1
|
Khatun MN, Tasnim S, Hossain MR, Rahman MZ, Hossain MT, Chowdhury EH, Parvin R. Molecular epidemiology of avian influenza viruses and avian coronaviruses in environmental samples from migratory bird inhabitants in Bangladesh. Front Vet Sci 2024; 11:1446577. [PMID: 39434717 PMCID: PMC11491338 DOI: 10.3389/fvets.2024.1446577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 09/13/2024] [Indexed: 10/23/2024] Open
Abstract
Migratory birds are a natural reservoir for major respiratory viruses such as the avian influenza virus (AIV) and the avian coronavirus (AvCoV). Transmission of these viruses from migratory birds to domestic birds increases the prevalence of those diseases that cause severe economic and public health concerns in Bangladesh. The study focused on active surveillance of major respiratory viral pathogens in migratory birds, molecular identification of the viruses, and their phylogenetic origin. To conduct this study, 850 environmental samples (830 fecal samples, 10 soil samples, and 10 water samples) were collected during three consecutive winter seasons from three divisions (Dhaka, Sylhet, and Mymensingh) and pooled according to the year of collection and locations, resulting in a total of 184 tested samples. Using gene-specific primers and probes in TaqMan-and SYBR Green-based RT-qPCR assays, the samples were screened for AIV and AvCoV, respectively. Out of the 184 pooled samples, 37 were found to be positive for these respiratory pathogens. Furthermore, out of the 37 (20.11%) positive respiratory pathogens, 11.96% were AIV (n = 22) and 8.15% were AvCoV (n = 15). For the first time in Bangladesh, AIV H4N2, H4N6, and AvCoVs have been found in fecal samples from migratory birds through surveillance. Phylogenetic analyses of the HA and NA genes of AIV and the polymerase gene (Orf 1) of AvCoV revealed that these strains share a close phylogenetic relationship with the isolates from wild birds in Europe and Asia. The Bangladeshi strains with Eurasian ancestry might pose a significant threat to migratory birds flying through the Asian flyways. They might also be a potential source of virus introduction and spread to poultry raised on land. These findings emphasize the significance of ongoing AIV and AvCoV surveillance in migratory birds in Bangladesh.
Collapse
Affiliation(s)
- Most. Nahida Khatun
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Shadia Tasnim
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Md. Riabbel Hossain
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Md. Ziaur Rahman
- Molecular Radiobiology and Biodosimetry Division, Institute of Food and Radiation Biology, Atomic Energy Research Establishment, Dhaka, Bangladesh
| | - Md. Tofazzal Hossain
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Emdadul Haque Chowdhury
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Rokshana Parvin
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| |
Collapse
|
2
|
Al-Eitan L, Khair I, Shakhatreh Z, Almahdawi D, Alahmad S. Epidemiology, biosafety, and biosecurity of Avian Influenza: Insights from the East Mediterranean region. Rev Med Virol 2024; 34:e2559. [PMID: 38886173 DOI: 10.1002/rmv.2559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/22/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024]
Abstract
The World Organization for Animal Health defines Avian Influenza Virus as a highly infectious disease caused by diverse subtypes that continue to evolve rapidly, impacting poultry species, pet birds, wild birds, non-human mammals, and occasionally humans. The effects of Avian influenza viruses have been recognised as a precursor for serious health concerns among affected birds, poultry, and human populations in the Middle East. Furthermore, low and high pathogenic avian influenza viruses lead to respiratory illness with varying severity, depending on the virus subtype (e.g., H5, H7, H9, etc.). Possible future outbreaks and endemics of newly emerging subtypes are expected to occur, as many studies have reported the emergence of novel mutations and viral subtypes. However, proper surveillance programs and biosecurity applications should be developed, and countries with incapacitated defences against such outbreaks should be encouraged to undergo complete reinstation and reinforcement in their health and research sectors. Public education regarding biosafety and virus prevention is necessary to ensure minimal spread of avian influenza endemic.
Collapse
Affiliation(s)
- Laith Al-Eitan
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid, Jordan
| | - Iliya Khair
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid, Jordan
| | - Zaid Shakhatreh
- Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Diana Almahdawi
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid, Jordan
| | - Saif Alahmad
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
3
|
Souci L, Denesvre C. Interactions between avian viruses and skin in farm birds. Vet Res 2024; 55:54. [PMID: 38671518 PMCID: PMC11055369 DOI: 10.1186/s13567-024-01310-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/24/2024] [Indexed: 04/28/2024] Open
Abstract
This article reviews the avian viruses that infect the skin of domestic farm birds of primary economic importance: chicken, duck, turkey, and goose. Many avian viruses (e.g., poxviruses, herpesviruses, Influenza viruses, retroviruses) leading to pathologies infect the skin and the appendages of these birds. Some of these viruses (e.g., Marek's disease virus, avian influenza viruses) have had and/or still have a devasting impact on the poultry economy. The skin tropism of these viruses is key to the pathology and virus life cycle, in particular for virus entry, shedding, and/or transmission. In addition, for some emergent arboviruses, such as flaviviruses, the skin is often the entry gate of the virus after mosquito bites, whether or not the host develops symptoms (e.g., West Nile virus). Various avian skin models, from primary cells to three-dimensional models, are currently available to better understand virus-skin interactions (such as replication, pathogenesis, cell response, and co-infection). These models may be key to finding solutions to prevent or halt viral infection in poultry.
Collapse
Affiliation(s)
- Laurent Souci
- Laboratoire de Biologie des Virus Aviaires, UMR1282 ISP, INRAE Centre Val-de-Loire, 37380, Nouzilly, France
| | - Caroline Denesvre
- Laboratoire de Biologie des Virus Aviaires, UMR1282 ISP, INRAE Centre Val-de-Loire, 37380, Nouzilly, France.
| |
Collapse
|
4
|
Fair JM, Al-Hmoud N, Alrwashdeh M, Bartlow AW, Balkhamishvili S, Daraselia I, Elshoff A, Fakhouri L, Javakhishvili Z, Khoury F, Muzyka D, Ninua L, Tsao J, Urushadze L, Owen J. Transboundary determinants of avian zoonotic infectious diseases: challenges for strengthening research capacity and connecting surveillance networks. Front Microbiol 2024; 15:1341842. [PMID: 38435695 PMCID: PMC10907996 DOI: 10.3389/fmicb.2024.1341842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/19/2024] [Indexed: 03/05/2024] Open
Abstract
As the climate changes, global systems have become increasingly unstable and unpredictable. This is particularly true for many disease systems, including subtypes of highly pathogenic avian influenzas (HPAIs) that are circulating the world. Ecological patterns once thought stable are changing, bringing new populations and organisms into contact with one another. Wild birds continue to be hosts and reservoirs for numerous zoonotic pathogens, and strains of HPAI and other pathogens have been introduced into new regions via migrating birds and transboundary trade of wild birds. With these expanding environmental changes, it is even more crucial that regions or counties that previously did not have surveillance programs develop the appropriate skills to sample wild birds and add to the understanding of pathogens in migratory and breeding birds through research. For example, little is known about wild bird infectious diseases and migration along the Mediterranean and Black Sea Flyway (MBSF), which connects Europe, Asia, and Africa. Focusing on avian influenza and the microbiome in migratory wild birds along the MBSF, this project seeks to understand the determinants of transboundary disease propagation and coinfection in regions that are connected by this flyway. Through the creation of a threat reduction network for avian diseases (Avian Zoonotic Disease Network, AZDN) in three countries along the MBSF (Georgia, Ukraine, and Jordan), this project is strengthening capacities for disease diagnostics; microbiomes; ecoimmunology; field biosafety; proper wildlife capture and handling; experimental design; statistical analysis; and vector sampling and biology. Here, we cover what is required to build a wild bird infectious disease research and surveillance program, which includes learning skills in proper bird capture and handling; biosafety and biosecurity; permits; next generation sequencing; leading-edge bioinformatics and statistical analyses; and vector and environmental sampling. Creating connected networks for avian influenzas and other pathogen surveillance will increase coordination and strengthen biosurveillance globally in wild birds.
Collapse
Affiliation(s)
- Jeanne M. Fair
- Genomics and Bioanalytics, Los Alamos National Laboratory, Los Alamos, NM, United States
| | - Nisreen Al-Hmoud
- Bio-Safety and Bio-Security Center, Royal Scientific Society, Amman, Jordan
| | - Mu’men Alrwashdeh
- Bio-Safety and Bio-Security Center, Royal Scientific Society, Amman, Jordan
| | - Andrew W. Bartlow
- Genomics and Bioanalytics, Los Alamos National Laboratory, Los Alamos, NM, United States
| | | | - Ivane Daraselia
- Center of Wildlife Disease Ecology, Ilia State University, Tbilisi, Georgia
| | | | | | - Zura Javakhishvili
- Center of Wildlife Disease Ecology, Ilia State University, Tbilisi, Georgia
| | - Fares Khoury
- Department of Biology and Biotechnology, American University of Madaba, Madaba, Jordan
| | - Denys Muzyka
- National Scientific Center, Institute of Experimental and Clinical Veterinary Medicine, Kharkiv, Ukraine
| | | | - Jean Tsao
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, United States
| | - Lela Urushadze
- National Center for Disease Control and Public Health (NCDC) of Georgia, Tbilisi, Georgia
| | - Jennifer Owen
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
5
|
Druzyaka AV, Druzyaka OR, Sharshov KA, Kasianov N, Dubovitskiy N, Derko AA, Frolov IG, Torniainen J, Wang W, Minina MA, Shestopalov AM. Stable Isotope Analysis Reveals Common Teal ( Anas crecca) Molting Sites in Western Siberia: Implications for Avian Influenza Virus Spread. Microorganisms 2024; 12:357. [PMID: 38399761 PMCID: PMC10891923 DOI: 10.3390/microorganisms12020357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/29/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
The wetlands of southwestern Siberia (SWS) are a crossroads of bird migration routes, bringing avian influenza (AIV) strains that were previously isolated in different regions of the continent to Siberia. It is known that Anseriformes that breed in SWS migrate for the winter to central Hindustan or further west, while their migration routes to southeast Asia (SEA) remain unconfirmed. Here, we mapped the molting sites of the migrating Common Teals (Anas crecca) via analyzing stable hydrogen isotope content in feathers of hunters' prey and supplemented the analysis with the genetic structure of viruses isolated from teals in the same region. Post-breeding molt of autumn teals most likely occurred within the study region, whereas probable pre-breeding molting grounds of spring teals were in the south of Hindustan. This link was supported by viral phylogenetic analysis, which showed a close relationship between SWS isolates and viruses from south and southeast Asia. Most viral segments have the highest genetic similarity and the closest phylogenetic relationships with viruses from teal wintering areas in southeast Asian countries, including India and Korea. We assume that the winter molt of SWS breeding teals on the Hindustan coast suggests contacts with the local avifauna, including species migrating along the coast to SEA. Perhaps this is one of the vectors of AIV transmission within Eurasia.
Collapse
Affiliation(s)
- Alexey V. Druzyaka
- Institute of Systematic and Ecology of Animals, Frunze Str. 11, 630091 Novosibirsk, Russia; (O.R.D.); (I.G.F.); (M.A.M.)
- Department of Natural Sciences, Novosibirsk State University, Pirogova Str. 2, 630090 Novosibirsk, Russia
| | - Olga R. Druzyaka
- Institute of Systematic and Ecology of Animals, Frunze Str. 11, 630091 Novosibirsk, Russia; (O.R.D.); (I.G.F.); (M.A.M.)
- Department of Natural Sciences, Novosibirsk State University, Pirogova Str. 2, 630090 Novosibirsk, Russia
- Federal Research Center of Fundamental and Translational Medicine, Timakova Str. 2, 630060 Novosibirsk, Russia; (K.A.S.); (N.D.); (A.A.D.); (A.M.S.)
| | - Kirill A. Sharshov
- Federal Research Center of Fundamental and Translational Medicine, Timakova Str. 2, 630060 Novosibirsk, Russia; (K.A.S.); (N.D.); (A.A.D.); (A.M.S.)
| | - Nikita Kasianov
- Federal Research Center of Fundamental and Translational Medicine, Timakova Str. 2, 630060 Novosibirsk, Russia; (K.A.S.); (N.D.); (A.A.D.); (A.M.S.)
| | - Nikita Dubovitskiy
- Federal Research Center of Fundamental and Translational Medicine, Timakova Str. 2, 630060 Novosibirsk, Russia; (K.A.S.); (N.D.); (A.A.D.); (A.M.S.)
| | - Anastasiya A. Derko
- Federal Research Center of Fundamental and Translational Medicine, Timakova Str. 2, 630060 Novosibirsk, Russia; (K.A.S.); (N.D.); (A.A.D.); (A.M.S.)
| | - Ivan G. Frolov
- Institute of Systematic and Ecology of Animals, Frunze Str. 11, 630091 Novosibirsk, Russia; (O.R.D.); (I.G.F.); (M.A.M.)
- Department of Natural Sciences, Novosibirsk State University, Pirogova Str. 2, 630090 Novosibirsk, Russia
- Institute of Zoology, Ministry of Science and Higher Education of the Republic of Kazakhstan, Al-Farabi Ave. 93, Almaty 050060, Kazakhstan
| | - Jyrki Torniainen
- Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35, FI-40014 Jyväskylä, Finland
- Open Science Centre, University of Jyväskylä, P.O. Box 35, FI-40014 Jyväskylä, Finland
| | - Wen Wang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China;
| | - Mariya A. Minina
- Institute of Systematic and Ecology of Animals, Frunze Str. 11, 630091 Novosibirsk, Russia; (O.R.D.); (I.G.F.); (M.A.M.)
| | - Alexander M. Shestopalov
- Federal Research Center of Fundamental and Translational Medicine, Timakova Str. 2, 630060 Novosibirsk, Russia; (K.A.S.); (N.D.); (A.A.D.); (A.M.S.)
| |
Collapse
|
6
|
de Bruin ACM, Spronken MI, Kok A, Rosu ME, de Meulder D, van Nieuwkoop S, Lexmond P, Funk M, Leijten LM, Bestebroer TM, Herfst S, van Riel D, Fouchier RAM, Richard M. Species-specific emergence of H7 highly pathogenic avian influenza virus is driven by intrahost selection differences between chickens and ducks. PLoS Pathog 2024; 20:e1011942. [PMID: 38408092 PMCID: PMC10919841 DOI: 10.1371/journal.ppat.1011942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 03/07/2024] [Accepted: 01/03/2024] [Indexed: 02/28/2024] Open
Abstract
Highly pathogenic avian influenza viruses (HPAIVs) cause severe hemorrhagic disease in terrestrial poultry and are a threat to the poultry industry, wild life, and human health. HPAIVs arise from low pathogenic avian influenza viruses (LPAIVs), which circulate in wild aquatic birds. HPAIV emergence is thought to occur in poultry and not wild aquatic birds, but the reason for this species-restriction is not known. We hypothesized that, due to species-specific tropism and replication, intrahost HPAIV selection is favored in poultry and disfavored in wild aquatic birds. We tested this hypothesis by co-inoculating chickens, representative of poultry, and ducks, representative of wild aquatic birds, with a mixture of H7N7 HPAIV and LPAIV, mimicking HPAIV emergence in an experimental setting. Virus selection was monitored in swabs and tissues by RT-qPCR and immunostaining of differential N-terminal epitope tags that were added to the hemagglutinin protein. HPAIV was selected in four of six co-inoculated chickens, whereas LPAIV remained the major population in co-inoculated ducks on the long-term, despite detection of infectious HPAIV in tissues at early time points. Collectively, our data support the hypothesis that HPAIVs are more likely to be selected at the intrahost level in poultry than in wild aquatic birds and point towards species-specific differences in HPAIV and LPAIV tropism and replication levels as possible explanations.
Collapse
Affiliation(s)
- Anja C. M. de Bruin
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Monique I. Spronken
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Adinda Kok
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Miruna E. Rosu
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Dennis de Meulder
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Pascal Lexmond
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Mathis Funk
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Lonneke M. Leijten
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Theo M. Bestebroer
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Sander Herfst
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Debby van Riel
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Ron A. M. Fouchier
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Mathilde Richard
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
7
|
Islam A, Hossain ME, Amin E, Islam S, Islam M, Sayeed MA, Hasan MM, Miah M, Hassan MM, Rahman MZ, Shirin T. Epidemiology and phylodynamics of multiple clades of H5N1 circulating in domestic duck farms in different production systems in Bangladesh. Front Public Health 2023; 11:1168613. [PMID: 37483933 PMCID: PMC10358836 DOI: 10.3389/fpubh.2023.1168613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/30/2023] [Indexed: 07/25/2023] Open
Abstract
Waterfowl are considered to be natural reservoirs of the avian influenza virus (AIV). However, the dynamics of transmission and evolutionary patterns of AIV and its subtypes within duck farms in Bangladesh remain poorly documented. Hence, a cross-sectional study was conducted in nine districts of Bangladesh between 2019 and 2021, to determine the prevalence of AIV and its subtypes H5 and H9, as well as to identify risk factors and the phylodynamics of H5N1 clades circulating in domestic duck farms. The oropharyngeal and cloacal swab samples were tested for the AIV Matrix gene (M-gene) followed by H5, H7, and H9 subtypes using rRT-PCR. The exploratory analysis was performed to estimate AIV and its subtype prevalence in different production systems, and multivariable logistic regression model was used to identify the risk factors that influence AIV infection in ducks. Bayesian phylogenetic analysis was conducted to generate a maximum clade credibility (MCC) tree and the maximum likelihood method to determine the phylogenetic relationships of the H5N1 viruses isolated from ducks. AIV was detected in 40% (95% CI: 33.0-48.1) of the duck farms. The prevalence of AIV was highest in nomadic ducks (39.8%; 95% CI: 32.9-47.1), followed by commercial ducks (24.6%; 95% CI: 14.5-37.3) and backyard ducks (14.4%; 95% CI: 10.5-19.2). The H5 prevalence was also highest in nomadic ducks (19.4%; 95% CI: 14.0-25.7). The multivariable logistic regression model revealed that ducks from nomadic farms (AOR: 2.4; 95% CI: 1.45-3.93), juvenile (AOR: 2.2; 95% CI: 1.37-3.61), and sick ducks (AOR: 11.59; 95% CI: 4.82-32.44) had a higher risk of AIV. Similarly, the likelihood of H5 detection was higher in sick ducks (AOR: 40.8; 95% CI: 16.3-115.3). Bayesian phylogenetic analysis revealed that H5N1 viruses in ducks belong to two distinct clades, 2.3.2.1a, and 2.3.4.4b. The clade 2.3.2.1a (reassorted) has been evolving silently since 2015 and forming at least nine subgroups based on >90% posterior probability. Notably, clade 2.3.4.4b was introduced in ducks in Bangladesh by the end of the year 2020, which was genetically similar to viruses detected in wild birds in Japan, China, and Africa, indicating migration-associated transmission of an emerging panzootic clade. We recommend continuing AIV surveillance in the duck production system and preventing the intermingling of domestic ducks with migratory waterfowl in wetlands.
Collapse
Affiliation(s)
- Ariful Islam
- EcoHealth Alliance, New York, NY, United States
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, VIC, Australia
| | - Mohammad Enayet Hossain
- One Health Laboratory, International Centre for Diarrheal Diseases Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Emama Amin
- Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka, Bangladesh
| | - Shariful Islam
- Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka, Bangladesh
| | - Monjurul Islam
- Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka, Bangladesh
| | - Md Abu Sayeed
- Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka, Bangladesh
| | - Md Mehedi Hasan
- Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka, Bangladesh
| | - Mojnu Miah
- One Health Laboratory, International Centre for Diarrheal Diseases Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Mohammad Mahmudul Hassan
- Queensland Alliance for One Health Sciences, School of Veterinary Science, University of Queensland, Brisbane, QLD, Australia
| | - Mohammed Ziaur Rahman
- One Health Laboratory, International Centre for Diarrheal Diseases Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Tahmina Shirin
- Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka, Bangladesh
| |
Collapse
|
8
|
Sagong M, Lee KN, Lee EK, Kang H, Choi YK, Lee YJ. Current situation and control strategies of H9N2 avian influenza in South Korea. J Vet Sci 2023; 24:e5. [PMID: 36560837 PMCID: PMC9899936 DOI: 10.4142/jvs.22216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/13/2022] [Accepted: 10/20/2022] [Indexed: 12/13/2022] Open
Abstract
The H9N2 avian influenza (AI) has become endemic in poultry in many countries since the 1990s, which has caused considerable economic losses in the poultry industry. Considering the long history of the low pathogenicity H9N2 AI in many countries, once H9N2 AI is introduced, it is more difficult to eradicate than high pathogenicity AI. Various preventive measures and strategies, including vaccination and active national surveillance, have been used to control the Y439 lineage of H9N2 AI in South Korea, but it took a long time for the H9N2 virus to disappear from the fields. By contrast, the novel Y280 lineage of H9N2 AI was introduced in June 2020 and has spread nationwide. This study reviews the history, genetic and pathogenic characteristics, and control strategies for Korean H9N2 AI. This review may provide some clues for establishing control strategies for endemic AIV and a newly introduced Y280 lineage of H9N2 AI in South Korea.
Collapse
Affiliation(s)
- Mingeun Sagong
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea.,Department of Microbiology, College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju 28644, Korea
| | - Kwang-Nyeong Lee
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea
| | - Eun-Kyoung Lee
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea
| | - Hyunmi Kang
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea
| | - Young Ki Choi
- Department of Microbiology, College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju 28644, Korea.
| | - Youn-Jeong Lee
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea.
| |
Collapse
|
9
|
Dutta P, Islam A, Sayeed MA, Rahman MA, Abdullah MS, Saha O, Rahman MZ, Klaassen M, Hoque MA, Hassan MM. Epidemiology and molecular characterization of avian influenza virus in backyard poultry of Chattogram, Bangladesh. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 105:105377. [PMID: 36220485 DOI: 10.1016/j.meegid.2022.105377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 10/01/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
Ducks, the natural reservoir of avian influenza virus (AIV), act as reassortment vessels for HPAI and low pathogenic avian influenza (LPAI) virus for domestic and wild bird species. In Bangladesh, earlier research was mainly focused on AIV in commercial poultry and live bird markets, where there is scanty literature reported on AIV in apparently healthy backyard poultry at the household level. The present cross-sectional study was carried out to reveal the genomic epidemiology of AIV of backyard poultry in coastal (Anowara) and plain land (Rangunia) areas of Bangladesh. We randomly selected a total of 292 households' poultry (having both chicken and duck) for sampling. We administered structured pre-tested questionnaires to farmers through direct interviews. We tested cloacal samples from birds for the matrix gene (M gene) followed by H5 and H9 subtypes using real-time reverse transcriptase-polymerase chain reaction (rRT-PCR). All AIV-positive samples were subjected to four-gene segment sequencing (M, PB1, HA, and NA gene). We found that the prevalence of AIV RNA at the household level was 6.2% (n = 18; N = 292), whereas duck and chicken prevalence was 3.6% and 3.2%, respectively. Prevalence varied with season, ranging from 3.1% in the summer to 8.2% in the winter. The prevalence of subtypes H5 and H9 in backyard poultry was 2.7% and 3.3%, respectively. The phylogenetic analysis of M, HA, NA, and PB1 genes revealed intra-genomic similarity, and they are closely related to previously reported AIV strains in Bangladesh and Southeast Asia. The findings indicate that H5 and H9 subtypes of AIV are circulating in the backyard poultry with or without clinical symptoms. Moreover, we revealed the circulation of 2.3.2.1a (new) clade among the chicken and duck population without occurring outbreak which might be due to vaccination. In addition to routine surveillance, molecular epidemiology of AIV will assist to gain a clear understanding of the genomic evolution of the AIV virus in the backyard poultry rearing system, thereby facilitating the implementation of effective preventive measures to control infection and prevent the potential spillover to humans.
Collapse
Affiliation(s)
- Pronesh Dutta
- Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram 4225, Bangladesh
| | - Ariful Islam
- Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram 4225, Bangladesh; Centre for Integrative Ecology, School of Life and Environmental Science, Deakin University, Victoria 3216, Australia; EcoHealth Alliance, New York, NY 10001-2320, USA.
| | - Md Abu Sayeed
- EcoHealth Alliance, New York, NY 10001-2320, USA; Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka 1212, Bangladesh
| | - Md Ashiqur Rahman
- Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram 4225, Bangladesh
| | - Md Sadeque Abdullah
- Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram 4225, Bangladesh
| | - Otun Saha
- Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka 1212, Bangladesh; Department of Microbiology, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | | | - Marcel Klaassen
- Centre for Integrative Ecology, School of Life and Environmental Science, Deakin University, Victoria 3216, Australia
| | - Md Ahasanul Hoque
- Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram 4225, Bangladesh
| | - Mohammad Mahmudul Hassan
- Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram 4225, Bangladesh; Queensland Alliance for One Health Sciences, School of Veterinary Science, The University of Queensland, Gatton 4343, Queensland, Australia.
| |
Collapse
|
10
|
Islam A, Islam S, Amin E, Hasan R, Hassan MM, Miah M, Samad MA, Shirin T, Hossain ME, Rahman MZ. Patterns and risk factors of avian influenza A(H5) and A(H9) virus infection in pigeons and quail at live bird markets in Bangladesh, 2017-2021. Front Vet Sci 2022; 9:1016970. [PMID: 36387379 PMCID: PMC9645412 DOI: 10.3389/fvets.2022.1016970] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/06/2022] [Indexed: 07/21/2023] Open
Abstract
The avian influenza virus (AIV) impacts poultry production, food security, livelihoods, and the risk of transmission to humans. Poultry, like pigeons and quail farming, is a growing sector in Bangladesh. However, the role of pigeons and quails in AIV transmission is not fully understood. Hence, we conducted this study to investigate the prevalence and risk factors of AIV subtypes in pigeons and quails at live bird markets (LBMs) in Bangladesh. We collected oropharyngeal and cloacal swab samples from 626 birds in 8 districts of Bangladesh from 2017 to 2021. We tested the swab samples for the matrix gene (M gene) followed by H5, H7, and H9 subtypes using real-time reverse transcriptase-polymerase chain reaction (rRT-PCR). We then used exploratory analysis to investigate the seasonal and temporal patterns of AIV and a mixed effect logistic model to identify the variable that influences the presence of AIV in pigeons and quails. The overall prevalence of AIV was 25.56%. We found that the prevalence of AIV in pigeons is 17.36%, and in quail is 38.75%. The prevalence of A/H5, A/H9, and A/H5/H9 in quail is 4.17, 17.92, and 1.67%, respectively. Furthermore, the prevalence of A/H5, A/H9, and A/H5/H9 in pigeons is 2.85, 2.59, and 0.26%. We also found that the prevalence of AIV was higher in the dry season than in the wet season in both pigeons and quail. In pigeons, the prevalence of A/untyped (40%) increased considerably in 2020. In quail, however, the prevalence of A/H9 (56%) significantly increased in 2020. The mixed-effect logistic regression model showed that the vendors having waterfowl (AOR: 2.13; 95% CI: 1.04-4.33), purchasing birds from the wholesale market (AOR: 2.96; 95% CI: 1.48-5.92) instead of farms, mixing sick birds with the healthy ones (AOR: 1.60; 95% CI: 1.04-2.45) and mingling unsold birds with new birds (AOR: 3.07; 95% CI: 2.01-4.70) were significantly more likely to be positive for AIV compared with vendors that did not have these characteristics. We also found that the odds of AIV were more than twice as high in quail (AOR: 2.57; 95% CI: 1.61-4.11) as in pigeons. Furthermore, the likelihood of AIV detection was 4.19 times higher in sick and dead birds (95% CI: 2.38-7.35) than in healthy birds. Our study revealed that proper hygienic practices at the vendors in LBM are not maintained. We recommend improving biosecurity practices at the vendor level in LBM to limit the risk of AIV infection in pigeons and quail in Bangladesh.
Collapse
Affiliation(s)
- Ariful Islam
- Centre for Integrative Ecology, School of Life and Environmental Science, Deakin University, Melbourne, VA, Australia
- EcoHealth Alliance, New York, NY, United States
- Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka, Bangladesh
| | - Shariful Islam
- Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka, Bangladesh
| | - Emama Amin
- Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka, Bangladesh
| | - Rashedul Hasan
- One Health Laboratory, International Center for Diarrheal Diseases Research, Bangladesh (icddr, b), Dhaka, Bangladesh
| | - Mohammad Mahmudul Hassan
- Queensland Alliance for One Health Sciences, School of Veterinary Science, University of Queensland, Brisbane, QLD, Australia
| | - Mojnu Miah
- One Health Laboratory, International Center for Diarrheal Diseases Research, Bangladesh (icddr, b), Dhaka, Bangladesh
| | - Mohammed Abdus Samad
- National Reference Laboratory for Avian Influenza, Bangladesh Livestock Research Institute (BLRI), Savar, Bangladesh
| | - Tahmina Shirin
- Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka, Bangladesh
| | - Mohammad Enayet Hossain
- One Health Laboratory, International Center for Diarrheal Diseases Research, Bangladesh (icddr, b), Dhaka, Bangladesh
| | - Mohammed Ziaur Rahman
- One Health Laboratory, International Center for Diarrheal Diseases Research, Bangladesh (icddr, b), Dhaka, Bangladesh
| |
Collapse
|
11
|
Islam A, Islam S, Amin E, Shano S, Samad MA, Shirin T, Hassan MM, Flora MS. Assessment of poultry rearing practices and risk factors of H5N1 and H9N2 virus circulating among backyard chickens and ducks in rural communities. PLoS One 2022; 17:e0275852. [PMID: 36219598 PMCID: PMC9553037 DOI: 10.1371/journal.pone.0275852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 09/23/2022] [Indexed: 11/05/2022] Open
Abstract
Background The avian influenza virus (AIV) causes significant economic losses by infecting poultry and occasional spillover to humans. Backyard farms are vulnerable to AIV epidemics due to poor health management and biosecurity practices, threatening rural households’ economic stability and nutrition. We have limited information about the risk factors associated with AIV infection in backyard poultry in Bangladesh. Hence, we conducted a cross-sectional survey comprising epidemiological and anthropological investigations to understand the poultry rearing practices and risk factors of AIV circulation among backyard poultry in selected rural communities. Methods We sampled 120 poultry from backyard farms (n = 30) of the three selected communities between February 2017 and January 2018. We tested swab samples for the matrix gene (M gene) followed by H5, H7, and H9 subtypes using real-time reverse transcriptase-polymerase chain reaction (rRT-PCR). We applied multivariable logistic regression for risk factor analysis. Furthermore, we conducted an observational study (42 hours) and informal interviews (n = 30) with backyard farmers to record poultry-raising activities in rural communities. Results We detected that 25.2% of the backyard poultry tested positive for AIV, whereas 5% tested positive for H5N1 and 10.8% tested positive for H9N2. Results showed that scavenging in both household garden and other crop fields has higher odds of AIV than scavenging in the household garden (AOR: 24.811; 95% CI: 2.11–292.28), and keeping a cage inside the house has higher odds (AOR:14.5; 95% CI: 1.06–198.51) than keeping it in the veranda, cleaning the cage twice a week or weekly has a higher risk than cleaning daily (AOR: 34.45; 95% CI: 1.04–1139.65), dumping litter or droppings (AOR: 82.80; 95% CI: 3.91–1754.59) and dead birds or wastage (AOR: 109.92, 95% CI: 4.34–2785.29) near water bodies and bushes have a higher risk than burring in the ground, slaughtering and consuming sick birds also had a higher odd of AIV (AOR: 73.45, 95% CI: 1.56–3457.73) than treating the birds. The anthropological investigation revealed that household members had direct contact with the poultry in different ways, including touching, feeding, slaughtering, and contacting poultry feces. Poultry is usually kept inside the house, sick poultry are traditionally slaughtered and eaten, and most poultry raisers do not know that diseases can transmit from backyard poultry to humans. Conclusions This study showed the circulation of H5N1 and H9N2 virus in backyard poultry in rural communities; associated with species, scavenging area of the poultry, location of the poultry cage, the practice of litter, wastage, droppings, and dead bird disposal, and practice of handling sick poultry. We suggest improving biosecurity practices in backyard poultry and mass awareness campaigns to reduce incidences of AIV in household-level poultry farms in rural communities in Bangladesh.
Collapse
Affiliation(s)
- Ariful Islam
- Centre for Integrative Ecology, School of Life and Environmental Science, Deakin University, Australia
- EcoHealth Alliance, New York, New York, United States of America
- Institute of Epidemiology, Disease Control and Research (IEDCR), Mohakhali, Dhaka, Bangladesh
- * E-mail:
| | - Shariful Islam
- EcoHealth Alliance, New York, New York, United States of America
- Institute of Epidemiology, Disease Control and Research (IEDCR), Mohakhali, Dhaka, Bangladesh
| | - Emama Amin
- EcoHealth Alliance, New York, New York, United States of America
- Institute of Epidemiology, Disease Control and Research (IEDCR), Mohakhali, Dhaka, Bangladesh
| | - Shahanaj Shano
- EcoHealth Alliance, New York, New York, United States of America
- Institute of Epidemiology, Disease Control and Research (IEDCR), Mohakhali, Dhaka, Bangladesh
| | - Mohammed Abdus Samad
- National Reference Laboratory for Avian Influenza, Bangladesh Livestock Research Institute (BLRI), Savar, Bangladesh
| | - Tahmina Shirin
- Institute of Epidemiology, Disease Control and Research (IEDCR), Mohakhali, Dhaka, Bangladesh
| | - Mohammad Mahmudul Hassan
- Queensland Alliance for One Health Sciences, School of Veterinary Science, University of Queensland, Queensland, Australia
| | - Meerjady Sabrina Flora
- Institute of Epidemiology, Disease Control and Research (IEDCR), Mohakhali, Dhaka, Bangladesh
- Directorate General of Health Services, Mohakhali, Dhaka, Bangladesh
| |
Collapse
|
12
|
Avian Influenza NS1 Proteins Inhibit Human, but Not Duck, RIG-I Ubiquitination and Interferon Signaling. J Virol 2022; 96:e0077622. [PMID: 36069546 PMCID: PMC9517716 DOI: 10.1128/jvi.00776-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The nonstructural protein 1 (NS1) of influenza A viruses is an important virulence factor that controls host cell immune responses. In human cells, NS1 proteins inhibit the induction of type I interferon by several mechanisms, including potentially, by preventing the activation of the retinoic acid-inducible gene I (RIG-I) receptor by the ubiquitin ligase tripartite motif-containing protein 25 (TRIM25). It is unclear whether the inhibition of human TRIM25 is a universal function of all influenza A NS1 proteins or is strain dependent. It is also unclear if NS1 proteins similarly target the TRIM25 of mallard ducks, a natural reservoir host of avian influenza viruses with a long coevolutionary history and unique disease dynamics. To answer these questions, we compared the ability of five different NS1 proteins to interact with human and duck TRIM25 using coimmunoprecipitation and microscopy and assessed the consequence of this on RIG-I ubiquitination and signaling in both species. We show that NS1 proteins from low-pathogenic and highly pathogenic avian influenza viruses potently inhibit RIG-I ubiquitination and reduce interferon promoter activity and interferon-beta protein secretion in transfected human cells, while the NS1 of the mouse-adapted PR8 strain does not. However, all the NS1 proteins, when cloned into recombinant viruses, suppress interferon in infected alveolar cells. In contrast, avian NS1 proteins do not suppress duck RIG-I ubiquitination and interferon promoter activity, despite interacting with duck TRIM25. IMPORTANCE Influenza A viruses are a major cause of human and animal disease. Periodically, avian influenza viruses from wild waterfowl, such as ducks, pass through intermediate agricultural hosts and emerge into the human population as zoonotic diseases with high mortality rates and epidemic potential. Because of their coevolution with influenza A viruses, ducks are uniquely resistant to influenza disease compared to other birds, animals, and humans. Here, we investigate a mechanism of influenza A virus interference in an important antiviral signaling pathway that is orthologous in humans and ducks. We show that NS1 proteins from four avian influenza strains can block the coactivation and signaling of the human RIG-I antiviral receptor, while none block the coactivation and signaling of duck RIG-I. Understanding host-pathogen dynamics in the natural reservoir will contribute to our understanding of viral disease mechanisms, viral evolution, and the pressures that drive it, which benefits global surveillance and outbreak prevention.
Collapse
|
13
|
Wu Y, Li Z, Zhao J, Chen Z, Xiang X. Significant differences in intestinal fungal community of hooded cranes along the wintering periods. Front Microbiol 2022; 13:991998. [PMID: 36160219 PMCID: PMC9491237 DOI: 10.3389/fmicb.2022.991998] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
The intestinal microbiota play vital roles for health of wild birds in many ways. Migratory birds with unique life history might increase the risk of pathogenic transmission across the regions. However, few studies have clarified the fungal community structure and inferred the potential pathogens in guts of migratory birds. The high-throughput sequencing method was applied to analyze the fungal community structure and detect the potential fungal pathogens in guts of hooded cranes among different wintering stages. Significant differences were found in gut fungal community composition of hooded cranes among three wintering stages, with the lowest fungal diversity in the late wintering stage. In the late stage, hooded cranes harbored higher relative abundance of plant saprotroph, contributing to food digestion for hosts. Hooded cranes were associated with the lowest diversity and relative abundance of animal pathogens in the late wintering stage. There was an increasing trend of deterministic process for gut fungal community assembly, suggesting that hosts interaction with their fungal communities changed by enhanced gut selection/filtering along wintering periods. Hooded crane was associated with the strongest gut selection/filtering to obtain defined gut fungal community with retaining probiotics (i.e., plant saprotroph) and exclusion of certain pathogens in the late wintering stage. Overall, these results demonstrated that hooded cranes might regulate their gut microbiota to enhance digestion and decrease gut pathogens in preparation for long-term migration.
Collapse
Affiliation(s)
- Yuannuo Wu
- School of Resources and Environmental Engineering, Anhui University, Hefei, China
- International Collaborative Research Center for Huangshan Biodiversity and Tibetan Macaque Behavioral Ecology, Hefei, China
| | - Zihan Li
- School of Resources and Environmental Engineering, Anhui University, Hefei, China
| | - Jingru Zhao
- School of Resources and Environmental Engineering, Anhui University, Hefei, China
- Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, Hefei, China
| | - Zhong Chen
- School of Resources and Environmental Engineering, Anhui University, Hefei, China
- International Collaborative Research Center for Huangshan Biodiversity and Tibetan Macaque Behavioral Ecology, Hefei, China
- *Correspondence: Zhong Chen,
| | - Xingjia Xiang
- School of Resources and Environmental Engineering, Anhui University, Hefei, China
- International Collaborative Research Center for Huangshan Biodiversity and Tibetan Macaque Behavioral Ecology, Hefei, China
- Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, Hefei, China
- Xingjia Xiang,
| |
Collapse
|
14
|
Tanikawa T, Fujii K, Sugie Y, Tsunekuni R, Nakayama M, Kobayashi S. Comparative susceptibility of mallard (Anas platyrhynchos) to infection with high pathogenicity avian influenza virus strains (Gs/Gd lineage) isolated in Japan in 2004–2017. Vet Microbiol 2022; 272:109496. [DOI: 10.1016/j.vetmic.2022.109496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/30/2022] [Accepted: 06/25/2022] [Indexed: 10/17/2022]
|
15
|
Wang Y, Tang CY, Wan XF. Antigenic characterization of influenza and SARS-CoV-2 viruses. Anal Bioanal Chem 2022; 414:2841-2881. [PMID: 34905077 PMCID: PMC8669429 DOI: 10.1007/s00216-021-03806-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/21/2021] [Accepted: 11/24/2021] [Indexed: 12/24/2022]
Abstract
Antigenic characterization of emerging and re-emerging viruses is necessary for the prevention of and response to outbreaks, evaluation of infection mechanisms, understanding of virus evolution, and selection of strains for vaccine development. Primary analytic methods, including enzyme-linked immunosorbent/lectin assays, hemagglutination inhibition, neuraminidase inhibition, micro-neutralization assays, and antigenic cartography, have been widely used in the field of influenza research. These techniques have been improved upon over time for increased analytical capacity, and some have been mobilized for the rapid characterization of the SARS-CoV-2 virus as well as its variants, facilitating the development of highly effective vaccines within 1 year of the initially reported outbreak. While great strides have been made for evaluating the antigenic properties of these viruses, multiple challenges prevent efficient vaccine strain selection and accurate assessment. For influenza, these barriers include the requirement for a large virus quantity to perform the assays, more than what can typically be provided by the clinical samples alone, cell- or egg-adapted mutations that can cause antigenic mismatch between the vaccine strain and circulating viruses, and up to a 6-month duration of vaccine development after vaccine strain selection, which allows viruses to continue evolving with potential for antigenic drift and, thus, antigenic mismatch between the vaccine strain and the emerging epidemic strain. SARS-CoV-2 characterization has faced similar challenges with the additional barrier of the need for facilities with high biosafety levels due to its infectious nature. In this study, we review the primary analytic methods used for antigenic characterization of influenza and SARS-CoV-2 and discuss the barriers of these methods and current developments for addressing these challenges.
Collapse
Affiliation(s)
- Yang Wang
- MU Center for Influenza and Emerging Infectious Diseases (CIEID), University of Missouri, Columbia, MO, USA
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Cynthia Y Tang
- MU Center for Influenza and Emerging Infectious Diseases (CIEID), University of Missouri, Columbia, MO, USA
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
- Institute for Data Science and Informatics, University of Missouri, Columbia, MO, USA
| | - Xiu-Feng Wan
- MU Center for Influenza and Emerging Infectious Diseases (CIEID), University of Missouri, Columbia, MO, USA.
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, USA.
- Bond Life Sciences Center, University of Missouri, Columbia, MO, USA.
- Institute for Data Science and Informatics, University of Missouri, Columbia, MO, USA.
- Department of Electrical Engineering & Computer Science, College of Engineering, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
16
|
Zhai B, Liu L, Li X, Lv X, Wu J, Li J, Lin S, Yin Y, Lan J, Du J, Wu C, Wen Y, Wang Y, Wang Y, Hou Z, Li Y, Chai H, Zeng X. The Variation of Duck RIG-I-Mediated Innate Immune Response Induced by Different Virulence Avian Influenza Viruses. Front Microbiol 2022; 13:842721. [PMID: 35300481 PMCID: PMC8921926 DOI: 10.3389/fmicb.2022.842721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/11/2022] [Indexed: 01/22/2023] Open
Abstract
In recent years, the emerging highly pathogenic avian influenza (HPAI) A(H5N8) virus has been reported with features of widely spread, an expanding host range, and cross-species transmission, attracting wide attention. The domestic duck plays a major role in the epidemiological cycle of the HPAI H5N8 virus, but little is known concerning innate immune responses during influenza infection in duck species. In this study, we used two wild-bird-origin viruses, H5N8 and H4N6, to conduct duck infection experiments, and detect the load of the two viruses, and retinoic acid-inducible gene I (RIG-I) and interferon β (IFN-β) in the host's natural immune response. Through comparison, it is found that the expression levels of RIG-I and IFN-β are both fluctuating. The innate immunity starts rapidly within 6 h after infection and is inhibited by the virus to varying degrees. The expression of RIG-I and IFN-β decreased on 1-2 days post-infection (dpi). The HPAI H5N8 virus has a stronger inhibitory effect on RIG-I than the low pathogenic avian influenza (LPAI) H4N6 virus and is the strongest in the lungs. After infection with HPAI H5N8 virus, 2 dpi, viral RNA replicates in large amounts in the lungs. It has been proven that RIG-I and IFN-β play an important role in the innate immune response of ducks to HPAI H5N8 virus infection, especially in the lungs. The main battlefield of RIG-I and IFN-β after infection with the LPAI H4N6 virus is in the rectum. Both viruses have been effectively controlled after 7 dpi. These results will help to understand the transmission mechanisms of avian influenza virus in wild ducks and help effectively prevent and control avian influenza.
Collapse
Affiliation(s)
- Boyu Zhai
- State Forestry Administration Key Laboratory of Wildlife Conservation, College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Lanlan Liu
- College of Basic Medical Science, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiang Li
- State Forestry Administration Key Laboratory of Wildlife Conservation, College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Xinru Lv
- State Forestry Administration Key Laboratory of Wildlife Conservation, College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Jinyan Wu
- State Forestry Administration Key Laboratory of Wildlife Conservation, College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Jing Li
- State Forestry Administration Key Laboratory of Wildlife Conservation, College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Shengze Lin
- State Forestry Administration Key Laboratory of Wildlife Conservation, College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Yuxiang Yin
- State Forestry Administration Key Laboratory of Wildlife Conservation, College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Jiaqi Lan
- State Forestry Administration Key Laboratory of Wildlife Conservation, College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Jianan Du
- State Forestry Administration Key Laboratory of Wildlife Conservation, College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Chenwei Wu
- State Forestry Administration Key Laboratory of Wildlife Conservation, College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Yi Wen
- State Forestry Administration Key Laboratory of Wildlife Conservation, College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Yajun Wang
- State Forestry Administration Key Laboratory of Wildlife Conservation, College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Yulong Wang
- State Forestry Administration Key Laboratory of Wildlife Conservation, College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Zhijun Hou
- State Forestry Administration Key Laboratory of Wildlife Conservation, College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Yanbing Li
- Chinese Academy of Agricultural Sciences Harbin Veterinary Research Institute, Harbin, China
| | - Hongliang Chai
- State Forestry Administration Key Laboratory of Wildlife Conservation, College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Xiangwei Zeng
- State Forestry Administration Key Laboratory of Wildlife Conservation, College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| |
Collapse
|
17
|
Spatial Variation in Risk for Highly Pathogenic Avian Influenza Subtype H5N6 Viral Infections in South Korea: Poultry Population-Based Case–Control Study. Vet Sci 2022; 9:vetsci9030135. [PMID: 35324863 PMCID: PMC8952335 DOI: 10.3390/vetsci9030135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/20/2022] [Accepted: 03/01/2022] [Indexed: 11/29/2022] Open
Abstract
Given the substantial economic damage caused by the continual circulation of highly pathogenic avian influenza (HPAI) outbreaks since 2003, identifying high-risk locations associated with HPAI infections is essential. In this study, using affected and unaffected poultry farms’ locations during an HPAI H5N6 epidemic in South Korea, we identified places where clusters of HPAI cases were found. Hotspots were defined as regions having clusters of HPAI cases. With the help of the statistical computer program R, a kernel density estimate and a spatial scan statistic were employed for this purpose. A kernel density estimate and detection of significant clusters through a spatial scan statistic both showed that districts in the Chungcheongbuk-do, Jeollabuk-do, and Jeollanam-do provinces are more vulnerable to HPAI outbreaks. Prior to the migration season, high-risk districts should implement particular biosecurity measures. High biosecurity measures, as well as improving the cleanliness of the poultry environment, would undoubtedly aid in the prevention of HPAIV transmission to poultry farms in these high-risk regions of South Korea.
Collapse
|
18
|
Zhang R, Liu R, Huang Y, Chen Z, Cheng L, Fu G, Shi S, Chen H, Wan C, Fu Q. WITHDRAWN: Molecular Evolution and Amino Acid Characteristics of Main Antigen Genes of Clinical Duck-Derived H5N6 Subtype Avian Influenza Virus in East China from 2015 to 2019. Avian Dis 2022; 66:1. [PMID: 35092235 DOI: 10.1637/aviandiseases-d-21-00062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 10/25/2021] [Indexed: 11/05/2022]
Abstract
This article has been withdrawn at the request of the authors. The Publisher apologizes for any inconvenience this may cause.
Collapse
Affiliation(s)
- Rui Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fujian Animal Diseases Control Technology Center, Fujian Provincial Key Laboratory for Avian Diseases Control and Prevention, Animal Biosafety Level 3 Laboratory of Fujian, Fuzhou 350013, China
| | - Rongchang Liu
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fujian Animal Diseases Control Technology Center, Fujian Provincial Key Laboratory for Avian Diseases Control and Prevention, Animal Biosafety Level 3 Laboratory of Fujian, Fuzhou 350013, China
| | - Yu Huang
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fujian Animal Diseases Control Technology Center, Fujian Provincial Key Laboratory for Avian Diseases Control and Prevention, Animal Biosafety Level 3 Laboratory of Fujian, Fuzhou 350013, China,
| | - Zhen Chen
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fujian Animal Diseases Control Technology Center, Fujian Provincial Key Laboratory for Avian Diseases Control and Prevention, Animal Biosafety Level 3 Laboratory of Fujian, Fuzhou 350013, China
| | - Longfei Cheng
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fujian Animal Diseases Control Technology Center, Fujian Provincial Key Laboratory for Avian Diseases Control and Prevention, Animal Biosafety Level 3 Laboratory of Fujian, Fuzhou 350013, China
| | - Guanghua Fu
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fujian Animal Diseases Control Technology Center, Fujian Provincial Key Laboratory for Avian Diseases Control and Prevention, Animal Biosafety Level 3 Laboratory of Fujian, Fuzhou 350013, China
| | - Shaohua Shi
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fujian Animal Diseases Control Technology Center, Fujian Provincial Key Laboratory for Avian Diseases Control and Prevention, Animal Biosafety Level 3 Laboratory of Fujian, Fuzhou 350013, China
| | - Hongmei Chen
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fujian Animal Diseases Control Technology Center, Fujian Provincial Key Laboratory for Avian Diseases Control and Prevention, Animal Biosafety Level 3 Laboratory of Fujian, Fuzhou 350013, China
| | - Chunhe Wan
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fujian Animal Diseases Control Technology Center, Fujian Provincial Key Laboratory for Avian Diseases Control and Prevention, Animal Biosafety Level 3 Laboratory of Fujian, Fuzhou 350013, China
| | - Qiuling Fu
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fujian Animal Diseases Control Technology Center, Fujian Provincial Key Laboratory for Avian Diseases Control and Prevention, Animal Biosafety Level 3 Laboratory of Fujian, Fuzhou 350013, China
| |
Collapse
|
19
|
de Bruin ACM, Spronken MI, Bestebroer TM, Fouchier RAM, Richard M. Reduced Replication of Highly Pathogenic Avian Influenza Virus in Duck Endothelial Cells Compared to Chicken Endothelial Cells Is Associated with Stronger Antiviral Responses. Viruses 2022; 14:v14010165. [PMID: 35062369 PMCID: PMC8779112 DOI: 10.3390/v14010165] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 12/11/2022] Open
Abstract
Highly pathogenic avian influenza viruses (HPAIVs) cause fatal systemic infections in chickens, which are associated with endotheliotropism. HPAIV infections in wild birds are generally milder and not endotheliotropic. Here, we aimed to elucidate the species-specific endotheliotropism of HPAIVs using primary chicken and duck aortic endothelial cells (chAEC and dAEC respectively). Viral replication kinetics and host responses were assessed in chAEC and dAEC upon inoculation with HPAIV H5N1 and compared to embryonic fibroblasts. Although dAEC were susceptible to HPAIV upon inoculation at high multiplicity of infection, HPAIV replicated to lower levels in dAEC than chAEC during multi-cycle replication. The susceptibility of duck embryonic endothelial cells to HPAIV was confirmed in embryos. Innate immune responses upon HPAIV inoculation differed between chAEC, dAEC, and embryonic fibroblasts. Expression of the pro-inflammatory cytokine IL8 increased in chicken cells but decreased in dAEC. Contrastingly, the induction of antiviral responses was stronger in dAEC than in chAEC, and chicken and duck fibroblasts. Taken together, these data demonstrate that although duck endothelial cells are permissive to HPAIV infection, they display markedly different innate immune responses than chAEC and embryonic fibroblasts. These differences may contribute to the species-dependent differences in endotheliotropism and consequently HPAIV pathogenesis.
Collapse
|
20
|
Comparative susceptibility of the common teal (Anas crecca) to infection with high pathogenic avian influenza virus strains isolated in Japan in 2004-2017. Vet Microbiol 2021; 263:109266. [PMID: 34739966 DOI: 10.1016/j.vetmic.2021.109266] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/17/2021] [Indexed: 11/20/2022]
Abstract
High pathogenic avian influenza viruses (HPAIVs) of the H5 subtype have spread in poultry and wild birds worldwide. Current studies have highlighted the association between the migration of wild birds and the spread of HPAIVs. However, virological studies examining responsible species of migratory birds to spread HPAIVs are limited. In Japan, the common teal (Anas crecca) arrives in great numbers for overwintering every autumn-spring season; therefore, we performed experimental infection using six H5 HPAIVs isolated in past outbreaks in Japan (A/chicken/Yamaguchi/7/2004 (H5N1), A/whooper swan/Akita/1/2008 (H5N1), A/mandarin duck/Miyazaki/22M-765/2011 (H5N1), A/duck/Chiba/26-372-48/2014 (H5N8), A/duck/Hyogo/1/2016 (H5N6) and A/mute swan/Shimane/3211A002/2017 (H5N6)) to evaluate the susceptibility of the species to HPAIV infection. The results illustrated that most birds in all experimental groups were infected by the strains, and they shed viruses for a prolonged period, in trachea than cloaca, without displaying distinctive clinical signs. In addition, comparative analysis using calculation value of total viral shedding during the experiment revealed that the birds shed viruses at above a certain level regardless of the differences of strains. These results suggested that the common teal could be a migratory bird species that disseminates viruses in the environment, thereby influencing HPAI outbreaks in wild birds in Japan.
Collapse
|
21
|
Khaw SWS, Vu LT, Yulianto D, Meers J, Henning J. Transport of Moving Duck Flocks in Indonesia and Vietnam: Management Practices That Potentially Impact Avian Pathogen Dissemination. Front Vet Sci 2021; 8:673624. [PMID: 34307523 PMCID: PMC8299275 DOI: 10.3389/fvets.2021.673624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 05/10/2021] [Indexed: 11/13/2022] Open
Abstract
Highly pathogenic avian influenza (HPAI) virus is endemic in Indonesia and Vietnam, where “moving” duck production is commonly practiced. Questionnaire surveys were conducted with transporters of “moving” duck flocks in Indonesia (N = 55) and Vietnam (N = 43). The main purpose of transportation was to transport duck flocks between rice paddies used for scavenging. Trucks were commonly utilized for transport in both countries (Indonesia: 98.2%, 54/55; Vietnam: 37.2%, 16/43), while boats were only used in Vietnam (62.8%, 27/43). Transporters in Vietnam moved larger flocks and traveled over longer distances. Deaths of ducks due to diseases were reported in both countries (Indonesia: 16.4%, 9/55; Vietnam: 4.7%, 2/43; p = 0.11). Throwing away of carcasses was the primary method of disposal of dead birds in Indonesia (60.0%, 33/55), but was not practiced in Vietnam (p < 0.001), while more transporters in Vietnam (34.9%, 15/43) buried carcasses compared to Indonesia (6.8%, 4/55; p = 0.001). Consumption of carcasses (20.9%, 9/43), sale of dead ducks (14.0%, 6/43) and processing of ducks for fish feed (9.3%, 4/43) was conducted in Vietnam, but not in Indonesia. Vehicles were predominantly cleaned in rivers and stored outside in Vietnam, while cleaning and storage was usually conducted in houses/garages in Indonesia. In conclusion, we identified management practices that potentially impact transmission of avian pathogens, such as HPAI virus. In Indonesia, unsafe management practices were related to multipurpose usage of transport vehicles and disposal of birds in the environment, while in Vietnam, they were related to the mixing of birds during transport, the processing of dead carcasses and the storage and cleaning of transport vehicles.
Collapse
Affiliation(s)
- Shan Wen Stacy Khaw
- School of Veterinary Science, The University of Queensland, Gatton, QLD, Australia
| | - Le Tri Vu
- Regional Animal Health Centre VI, Ho Chi Minh City, Vietnam
| | | | - Joanne Meers
- School of Veterinary Science, The University of Queensland, Gatton, QLD, Australia
| | - Joerg Henning
- School of Veterinary Science, The University of Queensland, Gatton, QLD, Australia
| |
Collapse
|
22
|
Pathogenicity of H9N2 low pathogenic avian influenza viruses of different lineages isolated from live bird markets tested in three animal models: SPF chickens, Korean native chickens, and ducks. Poult Sci 2021; 100:101318. [PMID: 34284181 PMCID: PMC8313579 DOI: 10.1016/j.psj.2021.101318] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 11/22/2022] Open
Abstract
Since its first appearance in 1996, H9N2 avian influenza virus (AIV) of the Y439 lineage persisted in Korean live bird markets (LBMs) until the last documented occurrence in 2018. However, in June 2020, the avian influenza surveillance program detected a novel H9N2 AIV belonging to the Y280 lineage, which has zoonotic potential, in a Korean native chicken (KNC) from a LBM. In this study, we infected KNCs and ducks (the 2 major species held at LBMs), as well as SPF chickens, with Y280-lineage H9N2 AIV LBM261/20 and Y439-equivalent LBM294/18 to compare pathogenicity and transmissibility. In SPF chickens, LBM261/20 replicated mostly in the respiratory tract and spread rapidly among birds. By contrast, LBM294/18 replicated preferentially in the gastrointestinal tract and transmitted more slowly than LBM261/20. LBM261/20 replicated for a longer time in KNCs than in SPF chickens, and only in the respiratory tract; by contrast, LBM294/18 was detected in the oropharynx and cloaca. Ducks did not shed either virus or seroconvert. Taken together, the data suggest that the scheme used to monitor the newly introduced H9N2 AIV of the Y280 lineage needs to be modified to place emphasis on oropharyngeal sampling. Such changes will facilitate better disease control and protect public health.
Collapse
|
23
|
Affiliation(s)
- L. A. Arias-Sosa
- Grupo Ecología de Organismos (GEO-UPTC), Escuela de Ciencias Biológicas, Universidad Pedagógica y Tecnológica de Colombia, Tunja, Colombia
| | - Alex L. Rojas
- Grupo Ecología de Organismos (GEO-UPTC), Escuela de Ciencias Biológicas, Universidad Pedagógica y Tecnológica de Colombia, Tunja, Colombia
| |
Collapse
|
24
|
Huang CW, Chen LH, Lee DH, Liu YP, Li WC, Lee MS, Chen YP, Lee F, Chiou CJ, Lin YJ. Evolutionary history of H5 highly pathogenic avian influenza viruses (clade 2.3.4.4c) circulating in Taiwan during 2015-2018. INFECTION GENETICS AND EVOLUTION 2021; 92:104885. [PMID: 33932612 DOI: 10.1016/j.meegid.2021.104885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/20/2021] [Accepted: 04/24/2021] [Indexed: 12/13/2022]
Abstract
The highly pathogenic avian influenza (HPAI) virus A/goose/Guangdong/1/96 H5N1 (Gs/GD) lineage has been transmitted globally and has caused deaths in wild birds, poultry, and humans. Clade 2.3.4.4c, one of the subclades of the Gs/GD lineage, spread through Taiwan in late 2014 and become an endemic virus. We analyzed 239 newly sequenced HPAI clade H5Nx isolates to explore the phylogenetic relationships, divergence times, and evolutionary history of Taiwan HPAI H5Nx viruses from 2015 to 2018. Overall, 15 reassortant genotypes were identified among H5N2, H5N3, and H5N8 viruses. Maximum likelihood and Bayesian phylogenies based on homologous hemagglutinin (HA) and matrix protein (MP) genes suggest that Taiwan HPAI H5Nx viruses share a most recent common ancestor that has diversified since October 2014 and is closely related to two HPAI H5N8 viruses identified from wild birds in Japan. Two waves of HPAI caused by multiple reassortants were identified, the first occurring in late 2014 and the second beginning in late 2016. The first wave consisted of seven H5Nx reassortants that spread through Taiwan. In the second wave, eight novel reassortants were detected which had newly introduced internal genes, mostly derived from the avian influenza virus gene pool maintained in wild birds in Asia. Phylodynamic reconstruction using the Bayesian Skygrid model revealed varied fluctuating patterns of relative genetic diversity among reassortants. The mean evolutionary rate also varied among reassortants and subtypes. The neuraminidase (NA) gene evolved faster than the HA gene in H5N2 viruses, while HA evolved faster than NA in H5N8 viruses. The HA mean evolutionary rate ranged from 6.10 × 10-3 to 7.73 × 10-3 and from 5.81 × 10-3 to 9.45 × 10-3 substitutions/site/year for H5N2 and H5N8 viruses, respectively. The continuous circulation of HPAI H5Nx variants and the emergence of novel reassortants in Taiwan highlight that the surveillance, biosecurity, and management systems of poultry farms need to be improved and carefully executed.
Collapse
Affiliation(s)
- Chih-Wei Huang
- Animal Health Research Institute, Council of Agriculture, New Taipei City, Taiwan.
| | - Li-Hsuan Chen
- Animal Health Research Institute, Council of Agriculture, New Taipei City, Taiwan.
| | - Dong-Hun Lee
- Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, CT, USA.
| | - Yu-Pin Liu
- Animal Health Research Institute, Council of Agriculture, New Taipei City, Taiwan.
| | - Wan-Chen Li
- Animal Health Research Institute, Council of Agriculture, New Taipei City, Taiwan.
| | - Ming-Shiuh Lee
- Animal Health Research Institute, Council of Agriculture, New Taipei City, Taiwan.
| | - Yen-Ping Chen
- Animal Health Research Institute, Council of Agriculture, New Taipei City, Taiwan.
| | - Fan Lee
- Animal Health Research Institute, Council of Agriculture, New Taipei City, Taiwan.
| | - Chwei-Jang Chiou
- Animal Health Research Institute, Council of Agriculture, New Taipei City, Taiwan.
| | - Yu-Ju Lin
- Animal Health Research Institute, Council of Agriculture, New Taipei City, Taiwan.
| |
Collapse
|
25
|
Moriguchi S, Hosoda R, Ushine N, Kato T, Hayama SI. Surveillance system for avian influenza in wild birds and implications of its improvement with insights into the highly pathogenic avian influenza outbreaks in Japan. Prev Vet Med 2020; 187:105234. [PMID: 33360671 DOI: 10.1016/j.prevetmed.2020.105234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 11/03/2020] [Accepted: 12/09/2020] [Indexed: 12/09/2022]
Abstract
Since the re-emergence of a highly pathogenic avian influenza (HPAI) in 2004, outbreaks of the viral subtypes HPAI, H5N1, H5N8, and H5N6 in wild birds, poultry, and zoo birds have occurred in Japan. In 2008, a nation-wide avian influenza (AI) surveillance program was started for the early detection of the HPAI virus (HPAIV) and for the assessment of HPAIV infection among wild birds. In this study, we aimed to conduct an overview of the AI surveillance system of wild birds in Japan, including those in the regions and prefectures, to assess its overall performance and develop insights on its improvement. We analyzed past surveillance data in Japan and conducted questionnaire surveys for the officers in 11 regional branches of the Ministry of Environment and the nature conservation divisions of 47 prefectures to acquire details regarding those AI surveillance. We found that the early detection of HPAIV in wild birds was successfully achieved in only one of the five outbreak seasons during the 2008-2019 period in Japan, and the assessment of HPAIV infection had possibly not been adequate in the national surveillance system. In the winter season, AI surveillance in most prefectures were mainly conducted by means of passive surveillance through reported dead birds and active surveillance through collected waterbird feces. Conversely, less than half of the prefectures conducted bird monitoring, patrolling in migratory bird habitats, and AI antigen testing in rescued birds. In areas surrounding HPAI occurrence sites (<10 km), bird monitoring and patrolling efforts were enhanced. However, AI testing efforts in waterbird feces and rescued birds were decreased. The AI surveillance for endangered bird species and in national wildlife protection areas was conducted by the branches of the Ministry of Environment and by the prefectures. Based on our results, we concluded that for maximum efficiency, legislation which specialized in wildlife pathogens should be necessary to prepare adequate national budget and testing capacity for appropriate surveillance system with periodical assessment for surveillance results and the system.
Collapse
Affiliation(s)
- Sachiko Moriguchi
- Laboratory of Wildlife Medicine, School of Veterinary Medicine, Nippon Veterinary and Life Science University, Tokyo, Japan.
| | - Rin Hosoda
- Laboratory of Wildlife Medicine, School of Veterinary Medicine, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Nana Ushine
- Laboratory of Wildlife Medicine, School of Veterinary Medicine, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Takuya Kato
- Laboratory of Wildlife Medicine, School of Veterinary Medicine, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Shin-Ichi Hayama
- Laboratory of Wildlife Medicine, School of Veterinary Medicine, Nippon Veterinary and Life Science University, Tokyo, Japan
| |
Collapse
|
26
|
Luczo JM, Prosser DJ, Pantin-Jackwood MJ, Berlin AM, Spackman E. The pathogenesis of a North American H5N2 clade 2.3.4.4 group A highly pathogenic avian influenza virus in surf scoters (Melanitta perspicillata). BMC Vet Res 2020; 16:351. [PMID: 32967673 PMCID: PMC7513502 DOI: 10.1186/s12917-020-02579-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 09/17/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Aquatic waterfowl, particularly those in the order Anseriformes and Charadriiformes, are the ecological reservoir of avian influenza viruses (AIVs). Dabbling ducks play a recognized role in the maintenance and transmission of AIVs. Furthermore, the pathogenesis of highly pathogenic AIV (HPAIV) in dabbling ducks is well characterized. In contrast, the role of diving ducks in HPAIV maintenance and transmission remains unclear. In this study, the pathogenesis of a North American A/Goose/1/Guangdong/96-lineage clade 2.3.4.4 group A H5N2 HPAIV, A/Northern pintail/Washington/40964/2014, in diving sea ducks (surf scoters, Melanitta perspicillata) was characterized. RESULTS Intrachoanal inoculation of surf scoters with A/Northern pintail/Washington/40964/2014 (H5N2) HPAIV induced mild transient clinical disease whilst concomitantly shedding high virus titers for up to 10 days post-inoculation (dpi), particularly from the oropharyngeal route. Virus shedding, albeit at low levels, continued to be detected up to 14 dpi. Two aged ducks that succumbed to HPAIV infection had pathological evidence for co-infection with duck enteritis virus, which was confirmed by molecular approaches. Abundant HPAIV antigen was observed in visceral and central nervous system organs and was associated with histopathological lesions. CONCLUSIONS Collectively, surf scoters, are susceptible to HPAIV infection and excrete high titers of HPAIV from the respiratory and cloacal tracts whilst being asymptomatic. The susceptibility of diving sea ducks to H5 HPAIV highlights the need for additional research and surveillance to further understand the contribution of diving ducks to HPAIV ecology.
Collapse
Affiliation(s)
- Jasmina M Luczo
- Department of Agriculture-Agricultural Research Service, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, U.S., 934 College Station Road, Athens, GA, 30605, USA
| | - Diann J Prosser
- US Geological Survey, Patuxent Wildlife Research Center, 12100 Beech Forest Road, Laurel, MD, 20708, USA
| | - Mary J Pantin-Jackwood
- Department of Agriculture-Agricultural Research Service, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, U.S., 934 College Station Road, Athens, GA, 30605, USA
| | - Alicia M Berlin
- US Geological Survey, Patuxent Wildlife Research Center, 12100 Beech Forest Road, Laurel, MD, 20708, USA
| | - Erica Spackman
- Department of Agriculture-Agricultural Research Service, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, U.S., 934 College Station Road, Athens, GA, 30605, USA.
| |
Collapse
|
27
|
Identification of High-Risk Areas for the Spread of Highly Pathogenic Avian Influenza in Central Luzon, Philippines. Vet Sci 2020; 7:vetsci7030107. [PMID: 32784444 PMCID: PMC7558439 DOI: 10.3390/vetsci7030107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/02/2020] [Accepted: 08/04/2020] [Indexed: 11/17/2022] Open
Abstract
Highly pathogenic avian influenza virus (HPAIV) is a major problem in the poultry industry. It is highly contagious and is associated with a high mortality rate. The Philippines experienced an outbreak of avian influenza (AI) in 2017. As there is always a risk of re-emergence, efforts to manage disease outbreaks should be optimal. Linked to this is the need for an effective surveillance procedure to capture disease outbreaks at their early stage. Risk-based surveillance is the most effective and economical approach to outbreak management. This study evaluated the potential of commercial poultry farms in Central Luzon to transmit HPAI by calculating their respective reproductive ratios (R0). The reproductive number for each farm is based on the spatial kernel and the infectious period. A risk map has been created based on the calculated R0. There were 882 (76.63%) farms with R0 < 1. Farms with R0 ≥ 1 were all located in Pampanga Province. These farms were concentrated in the towns of San Luis (n = 12) and Candaba (n = 257). This study demonstrates the utility of mapping farm-level R0 estimates for informing HPAI risk management activities.
Collapse
|
28
|
Muzyka D, Rula O, Tkachenko S, Muzyka N, Köthe S, Pishchanskyi O, Stegniy B, Pantin-Jackwood M, Beer M. Highly Pathogenic and Low Pathogenic Avian Influenza H5 Subtype Viruses in Wild Birds in Ukraine. Avian Dis 2020; 63:219-229. [PMID: 31131580 DOI: 10.1637/11879-042718-resnote.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 12/09/2018] [Indexed: 11/05/2022]
Abstract
There have been three waves of highly pathogenic avian influenza (HPAI) outbreaks in commercial, backyard poultry, and wild birds in Ukraine. The first (2005-2006) and second (2008) waves were caused by H5N1 HPAI virus, with 45 outbreaks among commercial poultry (chickens) and backyard fowl (chickens, ducks, and geese) in four regions of Ukraine (AR Crimea, Kherson, Odesa, and Sumy Oblast). H5N1 HPAI viruses were isolated from dead wild birds: cormorants (Phalacrocorax carbo) and great crested grebes (Podiceps cristatus) in 2006 and 2008. The third HPAI wave consisted of nine outbreaks of H5N8 HPAI in wild and domestic birds, beginning in November 2016 in the central and south regions (Kherson, Odesa, Chernivtsi, Ternopil, and Mykolaiv Oblast). H5N8 HPAI virus was detected in dead mute swans (Cygnus olor), peacocks (Pavo cristatus) (in zoo), ruddy shelducks (Tadorna ferruginea), white-fronted geese (Anser albifrons), and from environmental samples in 2016 and 2017. Wide wild bird surveillance for avian influenza (AI) virus was conducted from 2006 to 2016 in Ukraine regions suspected of being intercontinental (north-south and east-west) flyways. A total of 21 511 samples were collected from 105 species of wild birds representing 27 families and 11 orders. Ninety-five avian influenza (AI) viruses were isolated (including one H5N2 LPAI virus in 2010) from wild birds with a total of 26 antigenic hemagglutinin (HA) and neuraminidase (NA) combinations. Fifteen of 16 known avian HA subtypes were isolated. Two H5N8 HPAI viruses (2016-2017) and two H5N2 LPAI viruses (2016) were isolated from wild birds and environmental samples (fresh bird feces) during surveillance before the outbreak in poultry in 2016-2017. The Ukrainian H5N1, H5N8 HPAI, and H5N2 LPAI viruses belong to different H5 phylogenetic groups. Our results demonstrate the great diversity of AI viruses in wild birds in Ukraine, as well as the importance of this region for studying the ecology of avian influenza.
Collapse
Affiliation(s)
- Denys Muzyka
- National Scientific Center "Institute of Experimental and Clinical Veterinary Medicine", Kharkiv, 61023, Ukraine,
| | - Oleksandr Rula
- National Scientific Center "Institute of Experimental and Clinical Veterinary Medicine", Kharkiv, 61023, Ukraine
| | - Semen Tkachenko
- National Scientific Center "Institute of Experimental and Clinical Veterinary Medicine", Kharkiv, 61023, Ukraine
| | - Nataliia Muzyka
- State Poultry Research Station, v. Birky, Kharkiv Region, 63422, Ukraine
| | - Susanne Köthe
- Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
| | - Oleksandr Pishchanskyi
- National Scientific Center "Institute of Experimental and Clinical Veterinary Medicine", Kharkiv, 61023, Ukraine
| | - Borys Stegniy
- National Scientific Center "Institute of Experimental and Clinical Veterinary Medicine", Kharkiv, 61023, Ukraine
| | - Mary Pantin-Jackwood
- Exotic and Emerging Avian Viral Diseases Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA 30677
| | - Martin Beer
- Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
| |
Collapse
|
29
|
The Pattern of Highly Pathogenic Avian Influenza H5N1 Outbreaks in South Asia. Trop Med Infect Dis 2019; 4:tropicalmed4040138. [PMID: 31783701 PMCID: PMC6958390 DOI: 10.3390/tropicalmed4040138] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/11/2019] [Accepted: 11/11/2019] [Indexed: 12/14/2022] Open
Abstract
Highly pathogenic avian influenza (HPAI) H5N1 has caused severe illnesses in poultry and in humans. More than 15,000 outbreaks in domestic birds from 2005 to 2018 and 861 human cases from 2003 to 2019 were reported across the world to OIE (Office International des Epizooties) and WHO (World Health Organization), respectively. We reviewed and summarized the spatial and temporal distribution of HPAI outbreaks in South Asia. During January 2006 to June 2019, a total of 1063 H5N1 outbreaks in birds and 12 human cases for H5N1 infection were reported to OIE and WHO, respectively. H5N1 outbreaks were detected more in the winter season than the summer season (RR 5.11, 95% CI: 4.28-6.1). Commercial poultry were three times more likely to be infected with H5N1 than backyard poultry (RR 3.47, 95% CI: 2.99-4.01). The highest number of H5N1 outbreaks was reported in 2008, and the smallest numbers were reported in 2014 and 2015. Multiple subtypes of avian influenza viruses and multiple clades of H5N1 virus were detected. Early detection and reporting of HPAI viruses are needed to control and eliminate HPAI in South Asia.
Collapse
|
30
|
Disentangling the role of Africa in the global spread of H5 highly pathogenic avian influenza. Nat Commun 2019; 10:5310. [PMID: 31757953 PMCID: PMC6874648 DOI: 10.1038/s41467-019-13287-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 10/08/2019] [Indexed: 12/30/2022] Open
Abstract
The role of Africa in the dynamics of the global spread of a zoonotic and economically-important virus, such as the highly pathogenic avian influenza (HPAI) H5Nx of the Gs/GD lineage, remains unexplored. Here we characterise the spatiotemporal patterns of virus diffusion during three HPAI H5Nx intercontinental epidemic waves and demonstrate that Africa mainly acted as an ecological sink of the HPAI H5Nx viruses. A joint analysis of host dynamics and continuous spatial diffusion indicates that poultry trade as well as wild bird migrations have contributed to the virus spreading into Africa, with West Africa acting as a crucial hotspot for virus introduction and dissemination into the continent. We demonstrate varying paths of avian influenza incursions into Africa as well as virus spread within Africa over time, which reveal that virus expansion is a complex phenomenon, shaped by an intricate interplay between avian host ecology, virus characteristics and environmental variables.
Collapse
|
31
|
Hillman AE, Smith RP, Batey N, Verheyen KL, Pittman M, Brown IH, Breed AC. Serological surveillance reveals patterns of exposure to H5 and H7 influenza A viruses in European poultry. Transbound Emerg Dis 2019; 67:592-603. [PMID: 31549792 DOI: 10.1111/tbed.13371] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 09/19/2019] [Accepted: 09/19/2019] [Indexed: 11/29/2022]
Abstract
Influenza A viruses of H5 and H7 subtype in poultry can circulate subclinically and subsequently mutate from low to high pathogenicity with potentially devastating economic and welfare consequences. European Union Member States undertake surveillance of commercial and backyard poultry for early detection and control of subclinical H5 and H7 influenza A infection. This surveillance has moved towards a risk-based sampling approach in recent years; however, quantitative measures of relative risk associated with risk factors utilized in this approach are necessary for optimization. This study describes serosurveillance for H5 and H7 influenza A in domestic and commercial poultry undertaken in the European Union from 2004 to 2010, where a random sampling and thus representative approach to serosurveillance was undertaken. Using these representative data, this study measured relative risk of seropositivity across poultry categories and spatially across the EU. Data were analysed using multivariable logistic regression. Domestic waterfowl, game birds, fattening turkeys, ratites, backyard poultry and the 'other' poultry category holdings had relatively increased probability of H5 and/or H7 influenza A seropositivity, compared to laying-hen holdings. Amongst laying-hen holdings, free-range rearing was associated with increased probability of H7 seropositivity. Spatial analyses detected 'hotspots' for H5 influenza A seropositivity in western France and England, and H7 influenza A seropositivity in Italy and Belgium, which may be explained by the demographics and distribution of poultry categories. Findings suggest certain poultry category holdings are at increased risk of subclinical H5 and/or H7 influenza A circulation, and free-range rearing increases the likelihood of exposure to H7 influenza A. These findings may be used in further refining risk-based surveillance strategies and prioritizing management strategies in influenza A outbreaks.
Collapse
Affiliation(s)
| | | | - Nicole Batey
- Animal and Plant Health Agency, Weybridge, Addlestone, UK
| | | | - Maria Pittman
- European Commission, Directorate for Health and Food Safety, Brussels, Belgium
| | - Ian H Brown
- Animal and Plant Health Agency, Weybridge, Addlestone, UK
| | - Andrew C Breed
- Animal and Plant Health Agency, Weybridge, Addlestone, UK.,School of Veterinary Science, University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
32
|
RETRACTED ARTICLE: Insights into the role of turkeys as potential intermediate host for influenza viruses. WORLD POULTRY SCI J 2019. [DOI: 10.1017/s0043933916000520] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
33
|
The effects of climate change on avian migratory patterns and the dispersal of commercial poultry diseases in Canada - Part II. WORLD POULTRY SCI J 2019. [DOI: 10.1017/s0043933913000147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
34
|
|
35
|
Pathogenicity and genomic changes of a 2016 European H5N8 highly pathogenic avian influenza virus (clade 2.3.4.4) in experimentally infected mallards and chickens. Virology 2019; 537:172-185. [PMID: 31493656 DOI: 10.1016/j.virol.2019.08.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 08/19/2019] [Accepted: 08/20/2019] [Indexed: 02/06/2023]
Abstract
Highly pathogenic avian influenza H5N8 clade 2.3.4.4 virus caused outbreaks in poultry and unusually high mortality in wild birds in 2016-2017. The pathobiology of one of these viruses was examined in mallards and chickens. High mortality and transmission to direct contacts were observed in mallards inoculated with medium and high doses of the virus. However, in chickens, high mortality occurred only when birds are given the high virus dose and no transmission was observed, indicating that the virus was better adapted to mallards. In comparison with the virus inoculum, viral sequences obtained from the chickens had a higher number of nucleotide changes but lower intra-host genomic diversity than viral sequences obtained from the mallards. These observations are consistent with population bottlenecks occurring when viruses infect and replicate in a host that it is not well adapted to. Whether these observations apply to influenza viruses in general remains to be determined.
Collapse
|
36
|
Wangdi K, Kasturiaratchi K, Nery SV, Lau CL, Gray DJ, Clements ACA. Diversity of infectious aetiologies of acute undifferentiated febrile illnesses in south and Southeast Asia: a systematic review. BMC Infect Dis 2019; 19:577. [PMID: 31272417 PMCID: PMC6610835 DOI: 10.1186/s12879-019-4185-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 06/12/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Acute undifferentiated febrile illness (AUFI) is caused by a multitude of diverse pathogens, with significant morbidity and mortality in the developing world. The objective of this review was to characterise the diversity and relative importance of common infectious aetiologies of AUFI in South and Southeast Asia. METHODS We conducted a comprehensive literature review to identify common aetiologies of AUFI in Asian countries. Four medical and life sciences databases including PubMed, Medline, Embase and Cochrane Central, and Google Scholar were searched for articles published from January 1998 to March 2019. RESULTS Forty-three studies met the inclusion criteria. Among AUFI cases, viral aetiologies at 18.5% (14888) were more common than bacterial aetiologies (12.9% [10384]). From 80,554 cases, dengue fever was the most common aetiology (11.8%, 9511), followed by leptospirosis (4.4%, 3549), typhoid (4.0%, 3258), scrub typhus (4.0%, 3243) and influenza other than H1N1 (3.1%, 2514). In both adults and children: dengue fever was the leading cause of AUFI with 16.6% (1928) and 18.7% (1281) of the total cases. In admitted patients, dengue fever was the main cause of AUFI at 16.4% (2377), however leptospirosis at 13.9% (2090) was the main cause of AUFI for outpatients. In South Asia, dengue fever was the main cause of AUFI, causing 12.0% (6821) of cases, whereas in Southeast Asia, leptospirosis was the main diagnosis, causing 12.1% (2861) of cases. CONCLUSIONS In this study the most common causes of AUFI were viral, followed by bacterial and protozoal (malaria) infections. Dengue was the commonest virus that caused AUFI while leptospirosis and typhoid were important bacterial infectious causes. Therefore, it is imperative to maintain a sound epidemiological knowledge of AUFI so that evidence-based diagnostic criteria and treatment guidelines can be developed.
Collapse
Affiliation(s)
- Kinley Wangdi
- Department of Global Health, Research School of Population Health, Australian National University, Action, ACT, Canberra, Australia.
| | | | - Susana Vaz Nery
- Department of Global Health, Research School of Population Health, Australian National University, Action, ACT, Canberra, Australia.,Kirby Institute, University of New South Wales, Sydney, NSW, Australia
| | - Colleen L Lau
- Department of Global Health, Research School of Population Health, Australian National University, Action, ACT, Canberra, Australia.,Children's Health and Environment Program, Child Health Research Centre, The University of Queensland, QLD, South Brisbane, Australia
| | - Darren J Gray
- Department of Global Health, Research School of Population Health, Australian National University, Action, ACT, Canberra, Australia
| | - Archie C A Clements
- Department of Global Health, Research School of Population Health, Australian National University, Action, ACT, Canberra, Australia.,Faculty of Health Sciences, Curtin University, Perth, WA, Australia
| |
Collapse
|
37
|
Guan M, Hall JS, Zhang X, Dusek RJ, Olivier AK, Liu L, Li L, Krauss S, Danner A, Li T, Rutvisuttinunt W, Lin X, Hallgrimsson GT, Ragnarsdottir SB, Vignisson SR, TeSlaa J, Nashold SW, Jarman R, Wan XF. Aerosol Transmission of Gull-Origin Iceland Subtype H10N7 Influenza A Virus in Ferrets. J Virol 2019; 93:e00282-19. [PMID: 30996092 PMCID: PMC6580963 DOI: 10.1128/jvi.00282-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 04/09/2019] [Indexed: 01/02/2023] Open
Abstract
Subtype H10 influenza A viruses (IAVs) have been recovered from domestic poultry and various aquatic bird species, and sporadic transmission of these IAVs from avian species to mammals (i.e., human, seal, and mink) are well documented. In 2015, we isolated four H10N7 viruses from gulls in Iceland. Genomic analyses showed four gene segments in the viruses were genetically associated with H10 IAVs that caused influenza outbreaks and deaths among European seals in 2014. Antigenic characterization suggested minimal antigenic variation among these H10N7 isolates and other archived H10 viruses recovered from human, seal, mink, and various avian species in Asia, Europe, and North America. Glycan binding preference analyses suggested that, similar to other avian-origin H10 IAVs, these gull-origin H10N7 IAVs bound to both avian-like alpha 2,3-linked sialic acids and human-like alpha 2,6-linked sialic acids. However, when the gull-origin viruses were compared with another Eurasian avian-origin H10N8 IAV, which caused human infections, the gull-origin virus showed significantly higher binding affinity to human-like glycan receptors. Results from a ferret experiment demonstrated that a gull-origin H10N7 IAV replicated well in turbinate, trachea, and lung, but replication was most efficient in turbinate and trachea. This gull-origin H10N7 virus can be transmitted between ferrets through the direct contact and aerosol routes, without prior adaptation. Gulls share their habitat with other birds and mammals and have frequent contact with humans; therefore, gull-origin H10N7 IAVs could pose a risk to public health. Surveillance and monitoring of these IAVs at the wild bird-human interface should be continued.IMPORTANCE Subtype H10 avian influenza A viruses (IAVs) have caused sporadic human infections and enzootic outbreaks among seals. In the fall of 2015, H10N7 viruses were recovered from gulls in Iceland, and genomic analyses showed that the viruses were genetically related with IAVs that caused outbreaks among seals in Europe a year earlier. These gull-origin viruses showed high binding affinity to human-like glycan receptors. Transmission studies in ferrets demonstrated that the gull-origin IAV could infect ferrets, and that the virus could be transmitted between ferrets through direct contact and aerosol droplets. This study demonstrated that avian H10 IAV can infect mammals and be transmitted among them without adaptation. Thus, avian H10 IAV is a candidate for influenza pandemic preparedness and should be monitored in wildlife and at the animal-human interface.
Collapse
Affiliation(s)
- Minhui Guan
- Department of Basic Science, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, USA
| | - Jeffrey S Hall
- United States Geological Survey National Wildlife Health Center, Madison, Wisconsin, USA
| | - Xiaojian Zhang
- Department of Basic Science, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, USA
| | - Robert J Dusek
- United States Geological Survey National Wildlife Health Center, Madison, Wisconsin, USA
| | - Alicia K Olivier
- Department of Population and Pathobiology Medicine, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, USA
| | - Liyuan Liu
- Department of Basic Science, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, USA
| | - Lei Li
- Department of Basic Science, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, USA
| | - Scott Krauss
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Angela Danner
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Tao Li
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Wiriya Rutvisuttinunt
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Xiaoxu Lin
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | | | | | | | - Josh TeSlaa
- United States Geological Survey National Wildlife Health Center, Madison, Wisconsin, USA
| | - Sean W Nashold
- United States Geological Survey National Wildlife Health Center, Madison, Wisconsin, USA
| | - Richard Jarman
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Xiu-Feng Wan
- Department of Basic Science, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, USA
| |
Collapse
|
38
|
Infection of chicken H9N2 influenza viruses in different species of domestic ducks. Vet Microbiol 2019; 233:1-4. [PMID: 31176393 DOI: 10.1016/j.vetmic.2019.04.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 04/09/2019] [Accepted: 04/11/2019] [Indexed: 01/11/2023]
Abstract
Domestic ducks are considered as the interface between wild aquatic birds and terrestrial poultry and play an important role in the transmission and evolution of avian influenza viruses (AIVs). However, the infectivity of H9N2 AIVs in different domestic duck species has not been systematically evaluated. Here we investigated the infectivity of various genotypes of chicken H9N2 AIVs in Pekin duck (Anas Platyrhynchos), Mallard duck (Anas Platyrhynchos) and Muscovy duck (Cairina Moschata) through intranasal inoculation. We found that Pekin ducks and Mallard ducks were generally resistant to chicken H9N2 virus infection, while Muscovy ducks were relatively susceptible to H9N2 AIVs. All the tested viruses were isolated from oropharynx, trachea and lung tissues of Muscovy ducks. Additionally, genotype 57 (G57) H9N2 AIVs, which was predominant in chickens since 2010, showed increased virus replication in this duck species, indicating an improved interspecies transmission ability of recent H9N2 viruses from chickens to ducks. Our results demonstrated the role of Muscovy ducks in the ecology of H9N2 AIVs. More attentions should be paid to this host during viral surveillances. Additionally, inactivated H9N2 vaccine may be unnecessarily used in Pekin and Mallard ducks.
Collapse
|
39
|
Uchida Y, Mine J, Takemae N, Tanikawa T, Tsunekuni R, Saito T. Comparative pathogenicity of H5N6 subtype highly pathogenic avian influenza viruses in chicken, Pekin duck and Muscovy duck. Transbound Emerg Dis 2019; 66:1227-1251. [DOI: 10.1111/tbed.13141] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 01/28/2019] [Accepted: 01/29/2019] [Indexed: 11/30/2022]
Affiliation(s)
- Yuko Uchida
- Influenza Unit, Division of Transboundary Animal DiseasesNational Institute of Animal Health, National Agriculture and Food Research Organization (NARO) Kannondai, Tsukuba Ibaraki Japan
| | - Junki Mine
- Influenza Unit, Division of Transboundary Animal DiseasesNational Institute of Animal Health, National Agriculture and Food Research Organization (NARO) Kannondai, Tsukuba Ibaraki Japan
| | - Nobuhiro Takemae
- Influenza Unit, Division of Transboundary Animal DiseasesNational Institute of Animal Health, National Agriculture and Food Research Organization (NARO) Kannondai, Tsukuba Ibaraki Japan
| | - Taichiro Tanikawa
- Influenza Unit, Division of Transboundary Animal DiseasesNational Institute of Animal Health, National Agriculture and Food Research Organization (NARO) Kannondai, Tsukuba Ibaraki Japan
| | - Ryota Tsunekuni
- Influenza Unit, Division of Transboundary Animal DiseasesNational Institute of Animal Health, National Agriculture and Food Research Organization (NARO) Kannondai, Tsukuba Ibaraki Japan
| | - Takehiko Saito
- Influenza Unit, Division of Transboundary Animal DiseasesNational Institute of Animal Health, National Agriculture and Food Research Organization (NARO) Kannondai, Tsukuba Ibaraki Japan
| |
Collapse
|
40
|
Innate Immune Responses to Avian Influenza Viruses in Ducks and Chickens. Vet Sci 2019; 6:vetsci6010005. [PMID: 30634569 PMCID: PMC6466002 DOI: 10.3390/vetsci6010005] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/26/2018] [Accepted: 01/04/2019] [Indexed: 02/06/2023] Open
Abstract
Mallard ducks are important natural hosts of low pathogenic avian influenza (LPAI) viruses and many strains circulate in this reservoir and cause little harm. Some strains can be transmitted to other hosts, including chickens, and cause respiratory and systemic disease. Rarely, these highly pathogenic avian influenza (HPAI) viruses cause disease in mallards, while chickens are highly susceptible. The long co-evolution of mallard ducks with influenza viruses has undoubtedly fine-tuned many immunological host–pathogen interactions to confer resistance to disease, which are poorly understood. Here, we compare innate responses to different avian influenza viruses in ducks and chickens to reveal differences that point to potential mechanisms of disease resistance. Mallard ducks are permissive to LPAI replication in their intestinal tissues without overtly compromising their fitness. In contrast, the mallard response to HPAI infection reflects an immediate and robust induction of type I interferon and antiviral interferon stimulated genes, highlighting the importance of the RIG-I pathway. Ducks also appear to limit the duration of the response, particularly of pro-inflammatory cytokine expression. Chickens lack RIG-I, and some modulators of the signaling pathway and may be compromised in initiating an early interferon response, allowing more viral replication and consequent damage. We review current knowledge about innate response mediators to influenza infection in mallard ducks compared to chickens to gain insight into protective immune responses, and open questions for future research.
Collapse
|
41
|
He W, Li G, Zhu H, Shi W, Wang R, Zhang C, Bi Y, Lai A, Gao GF, Su S. Emergence and adaptation of H3N2 canine influenza virus from avian influenza virus: An overlooked role of dogs in interspecies transmission. Transbound Emerg Dis 2019; 66:842-851. [PMID: 30520554 DOI: 10.1111/tbed.13093] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 10/15/2018] [Accepted: 11/07/2018] [Indexed: 12/16/2022]
Abstract
H3N2 canine influenza virus (CIV) originated from avian species and emerged in dogs in Asia around 2005 where it became enzootic before reaching the USA in 2015. To investigate the key aspects of the evolution of H3N2 CIV regarding its emergence and adaptation in the canine host, we conducted an extensive analysis of all publicly available H3N2 CIV sequences spanning a 10-year period. We believe that H3N2 AIVs transferred to canines around 2002-2004. Furthermore, H3N2 CIVs could be divided into seven major clades with strong geographic clustering and some changed sites evidence of adaptive evolution. Most notably, the dN/dS of each H3N2 CIVs segment was higher than the correspondent of H3N2 AIVs and the U content of HA and NA was increasing over time, suggesting the idea that this avian-origin virus may be gradually adapting to the host. Our results provide a framework to elucidate a general mechanism for emergence of novel influenza viruses.
Collapse
Affiliation(s)
- Wanting He
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Gairu Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Henan Zhu
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Weifeng Shi
- Institute of Pathogen Biology, Taishan Medical College, Taian, China
| | - Ruyi Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Cheng Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yuhai Bi
- Chinese Center for Disease Control and Prevention (China CDC), National Institute for Viral Disease Control and Prevention, Beijing, China.,CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Alexander Lai
- College of Natural, Applied, and Health Sciences, Kentucky State University, Frankfort, Kentucky, USA
| | - George F Gao
- Chinese Center for Disease Control and Prevention (China CDC), National Institute for Viral Disease Control and Prevention, Beijing, China.,CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Shuo Su
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
42
|
Fleming-Canepa X, Aldridge JR, Canniff L, Kobewka M, Jax E, Webster RG, Magor KE. Duck innate immune responses to high and low pathogenicity H5 avian influenza viruses. Vet Microbiol 2018; 228:101-111. [PMID: 30593354 DOI: 10.1016/j.vetmic.2018.11.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 11/16/2018] [Accepted: 11/16/2018] [Indexed: 12/28/2022]
Abstract
Ducks are the reservoir host of influenza A viruses, and are permissive for replication of most strains, yet can elicit robust innate immune responses to highly pathogenic strains. Tissue tropism and viral amino acid differences affect virulence, but we have limited knowledge about how viral differences influence the host innate immune response. Here we compare the innate immune response in Pekin ducks to a recombinant highly-pathogenic avian influenza (HPAI) H5N1 virus and a naturally arising attenuated variant of this strain that differs at one amino acid in polymerase A (T515A), as well as ducks infected with two different H5 strains of low pathogenic avian influenza (LPAI). Using qPCR we examined the relative abundance of transcripts for RIG-I and interferon-beta (IFNβ), and downstream interferon stimulated genes (ISGs). The polymerase PA (T515A) mutation did not significantly affect replication in vivo but greatly attenuated host interferon responses. ISG induction was robust for both H5N1 strains, but was three times lower for the PA mutant strain. Low pathogenic viruses elicited detectable induction of RIG-I, IFNβ and ISGs in lung and intestine tissues that correlated with the recovery of viruses from tracheal or cloacal swabs. Several genes in the MAVS signaling pathway were also upregulated by H5N1, which contributed to further amplification of the signal. We also examined hematoxylin-eosin stained tissue sections and observe evidence of lung pathology and splenocyte depletion with both H5N1 viruses at 3 dpi, and recovery by 6 dpi. However, for both H5N1 strains we observed inflammation around neurons in brain, with increased cytokine expression in some individuals. Our findings reveal HPAI H5N1 viruses induced stronger innate immune responses to the infection, while LPAI viruses elicit a milder response.
Collapse
Affiliation(s)
- Ximena Fleming-Canepa
- Department of Biological Sciences, CW405 Biological Sciences Building, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada
| | - Jerry R Aldridge
- Division of Virology, Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA; Institute of Parasitology, McGill University, 21,111 Lakeshore Road, Ste-Anne-de-Bellevue, Quebec, H9X 3V9, Canada
| | - Lauren Canniff
- Department of Biological Sciences, CW405 Biological Sciences Building, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada
| | - Michelle Kobewka
- Department of Biological Sciences, CW405 Biological Sciences Building, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada
| | - Elinor Jax
- Department of Migration and Immuno-Ecology, Max Planck Institute for Ornithology, Radolfzell, 78315, Germany
| | - Robert G Webster
- Division of Virology, Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Katharine E Magor
- Department of Biological Sciences, CW405 Biological Sciences Building, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada; Li Ka Shing Institute of Virology, University of Alberta, Edmonton, T6G 2E1, Canada.
| |
Collapse
|
43
|
Nooruzzaman M, Haque ME, Chowdhury EH, Islam MR. Pathology of clade 2.3.2.1 avian influenza virus (H5N1) infection in quails and ducks in Bangladesh. Avian Pathol 2018; 48:73-79. [DOI: 10.1080/03079457.2018.1535165] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Mohammed Nooruzzaman
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Md. Enamul Haque
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Emdadul Haque Chowdhury
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Mohammad Rafiqul Islam
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| |
Collapse
|
44
|
Davis RL, Choi G, Kuiken T, Quéré P, Trapp S, Short KR, Richard M. The culture of primary duck endothelial cells for the study of avian influenza. BMC Microbiol 2018; 18:138. [PMID: 30340527 PMCID: PMC6194716 DOI: 10.1186/s12866-018-1307-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 10/08/2018] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Endothelial cells play a major role in highly pathogenic avian influenza (HPAI) virus pathogenesis in gallinaceous poultry species (e.g. chicken, turkey and quail). Upon infection of gallinaceous poultry with HPAI viruses, endothelial cells throughout the body become rapidly infected, leading to systemic dissemination of the virus, disseminated intravascular coagulation, oedema and haemorrhaging. In contrast, the pathogenesis of HPAI viruses in most wild bird species (e.g. duck, goose and gull species) is not associated with endothelial tropism. Indeed, viral antigen is not found in the endothelial cells of most wild bird species following infection with HPAI viruses. This differential endothelial cell tropism in avian species is poorly understood, mainly due to the absence of appropriate cell culture systems. RESULTS Here, we describe the isolation and purification of primary duck endothelial cells from the aorta or bone marrow of Pekin duck embryos. Cells were differentiated in the presence of vascular endothelial growth factor and, if needed, enriched via fluorescent-activated cell sorting based on the uptake of acetylated low-density lipoprotein. The expression of von Willebrand factor, a key marker of endothelial cells, was confirmed by polymerase chain reaction. Monocultures of duck endothelial cells, either derived from the aorta or the bone marrow, were susceptible to infection with an H5N1 HPAI virus but to a much lesser extent than chicken endothelial cells. CONCLUSIONS The methods described herein to isolate and purify duck endothelial cells from the aorta or bone marrow could also be applied to obtain microvascular endothelial cells from other tissues and organs, such as the lung or the intestine, and represent a valuable tool to study the pathogenesis of avian viruses.
Collapse
Affiliation(s)
- Raissa L Davis
- Department of Viroscience, Erasmus Medical Centre, Rotterdam, the Netherlands
| | - Geunho Choi
- Department of Viroscience, Erasmus Medical Centre, Rotterdam, the Netherlands
| | - Thijs Kuiken
- Department of Viroscience, Erasmus Medical Centre, Rotterdam, the Netherlands
| | - Pascale Quéré
- INRA ISP, Université de Tours, UMR 1282, Nouzilly, France
| | - Sascha Trapp
- INRA ISP, Université de Tours, UMR 1282, Nouzilly, France
| | - Kirsty R Short
- Department of Viroscience, Erasmus Medical Centre, Rotterdam, the Netherlands.,School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Mathilde Richard
- Department of Viroscience, Erasmus Medical Centre, Rotterdam, the Netherlands.
| |
Collapse
|
45
|
Hill EM, House T, Dhingra MS, Kalpravidh W, Morzaria S, Osmani MG, Brum E, Yamage M, Kalam MA, Prosser DJ, Takekawa JY, Xiao X, Gilbert M, Tildesley MJ. The impact of surveillance and control on highly pathogenic avian influenza outbreaks in poultry in Dhaka division, Bangladesh. PLoS Comput Biol 2018; 14:e1006439. [PMID: 30212472 PMCID: PMC6155559 DOI: 10.1371/journal.pcbi.1006439] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 09/25/2018] [Accepted: 08/16/2018] [Indexed: 11/19/2022] Open
Abstract
In Bangladesh, the poultry industry is an economically and socially important sector, but it is persistently threatened by the effects of H5N1 highly pathogenic avian influenza. Thus, identifying the optimal control policy in response to an emerging disease outbreak is a key challenge for policy-makers. To inform this aim, a common approach is to carry out simulation studies comparing plausible strategies, while accounting for known capacity restrictions. In this study we perform simulations of a previously developed H5N1 influenza transmission model framework, fitted to two separate historical outbreaks, to assess specific control objectives related to the burden or duration of H5N1 outbreaks among poultry farms in the Dhaka division of Bangladesh. In particular, we explore the optimal implementation of ring culling, ring vaccination and active surveillance measures when presuming disease transmission predominately occurs from premises-to-premises, versus a setting requiring the inclusion of external factors. Additionally, we determine the sensitivity of the management actions under consideration to differing levels of capacity constraints and outbreaks with disparate transmission dynamics. While we find that reactive culling and vaccination policies should pay close attention to these factors to ensure intervention targeting is optimised, across multiple settings the top performing control action amongst those under consideration were targeted proactive surveillance schemes. Our findings may advise the type of control measure, plus its intensity, that could potentially be applied in the event of a developing outbreak of H5N1 amongst originally H5N1 virus-free commercially-reared poultry in the Dhaka division of Bangladesh. Ongoing circulation of avian influenza H5N1 viruses in poultry pose a global public health risk and cause extensive damage to the livestock industry. One of several countries in South Asia gravely affected is Bangladesh, where the poultry industry is an economically and socially important sector. Identifying the optimal control response in anticipation of further outbreaks is therefore a key challenge for policy-makers. This study tested a series of culling, vaccination and active surveillance intervention actions, assessing specific control objectives related to the burden or duration of H5N1 outbreaks among commercial poultry farms in the Dhaka division. This assessment was achieved through performing computational simulations of a previously developed H5N1 influenza transmission mathematical model. The findings of this assessment indicate that the impact of reactive culling and vaccination control policies are dependent upon transmission characteristics, control objectives and availability of resources to enact the control action, whereas proactive surveillance schemes significantly outperform reactive surveillance procedures irrespective of these conditions.
Collapse
Affiliation(s)
- Edward M. Hill
- Zeeman Institute: Systems Biology and Infectious Disease Epidemiology Research (SBIDER), University of Warwick, Coventry, United Kingdom
- Mathematics Institute, University of Warwick, Coventry, United Kingdom
- * E-mail:
| | - Thomas House
- School of Mathematics, The University of Manchester, Manchester, United Kingdom
| | - Madhur S. Dhingra
- Spatial Epidemiology Lab (SpELL), Université Libre de Bruxelles, Brussels, Belgium
- Food and Agricultural Organization of the United Nations, Rome, Italy
| | - Wantanee Kalpravidh
- Food and Agricultural Organization of the United Nations Regional Office for Asia and the Pacific, Bangkok, Thailand
| | - Subhash Morzaria
- Food and Agricultural Organization of the United Nations, Rome, Italy
| | | | - Eric Brum
- Emergency Centre for Transboundary Animal Diseases (ECTAD), Food and Agriculture Organization of the United Nations, Dhaka, Bangladesh
| | - Mat Yamage
- Emergency Centre for Transboundary Animal Diseases (ECTAD), Food and Agriculture Organization of the United Nations, Dhaka, Bangladesh
| | - Md. A. Kalam
- Institute of Epidemiology, Disease Control & Research (IEDCR), Dhaka, Bangladesh
| | - Diann J. Prosser
- USGS Patuxent Wildlife Research Center, Laurel, Maryland, United States of America
| | - John Y. Takekawa
- U.S. Geological Survey, Western Ecological Research Center, San Francisco Bay Estuary Field Station, Vallejo, California, United States of America
| | - Xiangming Xiao
- Department of Microbiology and Plant Biology, Center for Spatial Analysis, University of Oklahoma, Norman, Oklahoma, United States of America
| | - Marius Gilbert
- Spatial Epidemiology Lab (SpELL), Université Libre de Bruxelles, Brussels, Belgium
- Fonds National de la Recherche Scientifique, Brussels, Belgium
| | - Michael J. Tildesley
- Zeeman Institute: Systems Biology and Infectious Disease Epidemiology Research (SBIDER), University of Warwick, Coventry, United Kingdom
- Mathematics Institute, University of Warwick, Coventry, United Kingdom
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
46
|
Grund C, Hoffmann D, Ulrich R, Naguib M, Schinköthe J, Hoffmann B, Harder T, Saenger S, Zscheppang K, Tönnies M, Hippenstiel S, Hocke A, Wolff T, Beer M. A novel European H5N8 influenza A virus has increased virulence in ducks but low zoonotic potential. Emerg Microbes Infect 2018; 7:132. [PMID: 30026505 PMCID: PMC6053424 DOI: 10.1038/s41426-018-0130-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 06/11/2018] [Accepted: 06/13/2018] [Indexed: 12/22/2022]
Abstract
We investigated in a unique setup of animal models and a human lung explant culture biological properties, including zoonotic potential, of a representative 2016 highly pathogenic avian influenza virus (HPAIV) H5N8, clade 2.3.4.4 group B (H5N8B), that spread rapidly in a huge and ongoing outbreak series in Europe and caused high mortality in waterfowl and domestic birds. HPAIV H5N8B showed increased virulence with rapid onset of severe disease and mortality in Pekin ducks due to pronounced neuro- and hepatotropism. Cross-species infection was evaluated in mice, ferrets, and in a human lung explant culture model. While the H5N8B isolate was highly virulent for Balb/c mice, virulence and transmissibility were grossly reduced in ferrets, which was mirrored by marginal replication in human lung cultures infected ex vivo. Our data indicate that the 2016 HPAIV H5N8B is avian-adapted with augmented virulence for waterfowl, but has low zoonotic potential. The here tested combination of animal studies with the inoculation of human explants provides a promising future workflow to evaluate zoonotic potential, mammalian replication competence and avian virulence of HPAIV.
Collapse
Affiliation(s)
- Christian Grund
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Donata Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany.
| | - Reiner Ulrich
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Mahmoud Naguib
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Jan Schinköthe
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Bernd Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Timm Harder
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Sandra Saenger
- Unit 17 Influenza and other Respiratory Viruses, Robert Koch Institut, Berlin, Germany
| | - Katja Zscheppang
- Department of Internal Medicine/Infectious Diseases and Respiratory Medicine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt - Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Mario Tönnies
- HELIOS Clinic Emil von Behring, Department of Thoracic Surgery, Chest Hospital Heckeshorn, Berlin, Germany
| | - Stefan Hippenstiel
- Department of Internal Medicine/Infectious Diseases and Respiratory Medicine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt - Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Andreas Hocke
- Department of Internal Medicine/Infectious Diseases and Respiratory Medicine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt - Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Thorsten Wolff
- Unit 17 Influenza and other Respiratory Viruses, Robert Koch Institut, Berlin, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany.
| |
Collapse
|
47
|
Avian influenza surveillance in domestic waterfowl and environment of live bird markets in Bangladesh, 2007-2012. Sci Rep 2018; 8:9396. [PMID: 29925854 PMCID: PMC6010472 DOI: 10.1038/s41598-018-27515-w] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 06/05/2018] [Indexed: 11/08/2022] Open
Abstract
Avian influenza viruses, including highly pathogenic strains, pose severe economic, animal and public health concerns. We implemented live bird market surveillance in Bangladesh to identify the subtypes of avian influenza A viruses in domestic waterfowl and market environments. We collected waterfowl samples monthly from 4 rural sites from 2007 to 2012 and environmental samples from 4 rural and 16 urban sites from 2009 to 2012. Samples were tested through real-time RT-PCR, virus culture, and sequencing to detect and characterize avian influenza A viruses. Among 4,308 waterfowl tested, 191 (4.4%) were positive for avian influenza A virus, including 74 (1.9%) avian influenza A/H5 subtype. The majority (99%, n = 73) of the influenza A/H5-positive samples were from healthy appearing waterfowl. Multiple subtypes, including H1N1, H1N3, H3N2, H3N6, H3N8, H4N1, H4N2, H4N6, H5N1 (clades 2.2.2, 2.3.2.1a, 2.3.4.2), H5N2, H6N1, H7N9, H9N2, H11N2 and H11N3, H11N6 were detected in waterfowl and environmental samples. Environmental samples tested positive for influenza A viruses throughout the year. Avian influenza viruses, including H5N1 and H9N2 subtypes were also identified in backyard and small-scale raised poultry. Live bird markets could be high-risk sites for harboring the viruses and have the potential to infect naive birds and humans exposed to them.
Collapse
|
48
|
Lickfett TM, Clark E, Gehring TM, Alm EW. Detection of Influenza A viruses at migratory bird stopover sites in Michigan, USA. Infect Ecol Epidemiol 2018; 8:1474709. [PMID: 29805786 PMCID: PMC5965024 DOI: 10.1080/20008686.2018.1474709] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 04/25/2018] [Indexed: 11/04/2022] Open
Abstract
Introduction: Influenza A viruses have the potential to cause devastating illness in humans and domestic poultry. Wild birds are the natural reservoirs of Influenza A viruses and migratory birds are implicated in their global dissemination. High concentrations of this virus are excreted in the faeces of infected birds and faecal contamination of shared aquatic habitats can lead to indirect transmission among birds via the faecal-oral route. The role of migratory birds in the spread of avian influenza has led to large-scale surveillance efforts of circulating avian influenza viruses through direct sampling of live and dead wild birds. Environmental monitoring of bird habitats using molecular detection methods may provide additional information on the persistence of influenza virus at migratory stopover sites distributed across large spatial scales. Materials and methods: In the current study, faecal and water samples were collected at migratory stopover sites and evaluated for Influenza A by real-time quantitative reverse transcriptase PCR. Results and Discussion: This study found that Influenza A was detected at 53% of the evaluated stopover sites, and 7% and 4.8% of the faecal and water samples, respectively, tested positive for Influenza A virus. Conclusion: Environmental monitoring detected Influenza A at stopover sites used by migratory birds.
Collapse
Affiliation(s)
- Todd M Lickfett
- Department of Biology and Institute for Great Lakes Research, Central Michigan University, Mount Pleasant, MI, USA.,Region 6 Ecological Services, U.S. Fish and Wildlife Service, Lakewood, CO, USA
| | - Erica Clark
- Department of Biology and Institute for Great Lakes Research, Central Michigan University, Mount Pleasant, MI, USA.,Silver Spring, MD, USA
| | - Thomas M Gehring
- Department of Biology and Institute for Great Lakes Research, Central Michigan University, Mount Pleasant, MI, USA
| | - Elizabeth W Alm
- Department of Biology and Institute for Great Lakes Research, Central Michigan University, Mount Pleasant, MI, USA
| |
Collapse
|
49
|
El-Shesheny R, Feeroz MM, Krauss S, Vogel P, McKenzie P, Webby RJ, Webster RG. Replication and pathogenic potential of influenza A virus subtypes H3, H7, and H15 from free-range ducks in Bangladesh in mammals. Emerg Microbes Infect 2018; 7:70. [PMID: 29691394 PMCID: PMC5915612 DOI: 10.1038/s41426-018-0072-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/13/2018] [Accepted: 03/20/2018] [Indexed: 12/16/2022]
Abstract
Surveillance of wild aquatic birds and free-range domestic ducks in the Tanguar Haor wetlands in Bangladesh has identified influenza virus subtypes H3N6, H7N1, H7N5, H7N9, and H15N9. Molecular characterization of these viruses indicates their contribution to the genesis of new genotypes of H5N1 influenza viruses from clade 2.3.2.1a that are dominant in poultry markets in Bangladesh as well as to the genesis of the highly pathogenic H5N8 virus currently causing disease outbreaks in domestic poultry in Europe and the Middle East. Therefore, we studied the antigenicity, replication, and pathogenicity of influenza viruses isolated from Tanguar Haor in the DBA/2J mouse model. All viruses replicated in the lung without prior mammalian adaptation, and H7N1 and H7N9 viruses caused 100% and 60% mortality, respectively. H7N5 viruses replicated only in the lungs, whereas H7N1 and H7N9 viruses also replicated in the heart, liver, and brain. Replication and transmission studies in mallard ducks showed that H7N1 and H7N9 viruses replicated in ducks without clinical signs of disease and shed at high titers from the cloaca of infected and contact ducks, which could facilitate virus transmission and spread. Our results indicate that H7 avian influenza viruses from free-range ducks can replicate in mammals, cause severe disease, and be efficiently transmitted to contact ducks. Our study highlights the role of free-range ducks in the spread of influenza viruses to other species in live poultry markets and the potential for these viruses to infect and cause disease in mammals.
Collapse
Affiliation(s)
- Rabeh El-Shesheny
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA.,Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, Egypt
| | - Mohammed M Feeroz
- Department of Zoology, Jahangirnagar University, Dhaka, 1342, Bangladesh
| | - Scott Krauss
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Peter Vogel
- Department of Pathology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Pamela McKenzie
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Richard J Webby
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Robert G Webster
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
50
|
Mellor KC, Meyer A, Elkholly DA, Fournié G, Long PT, Inui K, Padungtod P, Gilbert M, Newman SH, Vergne T, Pfeiffer DU, Stevens KB. Comparative Epidemiology of Highly Pathogenic Avian Influenza Virus H5N1 and H5N6 in Vietnamese Live Bird Markets: Spatiotemporal Patterns of Distribution and Risk Factors. Front Vet Sci 2018; 5:51. [PMID: 29675418 PMCID: PMC5896172 DOI: 10.3389/fvets.2018.00051] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 02/27/2018] [Indexed: 01/08/2023] Open
Abstract
Highly pathogenic avian influenza (HPAI) H5N1 virus has been circulating in Vietnam since 2003, whilst outbreaks of HPAI H5N6 virus are more recent, having only been reported since 2014. Although the spatial distribution of H5N1 outbreaks and risk factors for virus occurrence has been extensively studied, there have been no comparative studies for H5N6. Data collected through active surveillance of Vietnamese live bird markets (LBMs) between 2011 and 2015 were used to explore and compare the spatiotemporal distributions of H5N1- and H5N6-positive LBMs. Conditional autoregressive models were developed to quantify spatiotemporal associations between agroecological factors and the two HPAI strains using the same set of predictor variables. Unlike H5N1, which exhibited a strong north–south divide, with repeated occurrence in the extreme south of a cluster of high-risk provinces, H5N6 was homogeneously distributed throughout Vietnam. Similarly, different agroecological factors were associated with each strain. Sample collection in the months of January and February and higher average maximum temperature were associated with higher likelihood of H5N1-positive market-day status. The likelihood of market days being positive for H5N6 increased with decreased river density, and with successive Rounds of data collection. This study highlights marked differences in spatial patterns and risk factors for H5N1 and H5N6 in Vietnam, suggesting the need for tailored surveillance and control approaches.
Collapse
Affiliation(s)
- Kate C Mellor
- Veterinary Epidemiology, Economics and Public Health Group, Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, United Kingdom
| | - Anne Meyer
- Veterinary Epidemiology, Economics and Public Health Group, Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, United Kingdom
| | - Doaa A Elkholly
- Veterinary Epidemiology, Economics and Public Health Group, Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, United Kingdom
| | - Guillaume Fournié
- Veterinary Epidemiology, Economics and Public Health Group, Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, United Kingdom
| | - Pham T Long
- Department of Animal Health, Ministry of Agriculture and Rural Development, Hanoi, Vietnam
| | - Ken Inui
- Country Office for Vietnam, Food and Agriculture Organization of the United Nations, Hanoi, Vietnam
| | - Pawin Padungtod
- Country Office for Vietnam, Food and Agriculture Organization of the United Nations, Hanoi, Vietnam
| | - Marius Gilbert
- Spatial Epidemiology Laboratory, Université Libre de Bruxelles, Brussels, Belgium
| | - Scott H Newman
- Country Office for Vietnam, Food and Agriculture Organization of the United Nations, Hanoi, Vietnam.,Country Office for Ethiopia, Food and Agriculture Organization of the United Nations, Addis Ababa, Ethiopia
| | - Timothée Vergne
- Veterinary Epidemiology, Economics and Public Health Group, Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, United Kingdom.,Maladies Infectieuses et Vecteurs Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), Institut de Recherche pour le Développement (IRD), Montpellier, France.,UMR 1225 INRA, ENVT Interactions Hôtes - Agents Pathogènes (IHAP), University of Toulouse, Toulouse, France
| | - Dirk U Pfeiffer
- Veterinary Epidemiology, Economics and Public Health Group, Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, United Kingdom.,College of Veterinary Medicine & Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Kim B Stevens
- Veterinary Epidemiology, Economics and Public Health Group, Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, United Kingdom
| |
Collapse
|