Malignancy Branch, National Cancer Institute, National Institutes of Health, Bethesda, United States.,Department of Hematology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan.,Department of Rheumatology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan.,Department of Infectious Diseases, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan.,Department of Medical Technology, Kumamoto Health Science University, Kumamoto, Japan
| | - Hironori Hayashi
- National Center for Global Health and Medicine Research Institute, Tokyo, Japan
| | - Kalapala Venkateswara Rao
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, United States.,Department of Chemistry, Purdue University, West Lafayette, United States
| | - Debananda Das
- Experimental Retrovirology Section, HIV and AIDS Malignancy Branch, National Cancer Institute, National Institutes of Health, Bethesda, United States
| | | | - Haydar Bulut
- Experimental Retrovirology Section, HIV and AIDS Malignancy Branch, National Cancer Institute, National Institutes of Health, Bethesda, United States
| | - Hiromi Aoki-Ogata
- Experimental Retrovirology Section, HIV and AIDS Malignancy Branch, National Cancer Institute, National Institutes of Health, Bethesda, United States.,Department of Hematology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan.,Department of Rheumatology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan.,Department of Infectious Diseases, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Yuki Takamatsu
- Experimental Retrovirology Section, HIV and AIDS Malignancy Branch, National Cancer Institute, National Institutes of Health, Bethesda, United States
| | - Ravikiran S Yedidi
- Experimental Retrovirology Section, HIV and AIDS Malignancy Branch, National Cancer Institute, National Institutes of Health, Bethesda, United States
| | - David A Davis
- Retroviral Disease Section, HIV and AIDS Malignancy Branch, National Cancer Institute, National Institutes of Health, Bethesda, United States
| | - Shin-Ichiro Hattori
- National Center for Global Health and Medicine Research Institute, Tokyo, Japan
| | - Noriko Nishida
- Bioanalysis Group, Drug Metabolism and Analysis Department, Nonclinical Research Center, Drug Development Service Segment, LSI Medience Corporation, Tokyo, Japan
| | - Kazuya Hasegawa
- Protein Crystal Analysis Division, Japan Synchrotron Radiation Research Institute, Hyogo, Japan
| | - Nobutoki Takamune
- Innovative Collaboration Organization, Kumamoto University, Kumamoto, Japan
| | - Prasanth R Nyalapatla
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, United States.,Department of Chemistry, Purdue University, West Lafayette, United States
| | - Heather L Osswald
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, United States.,Department of Chemistry, Purdue University, West Lafayette, United States
| | - Hirofumi Jono
- Department of Pharmacy, Kumamoto University Hospital, Kumamoto, Japan
| | - Hideyuki Saito
- Department of Pharmacy, Kumamoto University Hospital, Kumamoto, Japan
| | - Robert Yarchoan
- Retroviral Disease Section, HIV and AIDS Malignancy Branch, National Cancer Institute, National Institutes of Health, Bethesda, United States
| | - Shogo Misumi
- Department of Environmental and Molecular Health Sciences, Faculty of Medical and Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Arun K Ghosh
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, United States.,Department of Chemistry, Purdue University, West Lafayette, United States
| | - Hiroaki Mitsuya
- Experimental Retrovirology Section, HIV and AIDS Malignancy Branch, National Cancer Institute, National Institutes of Health, Bethesda, United States.,Department of Hematology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan.,Department of Rheumatology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan.,Department of Infectious Diseases, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan.,National Center for Global Health and Medicine Research Institute, Tokyo, Japan
| |
Collapse
|
17
|
Hahn F, Schmalen A, Setz C, Friedrich M, Schlößer S, Kölle J, Spranger R, Rauch P, Fraedrich K, Reif T, Karius-Fischer J, Balasubramanyam A, Henklein P, Fossen T, Schubert U. Proteolysis of mature HIV-1 p6 Gag protein by the insulin-degrading enzyme (IDE) regulates virus replication in an Env-dependent manner. PLoS One 2017; 12:e0174254. [PMID: 28388673 PMCID: PMC5384750 DOI: 10.1371/journal.pone.0174254] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 03/06/2017] [Indexed: 12/18/2022] Open
Abstract
There is a significantly higher risk for type II diabetes in HIV-1 carriers, albeit the molecular mechanism for this HIV-related pathology remains enigmatic. The 52 amino acid HIV-1 p6 Gag protein is synthesized as the C-terminal part of the Gag polyprotein Pr55. In this context, p6 promotes virus release by its two late (L-) domains, and facilitates the incorporation of the viral accessory protein Vpr. However, the function of p6 in its mature form, after proteolytic release from Gag, has not been investigated yet. We found that the mature p6 represents the first known viral substrate of the ubiquitously expressed cytosolic metalloendopeptidase insulin-degrading enzyme (IDE). IDE is sufficient and required for degradation of p6, and p6 is approximately 100-fold more efficiently degraded by IDE than its eponymous substrate insulin. This observation appears to be specific for HIV-1, as p6 proteins from HIV-2 and simian immunodeficiency virus, as well as the 51 amino acid p9 from equine infectious anaemia virus were insensitive to IDE degradation. The amount of virus-associated p6, as well as the efficiency of release and maturation of progeny viruses does not depend on the presence of IDE in the host cells, as it was shown by CRISPR/Cas9 edited IDE KO cells. However, HIV-1 mutants harboring IDE-insensitive p6 variants exhibit reduced virus replication capacity, a phenomenon that seems to depend on the presence of an X4-tropic Env. Furthermore, competing for IDE by exogenous insulin or inhibiting IDE by the highly specific inhibitor 6bK, also reduced virus replication. This effect could be specifically attributed to IDE since replication of HIV-1 variants coding for an IDE-insensitive p6 were inert towards IDE-inhibition. Our cumulative data support a model in which removal of p6 during viral entry is important for virus replication, at least in the case of X4 tropic HIV-1.
Collapse
Affiliation(s)
- Friedrich Hahn
- Institute of Virology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Adrian Schmalen
- Institute of Virology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Christian Setz
- Institute of Virology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Melanie Friedrich
- Institute of Virology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Stefan Schlößer
- Institute of Virology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Julia Kölle
- Institute of Virology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Robert Spranger
- Institute of Virology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Pia Rauch
- Institute of Virology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Kirsten Fraedrich
- Institute of Virology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Tatjana Reif
- Institute of Virology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Julia Karius-Fischer
- Institute of Virology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Ashok Balasubramanyam
- Translational Metabolism Unit, Diabetes Research Center, Division of Diabetes, Endocrinology and Metabolism, Baylor College of Medicine, Houston, Texas, United States of America
| | - Petra Henklein
- Institute of Biochemistry, Charité Universitätsmedizin-Berlin, Berlin, Germany
| | - Torgils Fossen
- Department of Chemistry and Centre for Pharmacy, University of Bergen, Bergen, Norway
| | - Ulrich Schubert
- Institute of Virology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
- * E-mail:
| |
Collapse
|
18
|
Su CTT, Ling WL, Lua WH, Haw YX, Gan SKE. Structural analyses of 2015-updated drug-resistant mutations in HIV-1 protease: an implication of protease inhibitor cross-resistance. BMC Bioinformatics 2016; 17:500. [PMID: 28155724 PMCID: PMC5259968 DOI: 10.1186/s12859-016-1372-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Background Strategies to control HIV for improving the quality of patient lives have been aided by the Highly Active Anti-Retroviral Therapy (HAART), which consists of a cocktail of inhibitors targeting key viral enzymes. Numerous new drugs have been developed over the past few decades but viral resistances to these drugs in the targeted viral enzymes are increasingly reported. Nonetheless the acquired mutations often reduce viral fitness and infectivity. Viral compensatory secondary-line mutations mitigate this loss of fitness, equipping the virus with a broad spectrum of resistance against these drugs. While structural understanding of the viral protease and its drug resistance mutations have been well established, the interconnectivity and development of structural cross-resistance remain unclear. This paper reports the structural analyses of recent clinical mutations on the drug cross-resistance effects from various protease and protease inhibitors (PIs) complexes. Methods Using the 2015 updated clinical HIV protease mutations, we constructed a structure-based correlation network and a minimum-spanning tree (MST) based on the following features: (i) topology of the PI-binding pocket, (ii) allosteric effects of the mutations, and (iii) protease structural stability. Results and conclusion Analyis of the network and the MST of dominant mutations conferring resistance to the seven PIs (Atazanavir-ATV, Darunavir-DRV, Indinavir-IDV, Lopinavir-LPV, Nelfinavir-NFV, Saquinavir-SQV, and Tipranavir-TPV) showed that cross-resistance can develop easily across NFV, SQV, LPV, IDV, and DRV, but not for ATV or TPV. Through estimation of the changes in vibrational entropies caused by each reported mutation, some secondary mutations were found to destabilize protease structure. Our findings provide an insight into the mechanism of PI cross-resistance and may also be useful in guiding the selection of PI in clinical treatment to delay the onset of cross drug resistance. Electronic supplementary material The online version of this article (doi:10.1186/s12859-016-1372-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chinh Tran-To Su
- Bioinformatics Institute, Agency for Science, Technology, and Research (A*STAR), Singapore, 138671, Singapore.
| | - Wei-Li Ling
- Bioinformatics Institute, Agency for Science, Technology, and Research (A*STAR), Singapore, 138671, Singapore
| | - Wai-Heng Lua
- Bioinformatics Institute, Agency for Science, Technology, and Research (A*STAR), Singapore, 138671, Singapore
| | - Yu-Xuan Haw
- Bioinformatics Institute, Agency for Science, Technology, and Research (A*STAR), Singapore, 138671, Singapore
| | - Samuel Ken-En Gan
- Bioinformatics Institute, Agency for Science, Technology, and Research (A*STAR), Singapore, 138671, Singapore. .,p53 Laboratory, Agency for Science, Technology, and Research (A*STAR), Singapore, 138648, Singapore.
| |
Collapse
|
19
|
C-5-Modified Tetrahydropyrano-Tetrahydofuran-Derived Protease Inhibitors (PIs) Exert Potent Inhibition of the Replication of HIV-1 Variants Highly Resistant to Various PIs, including Darunavir. J Virol 2015; 90:2180-94. [PMID: 26581995 DOI: 10.1128/jvi.01829-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 11/06/2015] [Indexed: 12/23/2022] Open
Abstract
UNLABELLED We identified three nonpeptidic HIV-1 protease inhibitors (PIs), GRL-015, -085, and -097, containing tetrahydropyrano-tetrahydrofuran (Tp-THF) with a C-5 hydroxyl. The three compounds were potent against a wild-type laboratory HIV-1 strain (HIV-1(WT)), with 50% effective concentrations (EC50s) of 3.0 to 49 nM, and exhibited minimal cytotoxicity, with 50% cytotoxic concentrations (CC50) for GRL-015, -085, and -097 of 80, >100, and >100 μM, respectively. All the three compounds potently inhibited the replication of highly PI-resistant HIV-1 variants selected with each of the currently available PIs and recombinant clinical HIV-1 isolates obtained from patients harboring multidrug-resistant HIV-1 variants (HIVMDR). Importantly, darunavir (DRV) was >1,000 times less active against a highly DRV-resistant HIV-1 variant (HIV-1DRV(R) P51); the three compounds remained active against HIV-1DRV(R) P51 with only a 6.8- to 68-fold reduction. Moreover, the emergence of HIV-1 variants resistant to the three compounds was considerably delayed compared to the case of DRV. In particular, HIV-1 variants resistant to GRL-085 and -097 did not emerge even when two different highly DRV-resistant HIV-1 variants were used as a starting population. In the structural analyses, Tp-THF of GRL-015, -085, and -097 showed strong hydrogen bond interactions with the backbone atoms of active-site amino acid residues (Asp29 and Asp30) of HIV-1 protease. A strong hydrogen bonding formation between the hydroxyl moiety of Tp-THF and a carbonyl oxygen atom of Gly48 was newly identified. The present findings indicate that the three compounds warrant further study as possible therapeutic agents for treating individuals harboring wild-type HIV and/or HIVMDR. IMPORTANCE Darunavir (DRV) inhibits the replication of most existing multidrug-resistant HIV-1 strains and has a high genetic barrier. However, the emergence of highly DRV-resistant HIV-1 strains (HIVDRV(R) ) has recently been observed in vivo and in vitro. Here, we identified three novel HIV-1 protease inhibitors (PIs) containing a tetrahydropyrano-tetrahydrofuran (Tp-THF) moiety with a C-5 hydroxyl (GRL-015, -085, and -097) which potently suppress the replication of HIVDRV(R) . Moreover, the emergence of HIV-1 strains resistant to the three compounds was considerably delayed compared to the case of DRV. The C-5 hydroxyl formed a strong hydrogen bonding interaction with the carbonyl oxygen atom of Gly48 of protease as examined in the structural analyses. Interestingly, a compound with Tp-THF lacking the hydroxyl moiety substantially decreased activity against HIVDRV(R) . The three novel compounds should be further developed as potential drugs for treating individuals harboring wild-type and multi-PI-resistant HIV variants as well as HIVDRV(R) .
Collapse
|
20
|
Elucidation of the Molecular Mechanism Driving Duplication of the HIV-1 PTAP Late Domain. J Virol 2015; 90:768-79. [PMID: 26512081 DOI: 10.1128/jvi.01640-15] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 10/19/2015] [Indexed: 12/24/2022] Open
Abstract
UNLABELLED HIV-1 uses cellular machinery to bud from infected cells. This cellular machinery is comprised of several multiprotein complexes known as endosomal sorting complexes required for transport (ESCRTs). A conserved late domain motif, Pro-Thr-Ala-Pro (PTAP), located in the p6 region of Gag (p6(Gag)), plays a central role in ESCRT recruitment to the site of virus budding. Previous studies have demonstrated that PTAP duplications are selected in HIV-1-infected patients during antiretroviral therapy; however, the consequences of these duplications for HIV-1 biology and drug resistance are unclear. To address these questions, we constructed viruses carrying a patient-derived PTAP duplication with and without drug resistance mutations in the viral protease. We evaluated the effect of the PTAP duplication on viral release efficiency, viral infectivity, replication capacity, drug susceptibility, and Gag processing. In the presence of protease inhibitors, we observed that the PTAP duplication in p6(Gag) significantly increased the infectivity and replication capacity of the virus compared to those of viruses bearing only resistance mutations in protease. Our biochemical analysis showed that the PTAP duplication, in combination with mutations in protease, enhances processing between the nucleocapsid and p6 domains of Gag, resulting in more complete Gag cleavage in the presence of protease inhibitors. These results demonstrate that duplication of the PTAP motif in p6(Gag) confers a selective advantage in viral replication by increasing Gag processing efficiency in the context of protease inhibitor treatment, thereby enhancing the drug resistance of the virus. These findings highlight the interconnected role of PTAP duplications and protease mutations in the development of resistance to antiretroviral therapy. IMPORTANCE Resistance to current drug therapy limits treatment options in many HIV-1-infected patients. Duplications in a Pro-Thr-Ala-Pro (PTAP) motif in the p6 domain of Gag are frequently observed in viruses derived from patients on protease inhibitor (PI) therapy. However, the reason that these duplications arise and their consequences for virus replication remain to be established. In this study, we examined the effect of PTAP duplication on PI resistance in the context of wild-type protease or protease bearing PI resistance mutations. We observe that PTAP duplication markedly enhances resistance to a panel of PIs. Biochemical analysis reveals that the PTAP duplication reverses a Gag processing defect imposed by the PI resistance mutations in the context of PI treatment. The results provide a long-sought explanation for why PTAP duplications arise in PI-treated patients.
Collapse
|
21
|
Maeda K, Desai DV, Aoki M, Nakata H, Kodama EN, Mitsuya H. Delayed emergence of HIV-1 variants resistant to 4'-ethynyl-2-fluoro-2'-deoxyadenosine: comparative sequential passage study with lamivudine, tenofovir, emtricitabine and BMS-986001. Antivir Ther 2013; 19:179-89. [PMID: 24162098 DOI: 10.3851/imp2697] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2013] [Indexed: 01/09/2023]
Abstract
BACKGROUND 4'-Ethynyl-2-fluoro-2'-deoxyadenosine (EFdA) contains an ethynyl moiety and the 3'-hydroxyl and exerts highly potent activity against various HIV type-1 (HIV-1) strains including multi-drug-resistant variants. METHODS Comparative selection passages against EFdA, lamivudine (3TC), tenofovir disoproxil fumarate (TDF), emtricitabine (FTC) or BMS-986001 (Ed4T) were conducted using a mixture of 11 highly multi-drug-resistant clinical HIV-1 isolates (HIV11MIX) as a starting virus population. RESULTS Before selection, HIV11MIX was sensitive to EFdA with a 50% inhibitory concentration (IC50) of 0.032 μM, less susceptible to TDF and Ed4T with IC50s of 0.57 and 2.6 μM, respectively, and highly resistant to 3TC and FTC with IC50s>10 μM. IC50s of TDF against HIV11MIX exposed to EFdA and TDF for 17 (HIV11MIX(EFdA-P17)) and 14 (HIV11MIX(TDF-P14)) passages were 8 and >10 μM, respectively, while EFdA remained active against HIV11MIX(EFdA-P17) and HIV11MIX(TDF-P14) with IC50s of 0.15 and 0.1 μM, respectively. Both selected variants were highly resistant against zidovudine, 3TC, Ed4T and FTC (IC50 values >10 μM). CONCLUSIONS The present data demonstrate that HIV11MIX developed resistance more rapidly against 3TC, FTC, TDF and Ed4T than against EFdA and that EFdA remained substantially active against TDF- and EFdA-selected variants. Thus, EFdA has a favourable resistance profile and represents a potentially promising new-generation nucleoside reverse transcriptase inhibitor.
Collapse
Affiliation(s)
- Kenji Maeda
- Experimental Retrovirology Section, HIV and AIDS Malignancy Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | | | | | | | | | | |
Collapse
|
22
|
Novel two-round phenotypic assay for protease inhibitor susceptibility testing of recombinant and primary HIV-1 isolates. J Clin Microbiol 2012; 50:3909-16. [PMID: 23015664 DOI: 10.1128/jcm.01636-12] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Antiretroviral drug susceptibility tests facilitate therapeutic management of HIV-1-infected patients. Although genotyping systems are affordable, inaccuracy in the interpretation of complex mutational patterns may limit their usefulness. Currently available HIV-1 phenotypic assays are based on the generation of recombinant viruses in which the specific viral gene of interest, derived from a patient plasma sample, is cloned into a susceptible genetic viral backbone prior to in vitro drug susceptibility evaluation. Nevertheless, in the case of protease inhibitors, not only are mutations in the HIV-1 protease-coding region involved in resistance, but the role of Gag in drug susceptibility has also recently been reported. In order to avoid the inherent limitations resulting from partial cloning of the viral genome, we designed and evaluated a new experimental strategy to test the in vitro susceptibility of primary viral isolates to protease inhibitors. Our protocol, which is based on a two-round infection protocol using the reporter TZM-bl cell line, showed a good correlation with genotypic resistance prediction and with the Antivirogram phenotypic assay, in both protease-recombinant viruses and primary viral isolates. The protocol is suitable for any HIV-1 subtype and enables rapid in-house measurement of protease inhibitor susceptibility, thus making it possible to evaluate the concomitant effects of both patient-derived gag and protease-coding regions.
Collapse
|
23
|
Loss of the protease dimerization inhibition activity of tipranavir (TPV) and its association with the acquisition of resistance to TPV by HIV-1. J Virol 2012; 86:13384-96. [PMID: 23015723 DOI: 10.1128/jvi.07234-11] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tipranavir (TPV), a protease inhibitor (PI) inhibiting the enzymatic activity and dimerization of HIV-1 protease, exerts potent activity against multi-PI-resistant HIV-1 isolates. When a mixture of 11 multi-PI-resistant (but TPV-sensitive) clinical isolates (HIV(11MIX)), which included HIV(B) and HIV(C), was selected against TPV, HIV(11MIX) rapidly (by 10 passages [HIV(11MIX)(P10)]) acquired high-level TPV resistance and replicated at high concentrations of TPV. HIV(11MIX)(P10) contained various amino acid substitutions, including I54V and V82T. The intermolecular FRET-based HIV-1 expression assay revealed that TPV's dimerization inhibition activity against cloned HIV(B) (cHIV(B)) was substantially compromised. The introduction of I54V/V82T into wild-type cHIV(NL4-3) (cHIV(NL4-3(I54V/V82T))) did not block TPV's dimerization inhibition or confer TPV resistance. However, the introduction of I54V/V82T into cHIV(B) (cHIV(B)(I54V/V82T)) compromised TPV's dimerization inhibition and cHIV(B)(I54V/V82T) proved to be significantly TPV resistant. L24M was responsible for TPV resistance with the cHIV(C) genetic background. The introduction of L24M into cHIV(NL4-3) (cHIV(NL4-3(L24M))) interfered with TPV's dimerization inhibition, while L24M increased HIV-1's susceptibility to TPV with the HIV(NL4-3) genetic background. When selected with TPV, cHIV(NL4-3(I54V/V82T)) most readily developed TPV resistance and acquired E34D, which compromised TPV's dimerization inhibition with the HIV(NL4-3) genetic background. The present data demonstrate that certain amino acid substitutions compromise TPV's dimerization inhibition and confer TPV resistance, although the loss of TPV's dimerization inhibition is not always associated with significantly increased TPV resistance. The findings that TPV's dimerization inhibition is compromised with one or two amino acid substitutions may explain at least in part why the genetic barrier of TPV against HIV-1's development of TPV resistance is relatively low compared to that of darunavir.
Collapse
|
24
|
Ghosh AK, Anderson DD, Weber IT, Mitsuya H. Enhancing protein backbone binding--a fruitful concept for combating drug-resistant HIV. Angew Chem Int Ed Engl 2012; 51:1778-802. [PMID: 22290878 PMCID: PMC7159617 DOI: 10.1002/anie.201102762] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Indexed: 12/02/2022]
Abstract
The evolution of drug resistance is one of the most fundamental problems in medicine. In HIV/AIDS, the rapid emergence of drug-resistant HIV-1 variants is a major obstacle to current treatments. HIV-1 protease inhibitors are essential components of present antiretroviral therapies. However, with these protease inhibitors, resistance occurs through viral mutations that alter inhibitor binding, resulting in a loss of efficacy. This loss of potency has raised serious questions with regard to effective long-term antiretroviral therapy for HIV/AIDS. In this context, our research has focused on designing inhibitors that form extensive hydrogen-bonding interactions with the enzyme's backbone in the active site. In doing so, we limit the protease's ability to acquire drug resistance as the geometry of the catalytic site must be conserved to maintain functionality. In this Review, we examine the underlying principles of enzyme structure that support our backbone-binding concept as an effective means to combat drug resistance and highlight their application in our recent work on antiviral HIV-1 protease inhibitors.
Collapse
Affiliation(s)
- Arun K Ghosh
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA.
| | | | | | | |
Collapse
|
25
|
Ghosh AK, Anderson DD, Weber IT, Mitsuya H. Verstärkung der Bindung an das Proteinrückgrat - ein fruchtbares Konzept gegen die Arzneimittelresistenz von HIV. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201102762] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
26
|
Ide K, Aoki M, Amano M, Koh Y, Yedidi RS, Das D, Leschenko S, Chapsal B, Ghosh AK, Mitsuya H. Novel HIV-1 protease inhibitors (PIs) containing a bicyclic P2 functional moiety, tetrahydropyrano-tetrahydrofuran, that are potent against multi-PI-resistant HIV-1 variants. Antimicrob Agents Chemother 2011; 55:1717-27. [PMID: 21282450 PMCID: PMC3067155 DOI: 10.1128/aac.01540-10] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 12/13/2010] [Accepted: 01/19/2011] [Indexed: 11/20/2022] Open
Abstract
We identified GRL-1388 and -1398, potent nonpeptidic human immunodeficiency virus type 1 (HIV-1) protease inhibitors (PIs) containing a bicyclic P2 functional moiety, tetrahydropyrano-tetrahydrofuran (Tp-THF). GRL-1388 was as potent as darunavir (DRV) against various drug-resistant HIV-1 laboratory strains with 50% effective concentration (EC(50)s) of 2.6 to 32.6 nM. GRL-1398 was significantly more potent against such variants than DRV with EC(50)s of 0.1 to 5.7 nM. GRL-1388 and -1398 were also potent against multiple-PI-resistant clinical HIV-1 variants ((CL)HIV-1(MDR)) with EC(50)s ranging from 2.7 to 21.3 nM and from 0.3 to 4.8 nM, respectively. A highly DRV-resistant HIV-1 variant selected in vitro remained susceptible to GRL-1398 with the EC(50) of 21.9 nM, while the EC(50) of DRV was 214.1 nM. When HIV-1(NL4-3) was selected with GRL-1398, four amino acid substitutions--leucine to phenylalanine at a position 10 (L10F), A28S, L33F, and M46I--emerged, ultimately enabling the virus to replicate in the presence of >1.0 μM the compound beyond 57 weeks of selection. When a mixture of 10 different (CL)HIV-1(MDR) strains was selected, the emergence of resistant variants was more substantially delayed with GRL-1398 than with GRL-1388 and DRV. Modeling analyses revealed that GRL-1398 had greater overall hydrogen bonding and hydrophobic interactions than GRL-1388 and DRV and that GRL-1388 and -1398 had hydrogen bonding interactions with the main chain of the active-site amino acids (Asp29 and Asp30) of protease. The present findings warrant that GRL-1398 be further developed as a potential drug for treating individuals with HIV-1 infection.
Collapse
Affiliation(s)
- Kazuhiko Ide
- Departments of Hematology, Rheumatology, and Infectious Diseases, Kumamoto University Graduate School of Medicine, Kumamoto 860-8556, Japan, Department of Medical Technology, Kumamoto Health Science University, Kumamoto 861-5598, Japan, Experimental Retrovirology Section, HIV and AIDS Malignancy Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, Departments of Chemistry and Medicinal Chemistry, Purdue University, West Lafayette, Indiana 47907
| | - Manabu Aoki
- Departments of Hematology, Rheumatology, and Infectious Diseases, Kumamoto University Graduate School of Medicine, Kumamoto 860-8556, Japan, Department of Medical Technology, Kumamoto Health Science University, Kumamoto 861-5598, Japan, Experimental Retrovirology Section, HIV and AIDS Malignancy Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, Departments of Chemistry and Medicinal Chemistry, Purdue University, West Lafayette, Indiana 47907
| | - Masayuki Amano
- Departments of Hematology, Rheumatology, and Infectious Diseases, Kumamoto University Graduate School of Medicine, Kumamoto 860-8556, Japan, Department of Medical Technology, Kumamoto Health Science University, Kumamoto 861-5598, Japan, Experimental Retrovirology Section, HIV and AIDS Malignancy Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, Departments of Chemistry and Medicinal Chemistry, Purdue University, West Lafayette, Indiana 47907
| | - Yasuhiro Koh
- Departments of Hematology, Rheumatology, and Infectious Diseases, Kumamoto University Graduate School of Medicine, Kumamoto 860-8556, Japan, Department of Medical Technology, Kumamoto Health Science University, Kumamoto 861-5598, Japan, Experimental Retrovirology Section, HIV and AIDS Malignancy Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, Departments of Chemistry and Medicinal Chemistry, Purdue University, West Lafayette, Indiana 47907
| | - Ravikiran S. Yedidi
- Departments of Hematology, Rheumatology, and Infectious Diseases, Kumamoto University Graduate School of Medicine, Kumamoto 860-8556, Japan, Department of Medical Technology, Kumamoto Health Science University, Kumamoto 861-5598, Japan, Experimental Retrovirology Section, HIV and AIDS Malignancy Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, Departments of Chemistry and Medicinal Chemistry, Purdue University, West Lafayette, Indiana 47907
| | - Debananda Das
- Departments of Hematology, Rheumatology, and Infectious Diseases, Kumamoto University Graduate School of Medicine, Kumamoto 860-8556, Japan, Department of Medical Technology, Kumamoto Health Science University, Kumamoto 861-5598, Japan, Experimental Retrovirology Section, HIV and AIDS Malignancy Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, Departments of Chemistry and Medicinal Chemistry, Purdue University, West Lafayette, Indiana 47907
| | - Sofiya Leschenko
- Departments of Hematology, Rheumatology, and Infectious Diseases, Kumamoto University Graduate School of Medicine, Kumamoto 860-8556, Japan, Department of Medical Technology, Kumamoto Health Science University, Kumamoto 861-5598, Japan, Experimental Retrovirology Section, HIV and AIDS Malignancy Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, Departments of Chemistry and Medicinal Chemistry, Purdue University, West Lafayette, Indiana 47907
| | - Bruno Chapsal
- Departments of Hematology, Rheumatology, and Infectious Diseases, Kumamoto University Graduate School of Medicine, Kumamoto 860-8556, Japan, Department of Medical Technology, Kumamoto Health Science University, Kumamoto 861-5598, Japan, Experimental Retrovirology Section, HIV and AIDS Malignancy Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, Departments of Chemistry and Medicinal Chemistry, Purdue University, West Lafayette, Indiana 47907
| | - Arun K. Ghosh
- Departments of Hematology, Rheumatology, and Infectious Diseases, Kumamoto University Graduate School of Medicine, Kumamoto 860-8556, Japan, Department of Medical Technology, Kumamoto Health Science University, Kumamoto 861-5598, Japan, Experimental Retrovirology Section, HIV and AIDS Malignancy Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, Departments of Chemistry and Medicinal Chemistry, Purdue University, West Lafayette, Indiana 47907
| | - Hiroaki Mitsuya
- Departments of Hematology, Rheumatology, and Infectious Diseases, Kumamoto University Graduate School of Medicine, Kumamoto 860-8556, Japan, Department of Medical Technology, Kumamoto Health Science University, Kumamoto 861-5598, Japan, Experimental Retrovirology Section, HIV and AIDS Malignancy Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, Departments of Chemistry and Medicinal Chemistry, Purdue University, West Lafayette, Indiana 47907
| |
Collapse
|
27
|
Three residues in HIV-1 matrix contribute to protease inhibitor susceptibility and replication capacity. Antimicrob Agents Chemother 2010; 55:1106-13. [PMID: 21149628 DOI: 10.1128/aac.01228-10] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Other than cleavage site mutations, there is little data on specific positions within Gag that impact on HIV protease inhibitor susceptibility. We have recently shown that non-cleavage site mutations in gag, particularly within matrix protein can restore replication capacity and further reduce protease inhibitor drug susceptibility when coexpressed with a drug-resistant (mutant) protease. The matrix protein of this patient-derived virus was studied in order to identify specific changes responsible for this phenotype. Three amino acid changes in matrix (R76K, Y79F, and T81A) had an impact on replication capacity as well as drug susceptibility. Introduction of these three changes into wild-type (WT) matrix resulted in an increase in the replication capacity of the protease mutant virus to a level similar to that achieved by all the changes within the mutant matrix and part of the capsid protein. Pairs of changes to wild-type matrix led to an increased replication capacity of the protease mutant (although less than with all three changes). Having only these three changes to matrix in a wild-type virus (with wild-type protease) resulted in a 5- to 7-fold change in protease inhibitor 50% effective concentration (EC₅₀). Individual changes did not have as great an effect on replication capacity or drug susceptibility, demonstrating an interaction between these positions, also confirmed by sequence covariation analysis. Molecular modeling predicts that each of the three mutations would result in a loss of hydrogen bonds within α-helix-4 of matrix, leading to the hypothesis that more flexibility within this region or altered matrix structure would account for our findings.
Collapse
|
28
|
Kameoka M, Isarangkura-na-ayuthaya P, Kameoka Y, Sapsutthipas S, Soonthornsata B, Nakamura S, Tokunaga K, Sawanpanyalert P, Ikuta K, Auwanit W. The role of lysine residue at amino acid position 165 of human immunodeficiency virus type 1 CRF01_AE Gag in reducing viral drug susceptibility to protease inhibitors. Virology 2010; 405:129-38. [DOI: 10.1016/j.virol.2010.06.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Revised: 04/12/2010] [Accepted: 06/01/2010] [Indexed: 11/25/2022]
|
29
|
Abstract
PURPOSE OF REVIEW This review focuses on the evolution of protease inhibitor resistance and replication capacity in the presence and absence of protease inhibitor pressure. RECENT FINDINGS Classically, HIV escapes through mutations in the protease itself causing a decrease in affinity to the inhibitor, leading to resistance. These changes also affect the binding of the enzyme to the natural substrate, and as a consequence cause a decrease in replication capacity of the virus. Continuous replication of these viruses may result in the acquisition of compensatory changes, which will fixate the drug-resistant variant in the viral population. Furthermore, novel treatment strategies have been developed to combat the development of classic protease inhibitor resistance. Using these strategies, the development of resistance in the viral protease is blocked because single or double mutations do not confer significant resistance. Alternative protease inhibitor resistance pathways are described, which enable the virus to escape these novel strategies. SUMMARY Suboptimal protease inhibitor pressure clearly results in the selection of mutations conferring resistance and in the acquisition of mutations compensating the initial reduction in viral replicative capacity. The major implications of the selection of these compensatory changes on evolution in the absence of protease inhibitor pressure are discussed.
Collapse
Affiliation(s)
- Monique Nijhuis
- Eijkman-Winkler Center, Department of Virology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | | | | |
Collapse
|
30
|
Impact of amino acid variations in Gag and protease of HIV type 1 CRF01_AE strains on drug susceptibility of virus to protease inhibitors. J Acquir Immune Defic Syndr 2009; 52:320-8. [PMID: 19727001 DOI: 10.1097/qai.0b013e3181b4b18c] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Protease (PR) inhibitors (PIs) were designed against subtype B virus of human immunodeficiency virus type 1 (HIV-1), but believed to retain its activity against most of the other subtypes. CRF01_AE PR (AE-PR) contains background mutations that are presumed to alter the drug susceptibility of PR. In addition, amino acid variations found in HIV-1 Gag potentially affect the drug susceptibility or catalytic efficiency of PR. METHODS We studied the impact of naturally occurring amino acid substitutions found in AE-PR and CRF01_AE Gag (AE-Gag) on the drug susceptibility of PR to 9 currently available PIs, using the pNL4-3-derived luciferase reporter virus containing AE-Gag and/or AE-PR genes derived from drug treatment-naïve, HIV-1-infected Thai patients. RESULTS Sequencing analysis revealed that several mutations were detected in deduced amino acid sequences of AE-PR and AE-Gag genes, as compared to these genes of pNL4-3. Drug susceptibility tests revealed that AE-PR showed a variety of susceptibilities to 9 PIs compared with pNL4-3 PR. In addition, AE-Gag significantly reduced the drug susceptibility of AE-PR and pNL4-3 PR. CONCLUSION Our results suggest that amino acid variations in AE-PR and AE-Gag play roles in determining the drug susceptibility of CRF01_AE viruses to PIs.
Collapse
|
31
|
Gag determinants of fitness and drug susceptibility in protease inhibitor-resistant human immunodeficiency virus type 1. J Virol 2009; 83:9094-101. [PMID: 19587031 DOI: 10.1128/jvi.02356-08] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mutations can accumulate in the protease and gag genes of human immunodeficiency virus in patients who fail therapy with protease inhibitor drugs. Mutations within protease, the drug target, have been extensively studied. Mutations in gag have been less well studied, mostly concentrating on cleavage sites. A retroviral vector system has been adapted to study full-length gag, protease, and reverse transcriptase genes from patient-derived viruses. Patient plasma-derived mutant full-length gag, protease, and gag-protease from a multidrug-resistant virus were studied. Mutant protease alone led to a 95% drop in replication capacity that was completely rescued by coexpressing the full-length coevolved mutant gag gene. Cleavage site mutations have been shown to improve the replication capacity of mutated protease. Strikingly, in this study, the matrix region and part of the capsid region from the coevolved mutant gag gene were sufficient to achieve full recovery of replication capacity due to the mutant protease, without cleavage site mutations. The same region of gag from a second, unrelated, multidrug-resistant clinical isolate also rescued the replication capacity of the original mutant protease, suggesting a common mechanism that evolves with resistance to protease inhibitors. Mutant gag alone conferred reduced susceptibility to all protease inhibitors and acted synergistically when linked to mutant protease. The matrix region and partial capsid region of gag sufficient to rescue replication capacity also conferred resistance to protease inhibitors. Thus, the amino terminus of Gag has a previously unidentified and important function in protease inhibitor susceptibility and replication capacity.
Collapse
|
32
|
Non-cleavage site gag mutations in amprenavir-resistant human immunodeficiency virus type 1 (HIV-1) predispose HIV-1 to rapid acquisition of amprenavir resistance but delay development of resistance to other protease inhibitors. J Virol 2009; 83:3059-68. [PMID: 19176623 DOI: 10.1128/jvi.02539-08] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In an attempt to determine whether mutations in Gag in human immunodeficiency virus type 1 (HIV-1) variants selected with a protease inhibitor (PI) affect the development of resistance to the same or a different PI(s), we generated multiple infectious HIV-1 clones carrying mutated Gag and/or mutated protease proteins that were identified in amprenavir (APV)-selected HIV-1 variants and examined their virological characteristics. In an HIV-1 preparation selected with APV (33 passages, yielding HIV(APVp33)), we identified six mutations in protease and six apparently critical mutations at cleavage and non-cleavage sites in Gag. An infectious recombinant clone carrying the six protease mutations but no Gag mutations failed to replicate, indicating that the Gag mutations were required for the replication of HIV(APVp33). An infectious recombinant clone that carried wild-type protease and a set of five Gag mutations (rHIV(WTpro)(12/75/219/390/409gag)) replicated comparably to wild-type HIV-1; however, when exposed to APV, rHIV(WTpro)(12/75/219/390/409gag) rapidly acquired APV resistance. In contrast, the five Gag mutations significantly delayed the acquisition of HIV-1 resistance to ritonavir and nelfinavir (NFV). Recombinant HIV-1 clones containing NFV resistance-associated mutations, such as D30N and N88S, had increased susceptibilities to APV, suggesting that antiretroviral regimens including both APV and NFV may bring about favorable antiviral efficacy. The present data suggest that the preexistence of certain Gag mutations related to PI resistance can accelerate the emergence of resistance to the PI and delay the acquisition of HIV resistance to other PIs, and these findings should have clinical relevance in the therapy of HIV-1 infection with PI-including regimens.
Collapse
|
33
|
Ibe S, Shigemi U, Sawaki K, Fujisaki S, Hattori J, Yokomaku Y, Mamiya N, Hamaguchi M, Kaneda T. Analysis of near full-length genomic sequences of drug-resistant HIV-1 spreading among therapy-naïve individuals in Nagoya, Japan: amino acid mutations associated with viral replication activity. AIDS Res Hum Retroviruses 2008; 24:1121-5. [PMID: 18620491 DOI: 10.1089/aid.2008.0090] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We analyzed a total of 12 near full-length genomes of drug-resistant HIV-1 spreading among therapy-naïve individuals in Nagoya, Japan. Genomes comprised seven protease inhibitor (PI)-resistant viruses possessing an M46I (n = 6) or L90M mutation (n = 1) and five non-nucleoside reverse transcriptase inhibitor-resistant viruses possessing a K103N mutation. All 12 viruses conserved both an H87Q mutation in the cyclophilin A-binding site of Gag p24 (capsid) and a T23N mutation in the cysteine-rich domain of Tat protein. PI-resistant viruses commonly possessed two cleavage site mutations in the p6(Pol)/protease of Pol polyprotein (F48L in p6(Pol)) and the anchor/core domains of Nef protein (L57V). These amino acid mutations represent candidates for enhancing replication activity of drug-resistant viruses and supporting expansion of such viruses in therapy-naïve individuals.
Collapse
Affiliation(s)
- Shiro Ibe
- Clinical Research Center, National Hospital Organization Nagoya Medical Center (Tokai Area Central Hospital for AIDS Treatment and Research), Nagoya, Aichi 460-0001, Japan
| | - Urara Shigemi
- Clinical Research Center, National Hospital Organization Nagoya Medical Center (Tokai Area Central Hospital for AIDS Treatment and Research), Nagoya, Aichi 460-0001, Japan
| | - Kaori Sawaki
- Clinical Research Center, National Hospital Organization Nagoya Medical Center (Tokai Area Central Hospital for AIDS Treatment and Research), Nagoya, Aichi 460-0001, Japan
| | - Seiichiro Fujisaki
- Clinical Research Center, National Hospital Organization Nagoya Medical Center (Tokai Area Central Hospital for AIDS Treatment and Research), Nagoya, Aichi 460-0001, Japan
| | - Junko Hattori
- Clinical Research Center, National Hospital Organization Nagoya Medical Center (Tokai Area Central Hospital for AIDS Treatment and Research), Nagoya, Aichi 460-0001, Japan
| | - Yoshiyuki Yokomaku
- Clinical Research Center, National Hospital Organization Nagoya Medical Center (Tokai Area Central Hospital for AIDS Treatment and Research), Nagoya, Aichi 460-0001, Japan
| | - Naoto Mamiya
- Clinical Research Center, National Hospital Organization Nagoya Medical Center (Tokai Area Central Hospital for AIDS Treatment and Research), Nagoya, Aichi 460-0001, Japan
| | - Motohiro Hamaguchi
- Clinical Research Center, National Hospital Organization Nagoya Medical Center (Tokai Area Central Hospital for AIDS Treatment and Research), Nagoya, Aichi 460-0001, Japan
| | - Tsuguhiro Kaneda
- Clinical Research Center, National Hospital Organization Nagoya Medical Center (Tokai Area Central Hospital for AIDS Treatment and Research), Nagoya, Aichi 460-0001, Japan
| |
Collapse
|
34
|
Kim R, Baxter JD. Protease inhibitor resistance update: where are we now? AIDS Patient Care STDS 2008; 22:267-77. [PMID: 18422460 DOI: 10.1089/apc.2007.0099] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The introduction of protease inhibitors (PIs) and highly active antiretroviral therapy in the mid-1990s dramatically altered the treatment of HIV infection, enabling suppression of viral replication to undetectable levels and preventing disease progression. Most PIs present a strong barrier against viral resistance; the accumulation of multiple mutations is often required to produce resistance. However, there is variability of resistance within the PI class, as demonstrated by the fact that some PIs require fewer mutations to confer resistance compared with others. Resistance to individual PIs as well as the development of broad cross-resistance to multiple agents in this class remain major challenges in clinical practice. Resistance to PIs may involve primary or secondary mutations in the protease gene in addition to mutations outside of protease in the gag cleavage and noncleavage sites. Primary mutations may be sufficient to confer resistance to select PIs. Secondary mutations may be required to produce resistance with some PIs, whereas other mutations may be compensatory, restoring activity of the viral protease or increasing the replicative capacity of the virus. Specific resistance patterns associated with individual PIs have been identified. Strategies to prevent PI cross-resistance and to manage its occurrence involve rational sequencing of PIs, ritonavir boosting to maintain a strong barrier against viral resistance, the use of newer PIs with activity against resistant viruses or unique resistance profiles, avoidance of PI combinations with overlapping resistance patterns, and application of knowledge of mutations associated with hypersusceptibility to other agents in this class.
Collapse
Affiliation(s)
- Rose Kim
- Cooper University Hospital/UMDNJ–Robert Wood Johnson Medical School, Camden, New Jersey
| | - John D. Baxter
- Cooper University Hospital/UMDNJ–Robert Wood Johnson Medical School, Camden, New Jersey
| |
Collapse
|
35
|
Mitsuya H, Maeda K, Das D, Ghosh AK. Development of protease inhibitors and the fight with drug-resistant HIV-1 variants. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2008; 56:169-97. [PMID: 18086412 DOI: 10.1016/s1054-3589(07)56006-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Hiroaki Mitsuya
- The Experimental Retrovirology Section, HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
36
|
Dykes C, Demeter LM. Clinical significance of human immunodeficiency virus type 1 replication fitness. Clin Microbiol Rev 2007; 20:550-78. [PMID: 17934074 PMCID: PMC2176046 DOI: 10.1128/cmr.00017-07] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The relative fitness of a variant, according to population genetics theory, is that variant's relative contribution to successive generations. Most drug-resistant human immunodeficiency virus type 1 (HIV-1) variants have reduced replication fitness, but at least some of these deficits can be compensated for by the accumulation of second-site mutations. HIV-1 replication fitness also appears to influence the likelihood of a drug-resistant mutant emerging during treatment failure and is postulated to influence clinical outcomes. A variety of assays are available to measure HIV-1 replication fitness in cell culture; however, there is no agreement regarding which assays best correlate with clinical outcomes. A major limitation is that there is no high-throughput assay that incorporates an internal reference strain as a control and utilizes intact virus isolates. Some retrospective studies have demonstrated statistically significant correlations between HIV-1 replication fitness and clinical outcomes in some patient populations. However, different studies disagree as to which clinical outcomes are most closely associated with fitness. This may be in part due to assay design, sample size limitations, and differences in patient populations. In addition, the strength of the correlations between fitness and clinical outcomes is modest, suggesting that, at present, it would be difficult to utilize these assays for clinical management.
Collapse
Affiliation(s)
- Carrie Dykes
- Infectious Diseases Division, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | | |
Collapse
|
37
|
Harada S, Hazra R, Tamiya S, Zeichner SL, Mitsuya H. Emergence of human immunodeficiency virus type 1 variants containing the Q151M complex in children receiving long-term antiretroviral chemotherapy. Antiviral Res 2007; 75:159-66. [PMID: 17418430 DOI: 10.1016/j.antiviral.2007.02.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2006] [Revised: 12/24/2006] [Accepted: 02/27/2007] [Indexed: 11/17/2022]
Abstract
We examined 28 children with HIV-1 infection who were not responding to existing antiviral regimens and were enrolled into clinical trials conducted at the National Cancer Institute to receive salvage therapy. In 3 of the 28 patients (10.7%), the Q151M complex amino acid substitutions were identified. The three patients had received nucleoside reverse transcriptase inhibitor (NRTI) monotherapy and/or combination regimens with multiple NRTIs for 4.3-8.6 years prior to the study. Recombinant infectious clones generated by incorporating the RT-encoding region of HIV-1 isolated from patients' plasma samples were highly resistant to zidovudine, didanosine and stavudine, while they were moderately resistant to lamivudine and tenofovir disoproxil fumarate (TDF). TDF-containing regimens reduced HIV-1 viremia in two of the three children carrying the Q151M complex. These data suggest that the Q151M could be prevalent in pediatric patients with long-term NRTI monotherapy and/or dual NRTI regimens and that HAART regimens containing TDF may be meritorious in such patients.
Collapse
Affiliation(s)
- Shigeyoshi Harada
- Experimental Retrovirology Section, HIV and AIDS Malignancy Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
38
|
Quiñones-Mateu ME, Arts EJ. Virus fitness: concept, quantification, and application to HIV population dynamics. Curr Top Microbiol Immunol 2006; 299:83-140. [PMID: 16568897 DOI: 10.1007/3-540-26397-7_4] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Viral fitness has been broadly studied during the past three decades, mainly to test evolutionary models and population theories difficult to analyze and interpret with more complex organisms. More recent studies, however, are focused in the role of fitness on viral transmission, pathogenesis, and drug resistance. Here, we used human immunodeficiency virus (HIV) as one of the most relevant models to evaluate the importance of viral quasispecies and fitness in HIV evolution, population dynamics, disease progression, and potential clinical implications.
Collapse
Affiliation(s)
- M E Quiñones-Mateu
- Department of Molecular Genetics, Section Virology, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue/NN10, Cleveland, OH 44195, USA.
| | | |
Collapse
|
39
|
Gatanaga H, Das D, Suzuki Y, Yeh DD, Hussain KA, Ghosh AK, Mitsuya H. Altered HIV-1 Gag Protein Interactions with Cyclophilin A (CypA) on the Acquisition of H219Q and H219P Substitutions in the CypA Binding Loop. J Biol Chem 2006; 281:1241-50. [PMID: 16275650 DOI: 10.1074/jbc.m505920200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
HIV-1 Gag protein interaction with cyclophilin A (CypA) is critical for viral fitness. Among the amino acid substitutions identified in Gag noncleavage sites in HIV-1 variants resistant to protease inhibitors, H219Q (Gatanaga, H., Suzuki, Y., Tsang, H., Yoshimura, K., Kavlick, M. F., Nagashima, K., Gorelick, R. J., Mardy, S., Tang, C., Summers, M. F., and Mitsuya, H. (2002) J. Biol. Chem. 277, 5952-5961) and H219P substitutions in the viral CypA binding loop confer the greatest replication advantage to HIV-1. These substitutions represent polymorphic amino acid residues. We found that the replication advantage conferred by these substitutions was far greater in CypA-rich MT-2 and H9 cells than in Jurkat cells and peripheral blood mononuclear cells (PBM), both of which contained less CypA. High intracellular CypA content in H9 and MT-2 cells, resulting in excessive CypA levels in virions, limited wild-type HIV-1 (HIV-1(WT)) replication and H219Q introduction into HIV-1 (HIV-1(H219Q)), reduced CypA incorporation of HIV-1, and potentiated viral replication. H219Q introduction also restored the otherwise compromised replication of HIV-1(P222A) in PBM, although the CypA content in HIV-1(H219Q/P222A) was comparable with that in HIV-1(P222A), suggesting that H219Q affected the conformation of the CypA-binding motif, rendering HIV-1 replicative in a low CypA environment. Structural modeling analyses revealed that although hydrogen bonds are lost with H219Q and H219P substitutions, no significant distortion of the CypA binding loop of Gag occurred. The loop conformation of HIV-1(P222A) was found highly distorted, although H219Q introduction to HIV-1 restored the conformation of the loop close to that of HIV-1 (P222A). The present data suggested that the effect of CypA on HIV-1 replicative (WT) ability is bimodal (both high and low CypA content limits HIV-1 replication), that the conformation of the CypA binding region of Gag is important for viral fitness, and that the function of CypA is to maintain the conformation.
Collapse
Affiliation(s)
- Hiroyuki Gatanaga
- Experimental Retrovirology Section, HIV and AIDS Malignancy Branch, NCI, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Winters MA, Merigan TC. Insertions in the human immunodeficiency virus type 1 protease and reverse transcriptase genes: clinical impact and molecular mechanisms. Antimicrob Agents Chemother 2005; 49:2575-82. [PMID: 15980322 PMCID: PMC1168704 DOI: 10.1128/aac.49.7.2575-2582.2005] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Mark A Winters
- Division of Infectious Diseases and Geographic Medicine, Stanford University, 300 Pasteur Drive, Room S-146, Stanford, California 94305-5107, USA.
| | | |
Collapse
|
41
|
Prado JG, Parkin NT, Clotet B, Ruiz L, Martinez-Picado J. HIV type 1 fitness evolution in antiretroviral-experienced patients with sustained CD4+ T cell counts but persistent virologic failure. Clin Infect Dis 2005; 41:729-37. [PMID: 16080097 DOI: 10.1086/432619] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2005] [Accepted: 04/12/2005] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND Over recent years, treatment guidelines for human immunodeficiency virus (HIV) infection have evolved from monotherapy to combination regimens that include > or = 3 active drugs, resulting in a sharp decrease in morbidity and mortality. In the present article, we evaluated changes in HIV type 1 viral fitness associated with the sequential introduction of antiretroviral treatment strategies in 4 chronically infected patients with sustained CD4 cell count despite having a persistently detectable viral load. METHODS Plasma samples were obtained before and during treatment to construct recombinant virus containing the 3'-end of gag, the protease and the reverse-transcriptase coding region. Drug susceptibility phenotype was evaluated with a panel of multiple reverse-transcriptase and protease inhibitors. Replicative capacity (RC) and infectivity were measured, and production of p24 was monitored after transfection. RESULTS Multidrug-resistant (MDR) viruses selected during long-term antiretroviral therapy were less fit and infectious than their wild-type or monotherapy-selected counterparts, with the exception of viruses recovered from patient B. In 3 of 4 cases, p24 kinetics after transfection showed a delay in viral production of recombinant viruses containing MDR mutations. Data from the RC and infectivity assays showed good correlation (P < .03) and corroborated the p24 kinetics data. CONCLUSIONS This study shows that accumulation of MDR mutations during long-term antiretroviral treatment results, albeit not in all cases, in reductions of viral fitness.
Collapse
Affiliation(s)
- Julia G Prado
- IrsiCaixa Foundation, Hospital Germans Trias i Pujol, Universitat Autonoma de Barcelona, Badalona, Spain
| | | | | | | | | |
Collapse
|