1
|
Singh P, Raj R, Savithri H. Five questions on the cell-to-cell movement of Orthotospoviruses. BBA ADVANCES 2024; 6:100124. [PMID: 39498475 PMCID: PMC11533504 DOI: 10.1016/j.bbadva.2024.100124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 10/05/2024] [Accepted: 10/10/2024] [Indexed: 11/07/2024] Open
Abstract
Plant viruses employ Movement proteins (MP) for their cell to cell spread through plasmodesmata (PD). MP modifies the PD and increases its size exclusion limit (SEL). However, the mechanism by which MPs are targeted to the PD is still unresolved and there is a lack of consensus owing to limited studies on their biochemical and structural characters. The non structural protein m (NSm) functions as the MP in Orthotospoviruses. Tospoviral NSm associate with ER membrane. They also form tubules in protoplasts. Groundnut bud necrosis virus (GBNV), a tospovirus, infects several crop plants throughout India and is economically very important. GBNV NSm associates with the membrane strongly via the C-terminal coiled-coil domain, modifies the membrane and causes vesicle fusion in vitro and remodels the ER network into vesicles in vivo. These vesicles are in contrast to the tubules formed by other related tospovirus in cells lacking cell wall. In this review, five important questions on the cell-to-cell movement of tospoviruses have been addressed and based on the various reports, a plausible model on the cell-to-cell movement of Orthotospoviruses is presented.
Collapse
Affiliation(s)
- Pratibha Singh
- Department of Botany, Mahatma Gandhi Central University, Motihari, Bihar 845401, India
| | - Rishi Raj
- Department of Botany, Mahatma Gandhi Central University, Motihari, Bihar 845401, India
| | - H.S. Savithri
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
2
|
Wu G, Chen J, Wang A, Yan F. Unveiling the viroporin arsenal in plant viruses: Implications for the future. PLoS Pathog 2024; 20:e1012473. [PMID: 39235994 PMCID: PMC11376509 DOI: 10.1371/journal.ppat.1012473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024] Open
Abstract
Viroporins are small, hydrophobic viral proteins that modify cellular membranes to form tiny pores for influx of ions and small molecules. Previously, viroporins were identified exclusively in vertebrate viruses. Recent studies have shown that both plant-infecting positive-sense single-stranded (+ss) and negative-sense single-stranded (-ss) RNA viruses also encode functional viroporins. These seminal discoveries not only advance our understanding of the distribution and evolution of viroporins, but also open up a new field of plant virus research.
Collapse
Affiliation(s)
- Guanwei Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Institute of Plant Virology, Ningbo University, Ningbo, China
- Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Provincial Key Laboratory of Green Plant Protection, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Institute of Plant Virology, Ningbo University, Ningbo, China
- Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Provincial Key Laboratory of Green Plant Protection, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Aiming Wang
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario, Canada
| | - Fei Yan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Institute of Plant Virology, Ningbo University, Ningbo, China
- Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Provincial Key Laboratory of Green Plant Protection, Institute of Plant Virology, Ningbo University, Ningbo, China
| |
Collapse
|
3
|
Lameront P, Shabanian M, Currie LMJ, Fust C, Li C, Clews A, Meng B. Elucidating the Subcellular Localization of GLRaV-3 Proteins Encoded by the Unique Gene Block in N. benthamiana Suggests Implications on Plant Host Suppression. Biomolecules 2024; 14:977. [PMID: 39199365 PMCID: PMC11352578 DOI: 10.3390/biom14080977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/26/2024] [Accepted: 07/30/2024] [Indexed: 09/01/2024] Open
Abstract
Grapevine leafroll-associated virus 3 (GLRaV-3) is a formidable threat to the stability of the global grape and wine industries. It is the primary etiological agent of grapevine leafroll disease (GLD) and significantly impairs vine health, fruit quality, and yield. GLRaV-3 is a member of the genus Ampelovirus, Closteroviridae family. Viral genes within the 3' proximal unique gene blocks (UGB) remain highly variable and poorly understood. The UGBs of Closteroviridae viruses include diverse open reading frames (ORFs) that have been shown to contribute to viral functions such as the suppression of the host RNA silencing defense response and systemic viral spread. This study investigates the role of GLRaV-3 ORF8, ORF9, and ORF10, which encode the proteins p21, p20A, and p20B, respectively. These genes represent largely unexplored facets of the GLRaV-3 genome. Here, we visualize the subcellular localization of wildtype and mutagenized GLRaV-3 ORFs 8, 9, and 10, transiently expressed in Nicotiana benthamiana. Our results indicate that p21 localizes to the cytosol, p20A associates with microtubules, and p20B is trafficked into the nucleus to carry out the suppression of host RNA silencing. The findings presented herein provide a foundation for future research aimed at the characterization of the functions of these ORFs. In the long run, it would also facilitate the development of innovative strategies to understand GLRaV-3, mitigate its spread, and impacts on grapevines and the global wine industry.
Collapse
Affiliation(s)
- Patrick Lameront
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada; (M.S.); (L.M.J.C.); (C.F.); (C.L.); (A.C.); (B.M.)
| | | | | | | | | | | | | |
Collapse
|
4
|
Massé D, Candresse T, Filloux D, Massart S, Cassam N, Hostachy B, Marais A, Fernandez E, Roumagnac P, Verdin E, Teycheney PY, Lett JM, Lefeuvre P. Characterization of Six Ampeloviruses Infecting Pineapple in Reunion Island Using a Combination of High-Throughput Sequencing Approaches. Viruses 2024; 16:1146. [PMID: 39066307 PMCID: PMC11281624 DOI: 10.3390/v16071146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/09/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
The cultivation of pineapple (Ananas comosus) is threatened worldwide by mealybug wilt disease of pineapple (MWP), whose etiology is not yet fully elucidated. In this study, we characterized pineapple mealybug wilt-associated ampeloviruses (PMWaVs, family Closteroviridae) from a diseased pineapple plant collected from Reunion Island, using a high-throughput sequencing approach combining Illumina short reads and Nanopore long reads. Reads co-assembly resulted in complete or near-complete genomes for six distinct ampeloviruses, including the first complete genome of pineapple mealybug wilt-associated virus 5 (PMWaV5) and that of a new species tentatively named pineapple mealybug wilt-associated virus 7 (PMWaV7). Short reads data provided high genome coverage and sequencing depths for all six viral genomes, contrary to long reads data. The 5' and 3' ends of the genome for most of the six ampeloviruses could be recovered from long reads, providing an alternative to RACE-PCRs. Phylogenetic analyses did not unveil any geographic structuring of the diversity of PMWaV1, PMWaV2 and PMWaV3 isolates, supporting the current hypothesis that PMWaVs were mainly spread by human activity and vegetative propagation.
Collapse
Affiliation(s)
- Delphine Massé
- ANSES—LSV RAPT, F-97410 St. Pierre, La Réunion, France; (N.C.); (B.H.)
- UMR PVBMT, Université de La Réunion, F-97410 St. Pierre, La Réunion, France
| | - Thierry Candresse
- INRAe, UMR 1332 Biologie du Fruit et Pathologie, Université Bordeaux, CS20032, F-33882 Villenave d’Ornon, France; (T.C.); (A.M.)
| | - Denis Filloux
- CIRAD, UMR PHIM, F-34090 Montpellier, France; (D.F.); (E.F.); (P.R.)
- PHIM Plant Health Institute, Université Montpellier, CIRAD, INRAE, Institut Agro, IRD, F-34090 Montpellier, France
| | - Sébastien Massart
- Plant Pathology Laboratory, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium;
| | - Nathalie Cassam
- ANSES—LSV RAPT, F-97410 St. Pierre, La Réunion, France; (N.C.); (B.H.)
| | - Bruno Hostachy
- ANSES—LSV RAPT, F-97410 St. Pierre, La Réunion, France; (N.C.); (B.H.)
| | - Armelle Marais
- INRAe, UMR 1332 Biologie du Fruit et Pathologie, Université Bordeaux, CS20032, F-33882 Villenave d’Ornon, France; (T.C.); (A.M.)
| | - Emmanuel Fernandez
- CIRAD, UMR PHIM, F-34090 Montpellier, France; (D.F.); (E.F.); (P.R.)
- PHIM Plant Health Institute, Université Montpellier, CIRAD, INRAE, Institut Agro, IRD, F-34090 Montpellier, France
| | - Philippe Roumagnac
- CIRAD, UMR PHIM, F-34090 Montpellier, France; (D.F.); (E.F.); (P.R.)
- PHIM Plant Health Institute, Université Montpellier, CIRAD, INRAE, Institut Agro, IRD, F-34090 Montpellier, France
| | - Eric Verdin
- INRAe, UR407 Unité de Pathologie Végétale, CS 60094, F-84140 Montfavet, France;
| | - Pierre-Yves Teycheney
- CIRAD, UMR PVBMT, F-97410 St. Pierre, La Réunion, France; (P.-Y.T.); (J.-M.L.); (P.L.)
| | - Jean-Michel Lett
- CIRAD, UMR PVBMT, F-97410 St. Pierre, La Réunion, France; (P.-Y.T.); (J.-M.L.); (P.L.)
| | - Pierre Lefeuvre
- CIRAD, UMR PVBMT, F-97410 St. Pierre, La Réunion, France; (P.-Y.T.); (J.-M.L.); (P.L.)
| |
Collapse
|
5
|
Chai M, Li L, Li Y, Yang Y, Wang Y, Jiang X, Luan Y, Li F, Cui H, Wang A, Xiang W, Wu X, Cheng X. The 6-kilodalton peptide 1 in plant viruses of the family Potyviridae is a viroporin. Proc Natl Acad Sci U S A 2024; 121:e2401748121. [PMID: 38739789 PMCID: PMC11127057 DOI: 10.1073/pnas.2401748121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/09/2024] [Indexed: 05/16/2024] Open
Abstract
Potyviridae, the largest family of plant RNA viruses, includes many important pathogens that significantly reduce the yields of many crops worldwide. In this study, we report that the 6-kilodalton peptide 1 (6K1), one of the least characterized potyviral proteins, is an endoplasmic reticulum-localized protein. AI-assisted structure modeling and biochemical assays suggest that 6K1 forms pentamers with a central hydrophobic tunnel, can increase the cell membrane permeability of Escherichia coli and Nicotiana benthamiana, and can conduct potassium in Saccharomyces cerevisiae. An infectivity assay showed that viral proliferation is inhibited by mutations that affect 6K1 multimerization. Moreover, the 6K1 or its homologous 7K proteins from other viruses of the Potyviridae family also have the ability to increase cell membrane permeability and transmembrane potassium conductance. Taken together, these data reveal that 6K1 and its homologous 7K proteins function as viroporins in viral infected cells.
Collapse
Affiliation(s)
- Mengzhu Chai
- College of Plant Protection, Northeast Agricultural University, Harbin, Heilongjiang150030, China
| | - Lei Li
- College of Plant Protection, Northeast Agricultural University, Harbin, Heilongjiang150030, China
| | - Yong Li
- School of Life Science, Northeast Agricultural University, Harbin, Heilongjiang150030, China
| | - Yingshuai Yang
- College of Plant Protection, Northeast Agricultural University, Harbin, Heilongjiang150030, China
| | - Yuting Wang
- College of Plant Protection, Northeast Agricultural University, Harbin, Heilongjiang150030, China
| | - Xue Jiang
- College of Plant Protection, Northeast Agricultural University, Harbin, Heilongjiang150030, China
| | - Yameng Luan
- College of Plant Protection, Northeast Agricultural University, Harbin, Heilongjiang150030, China
| | - Fangfang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing100193, China
| | - Hongguang Cui
- College of Plant Protection, Hainan University, Haikou570228, China
| | - Aiming Wang
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ONN5V 4T3, Canada
| | - Wensheng Xiang
- College of Plant Protection, Northeast Agricultural University, Harbin, Heilongjiang150030, China
| | - Xiaoyun Wu
- College of Plant Protection, Northeast Agricultural University, Harbin, Heilongjiang150030, China
| | - Xiaofei Cheng
- College of Plant Protection, Northeast Agricultural University, Harbin, Heilongjiang150030, China
| |
Collapse
|
6
|
Mostert I, Bester R, Burger JT, Maree HJ. Identification of Interactions between Proteins Encoded by Grapevine Leafroll-Associated Virus 3. Viruses 2023; 15:208. [PMID: 36680248 PMCID: PMC9865355 DOI: 10.3390/v15010208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/06/2023] [Accepted: 01/08/2023] [Indexed: 01/13/2023] Open
Abstract
The roles of proteins encoded by members of the genus Ampelovirus, family Closteroviridae are largely inferred by sequence homology or analogy to similarly located ORFs in related viruses. This study employed yeast two-hybrid and bimolecular fluorescence complementation assays to investigate interactions between proteins of grapevine leafroll-associated virus 3 (GLRaV-3). The p5 movement protein, HSP70 homolog, coat protein, and p20B of GLRaV-3 were all found to self-interact, however, the mechanism by which p5 interacts remains unknown due to the absence of a cysteine residue crucial for the dimerisation of the closterovirus homolog of this protein. Although HSP70h forms part of the virion head of closteroviruses, in GLRaV-3, it interacts with the coat protein that makes up the body of the virion. Silencing suppressor p20B has been shown to interact with HSP70h, as well as the major coat protein and the minor coat protein. The results of this study suggest that the virion assembly of a member of the genus Ampelovirus occurs in a similar but not identical manner to those of other genera in the family Closteroviridae. Identification of interactions of p20B with virus structural proteins provides an avenue for future research to explore the mechanisms behind the suppression of host silencing and suggests possible involvement in other aspects of the viral replication cycle.
Collapse
Affiliation(s)
- Ilani Mostert
- Department of Genetics, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - Rachelle Bester
- Department of Genetics, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
- Citrus Research International, P.O. Box 2201, Matieland 7602, South Africa
| | - Johan T. Burger
- Department of Genetics, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - Hans J. Maree
- Department of Genetics, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
- Citrus Research International, P.O. Box 2201, Matieland 7602, South Africa
| |
Collapse
|
7
|
Kwibuka Y, Bisimwa E, Blouin AG, Bragard C, Candresse T, Faure C, Filloux D, Lett JM, Maclot F, Marais A, Ravelomanantsoa S, Shakir S, Vanderschuren H, Massart S. Novel Ampeloviruses Infecting Cassava in Central Africa and the South-West Indian Ocean Islands. Viruses 2021; 13:v13061030. [PMID: 34072594 PMCID: PMC8226816 DOI: 10.3390/v13061030] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 11/30/2022] Open
Abstract
Cassava is one of the most important staple crops in Africa and its production is seriously damaged by viral diseases. In this study, we identify for the first time and characterize the genome organization of novel ampeloviruses infecting cassava plants in diverse geographical locations using three high-throughput sequencing protocols [Virion-Associated Nucleotide Acid (VANA), dsRNA and total RNA], and we provide a first analysis of the diversity of these agents and of the evolutionary forces acting on them. Thirteen new Closteroviridae isolates were characterized in field-grown cassava plants from the Democratic Republic of Congo (DR Congo), Madagascar, Mayotte, and Reunion islands. The analysis of the sequences of the corresponding contigs (ranging between 10,417 and 13,752 nucleotides in length) revealed seven open reading frames. The replication-associated polyproteins have three expected functional domains: methyltransferase, helicase, and RNA-dependent RNA polymerase (RdRp). Additional open reading frames code for a small transmembrane protein, a heat-shock protein 70 homolog (HSP70h), a heat shock protein 90 homolog (HSP90h), and a major and a minor coat protein (CP and CPd respectively). Defective genomic variants were also identified in some cassava accessions originating from Madagascar and Reunion. The isolates were found to belong to two species tentatively named Manihot esculenta-associated virus 1 and 2 (MEaV-1 and MEaV-2). Phylogenetic analyses showed that MEaV-1 and MEaV-2 belong to the genus Ampelovirus, in particular to its subgroup II. MEaV-1 was found in all of the countries of study, while MEaV-2 was only detected in Madagascar and Mayotte. Recombination analysis provided evidence of intraspecies recombination occurring between the isolates from Madagascar and Mayotte. No clear association with visual symptoms in the cassava host could be identified.
Collapse
Affiliation(s)
- Yves Kwibuka
- Plant Pathology Laboratory, TERRA-Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés, 2, 5030 Gembloux, Belgium; (A.G.B.); (F.M.)
- Faculté des Sciences Agronomiques, Université Catholique de Bukavu, BP 285 Bukavu, Democratic Republic of the Congo;
- Correspondence: (Y.K.); (S.M.)
| | - Espoir Bisimwa
- Faculté des Sciences Agronomiques, Université Catholique de Bukavu, BP 285 Bukavu, Democratic Republic of the Congo;
| | - Arnaud G. Blouin
- Plant Pathology Laboratory, TERRA-Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés, 2, 5030 Gembloux, Belgium; (A.G.B.); (F.M.)
| | - Claude Bragard
- Earth and Life Institute, Applied Microbiology-Phytopathology, UCLouvain, 1348 Louvain-la-Neuve, Belgium;
| | - Thierry Candresse
- Université Bordeaux, INRAE, UMR BFP, CS20032, CEDEX, 33882 Villenave d’Ornon, France; (T.C.); (C.F.); (A.M.)
| | - Chantal Faure
- Université Bordeaux, INRAE, UMR BFP, CS20032, CEDEX, 33882 Villenave d’Ornon, France; (T.C.); (C.F.); (A.M.)
| | - Denis Filloux
- CIRAD, UMR PHIM, 34090 Montpellier, France;
- PHIM Plant Health Institute, Université Montpellier, CIRAD, INRAE, Institut Agro, IRD, 34000 Montpellier, France
| | - Jean-Michel Lett
- CIRAD, UMR PVBMT, Pôle de Protection des Plantes, Saint-Pierre, F-97410 Ile de la Reunion, France;
| | - François Maclot
- Plant Pathology Laboratory, TERRA-Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés, 2, 5030 Gembloux, Belgium; (A.G.B.); (F.M.)
| | - Armelle Marais
- Université Bordeaux, INRAE, UMR BFP, CS20032, CEDEX, 33882 Villenave d’Ornon, France; (T.C.); (C.F.); (A.M.)
| | | | - Sara Shakir
- Plant Genetics Laboratory, TERRA-Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés, 2, 5030 Gembloux, Belgium; (S.S.); (H.V.)
| | - Hervé Vanderschuren
- Plant Genetics Laboratory, TERRA-Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés, 2, 5030 Gembloux, Belgium; (S.S.); (H.V.)
- Laboratory of Tropical Crop Improvement, Division of Crop Biotechnics, Biosystems Department, KU Leuven, 3000 Leuven, Belgium
| | - Sébastien Massart
- Plant Pathology Laboratory, TERRA-Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés, 2, 5030 Gembloux, Belgium; (A.G.B.); (F.M.)
- Correspondence: (Y.K.); (S.M.)
| |
Collapse
|
8
|
Song Y, Hanner RH, Meng B. Probing into the Effects of Grapevine Leafroll-Associated Viruses on the Physiology, Fruit Quality and Gene Expression of Grapes. Viruses 2021; 13:v13040593. [PMID: 33807294 PMCID: PMC8066071 DOI: 10.3390/v13040593] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/23/2021] [Accepted: 03/26/2021] [Indexed: 12/19/2022] Open
Abstract
Grapevine leafroll is one of the most widespread and highly destructive grapevine diseases that is responsible for great economic losses to the grape and wine industries throughout the world. Six distinct viruses have been implicated in this disease complex. They belong to three genera, all in the family Closteroviridae. For the sake of convenience, these viruses are named as grapevine leafroll-associated viruses (GLRaV-1, -2, -3, -4, -7, and -13). However, their etiological role in the disease has yet to be established. Furthermore, how infections with each GLRaV induce the characteristic disease symptoms remains unresolved. Here, we first provide a brief overview on each of these GLRaVs with a focus on genome structure, expression strategies and gene functions, where available. We then provide a review on the effects of GLRaV infection on the physiology, fruit quality, fruit chemical composition, and gene expression of grapevine based on the limited information so far reported in the literature. We outline key methodologies that have been used to study how GLRaV infections alter gene expression in the grapevine host at the transcriptomic level. Finally, we present a working model as an initial attempt to explain how infections with GLRaVs lead to the characteristic symptoms of grapevine leafroll disease: leaf discoloration and downward rolling. It is our hope that this review will serve as a starting point for grapevine virology and the related research community to tackle this vastly important and yet virtually uncharted territory in virus-host interactions involving woody and perennial fruit crops.
Collapse
Affiliation(s)
- Yashu Song
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Robert H. Hanner
- Department of Integrative Biology and Biodiversity Institute of Ontario, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Baozhong Meng
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada;
- Correspondence: ; Tel.: +1-519-824-4120 (ext. 53876)
| |
Collapse
|
9
|
Membrane Association and Topology of Citrus Leprosis Virus C2 Movement and Capsid Proteins. Microorganisms 2021; 9:microorganisms9020418. [PMID: 33671330 PMCID: PMC7922530 DOI: 10.3390/microorganisms9020418] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/09/2021] [Accepted: 02/11/2021] [Indexed: 01/04/2023] Open
Abstract
Although citrus leprosis disease has been known for more than a hundred years, one of its causal agents, citrus leprosis virus C2 (CiLV-C2), is poorly characterized. This study described the association of CiLV-C2 movement protein (MP) and capsid protein (p29) with biological membranes. Our findings obtained by computer predictions, chemical treatments after membrane fractionation, and biomolecular fluorescence complementation assays revealed that p29 is peripherally associated, while the MP is integrally bound to the cell membranes. Topological analyses revealed that both the p29 and MP expose their N- and C-termini to the cell cytoplasmic compartment. The implications of these results in the intracellular movement of the virus were discussed.
Collapse
|
10
|
Leastro MO, Freitas-Astúa J, Kitajima EW, Pallás V, Sánchez-Navarro JÁ. Dichorhaviruses Movement Protein and Nucleoprotein Form a Protein Complex That May Be Required for Virus Spread and Interacts in vivo With Viral Movement-Related Cilevirus Proteins. Front Microbiol 2020; 11:571807. [PMID: 33250868 PMCID: PMC7672204 DOI: 10.3389/fmicb.2020.571807] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 10/06/2020] [Indexed: 11/28/2022] Open
Abstract
Brevipalpus-transmitted viruses (BTVs) belong to the genera Dichorhavirus and Cilevirus and are the main causal agents of the citrus leprosis (CL) disease. In this report, we explored aspects related to the movement mechanism mediated by dichorhaviruses movement proteins (MPs) and the homologous and heterologous interactions among viral proteins related to the movement of citrus leprosis-associated viruses. The membrane-spanning property and topology analysis of the nucleocapsid (N) and MP proteins from two dichorhaviruses revealed that the MPs are proteins tightly associated with the cell membrane, exposing their N- and C-termini to the cytoplasm and the inner part of the nucleus, whereas the N proteins are not membrane-associated. Subcellular localization analysis revealed the presence of dichorhavirus MPs at the cell surface and in the nucleus, while the phosphoproteins (P) were located exclusively in the nucleus and the N proteins in both the cytoplasm and the nucleus. Co-expression analysis with the MP, P, and N proteins showed an interaction network formed between them. We highlight the MP capability to partially redistribute the previously reported N-P core complex, redirecting a portion of the N from the nucleus to the plasmodesmata at the cell periphery, which indicates not only that the MP might guide the intracellular trafficking of the viral infective complex but also that the N protein may be associated with the cell-to-cell movement mechanism of dichorhaviruses. The movement functionality of these MPs was analyzed by using three movement-defective infectious systems. Also, the MP capacity to generate tubular structures on the protoplast surface by ectopic expression was analyzed. Finally, we evaluated the in vivo protein–protein interaction networks between the dichorhavirus MP and/or N proteins with the heterologous cilevirus movement components, which suggest a broad spectrum of interactions, highlighting those among capsid proteins (CP), MPs, and Ns from citrus leprosis-associated viruses. These data may aid in understanding the mixed infection process naturally observed in the field caused by distinct BTVs.
Collapse
Affiliation(s)
- Mikhail Oliveira Leastro
- Unidade Laboratorial de Referência em Biologia Molecular Aplicada, Instituto Biológico, São Paulo, Brazil.,Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Juliana Freitas-Astúa
- Unidade Laboratorial de Referência em Biologia Molecular Aplicada, Instituto Biológico, São Paulo, Brazil.,Embrapa Mandioca e Fruticultura, Cruz das Almas, Brazil
| | - Elliot Watanabe Kitajima
- Departamento de Fitopatologia e Nematologia, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, Brazil
| | - Vicente Pallás
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Jesús Ángel Sánchez-Navarro
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| |
Collapse
|
11
|
López‐González S, Navarro JA, Pacios LF, Sardaru P, Pallás V, Sánchez F, Ponz F. Association between flower stalk elongation, an Arabidopsis developmental trait, and the subcellular location and movement dynamics of the nonstructural protein P3 of Turnip mosaic virus. MOLECULAR PLANT PATHOLOGY 2020; 21:1271-1286. [PMID: 32737952 PMCID: PMC7488469 DOI: 10.1111/mpp.12976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 05/05/2023]
Abstract
Virus infections affect plant developmental traits but this aspect of the interaction has not been extensively studied so far. Two strains of Turnip mosaic virus differentially affect Arabidopsis development, especially flower stalk elongation, which allowed phenotypical, cellular, and molecular characterization of the viral determinant, the P3 protein. Transiently expressed wild-type green fluorescent protein-tagged P3 proteins of both strains and selected mutants of them revealed important differences in their behaviour as endoplasmic reticulum (ER)-associated peripheral proteins flowing along the reticulum, forming punctate accumulations. Three-dimensional (3D) model structures of all expressed P3 proteins were computationally constructed through I-TASSER protein structure predictions, which were used to compute protein surfaces and map electrostatic potentials to characterize the effect of amino acid changes on features related to protein interactions and to phenotypical and subcellular results. The amino acid at position 279 was the main determinant affecting stalk development. It also determined the speed of ER-flow of the expressed proteins and their final location. A marked change in the protein surface electrostatic potential correlated with changes in subcellular location. One single amino acid in the P3 viral protein determines all the analysed differential characteristics between strains differentially affecting flower stalk development. A model proposing a role of the protein in the intracellular movement of the viral replication complex, in association with the viral 6K2 protein, is proposed. The type of association between both viral proteins could differ between the strains.
Collapse
Affiliation(s)
| | - José Antonio Navarro
- Instituto de Biología Molecular y Celular de Plantas (UPV‐CSIC), IBMCPValenciaSpain
| | - Luis F. Pacios
- Centro de Biotecnología y Genómica de Plantas (UPM‐INIA)Pozuelo de AlarcónSpain
| | - Papaiah Sardaru
- Centro de Biotecnología y Genómica de Plantas (UPM‐INIA)Pozuelo de AlarcónSpain
| | - Vicente Pallás
- Instituto de Biología Molecular y Celular de Plantas (UPV‐CSIC), IBMCPValenciaSpain
| | - Flora Sánchez
- Centro de Biotecnología y Genómica de Plantas (UPM‐INIA)Pozuelo de AlarcónSpain
| | - Fernando Ponz
- Centro de Biotecnología y Genómica de Plantas (UPM‐INIA)Pozuelo de AlarcónSpain
| |
Collapse
|
12
|
Mei Y, Zhang F, Wang M, Li F, Wang Y, Zhou X. Divergent Symptoms Caused by Geminivirus-Encoded C4 Proteins Correlate with Their Ability To Bind NbSKη. J Virol 2020; 94:e01307-20. [PMID: 32759325 PMCID: PMC7527059 DOI: 10.1128/jvi.01307-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 12/17/2022] Open
Abstract
Geminiviruses induce severe developmental abnormalities in plants. The C4/AC4 protein encoded by geminiviruses, especially those not associated with betasatellites, functions as a symptom determinant by hijacking a shaggy-related protein kinase (SKη) and interfering with its functions. Here, we report that the symptom determinant capabilities of C4 proteins encoded by different geminiviruses are divergent and tightly correlated with their abilities to interact with SKη from Nicotiana benthamiana (NbSKη). Swap of the minidomain of tomato leaf curl Yunnan virus (TLCYnV) C4 critical for the interaction with NbSKη increases the capacities of the C4 proteins encoded by tomato yellow leaf curl China virus (TYLCCNV) or tobacco curly shoot virus (TbCSV) to induce symptoms. The severity of symptoms induced by recombinant TYLCCNV C4 or TbCSV C4 correlates with the amount of NbSKη tethered to the plasma membrane by the viral protein. Moreover, a recombinant TYLCCNV harboring the minidomain of TLCYnV C4 induces more-severe symptoms than wild-type TYLCCNV. Thus, this study provides new insights into the mechanism by which different geminivirus-encoded C4 proteins possess divergent symptom determinant capabilities.IMPORTANCE Geminiviruses constitute the largest group of known plant viruses and cause devastating diseases in many economically important crops worldwide. Geminivirus-encoded C4 protein is a multifunctional protein. In this study, we found that the C4 proteins from different geminiviruses showed differential abilities to interact with NbSKη, which correlated with their symptom determinant capabilities. Moreover, a minidomain of tomato leaf curl Yunnan virus (TLCYnV) C4 that is indispensable for interacting with NbSKη and tethering it to the plasma membrane, thus leading to symptom induction, was determined. Supporting these findings, a recombinant geminivirus carrying the minidomain of TLCYnV C4 induced more-severe symptoms than the wild type. Therefore, these findings expand the scope of the interaction of NbSKη and C4-mediated symptom induction and thus contribute to further understanding of the multiple roles of C4.
Collapse
Affiliation(s)
- Yuzhen Mei
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Fanfan Zhang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Mingyu Wang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Fangfang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yaqin Wang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xueping Zhou
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
13
|
Morozov SY, Solovyev AG. Small hydrophobic viral proteins involved in intercellular movement of diverse plant virus genomes. AIMS Microbiol 2020; 6:305-329. [PMID: 33134746 PMCID: PMC7595835 DOI: 10.3934/microbiol.2020019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 09/13/2020] [Indexed: 12/12/2022] Open
Abstract
Most plant viruses code for movement proteins (MPs) targeting plasmodesmata to enable cell-to-cell and systemic spread in infected plants. Small membrane-embedded MPs have been first identified in two viral transport gene modules, triple gene block (TGB) coding for an RNA-binding helicase TGB1 and two small hydrophobic proteins TGB2 and TGB3 and double gene block (DGB) encoding two small polypeptides representing an RNA-binding protein and a membrane protein. These findings indicated that movement gene modules composed of two or more cistrons may encode the nucleic acid-binding protein and at least one membrane-bound movement protein. The same rule was revealed for small DNA-containing plant viruses, namely, viruses belonging to genus Mastrevirus (family Geminiviridae) and the family Nanoviridae. In multi-component transport modules the nucleic acid-binding MP can be viral capsid protein(s), as in RNA-containing viruses of the families Closteroviridae and Potyviridae. However, membrane proteins are always found among MPs of these multicomponent viral transport systems. Moreover, it was found that small membrane MPs encoded by many viruses can be involved in coupling viral replication and cell-to-cell movement. Currently, the studies of evolutionary origin and functioning of small membrane MPs is regarded as an important pre-requisite for understanding of the evolution of the existing plant virus transport systems. This paper represents the first comprehensive review which describes the whole diversity of small membrane MPs and presents the current views on their role in plant virus movement.
Collapse
Affiliation(s)
- Sergey Y Morozov
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia.,Department of Virology, Biological Faculty, Moscow State University, Moscow, Russia
| | - Andrey G Solovyev
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia.,Department of Virology, Biological Faculty, Moscow State University, Moscow, Russia.,Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
14
|
Dao TNM, Kang SH, Bak A, Folimonova SY. A Non-Conserved p33 Protein of Citrus Tristeza Virus Interacts with Multiple Viral Partners. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:859-870. [PMID: 32141354 DOI: 10.1094/mpmi-11-19-0328-fi] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The RNA genome of citrus tristeza virus (CTV), one of the most damaging viral pathogens of citrus, contains 12 open reading frames resulting in production of at least 19 proteins. Previous studies on the intraviral interactome of CTV revealed self-interaction of the viral RNA-dependent RNA polymerase, the major coat protein (CP), p20, p23, and p33 proteins, while heterologous interactions between the CTV proteins have not been characterized. In this work, we examined interactions between the p33 protein, a nonconserved protein of CTV, which performs multiple functions in the virus infection cycle and is needed for virus ability to infect the extended host range, with other CTV proteins shown to mediate virus interactions with its plant hosts. Using yeast two-hybrid, bimolecular fluorescence complementation, and coimmunoprecipitation assays, we demonstrated that p33 interacts with three viral proteins, i.e., CP, p20, and p23, in vivo and in planta. Coexpression of p33, which is an integral membrane protein, resulted in a shift in the localization of the p20 and p23 proteins toward the subcellular crude-membrane fraction. Upon CTV infection, the four proteins colocalized in the CTV replication factories. In addition, three of them, CP, p20, and p23, were found in the p33-formed membranous structures. Using bioinformatic analyses and mutagenesis, we found that the N-terminus of p33 is involved in the interactions with all three protein partners. A potential role of these interactions in virus ability to infect the extended host range is discussed.
Collapse
Affiliation(s)
- Thi Nguyet Minh Dao
- University of Florida, Plant Pathology Department, Gainesville, FL 32611, U.S.A
| | - Sung-Hwan Kang
- University of Florida, Plant Pathology Department, Gainesville, FL 32611, U.S.A
| | - Aurélie Bak
- University of Florida, Plant Pathology Department, Gainesville, FL 32611, U.S.A
| | | |
Collapse
|
15
|
Zhou X, Lin W, Sun K, Wang S, Zhou X, Jackson AO, Li Z. Specificity of Plant Rhabdovirus Cell-to-Cell Movement. J Virol 2019; 93:e00296-19. [PMID: 31118256 PMCID: PMC6639277 DOI: 10.1128/jvi.00296-19] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 05/15/2019] [Indexed: 12/13/2022] Open
Abstract
Positive-stranded RNA virus movement proteins (MPs) generally lack sequence-specific nucleic acid-binding activities and display cross-family movement complementarity with related and unrelated viruses. Negative-stranded RNA plant rhabdoviruses encode MPs with limited structural and functional relatedness with other plant virus counterparts, but the precise mechanisms of intercellular transport are obscure. In this study, we first analyzed the abilities of MPs encoded by five distinct rhabdoviruses to support cell-to-cell movement of two positive-stranded RNA viruses by using trans-complementation assays. Each of the five rhabdovirus MPs complemented the movement of MP-defective mutants of tomato mosaic virus and potato X virus. In contrast, movement of recombinant MP deletion mutants of sonchus yellow net nucleorhabdovirus (SYNV) and tomato yellow mottle-associated cytorhabdovirus (TYMaV) was rescued only by their corresponding MPs, i.e., SYNV sc4 and TYMaV P3. Subcellular fractionation analyses revealed that SYNV sc4 and TYMaV P3 were peripherally associated with cell membranes. A split-ubiquitin membrane yeast two-hybrid assay demonstrated specific interactions of the membrane-associated rhabdovirus MPs only with their cognate nucleoproteins (N) and phosphoproteins (P). More importantly, SYNV sc4-N and sc4-P interactions directed a proportion of the N-P complexes from nuclear sites of replication to punctate loci at the cell periphery that partially colocalized with the plasmodesmata. Our data show that cell-to-cell movement of plant rhabdoviruses is highly specific and suggest that cognate MP-nucleocapsid core protein interactions are required for intra- and intercellular trafficking.IMPORTANCE Local transport of plant rhabdoviruses likely involves the passage of viral nucleocapsids through MP-gated plasmodesmata, but the molecular mechanisms are not fully understood. We have conducted complementation assays with MPs encoded by five distinct rhabdoviruses to assess their movement specificity. Each of the rhabdovirus MPs complemented the movement of MP-defective mutants of two positive-stranded RNA viruses that have different movement strategies. In marked contrast, cell-to-cell movement of two recombinant plant rhabdoviruses was highly specific in requiring their cognate MPs. We have shown that these rhabdovirus MPs are localized to the cell periphery and associate with cellular membranes, and that they interact only with their cognate nucleocapsid core proteins. These interactions are able to redirect viral nucleocapsid core proteins from their sites of replication to the cell periphery. Our study provides a model for the specific inter- and intracellular trafficking of plant rhabdoviruses that may be applicable to other negative-stranded RNA viruses.
Collapse
Affiliation(s)
- Xin Zhou
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Wenye Lin
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Kai Sun
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Shuo Wang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Xueping Zhou
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Andrew O Jackson
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, USA
| | - Zhenghe Li
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| |
Collapse
|
16
|
Navarro JA, Sanchez-Navarro JA, Pallas V. Key checkpoints in the movement of plant viruses through the host. Adv Virus Res 2019; 104:1-64. [PMID: 31439146 DOI: 10.1016/bs.aivir.2019.05.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Plant viruses cannot exploit any of the membrane fusion-based routes of entry described for animal viruses. In addition, one of the distinctive structures of plant cells, the cell wall, acts as the first barrier against the invasion of pathogens. To overcome the rigidity of the cell wall, plant viruses normally take advantage of the way of life of different biological vectors. Alternatively, the physical damage caused by environmental stresses can facilitate virus entry. Once inside the cell and taking advantage of the characteristic symplastic continuity of plant cells, viruses need to remodel and/or modify the restricted pore size of the plasmodesmata (channels that connect plant cells). In a successful interaction for the virus, it can reach the vascular tissue to systematically invade the plant. The connections between the different cell types in this path are not designed to allow the passage of molecules with the complexity of viruses. During this process, viruses face different cell barriers that must be overcome to reach the distal parts of the plant. In this review, we highlight the current knowledge about how plant RNA viruses enter plant cells, move between them to reach vascular cells and overcome the different physical and cellular barriers that the phloem imposes. Finally, we update the current research on cellular organelles as key regulator checkpoints in the long-distance movement of plant viruses.
Collapse
Affiliation(s)
- Jose A Navarro
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Jesus A Sanchez-Navarro
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Vicente Pallas
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, Valencia, Spain.
| |
Collapse
|
17
|
Wei Y, Shi Y, Han X, Chen S, Li H, Chen L, Sun B, Shi Y. Identification of cucurbit chlorotic yellows virus P4.9 as a possible movement protein. Virol J 2019; 16:82. [PMID: 31221223 PMCID: PMC6587283 DOI: 10.1186/s12985-019-1192-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 06/14/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cucurbit chlorotic yellows virus (CCYV) is a bipartite cucurbit-infecting crinivirus within the family Closteroviridae. The crinivirus genome varies among genera. P4.9 is the first protein encoded by CCYV RNA2. P5, which is encoded by LIYV, is necessary for efficient viral infectivity in plants; however, it remains unknown whether CCYV P4.9 is involved in movement. FINDING In this study, we used green fluorescent protein (GFP) to examine the intracellular distribution of P4.9-GFP in plant cells, and observed fluorescence in the cytoplasm and nucleus. Transient expression of P4.9 was localized to the plasmodesmata. Co-infiltration of agrobacterium carrying binary plasmids of P4.9 and GFP facilitated GFP diffusion between cells. Besides P4.9 was able to spread by itself to neighboring cells, and co-localized with a marker specific to the endoplasmic reticulum, HDEL-mCherry, but not with the Golgi marker Man49-mCherry. CONCLUSIONS Together, these results demonstrate that CCYV P4.9 is involved in cell-cell movement.
Collapse
Affiliation(s)
- Ying Wei
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yajuan Shi
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xaioyu Han
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China
| | - Siyu Chen
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China
| | - Honglian Li
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China
| | - Linlin Chen
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China
| | - Bingjian Sun
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yan Shi
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
18
|
Qiao W, Medina V, Kuo YW, Falk BW. A Distinct, Non-Virion Plant Virus Movement Protein Encoded by a Crinivirus Essential for Systemic Infection. mBio 2018; 9:e02230-18. [PMID: 30459200 PMCID: PMC6247084 DOI: 10.1128/mbio.02230-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 10/17/2018] [Indexed: 12/21/2022] Open
Abstract
Plant-infecting viruses utilize various strategies involving multiple viral and host factors to achieve successful systemic infections of their compatible hosts. Lettuce infectious yellows virus (LIYV), genus Crinivirus, family Closteroviridae, has long, filamentous flexuous virions and causes phloem-limited infections in its plant hosts. The LIYV-encoded P26 is a distinct non-virion protein that shows no similarities to proteins in current databases: it induces plasmalemma deposits over plasmadesmata (PD) pit fields and is speculated to have roles in LIYV virion transport within infected plants. In this study, P26 was demonstrated to be a PD-localized protein, and its biological significance was tested in planta by mutagenesis analysis. An LIYV P26 knockout mutant (P26X) showed viral RNA replication and virion formation in inoculated leaves of Nicotiana benthamiana plants, but failed to give systemic infection. Confirmation by using a modified green fluorescent protein (GFP)-tagged LIYV P26X showed GFP accumulation only in infiltrated leaf tissues, while wild-type LIYV GFP readily spread systemically in the phloem. Attempts to rescue P26X by complementation in trans were negative. However a translocated LIYV P26 gene in the LIYV genome rescued systemic infection, but P26 orthologs from other criniviruses did not. Mutagenesis in planta assays showed that deletions in P26, as well as 2 of 11 specific alanine-scanning mutants, abolished the ability to systemically infect N. benthamianaIMPORTANCE Plant viruses encode specific proteins that facilitate their ability to establish multicellular/systemic infections in their host plants. Relatively little is known of the transport mechanisms for plant viruses whose infections are phloem limited, including those of the family Closteroviridae. These viruses have complex, long filamentous virions that spread through the phloem. Lettuce infectious yellows virus (LIYV) encodes a non-virion protein, P26, which forms plasmalemma deposits over plasmodesmata pit fields, and LIYV virions are consistently found attached to those deposits. Here we demonstrate that P26 is a unique movement protein required for LIYV systemic infection in plants. LIYV P26 shows no sequence similarities to other proteins, but other criniviruses encode P26 orthologs. However, these failed to complement movement of LIYV P26 mutants.
Collapse
Affiliation(s)
- Wenjie Qiao
- Department of Plant Pathology, University of California, Davis, California, USA
| | - Vicente Medina
- Department of Crop and Forest Sciences, University of Lleida, Lleida, Spain
| | - Yen-Wen Kuo
- Department of Plant Pathology, University of California, Davis, California, USA
| | - Bryce W Falk
- Department of Plant Pathology, University of California, Davis, California, USA
| |
Collapse
|
19
|
Leastro MO, Kitajima EW, Silva MS, Resende RO, Freitas-Astúa J. Dissecting the Subcellular Localization, Intracellular Trafficking, Interactions, Membrane Association, and Topology of Citrus Leprosis Virus C Proteins. FRONTIERS IN PLANT SCIENCE 2018; 9:1299. [PMID: 30254655 PMCID: PMC6141925 DOI: 10.3389/fpls.2018.01299] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 08/17/2018] [Indexed: 05/17/2023]
Abstract
Citrus leprosis (CL) is a re-emergent viral disease affecting citrus crops in the Americas, and citrus leprosis virus C (CiLV-C), belonging to the genus Cilevirus, is the main pathogen responsible for the disease. Despite the economic importance of CL to the citrus industry, very little is known about the performance of viral proteins. Here, we present a robust in vivo study around functionality of p29, p15, p61, MP, and p24 CiLV-C proteins in the host cells. The intracellular sub-localization of all those viral proteins in plant cells are shown, and their co-localization with the endoplasmic reticulum (ER), Golgi complex (GC) (p15, MP, p61 and p24), actin filaments (p29, p15 and p24), nucleus (p15), and plasmodesmata (MP) are described. Several features are disclosed, including i) ER remodeling and redistribution of GC apparatus, ii) trafficking of the p29 and MP along the ER network system, iii) self-interaction of the p29, p15, and p24 and hetero-association between p29-p15, p29-MP, p29-p24, and p15-MP proteins in vivo. We also showed that all proteins are associated with biological membranes; whilst p15 is peripherally associated, p29, p24, and MP are integrally bound to cell membranes. Furthermore, while p24 exposes an N-cytoplasm-C-lumen topology, p29, and p15 are oriented toward the cytoplasmic face of the biological membrane. Based on our findings, we discuss the possible performance of each protein in the context of infection and a hypothetical model encompassing the virus spread and sites for replication and particle assembly is suggested.
Collapse
Affiliation(s)
| | - Elliot Watanabe Kitajima
- Departamento de Fitopatologia e Nematologia, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, Brazil
| | - Marilia Santos Silva
- Laboratório de Bioimagem, Embrapa Recursos Genéticos e Biotecnologia, Brasilia, Brazil
| | | | - Juliana Freitas-Astúa
- Departamento de Bioquímica Fitopatológica, Instituto Biológico, São Paulo, Brazil
- Embrapa Mandioca e Fruticultura, Cruz das Almas, Bahia, Brazil
| |
Collapse
|
20
|
Zheng L, Wu L, Postman J, Liu H, Li R. Molecular characterization and detection of a new closterovirus identified from blackcurrant by high-throughput sequencing. Virus Genes 2018; 54:828-832. [PMID: 30206806 DOI: 10.1007/s11262-018-1598-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 09/03/2018] [Indexed: 11/25/2022]
Abstract
Two large contigs with high sequence similarities to several closteroviruses were identified by high-throughput sequencing from a blackcurrant plant. The complete genome of this new virus was determined to be 17,320 nucleotides. Its genome contains ten open reading frames (ORF) that include, in the 5'-3' direction, a large ORF encoding a putative viral polyprotein (ORF 1a) and nine ORFs that encode RNA-dependent RNA polymerase (RdRp, ORF 1b), p6 (ORF 2), heat shock protein 70-like protein (Hsp70h, ORF 3), Hsp-90-like protein (p61, ORF 4), CP minor (ORF 5), CP (ORF 6), p17 (ORF 7), p11 (ORF 8), and p26 (ORF 9), respectively. BCCV-1 shares nucleotide sequence identities of 43-45% with other 9 closteroviruses at genome sequences. The amino acid sequence identities between BCCV-1 and the closteroviruses were 49-55% (RdRp), 37-41% (Hsp70h), 19-33% (p61), 26-38% (CPm), and 19-28% (CP), respectively. Phylogenetic analysis of Hsp70h sequences placed the new virus with members of genus Closterovirus in the same group. The results indicate that this new virus, which is provisionally named as Blackcurrant closterovirus 1, should represent a new species of the genus Closterovirus. A RT-PCR was developed and used to detect BCCV-1 in more germplasm accessions of Ribes spp.
Collapse
Affiliation(s)
- Luping Zheng
- USDA-ARS, National Germplasm Resources Laboratory, Beltsville, MD, 20705, USA.,College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Liping Wu
- USDA-ARS, National Germplasm Resources Laboratory, Beltsville, MD, 20705, USA.,Key Laboratory of Poyang Lake Environment and Resource, School of Life Sciences, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Joseph Postman
- USDA-ARS, National Clonal Germplasm Repository, Corvallis, OR, 97333, USA
| | - Huawei Liu
- USDA-ARS, National Germplasm Resources Laboratory, Beltsville, MD, 20705, USA
| | - Ruhui Li
- USDA-ARS, National Germplasm Resources Laboratory, Beltsville, MD, 20705, USA.
| |
Collapse
|
21
|
Kwon SJ, Jin M, Cho IS, Yoon JY, Choi GS. Identification of rehmannia virus 1, a novel putative member of the genus Closterovirus, from Rehmannia glutinosa. Arch Virol 2018; 163:3383-3388. [PMID: 30191375 DOI: 10.1007/s00705-018-4014-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 08/10/2018] [Indexed: 11/26/2022]
Abstract
Transcriptome sequencing analysis of a symptomatic Rehmannia glutinosa plant revealed a virome containing two known RNA viruses and one novel virus. In this study, we examined the molecular and biological characteristics of the novel virus. The complete genome of the novel virus is composed of monopartite single-stranded RNA of 15,322 nucleotides with 69% nucleotide sequence identity (with 68% coverage) to tobacco virus 1. Its genome organization is typical of the members of the genus Closterovirus, containing nine putative open reading frames. Molecular and phylogenetic analyses of the genome and encoded protein sequences strongly support that the identified virus is a new species of the genus Closterovirus in the family Closteroviridae. The name rehmannia virus 1 (ReV1) is proposed for this novel virus.
Collapse
Affiliation(s)
- Sun-Jung Kwon
- Horticultural and Herbal Crop Environment Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Wanju, 55365, Republic of Korea.
| | - Meilan Jin
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, Rural Development Administration, Eumseong, 27709, Republic of Korea
| | - In-Sook Cho
- Horticultural and Herbal Crop Environment Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Wanju, 55365, Republic of Korea
| | - Ju-Yeon Yoon
- Horticultural and Herbal Crop Environment Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Wanju, 55365, Republic of Korea
| | - Gug-Seoun Choi
- Horticultural and Herbal Crop Environment Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Wanju, 55365, Republic of Korea
| |
Collapse
|
22
|
Qiao W, Helpio EL, Falk BW. Two Crinivirus-Conserved Small Proteins, P5 and P9, Are Indispensable for Efficient Lettuce infectious yellows virus Infectivity in Plants. Viruses 2018; 10:E459. [PMID: 30154314 PMCID: PMC6163742 DOI: 10.3390/v10090459] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 08/24/2018] [Accepted: 08/27/2018] [Indexed: 01/06/2023] Open
Abstract
Genomic analysis of Lettuce infectious yellows virus (LIYV) has revealed two short open reading frames (ORFs) on LIYV RNA2, that are predicted to encode a 5-kDa (P5) and a 9-kDa (P9) protein. The P5 ORF is part of the conserved quintuple gene block in the family Closteroviridae, while P9 orthologs are found in all Criniviruses. In this study, the expression of LIYV P5 and P9 proteins was confirmed; P5 is further characterized as an endoplasmic reticulum (ER)-localized integral transmembrane protein and P9 is a soluble protein. The knockout LIYV mutants presented reduced symptom severity and virus accumulation in Nicotiana benthamiana or lettuce plants, indicating their importance in efficient virus infection. The P5 mutant was successfully complemented by a dislocated P5 in the LIYV genome. The structural regions of P5 were tested and all were found to be required for the appropriate functions of P5. In addition, P5, as well as its ortholog P6, encoded by Citrus tristeza virus (CTV) and another ER-localized protein encoded by LIYV RNA1, were found to cause cell death when expressed in N. benthamiana plants from a TMV vector, and induce ER stress and the unfolded protein response (UPR).
Collapse
Affiliation(s)
- Wenjie Qiao
- Department of Plant Pathology, University of California, Davis, CA 95616, USA.
| | - Erin L Helpio
- Department of Plant Pathology, University of California, Davis, CA 95616, USA.
| | - Bryce W Falk
- Department of Plant Pathology, University of California, Davis, CA 95616, USA.
| |
Collapse
|
23
|
Koloniuk I, Thekke-Veetil T, Reynard JS, Mavrič Pleško I, Přibylová J, Brodard J, Kellenberger I, Sarkisova T, Špak J, Lamovšek J, Massart S, Ho T, Postman JD, Tzanetakis IE. Molecular Characterization of Divergent Closterovirus Isolates Infecting Ribes Species. Viruses 2018; 10:E369. [PMID: 30002359 PMCID: PMC6071065 DOI: 10.3390/v10070369] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 07/06/2018] [Accepted: 07/10/2018] [Indexed: 11/17/2022] Open
Abstract
Five isolates of a new member of the family Closteroviridae, tentatively named blackcurrant leafroll-associated virus 1 (BcLRaV-1), were identified in the currant. The 17-kb-long genome codes for 10 putative proteins. The replication-associated polyprotein has several functional domains, including papain-like proteases, methyltransferase, Zemlya, helicase, and RNA-dependent RNA polymerase. Additional open reading frames code for a small protein predicted to integrate into the host cell wall, a heat-shock protein 70 homolog, a heat-shock protein 90 homolog, two coat proteins, and three proteins of unknown functions. Phylogenetic analysis showed that BcLRaV-1 is related to members of the genus Closterovirus, whereas recombination analysis provided evidence of intraspecies recombination.
Collapse
Affiliation(s)
- Igor Koloniuk
- Department of Plant Virology, Institute of Plant Molecular Biology, Biology Centre of the Academy of Sciences of the Czech Republic, v.v.i., Branišovská 31, 370 05 České Budějovice, Czech Republic.
| | - Thanuja Thekke-Veetil
- Department of Plant Pathology, Division of Agriculture, University of Arkansas System, Fayetteville, AR 72701, USA.
| | | | - Irena Mavrič Pleško
- Agricultural Institute of Slovenia, Hacquetova ulica 17, 1000 Ljubljana, Slovenia.
| | - Jaroslava Přibylová
- Department of Plant Virology, Institute of Plant Molecular Biology, Biology Centre of the Academy of Sciences of the Czech Republic, v.v.i., Branišovská 31, 370 05 České Budějovice, Czech Republic.
| | - Justine Brodard
- Virology-Phytoplasmology Laboratory, Agroscope, 1260 Nyon, Switzerland.
| | | | - Tatiana Sarkisova
- Department of Plant Virology, Institute of Plant Molecular Biology, Biology Centre of the Academy of Sciences of the Czech Republic, v.v.i., Branišovská 31, 370 05 České Budějovice, Czech Republic.
| | - Josef Špak
- Department of Plant Virology, Institute of Plant Molecular Biology, Biology Centre of the Academy of Sciences of the Czech Republic, v.v.i., Branišovská 31, 370 05 České Budějovice, Czech Republic.
| | - Janja Lamovšek
- Agricultural Institute of Slovenia, Hacquetova ulica 17, 1000 Ljubljana, Slovenia.
| | - Sebastien Massart
- Plant Pathology Laboratory, TERRA-Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés, 2, 5030 Gembloux, Belgium.
| | - Thien Ho
- Department of Plant Pathology, Division of Agriculture, University of Arkansas System, Fayetteville, AR 72701, USA.
| | - Joseph D Postman
- National Clonal Germplasm Repository, United States Department of Agriculture, Corvallis, OR 97333, USA.
| | - Ioannis E Tzanetakis
- Department of Plant Pathology, Division of Agriculture, University of Arkansas System, Fayetteville, AR 72701, USA.
| |
Collapse
|
24
|
Fu S, Xu Y, Li C, Li Y, Wu J, Zhou X. Rice Stripe Virus Interferes with S-acylation of Remorin and Induces Its Autophagic Degradation to Facilitate Virus Infection. MOLECULAR PLANT 2018; 11:269-287. [PMID: 29229567 DOI: 10.1016/j.molp.2017.11.011] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 11/02/2017] [Accepted: 11/23/2017] [Indexed: 05/23/2023]
Abstract
Remorins are plant-specific membrane-associated proteins and were proposed to play crucial roles in plant-pathogen interactions. However, little is known about how pathogens counter remorin-mediated host responses. In this study, by quantitative whole-proteome analysis we found that the remorin protein (NbREM1) is downregulated early in Rice stripe virus (RSV) infection. We further discovered that the turnover of NbREM1 is regulated by S-acylation modification and its degradation is mediated mainly through the autophagy pathway. Interestingly, RSV can interfere with the S-acylation of NbREM1, which is required to negatively regulate RSV infection by restricting virus cell-to-cell trafficking. The disruption of NbREM1 S-acylation affects its targeting to the plasma membrane microdomain, and the resulting accumulation of non-targeted NbREM1 is subjected to autophagic degradation, causing downregulation of NbREM1. Moreover, we found that RSV-encoded movement protein, NSvc4, alone can interfere with NbREM1 S-acylation through binding with the C-terminal domain of NbREM1 the S-acylation of OsREM1.4, the homologous remorin of NbREM1, and thus remorin-mediated defense against RSV in rice, the original host of RSV, indicating that downregulation of the remorin protein level by interfering with its S-acylation is a common strategy adopted by RSV to overcome remorin-mediated inhibition of virus movement.
Collapse
Affiliation(s)
- Shuai Fu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yi Xu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Chenyang Li
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yi Li
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Jianxiang Wu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Xueping Zhou
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
25
|
Occhialini A. Visualization of RMRs (Receptor Membrane RING-H2) Dimerization in Nicotiana benthamiana Leaves Using a Bimolecular Fluorescence Complementation (BiFC) Assay. Methods Mol Biol 2018; 1789:177-194. [PMID: 29916080 DOI: 10.1007/978-1-4939-7856-4_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
The bimolecular fluorescent complementation (BiFC) is a fluorescent complementation method largely used to investigate protein-protein interaction in living cells. This method is based on the ability of two nonfluorescent fragments to assemble forming a native fluorescent reporter with the same spectral properties of the native reporter. Such fragments are fused to putative protein partners that in case of interaction will bring the two halves in close proximity, allowing for the reconstitution of an active fluorescent reporter. The BiFC has been used to investigate protein-protein interaction in a number of different organisms, including plants. In plant cells, many essential pathways of protein trafficking and subcellular localization necessitate the intervention of several protein units organized in multisubunit complexes. It is well known that vacuolar sorting of many secretory soluble proteins require the intervention of specific transmembrane cargo receptors able to interact forming dimers. In this chapter we describe a BiFC method for the efficient visualization of RMR (Receptor Membrane RING-H2) type 2 dimerization in agro-infiltrated Nicotiana benthamiana leaves. Furthermore, this relatively simple method represents an optimal strategy to test protein-protein interaction using any other putative protein partners of interest in plant cells.
Collapse
Affiliation(s)
- Alessandro Occhialini
- Department of Food Science, University of Tennessee, Food Safety and Processing Building, 2600 River Dr., Knoxville, Tennessee, TN, 37996, USA.
| |
Collapse
|
26
|
Mei Y, Yang X, Huang C, Zhang X, Zhou X. Tomato leaf curl Yunnan virus-encoded C4 induces cell division through enhancing stability of Cyclin D 1.1 via impairing NbSKη -mediated phosphorylation in Nicotiana benthamiana. PLoS Pathog 2018; 14:e1006789. [PMID: 29293689 PMCID: PMC5766254 DOI: 10.1371/journal.ppat.1006789] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 01/12/2018] [Accepted: 12/04/2017] [Indexed: 12/27/2022] Open
Abstract
The whitefly-transmitted geminiviruses induce severe developmental abnormalities in plants. Geminivirus-encoded C4 protein functions as one of viral symptom determinants that could induce abnormal cell division. However, the molecular mechanism by which C4 contributes to cell division induction remains unclear. Here we report that tomato leaf curl Yunnan virus (TLCYnV) C4 interacts with a glycogen synthase kinase 3 (GSK3)/SHAGGY-like kinase, designed NbSKη, in Nicotiana benthamiana. Pro32, Asn34 and Thr35 of TLCYnV C4 are critical for its interaction with NbSKη and required for C4-induced typical symptoms. Interestingly, TLCYnV C4 directs NbSKη to the membrane and reduces the nuclear-accumulation of NbSKη. The relocalization of NbSKη impairs phosphorylation dependent degradation on its substrate-Cyclin D1.1 (NbCycD1;1), thereby increasing the accumulation level of NbCycD1;1 and inducing the cell division. Moreover, NbSKη-RNAi, 35S::NbCycD1;1 transgenic N. benthamiana plants have the similar phenotype as 35S::C4 transgenic N. benthamiana plants on callus-like tissue formation resulted from abnormal cell division induction. Thus, this study provides new insights into mechanism of how a viral protein hijacks NbSKη to induce abnormal cell division in plants.
Collapse
Affiliation(s)
- Yuzhen Mei
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiuling Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Changjun Huang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, United States of America
- Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, United States of America
| | - Xiuren Zhang
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, United States of America
- Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, United States of America
| | - Xueping Zhou
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
27
|
Solovyev AG, Morozov SY. Non-replicative Integral Membrane Proteins Encoded by Plant Alpha-Like Viruses: Emergence of Diverse Orphan ORFs and Movement Protein Genes. FRONTIERS IN PLANT SCIENCE 2017; 8:1820. [PMID: 29163564 PMCID: PMC5663686 DOI: 10.3389/fpls.2017.01820] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Accepted: 10/06/2017] [Indexed: 06/07/2023]
Abstract
Fast accumulation of sequencing data on plant virus genomes and plant transcriptomes demands periodic re-evaluation of current views on the genome evolution of viruses. Here, we substantiate and further detail our previously mostly speculative model on the origin and evolution of triple gene block (TGB) encoding plant virus movement proteins TGB1, TGB2, and TGB3. Recent experimental data on functional competence of transport gene modules consisting of two proteins related to TGB1 and TGB2, as well as sequence analysis data on similarity of TGB2 and TGB3 encoded by a viral genome and virus-like RNAs identified in a plant transcriptomes, suggest that TGB evolution involved events of gene duplication and gene transfer between viruses. In addition, our analysis identified that plant RNA-seq data assembled into RNA virus-like contigs encode a significant variety of hydrophobic proteins. Functions of these orphan proteins are still obscure; however, some of them are obviously related to hydrophobic virion proteins of recently sequenced invertebrate (mostly insect) viruses, therefore supporting the current view on a common origin for many groups of plant and insect RNA-containing viruses. Moreover, these findings may suggest that the function of at least some orphan hydrophobic proteins is to provide plant viruses with the ability to infect insect hosts. In general, our observations emphasize that comparison of RNA virus sequences in a large variety of land plants and algae isolated geographically and ecologically may lead to experimental confirmation of previously purely speculative schemes of evolution of single genes, gene modules, and whole genomes.
Collapse
Affiliation(s)
- Andrey G. Solovyev
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Sergey Y. Morozov
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia
- Department of Virology, Biological Faculty, Moscow State University, Moscow, Russia
| |
Collapse
|
28
|
Qiao W, Medina V, Falk BW. Inspirations on Virus Replication and Cell-to-Cell Movement from Studies Examining the Cytopathology Induced by Lettuce infectious yellows virus in Plant Cells. FRONTIERS IN PLANT SCIENCE 2017; 8:1672. [PMID: 29021801 PMCID: PMC5623981 DOI: 10.3389/fpls.2017.01672] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 09/12/2017] [Indexed: 05/06/2023]
Abstract
Lettuce infectious yellows virus (LIYV) is the type member of the genus Crinivirus in the family Closteroviridae. Like many other positive-strand RNA viruses, LIYV infections induce a number of cytopathic changes in plant cells, of which the two most characteristic are: Beet yellows virus-type inclusion bodies composed of vesicles derived from cytoplasmic membranes; and conical plasmalemma deposits (PLDs) located at the plasmalemma over plasmodesmata pit fields. The former are not only found in various closterovirus infections, but similar structures are known as 'viral factories' or viroplasms in cells infected with diverse types of animal and plant viruses. These are generally sites of virus replication, virion assembly and in some cases are involved in cell-to-cell transport. By contrast, PLDs induced by the LIYV-encoded P26 non-virion protein are not involved in replication but are speculated to have roles in virus intercellular movement. These deposits often harbor LIYV virions arranged to be perpendicular to the plasma membrane over plasmodesmata, and our recent studies show that P26 is required for LIYV systemic plant infection. The functional mechanism of how LIYV P26 facilitates intercellular movement remains unclear, however, research on other plant viruses provides some insights on the possible ways of viral intercellular movement through targeting and modifying plasmodesmata via interactions between plant cellular components and viral-encoded factors. In summary, beginning with LIYV, we review the studies that have uncovered the biological determinants giving rise to these cytopathological effects and their importance in viral replication, virion assembly and intercellular movement during the plant infection by closteroviruses, and compare these findings with those for other positive-strand RNA viruses.
Collapse
Affiliation(s)
- Wenjie Qiao
- Department of Plant Pathology, University of California, Davis, Davis, CA, United States
| | - Vicente Medina
- Department of Crop and Forest Sciences, University of Lleida, Lleida, Spain
| | - Bryce W. Falk
- Department of Plant Pathology, University of California, Davis, Davis, CA, United States
| |
Collapse
|
29
|
Kang SH, Dao TNM, Kim OK, Folimonova SY. Self-interaction of Citrus tristeza virus p33 protein via N-terminal helix. Virus Res 2017; 233:29-34. [PMID: 28279804 DOI: 10.1016/j.virusres.2017.03.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 02/28/2017] [Accepted: 03/04/2017] [Indexed: 11/28/2022]
Abstract
Citrus tristeza virus (CTV), the most economically important viral pathogen of citrus, encodes a unique protein, p33. CTV p33 shows no similarity with other known proteins, yet plays an important role in viral pathogenesis: it extends the virus host range and mediates virus ability to exclude superinfection by other variants of the virus. Previously we demonstrated that p33 is an integral membrane protein and appears to share characteristics of viral movement proteins. In this study, we show that the p33 protein self-interacts in vitro and in vivo using co-immunoprecipitation, yeast two hybrid, and bimolecular fluorescence complementation assays. Furthermore, a helix located at the N-terminus of the protein is required and sufficient for the protein self-interaction.
Collapse
Affiliation(s)
- Sung-Hwan Kang
- University of Florida, Plant Pathology Department, Gainesville, FL 32611, USA
| | - Thi Nguyet Minh Dao
- University of Florida, Plant Pathology Department, Gainesville, FL 32611, USA
| | - Ok-Kyung Kim
- University of Florida, Plant Pathology Department, Gainesville, FL 32611, USA
| | | |
Collapse
|
30
|
Meng B, Martelli GP, Golino DA, Fuchs M. Biotechnology Applications of Grapevine Viruses. GRAPEVINE VIRUSES: MOLECULAR BIOLOGY, DIAGNOSTICS AND MANAGEMENT 2017. [PMCID: PMC7120854 DOI: 10.1007/978-3-319-57706-7_31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Plant virus genomes are engineered as vectors for functional genomics and production of foreign proteins. The application of plant virus vectors is of potential interest to the worldwide, multibillion dollar, grape and wine industries. These applications include grapevine functional genomics, pathogen control, and production of beneficial proteins such as vaccines and enzymes. However, grapevine virus biology exerts certain limitations on the utility of the virus-derived gene expression and RNA interference vectors. As is typical for viruses infecting woody plants, several grapevine viruses exhibit prolonged infection cycles and relatively low overall accumulation levels, mainly because of their phloem-specific pattern of systemic infection. Here we consider the biotechnology potential of grapevine virus vectors with a special emphasis on members of the families Closteroviridae and Betaflexiviridae.
Collapse
Affiliation(s)
- Baozhong Meng
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario Canada
| | - Giovanni P. Martelli
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Deborah A. Golino
- Foundation Plant Services, University of California, Davis, California USA
| | - Marc Fuchs
- Section of Plant Pathology and Plant-Microbe Biology, School of Integrative Plant Science, New York State Agricultural Experiment Station, Cornell University, Geneva, New York USA
| |
Collapse
|
31
|
Occhialini A, Gouzerh G, Di Sansebastiano GP, Neuhaus JM. Dimerization of the Vacuolar Receptors AtRMR1 and -2 from Arabidopsis thaliana Contributes to Their Localization in the trans-Golgi Network. Int J Mol Sci 2016; 17:E1661. [PMID: 27706038 PMCID: PMC5085694 DOI: 10.3390/ijms17101661] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 09/23/2016] [Accepted: 09/23/2016] [Indexed: 01/03/2023] Open
Abstract
In Arabidopsis thaliana, different types of vacuolar receptors were discovered. The AtVSR (Vacuolar Sorting Receptor) receptors are well known to be involved in the traffic to lytic vacuole (LV), while few evidences demonstrate the involvement of the receptors from AtRMR family (Receptor Membrane RING-H2) in the traffic to the protein storage vacuole (PSV). In this study we focused on the localization of two members of AtRMR family, AtRMR1 and -2, and on the possible interaction between these two receptors in the plant secretory pathway. Our experiments with agroinfiltrated Nicotiana benthamiana leaves demonstrated that AtRMR1 was localized in the endoplasmic reticulum (ER), while AtRMR2 was targeted to the trans-Golgi network (TGN) due to the presence of a cytosolic 23-amino acid sequence linker. The fusion of this linker to an equivalent position in AtRMR1 targeted this receptor to the TGN, instead of the ER. By using a Bimolecular Fluorescent Complementation (BiFC) technique and experiments of co-localization, we demonstrated that AtRMR2 can make homodimers, and can also interact with AtRMR1 forming heterodimers that locate to the TGN. Such interaction studies strongly suggest that the transmembrane domain and the few amino acids surrounding it, including the sequence linker, are essential for dimerization. These results suggest a new model of AtRMR trafficking and dimerization in the plant secretory pathway.
Collapse
Affiliation(s)
- Alessandro Occhialini
- Plant Biology and Crop Science, Rothamsted Research, Harpenden, AL5 2JQ Herts, UK.
- Laboratory of Cell and Molecular Biology, Institute of Biology, University of Neuchâtel, Rue Emile-Argand 11, CH-2009 Neuchâtel, Switzerland.
| | - Guillaume Gouzerh
- Laboratory of Cell and Molecular Biology, Institute of Biology, University of Neuchâtel, Rue Emile-Argand 11, CH-2009 Neuchâtel, Switzerland.
| | - Gian-Pietro Di Sansebastiano
- DISTEBA, Department of Biological and Environmental Sciences and Technologies, University of Salento, Campus Ecotekne, 73100 Lecce, Italy.
| | - Jean-Marc Neuhaus
- Laboratory of Cell and Molecular Biology, Institute of Biology, University of Neuchâtel, Rue Emile-Argand 11, CH-2009 Neuchâtel, Switzerland.
| |
Collapse
|
32
|
Wang F, Qi S, Gao Z, Akinyemi IA, Xu D, Zhou B. Complete genome sequence of tobacco virus 1, a closterovirus from Nicotiana tabacum. Arch Virol 2016; 161:1087-90. [PMID: 26795159 DOI: 10.1007/s00705-015-2739-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 12/19/2015] [Indexed: 11/30/2022]
Abstract
The complete genome sequence of a novel virus, provisionally named tobacco virus 1 (TV1), was determined, and this virus was identified in leaves of tobacco (Nicotiana tabacum) exhibiting leaf mosaic and yellowing symptoms in Anhui Province, China. The genome sequence of TV1 consists of 15,395 nucleotides with 61.6 % nucleotide sequence identity to mint virus 1 (MV1). Its genome organization is similar to that of MV1, containing nine open reading frames (ORFs) that potentially encode proteins with putative functions in virion assembly, cell-to-cell movement and suppression of RNA silencing. Phylogenetic analysis of the heat shock protein 70 homolog (HSP70h) placed TV1 alongside members of the genus Closterovirus in the family Closteroviridae. To our knowledge, this study is the first report of the complete genome sequence of a closterovirus identified in tobacco.
Collapse
Affiliation(s)
- Fang Wang
- Tobacco Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, Anhui, China
| | - Shuishui Qi
- School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Zhengliang Gao
- Tobacco Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, Anhui, China
| | - Ibukun A Akinyemi
- School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Dafeng Xu
- Tobacco Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, Anhui, China
| | - Benguo Zhou
- Tobacco Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, Anhui, China.
| |
Collapse
|
33
|
Feng Z, Xue F, Xu M, Chen X, Zhao W, Garcia-Murria MJ, Mingarro I, Liu Y, Huang Y, Jiang L, Zhu M, Tao X. The ER-Membrane Transport System Is Critical for Intercellular Trafficking of the NSm Movement Protein and Tomato Spotted Wilt Tospovirus. PLoS Pathog 2016; 12:e1005443. [PMID: 26863622 PMCID: PMC4749231 DOI: 10.1371/journal.ppat.1005443] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 01/17/2016] [Indexed: 12/15/2022] Open
Abstract
Plant viruses move through plasmodesmata to infect new cells. The plant endoplasmic reticulum (ER) is interconnected among cells via the ER desmotubule in the plasmodesma across the cell wall, forming a continuous ER network throughout the entire plant. This ER continuity is unique to plants and has been postulated to serve as a platform for the intercellular trafficking of macromolecules. In the present study, the contribution of the plant ER membrane transport system to the intercellular trafficking of the NSm movement protein and Tomato spotted wilt tospovirus (TSWV) is investigated. We showed that TSWV NSm is physically associated with the ER membrane in Nicotiana benthamiana plants. An NSm-GFP fusion protein transiently expressed in single leaf cells was trafficked into neighboring cells. Mutations in NSm that impaired its association with the ER or caused its mis-localization to other subcellular sites inhibited cell-to-cell trafficking. Pharmacological disruption of the ER network severely inhibited NSm-GFP trafficking but not GFP diffusion. In the Arabidopsis thaliana mutant rhd3 with an impaired ER network, NSm-GFP trafficking was significantly reduced, whereas GFP diffusion was not affected. We also showed that the ER-to-Golgi secretion pathway and the cytoskeleton transport systems were not involved in the intercellular trafficking of TSWV NSm. Importantly, TSWV cell-to-cell spread was delayed in the ER-defective rhd3 mutant, and this reduced viral infection was not due to reduced replication. On the basis of robust biochemical, cellular and genetic analysis, we established that the ER membrane transport system serves as an important direct route for intercellular trafficking of NSm and TSWV.
Collapse
Affiliation(s)
- Zhike Feng
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Fan Xue
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Min Xu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Xiaojiao Chen
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Wenyang Zhao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Maria J. Garcia-Murria
- Departament de Bioquímica i Biologia Molecular, Universitat de València, Burjassot, Spain
| | - Ismael Mingarro
- Departament de Bioquímica i Biologia Molecular, Universitat de València, Burjassot, Spain
| | - Yong Liu
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, People's Republic of China
| | - Ying Huang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Lei Jiang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Min Zhu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Xiaorong Tao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, People's Republic of China
| |
Collapse
|
34
|
Bak A, Folimonova SY. The conundrum of a unique protein encoded by citrus tristeza virus that is dispensable for infection of most hosts yet shows characteristics of a viral movement protein. Virology 2015; 485:86-95. [PMID: 26210077 DOI: 10.1016/j.virol.2015.07.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Revised: 07/03/2015] [Accepted: 07/04/2015] [Indexed: 11/22/2022]
Abstract
Citrus tristeza virus (CTV), one of the most economically important viruses, produces a unique protein, p33, which is encoded only in the genomes of isolates of CTV. Recently, we demonstrated that membrane association of the p33 protein confers virus ability to extend its host range. In this work we show that p33 shares characteristics of viral movement proteins. Upon expression in a host cell, the protein localizes to plasmodesmata and displays the ability to form extracellular tubules. Furthermore, p33 appears to traffic via the cellular secretory pathway and the actin network to plasmodesmata locations and is likely being recycled through the endocytic pathway. Finally, our study reveals that p33 colocalizes with a putative movement protein of CTV, the p6 protein. These results suggest a potential role of p33 as a noncanonical viral movement protein, which mediates virus translocation in the specific hosts.
Collapse
Affiliation(s)
- Aurélie Bak
- University of Florida, Plant Pathology Department, Gainesville, FL 32611, USA
| | | |
Collapse
|
35
|
Yu H, Qi S, Chang Z, Rong Q, Akinyemi IA, Wu Q. Complete genome sequence of a novel velarivirus infecting areca palm in China. Arch Virol 2015; 160:2367-70. [PMID: 26088445 DOI: 10.1007/s00705-015-2489-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Accepted: 06/06/2015] [Indexed: 10/23/2022]
Abstract
The complete genome of a novel virus, provisionally named areca palm velarivirus 1 (APV1), was identified in areca palm exhibiting leaf yellowing symptoms in Hainan province, China. The genome of APV1 consists of 16,080 nucleotides and possesses 11 open reading frames (ORFs), sharing 56.4% nucleotide sequence identity with little cherry virus 1 (NC_001836.1). The genome organization of APV1 is highly similar to that of members of the genus Velarivirus (family Closteroviridae). Phylogenetic analysis placed APV1 together with members of the genus Velarivirus.
Collapse
Affiliation(s)
- Hongmei Yu
- School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | | | | | | | | | | |
Collapse
|
36
|
Kang SH, Bak A, Kim OK, Folimonova SY. Membrane association of a nonconserved viral protein confers virus ability to extend its host range. Virology 2015; 482:208-17. [PMID: 25880112 DOI: 10.1016/j.virol.2015.03.047] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 03/17/2015] [Accepted: 03/20/2015] [Indexed: 12/16/2022]
Abstract
Citrus tristeza virus (CTV), the largest and most complex member of the family Closteroviridae, encodes a unique protein, p33, which shows no homology with other known proteins, however, plays an important role in virus pathogenesis. In this study, we examined some of the characteristics of p33. We show that p33 is a membrane-associated protein that is inserted into the membrane via a transmembrane helix formed by hydrophobic amino acid residues at the C-terminal end of the protein. Removal of this transmembrane domain (TMD) dramatically altered the intracellular localization of p33. Moreover, the TMD alone was sufficient to confer membrane localization of an unrelated protein. Finally, a CTV variant that produced a truncated p33 lacking the TMD was unable to infect sour orange, one of the selected virus hosts, which infection requires p33, suggesting that membrane association of p33 is important for the ability of CTV to extend its host range.
Collapse
Affiliation(s)
- Sung-Hwan Kang
- University of Florida, Plant Pathology Department, Gainesville, FL 32611, USA
| | - Aurélie Bak
- University of Florida, Plant Pathology Department, Gainesville, FL 32611, USA
| | - Ok-Kyung Kim
- University of Florida, Plant Pathology Department, Gainesville, FL 32611, USA
| | | |
Collapse
|
37
|
Leastro M, Pallás V, Resende R, Sánchez-Navarro J. The movement proteins (NSm) of distinct tospoviruses peripherally associate with cellular membranes and interact with homologous and heterologous NSm and nucleocapsid proteins. Virology 2015; 478:39-49. [DOI: 10.1016/j.virol.2015.01.031] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 01/06/2015] [Accepted: 01/31/2015] [Indexed: 01/26/2023]
|
38
|
Prokhnevsky A, Mamedov T, Leffet B, Rahimova R, Ghosh A, Mett V, Yusibov V. Development of a single-replicon miniBYV vector for co-expression of heterologous proteins. Mol Biotechnol 2015; 57:101-10. [PMID: 25280556 DOI: 10.1007/s12033-014-9806-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In planta production of recombinant proteins, including vaccine antigens and monoclonal antibodies, continues gaining acceptance. With the broadening range of target proteins, the need for vectors with higher performance is increasing. Here, we have developed a single-replicon vector based on beet yellows virus (BYV) that enables co-delivery of two target genes into the same host cell, resulting in transient expression of each target. This BYV vector maintained genetic stability during systemic spread throughout the host plant, Nicotiana benthamiana. Furthermore, we have engineered a miniBYV vector carrying the sequences encoding heavy and light chains of a monoclonal antibody (mAb) against protective antigen (PA) of Bacillius anthracis, and achieved the expression of the full-length functional anti-PA mAb at ~300 mg/kg of fresh leaf tissue. To demonstrate co-expression and functionality of two independent proteins, we cloned the sequences of the Pfs48/45 protein of Plasmodium falciparum and endoglycosidase F (PNGase F) from Flavobacterium meningosepticum into the miniBYV vector under the control of two subgenomic RNA promoters. Agroinfiltration of N. benthamiana with this miniBYV vector resulted in accumulation of biologically active Pfs48/45 that was devoid of N-linked glycosylation and had correct conformation and epitope display. Overall, our findings demonstrate that the new BYV-based vector is capable of co-expressing two functionally active recombinant proteins within the same host cell.
Collapse
Affiliation(s)
- Alex Prokhnevsky
- Fraunhofer USA Center for Molecular Biotechnology, 9 Innovation Way, Suite 200, Newark, DE, 19711, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Mushegian AR, Elena SF. Evolution of plant virus movement proteins from the 30K superfamily and of their homologs integrated in plant genomes. Virology 2015; 476:304-315. [DOI: 10.1016/j.virol.2014.12.012] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 12/04/2014] [Accepted: 12/06/2014] [Indexed: 12/01/2022]
|
40
|
Abstract
The symplastic communication network established by plasmodesmata (PD) and connected phloem provides an essential pathway for spatiotemporal intercellular signaling in plant development but is also exploited by viruses for moving their genomes between cells in order to infect plants systemically. Virus movement depends on virus-encoded movement proteins (MPs) that target PD and therefore represent important keys to the cellular mechanisms underlying the intercellular trafficking of viruses and other macromolecules. Viruses and their MPs have evolved different mechanisms for intracellular transport and interaction with PD. Some viruses move from cell to cell by interacting with cellular mechanisms that control the size exclusion limit of PD whereas other viruses alter the PD architecture through assembly of specialized transport structures within the channel. Some viruses move between cells in the form of assembled virus particles whereas other viruses may interact with nucleic acid transport mechanisms to move their genomes in a non-encapsidated form. Moreover, whereas several viruses rely on the secretory pathway to target PD, other viruses interact with the cortical endoplasmic reticulum and associated cytoskeleton to spread infection. This chapter provides an introduction into viruses and their role in studying the diverse cellular mechanisms involved in intercellular PD-mediated macromolecular trafficking.
Collapse
Affiliation(s)
- Manfred Heinlein
- Institut de Biologie Moléculaire des Plantes (IBMP), Centre National de la Recherche Scientifique (CNRS), 12 rue du Général Zimmer, 67084, Strasbourg, France,
| |
Collapse
|
41
|
Naidu RA, Maree HJ, Burger JT. Grapevine leafroll disease and associated viruses: a unique pathosystem. ANNUAL REVIEW OF PHYTOPATHOLOGY 2015; 53:613-34. [PMID: 26243729 DOI: 10.1146/annurev-phyto-102313-045946] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Grapevine leafroll is the most complex and intriguing viral disease of grapevine (Vitis spp.). Several monopartite closteroviruses (family Closteroviridae) from grapevines have been molecularly characterized, yet their role in disease etiology is not completely resolved. Hence, these viruses are currently designated under the umbrella term of Grapevine leafroll-associated viruses (GLRaVs). This review examines our current understanding of the genetically divergent GLRaVs and highlights the emerging picture of several unique aspects of the leafroll disease pathosystem. A systems biology approach using contemporary technologies in molecular biology, -omics, and cell biology aids in exploring the comparative molecular biology of GLRaVs and deciphering the complex network of host-virus-vector interactions to bridge the gap between genomics and phenomics of leafroll disease. In addition, grapevine-infecting closteroviruses have a great potential as designer viruses to pursue functional genomics and for the rational design of novel disease intervention strategies in this agriculturally important perennial fruit crop.
Collapse
Affiliation(s)
- Rayapati A Naidu
- Department of Plant Pathology, Irrigated Agriculture Research and Extension Center, Washington State University, Prosser, Washington 99350;
| | | | | |
Collapse
|
42
|
Affiliation(s)
- Jean-François Laliberté
- INRS–Institut Armand-Frappier, Institut National de la Recherche Scientifique, Laval, Québec H7V 1B7, Canada;
| | - Huanquan Zheng
- Department of Biology, McGill University, Montréal, Québec H3A 1B1, Canada;
| |
Collapse
|
43
|
Groundnut bud necrosis virus encoded NSm associates with membranes via its C-terminal domain. PLoS One 2014; 9:e99370. [PMID: 24919116 PMCID: PMC4053438 DOI: 10.1371/journal.pone.0099370] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 05/13/2014] [Indexed: 12/14/2022] Open
Abstract
Groundnut Bud Necrosis Virus (GBNV) is a tripartite ambisense RNA plant virus that belongs to serogroup IV of Tospovirus genus. Non-Structural protein-m (NSm), which functions as movement protein in tospoviruses, is encoded by the M RNA. In this communication, we demonstrate that despite the absence of any putative transmembrane domain, GBNV NSm associates with membranes when expressed in E. coli as well as in N. benthamiana. Incubation of refolded NSm with liposomes ranging in size from 200–250 nm resulted in changes in the secondary and tertiary structure of NSm. A similar behaviour was observed in the presence of anionic and zwitterionic detergents. Furthermore, the morphology of the liposomes was found to be modified in the presence of NSm. Deletion of coiled coil domain resulted in the inability of in planta expressed NSm to interact with membranes. Further, when the C-terminal coiled coil domain alone was expressed, it was found to be associated with membrane. These results demonstrate that NSm associates with membranes via the C-terminal coiled coil domain and such an association may be important for movement of viral RNA from cell to cell.
Collapse
|
44
|
Verchot J. The ER quality control and ER associated degradation machineries are vital for viral pathogenesis. FRONTIERS IN PLANT SCIENCE 2014; 5:66. [PMID: 24653727 DOI: 10.3389/fpls.2014.00066/abstract] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 02/07/2014] [Indexed: 05/24/2023]
Abstract
The endoplasmic reticulum (ER) is central to protein production and membrane lipid synthesis. The unfolded protein response (UPR) supports cellular metabolism by ensuring protein quality control in the ER. Most positive strand RNA viruses cause extensive remodeling of membranes and require active membrane synthesis to promote infection. How viruses interact with the cellular machinery controlling membrane metabolism is largely unknown. Furthermore, there is mounting data pointing to the importance of the UPR and ER associated degradation (ERAD) machineries in viral pathogenesis in eukaryotes emerging topic. For many viruses, the UPR is an early event that is essential for persistent infection and benefits virus replication. In addition, many viruses are reported to commandeer ER resident chaperones to contribute to virus replication and intercellular movement. In particular, calreticulin, the ubiquitin machinery, and the 26S proteasome are most commonly identified components of the UPR and ERAD machinery that also regulate virus infection. In addition, researchers have noted a link between UPR and autophagy. It is well accepted that positive strand RNA viruses use autophagic membranes as scaffolds to support replication and assembly. However this topic has yet to be explored using plant viruses. The goal of research on this topic is to uncover how viruses interact with this ER-related machinery and to use this information for designing novel strategies to boost immune responses to virus infection.
Collapse
Affiliation(s)
- Jeanmarie Verchot
- Department of Entomology and Plant Pathology, Oklahoma State University Stillwater, OK, USA
| |
Collapse
|
45
|
Yao M, Liu X, Li S, Xu Y, Zhou Y, Zhou X, Tao X. Rice stripe tenuivirus NSvc2 glycoproteins targeted to the golgi body by the N-terminal transmembrane domain and adjacent cytosolic 24 amino acids via the COP I- and COP II-dependent secretion pathway. J Virol 2014; 88:3223-34. [PMID: 24390331 PMCID: PMC3957912 DOI: 10.1128/jvi.03006-13] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 12/24/2013] [Indexed: 01/28/2023] Open
Abstract
UNLABELLED The NSvc2 glycoproteins encoded by Rice stripe tenuivirus (RSV) share many characteristics common to the glycoproteins found among Bunyaviridae. Within this viral family, glycoproteins targeting to the Golgi apparatus play a pivotal role in the maturation of the enveloped spherical particles. RSV particles, however, adopt a long filamentous morphology. Recently, RSV NSvc2 glycoproteins were shown to localize exclusively to the ER in Sf9 insect cells. Here, we demonstrate that the amino-terminal NSvc2 (NSvc2-N) targets to the Golgi apparatus in Nicotiana benthamiana cells, whereas the carboxyl-terminal NSvc2 (NSvc2-C) accumulates in the endoplasmic reticulum (ER). Upon coexpression, NSvc2-N redirects NSvc2-C from the ER to the Golgi bodies. The NSvc2 glycoproteins move together with the Golgi stacks along the ER/actin network. The targeting of the NSvc2 glycoproteins to the Golgi bodies was strictly dependent on functional anterograde traffic out of the ER to the Golgi bodies or on a retrograde transport route from the Golgi apparatus. The analysis of truncated and chimeric NSvc2 proteins demonstrates that the Golgi targeting signal comprises amino acids 269 to 315 of NSvc2-N, encompassing the transmembrane domain and 24 adjacent amino acids in the cytosolic tail. Our findings demonstrate for the first time that the glycoproteins from an unenveloped Tenuivirus could target Golgi bodies in plant cells. IMPORTANCE NSvc2 glycoprotein encoded by unenveloped Rice stripe tenuivirus (RSV) share many characteristics in common with glycoprotein found among Bunyaviridae in which all members have membrane-enveloped sphere particle. Recently, RSV NSvc2 glycoproteins were shown to localize exclusively to the ER in Sf9 insect cells. In this study, we demonstrated that the RSV glycoproteins could target Golgi bodies in plant cells. The targeting of NSvc2 glycoproteins to the Golgi bodies was dependent on active COP II or COP I. The Golgi targeting signal was mapped to the 23-amino-acid transmembrane domain and the adjacent 24 amino acids of the cytosolic tail of the NSvc2-N. In light of the evidence from viruses in Bunyaviridae that targeting Golgi bodies is important for the viral particle assembly and vector transmission, we propose that targeting of RSV glycoproteins into Golgi bodies in plant cells represents a physiologically relevant mechanism in the maturation of RSV particle complex for insect vector transmission.
Collapse
Affiliation(s)
- Min Yao
- Key Laboratory for the Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Xiaofan Liu
- Key Laboratory for the Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Shuo Li
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China
| | - Yi Xu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, People's Republic of China
| | - Yijun Zhou
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China
| | - Xueping Zhou
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, People's Republic of China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Xiaorong Tao
- Key Laboratory for the Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, People's Republic of China
| |
Collapse
|
46
|
Serra-Soriano M, Pallás V, Navarro JA. A model for transport of a viral membrane protein through the early secretory pathway: minimal sequence and endoplasmic reticulum lateral mobility requirements. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 77:863-79. [PMID: 24438546 DOI: 10.1111/tpj.12435] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 12/30/2013] [Accepted: 01/09/2014] [Indexed: 05/19/2023]
Abstract
Viral movement proteins exploit host endomembranes and the cytoskeleton to move within the cell via routes that, in some cases, are dependent on the secretory pathway. For example, melon necrotic spot virus p7B, a type II transmembrane protein, leaves the endoplasmic reticulum (ER) through the COPII-dependent Golgi pathway to reach the plasmodesmata. Here we investigated the sequence requirements and putative mechanisms governing p7B transport through the early secretory pathway. Deletion of either the cytoplasmic N-terminal region (CR) or the luminal C-terminal region (LR) led to ER retention, suggesting that they are both essential for ER export. Through alanine-scanning mutagenesis, we identified residues in the CR and LR that are critical for both ER export and for viral cell-to-cell movement. Within the CR, alanine substitution of aspartic and proline residues in the DSSP β-turn motif (D7 AP10 A) led to movement of discrete structures along the cortical ER in an actin-dependent manner. In contrast, alanine substitution of a lysine residue in the LR (K49 A) resulted in a homogenous ER distribution of the movement protein and inhibition of ER-Golgi traffic. Moreover, the ability of p7B to recruit Sar1 to the ER membrane is lost in the D7 AP10 A mutant, but enhanced in the K49 A mutant. In addition, fluorescence recovery after photobleaching revealed that K49 A but not D7 AP10 A dramatically diminished protein lateral mobility. From these data, we propose a model whereby the LR directs actin-dependent mobility toward the cortical ER, where the cytoplasmic DSSP β-turn favors assembly of COPII vesicles for export of p7B from the ER.
Collapse
Affiliation(s)
- Marta Serra-Soriano
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València/Consejo Superior de Investigaciones Científicas, Avenida Ingeniero Fausto Elio s/n, 46022, Valencia, Spain
| | | | | |
Collapse
|
47
|
Verchot J. The ER quality control and ER associated degradation machineries are vital for viral pathogenesis. FRONTIERS IN PLANT SCIENCE 2014; 5:66. [PMID: 24653727 PMCID: PMC3949406 DOI: 10.3389/fpls.2014.00066] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 02/07/2014] [Indexed: 05/19/2023]
Abstract
The endoplasmic reticulum (ER) is central to protein production and membrane lipid synthesis. The unfolded protein response (UPR) supports cellular metabolism by ensuring protein quality control in the ER. Most positive strand RNA viruses cause extensive remodeling of membranes and require active membrane synthesis to promote infection. How viruses interact with the cellular machinery controlling membrane metabolism is largely unknown. Furthermore, there is mounting data pointing to the importance of the UPR and ER associated degradation (ERAD) machineries in viral pathogenesis in eukaryotes emerging topic. For many viruses, the UPR is an early event that is essential for persistent infection and benefits virus replication. In addition, many viruses are reported to commandeer ER resident chaperones to contribute to virus replication and intercellular movement. In particular, calreticulin, the ubiquitin machinery, and the 26S proteasome are most commonly identified components of the UPR and ERAD machinery that also regulate virus infection. In addition, researchers have noted a link between UPR and autophagy. It is well accepted that positive strand RNA viruses use autophagic membranes as scaffolds to support replication and assembly. However this topic has yet to be explored using plant viruses. The goal of research on this topic is to uncover how viruses interact with this ER-related machinery and to use this information for designing novel strategies to boost immune responses to virus infection.
Collapse
Affiliation(s)
- Jeanmarie Verchot
- *Correspondence: Jeanmarie Verchot, Department of Entomology and Plant Pathology, Oklahoma State University, 127 Noble Research Center, Stillwater, OK 74078, USA e-mail:
| |
Collapse
|
48
|
The Tobacco mosaic virus movement protein associates with but does not integrate into biological membranes. J Virol 2013; 88:3016-26. [PMID: 24371064 DOI: 10.1128/jvi.03648-13] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
UNLABELLED Plant positive-strand RNA viruses require association with plant cell endomembranes for viral translation and replication, as well as for intra- and intercellular movement of the viral progeny. The membrane association and RNA binding of the Tobacco mosaic virus (TMV) movement protein (MP) are vital for orchestrating the macromolecular network required for virus movement. A previously proposed topological model suggests that TMV MP is an integral membrane protein with two putative α-helical transmembrane (TM) segments. Here we tested this model using an experimental system that measured the efficiency with which natural polypeptide segments were inserted into the ER membrane under conditions approximating the in vivo situation, as well as in planta. Our results demonstrated that the two hydrophobic regions (HRs) of TMV MP do not span biological membranes. We further found that mutations to alter the hydrophobicity of the first HR modified membrane association and precluded virus movement. We propose a topological model in which the TMV MP HRs intimately associate with the cellular membranes, allowing maximum exposure of the hydrophilic domains of the MP to the cytoplasmic cellular components. IMPORTANCE To facilitate plant viral infection and spread, viruses encode one or more movement proteins (MPs) that interact with ER membranes. The present work investigated the membrane association of the 30K MP of Tobacco mosaic virus (TMV), and the results challenge the previous topological model, which predicted that the TMV MP behaves as an integral membrane protein. The current data provide greatly needed clarification of the topological model and provide substantial evidence that TMV MP is membrane associated only at the cytoplasmic face of the membrane and that neither of its domains is integrated into the membrane or translocated into the lumen. Understanding the topology of MPs in the ER is vital for understanding the role of the ER in plant virus transport and for predicting interactions with host factors that mediate resistance to plant viruses.
Collapse
|
49
|
Sun Z, Yang D, Xie L, Sun L, Zhang S, Zhu Q, Li J, Wang X, Chen J. Rice black-streaked dwarf virus P10 induces membranous structures at the ER and elicits the unfolded protein response in Nicotiana benthamiana. Virology 2013; 447:131-9. [PMID: 24210107 DOI: 10.1016/j.virol.2013.09.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 07/13/2013] [Accepted: 09/01/2013] [Indexed: 01/07/2023]
Abstract
Endoplasmic reticular (ER) membrane modifications play an important role in viral RNA replication and virion assembly but little is known about the involvement of ER-membrane remodeling in the infection cycle of fijiviruses in plant cells. The subcellular localization of Rice black-streaked dwarf virus outer capsid P10 was therefore examined using live-cell imaging. P10 fused to eGFP formed vesicular structures associated with ER membranes in Nicotiana benthamiana epidermal cells and in rice protoplasts. Subcellular fractionation experiments confirmed that P10 is an integral membrane protein. Three predicted transmembrane domains and two less-well-defined domains were each able to target eGFP to the ER. Disruption of the actin cytoskeleton with LatB, indicated that the maintenance of P10-induced membrane structures required the intact actin cytoskeleton. P10 induced the expression of ER stress marker genes, including ER stress-related chaperones and transcription factor, indicating that RBSDV P10 triggers ER stress and the unfolded protein response.
Collapse
Affiliation(s)
- Zongtao Sun
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Ministry of Agriculture Key Laboratory of Biotechnology in Plant Protection, Zhejiang Provincial key laboratory of Plant Virology, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Kiss ZA, Medina V, Falk BW. Crinivirus replication and host interactions. Front Microbiol 2013; 4:99. [PMID: 23730299 PMCID: PMC3657685 DOI: 10.3389/fmicb.2013.00099] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Accepted: 04/06/2013] [Indexed: 01/01/2023] Open
Abstract
Criniviruses comprise one of the genera within the family Closteroviridae. Members in this family are restricted to the phloem and rely on whitefly vectors of the genera Bemisia and/or Trialeurodes for plant-to-plant transmission. All criniviruses have bipartite, positive-sense single-stranded RNA genomes, although there is an unconfirmed report of one having a tripartite genome. Lettuce infectious yellows virus (LIYV) is the type species of the genus, the best studied so far of the criniviruses and the first for which a reverse genetics system was developed. LIYV RNA 1 encodes for proteins predicted to be involved in replication, and alone is competent for replication in protoplasts. Replication results in accumulation of cytoplasmic vesiculated membranous structures which are characteristic of most studied members of the Closteroviridae. These membranous structures, often referred to as Beet yellows virus (BYV)-type vesicles, are likely sites of RNA replication. LIYV RNA 2 is replicated in trans when co-infecting cells with RNA 1, but is temporally delayed relative to RNA 1. Efficient RNA 2 replication also is dependent on the RNA 1-encoded RNA-binding protein, P34. No LIYV RNA 2-encoded proteins have been shown to affect RNA replication, but at least four, CP (major coat protein), CPm (minor coat protein), Hsp70h, and P59 are virion structural components and CPm is a determinant of whitefly transmissibility. Roles of other LIYV RNA 2-encoded proteins are largely as yet unknown, but P26 is a non-virion protein that accumulates in cells as characteristic plasmalemma deposits which in plants are localized within phloem parenchyma and companion cells over plasmodesmata connections to sieve elements. The two remaining crinivirus-conserved RNA 2-encoded proteins are P5 and P9. P5 is 39 amino acid protein and is encoded at the 5' end of RNA 2 as ORF 1 and is part of the hallmark closterovirus gene array. The orthologous gene in BYV has been shown to play a role in cell-to-cell movement and indicated to be localized to the endoplasmic reticulum as a Type III integral membrane protein. The other small protein, P9, is encoded by ORF 4 overlaps with ORF 3 that encodes the structural protein, P59. P9 seems to be unique to viruses in the genus Crinivirus, as no similar protein has been detected in viruses of the other two genera of the Closteroviridae.
Collapse
Affiliation(s)
- Zsofia A. Kiss
- Department of Plant Pathology, University of CaliforniaDavis, CA, USA
| | - Vicente Medina
- Department of Crop and Forest Sciences, University of LleidaLleida, Spain
| | - Bryce W. Falk
- Department of Plant Pathology, University of CaliforniaDavis, CA, USA
| |
Collapse
|