1
|
Scholz EMB, Cao Y, Kashuba ADM. A cross-species comparison of antiretroviral penetration into lymph nodes using novel physiologically based pharmacokinetic models. J Antimicrob Chemother 2021; 76:2890-2893. [PMID: 34374767 DOI: 10.1093/jac/dkab298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 07/20/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Investigating antiretroviral (ARV) penetration and pharmacology in lymph nodes is crucial to understanding mechanisms of HIV persistence in tissue, but sampling these tissues in humans is invasive and costly. Physiologically based pharmacokinetic (PBPK) modelling is a non-invasive solution for understanding lymph node penetration of ARVs across multiple species. OBJECTIVES To develop customized PBPK models with a novel lymph node compartment, and use these models to describe the distribution of three ARVs-tenofovir, emtricitabine and efavirenz-into the plasma and lymph nodes of non-human primates (NHPs) and humans. MATERIALS AND METHODS In this analysis, we utilized standard monkey and human PBPK models in PK-Sim, and added a novel lymph node compartment using MoBi. We used these models to describe the distribution of tenofovir, emtricitabine and efavirenz into NHP and human plasma and lymph nodes, and compared model-predicted versus observed AUC and Cmax. RESULTS For all three ARVs, population simulations using the base and final models reasonably characterized observed plasma and tissue data in NHPs and humans, with predicted/observed AUC and Cmax ratios within 0.7-2.0. CONCLUSIONS Overall, our novel PBPK model provides a framework for understanding lymph node penetration of ARVs or future HIV cure therapies.
Collapse
Affiliation(s)
- Erin M B Scholz
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, 301 Pharmacy Lane, Chapel Hill, NC 27599, USA
| | - Yanguang Cao
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, 301 Pharmacy Lane, Chapel Hill, NC 27599, USA
| | - Angela D M Kashuba
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, 301 Pharmacy Lane, Chapel Hill, NC 27599, USA.,School of Medicine, University of North Carolina at Chapel Hill, 321 S Columbia Street, Chapel Hill, NC 27516, USA
| |
Collapse
|
2
|
Radzio-Basu J, Council O, Cong ME, Ruone S, Newton A, Wei X, Mitchell J, Ellis S, Petropoulos CJ, Huang W, Spreen W, Heneine W, García-Lerma JG. Drug resistance emergence in macaques administered cabotegravir long-acting for pre-exposure prophylaxis during acute SHIV infection. Nat Commun 2019; 10:2005. [PMID: 31043606 PMCID: PMC6494879 DOI: 10.1038/s41467-019-10047-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 02/19/2019] [Indexed: 12/17/2022] Open
Abstract
A long-acting injectable formulation of the HIV integrase inhibitor cabotegravir (CAB-LA) is currently in clinical development for PrEP. Although the long plasma half-life of CAB-LA is an important attribute for PrEP, it also raises concerns about drug resistance emergence if someone becomes infected with HIV, or if PrEP is initiated during undiagnosed acute infection. Here we use a macaque model of SHIV infection to model risks of drug resistance to CAB-LA PrEP. Six macaques infected with SHIV received CAB-LA before seroconversion. We show integrase mutations G118R, E92G/Q, or G140R in plasma from 3/6 macaques as early as day 57, and identify G118R and E92Q in viruses from vaginal and rectal fluids. G118R and G140R confer > 800-fold resistance to CAB and cross-resistance to all licensed integrase inhibitors. Our results emphasize the need for appropriate HIV testing strategies before and possibly shortly after initiating CAB LA PrEP to exclude acute infection. Long-acting formulation of the integrase inhibitor cabotegravir (CAB LA) is in clinical development for HIV pre-exposure prophylaxis (PrEP). Here, using a SHIV macaque model, the authors show emergence of integrase mutations associated to CAB LA PrEP that confer pan-integrase inhibitor resistance.
Collapse
Affiliation(s)
- Jessica Radzio-Basu
- Laboratory Branch, Division of HIV/AIDS Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA, 30329, USA
| | - Olivia Council
- Laboratory Branch, Division of HIV/AIDS Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA, 30329, USA
| | - Mian-Er Cong
- Laboratory Branch, Division of HIV/AIDS Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA, 30329, USA
| | - Susan Ruone
- Laboratory Branch, Division of HIV/AIDS Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA, 30329, USA
| | - Alicia Newton
- Monogram Biosciences, 345 Oyster Point Blvd, San Francisco, CA, 94080, USA
| | - Xierong Wei
- Laboratory Branch, Division of HIV/AIDS Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA, 30329, USA
| | - James Mitchell
- Laboratory Branch, Division of HIV/AIDS Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA, 30329, USA
| | - Shanon Ellis
- Laboratory Branch, Division of HIV/AIDS Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA, 30329, USA
| | | | - Wei Huang
- Monogram Biosciences, 345 Oyster Point Blvd, San Francisco, CA, 94080, USA
| | | | - Walid Heneine
- Laboratory Branch, Division of HIV/AIDS Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA, 30329, USA
| | - J Gerardo García-Lerma
- Laboratory Branch, Division of HIV/AIDS Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA, 30329, USA.
| |
Collapse
|
3
|
Srinivas N, Rosen EP, Gilliland WM, Kovarova M, Remling-Mulder L, De La Cruz G, White N, Adamson L, Schauer AP, Sykes C, Luciw P, Garcia JV, Akkina R, Kashuba ADM. Antiretroviral concentrations and surrogate measures of efficacy in the brain tissue and CSF of preclinical species. Xenobiotica 2018; 49:1192-1201. [PMID: 30346892 DOI: 10.1080/00498254.2018.1539278] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
1. Antiretroviral concentrations in cerebrospinal fluid (CSF) are used as surrogate for brain tissue, although sparse data support this. We quantified antiretrovirals in brain tissue across preclinical models, compared them to CSF, and calculated 90% inhibitory quotients (IQ90) for nonhuman primate (NHP) brain tissue. Spatial distribution of efavirenz was performed by mass-spectrometry imaging (MSI). 2. HIV or RT-SHIV-infected and uninfected animals from two humanized mouse models (hemopoietic-stem cell/RAG2-, n = 36; bone marrow-liver-thymus/BLT, n =13) and an NHP model (rhesus macaque, n =18) were dosed with six antiretrovirals. Brain tissue, CSF (NHPs), and plasma were collected at necropsy. Drug concentrations were measured by LC-MS/MS. Rapid equilibrium dialysis determined protein binding in NHP brain. 3. Brain tissue penetration of most antiretrovirals were >10-fold lower (p < 0.02) in humanized mice than NHPs. NHP CSF concentrations were >13-fold lower (p <0.02) than brain tissue with poor agreement except for efavirenz (r = 0.91, p = 0.001). Despite 97% brain tissue protein binding, efavirenz achieved IQ90>1 in all animals and 2-fold greater white versus gray matter concentration. 4. Brain tissue penetration varied across animal models for all antiretrovirals except raltegravir, and extrapolating brain tissue concentrations between models should be avoided. With the exception of efavirenz, CSF is not a surrogate for brain tissue concentrations.
Collapse
Affiliation(s)
- Nithya Srinivas
- a Eshelman School of Pharmacy , University of North Carolina at Chapel Hill , Chapel Hill , NC , USA
| | - Elias P Rosen
- a Eshelman School of Pharmacy , University of North Carolina at Chapel Hill , Chapel Hill , NC , USA
| | - William M Gilliland
- a Eshelman School of Pharmacy , University of North Carolina at Chapel Hill , Chapel Hill , NC , USA
| | - Martina Kovarova
- b School of Medicine , University of North Carolina at Chapel Hill , Chapel Hill , NC , USA
| | | | - Gabriela De La Cruz
- b School of Medicine , University of North Carolina at Chapel Hill , Chapel Hill , NC , USA
| | - Nicole White
- a Eshelman School of Pharmacy , University of North Carolina at Chapel Hill , Chapel Hill , NC , USA
| | - Lourdes Adamson
- d School of Medicine , University of California at Davis , Davis , CA , USA
| | - Amanda P Schauer
- a Eshelman School of Pharmacy , University of North Carolina at Chapel Hill , Chapel Hill , NC , USA
| | - Craig Sykes
- a Eshelman School of Pharmacy , University of North Carolina at Chapel Hill , Chapel Hill , NC , USA
| | - Paul Luciw
- d School of Medicine , University of California at Davis , Davis , CA , USA
| | - J Victor Garcia
- b School of Medicine , University of North Carolina at Chapel Hill , Chapel Hill , NC , USA
| | - Ramesh Akkina
- c School of Medicine , Colorado State University , Fort Collins , CO , USA
| | - Angela D M Kashuba
- a Eshelman School of Pharmacy , University of North Carolina at Chapel Hill , Chapel Hill , NC , USA
| |
Collapse
|
4
|
Tackling HIV and AIDS: contributions by non-human primate models. Lab Anim (NY) 2018; 46:259-270. [PMID: 28530684 DOI: 10.1038/laban.1279] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 04/19/2017] [Indexed: 12/21/2022]
Abstract
During the past three decades, non-human primate (NHP) models have gained an increasing importance in HIV basic and translational research. In contrast to natural host models, infection of macaques with virulent simian or simian-human immunodeficiency viruses (SIV, SHIV) results in a disease that closely resembles HIV infection and AIDS. Although there is no perfect animal model, and each of the available models has its benefits and limitations, carefully designed NHP studies with selection of experimental variables have unraveled important questions of basic pathogenesis and have provided the tools to explore and screen intervention strategies. For example, NHP studies have advanced our understanding of the crucial events during early infection, and have provided proof-of-concept of antiretroviral drug treatment and prevention strategies such as pre-exposure prophylaxis (PrEP) regimes that are increasingly used worldwide, and upon overcoming further barriers of implementation, have the potential to make the next generation AIDS-free. Remaining goals include the pursuit of an effective HIV vaccine, and HIV cure strategies that would allow HIV-infected people to ultimately stop taking antiretroviral drugs. Through a reiterative process with feed-back from results of human studies, NHP models can be further validated and strengthened to advance our scientific knowledge and guide clinical trials.
Collapse
|
5
|
Nag M, De Paris K, E Fogle J. Epigenetic Modulation of CD8⁺ T Cell Function in Lentivirus Infections: A Review. Viruses 2018; 10:v10050227. [PMID: 29710792 PMCID: PMC5977220 DOI: 10.3390/v10050227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 04/23/2018] [Accepted: 04/24/2018] [Indexed: 01/16/2023] Open
Abstract
CD8+ T cells are critical for controlling viremia during human immunodeficiency virus (HIV) infection. These cells produce cytolytic factors and antiviral cytokines that eliminate virally- infected cells. During the chronic phase of HIV infection, CD8+ T cells progressively lose their proliferative capacity and antiviral functions. These dysfunctional cells are unable to clear the productively infected and reactivated cells, representing a roadblock in HIV cure. Therefore, mechanisms to understand CD8+ T cell dysfunction and strategies to boost CD8+ T cell function need to be investigated. Using the feline immunodeficiency virus (FIV) model for lentiviral persistence, we have demonstrated that CD8+ T cells exhibit epigenetic changes such as DNA demethylation during the course of infection as compared to uninfected cats. We have also demonstrated that lentivirus-activated CD4+CD25+ T regulatory cells induce forkhead box P3 (Foxp3) expression in virus-specific CD8+ T cell targets, which binds the interleukin (IL)-2, tumor necrosis factor (TNF)-α, and interferon (IFN)-γ promoters in these CD8+ T cells. Finally, we have reported that epigenetic modulation reduces Foxp3 binding to these promoter regions. This review compares and contrasts our current understanding of CD8+ T cell epigenetics and mechanisms of lymphocyte suppression during the course of lentiviral infection for two animal models, FIV and simian immunodeficiency virus (SIV).
Collapse
Affiliation(s)
- Mukta Nag
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, Raleigh, NC 27607, USA.
| | - Kristina De Paris
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Jonathan E Fogle
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, Raleigh, NC 27607, USA.
| |
Collapse
|
6
|
Nonhuman Primate Models for Studies of AIDS Virus Persistence During Suppressive Combination Antiretroviral Therapy. Curr Top Microbiol Immunol 2017; 417:69-109. [PMID: 29026923 DOI: 10.1007/82_2017_73] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Nonhuman primate (NHP) models of AIDS represent a potentially powerful component of the effort to understand in vivo sources of AIDS virus that persist in the setting of suppressive combination antiretroviral therapy (cART) and to develop and evaluate novel strategies for more definitive treatment of HIV infection (i.e., viral eradication "cure", or sustained off-cART remission). Multiple different NHP models are available, each characterized by a particular NHP species, infecting virus, and cART regimen, and each with a distinct capacity to recapitulate different aspects of HIV infection. Given these different biological characteristics, and their associated strengths and limitations, different models may be preferred to address different questions pertaining to virus persistence and cure research, or to evaluate different candidate intervention approaches. Recent developments in improved cART regimens for use in NHPs, new viruses, a wider array of sensitive virologic assay approaches, and a better understanding of pathogenesis should allow even greater contributions from NHP models to this important area of HIV research in the future.
Collapse
|
7
|
Mavigner M, Lee ST, Habib J, Robinson C, Silvestri G, O’Doherty U, Chahroudi A. Quantifying integrated SIV-DNA by repetitive-sampling Alu-gag PCR. J Virus Erad 2016; 2:219-226. [PMID: 27781104 PMCID: PMC5075349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVES Although antiretroviral therapy (ART) effectively suppresses HIV-1 replication, it does not eradicate the virus and ART interruption consistently results in rebound of viraemia, demonstrating the persistence of a long-lived viral reservoir. Several approaches aimed at reducing virus persistence are being developed, and accurate measurements of the latent reservoir (LR) are necessary to assess the effectiveness of anti-latency interventions. We sought to measure the LR in SIV/SHIV-infected rhesus macaques (RMs) by quantifying integrated SIV-DNA. METHODS We optimised a repetitive sampling Alu-gag PCR to quantify integrated SIV-DNA ex vivo in ART-naïve and ART-experienced SIV/SHIV-infected RMs. RESULTS In ART-naïve RMs, we found the median level of integrated SIV-DNA to be 1660 copies and 866 copies per million PBMC during untreated acute and chronic SHIV infection, respectively. Integrated and total SIV-DNA levels were positively correlated with one another. In ART-treated RMs, integrated SIV-DNA was readily detected in lymph nodes and spleen and levels of total (3319 copies/million cells) and integrated (3160 copies/million cells) SIV-DNA were similar after a median of 404 days of ART. In peripheral blood CD4+ T cells from ART-treated RMs, levels of total (3319 copies/million cells) and integrated (2742 copies/million cells) SIV-DNA were not significantly different and were positively correlated. CONCLUSIONS The assay described here is validated and can be used in interventional studies testing HIV/SIV cure strategies in RMs. Measurement of integrated SIV-DNA in ART-treated RMs, along with other reservoir analyses, gives an estimate of the size of the LR.
Collapse
Affiliation(s)
- Maud Mavigner
- Yerkes National Primate Research Center,
Emory University,
Atlanta,
GA,
USA,Department of Pediatrics,
Emory University School of Medicine,
Atlanta,
GA,
USA
| | - S Thera Lee
- Yerkes National Primate Research Center,
Emory University,
Atlanta,
GA,
USA,Department of Pediatrics,
Emory University School of Medicine,
Atlanta,
GA,
USA
| | - Jakob Habib
- Department of Pediatrics,
Emory University School of Medicine,
Atlanta,
GA,
USA
| | - Cameron Robinson
- Yerkes National Primate Research Center,
Emory University,
Atlanta,
GA,
USA
| | - Guido Silvestri
- Yerkes National Primate Research Center,
Emory University,
Atlanta,
GA,
USA
| | - Una O’Doherty
- Department of Pathology and Laboratory Medicine,
University of Pennsylvania,
Philadelphia,
PA,
USA
| | - Ann Chahroudi
- Yerkes National Primate Research Center,
Emory University,
Atlanta,
GA,
USA,Department of Pediatrics,
Emory University School of Medicine,
Atlanta,
GA,
USA,Corresponding author: Ann Chahroudi,
E472, HSRB, 1760 Haygood Drive,
Atlanta,
GA30322,
USA
| |
Collapse
|
8
|
Mavigner M, Lee ST, Habib J, Robinson C, Silvestri G, O’Doherty U, Chahroudi A. Quantifying integrated SIV-DNA by repetitive-sampling Alu-gag PCR. J Virus Erad 2016. [DOI: 10.1016/s2055-6640(20)30870-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
9
|
Antiretroviral Therapy in Simian Immunodeficiency Virus-Infected Sooty Mangabeys: Implications for AIDS Pathogenesis. J Virol 2016; 90:7541-7551. [PMID: 27279614 DOI: 10.1128/jvi.00598-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 06/02/2016] [Indexed: 01/22/2023] Open
Abstract
UNLABELLED Simian immunodeficiency virus (SIV)-infected sooty mangabeys (SMs) do not develop AIDS despite high levels of viremia. Key factors involved in the benign course of SIV infection in SMs are the absence of chronic immune activation and low levels of infection of CD4(+) central memory (TCM) and stem cell memory (TSCM) T cells. To better understand the role of virus replication in determining the main features of SIV infection in SMs, we treated 12 SMs with a potent antiretroviral therapy (ART) regimen for 2 to 12 months. We observed that ART suppressed viremia to <60 copies/ml of plasma in 10 of 12 animals and induced a variable decrease in the level of cell-associated SIV DNA in peripheral blood (average changes of 0.9-, 1.1-, 1.5-, and 3.7-fold for CD4(+) transitional memory [TTM], TCM, effector memory [TEM], and TSCM cells, respectively). ART-treated SIV-infected SMs showed (i) increased percentages of circulating CD4(+) TCM cells, (ii) increased levels of CD4(+) T cells in the rectal mucosa, and (iii) significant declines in the frequencies of HLA-DR(+) CD8(+) T cells in the blood and rectal mucosa. In addition, we observed that ART interruption resulted in rapid viral rebound in all SIV-infected SMs, indicating that the virus reservoir persists for at least a year under ART despite lower infection levels of CD4(+) TCM and TSCM cells than those seen in pathogenic SIV infections of macaques. Overall, these data indicate that ART induces specific immunological changes in SIV-infected SMs, thus suggesting that virus replication affects immune function even in the context of this clinically benign infection. IMPORTANCE Studies of natural, nonpathogenic simian immunodeficiency virus (SIV) infection of African monkeys have provided important insights into the mechanisms responsible for the progression to AIDS during pathogenic human immunodeficiency virus (HIV) infection of humans and SIV infection of Asian macaques. In this study, for the first time, we treated SIV-infected sooty mangabeys, a natural host for the infection, with a potent antiretroviral therapy (ART) regimen for periods ranging from 2 to 12 months and monitored in detail how suppression of virus replication affected the main virological and immunological features of this nonpathogenic infection. The observed findings provide novel information on both the pathogenesis of residual immunological disease under ART during pathogenic infection and the mechanisms involved in virus persistence during primate lentiviral infections.
Collapse
|
10
|
Policicchio BB, Pandrea I, Apetrei C. Animal Models for HIV Cure Research. Front Immunol 2016; 7:12. [PMID: 26858716 PMCID: PMC4729870 DOI: 10.3389/fimmu.2016.00012] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 01/12/2016] [Indexed: 12/17/2022] Open
Abstract
The HIV-1/AIDS pandemic continues to spread unabated worldwide, and no vaccine exists within our grasp. Effective antiretroviral therapy (ART) has been developed, but ART cannot clear the virus from the infected patient. A cure for HIV-1 is badly needed to stop both the spread of the virus in human populations and disease progression in infected individuals. A safe and effective cure strategy for human immunodeficiency virus (HIV) infection will require multiple tools, and appropriate animal models are tools that are central to cure research. An ideal animal model should recapitulate the essential aspects of HIV pathogenesis and associated immune responses, while permitting invasive studies, thus allowing a thorough evaluation of strategies aimed at reducing the size of the reservoir (functional cure) or eliminating the reservoir altogether (sterilizing cure). Since there is no perfect animal model for cure research, multiple models have been tailored and tested to address specific quintessential questions of virus persistence and eradication. The development of new non-human primate and mouse models, along with a certain interest in the feline model, has the potential to fuel cure research. In this review, we highlight the major animal models currently utilized for cure research and the contributions of each model to this goal.
Collapse
Affiliation(s)
| | - Ivona Pandrea
- Center for Vaccine Research, University of Pittsburgh , Pittsburgh, PA , USA
| | - Cristian Apetrei
- Center for Vaccine Research, University of Pittsburgh , Pittsburgh, PA , USA
| |
Collapse
|
11
|
Low Frequency of Drug-Resistant Variants Selected by Long-Acting Rilpivirine in Macaques Infected with Simian Immunodeficiency Virus Containing HIV-1 Reverse Transcriptase. Antimicrob Agents Chemother 2015; 59:7762-70. [PMID: 26438501 DOI: 10.1128/aac.01937-15] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 09/30/2015] [Indexed: 12/13/2022] Open
Abstract
Preexposure prophylaxis (PrEP) using antiretroviral drugs is effective in reducing the risk of human immunodeficiency virus type 1 (HIV-1) infection, but adherence to the PrEP regimen is needed. To improve adherence, a long-acting injectable formulation of the nonnucleoside reverse transcriptase (RT) inhibitor rilpivirine (RPV LA) has been developed. However, there are concerns that PrEP may select for drug-resistant mutations during preexisting or breakthrough infections, which could promote the spread of drug resistance and limit options for antiretroviral therapy. To address this concern, we administered RPV LA to macaques infected with simian immunodeficiency virus containing HIV-1 RT (RT-SHIV). Peak plasma RPV levels were equivalent to those reported in human trials and waned over time after dosing. RPV LA resulted in a 2-log decrease in plasma viremia, and the therapeutic effect was maintained for 15 weeks, until plasma drug concentrations dropped below 25 ng/ml. RT mutations E138G and E138Q were detected in single clones from plasma virus in separate animals only at one time point, and no resistance mutations were detected in viral RNA isolated from tissues. Wild-type and E138Q RT-SHIV displayed similar RPV susceptibilities in vitro, whereas E138G conferred 2-fold resistance to RPV. Overall, selection of RPV-resistant variants was rare in an RT-SHIV macaque model despite prolonged exposure to slowly decreasing RPV concentrations following injection of RPV LA.
Collapse
|
12
|
Mass spectrometry imaging reveals heterogeneous efavirenz distribution within putative HIV reservoirs. Antimicrob Agents Chemother 2015; 59:2944-8. [PMID: 25733502 DOI: 10.1128/aac.04952-14] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 02/22/2015] [Indexed: 01/11/2023] Open
Abstract
Persistent HIV replication within active viral reservoirs may be caused by inadequate antiretroviral penetration. Here, we used mass spectrometry imaging with infrared matrix-assisted laser desorption-electrospray ionization to quantify the distribution of efavirenz within tissues from a macaque dosed orally to a steady state. Intratissue efavirenz distribution was heterogeneous, with the drug concentrating in the lamina propria of the colon, the primary follicles of lymph nodes, and the brain gray matter. These are the first imaging data of an antiretroviral drug in active viral reservoirs.
Collapse
|
13
|
Abstract
INTRODUCTION HIV research is limited by the fact that lentiviruses are highly species specific. The need for appropriate models to promote research has led to the development of many elaborate surrogate animal models. AREAS COVERED This review looks at the history of animal models for HIV research. Although natural animal lentivirus infections and chimeric viruses such as chimera between HIV and simian immunodeficiency virus and simian-tropic HIV are briefly discussed, the main focus is on small animal models, including the complex design of the 'humanized' mouse. The review also traces the historic evolution and milestones as well as depicting current models and future prospects for HIV research. EXPERT OPINION HIV research is a complex and challenging task that is highly manpower-, money- and time-consuming. Besides factors such as hypervariability and latency, the lack of appropriate animal models that exhibit and recapitulate the entire infectious process of HIV, is one of the reasons behind the failure to eliminate the lentivirus from the human population. This obstacle has led to the exploitation and further development of many sophisticated surrogate animal models for HIV research. While there is no animal model that perfectly mirrors and mimics HIV infections in humans, there are a variety of host species and viruses that complement each other. Combining the insights from each model, and critically comparing the results obtained with data from human clinical trials should help expand our understanding of HIV pathogenesis and drive future drug development.
Collapse
Affiliation(s)
- Katja Sliva
- Paul-Ehrlich-Institute, Department of Virology, Section 2/2 AIDS, New and Emerging pathogens , Paul-Ehrlich Strasse 51-59, 63225 Langen , Germany +0049 6103 774017 ; +0049 6103 771234 ;
| |
Collapse
|
14
|
Mavigner M, Watkins B, Lawson B, Lee ST, Chahroudi A, Kean L, Silvestri G. Persistence of virus reservoirs in ART-treated SHIV-infected rhesus macaques after autologous hematopoietic stem cell transplant. PLoS Pathog 2014; 10:e1004406. [PMID: 25254512 PMCID: PMC4177994 DOI: 10.1371/journal.ppat.1004406] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 08/18/2014] [Indexed: 11/24/2022] Open
Abstract
Despite many advances in AIDS research, a cure for HIV infection remains elusive. Here, we performed autologous hematopoietic stem cell transplantation (HSCT) in three Simian/Human Immunodeficiency Virus (SHIV)-infected, antiretroviral therapy (ART)-treated rhesus macaques (RMs) using HSCs collected prior to infection and compared them to three SHIV-infected, ART-treated, untransplanted control animals to assess the effect of conditioning and autologous HSCT on viral persistence. As expected, ART drastically reduced virus replication, below 100 SHIV-RNA copies per ml of plasma in all animals. After several weeks on ART, experimental RMs received myeloablative total body irradiation (1080 cGy), which resulted in the depletion of 94–99% of circulating CD4+ T-cells, and low to undetectable SHIV-DNA levels in peripheral blood mononuclear cells. Following HSC infusion and successful engraftment, ART was interrupted (40–75 days post-transplant). Despite the observed dramatic reduction of the peripheral blood viral reservoir, rapid rebound of plasma viremia was observed in two out of three transplanted RMs. In the third transplanted animal, plasma SHIV-RNA and SHIV DNA in bulk PBMCs remained undetectable at week two post-ART interruption. No further time-points could be assessed as this animal was euthanized for clinical reasons; however, SHIV-DNA could be detected in this animal at necropsy in sorted circulating CD4+ T-cells, spleen and lymph nodes but not in the gastro-intestinal tract or tonsils. Furthermore, SIV DNA levels post-ART interruption were equivalent in several tissues in transplanted and control animals. While persistence of virus reservoir was observed despite myeloablation and HSCT in the setting of short term ART, this experiment demonstrates that autologous HSCT can be successfully performed in SIV-infected ART-treated RMs offering a new experimental in vivo platform to test innovative interventions aimed at curing HIV infection in humans. While antiretroviral therapy (ART) can reduce HIV replication, it does not eradicate the virus from an infected individual. Replication-competent viruses persist on ART and our incomplete understanding of these viral reservoirs greatly complicates the generation of a cure for HIV. In this study we performed, for the first time, hematopoietic stem cell transplant (HSCT) in the established model of SIV infection of rhesus macaques (RM). The HSC originating from the bone marrow were collected before SIV infection. After SIV infection, RM were treated with ART for several weeks to reduce viral replication before performing a total body irradiation and a transplant with their own, pre-infection, stem cells. The irradiation eliminated 94–99% of the circulating CD4+ T-cells, the main cell target of HIV/SIV infection. A successful engraftment of the HSC was observed and blood viral reservoirs were drastically reduced. However, when ART was interrupted, a rapid rebound of plasma viremia was observed in two out of three transplanted RM indicating that the massive reset of the hematopoietic compartment was not sufficient to eliminate the total-body virus reservoir in the setting of short term ART. This model of HSCT in SIV-infected RM provides a new platform to investigate HIV eradication strategies.
Collapse
Affiliation(s)
- Maud Mavigner
- Emory Vaccine Center and Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Benjamin Watkins
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Benton Lawson
- Emory Vaccine Center and Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - S. Thera Lee
- Emory Vaccine Center and Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Ann Chahroudi
- Emory Vaccine Center and Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
- Center for Immunology and Vaccines, Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, Georgia, United States of America
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Leslie Kean
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, Georgia, United States of America
- Center for Immunology and Vaccines, Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Guido Silvestri
- Emory Vaccine Center and Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
- Center for Immunology and Vaccines, Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
15
|
Enhanced antiretroviral therapy in rhesus macaques improves RT-SHIV viral decay kinetics. Antimicrob Agents Chemother 2014; 58:3927-33. [PMID: 24777106 DOI: 10.1128/aac.02522-14] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Using an established nonhuman primate model, rhesus macaques were infected intravenously with a chimeric simian immunodeficiency virus (SIV) consisting of SIVmac239 with the human immunodeficiency virus type 1 (HIV-1) reverse transcriptase from clone HXBc2 (RT-SHIV). The impacts of two enhanced (four- and five-drug) highly active antiretroviral therapies (HAART) on early viral decay and rebound were determined. The four-drug combination consisted of an integrase inhibitor, L-870-812 (L-812), together with a three-drug regimen comprising emtricitabine [(-)-FTC], tenofovir (TFV), and efavirenz (EFV). The five-drug combination consisted of one analog for each of the four DNA precursors {using TFV, (-)-FTC, (-)-β-D-(2R,4R)-1,3-dioxolane-2,6-diaminopurine (amdoxovir [DAPD]), and zidovudine (AZT)}, together with EFV. A cohort treated with a three-drug combination of (-)-FTC, TFV, and EFV served as treated controls. Daily administration of a three-, four-, or five-drug combination of antiretroviral agents was initiated at week 6 or 8 after inoculation and continued up to week 50, followed by a rebound period. Plasma samples were collected routinely, and drug levels were monitored using liquid chromatography-tandem mass spectrometry (LC-MS-MS). Viral loads were monitored with a standard TaqMan quantitative reverse transcriptase PCR (qRT-PCR) assay. Comprehensive analyses of replication dynamics were performed. RT-SHIV infection in rhesus macaques produced typical viral infection kinetics, with untreated controls establishing persistent viral loads of >10(4) copies of RNA/ml. RT-SHIV loads at the start of treatment (V0) were similar in all treated cohorts (P > 0.5). All antiretroviral drug levels were measureable in plasma. The four-drug and five-drug combination regimens (enhanced HAART) improved suppression of the viral load (within 1 week; P < 0.01) and had overall greater potency (P < 0.02) than the three-drug regimen (HAART). Moreover, rebound viremia occurred rapidly following cessation of any treatment. The enhanced HAART (four- or five-drug combination) showed significant improvement in viral suppression compared to the three-drug combination, but no combination was sufficient to eliminate viral reservoirs.
Collapse
|
16
|
Wang W, Yao N, Ju B, Dong Z, Cong Z, Jiang H, Qin C, Wei Q. A simian-human immunodeficiency virus carrying the rt gene from Chinese CRF01_AE strain of HIV is sensitive to nucleoside reverse transcriptase inhibitors and has a highly genetic stability in vivo. Microbes Infect 2014; 16:461-71. [PMID: 24709063 DOI: 10.1016/j.micinf.2014.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 03/14/2014] [Accepted: 03/27/2014] [Indexed: 11/16/2022]
Abstract
Human immunodeficiency virus (HIV)-1 subtype CRF01_AE is one of the major HIV-1 subtypes that dominate the global epidemic. However, its drug resistance, associated mutations, and viral fitness have not been systemically studied, because available chimeric simian-HIVs (SHIVs) usually express the HIV-1 reverse transcriptase (rt) gene of subtype B HIV-1, which is different from subtype CRF01_AE HIV-1. In this study, a recombinant plasmid, pRT-SHIV/AE, was constructed to generate a chimeric RT-SHIV/AE by replacing the rt gene of simian immunodeficiency virus (SIVmac239) with the counterpart of Chinese HIV-1 subtype CRF01_AE. The infectivity, replication capacity, co-receptor tropism, drug sensitivity, and genetic stability of RT-SHIV/AE were characterized. The new chimeric RT-SHIV/AE effectively infected and replicated in human T cell line and rhesus peripheral blood mononuclear cells (rhPBMC). The rt gene of RT-SHIV/AE lacked the common mutation (T215I) associated with drug resistance. RT-SHIV-AE retained infectivity and immunogenicity, similar to that of its counterpart RT-SHIV/TC virus following intravenous inoculation in Chinese rhesus macaque. RT-SHIV-AE was more sensitive to nucleoside reverse transcriptase inhibitors (NRTIs) than the RT-SHIV/TC. RT-SHIV/AE was genetically stable in Chinese rhesus macaque. The new chimeric RT-SHIV/AE may be a valuable tool for evaluating the efficacy of the rt-based antiviral drugs against the subtype CRF01_AE HIV-1.
Collapse
Affiliation(s)
- Wei Wang
- Key Laboratory of Human Diseases Comparative Medicine, Ministry of Health, Beijing 100021, PR China; Key Laboratory of Human Diseases Animal Models, State Administration of Traditional Chinese Medicine, Beijing 100021, PR China; Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, No. 5 Panjiayuan Nanli, Chaoyang District, Beijing 100021, PR China; Comparative Medical Center, Peking Union Medical College, No. 5 Panjiayuan Nanli, Chaoyang District, Beijing 100021, PR China
| | - Nan Yao
- Comparative Medical Center, Peking Union Medical College, No. 5 Panjiayuan Nanli, Chaoyang District, Beijing 100021, PR China
| | - Bin Ju
- Comparative Medical Center, Peking Union Medical College, No. 5 Panjiayuan Nanli, Chaoyang District, Beijing 100021, PR China
| | - Zhihui Dong
- Comparative Medical Center, Peking Union Medical College, No. 5 Panjiayuan Nanli, Chaoyang District, Beijing 100021, PR China
| | - Zhe Cong
- Key Laboratory of Human Diseases Comparative Medicine, Ministry of Health, Beijing 100021, PR China; Key Laboratory of Human Diseases Animal Models, State Administration of Traditional Chinese Medicine, Beijing 100021, PR China; Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, No. 5 Panjiayuan Nanli, Chaoyang District, Beijing 100021, PR China; Comparative Medical Center, Peking Union Medical College, No. 5 Panjiayuan Nanli, Chaoyang District, Beijing 100021, PR China
| | - Hong Jiang
- Key Laboratory of Human Diseases Comparative Medicine, Ministry of Health, Beijing 100021, PR China; Key Laboratory of Human Diseases Animal Models, State Administration of Traditional Chinese Medicine, Beijing 100021, PR China; Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, No. 5 Panjiayuan Nanli, Chaoyang District, Beijing 100021, PR China; Comparative Medical Center, Peking Union Medical College, No. 5 Panjiayuan Nanli, Chaoyang District, Beijing 100021, PR China
| | - Chuan Qin
- Key Laboratory of Human Diseases Comparative Medicine, Ministry of Health, Beijing 100021, PR China; Key Laboratory of Human Diseases Animal Models, State Administration of Traditional Chinese Medicine, Beijing 100021, PR China; Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, No. 5 Panjiayuan Nanli, Chaoyang District, Beijing 100021, PR China; Comparative Medical Center, Peking Union Medical College, No. 5 Panjiayuan Nanli, Chaoyang District, Beijing 100021, PR China.
| | - Qiang Wei
- Key Laboratory of Human Diseases Comparative Medicine, Ministry of Health, Beijing 100021, PR China; Key Laboratory of Human Diseases Animal Models, State Administration of Traditional Chinese Medicine, Beijing 100021, PR China; Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, No. 5 Panjiayuan Nanli, Chaoyang District, Beijing 100021, PR China; Comparative Medical Center, Peking Union Medical College, No. 5 Panjiayuan Nanli, Chaoyang District, Beijing 100021, PR China.
| |
Collapse
|
17
|
Wang W, Yao N, Cong Z, Jiang H, Qin C, Wei Q. Prophylactic and therapeutic effect of AZT/3TC in RT-SHIV infected Chinese-origin rhesus macaques. AIDS Res Ther 2014; 11:12. [PMID: 24594071 PMCID: PMC4016570 DOI: 10.1186/1742-6405-11-12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Accepted: 02/26/2014] [Indexed: 11/13/2022] Open
Abstract
Background The precise efficacy of nucleoside analogue reverse-transcriptase inhibitors (NRTIs) in preventing and inhibiting virus replication remains unknown in RT-SHIV infected Chinese-origin rhesus macaques (Ch RM). Findings Ch RM were inoculated intravenously with 200 TCID50 RT-SHIV and treated by gavage with NRTIs (20 mg AZT and 10 mg 3TC twice per day) for four consecutive weeks beginning at one hour, on day 217 or 297 post inoculation, respectively. Treatment with AZT/3TC inhibited transiently RT-SHIV replication during chronic infection, but did not significantly affect peripheral blood CD4+ T cells in macaques. Treatment with AZT/3TC at 1 hour post infection prevented RT-SHIV infection in two out of four animals during the 120-day observation period. Conclusions Therefore, the Ch RM model with RT-SHIV infection can be used to evaluate the efficacy of new NRTIs.
Collapse
|
18
|
Deere JD, Kauffman RC, Cannavo E, Higgins J, Villalobos A, Adamson L, Schinazi RF, Luciw PA, North TW. Analysis of multiply spliced transcripts in lymphoid tissue reservoirs of rhesus macaques infected with RT-SHIV during HAART. PLoS One 2014; 9:e87914. [PMID: 24505331 PMCID: PMC3914874 DOI: 10.1371/journal.pone.0087914] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 01/01/2014] [Indexed: 02/06/2023] Open
Abstract
Highly active antiretroviral therapy (HAART) can reduce levels of human immunodeficiency virus type 1 (HIV-1) to undetectable levels in infected individuals, but the virus is not eradicated. The mechanisms of viral persistence during HAART are poorly defined, but some reservoirs have been identified, such as latently infected resting memory CD4⁺ T cells. During latency, in addition to blocks at the initiation and elongation steps of viral transcription, there is a block in the export of viral RNA (vRNA), leading to the accumulation of multiply-spliced transcripts in the nucleus. Two of the genes encoded by the multiply-spliced transcripts are Tat and Rev, which are essential early in the viral replication cycle and might indicate the state of infection in a given population of cells. Here, the levels of multiply-spliced transcripts were compared to the levels of gag-containing RNA in tissue samples from RT-SHIV-infected rhesus macaques treated with HAART. Splice site sequence variation was identified during development of a TaqMan PCR assay. Multiply-spliced transcripts were detected in gastrointestinal and lymphatic tissues, but not the thymus. Levels of multiply-spliced transcripts were lower than levels of gag RNA, and both correlated with plasma virus loads. The ratio of multiply-spliced to gag RNA was greatest in the gastrointestinal samples from macaques with plasma virus loads <50 vRNA copies per mL at necropsy. Levels of gag RNA and multiply-spliced mRNA in tissues from RT-SHIV-infected macaques correlate with plasma virus load.
Collapse
Affiliation(s)
- Jesse D. Deere
- Center for Comparative Medicine, University of California Davis, Davis, California, United States of America
| | - Robert C. Kauffman
- Center for Comparative Medicine, University of California Davis, Davis, California, United States of America
| | - Elda Cannavo
- Center for Comparative Medicine, University of California Davis, Davis, California, United States of America
| | - Joanne Higgins
- Center for Comparative Medicine, University of California Davis, Davis, California, United States of America
| | - Andradi Villalobos
- Center for Comparative Medicine, University of California Davis, Davis, California, United States of America
| | - Lourdes Adamson
- Center for Comparative Medicine, University of California Davis, Davis, California, United States of America
| | - Raymond F. Schinazi
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Veterans Affairs Medical Center, Atlanta, Georgia, United States of America
| | - Paul A. Luciw
- Center for Comparative Medicine, University of California Davis, Davis, California, United States of America
- Department of Pathology, School of Medicine, University of California Davis, Davis, California, United States of America
| | - Thomas W. North
- Center for Comparative Medicine, University of California Davis, Davis, California, United States of America
- Department of Veterinary Molecular Biosciences, University of California Davis, Davis, California, United States of America
| |
Collapse
|
19
|
Kauffman RC, Villalobos A, Bowen JH, Adamson L, Schinazi RF. Residual viremia in an RT-SHIV rhesus macaque HAART model marked by the presence of a predominant plasma clone and a lack of viral evolution. PLoS One 2014; 9:e88258. [PMID: 24505452 PMCID: PMC3914964 DOI: 10.1371/journal.pone.0088258] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 01/09/2014] [Indexed: 11/19/2022] Open
Abstract
Highly active antiretroviral therapy (HAART) significantly reduces HIV-1 replication and prevents progression to AIDS. However, residual low-level viremia (LLV) persists and long-lived viral reservoirs are maintained in anatomical sites. These reservoirs permit a recrudescence of viremia upon cessation of therapy and thus HAART must be maintained indefinitely. HIV-1 reservoirs include latently infected resting memory CD4+ T-cells and macrophages which may contribute to residual viremia. It has not been conclusively determined if a component of LLV may also be due to residual replication in cells with sub-therapeutic drug levels and/or long-lived chronically infected cells. In this study, RT-SHIVmac239 diversity was characterized in five rhesus macaques that received a five-drug HAART regimen [tenofovir, emtricitabine, zidovudine, amdoxovir, (A, C, T, G nucleoside analogs) and the non-nucleoside reverse transcriptase (RT) inhibitor efavirenz]. Before maximal viral load suppression, longitudinal plasma viral RNA RT diversity was analyzed using a 454 sequencer. After suppression, LLV RT diversity (amino acids 65-210) was also assessed. LLV samples had viral levels less than our standard detection limit (50 viral RNA copies/mL) and few transient blips <200 RNA copies/mL. HAART was discontinued in three macaques after 42 weeks of therapy resulting in viral rebound. The level of viral divergence and the prevalence of specific alleles in LLV was similar to pre-suppression viremia. While some LLV sequences contained mutations not observed in the pre-suppression profile, LLV was not characterized by temporal viral evolution or apparent selection of drug resistance mutations. Similarly, resistance mutations were not detected in the viral rebound population. Interestingly, one macaque maintained a putative LLV predominant plasma clone sequence. Together, these results suggest that residual replication did not markedly contribute to LLV and that this model mimics the prevalence and phylogenetic characteristics of LLV during human HAART. Therefore, this model may be ideal for testing HIV-1 eradication strategies.
Collapse
Affiliation(s)
- Robert C. Kauffman
- Center for Comparative Medicine, University of California Davis, Davis, California, United States of America
- Department of Pediatrics, Laboratory of Biochemical Pharmacology, Center for AIDS Research, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Andradi Villalobos
- Center for Comparative Medicine, University of California Davis, Davis, California, United States of America
- Department of Pediatrics, Laboratory of Biochemical Pharmacology, Center for AIDS Research, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Joanne H. Bowen
- Center for Comparative Medicine, University of California Davis, Davis, California, United States of America
| | - Lourdes Adamson
- Center for Comparative Medicine, University of California Davis, Davis, California, United States of America
| | - Raymond F. Schinazi
- Department of Pediatrics, Laboratory of Biochemical Pharmacology, Center for AIDS Research, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Veterans Affairs Medical Center, Decatur, Georgia, United States of America
- * E-mail:
| |
Collapse
|
20
|
Wadford DA, Kauffman RC, Deere JD, Aoki ST, Stanton RA, Higgins J, Van Rompay KKA, Villalobos A, Nettles JH, Schinazi RF, Pedersen NC, North TW. Variation of human immunodeficiency virus type-1 reverse transcriptase within the simian immunodeficiency virus genome of RT-SHIV. PLoS One 2014; 9:e86997. [PMID: 24498008 PMCID: PMC3909041 DOI: 10.1371/journal.pone.0086997] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 12/17/2013] [Indexed: 11/25/2022] Open
Abstract
RT-SHIV is a chimera of simian immunodeficiency virus (SIV) containing the reverse transcriptase (RT)-encoding region of human immunodeficiency virus type 1 (HIV-1) within the backbone of SIVmac239. It has been used in a non-human primate model for studies of non-nucleoside RT inhibitors (NNRTI) and highly active antiretroviral therapy (HAART). We and others have identified several mutations that arise in the "foreign" HIV-1 RT of RT-SHIV during in vivo replication. In this study we catalogued amino acid substitutions in the HIV-1 RT and in regions of the SIV backbone with which RT interacts that emerged 30 weeks post-infection from seven RT-SHIV-infected rhesus macaques. The virus set points varied from relatively high virus load, moderate virus load, to undetectable virus load. The G196R substitution in RT was detected from 6 of 7 animals at week 4 post-infection and remained in virus from 4 of 6 animals at week 30. Virus from four high virus load animals showed several common mutations within RT, including L74V or V75L, G196R, L214F, and K275R. The foreign RT from high virus load isolates exhibited as much variation as that of the highly variable envelope surface glycoprotein, and 10-fold higher than that of the native RT of SIVmac239. Isolates from moderate virus load animals showed much less variation in the foreign RT than the high virus load isolates. No variation was found in SIVmac239 genes known to interact with RT. Our results demonstrate substantial adaptation of the foreign HIV-1 RT in RT-SHIV-infected macaques, which most likely reflects selective pressure upon the foreign RT to attain optimal activity within the context of the chimeric RT-SHIV and the rhesus macaque host.
Collapse
Affiliation(s)
- Debra A. Wadford
- Center for Comparative Medicine, University of California Davis, Davis, California, United States of America
| | - Robert C. Kauffman
- Center for Comparative Medicine, University of California Davis, Davis, California, United States of America
| | - Jesse D. Deere
- Center for Comparative Medicine, University of California Davis, Davis, California, United States of America
| | - Scott T. Aoki
- Center for Comparative Medicine, University of California Davis, Davis, California, United States of America
| | - Richard A. Stanton
- Children's Center for Drug Discovery (CDD), Departments of Pediatrics and Biomedical Informatics, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Joanne Higgins
- Center for Comparative Medicine, University of California Davis, Davis, California, United States of America
| | - Koen K. A. Van Rompay
- California National Primate Research Center, University of California Davis, Davis, California, United States of America
| | - Andradi Villalobos
- Center for Comparative Medicine, University of California Davis, Davis, California, United States of America
| | - James H. Nettles
- Children's Center for Drug Discovery (CDD), Departments of Pediatrics and Biomedical Informatics, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Raymond F. Schinazi
- Emory University School of Medicine, Veterans Affairs Medical Center, Decatur, Georgia, United States of America
| | - Niels C. Pedersen
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
| | - Thomas W. North
- Center for Comparative Medicine, University of California Davis, Davis, California, United States of America
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
21
|
Saito A, Akari H. Macaque-tropic human immunodeficiency virus type 1: breaking out of the host restriction factors. Front Microbiol 2013; 4:187. [PMID: 23847610 PMCID: PMC3705164 DOI: 10.3389/fmicb.2013.00187] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 06/20/2013] [Indexed: 12/02/2022] Open
Abstract
Macaque monkeys serve as important animal models for understanding the pathogenesis of lentiviral infections. Since human immunodeficiency virus type 1 (HIV-1) hardly replicates in macaque cells, simian immunodeficiency virus (SIV) or chimeric viruses between HIV-1 and SIV (SHIV) have been used as challenge viruses in this research field. These viruses, however, are genetically distant from HIV-1. Therefore, in order to evaluate the efficacy of anti-HIV-1 drugs and vaccines in macaques, the development of a macaque-tropic HIV-1 (HIV-1mt) having the ability to replicate efficiently in macaques has long been desired. Recent studies have demonstrated that host restriction factors, such as APOBEC3 family and TRIM5, impose a strong barrier against HIV-1 replication in macaque cells. By evading these restriction factors, others and we have succeeded in developing an HIV-1mt that is able to replicate in macaques. In this review, we have attempted to shed light on the role of host factors that affect the susceptibility of macaques to HIV-1mt infection, especially by focusing on TRIM5-related factors.
Collapse
Affiliation(s)
- Akatsuki Saito
- Center for Human Evolution Modeling Research, Primate Research Institute, Kyoto University Inuyama, Japan ; Japan Foundation for AIDS Prevention Chiyoda-ku, Japan
| | | |
Collapse
|
22
|
Del Prete GQ, Lifson JD. Considerations in the development of nonhuman primate models of combination antiretroviral therapy for studies of AIDS virus suppression, residual virus, and curative strategies. Curr Opin HIV AIDS 2013; 8:262-72. [PMID: 23698559 PMCID: PMC3939607 DOI: 10.1097/coh.0b013e328361cf40] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE OF REVIEW Animal models will be critical for preclinical evaluations of novel HIV eradication and/or functional cure strategies in the setting of suppressive combination antiretroviral therapy (cART). Here, the strengths, limitations, and challenges of recent efforts to develop nonhuman primate (NHP) models of cART-mediated suppression for use in studies of persistent virus and curative approaches are discussed. RECENT FINDINGS Several combinations of NHP species and viruses that recapitulate key aspects of human HIV infection have been adapted for cART-mediated suppression studies. Different cART regimens incorporating drugs targeting multiple different steps of the viral replication cycle have provided varying levels of virologic suppression, dependent in part upon the host species, virus, drug regimen and timing, and virologic monitoring assay sensitivity. New, increasingly sensitive virologic monitoring approaches for measurements of plasma viral RNA, cell-associated and tissue-associated viral RNA and DNA, and the replication-competent residual viral pool in the setting of cART in NHP models are being developed to allow for the assessment of persistent virus on cART and to evaluate the impact of viral induction/eradication strategies in vivo. SUMMARY Given the vagaries of each specific virus and host species, and cART regimen, each model will require further development and analysis to determine their appropriate application for addressing specific experimental questions.
Collapse
Affiliation(s)
- Gregory Q. Del Prete
- AIDS and Cancer Virus Program, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD
| |
Collapse
|
23
|
Abstract
The AIDS pandemic continues to present us with unique scientific and public health challenges. Although the development of effective antiretroviral therapy has been a major triumph, the emergence of drug resistance requires active management of treatment regimens and the continued development of new antiretroviral drugs. Moreover, despite nearly 30 years of intensive investigation, we still lack the basic scientific knowledge necessary to produce a safe and effective vaccine against HIV-1. Animal models offer obvious advantages in the study of HIV/AIDS, allowing for a more invasive investigation of the disease and for preclinical testing of drugs and vaccines. Advances in humanized mouse models, non-human primate immunogenetics and recombinant challenge viruses have greatly increased the number and sophistication of available mouse and simian models. Understanding the advantages and limitations of each of these models is essential for the design of animal studies to guide the development of vaccines and antiretroviral therapies for the prevention and treatment of HIV-1 infection.
Collapse
|
24
|
Affiliation(s)
- Cristian Apetrei
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| | | | | |
Collapse
|
25
|
A quantitative measurement of antiviral activity of anti-human immunodeficiency virus type 1 drugs against simian immunodeficiency virus infection: dose-response curve slope strongly influences class-specific inhibitory potential. J Virol 2012; 86:11368-72. [PMID: 22875968 DOI: 10.1128/jvi.01563-12] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Simian immunodeficiency virus (SIV) infection in macaques is so far the best animal model for human immunodeficiency virus type 1 (HIV-1) studies, but suppressing viral replication in infected animals remains challenging. Using a novel single-round infectivity assay, we quantitated the antiviral activities of antiretroviral drugs against SIV. Our results emphasize the importance of the dose-response curve slope in determining the inhibitory potential of antiretroviral drugs and provide useful information for regimen selection in treating SIV-infected animals in models of therapy and virus eradication.
Collapse
|
26
|
Van Rompay KKA, Trott KA, Jayashankar K, Geng Y, LaBranche CC, Johnson JA, Landucci G, Lipscomb J, Tarara RP, Canfield DR, Heneine W, Forthal DN, Montefiori D, Abel K. Prolonged tenofovir treatment of macaques infected with K65R reverse transcriptase mutants of SIV results in the development of antiviral immune responses that control virus replication after drug withdrawal. Retrovirology 2012; 9:57. [PMID: 22805180 PMCID: PMC3419085 DOI: 10.1186/1742-4690-9-57] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 07/17/2012] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND We reported previously that while prolonged tenofovir monotherapy of macaques infected with virulent simian immunodeficiency virus (SIV) resulted invariably in the emergence of viral mutants with reduced in vitro drug susceptibility and a K65R mutation in reverse transcriptase, some animals controlled virus replication for years. Transient CD8+ cell depletion or short-term tenofovir interruption within 1 to 5 years of treatment demonstrated that a combination of CD8+ cell-mediated immune responses and continued tenofovir therapy was required for sustained suppression of viremia. We report here follow-up data on 5 such animals that received tenofovir for 8 to 14 years. RESULTS Although one animal had a gradual increase in viremia from 3 years onwards, the other 4 tenofovir-treated animals maintained undetectable viremia with occasional viral blips (≤ 300 RNA copies/ml plasma). When tenofovir was withdrawn after 8 to 10 years from three animals with undetectable viremia, the pattern of occasional episodes of low viremia (≤ 3600 RNA/ml plasma) continued throughout the 10-month follow-up period. These animals had low virus levels in lymphoid tissues, and evidence of multiple SIV-specific immune responses. CONCLUSION Under certain conditions (i.e., prolonged antiviral therapy initiated early after infection; viral mutants with reduced drug susceptibility) a virus-host balance characterized by strong immunologic control of virus replication can be achieved. Although further research is needed to translate these findings into clinical applications, these observations provide hope for a functional cure of HIV infection via immunotherapeutic strategies that boost antiviral immunity and reduce the need for continuous antiretroviral therapy.
Collapse
Affiliation(s)
- Koen K A Van Rompay
- California National Primate Research Center, University of California, Davis, CA, 95616, USA
| | - Kristin A Trott
- California National Primate Research Center, University of California, Davis, CA, 95616, USA
| | - Kartika Jayashankar
- California National Primate Research Center, University of California, Davis, CA, 95616, USA
| | - Yongzhi Geng
- California National Primate Research Center, University of California, Davis, CA, 95616, USA
| | | | - Jeffrey A Johnson
- Division of HIV/AIDS Prevention, National Center for HIV, STD and Tuberculosis Prevention, Centers for Disease control and Prevention, Atlanta, GE, 30333, USA
| | - Gary Landucci
- Division of Infectious Diseases, Department of Medicine, University of California, Irvine School of Medicine, Irvine, CA, 92697, USA
| | - Jonathan Lipscomb
- Division of HIV/AIDS Prevention, National Center for HIV, STD and Tuberculosis Prevention, Centers for Disease control and Prevention, Atlanta, GE, 30333, USA
| | - Ross P Tarara
- California National Primate Research Center, University of California, Davis, CA, 95616, USA
| | - Don R Canfield
- California National Primate Research Center, University of California, Davis, CA, 95616, USA
| | - Walid Heneine
- Division of HIV/AIDS Prevention, National Center for HIV, STD and Tuberculosis Prevention, Centers for Disease control and Prevention, Atlanta, GE, 30333, USA
| | - Donald N Forthal
- Division of Infectious Diseases, Department of Medicine, University of California, Irvine School of Medicine, Irvine, CA, 92697, USA
| | | | - Kristina Abel
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, NC, 27599, USA
| |
Collapse
|
27
|
Thippeshappa R, Ruan H, Kimata JT. Breaking Barriers to an AIDS Model with Macaque-Tropic HIV-1 Derivatives. BIOLOGY 2012; 1:134-64. [PMID: 23336082 PMCID: PMC3546514 DOI: 10.3390/biology1020134] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 06/14/2012] [Accepted: 06/18/2012] [Indexed: 12/15/2022]
Abstract
The development of an animal model of human immunodeficiency virus type 1 (HIV-1)/AIDS that is suitable for preclinical testing of antiretroviral therapy, vaccines, curative strategies, and studies of pathogenesis has been hampered by the human-specific tropism of HIV-1. Although simian immunodeficiency virus (SIV) or HIV-1/SIV chimeric viruses (SHIVs)-rhesus macaque models are excellent surrogates for AIDS research, the genetic differences between SIV or SHIV and HIV-1 limit their utility as model systems. The identification of innate retro viral restriction factors has increased our understanding about blockades to HIV-1 replication in macaques and provided a guide for the construction of macaque-tropic HIV-1 clones. However, while these viruses replicate in macaque cells in vitro, they are easily controlled and have not caused AIDS in host animals, indicating that we may not fully understand the restrictive barriers of innate immunity. In this review, we discuss recent findings regarding HIV-1 restriction factors, particularly as they apply to cross-species transmission of primate lentiviruses and the development of a macaque model of HIV-1/AIDS.
Collapse
Affiliation(s)
| | | | - Jason T. Kimata
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; (R.T.); (H.R.)
| |
Collapse
|
28
|
Van Rompay KK. The use of nonhuman primate models of HIV infection for the evaluation of antiviral strategies. AIDS Res Hum Retroviruses 2012; 28:16-35. [PMID: 21902451 DOI: 10.1089/aid.2011.0234] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Several nonhuman primate models are used in HIV/AIDS research. In contrast to natural host models, infection of macaques with virulent simian immunodeficiency virus (SIV) isolates results in a disease (simian AIDS) that closely resembles HIV infection and AIDS. Although there is no perfect animal model, and each of the available models has its limitations, a carefully designed study allows experimental approaches that are not feasible in humans, but that can provide better insights in disease pathogenesis and proof-of-concept of novel intervention strategies. In the early years of the HIV pandemic, nonhuman primate models played a minor role in the development of antiviral strategies. Since then, a better understanding of the disease and the development of better compounds and assays to monitor antiviral effects have increased the usefulness and relevance of these animal models in the preclinical development of HIV vaccines, microbicides, and antiretroviral drugs. Several strategies that were first discovered to have efficacy in nonhuman primate models are now increasingly used in humans. Recent trends include the use of nonhuman primate models to explore strategies that could reduce viral reservoirs and, ultimately, attempt to cure infection. Ongoing comparison of results obtained in nonhuman primate models with those observed in human studies will lead to further validation and improvement of these animal models so they can continue to advance our scientific knowledge and guide clinical trials.
Collapse
Affiliation(s)
- Koen K.A. Van Rompay
- California National Primate Research Center, University of California, Davis, California
| |
Collapse
|
29
|
Stolte-Leeb N, Loddo R, Antimisiaris S, Schultheiss T, Sauermann U, Franz M, Mourtas S, Parsy C, Storer R, La Colla P, Stahl-Hennig C. Topical nonnucleoside reverse transcriptase inhibitor MC 1220 partially prevents vaginal RT-SHIV infection of macaques. AIDS Res Hum Retroviruses 2011; 27:933-43. [PMID: 21332419 DOI: 10.1089/aid.2010.0339] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The availability of an effective vaginal microbicide would be a major step toward containment of HIV transmission as well as allowing women self-protection against HIV infection. Here we evaluated the efficacy of vaginal application of the potent nonnucleoside reverse transcriptase inhibitor (NNRTI) MC 1220 against vaginal challenge of macaques with RT-SHIV, a chimeric simian immunodeficiency virus (SIV) containing the reverse transcriptase (RT) gene of HIV-1. Challenge infection of monkeys with RT-SHIV currently represents the only nonhuman primate model available to test the anti-HIV-1 effects of NNRTIs. Two different gel formulations containing different MC 1220 concentrations were evaluated for efficacy in female rhesus macaques exposed to RT-SHIV. Five groups of five animals each were treated with two different gel compositions containing no drug, 0.1% or 0.5% MC 1220, followed by vaginal RT-SHIV challenge 30 min later. One animal in each group treated with the low concentration of MC 1220 as well as one control animal remained uninfected after vaginal challenge. By contrast, three of the animals receiving 0.5% MC 1220 remained uninfected, suggesting a threshold of the drug. Despite being negative for plasma viral RNA and absence of seroconversion, almost all uninfected animals exhibited SIV-specific T cells, either in the periphery or in lymph nodes draining the portal of virus entry. Our results make MC 1220 a promising compound for further development as a topical microbicide and warrant additional testing with improved formulation, long-lasting vaginal delivery systems, or even combinations with other inhibitors.
Collapse
Affiliation(s)
- Nicole Stolte-Leeb
- Unit “Infection Models,” Deutsches Primatenzentrum GmbH, Goettingen, Germany
| | - Roberta Loddo
- Department of Biomedical Science and Technology, University of Cagliari, Cittadella Universitaria, Monserrato, Cagliari, Italy
| | - Sophia Antimisiaris
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, University of Patras, Patras, Greece
| | - Tina Schultheiss
- Unit “Infection Models,” Deutsches Primatenzentrum GmbH, Goettingen, Germany
| | - Ulrike Sauermann
- Unit “Infection Models,” Deutsches Primatenzentrum GmbH, Goettingen, Germany
| | - Monika Franz
- Unit “Infection Models,” Deutsches Primatenzentrum GmbH, Goettingen, Germany
| | - Spyridon Mourtas
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, University of Patras, Patras, Greece
| | | | | | - Paolo La Colla
- Department of Biomedical Science and Technology, University of Cagliari, Cittadella Universitaria, Monserrato, Cagliari, Italy
| | | |
Collapse
|
30
|
Abstract
Combination antiretroviral therapy (cART) has led to a major reduction in HIV-related mortality and morbidity; however, HIV can still not be cured. Achieving either a functional cure (long-term control of HIV in the absence of cART) or a sterilizing cure (elimination of all HIV-infected cells) remains a major challenge. The most significant barrier to cure is the establishment of a latent or 'silent' infection in resting CD4 T cells. Several randomized clinical trials have demonstrated that treatment intensification with additional antiretrovirals has little impact on latent reservoirs. Some potential other approaches that may reduce the latent reservoir include very early initiation of cART and the use of agents that could reverse latent infection. Drugs such as histone deacetylase inhibitors, currently used and licensed for the treatment of some cancers; methylation inhibitors; cytokines such as IL-7 or activators of nuclear factor kappa B (NF-κB) such as prostratin, show promising activity in reversing latency in vitro when used either alone or in combination. Alternate strategies include using gene therapy to modify expression of CCR5 and therefore make cells resistant to HIV. This review will primarily focus on the advantages and disadvantages of methods currently being used to quantify persistent virus ex vivo in patients receiving cART and strategies aimed at cure that are being tested in vitro or in early clinical development. In addition, we discuss key issues that need to be addressed to successfully move laboratory research to clinical trials aimed at curing HIV.
Collapse
|
31
|
Abstract
PURPOSE OF REVIEW This review will focus on recent developments in several nonhuman primate models of AIDS. These models are being used to address viral latency and persistence during antiretroviral therapy in studies that are not feasible in humans. RECENT FINDINGS Further characterization of the various macaque models of AIDS has demonstrated that several aspects of viral persistence during antiretroviral therapy model HIV-1 infection in humans, including viral decay kinetics. Widespread distribution of viral RNA and viral DNA has been detected in many tissue organs. In addition, the brain has been identified as a site of persistent viral DNA. SUMMARY The macaque models of AIDS are well suited for addressing viral persistence during antiretroviral therapy, including viral latency, residual replication, and tissue organ distribution.
Collapse
|
32
|
High natural permissivity of primary rabbit cells for HIV-1, with a virion infectivity defect in macrophages as the final replication barrier. J Virol 2010; 84:12300-14. [PMID: 20861260 DOI: 10.1128/jvi.01607-10] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
An immunocompetent, permissive, small-animal model would be valuable for the study of human immunodeficiency virus type 1 (HIV-1) pathogenesis and for the testing of drug and vaccine candidates. However, the development of such a model has been hampered by the inability of primary rodent cells to efficiently support several steps of the HIV-1 replication cycle. Although transgenesis of the HIV receptor complex and human cyclin T1 have been beneficial, additional late-phase blocks prevent robust replication of HIV-1 in rodents and limit the range of in vivo applications. In this study, we explored the HIV-1 susceptibility of rabbit primary T cells and macrophages. Envelope-specific and coreceptor-dependent entry of HIV-1 was achieved by expressing human CD4 and CCR5. A block of HIV-1 DNA synthesis, likely mediated by TRIM5, was overcome by limited changes to the HIV-1 gag gene. Unlike with mice and rats, primary cells from rabbits supported the functions of the regulatory viral proteins Tat and Rev, Gag processing, and the release of HIV-1 particles at levels comparable to those in human cells. While HIV-1 produced by rabbit T cells was highly infectious, a macrophage-specific infectivity defect became manifest by a complex pattern of mutations in the viral genome, only part of which were deamination dependent. These results demonstrate a considerable natural HIV-1 permissivity of the rabbit species and suggest that receptor complex transgenesis combined with modifications in gag and possibly vif of HIV-1 to evade species-specific restriction factors might render lagomorphs fully permissive to infection by this pathogenic human lentivirus.
Collapse
|
33
|
Deere JD, Higgins J, Cannavo E, Villalobos A, Adamson L, Fromentin E, Schinazi RF, Luciw PA, North TW. Viral decay kinetics in the highly active antiretroviral therapy-treated rhesus macaque model of AIDS. PLoS One 2010; 5:e11640. [PMID: 20668516 PMCID: PMC2909142 DOI: 10.1371/journal.pone.0011640] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Accepted: 06/28/2010] [Indexed: 11/18/2022] Open
Abstract
To prevent progression to AIDS, persons infected with human immunodeficiency virus type 1 (HIV-1) must remain on highly active antiretroviral therapy (HAART) indefinitely since this modality does not eradicate the virus. The mechanisms involved in viral persistence during HAART are poorly understood, but an animal model of HAART could help elucidate these mechanisms and enable studies of HIV-1 eradication strategies. Due to the specificity of non-nucleoside reverse transcriptase (RT) inhibitors (NNRTIs) for HIV-1, we have used RT-SHIV, a chimeric virus of simian immunodeficiency virus with RT from HIV-1. This virus is susceptible to NNRTIs and causes an AIDS-like disease in rhesus macaques. In this study, two groups of HAART-treated, RT-SHIV-infected macaques were analyzed to determine viral decay kinetics. In the first group, viral loads were monitored with a standard TaqMan RT-PCR assay with a limit of detection of 50 viral RNA copies per mL. Upon initiation of HAART, viremia decayed in a bi-phasic manner with half-lives of 1.7 and 8.5 days, respectively. A third phase was observed with little further decay. In the second group, the macaques were followed longitudinally with a more sensitive assay utilizing ultracentrifugation to concentrate virus from plasma. Bi-phasic decay of viral RNA was also observed in these animals with half-lives of 1.8 and 5.8 days. Viral loads in these animals during a third phase ranged from 2-58 RNA copies/mL, with little decay over time. The viral decay kinetics observed in these macaques are similar to those reported for HIV-1 infected humans. These results demonstrate that low-level viremia persists in RT-SHIV-infected macaques despite a HAART regimen commonly used in humans.
Collapse
Affiliation(s)
- Jesse D. Deere
- Center for Comparative Medicine, University of California Davis, Davis, California, United States of America
| | - Joanne Higgins
- Center for Comparative Medicine, University of California Davis, Davis, California, United States of America
| | - Elda Cannavo
- Center for Comparative Medicine, University of California Davis, Davis, California, United States of America
| | - Andradi Villalobos
- Center for Comparative Medicine, University of California Davis, Davis, California, United States of America
| | - Lourdes Adamson
- Center for Comparative Medicine, University of California Davis, Davis, California, United States of America
| | - Emilie Fromentin
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Veterans Affairs Medical Center, Decatur, Georgia, United States of America
| | - Raymond F. Schinazi
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Veterans Affairs Medical Center, Decatur, Georgia, United States of America
| | - Paul A. Luciw
- Center for Comparative Medicine, University of California Davis, Davis, California, United States of America
- Department of Pathology, School of Medicine, University of California Davis, Davis, California, United States of America
| | - Thomas W. North
- Center for Comparative Medicine, University of California Davis, Davis, California, United States of America
- Department of Veterinary Molecular Biosciences, University of California Davis, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
34
|
Jiang Y, Tian B, Agy MB, Saifuddin M, Tsai CC. Macaca fascicularis are highly susceptible to an RT-SHIV following intravaginal inoculation: a new model for microbicide evaluation. J Med Primatol 2010; 38 Suppl 1:39-46. [PMID: 19863677 DOI: 10.1111/j.1600-0684.2009.00374.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) is a major target for antiretroviral strategy to block or curtail HIV infection. A suitable RT-SHIV/macaque model is urgently needed for the evaluation of HIV/AIDS therapies and microbicides specifically targeting HIV-1 RT. METHODS Fifteen cynomolgus macaques (Macaca fascicularis) were divided into three groups (n = 5) and intravaginally inoculated with 4800, 1200, or 300 TCID(50) of RT-SHIVtc. Systemic infections of RT-SHIVtc exposed macaques were determined by both virological and immunologic parameters during 24 weeks post-challenge. RESULTS Within 2 weeks post-inoculation, 13 of 15 macaques became infected as confirmed by virus isolation, plasma viral RNA, proviral DNA, declined CD4(+)T cell counts in peripheral blood and seroconversion. CONCLUSIONS Results serve to validate the infectivity and pathogenicity of RT-SHIVtc following vaginal exposure in M. fascicularis. This RT-SHIVtc/macaque model could be suitable for the pre-clinical evaluation of non-nucleoside RT inhibitor-based anti-HIV microbicides.
Collapse
Affiliation(s)
- Y Jiang
- Washington National Primate Research Center, University of Washington, Seattle, WA 98195-7330, USA
| | | | | | | | | |
Collapse
|
35
|
Viral sanctuaries during highly active antiretroviral therapy in a nonhuman primate model for AIDS. J Virol 2009; 84:2913-22. [PMID: 20032180 DOI: 10.1128/jvi.02356-09] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Highly active antiretroviral therapy (HAART) enables long-term suppression of plasma HIV-1 loads in infected persons, but low-level virus persists and rebounds following cessation of therapy. During HAART, this virus resides in latently infected cells, such as resting CD4(+) T cells, and in other cell types that may support residual virus replication. Therapeutic eradication will require elimination of virus from all reservoirs. We report here a comprehensive analysis of these reservoirs in fluids, cells, and tissues in a rhesus macaque model that mimics HAART in HIV-infected humans. This nonhuman primate model uses RT-SHIV, a chimera of simian immunodeficiency virus containing the HIV-1 reverse transcriptase (RT). Methods were developed for extraction, preamplification, and real-time PCR analyses of viral DNA (vDNA) and viral RNA (vRNA) in tissues from RT-SHIV-infected macaques. These methods were used to identify viral reservoirs in RT-SHIV-infected macaques treated with a potent HAART regimen consisting of efavirenz, emtricitabine, and tenofovir. Plasma virus loads at necropsy ranged from 11 to 28 copies of vRNA per ml. Viral RNA and DNA were detected during HAART, in tissues from numerous anatomical locations. Additional analysis provided evidence for full-length viral RNA in tissues of animals with virus suppressed by HAART. The highest levels of vDNA and vRNA in HAART-treated macaques were in lymphoid tissues, particularly the spleen, lymph nodes, and gastrointestinal tract tissues. This study is the first comprehensive analysis of the tissue and organ distribution of a primate AIDS virus during HAART. These data demonstrate widespread persistence of residual virus in tissues during HAART.
Collapse
|
36
|
Jiang Y, Tian B, Saifuddin M, Agy MB, Emau P, Cairns JS, Tsai CC. RT-SHIV, an infectious CCR5-tropic chimeric virus suitable for evaluating HIV reverse transcriptase inhibitors in macaque models. AIDS Res Ther 2009; 6:23. [PMID: 19891783 PMCID: PMC2780452 DOI: 10.1186/1742-6405-6-23] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2009] [Accepted: 11/05/2009] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Non-nucleoside reverse transcriptase inhibitors (NNRTIs) are an important category of drugs for both chemotherapy and prevention of human immunodeficiency virus type 1 (HIV-1) infection. However, current non-human primate (NHP) models utilizing simian immunodeficiency virus (SIV) or commonly used chimeric SHIV (SIV expressing HIV-1 envelope) are inadequate due to the insensitivity to NNRTIs. To develop a NHP model for evaluation of NNRTI compounds, we characterized a RT-SHIV virus that was assembled by replacing the SIV mac239 reverse transcriptase (RT) with that of HIV-1HXB2. Since RT-SHIV exhibited in vitro characteristics of high infectivity, CCR5-usage, and sensitivity to HIV-1 specific NNRTIs, this virus was thought to be suitable for mucosal transmission and then was used to carry out a vaginal transmission study in pigtail macaques (Macaca nemestrina). RESULTS RT-SHIV exhibited in vitro characteristics of an infectious CCR5-tropic chimeric virus. This virus was not only highly sensitive to HIV-1 RT specific NNRTIs; its replication was also inhibited by a variety of NRTIs and protease inhibitors. For in vivo vaginal transmission studies, macaques were either pretreated with a single dose of DMPA (depot medroxyprogesterone acetate) or left untreated before intravaginal inoculation with 500 or 1,000 TCID50 of RT-SHIV. All macaques became systemically infected by 2 or 3 weeks post-inoculation exhibiting persistent high viremia, marked CD4+T cell depletion, and antiviral antibody response. DMPA-pretreated macaques showed a higher mean plasma viral load after the acute infection stage, highly variable antiviral antibody response, and a higher incidence of AIDS-like disease as compared with macaques without DMPA pretreatment. CONCLUSION This chimeric RT-SHIV has exhibited productive replication in both macaque and human PBMCs, predominantly CCR5-coreceptor usage for viral entry, and sensitivity to NNRTIs as well as other anti-HIV compounds. This study demonstrates rapid systemic infection in macaques following intravaginal exposure to RT-SHIV. This RT-SHIV/macaque model could be useful for evaluation of NNRTI-based therapies, microbicides, or other preventive strategies.
Collapse
|
37
|
Redel L, Le Douce V, Cherrier T, Marban C, Janossy A, Aunis D, Van Lint C, Rohr O, Schwartz C. HIV-1 regulation of latency in the monocyte-macrophage lineage and in CD4+ T lymphocytes. J Leukoc Biol 2009; 87:575-88. [PMID: 19801499 DOI: 10.1189/jlb.0409264] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The introduction in 1996 of the HAART raised hopes for the eradication of HIV-1. Unfortunately, the discovery of latent HIV-1 reservoirs in CD4+ T cells and in the monocyte-macrophage lineage proved the optimism to be premature. The long-lived HIV-1 reservoirs constitute a major obstacle to the eradication of HIV-1. In this review, we focus on the establishment and maintenance of HIV-1 latency in the two major targets for HIV-1: the CD4+ T cells and the monocyte-macrophage lineage. Understanding the cell-type molecular mechanisms of establishment, maintenance, and reactivation of HIV-1 latency in these reservoirs is crucial for efficient therapeutic intervention. A complete viral eradication, the holy graal for clinicians, might be achieved by strategic interventions targeting latently and productively infected cells. We suggest that new approaches, such as the combination of different kinds of proviral activators, may help to reduce dramatically the size of latent HIV-1 reservoirs in patients on HAART.
Collapse
Affiliation(s)
- Laetitia Redel
- INSERM Unit 575, Pathophysiology of Central Nervous System, Institute of Virology, Strasbourg, France
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Van Rompay KKA. Evaluation of antiretrovirals in animal models of HIV infection. Antiviral Res 2009; 85:159-75. [PMID: 19622373 DOI: 10.1016/j.antiviral.2009.07.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Revised: 07/07/2009] [Accepted: 07/13/2009] [Indexed: 01/07/2023]
Abstract
Animal models of HIV infection have played an important role in the development of antiretroviral drugs. Although each animal model has its limitations and never completely mimics HIV infection of humans, a carefully designed study allows experimental approaches that are not feasible in humans, but that can help to better understand disease pathogenesis and to provide proof-of-concept of novel intervention strategies. While rodent and feline models are useful for initial screening, further testing is best done in non-human primate models, such as simian immunodeficiency virus (SIV) infection of macaques, because they share more similarities with HIV infection of humans. In the early years of the HIV pandemic, non-human primate models played a relatively minor role in the antiretroviral drug development process. Since then, a better understanding of the disease and the development of better drugs and assays to monitor antiviral efficacy have increased the usefulness of the animal models. In particular, non-human primate models have provided proof-of-concept for (i) the benefits of chemoprophylaxis and early treatment, (ii) the preclinical efficacy of novel drugs such as tenofovir, (iii) the virulence and clinical significance of drug-resistant viral mutants, and (iv) the role of antiviral immune responses during drug therapy. Ongoing comparison of results obtained in animal models with those observed in human studies will further validate and improve these animal models so they can continue to help advance our scientific knowledge and to guide clinical trials. This article forms part of a special issue of Antiviral Research marking the 25th anniversary of antiretroviral drug discovery and development, Vol 85, issue 1, 2010.
Collapse
Affiliation(s)
- Koen K A Van Rompay
- California National Primate Research Center, University of California, Davis, CA 95616, USA.
| |
Collapse
|
39
|
A simian immunodeficiency virus-infected macaque model to study viral reservoirs that persist during highly active antiretroviral therapy. J Virol 2009; 83:9247-57. [PMID: 19570871 DOI: 10.1128/jvi.00840-09] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The treatment of human immunodeficiency virus type 1 (HIV-1) infection with highly active antiretroviral therapy (HAART), a combination of three or more antiretroviral drugs, suppresses viremia below the clinical limit of detection (50 HIV-1 RNA copies/ml), but latently infected resting CD4(+) T cells serve as lifelong reservoirs, and low-level viremia can be detected with special assays. Recent studies have provided evidence for additional reservoirs that contribute to residual viremia but are not present in circulating cells. Identification of all the sources of residual viremia in humans may be difficult. These discoveries highlight the need for a tractable model system to identify additional viral reservoirs that could represent barriers to eradication. In this study, simian immunodeficiency virus (SIV)-infected pig-tailed macaques (Macaca nemestrina) were treated with four antiretroviral drugs to develop an animal model for viral suppression during effective HAART. Treatment led to a biphasic decay in viremia and a significant rise in levels of circulating CD4(+) T cells. At terminal infection time points, the frequency of circulating resting CD4(+) T cells harboring replication-competent virus was reduced to a low steady-state level similar to that observed for HIV-infected patients on HAART. The frequencies of resting CD4(+) T cells harboring replication-competent virus in the pooled head lymph nodes, gut lymph nodes, spleen, and peripheral blood were reduced relative to those for untreated SIV-infected animals. These observations closely parallel findings for HIV-infected humans on suppressive HAART and demonstrate the value of this animal model to identify and characterize viral reservoirs persisting in the setting of suppressive antiretroviral drugs.
Collapse
|
40
|
Suppression of human immunodeficiency virus type 1 (HIV-1) viremia with reverse transcriptase and integrase inhibitors, CD4+ T-cell recovery, and viral rebound upon interruption of therapy in a new model for HIV treatment in the humanized Rag2-/-{gamma}c-/- mouse. J Virol 2009; 83:8254-8. [PMID: 19494021 DOI: 10.1128/jvi.00580-09] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A small animal model that reproduces human immunodeficiency virus type 1 (HIV-1) pathogenesis may allow modeling of new therapeutic strategies in ways not approachable in mononuclear cell culture. We find that, as in humans, combination antiretroviral therapy (ART) in humanized (hu-) Rag2(-/-)gamma(c)(-/-) mice allows suppression of viremia below the limits of detection and recovery of CD4(+) cells, while interruption of ART results in viral rebound and renewed loss of CD4(+) T cells. Failure of ART in infected mice is associated with the appearance of drug resistance mutations. The hu-Rag2(-/-)gamma(c)(-/-) mouse may therefore facilitate testing of novel approaches to HIV replication and persistence.
Collapse
|
41
|
Pal R, Nuttall J, Galmin L, Weiss D, Chung HK, Romano J. Characterization of vaginal transmission of a simian human immunodeficiency virus (SHIV) encoding the reverse transcriptase gene from HIV-1 in Chinese rhesus macaques. Virology 2009; 386:102-8. [PMID: 19195672 DOI: 10.1016/j.virol.2009.01.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Revised: 11/21/2008] [Accepted: 01/02/2009] [Indexed: 11/27/2022]
Abstract
Replication competent recombinant simian-human immunodeficiency virus encoding the reverse transcriptase gene (RT SHIV) from HIV-1 was characterized for vaginal transmission in rhesus macaques. RT SHIV was shown to transmit efficiently via the vaginal route in macaques with detectable plasma viremia persisting for a year in some animals. Analyses of virus load in tissues of infected animals revealed accumulation of viral RNA in lymph nodes and spleen with levels correlating with plasma viremia. RT-SHIV was inhibited by dapivirine, nevirapine, efavirenz and tenofovir in vitro, although the effect was less pronounced with tenofovir. Virus isolated from infected animals at early and later time points had limited changes in RT sequences and exhibited similar sensitivity to RT inhibitors as the challenge virus. The vaginal transmission of RT SHIV demonstrated here suggests this virus may possibly be used in the nonhuman primate model for limited evaluation of RT inhibitors applied vaginally.
Collapse
Affiliation(s)
- Ranajit Pal
- Advanced BioScience Laboratories Inc., Kensington, MD 20895, USA.
| | | | | | | | | | | |
Collapse
|
42
|
Williams R, Bokhari S, Silverstein P, Pinson D, Kumar A, Buch S. Nonhuman primate models of NeuroAIDS. J Neurovirol 2009; 14:292-300. [PMID: 18780230 DOI: 10.1080/13550280802074539] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Human Immunodeficiency virus (HIV), the virus that causes acquired immunodeficiency syndrome (AIDS), also manifests neurological complications. HIV-associated dementia (HAD) is the most severe form of HIV-induced neurocognitive disorders. HIV encephalitis (HIVE), the pathological correlate of HAD, is characterized by the formation of multinucleated giant cells and microglial nodules, astrocytosis, and neuronal damage and loss. Pathological evaluation of HAD disease progression in humans is not possible, with the only data collected being from individuals who have succumbed to the disorder, a snap shot of end-stage disease at best. Therefore, pertinent animal models have been developed to alleviate this gap of knowledge in the field of neurovirology and neuroinflammation. In general, the most widely used animal models are the simian immunodeficiency virus (SIV) and the chimeric simian/human immunodeficiency virus (SHIV) macaque model systems. Although both SIV and SHIV model systems are able to potentiate neuroinvasion and the concomitant neuropathology similar to that seen in the human syndromes, the innate differences between the two in disease pathogenesis and progression make for two separate, yet effective, systems for the study of HIV-associated neuropathology.
Collapse
Affiliation(s)
- Rachel Williams
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas 66103, USA
| | | | | | | | | | | |
Collapse
|
43
|
Abstract
Macaques have served as models for more than 70 human infectious diseases of diverse etiologies, including a multitude of agents—bacteria, viruses, fungi, parasites, prions. The remarkable diversity of human infectious diseases that have been modeled in the macaque includes global, childhood, and tropical diseases as well as newly emergent, sexually transmitted, oncogenic, degenerative neurologic, potential bioterrorism, and miscellaneous other diseases. Historically, macaques played a major role in establishing the etiology of yellow fever, polio, and prion diseases. With rare exceptions (Chagas disease, bartonellosis), all of the infectious diseases in this review are of Old World origin. Perhaps most surprising is the large number of tropical (16), newly emergent (7), and bioterrorism diseases (9) that have been modeled in macaques. Many of these human diseases (e.g., AIDS, hepatitis E, bartonellosis) are a consequence of zoonotic infection. However, infectious agents of certain diseases, including measles and tuberculosis, can sometimes go both ways, and thus several human pathogens are threats to nonhuman primates including macaques. Through experimental studies in macaques, researchers have gained insight into pathogenic mechanisms and novel treatment and vaccine approaches for many human infectious diseases, most notably acquired immunodeficiency syndrome (AIDS), which is caused by infection with human immunodeficiency virus (HIV). Other infectious agents for which macaques have been a uniquely valuable resource for biomedical research, and particularly vaccinology, include influenza virus, paramyxoviruses, flaviviruses, arenaviruses, hepatitis E virus, papillomavirus, smallpox virus, Mycobacteria, Bacillus anthracis, Helicobacter pylori, Yersinia pestis, and Plasmodium species. This review summarizes the extensive past and present research on macaque models of human infectious disease.
Collapse
Affiliation(s)
- Murray B Gardner
- Center for Comparative Medicine, University of California, Davis, CA 95616, USA.
| | | |
Collapse
|
44
|
Ambrose Z, Palmer S, Boltz VF, Kearney M, Larsen K, Polacino P, Flanary L, Oswald K, Piatak M, Smedley J, Shao W, Bischofberger N, Maldarelli F, Kimata JT, Mellors JW, Hu SL, Coffin JM, Lifson JD, KewalRamani VN. Suppression of viremia and evolution of human immunodeficiency virus type 1 drug resistance in a macaque model for antiretroviral therapy. J Virol 2007; 81:12145-55. [PMID: 17855539 PMCID: PMC2169021 DOI: 10.1128/jvi.01301-07] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Antiretroviral therapy (ART) in human immunodeficiency virus type 1 (HIV-1)-infected patients does not clear the infection and can select for drug resistance over time. Not only is drug-resistant HIV-1 a concern for infected individuals on continual therapy, but it is an emerging problem in resource-limited settings where, in efforts to stem mother-to-child-transmission of HIV-1, transient nonnucleoside reverse transcriptase inhibitor (NNRTI) therapy given during labor can select for NNRTI resistance in both mother and child. Questions of HIV-1 persistence and drug resistance are highly amenable to exploration within animals models, where therapy manipulation is less constrained. We examined a pigtail macaque infection model responsive to anti-HIV-1 therapy to study the development of resistance. Pigtail macaques were infected with a pathogenic simian immunodeficiency virus encoding HIV-1 reverse transcriptase (RT-SHIV) to examine the impact of prior exposure to a NNRTI on subsequent ART comprised of a NNRTI and two nucleoside RT inhibitors. K103N resistance-conferring mutations in RT rapidly accumulated in 2/3 infected animals after NNRTI monotherapy and contributed to virologic failure during ART in 1/3 animals. By contrast, ART effectively suppressed RT-SHIV in 5/6 animals. These data indicate that suboptimal therapy facilitates HIV-1 drug resistance and suggest that this model can be used to investigate persisting viral reservoirs.
Collapse
Affiliation(s)
- Zandrea Ambrose
- HIV Drug Resistance Program, National Cancer Institute, Building 535, Room 123, Frederick, MD 21702, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Van Rompay KKA, Johnson JA, Blackwood EJ, Singh RP, Lipscomb J, Matthews TB, Marthas ML, Pedersen NC, Bischofberger N, Heneine W, North TW. Sequential emergence and clinical implications of viral mutants with K70E and K65R mutation in reverse transcriptase during prolonged tenofovir monotherapy in rhesus macaques with chronic RT-SHIV infection. Retrovirology 2007; 4:25. [PMID: 17417971 PMCID: PMC1852805 DOI: 10.1186/1742-4690-4-25] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2007] [Accepted: 04/06/2007] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND We reported previously on the emergence and clinical implications of simian immunodeficiency virus (SIVmac251) mutants with a K65R mutation in reverse transcriptase (RT), and the role of CD8+ cell-mediated immune responses in suppressing viremia during tenofovir therapy. Because of significant sequence differences between SIV and HIV-1 RT that affect drug susceptibilities and mutational patterns, it is unclear to what extent findings with SIV can be extrapolated to HIV-1 RT. Accordingly, to model HIV-1 RT responses, 12 macaques were inoculated with RT-SHIV, a chimeric SIV containing HIV-1 RT, and started on prolonged tenofovir therapy 5 months later. RESULTS The early virologic response to tenofovir correlated with baseline viral RNA levels and expression of the MHC class I allele Mamu-A*01. For all animals, sensitive real-time PCR assays detected the transient emergence of K70E RT mutants within 4 weeks of therapy, which were then replaced by K65R mutants within 12 weeks of therapy. For most animals, the occurrence of these mutations preceded a partial rebound of plasma viremia to levels that remained on average 10-fold below baseline values. One animal eventually suppressed K65R viremia to undetectable levels for more than 4 years; sequential experiments using CD8+ cell depletion and tenofovir interruption demonstrated that both CD8+ cells and continued tenofovir therapy were required for sustained suppression of viremia. CONCLUSION This is the first evidence that tenofovir therapy can select directly for K70E viral mutants in vivo. The observations on the clinical implications of the K65R RT-SHIV mutants were consistent with those of SIVmac251, and suggest that for persons infected with K65R HIV-1 both immune-mediated and drug-dependent antiviral activities play a role in controlling viremia. These findings suggest also that even in the presence of K65R virus, continuation of tenofovir treatment as part of HAART may be beneficial, particularly when assisted by antiviral immune responses.
Collapse
Affiliation(s)
- Koen KA Van Rompay
- California National Primate Research Center, University of California, Davis, USA
| | - Jeffrey A Johnson
- Division of HIV/AIDS Prevention, National Center for HIV, STD and Tuberculosis Prevention, Centers for Disease Control and Prevention, Atlanta, USA
| | - Emily J Blackwood
- California National Primate Research Center, University of California, Davis, USA
| | - Raman P Singh
- California National Primate Research Center, University of California, Davis, USA
| | - Jonathan Lipscomb
- Division of HIV/AIDS Prevention, National Center for HIV, STD and Tuberculosis Prevention, Centers for Disease Control and Prevention, Atlanta, USA
| | | | - Marta L Marthas
- California National Primate Research Center, University of California, Davis, USA
| | - Niels C Pedersen
- Department of Medicine and Epidemiology, School of Veterinary Medicine; University of California, Davis, USA
| | | | - Walid Heneine
- Division of HIV/AIDS Prevention, National Center for HIV, STD and Tuberculosis Prevention, Centers for Disease Control and Prevention, Atlanta, USA
| | - Thomas W North
- Center for Comparative Medicine, University of California, Davis, USA
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, USA
| |
Collapse
|
46
|
Han Y, Wind-Rotolo M, Yang HC, Siliciano JD, Siliciano RF. Experimental approaches to the study of HIV-1 latency. Nat Rev Microbiol 2007; 5:95-106. [PMID: 17224919 DOI: 10.1038/nrmicro1580] [Citation(s) in RCA: 170] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Viral latency is a reversibly non-productive state of infection that allows some viruses to evade host immune responses. As a consequence of its tropism for activated CD4(+) T cells, HIV-1 can establish latent infection in resting memory CD4(+) T cells, which are generated when activated CD4(+) T cells return to a quiescent state. Latent HIV-1 persists as a stably integrated but transcriptionally silent provirus. In this state, the virus is unaffected by immune responses or antiretroviral drugs, and this latent reservoir in resting CD4(+) T cells is a major barrier to curing the infection. Unfortunately, there is no simple assay to measure the number of latently infected cells in a patient, nor is there an entirely representative in vitro model in which to explore the molecular mechanisms of latency. This Review will consider current approaches to the analysis of HIV-1 latency both in vivo and in vitro.
Collapse
Affiliation(s)
- Yefei Han
- Department of Medicine, Johns Hopkins University School of Medicine, 879 BRB 733 N. Broadway, Baltimore, Maryland 21205, USA
| | | | | | | | | |
Collapse
|
47
|
Ishimatsu M, Suzuki H, Akiyama H, Miura T, Hayami M, Ido E. Construction of a novel SHIV having an HIV-1-derived protease gene and its infection to rhesus macaques: a useful tool for in vivo efficacy tests of protease inhibitors. Microbes Infect 2007; 9:475-82. [PMID: 17350308 DOI: 10.1016/j.micinf.2007.01.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2006] [Revised: 01/09/2007] [Accepted: 01/10/2007] [Indexed: 10/23/2022]
Abstract
We generated a novel SHIV (termed SHIV-pr) that possesses the HIV-1-derived protease (PR) gene in the corresponding position in the SIVmac genome. SHIV-pr is replication-competent in human and monkey CD4(+) T lymphoid cell lines as well as rhesus macaque PBMCs. The viral growth of SHIV-pr was completely blocked in the presence of a peptide-analog PR inhibitor at the tissue culture level. When SHIV-pr was intravenously inoculated into two rhesus macaques, it resulted in a weak but long-lasting persistent infection in one monkey, whereas the infection of another was only temporary. To enhance the viral growth competence by adaptation, we then passaged the virus in vivo from a monkey up to the fourth generation. The initial peak values of plasma viral loads as well as the setpoint values increased generation by generation and reached those of a parental virus SIVmac. When a medication using the content of Kaletra capsule (a mixture of two PR inhibitors, lopinavir and ritonavir) was orally given to three SHIV-pr-infected monkeys for 4 weeks, plasma viral loads dropped to near or below the detection limit and quickly rebounded after the cessation of medication. The results suggest that SHIV-pr can be used to evaluate PR inhibitors using monkeys.
Collapse
Affiliation(s)
- Misa Ishimatsu
- Laboratory for Viral Replication, Center for Emerging Virus Research, Institute for Virus Research, Kyoto University, 53 Shogoin-Kawaracho, Kyoto 606-8507, Japan
| | | | | | | | | | | |
Collapse
|
48
|
Goffinet C, Allespach I, Keppler OT. HIV-susceptible transgenic rats allow rapid preclinical testing of antiviral compounds targeting virus entry or reverse transcription. Proc Natl Acad Sci U S A 2007; 104:1015-20. [PMID: 17209012 PMCID: PMC1783356 DOI: 10.1073/pnas.0607414104] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The current testing of anti-HIV drugs is hampered by the lack of a small animal that is readily available and easy to handle; can be infected systemically with HIV type 1 (HIV-1); harbors the major HIV-1 target cells in a physiological frequency, organ distribution, and activation state; and is established as a pharmacological model. Here, we explored the potential of outbred Sprague-Dawley rats that transgenically express the HIV-1 receptor complex on CD4 T cells and macrophages as a model for the preclinical evaluation of inhibitors targeting virus entry or reverse transcription. The concentrations of the peptidic fusion inhibitor enfuvirtide or the nonnucleoside reverse transcriptase inhibitor efavirenz required to inhibit HIV-1 infection of cultured primary CD4 T cells and macrophages from human CD4 and CCR5-transgenic rats differed by no more than 3-fold from those required for human reference cultures. Prophylactic treatment of double-transgenic rats with a weight-adapted pediatric dosing regimen for either enfuvirtide (s.c., twice-daily) or efavirenz (oral, once-daily) achieved a 92.5% or 98.8% reduction, respectively, of the HIV-1 cDNA load in the spleen 4 days after i.v. HIV-1 challenge. Notably, a once-daily dosing regimen for enfuvirtide resulted in a approximately 5-fold weaker inhibition of infection, unmasking the unfavorable pharmacokinetic characteristics of the synthetic peptide in the context of an efficacy trial. This work provides proof of principle that HIV-susceptible transgenic rats can allow a rapid and predictive preclinical evaluation of the inhibitory potency and of the pharmacokinetic properties of antiviral compounds targeting early steps in the HIV replication cycle.
Collapse
Affiliation(s)
- Christine Goffinet
- Department of Virology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Ina Allespach
- Department of Virology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Oliver T. Keppler
- Department of Virology, University of Heidelberg, 69120 Heidelberg, Germany
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
49
|
Shen A, Yang HC, Zhou Y, Chase AJ, Boyer JD, Zhang H, Margolick JB, Zink MC, Clements JE, Siliciano RF. Novel pathway for induction of latent virus from resting CD4(+) T cells in the simian immunodeficiency virus/macaque model of human immunodeficiency virus type 1 latency. J Virol 2006; 81:1660-70. [PMID: 17151130 PMCID: PMC1797567 DOI: 10.1128/jvi.01396-06] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although combination therapy allows the suppression of human immunodeficiency virus type 1 (HIV-1) viremia to undetectable levels, eradication has not been achieved because the virus persists in cellular reservoirs, particularly the latent reservoir in resting CD4(+) T lymphocytes. We previously established a simian immunodeficiency virus (SIV)/macaque model to study latency. We describe here a novel mechanism for the induction of SIV from latently infected resting CD4(+) T cells. Several human cell lines including CEMx174 and Epstein-Barr virus-transformed human B-lymphoblastoid cell lines mediated contact-dependent activation of resting macaque T cells and induction of latent SIV. Antibody-blocking assays showed that interactions between the costimulatory molecule CD2 and its ligand CD58 were involved, whereas soluble factors and interactions between T-cell receptors and major histocompatibility complex class II were not. Combinations of specific antibodies to CD2 also induced T-cell activation and virus induction in human resting CD4(+) T cells carrying latent HIV-1. This is the first demonstration that costimulatory signals can induce latent virus without the coengagement of the T-cell receptor, and this study might provide insights into potential pathways to target latent HIV-1.
Collapse
Affiliation(s)
- Anding Shen
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Johnson JA, Rompay KKAV, Delwart E, Heneine W. A rapid and sensitive real-time PCR assay for the K65R drug resistance mutation in SIV reverse transcriptase. AIDS Res Hum Retroviruses 2006; 22:912-6. [PMID: 16989618 DOI: 10.1089/aid.2006.22.912] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Macaques infected with simian immunodeficiency virus (SIV) provide a suitable model for assessing the efficacy of antiretroviral (ARV) drug interventions and drug resistance selection associated with treatment. Resistance to the HIV reverse transcriptase inhibitor tenofovir continues to be examined in different treatment strategies in the macaque model. Evaluations of treatment interventions and drug resistance are hampered by the limited sensitivity of conventional population sequencing and the substantial effort involved in testing various tissue compartments in which viruses may reside. Therefore, a sensitive assay that permits simple and rapid testing for drug-resistant viruses would benefit appraisals of ARV treatments using in vivo models. To have this capability, we developed a real-time PCR-based assay for the detection of the SIV K65R reverse transcriptase mutation, a key marker for reduced susceptibility to tenofovir. Evaluations of SIV sequences yielded an assay detection limit mean of 0.4% mutant virus (range = 0.1-2%) in a wild-type background. In testing longitudinal plasma specimens from four SIV-infected macaques that received an active daily regimen of 30 mg/kg of tenofovir subcutaneously, the assay was able to detect K65R-positive viruses in all animals within 1-7 weeks after treatment began. The emerging mutants were initially present at frequencies estimated between 0.4% and 3%, below the detection capability of population sequencing. We propose the SIV K65R real-time PCR assay provides improved sensitivity and simplicity in studying tenofovir resistance in macaque models.
Collapse
Affiliation(s)
- Jeffrey A Johnson
- National Center for HIV, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia 30303, USA.
| | | | | | | |
Collapse
|