1
|
Bressendorff S, Sjøgaard IMZ, Prestel A, Voutsinos V, Jansson MD, Ménard P, Lund AH, Hartmann-Petersen R, Kragelund BB, Poulsen C, Brodersen P. Importance of an N-terminal structural switch in the distinction between small RNA-bound and free ARGONAUTE. Nat Struct Mol Biol 2025:10.1038/s41594-024-01446-9. [PMID: 39774835 DOI: 10.1038/s41594-024-01446-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 11/07/2024] [Indexed: 01/11/2025]
Abstract
ARGONAUTE (AGO) proteins bind to small non-coding RNAs to form RNA-induced silencing complexes. In the RNA-bound state, AGO is stable while RNA-free AGO turns over rapidly. Molecular features unique to RNA-free AGO that allow its specific recognition and degradation remain unknown. Here, we identify a confined, linear region in Arabidopsis AGO1 and human Ago2, the N-coil, as a structural switch with preferential accessibility in the RNA-free state. RNA-free Arabidopsis AGO1 interacts with the autophagy cargo receptor ATI1 by direct contact with specific N-coil amino acid residues whose mutation reduces the degradation rate of RNA-free AGO1 in vivo. The N-coil of human Ago2 has similar degron activity dependent on residues in positions equivalent to those required for the Arabidopsis AGO1-ATI1 interaction. These results elucidate the molecular basis for specific recognition and degradation of the RNA-free state of eukaryotic AGO proteins.
Collapse
Affiliation(s)
- Simon Bressendorff
- Copenhagen Plant Science Center, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Ida Marie Zobbe Sjøgaard
- Copenhagen Plant Science Center, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Andreas Prestel
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Vasileios Voutsinos
- Kaj Ulrik Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Martin D Jansson
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Patrice Ménard
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Anders H Lund
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Rasmus Hartmann-Petersen
- Kaj Ulrik Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Birthe B Kragelund
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Christian Poulsen
- Copenhagen Plant Science Center, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk, Måløv, Denmark
| | - Peter Brodersen
- Copenhagen Plant Science Center, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
2
|
Kang GH, Ko Y, Lee JM. Enhancing virus-mediated genome editing for cultivated tomato through low temperature. PLANT CELL REPORTS 2025; 44:22. [PMID: 39762363 DOI: 10.1007/s00299-024-03392-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 11/27/2024] [Indexed: 01/28/2025]
Abstract
KEY MESSAGE Viral vector-mediated gene editing is enhanced for cultivated tomato under low temperature conditions, enabling higher mutation rates, heritable, and virus-free gene editing for efficient breeding. The CRISPR/Cas system, a versatile gene-editing tool, has revolutionized plant breeding by enabling precise genetic modifications. The development of robust and efficient genome-editing tools for crops is crucial for their application in plant breeding. In this study, we highly improved virus-induced genome-editing (VIGE) system for cultivated tomato. Vectors of tobacco rattle virus (TRV) and potato virus X (PVX) were used to deliver sgRNA targeting phytoene desaturase (SlPDS), along with mobile RNA sequences of tFT or tRNAIleu, into Cas9-overexpressing cultivated tomato (S. lycopersicum cv. Moneymaker). Our results demonstrate that low temperature significantly enhanced viral vector-mediated gene editing efficiency in both cotyledons and systemic upper leaves. However, no mutant progeny was obtained from TRV- and PVX301-infected MM-Cas9 plants. To address this challenge, we employed tissue culture techniques and found that low-temperature incubations at the initiation stage of tissue culture lead to enhanced editing efficiency in both vectors, resulting in a higher mutation rate (> 70%) of SlPDS in regenerated plants. Heritable gene-edited and virus-free progenies were successfully identified. This study presents a straightforward approach to enhance VIGE efficiency and the expeditious production of gene-edited lines in tomato breeding.
Collapse
Affiliation(s)
- Ga Hui Kang
- Department of Horticultural Science, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Yujung Ko
- Department of Horticultural Science, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Je Min Lee
- Department of Horticultural Science, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
3
|
Alavijeh MK, Bayat H, Kianpour D, Kalantari S, Zarei A. Optimization of in vitro propagation and virus eradication using meristem culture and thermotherapy in two geranium species Pelargonium X hortorum ('Zonal') and Pelargonium × domesticum ('Regal'). BMC PLANT BIOLOGY 2025; 25:9. [PMID: 39754032 PMCID: PMC11697468 DOI: 10.1186/s12870-024-06027-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 12/27/2024] [Indexed: 01/07/2025]
Abstract
BACKGROUND Geraniums (Pelargonium) are among the most popular flowers worldwide. Viral infection is one of the main problems of the genus Pelargonium, and the production of virus-free mother plants is necessary for large-scale geranium propagation and exchange. Meristem culture and thermotherapy are two effective procedures that have been widely adopted to produce healthy virus-free plant stocks. The present study explores the efficiency of a combination of these two methods for virus eradication in two important Pelargonium species, Pelargonium X hortorum ('Zonal') and Pelargonium × domesticum ('Regal'). METHOD For this purpose, RT-PCR have been performed using universal and specific primers of Tombusviridae and Bromoviridae virus families as well as Pelargonium Flower Break Virus (PFBV). Bud explants were taken from 'Zonal' and 'Regal' and were cultured in MS medium supplemented with different compositions of plant growth regulators (PGRs) as follow: A: (1 mgl- 1 Kin, 1 mgl- 1 BA, and 0.2 mgl- 1 NAA), B: (0.5 mgl- 1 Kin, 0.5 mgl- 1 BA, and 1 mgl- 1 NAA), and C: (1.5 mgl- 1 Kin and 1.5 mgl- 1 BA). After 10 days (16:8 h of light and dark photoperiod) incubation at 38 °C, the meristem (0.3 mm) of the in vitro raised plantlets were cultured on MS medium under sterile conditions. The ribonucleic acid of meristem derived plantlets was subjected to RT-PCR to detect any viral infections using universal primers for the Tombosviridae family and specific primers for PFBV species. RESULTS Pelargonium species exhibited varying responses to the PGR treatments. Specifically, the highest bud sprouting, plantlet regeneration, plantlet height, and root number were recorded in 'Zonal' and 'Regal' pelargoniums when cultured in media A and C, respectively. Although viral infection was confirmed in bud-derived plantlets using RT-PCR, thermotherapy and meristem culture resulted in the generation of 70% and 60% tombusviridae-free plantlets in 'Regal' and 'Zonal' Pelargoniums, respectively. The virus-free plantlets were propagated using the approved protocol. CONCLUSION These findings underscore the significance of utilizing suitable PGRs for in vitro regeneration of each Pelargonium species. The results of this investigation revealed that RT-PCR using universal and specific primers is a reliable sensitive virus detection procedure that coupled with culturing the heat-treated meristem can result in successful viral eradication in Pelargonium species.
Collapse
Affiliation(s)
- Maryam Karimi Alavijeh
- Department of Genetics and Breeding, Ornamental Plants Research Center (OPRC), Horticulture Sciences Research Institute (HSRI) Agricultural Research, Education and Extension organization (AREEO), Mahallat, Iran.
| | - Hossein Bayat
- Department of Technology and Production Management Ornamental Plant Research Center, (OPRC), Horticulture Sciences Research Institute (HSRI) Agricultural Research, Education and Extension Organization (AREEO), Mahallat, Iran
| | - Dorsa Kianpour
- Department of Horticultural Sciences, University College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Siamak Kalantari
- Department of Horticultural Sciences, University College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Abolkarim Zarei
- Department of Plant Production and Genetic (Biotechnology), Faculty of Agriculture, Jahrom University, Jahrom, Iran.
| |
Collapse
|
4
|
Yoshida T, Ishikawa M, Toki S, Ishibashi K. Heritable Tissue-Culture-Free Gene Editing in Nicotiana benthamiana through Viral Delivery of SpCas9 and sgRNA. PLANT & CELL PHYSIOLOGY 2024; 65:1743-1750. [PMID: 39215594 PMCID: PMC11631083 DOI: 10.1093/pcp/pcae100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 08/24/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Conventional plant gene editing requires laborious tissue-culture-mediated transformation, which restricts the range of applicable plant species. In this study, we developed a heritable and tissue-culture-free gene editing method in Nicotiana benthamiana using tobacco ringspot virus (TRSV) as a vector for in planta delivery of Cas9 and single-guide RNA (sgRNA) to shoot apical meristems. Agrobacterium-mediated inoculation of the TRSV vector induced systemic and heritable gene editing in Nicotiana benthamiana PHYTOENE DESATURASE. Transient downregulation of RNA silencing enhanced gene editing efficiency, resulting in an order of magnitude increase (0.8-13.2%) in the frequency of transgenerational gene editing. While the TRSV system had a preference for certain sgRNA sequences, co-inoculation of a TRSV vector carrying only Cas9 and a tobacco rattle virus vector carrying sgRNA successfully introduced systemic mutations with all five tested sgRNAs. Extensively gene-edited lateral shoots occasionally grew from plants inoculated with the virus vectors, the transgenerational gene editing frequency of which ranged up to 100%. This virus-mediated heritable gene editing method makes plant gene editing easy, requiring only the inoculation of non-transgenic plants with a virus vector(s) to obtain gene-edited individuals.
Collapse
Affiliation(s)
- Tetsuya Yoshida
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8518, Japan
| | - Masayuki Ishikawa
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8518, Japan
| | - Seiichi Toki
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8518, Japan
- Faculty of Agriculture, Ryukoku University, 1-5 Yokotani, Seta Oe-cho, Otsu, Shiga 520-2194, Japan
- Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, Kanagawa 236-0027, Japan
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Totsuka-ku, Yokohama, Kanagawa 244-0813, Japan
| | - Kazuhiro Ishibashi
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8518, Japan
| |
Collapse
|
5
|
Liu S, Ding SW. Antiviral RNA interference inhibits virus vertical transmission in plants. Cell Host Microbe 2024; 32:1691-1704.e4. [PMID: 39243759 DOI: 10.1016/j.chom.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/14/2024] [Accepted: 08/12/2024] [Indexed: 09/09/2024]
Abstract
Known for over a century, seed transmission of plant viruses promotes trans-continental virus dissemination and provides the source of infection to trigger devastating disease epidemics in crops. However, it remains unknown whether there is a genetically defined immune pathway to suppress virus vertical transmission in plants. Here, we demonstrate potent immunosuppression of cucumber mosaic virus (CMV) seed transmission in its natural host Arabidopsis thaliana by antiviral RNA interference (RNAi) pathway. Immunofluorescence microscopy reveals predominant embryo infection at four stages of embryo development. We show that antiviral RNAi confers resistance to seed infection with different genetic requirements and drastically enhanced potency compared with the inhibition of systemic infection of whole plants. Moreover, we detect efficient seed transmission of a mutant CMV lacking its RNAi suppressor gene in mutant plants defective in antiviral RNAi, providing further support for the immunosuppression of seed transmission by antiviral RNAi.
Collapse
Affiliation(s)
- Si Liu
- Department of Microbiology & Plant Pathology and Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, Riverside, CA, USA
| | - Shou-Wei Ding
- Department of Microbiology & Plant Pathology and Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, Riverside, CA, USA.
| |
Collapse
|
6
|
Mahmood MA, Naqvi RZ, Amin I, Mansoor S. Salicylic acid-driven innate antiviral immunity in plants. TRENDS IN PLANT SCIENCE 2024; 29:715-717. [PMID: 38331684 DOI: 10.1016/j.tplants.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/23/2024] [Accepted: 01/30/2024] [Indexed: 02/10/2024]
Abstract
Pathogenic viruses are a constant threat to all organisms, including plants. However, in plants, a small group of cells (stem cells) protect themselves from viral invasion. Recently, Incarbone et al. uncovered a novel salicylic acid (SA) and RNAi mechanism of stem cell resistance, broadening our understanding of RNAi-mediated antiviral plant immunity.
Collapse
Affiliation(s)
- Muhammad Arslan Mahmood
- Plant Sciences Division, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia.
| | - Rubab Zahra Naqvi
- National Institute for Biotechnology and Genetic Engineering (NIBGE) Constituent College of Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faislabad 38000, Pakistan
| | - Imran Amin
- National Institute for Biotechnology and Genetic Engineering (NIBGE) Constituent College of Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faislabad 38000, Pakistan
| | - Shahid Mansoor
- Jamil-ur-Rehman Center for Genome Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 74000, Pakistan
| |
Collapse
|
7
|
Lukhovitskaya N, Brown K, Hua L, Pate AE, Carr JP, Firth AE. A novel ilarvirus protein CP-RT is expressed via stop codon readthrough and suppresses RDR6-dependent RNA silencing. PLoS Pathog 2024; 20:e1012034. [PMID: 38814986 PMCID: PMC11166343 DOI: 10.1371/journal.ppat.1012034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/11/2024] [Accepted: 05/03/2024] [Indexed: 06/01/2024] Open
Abstract
Ilarviruses are a relatively understudied but important group of plant RNA viruses that includes a number of crop pathogens. Their genomes comprise three RNA segments encoding two replicase subunits, movement protein, coat protein (CP), and (in some ilarvirus subgroups) a protein that suppresses RNA silencing. Here we report that, in many ilarviruses, RNA3 encodes an additional protein (termed CP-RT) as a result of ribosomal readthrough of the CP stop codon into a short downstream readthrough (RT) ORF. Using asparagus virus 2 as a model, we find that CP-RT is expressed in planta where it functions as a weak suppressor of RNA silencing. CP-RT expression is essential for persistent systemic infection in leaves and shoot apical meristem. CP-RT function is dependent on a putative zinc-finger motif within RT. Replacing the asparagus virus 2 RT with the RT of an ilarvirus from a different subgroup restored the ability to establish persistent infection. These findings open up a new avenue for research on ilarvirus silencing suppression, persistent meristem invasion and vertical transmission.
Collapse
Affiliation(s)
- Nina Lukhovitskaya
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Katherine Brown
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Lei Hua
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Adrienne E. Pate
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - John P. Carr
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Andrew E. Firth
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
8
|
Palukaitis P, Yoon JY. Defense signaling pathways in resistance to plant viruses: Crosstalk and finger pointing. Adv Virus Res 2024; 118:77-212. [PMID: 38461031 DOI: 10.1016/bs.aivir.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2024]
Abstract
Resistance to infection by plant viruses involves proteins encoded by plant resistance (R) genes, viz., nucleotide-binding leucine-rich repeats (NLRs), immune receptors. These sensor NLRs are activated either directly or indirectly by viral protein effectors, in effector-triggered immunity, leading to induction of defense signaling pathways, resulting in the synthesis of numerous downstream plant effector molecules that inhibit different stages of the infection cycle, as well as the induction of cell death responses mediated by helper NLRs. Early events in this process involve recognition of the activation of the R gene response by various chaperones and the transport of these complexes to the sites of subsequent events. These events include activation of several kinase cascade pathways, and the syntheses of two master transcriptional regulators, EDS1 and NPR1, as well as the phytohormones salicylic acid, jasmonic acid, and ethylene. The phytohormones, which transit from a primed, resting states to active states, regulate the remainder of the defense signaling pathways, both directly and by crosstalk with each other. This regulation results in the turnover of various suppressors of downstream events and the synthesis of various transcription factors that cooperate and/or compete to induce or suppress transcription of either other regulatory proteins, or plant effector molecules. This network of interactions results in the production of defense effectors acting alone or together with cell death in the infected region, with or without the further activation of non-specific, long-distance resistance. Here, we review the current state of knowledge regarding these processes and the components of the local responses, their interactions, regulation, and crosstalk.
Collapse
Affiliation(s)
- Peter Palukaitis
- Graduate School of Plant Protection and Quarantine, Jeonbuk National University, Jeonju, Jeollabuk-do, Republic of Korea.
| | - Ju-Yeon Yoon
- Graduate School of Plant Protection and Quarantine, Jeonbuk National University, Jeonju, Jeollabuk-do, Republic of Korea.
| |
Collapse
|
9
|
Hoffmann G, Incarbone M. A resilient bunch: stem cell antiviral immunity in plants. THE NEW PHYTOLOGIST 2024; 241:1415-1420. [PMID: 38058221 DOI: 10.1111/nph.19456] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/15/2023] [Indexed: 12/08/2023]
Abstract
Stem cells are vital for plant development and reproduction. The stem cells within shoot apical meristems are known to possess exceptionally effective antiviral defenses against pathogenic viruses which preclude their infection, yet how this is achieved remains poorly understood and scarcely investigated. In this Tansley Insight, we connect very recent experimental results with previous work to summarize the known molecular mechanisms determining stem cell antiviral immunity. More broadly, we attempt to define the viral features triggering immunity and the global consequences of virus infection in these essential cells. This brief article will highlight how these phenomena are fascinating, complex and often crucial for virus-host interactions, while emphasizing the potential for discovery in their investigation.
Collapse
Affiliation(s)
- Gesa Hoffmann
- Max Planck Institute of Molecular Plant Physiology (MPIMP), 1 Am Mühlenberg Strasse, 14476, Potsdam, Germany
| | - Marco Incarbone
- Max Planck Institute of Molecular Plant Physiology (MPIMP), 1 Am Mühlenberg Strasse, 14476, Potsdam, Germany
| |
Collapse
|
10
|
Wang J, Hsu Y, Lee Y, Lin N. Importin α2 participates in RNA interference against bamboo mosaic virus accumulation in Nicotiana benthamiana via NbAGO10a-mediated small RNA clearance. MOLECULAR PLANT PATHOLOGY 2024; 25:e13422. [PMID: 38279848 PMCID: PMC10799208 DOI: 10.1111/mpp.13422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/29/2024]
Abstract
Karyopherins, the nucleocytoplasmic transporters, participate in multiple RNA silencing stages by transporting associated proteins into the nucleus. Importin α is a member of karyopherins and has been reported to facilitate virus infection via nuclear import of viral proteins. Unlike other RNA viruses, silencing of importin α2 (α2i) by virus-induced gene silencing (VIGS) boosted the titre of bamboo mosaic virus (BaMV) in protoplasts, and inoculated and systemic leaves of Nicotiana benthamiana. The enhanced BaMV accumulation in importin α2i plants was linked to reduced levels of RDR6-dependent secondary virus-derived small-interfering RNAs (vsiRNAs). Small RNA-seq revealed importin α2 silencing did not affect the abundance of siRNAs derived from host mRNAs but significantly reduced the 21 and 22 nucleotide vsiRNAs in BaMV-infected plants. Deletion of BaMV TGBp1, an RNA silencing suppressor, compromised importin α2i-mediated BaMV enhancement. Moreover, silencing of importin α2 upregulated NbAGO10a, a proviral protein recruited by TGBp1 for BaMV vsiRNAs clearance, but hindered the nuclear import of NbAGO10a. Taken together, these results indicate that importin α2 acts as a negative regulator of BaMV invasion by controlling the expression and nucleocytoplasmic shuttling of NbAGO10a, which removes vsiRNAs via the TGBp1-NbAGO10a-SDN1 pathway. Our findings reveal the hidden antiviral mechanism of importin α2 in countering BaMV infection in N. benthamiana.
Collapse
Affiliation(s)
- Jiun‐Da Wang
- Institute of Plant and Microbial BiologyAcademia SinicaTaipeiTaiwan
| | - Yau‐Heiu Hsu
- Graduate Institute of BiotechnologyNational Chung Hsing UniversityTaichungTaiwan
| | - Yun‐Shien Lee
- Department of BiotechnologyMing Chuan UniversityTaipeiTaiwan
| | - Na‐Sheng Lin
- Institute of Plant and Microbial BiologyAcademia SinicaTaipeiTaiwan
| |
Collapse
|
11
|
Carvalho CP, Han J, Khemsom K, Ren R, Camargo LEA, Miyashita S, Qu F. Single-cell mutation rate of turnip crinkle virus (-)-strand replication intermediates. PLoS Pathog 2023; 19:e1011395. [PMID: 37578959 PMCID: PMC10449226 DOI: 10.1371/journal.ppat.1011395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/24/2023] [Accepted: 07/25/2023] [Indexed: 08/16/2023] Open
Abstract
Viruses with single-stranded, positive-sense (+) RNA genomes incur high numbers of errors during replication, thereby creating diversified genome populations from which new, better adapted viral variants can emerge. However, a definitive error rate is known for a relatively few (+) RNA plant viruses, due to challenges to account for perturbations caused by natural selection and/or experimental set-ups. To address these challenges, we developed a new approach that exclusively profiled errors in the (-)-strand replication intermediates of turnip crinkle virus (TCV), in singly infected cells. A series of controls and safeguards were devised to ensure errors inherent to the experimental process were accounted for. This approach permitted the estimation of a TCV error rate of 8.47 X 10-5 substitution per nucleotide site per cell infection. Importantly, the characteristic error distribution pattern among the 50 copies of 2,363-base-pair cDNA fragments predicted that nearly all TCV (-) strands were products of one replication cycle per cell. Furthermore, some of the errors probably elevated error frequencies by lowering the fidelity of TCV RNA-dependent RNA polymerase, and/or permitting occasional re-replication of progeny genomes. In summary, by profiling errors in TCV (-)-strand intermediates incurred during replication in single cells, this study provided strong support for a stamping machine mode of replication employed by a (+) RNA virus.
Collapse
Affiliation(s)
- Camila Perdoncini Carvalho
- Department of Plant Pathology, The Ohio State University, Wooster, Ohio, United States of America
- Department of Plant Pathology and Nematology, Luiz de Queiroz College of Agriculture, University of Sao Paolo, Piracicaba, Brazil
| | - Junping Han
- Department of Plant Pathology, The Ohio State University, Wooster, Ohio, United States of America
| | - Khwannarin Khemsom
- Department of Plant Pathology, The Ohio State University, Wooster, Ohio, United States of America
| | - Ruifan Ren
- Department of Plant Pathology, The Ohio State University, Wooster, Ohio, United States of America
- Longping Branch, College of Biology, Hunan University, Changsha, China
| | - Luis Eduardo Aranha Camargo
- Department of Plant Pathology and Nematology, Luiz de Queiroz College of Agriculture, University of Sao Paolo, Piracicaba, Brazil
| | - Shuhei Miyashita
- Graduate School of Agricultural Science, Tohoku University, Tohoku, Japan
| | - Feng Qu
- Department of Plant Pathology, The Ohio State University, Wooster, Ohio, United States of America
| |
Collapse
|
12
|
Liu S, Han Y, Li WX, Ding SW. Infection Defects of RNA and DNA Viruses Induced by Antiviral RNA Interference. Microbiol Mol Biol Rev 2023; 87:e0003522. [PMID: 37052496 PMCID: PMC10304667 DOI: 10.1128/mmbr.00035-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023] Open
Abstract
Immune recognition of viral genome-derived double-stranded RNA (dsRNA) molecules and their subsequent processing into small interfering RNAs (siRNAs) in plants, invertebrates, and mammals trigger specific antiviral immunity known as antiviral RNA interference (RNAi). Immune sensing of viral dsRNA is sequence-independent, and most regions of viral RNAs are targeted by virus-derived siRNAs which extensively overlap in sequence. Thus, the high mutation rates of viruses do not drive immune escape from antiviral RNAi, in contrast to other mechanisms involving specific virus recognition by host immune proteins such as antibodies and resistance (R) proteins in mammals and plants, respectively. Instead, viruses actively suppress antiviral RNAi at various key steps with a group of proteins known as viral suppressors of RNAi (VSRs). Some VSRs are so effective in virus counter-defense that potent inhibition of virus infection by antiviral RNAi is undetectable unless the cognate VSR is rendered nonexpressing or nonfunctional. Since viral proteins are often multifunctional, resistance phenotypes of antiviral RNAi are accurately defined by those infection defects of VSR-deletion mutant viruses that are efficiently rescued by host deficiency in antiviral RNAi. Here, we review and discuss in vivo infection defects of VSR-deficient RNA and DNA viruses resulting from the actions of host antiviral RNAi in model systems.
Collapse
Affiliation(s)
- Si Liu
- Department of Microbiology & Plant Pathology, University of California, Riverside, California, USA
- Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, California, USA
| | - Yanhong Han
- Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Wan-Xiang Li
- Department of Microbiology & Plant Pathology, University of California, Riverside, California, USA
- Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, California, USA
| | - Shou-Wei Ding
- Department of Microbiology & Plant Pathology, University of California, Riverside, California, USA
- Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, California, USA
| |
Collapse
|
13
|
Isogai M, Yoshikoshi M, Seki K, Masuko-Suzuki H, Watanabe M, Matsuo K, Yaegashi H. Seed transmission of raspberry bushy dwarf virus is blocked in Nicotiana benthamiana plants by preventing virus entry into the embryo from the infected embryo sac and endosperm. Arch Virol 2023; 168:138. [PMID: 37046148 DOI: 10.1007/s00705-023-05767-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023]
Abstract
Raspberry bushy dwarf virus (RBDV) is transmitted through seed in infected red raspberry plants after pollination with pollen grains from healthy red raspberry plants. Here, we show that RBDV is not transmitted through seeds in infected Nicotiana benthamiana (Nb) plants after pollination with virus-free Nb pollen grains. Chromogenic in situ hybridization revealed that the virus invades the shoot apical meristem and the ovule, including the embryo sac, of RBDV-infected Nb plants; however, in seeds that developed from infected embryo sacs after fertilization by virus-free sperm cells, RBDV was absent in the embryos and present in the endosperms. When we analyzed seed transmission of RBDV in Nb mutants with mutations in dicer-like enzyme 2 and 4 (NbDCL2&4) or RNA-dependent RNA polymerase 6 (NbRDR6), RBDV was not present in the offspring from seeds with embryos and endosperms that did not express NbDCL2&4 or NbRDR6. These results suggest that seed transmission of RBDV is prevented by evasion of infection by the embryo and that RNA silencing is not essential for preventing seed transmission of RBDV in Nb plants.
Collapse
Affiliation(s)
- Masamichi Isogai
- Plant Pathology Laboratory, Faculty of Agriculture, Iwate University, 18-8, Ueda 3-chome, Morioka, 020-8550, Japan.
| | - Mizuna Yoshikoshi
- Plant Pathology Laboratory, Faculty of Agriculture, Iwate University, 18-8, Ueda 3-chome, Morioka, 020-8550, Japan
| | - Kentaro Seki
- Plant Pathology Laboratory, Faculty of Agriculture, Iwate University, 18-8, Ueda 3-chome, Morioka, 020-8550, Japan
| | - Hiromi Masuko-Suzuki
- Graduate School of Life Sciences, Tohoku University, 1-1, Katahira 2-chome, Aoba-ku, Sendai, 980-8577, Japan
| | - Masao Watanabe
- Graduate School of Life Sciences, Tohoku University, 1-1, Katahira 2-chome, Aoba-ku, Sendai, 980-8577, Japan
| | - Kouki Matsuo
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo, 062-8517, Japan
| | - Hajime Yaegashi
- Plant Pathology Laboratory, Faculty of Agriculture, Iwate University, 18-8, Ueda 3-chome, Morioka, 020-8550, Japan
- Agri-Inovation Center, Iwate University, 18-8, Ueda 3-chome, 020-8550, Morioka, Japan
| |
Collapse
|
14
|
Noris E, Pegoraro M, Palzhoff S, Urrejola C, Wochner N, Kober S, Ruoff K, Matić S, Schnepf V, Weisshaar N, Wege C. Differential Effects of RNA-Dependent RNA Polymerase 6 (RDR6) Silencing on New and Old World Begomoviruses in Nicotiana benthamiana. Viruses 2023; 15:v15040919. [PMID: 37112899 PMCID: PMC10143181 DOI: 10.3390/v15040919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 04/29/2023] Open
Abstract
RNA-dependent RNA polymerases (RDRs) are key players in the antiviral defence mediated by RNA silencing in plants. RDR6 is one of the major components of the process, regulating the infection of certain RNA viruses. To better clarify its function against DNA viruses, we analyzed the effect of RDR6 inactivation (RDR6i) in N. benthamiana plants on two phloem-limited begomoviruses, the bipartite Abutilon mosaic virus (AbMV) and the monopartite tomato yellow leaf curl Sardinia virus (TYLCSV). We observed exacerbated symptoms and DNA accumulation for the New World virus AbMV in RDR6i plants, varying with the plant growth temperature (ranging from 16 °C to 33 °C). However, for the TYLCSV of Old World origin, RDR6 depletion only affected symptom expression at elevated temperatures and to a minor extent; it did not affect the viral titre. The accumulation of viral siRNA differed between the two begomoviruses, being increased in RDR6i plants infected by AbMV but decreased in those infected by TYLCSV compared to wild-type plants. In situ hybridization revealed a 6.5-fold increase in the number of AbMV-infected nuclei in RDR6i plants but without egress from the phloem tissues. These results support the concept that begomoviruses adopt different strategies to counteract plant defences and that TYLCSV evades the functions exerted by RDR6 in this host.
Collapse
Affiliation(s)
- Emanuela Noris
- Institute for Sustainable Plant Protection, National Research Council of Italy, Strada delle Cacce 73, 10135 Torino, Italy
| | - Mattia Pegoraro
- Institute for Sustainable Plant Protection, National Research Council of Italy, Strada delle Cacce 73, 10135 Torino, Italy
| | - Sandra Palzhoff
- Institute of Biomaterials and Biomolecular Systems, Molecular and Synthetic Plant Virology, University of Stuttgart, Pfaffenwaldring 57, D-70569 Stuttgart, Germany
| | - Catalina Urrejola
- Institute of Biomaterials and Biomolecular Systems, Molecular and Synthetic Plant Virology, University of Stuttgart, Pfaffenwaldring 57, D-70569 Stuttgart, Germany
| | - Nicolai Wochner
- Institute of Biomaterials and Biomolecular Systems, Molecular and Synthetic Plant Virology, University of Stuttgart, Pfaffenwaldring 57, D-70569 Stuttgart, Germany
| | - Sigi Kober
- Institute of Biomaterials and Biomolecular Systems, Molecular and Synthetic Plant Virology, University of Stuttgart, Pfaffenwaldring 57, D-70569 Stuttgart, Germany
| | - Kerstin Ruoff
- Institute of Biomaterials and Biomolecular Systems, Molecular and Synthetic Plant Virology, University of Stuttgart, Pfaffenwaldring 57, D-70569 Stuttgart, Germany
| | - Slavica Matić
- Institute for Sustainable Plant Protection, National Research Council of Italy, Strada delle Cacce 73, 10135 Torino, Italy
| | - Vera Schnepf
- Institute of Biomaterials and Biomolecular Systems, Molecular and Synthetic Plant Virology, University of Stuttgart, Pfaffenwaldring 57, D-70569 Stuttgart, Germany
| | - Nina Weisshaar
- Institute of Biomaterials and Biomolecular Systems, Molecular and Synthetic Plant Virology, University of Stuttgart, Pfaffenwaldring 57, D-70569 Stuttgart, Germany
| | - Christina Wege
- Institute of Biomaterials and Biomolecular Systems, Molecular and Synthetic Plant Virology, University of Stuttgart, Pfaffenwaldring 57, D-70569 Stuttgart, Germany
| |
Collapse
|
15
|
Ding SW. Transgene Silencing, RNA Interference, and the Antiviral Defense Mechanism Directed by Small Interfering RNAs. PHYTOPATHOLOGY 2023; 113:616-625. [PMID: 36441873 DOI: 10.1094/phyto-10-22-0358-ia] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
One important discovery in plant pathology over recent decades is the natural antiviral defense mechanism mediated by RNA interference (RNAi). In antiviral RNAi, virus infection triggers Dicer processing of virus-specific double-stranded RNA into small interfering RNAs (siRNAs). Frequently, further amplified by host enzyme and cofactors, these virus-derived siRNAs direct specific virus clearance in an Argonaute protein-containing effector complex. The siRNAs derived from viruses and viroids accumulate to very high levels during infection. Because they overlap extensively in nucleotide sequence, this allows for deep sequencing and bioinformatics assembly of total small RNAs for rapid discovery and identification of viruses and viroids. Antiviral RNAi acts as the primary defense mechanism against both RNA and DNA viruses in plants, yet viruses still successfully infect plants. They do so because all currently recognized plant viruses combat the RNAi response by encoding at least one protein as a viral suppressor of RNAi (VSR) required for infection, even though plant viruses have small genome sizes with a limited coding capacity. This review article will recapitulate the key findings that have revealed the genetic pathway for the biogenesis and antiviral activity of viral siRNAs and the specific role of VSRs in infection by antiviral RNAi suppression. Moreover, early pioneering studies on transgene silencing, RNAi, and virus-plant/virus-virus interactions paved the road to the discovery of antiviral RNAi.
Collapse
Affiliation(s)
- Shou-Wei Ding
- Department of Microbiology & Plant Pathology and Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, CA
| |
Collapse
|
16
|
Feng C, Torimaru K, Lim MYT, Chak LL, Shiimori M, Tsuji K, Tanaka T, Iida J, Okamura K. A novel eukaryotic RdRP-dependent small RNA pathway represses antiviral immunity by controlling an ERK pathway component in the black-legged tick. PLoS One 2023; 18:e0281195. [PMID: 36996253 PMCID: PMC10062562 DOI: 10.1371/journal.pone.0281195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 01/17/2023] [Indexed: 04/01/2023] Open
Abstract
Small regulatory RNAs (sRNAs) are involved in antiviral defense and gene regulation. Although roles of RNA-dependent RNA Polymerases (RdRPs) in sRNA biology are extensively studied in nematodes, plants and fungi, understanding of RdRP homologs in other animals is still lacking. Here, we study sRNAs in the ISE6 cell line, which is derived from the black-legged tick, an important vector of human and animal pathogens. We find abundant classes of ~22nt sRNAs that require specific combinations of RdRPs and sRNA effector proteins (Argonautes or AGOs). RdRP1-dependent sRNAs possess 5'-monophosphates and are mainly derived from RNA polymerase III-transcribed genes and repetitive elements. Knockdown of some RdRP homologs misregulates genes including RNAi-related genes and the regulator of immune response Dsor1. Sensor assays demonstrate that Dsor1 is downregulated by RdRP1 through the 3'UTR that contains a target site of RdRP1-dependent repeat-derived sRNAs. Consistent with viral gene repression by the RNAi mechanism using virus-derived small interfering RNAs, viral transcripts are upregulated by AGO knockdown. On the other hand, RdRP1 knockdown unexpectedly results in downregulation of viral transcripts. This effect is dependent on Dsor1, suggesting that antiviral immunity is enhanced by RdRP1 knockdown through Dsor1 upregulation. We propose that tick sRNA pathways control multiple aspects of immune response via RNAi and regulation of signaling pathways.
Collapse
Affiliation(s)
- Canran Feng
- Nara Institute of Science and Technology, Nara, Japan
| | | | - Mandy Yu Theng Lim
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Li-Ling Chak
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, Singapore
| | | | - Kosuke Tsuji
- Nara Institute of Science and Technology, Nara, Japan
| | - Tetsuya Tanaka
- Joint Faculty of Veterinary Medicine, Laboratory of Infectious Diseases, Kagoshima University, Kagoshima, Japan
| | - Junko Iida
- Nara Institute of Science and Technology, Nara, Japan
| | - Katsutomo Okamura
- Nara Institute of Science and Technology, Nara, Japan
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
17
|
Virus-Induced Gene Silencing (VIGS): A Powerful Tool for Crop Improvement and Its Advancement towards Epigenetics. Int J Mol Sci 2023; 24:ijms24065608. [PMID: 36982682 PMCID: PMC10057534 DOI: 10.3390/ijms24065608] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/26/2023] [Accepted: 02/02/2023] [Indexed: 03/17/2023] Open
Abstract
Virus-induced gene silencing (VIGS) is an RNA-mediated reverse genetics technology that has evolved into an indispensable approach for analyzing the function of genes. It downregulates endogenous genes by utilizing the posttranscriptional gene silencing (PTGS) machinery of plants to prevent systemic viral infections. Based on recent advances, VIGS can now be used as a high-throughput tool that induces heritable epigenetic modifications in plants through the viral genome by transiently knocking down targeted gene expression. As a result of the progression of DNA methylation induced by VIGS, new stable genotypes with desired traits are being developed in plants. In plants, RNA-directed DNA methylation (RdDM) is a mechanism where epigenetic modifiers are guided to target loci by small RNAs, which play a major role in the silencing of the target gene. In this review, we described the molecular mechanisms of DNA and RNA-based viral vectors and the knowledge obtained through altering the genes in the studied plants that are not usually accessible to transgenic techniques. We showed how VIGS-induced gene silencing can be used to characterize transgenerational gene function(s) and altered epigenetic marks, which can improve future plant breeding programs.
Collapse
|
18
|
Wu X, Zhang X, Wang H, Fang RX, Ye J. Structure-function analyses of coiled-coil immune receptors define a hydrophobic module for improving plant virus resistance. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:1372-1388. [PMID: 36472617 PMCID: PMC10010612 DOI: 10.1093/jxb/erac477] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Plant immunity relies on nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs) that detect microbial patterns released by pathogens, and activate localized cell death to prevent the spread of pathogens. Tsw is the only identified resistance (R) gene encoding an NLR, conferring resistance to tomato spotted wilt orthotospovirus (TSWV) in pepper species (Capsicum, Solanaceae). However, molecular and cellular mechanisms of Tsw-mediated resistance are still elusive. Here, we analysed the structural and cellular functional features of Tsw protein, and defined a hydrophobic module to improve NLR-mediated virus resistance. The plasma membrane associated N-terminal 137 amino acid in the coiled-coil (CC) domain of Tsw is the minimum fragment sufficient to trigger cell death in Nicotiana benthamiana plants. Transient and transgenic expression assays in plants indicated that the amino acids of the hydrophobic groove (134th-137th amino acid) in the CC domain is critical for its full function and can be modified for enhanced disease resistance. Based on the structural features of Tsw, a super-hydrophobic funnel-like mutant, TswY137W, was identified to confer higher resistance to TSWV in a SGT1 (Suppressor of G-two allele of Skp1)-dependent manner. The same point mutation in a tomato Tsw-like NLR protein also improved resistance to pathogens, suggesting a feasible way of structure-assisted improvement of NLRs.
Collapse
Affiliation(s)
| | | | - Hongwei Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rong-xiang Fang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | | |
Collapse
|
19
|
Sukegawa S, Nureki O, Toki S, Saika H. Genome editing in rice mediated by miniature size Cas nuclease SpCas12f. Front Genome Ed 2023; 5:1138843. [PMID: 36992681 PMCID: PMC10040665 DOI: 10.3389/fgeed.2023.1138843] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/28/2023] [Indexed: 03/14/2023] Open
Abstract
Cas9 derived from Streptococcus pyogenes (SpCas9) is used widely in genome editing using the CRISPR-Cas system due to its high activity, but is a relatively large molecule (1,368 amino acid (a.a.) residues). Recently, targeted mutagenesis in human cells and maize using Cas12f derived from Syntrophomonas palmitatica (SpCas12f)—a very small Cas of 497 a.a, which is a more suitable size for virus vectors—was reported. However, there are no reports of genome editing using SpCas12f in crops other than maize. In this study, we applied SpCas12f to genome editing in rice—one of the most important staple crops in the world. An expression vector encoding rice codon-optimized SpCas12f and sgRNA for OsTubulin as a target was introduced into rice calli by Agrobacterium-mediated transformation. Molecular analysis of SpCas12f-transformed calli showed that mutations were introduced successfully into the target region. Detailed analysis by amplicon sequencing revealed estimated mutation frequencies (a ratio of the number of mutated calli to that of SpCas12f-transformed calli) of 28.8% and 55.6% in two targets. Most mutation patterns were deletions, but base substitutions and insertions were also confirmed at low frequency. Moreover, off-target mutations by SpCas12f were not found. Furthermore, mutant plants were regenerated successfully from the mutated calli. It was confirmed that the mutations in the regenerated plants were inherited to the next-generation. In the previous report in maize, mutations were introduced by treatment with heat shock at 45°C for 4 h per day for 3 days; no mutations were introduced under normal growth conditions at 28°C. Surprisingly, however, mutations can be introduced without heat-shock treatment in rice. This might be due to the culture conditions, with relatively higher temperature (30°C or higher) and constant light during callus proliferation. Taken together, we demonstrated that SpCas12f can be used to achieve targeted mutagenesis in rice. SpCas12f is thus a useful tool for genome editing in rice and is suitable for virus vector-mediated genome editing due to its very small size.
Collapse
Affiliation(s)
- Satoru Sukegawa
- Division of Crop Genome Editing Research, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Seiichi Toki
- Division of Crop Genome Editing Research, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
- Graduate School of Nanobioscience, Yokohama City University, Yokohama, Kanagawa, Japan
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Kanagawa, Japan
- Department of Plant Life Science, Faculty of Agriculture, Ryukoku University, Otsu, Shiga, Japan
- *Correspondence: Seiichi Toki, ; Hiroaki Saika,
| | - Hiroaki Saika
- Division of Crop Genome Editing Research, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
- *Correspondence: Seiichi Toki, ; Hiroaki Saika,
| |
Collapse
|
20
|
Kumar R, Dasgupta I. Geminiviral C4/AC4 proteins: An emerging component of the viral arsenal against plant defence. Virology 2023; 579:156-168. [PMID: 36693289 DOI: 10.1016/j.virol.2023.01.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 12/26/2022] [Accepted: 01/08/2023] [Indexed: 01/12/2023]
Abstract
Virus infection triggers a plethora of defence reactions in plants to incapacitate the intruder. Viruses, in turn, have added additional functions to their genes so that they acquire capabilities to neutralize the above defence reactions. In plant-infecting viruses, the family Geminiviridae comprises members, majority of whom encode 6-8 genes in their small single-stranded DNA genomes. Of the above genes, one which shows the most variability in its amino acid sequence is the C4/AC4. Recent studies have uncovered evidence, which point towards a wide repertoire of functions performed by C4/AC4 revealing its role as a major player in suppressing plant defence. This review summarizes the various plant defence mechanisms against viruses and highlights how C4/AC4 has evolved to counter most of them.
Collapse
Affiliation(s)
- Rohit Kumar
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Indranil Dasgupta
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India.
| |
Collapse
|
21
|
Vaisman M, Hak H, Arazi T, Spiegelman Z. The Impact of Tobamovirus Infection on Root Development Involves Induction of Auxin Response Factor 10a in Tomato. PLANT & CELL PHYSIOLOGY 2023; 63:1980-1993. [PMID: 34977939 DOI: 10.1093/pcp/pcab179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/16/2021] [Accepted: 01/02/2022] [Indexed: 06/14/2023]
Abstract
Plant viruses cause systemic diseases that severely impair plant growth and development. While the accumulation of viruses in the root system has long been established, little is known as to how viruses affect root architecture. Here, we examined how the emerging tobamovirus, tomato brown rugose fruit virus (ToBRFV), alters root development in tomato. We found that ToBRFV and tobacco mosaic virus both invaded root systems during the first week of infection. ToBRFV infection of tomato plants resulted in a significant decrease in root biomass and elongation and root-to-shoot ratio and a marked suppression of root branching. Mutation in RNA-dependent RNA polymerase 6 increased the susceptibility of tomato plants to ToBRFV, resulting in severe reduction of various root growth parameters including root branching. Viral root symptoms were associated with the accumulation of auxin response factor 10a (SlARF10a) transcript, a homolog of Arabidopsis ARF10, a known suppressor of lateral root development. Interestingly, loss-of-function mutation in SlARF10a moderated the effect of ToBRFV on root branching. In contrast, downregulation of sly-miR160a, which targets SlARF10a, was associated with constitutive suppression root branching independent of viral infection. In addition, overexpression of a microRNA-insensitive mutant of SlARF10a mimicked the effect of ToBRFV on root development, suggesting a specific role for SlARF10a in ToBRFV-mediated suppression of root branching. Taken together, our results provide new insights into the impact of tobamoviruses on root development and the role of ARF10a in the suppression of root branching in tomato.
Collapse
Affiliation(s)
- Michael Vaisman
- Department of Plant Pathology and Weed Research, Agricultural Research Organization-The Volcani Institute, 68 HaMaccabim Road, P.O.B 15159, Rishon LeZion 7505101, Israel
- The Robert H. Smith Faculty of Agriculture, Food and Environment, the Hebrew University of Jerusalem, PO Box 12, Rehovot 761001, Israel
| | - Hagit Hak
- Department of Plant Pathology and Weed Research, Agricultural Research Organization-The Volcani Institute, 68 HaMaccabim Road, P.O.B 15159, Rishon LeZion 7505101, Israel
| | - Tzahi Arazi
- Plant Sciences Institute, Agricultural Research Organization, The Volcani Institute, 68 HaMaccabim Road, P.O.B 15159, Rishon LeZion 7505101, Israel
| | - Ziv Spiegelman
- Department of Plant Pathology and Weed Research, Agricultural Research Organization-The Volcani Institute, 68 HaMaccabim Road, P.O.B 15159, Rishon LeZion 7505101, Israel
| |
Collapse
|
22
|
Zhang H, Gao J, Chen J, Peng Y, Han Z. RNA-dependent RNA polymerase could extend the lasting validity period of exogenous dsRNA. PEST MANAGEMENT SCIENCE 2022; 78:4569-4578. [PMID: 35831266 DOI: 10.1002/ps.7076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 07/04/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Previous studies have found that pesticide double-stranded (ds)RNA usually has a long-lasting validity period in plants. However, it is uncertain if any factors in plants could extend dsRNA duration. It has been reported that RNA-dependent RNA polymerases (RdRP) in plants and some other eukaryotes could catalyze RNA amplification and be involved in RNAi (interference). Thus, this study evaluated the effect of RdRP on the tissue content, activity, and duration of exogenous dsRNA. RESULTS We found that RdRP knockdown in Arabidopsis thaliana had no significant effect on tissue contents of reporter dsRNA parent molecules (8.91% reduction), but it caused significant decrease in the tissue contents of derived short fragments of 200, 120 and 59 bp tested (51.22%, 52.83% and 59.35%, respectively). Aphid inoculation tests showed that the same dose of insecticidal dsAgZFP exhibited a significantly lower lethal effect (mortality 58.8%) in the plants with RdRP knockdown than in the control plants with normal RdRP (86.0%). For Caenorhabditis elegans, the worms treated simultaneously with dsRdRP and reporter dsRNA had similar body contents to reporter dsRNA parent molecules and its long-fragment derivative (200 bp) as the control (1.28- and 1.07-fold greater, respectively). However, 120- and 59-bp short-fragment derivatives were significantly reduced by 28.78% and 59.84%, respectively, which also diminished faster in the descendants. CONCLUSIONS We conclude that RdRP could significantly enhance the tissue content of dsRNA derivatives by catalyzing amplification, thus improving dsRNA activity and extending its lasting validity period. Otherwise, RNAi by exogenous dsRNA was proven to be noninheritable in A. thaliana. This work confirmed the merit of dsRNA as a plant protectant. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hainan Zhang
- The Key Laboratory of Monitoring and Management of Plant Diseases and Insects/Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Jing Gao
- The Key Laboratory of Monitoring and Management of Plant Diseases and Insects/Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Jiasheng Chen
- The Key Laboratory of Monitoring and Management of Plant Diseases and Insects/Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Yue Peng
- The Key Laboratory of Monitoring and Management of Plant Diseases and Insects/Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Zhaojun Han
- The Key Laboratory of Monitoring and Management of Plant Diseases and Insects/Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
23
|
Tsai WA, Brosnan CA, Mitter N, Dietzgen RG. Perspectives on plant virus diseases in a climate change scenario of elevated temperatures. STRESS BIOLOGY 2022; 2:37. [PMID: 37676437 PMCID: PMC10442010 DOI: 10.1007/s44154-022-00058-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/15/2022] [Indexed: 09/08/2023]
Abstract
Global food production is at risk from many abiotic and biotic stresses and can be affected by multiple stresses simultaneously. Virus diseases damage cultivated plants and decrease the marketable quality of produce. Importantly, the progression of virus diseases is strongly affected by changing climate conditions. Among climate-changing variables, temperature increase is viewed as an important factor that affects virus epidemics, which may in turn require more efficient disease management. In this review, we discuss the effect of elevated temperature on virus epidemics at both macro- and micro-climatic levels. This includes the temperature effects on virus spread both within and between host plants. Furthermore, we focus on the involvement of molecular mechanisms associated with temperature effects on plant defence to viruses in both susceptible and resistant plants. Considering various mechanisms proposed in different pathosystems, we also offer a view of the possible opportunities provided by RNA -based technologies for virus control at elevated temperatures. Recently, the potential of these technologies for topical field applications has been strengthened through a combination of genetically modified (GM)-free delivery nanoplatforms. This approach represents a promising and important climate-resilient substitute to conventional strategies for managing plant virus diseases under global warming scenarios. In this context, we discuss the knowledge gaps in the research of temperature effects on plant-virus interactions and limitations of RNA-based emerging technologies, which should be addressed in future studies.
Collapse
Affiliation(s)
- Wei-An Tsai
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Christopher A Brosnan
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Neena Mitter
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Ralf G Dietzgen
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, 4072, Australia.
| |
Collapse
|
24
|
Tiedge K, Destremps J, Solano-Sanchez J, Arce-Rodriguez ML, Zerbe P. Foxtail mosaic virus-induced gene silencing (VIGS) in switchgrass (Panicum virgatum L.). PLANT METHODS 2022; 18:71. [PMID: 35644680 PMCID: PMC9150325 DOI: 10.1186/s13007-022-00903-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/07/2022] [Indexed: 05/08/2023]
Abstract
BACKGROUND Although the genome for the allotetraploid bioenergy crop switchgrass (Panicum virgatum) has been established, limitations in mutant resources have hampered in planta gene function studies toward crop optimization. Virus-induced gene silencing (VIGS) is a versatile technique for transient genetic studies. Here we report the implementation of foxtail mosaic virus (FoMV)-mediated gene silencing in switchgrass in above- and below-ground tissues and at different developmental stages. RESULTS The study demonstrated that leaf rub-inoculation is a suitable method for systemic gene silencing in switchgrass. For all three visual marker genes, Magnesium chelatase subunit D (ChlD) and I (ChlI) as well as phytoene desaturase (PDS), phenotypic changes were observed in leaves, albeit at different intensities. Gene silencing efficiency was verified by RT-PCR for all tested genes. Notably, systemic gene silencing was also observed in roots, although silencing efficiency was stronger in leaves (~ 63-94%) as compared to roots (~ 48-78%). Plants at a later developmental stage were moderately less amenable to VIGS than younger plants, but also less perturbed by the viral infection. CONCLUSIONS Using FoMV-mediated VIGS could be achieved in switchgrass leaves and roots, providing an alternative approach for studying gene functions and physiological traits in this important bioenergy crop.
Collapse
Affiliation(s)
- Kira Tiedge
- Department of Plant Biology, University of California, Davis, USA.
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands.
| | | | | | | | - Philipp Zerbe
- Department of Plant Biology, University of California, Davis, USA
| |
Collapse
|
25
|
Hotspot siRNA Confers Plant Resistance against Viral Infection. BIOLOGY 2022; 11:biology11050714. [PMID: 35625441 PMCID: PMC9138956 DOI: 10.3390/biology11050714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary A hallmark of antiviral RNAi is the production of viral siRNA (vsiRNA). Profiling of vsiRNAs indicates that certain hotspot regions of viral genome or transcribed viral RNAs are more prone to RNAi-mediated cleavage. However, the biological relevance of hotspot vsiRNAs to the host innate defence remains to be elucidated. Here, we show that direct targeting a hotspot by synthetic vsiRNA confers plant resistance to virus infection. Hotspot and coldspot vsiRNAs, based on vsiRNA profile of the African cassava mosaic virus (ACMV), were synthesised. However, only the double-stranded hotspot vsiRNA protected plants from ACMV infection with undetectable levels of viral DNA replication and viral mRNA. We further demonstrated that the hotspot vsiRNA-mediated virus resistance had a threshold effect and required an active RDR6. These data show that hotspot vsiRNAs bear a functional significance on antiviral RNAi, suggesting that they may have the potential as exogenous protection agents for controlling destructive plant viral diseases. Abstract A hallmark of antiviral RNA interference (RNAi) is the production of viral small interfering RNA (vsiRNA). Profiling of vsiRNAs indicates that certain regions of viral RNA genome or transcribed viral RNA, dubbed vsiRNA hotspots, are more prone to RNAi-mediated cleavage for vsiRNA biogenesis. However, the biological relevance of hotspot vsiRNAs to the host innate defence against pathogens remains to be elucidated. Here, we show that direct targeting a hotspot by a synthetic vsiRNA confers host resistance to virus infection. Using Northern blotting and RNAseq, we obtained a profile of vsiRNAs of the African cassava mosaic virus (ACMV), a single-stranded DNA virus. Sense and anti-sense strands of small RNAs corresponding to a hotspot and a coldspot vsiRNA were synthesised. Co-inoculation of Nicotiana benthamiana with the double-stranded hotspot siRNA protected plants from ACMV infection, where viral DNA replication and accumulation of viral mRNA were undetectable. The sense or anti-sense strand of this hotspot vsiRNA, and the coldspot vsiRNA in both double-stranded and single-stranded formats possessed no activity in viral protection. We further demonstrated that the hotspot vsiRNA-mediated virus resistance had a threshold effect and required an active RDR6. These data show that hotspot vsiRNAs bear a functional significance on antiviral RNAi, suggesting that they may have the potential as an exogenous protection agent for controlling destructive viral diseases in plants.
Collapse
|
26
|
Elimination of Eight Viruses and Two Viroids from Preclonal Candidates of Six Grapevine Varieties (Vitis vinifera L.) through In Vivo Thermotherapy and In Vitro Meristem Tip Micrografting. PLANTS 2022; 11:plants11081064. [PMID: 35448791 PMCID: PMC9029751 DOI: 10.3390/plants11081064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/04/2022] [Accepted: 04/11/2022] [Indexed: 11/17/2022]
Abstract
Viruses and virus-like organisms are a major problem in viticulture worldwide. They cannot be controlled by standard plant protection measures, and once infected, plants remain infected throughout their life; therefore, the propagation of healthy vegetative material is crucial. In vivo thermotherapy at 36–38 °C for at least six weeks, followed by meristem tip micrografting (0.1–0.2 mm) onto in vitro-growing seedling rootstocks of Vialla (Vitis labrusca × Vitis riparia), was successfully used to eliminate eight viruses (grapevine rupestris stem pitting-associated virus (GRSPaV), grapevine Pinot gris virus (GPGV), grapevine fanleaf virus (GFLV), grapevine leafroll-associated virus 3 (GLRaV-3), grapevine fleck virus (GFkV), grapevine rupestris vein feathering virus (GRVFV), grapevine Syrah virus-1 (GSyV-1), and raspberry bushy dwarf virus (RBDV)), as well as two viroids (hop stunt viroid (HSVd) and grapevine yellow speckle viroid 1 (GYSVd-1)) from preclonal candidates of six grapevine varieties (Vitis vinifera L.). A half-strength MS medium including vitamins supplemented with 30 g/L of sucrose and solidified with 8 g/L of agar, without plant growth regulators, was used for the growth and root development of micrografts and the subsequently micropropagated plants; no callus formation, hyperhydricity, or necrosis of shoot tips was observed. Although the overall regeneration was low (higher in white than in red varieties), a 100% elimination was achieved for all eight viruses, whereas the elimination level for viroids was lower, reaching only 39.2% of HSVd-free and 42.6% GYSVd-1-free vines. To the best of our knowledge, this is the first report of GPGV, GRVFV, GSyV-1, HSVd, and GYSVd-1 elimination through combining in vivo thermotherapy and in vitro meristem tip micrografting, and the first report of RBDV elimination from grapevines. The virus-free vines were successfully acclimatized in rockwool plugs and then transferred to soil.
Collapse
|
27
|
Jin J, She Y, Qiu P, Lin W, Zhang W, Zhang J, Wu Z, Du Z. The cap-snatching frequency of a plant bunyavirus from nonsense mRNAs is low but is increased by silencing of UPF1 or SMG7. MOLECULAR PLANT PATHOLOGY 2022; 23:576-582. [PMID: 34954877 PMCID: PMC8916216 DOI: 10.1111/mpp.13179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/13/2021] [Accepted: 12/13/2021] [Indexed: 06/02/2023]
Abstract
Bunyaviruses cleave host cellular mRNAs to acquire cap structures for their own mRNAs in a process called cap-snatching. How bunyaviruses interact with cellular mRNA surveillance pathways such as nonsense-mediated decay (NMD) during cap-snatching remains poorly understood, especially in plants. Rice stripe virus (RSV) is a plant bunyavirus threatening rice production in East Asia. Here, with a newly developed system allowing us to present defined mRNAs to RSV in Nicotiana benthamiana, we found that the frequency of RSV to target nonsense mRNAs (nsRNAs) during cap-snatching was much lower than its frequency to target normal mRNAs. The frequency of RSV to target nsRNAs was increased by virus-induced gene silencing of UPF1 or SMG7, each encoding a protein component involved in early steps of NMD (in an rdr6 RNAi background). Coincidently, RSV accumulation was increased in the UPF1- or SMG7-silenced plants. These data indicated that the frequency of RSV to target nsRNAs during cap-snatching is restricted by NMD. By restricting the frequency of RSV to target nsRNAs, NMD may impose a constraint to the overall cap-snatching efficiency of RSV. Besides a deeper understanding for the cap-snatching of RSV, these findings point to a novel role of NMD in plant-bunyavirus interactions.
Collapse
Affiliation(s)
- Jing Jin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFuzhouChina
| | - Yuanyuan She
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFuzhouChina
| | - Ping Qiu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFuzhouChina
| | - Wenzhong Lin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFuzhouChina
| | - Wenwen Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFuzhouChina
| | - Jie Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFuzhouChina
| | - Zujian Wu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFuzhouChina
- Plant Virus Research InstituteFujian Agricultural and Forestry UniversityFuzhouChina
| | - Zhenguo Du
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFuzhouChina
- Plant Virus Research InstituteFujian Agricultural and Forestry UniversityFuzhouChina
| |
Collapse
|
28
|
Tsai WA, Shafiei-Peters JR, Mitter N, Dietzgen RG. Effects of Elevated Temperature on the Susceptibility of Capsicum Plants to Capsicum Chlorosis Virus Infection. Pathogens 2022; 11:pathogens11020200. [PMID: 35215143 PMCID: PMC8879237 DOI: 10.3390/pathogens11020200] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/27/2022] [Accepted: 01/31/2022] [Indexed: 02/01/2023] Open
Abstract
Capsicum, an important vegetable crop in Queensland, Australia, is vulnerable to both elevated temperatures and capsicum chlorosis virus (CaCV). Thus, it is imperative to understand the genetic responses of capsicum plants (Capsicum annuum) to CaCV under elevated temperature conditions. Here, we challenged susceptible plants (cv. Yolo Wonder) with CaCV and investigated the effects of elevated temperature on symptom expression, the accumulation of virus-derived short interfering RNA (vsiRNA) and viral RNA, and the expression of plant defense-associated genes. CaCV-inoculated plants initially showed more severe symptoms and higher viral concentrations at a higher temperature (HT, 35 °C) than at ambient temperature (AT, 25 °C). However, symptom recovery and reduced viral RNA accumulation were seen in the CaCV-infected plants grown at HT at later stages of infection. We also observed that HT enhanced the accumulation of vsiRNAs and that, concurrently, RNA interference (RNAi)-related genes, including Dicer-like2 (DCL2), DCL4, RNA-dependent RNA polymerase 1 (RdRp1), RdRp6, and Argonaute2 (AGO2), were upregulated early during infection. Moreover, continuous high levels of vsiRNAs were observed during later stages of CaCV infection at HT. Overall, our investigation suggests that HT facilitates CaCV replication during early infection stages. However, this appears to lead to an early onset of antiviral RNA silencing, resulting in a subsequent recovery from CaCV in systemic leaves.
Collapse
|
29
|
Li F, Wang A. Transient Expression-Mediated Gene Silencing in Plants and Suppression of Gene Silencing with Viral Suppressors. Methods Mol Biol 2022; 2400:33-41. [PMID: 34905188 DOI: 10.1007/978-1-0716-1835-6_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Posttranscriptional gene silencing (PTGS) also known as RNA silencing or RNA interference is an evolutionarily conserved innate immunity in eukaryotes that targets the complementary RNA sequences to slice/degrade the target RNA or repress the translation of mRNA. In the past two decades, RNA silencing as an important antiviral mechanism has been studied extensively in plants. Intriguingly, almost every virus encodes at least a viral suppressor of RNA silencing (VSR) to counterattack RNA silencing with many strategies to interfere with different steps of RNA silencing. Therefore, the molecular identification of VSRs and elucidation of their functional mechanisms contribute to a better understanding of host resistance and viral pathogenicity. Here, we describe a protocol for the transient expression-induced gene silencing in 16c GFP transgenic and wild type Nicotiana benthamiana plants, and the suppression of single-stranded GFP and double-stranded GFP induced RNA silencing with a VSR in N. benthamiana plants. This protocol is simple and can serve as a standard for the identification and functional analysis of a VSR.
Collapse
Affiliation(s)
- Fangfang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Aiming Wang
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
| |
Collapse
|
30
|
Raj R, Kaur C, Agrawal L, Kumar S, Chauhan PS, Raj SK. Development of a protocol for the elimination of Cyrtanthus elatus virus-A from Narcissus tazetta by in vitro chemotherapy in combination with electrotherapy. J Virol Methods 2021; 300:114368. [PMID: 34808229 DOI: 10.1016/j.jviromet.2021.114368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 09/09/2021] [Accepted: 11/18/2021] [Indexed: 10/19/2022]
Abstract
Narcissus (Narcissus tazetta) is a bulbous ornamental plant propagated vegetatively from bulbs. The Cyrtanthus elatus virus-A (CyEV-A) had been reported to cause a severe mosaic and yellow stripe disease in narcissus. Therefore, this study aimed to develop a protocol for the elimination of CyEV-A from infected bulblets by in vitro chemotherapy (30-50 mg/L ribavirin for 30 days) and electrotherapy (10-30 mA for 20 min), individually and in combination, to produce virus-free plants. The regenerated plants obtained from these treatments were screened for the absence of the CyEV-A by reverse-transcription polymerase chain reaction assays using a set of degenerate primers specific for a potyvirus coat protein gene. The results showed that in vitro chemotherapy (30 mg/L ribavirin for 30 days) alone produced 46.0 % (14/30) of virus-free plants, while electrotherapy (20 mA for 20 min) alone produced 40.0 % (12/30) of virus-free plants. In comparison, a combination of chemotherapy (30 mg/L ribavirin for 30 days) and electrotherapy (20 mA for 20 min) produced 50.0 % (15/30) of virus-free plants. The virus-free plants obtained from this combination treatment exhibited better growth and produced more bulbs compared to the other treatments and control. The protocol may be used for the control of the virus disease in narcissus.
Collapse
Affiliation(s)
- Rashmi Raj
- Plant Molecular Virology Laboratory, CSIR-National Botanical Research Institute, Lucknow, 226001, U.P., India; AcSIR (Academy of Scientific and Innovative Research), Ghaziabad, 2001002, India
| | - Charanjeet Kaur
- Plant Molecular Virology Laboratory, CSIR-National Botanical Research Institute, Lucknow, 226001, U.P., India; Department of Plant Science, MJP Rohilkhand University, Bareilly, 243006, U.P., India
| | - Lalit Agrawal
- Microbiology Laboratory, CSIR-National Botanical Research Institute, Lucknow, 226001, U.P., India; Department of Agriculture and Allied Sciences, Doon Business School, Dehradun, 248001, India
| | - Susheel Kumar
- Plant Molecular Virology Laboratory, CSIR-National Botanical Research Institute, Lucknow, 226001, U.P., India; Plant Molecular Virology Laboratory, CSIR-National Botanical Research Institute, Lucknow, 226001, U.P., India
| | - P S Chauhan
- Microbiology Laboratory, CSIR-National Botanical Research Institute, Lucknow, 226001, U.P., India; AcSIR (Academy of Scientific and Innovative Research), Ghaziabad, 2001002, India.
| | - S K Raj
- Plant Molecular Virology Laboratory, CSIR-National Botanical Research Institute, Lucknow, 226001, U.P., India; B-1/66, Sector-G, Janki Puram, Lucknow, 226 021, U. P., India.
| |
Collapse
|
31
|
Fei Y, Pyott DE, Molnar A. Temperature modulates virus-induced transcriptional gene silencing via secondary small RNAs. THE NEW PHYTOLOGIST 2021; 232:356-371. [PMID: 34185326 DOI: 10.1111/nph.17586] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 06/17/2021] [Indexed: 05/08/2023]
Abstract
Virus-induced gene silencing (VIGS) can be harnessed to sequence-specifically degrade host transcripts and induce heritable epigenetic modifications referred to as virus-induced post-transcriptional gene silencing (ViPTGS) and virus-induced transcriptional gene silencing (ViTGS), respectively. Both ViPTGS and ViTGS enable manipulation of endogenous gene expression without the need for transgenesis. Although VIGS has been widely used in many plant species, it is not always uniform or highly efficient. The efficiency of VIGS is affected by developmental, physiological and environmental factors. Here, we use recombinant Tobacco rattle viruses (TRV) to study the effect of temperature on ViPTGS and ViTGS using GFP as a reporter gene of silencing in N. benthamiana 16c plants. We found that unlike ViPTGS, ViTGS was impaired at high temperature. Using a novel mismatch-small interfering RNA (siRNA) tool, which precisely distinguishes virus-derived (primary) from target-generated (secondary) siRNAs, we demonstrated that the lack of secondary siRNA production/amplification was responsible for inefficient ViTGS at 29°C. Moreover, inefficient ViTGS at 29°C inhibited the transmission of epigenetic gene silencing to the subsequent generations. Our finding contributes to understanding the impact of environmental conditions on primary and secondary siRNA production and may pave the way to design/optimize ViTGS for transgene-free crop improvement.
Collapse
Affiliation(s)
- Yue Fei
- Institute of Molecular Plant Sciences, University of Edinburgh, Max Born Crescent, Edinburgh, EH9 3BF, UK
| | - Douglas E Pyott
- Institute of Molecular Plant Sciences, University of Edinburgh, Max Born Crescent, Edinburgh, EH9 3BF, UK
| | - Attila Molnar
- Institute of Molecular Plant Sciences, University of Edinburgh, Max Born Crescent, Edinburgh, EH9 3BF, UK
| |
Collapse
|
32
|
Bradamante G, Mittelsten Scheid O, Incarbone M. Under siege: virus control in plant meristems and progeny. THE PLANT CELL 2021; 33:2523-2537. [PMID: 34015140 PMCID: PMC8408453 DOI: 10.1093/plcell/koab140] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/14/2021] [Indexed: 05/29/2023]
Abstract
In the arms race between plants and viruses, two frontiers have been utilized for decades to combat viral infections in agriculture. First, many pathogenic viruses are excluded from plant meristems, which allows the regeneration of virus-free plant material by tissue culture. Second, vertical transmission of viruses to the host progeny is often inefficient, thereby reducing the danger of viral transmission through seeds. Numerous reports point to the existence of tightly linked meristematic and transgenerational antiviral barriers that remain poorly understood. In this review, we summarize the current understanding of the molecular mechanisms that exclude viruses from plant stem cells and progeny. We also discuss the evidence connecting viral invasion of meristematic cells and the ability of plants to recover from acute infections. Research spanning decades performed on a variety of virus/host combinations has made clear that, beside morphological barriers, RNA interference (RNAi) plays a crucial role in preventing-or allowing-meristem invasion and vertical transmission. How a virus interacts with plant RNAi pathways in the meristem has profound effects on its symptomatology, persistence, replication rates, and, ultimately, entry into the host progeny.
Collapse
Affiliation(s)
- Gabriele Bradamante
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria
| | - Ortrun Mittelsten Scheid
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria
| | - Marco Incarbone
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria
| |
Collapse
|
33
|
Zhang S, Sun R, Perdoncini Carvalho C, Han J, Zheng L, Qu F. Replication-Dependent Biogenesis of Turnip Crinkle Virus Long Noncoding RNAs. J Virol 2021; 95:e0016921. [PMID: 34160262 PMCID: PMC8387050 DOI: 10.1128/jvi.00169-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 06/14/2021] [Indexed: 12/24/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) of virus origin accumulate in cells infected by many positive-strand (+) RNA viruses to bolster viral infectivity. Their biogenesis mostly utilizes exoribonucleases of host cells that degrade viral genomic or subgenomic RNAs in the 5'-to-3' direction until being stalled by well-defined RNA structures. Here, we report a viral lncRNA that is produced by a novel replication-dependent mechanism. This lncRNA corresponds to the last 283 nucleotides of the turnip crinkle virus (TCV) genome and hence is designated tiny TCV subgenomic RNA (ttsgR). ttsgR accumulated to high levels in TCV-infected Nicotiana benthamiana cells when the TCV-encoded RNA-dependent RNA polymerase (RdRp), also known as p88, was overexpressed. Both (+) and (-) strand forms of ttsgR were produced in a manner dependent on the RdRp functionality. Strikingly, templates as short as ttsgR itself were sufficient to program ttsgR amplification, as long as the TCV-encoded replication proteins p28 and p88 were provided in trans. Consistent with its replicational origin, ttsgR accumulation required a 5' terminal carmovirus consensus sequence (CCS), a sequence motif shared by genomic and subgenomic RNAs of many viruses phylogenetically related to TCV. More importantly, introducing a new CCS motif elsewhere in the TCV genome was alone sufficient to cause the emergence of another lncRNA. Finally, abolishing ttsgR by mutating its 5' CCS gave rise to a TCV mutant that failed to compete with wild-type TCV in Arabidopsis. Collectively, our results unveil a replication-dependent mechanism for the biogenesis of viral lncRNAs, thus suggesting that multiple mechanisms, individually or in combination, may be responsible for viral lncRNA production. IMPORTANCE Many positive-strand (+) RNA viruses produce long noncoding RNAs (lncRNAs) during the process of cellular infections and mobilize these lncRNAs to counteract antiviral defenses, as well as coordinate the translation of viral proteins. Most viral lncRNAs arise from 5'-to-3' degradation of longer viral RNAs being stalled at stable secondary structures. Here, we report a viral lncRNA that is produced by the replication machinery of turnip crinkle virus (TCV). This lncRNA, designated ttsgR, shares the terminal characteristics with TCV genomic and subgenomic RNAs and overaccumulates in the presence of moderately overexpressed TCV RNA-dependent RNA polymerase (RdRp). Furthermore, templates that are of similar sizes as ttsgR are readily replicated by TCV replication proteins (p28 and RdRp) provided from nonviral sources. In summary, this study establishes an approach for uncovering low abundance viral lncRNAs, and characterizes a replicating TCV lncRNA. Similar investigations on human-pathogenic (+) RNA viruses could yield novel therapeutic targets.
Collapse
Affiliation(s)
- Shaoyan Zhang
- Department of Plant Pathology, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio, USA
| | - Rong Sun
- Department of Plant Pathology, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio, USA
| | - Camila Perdoncini Carvalho
- Department of Plant Pathology, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio, USA
| | - Junping Han
- Department of Plant Pathology, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio, USA
| | - Limin Zheng
- Department of Plant Pathology, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio, USA
| | - Feng Qu
- Department of Plant Pathology, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio, USA
| |
Collapse
|
34
|
RNAi activation with homologous and heterologous sequences that induce resistance against the begomovirus Pepper golden mosaic virus (PepGMV). 3 Biotech 2021; 11:114. [PMID: 33604230 DOI: 10.1007/s13205-021-02653-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 01/09/2021] [Indexed: 12/27/2022] Open
Abstract
This study compared the transcriptional changes in Nicotiana benthamiana plants treated with homologous sequences derived from Pepper golden mosaic virus (PepGMV) and heterologous sequences that derived from another begomovirus, Tomato chino La Paz virus (ToChLPV) prior to infection by PepGMV. The results of microarray analyses identified upregulated genes associated with RNAi such as DCL2, DCL4, AGO3, AGO7, AGO10, NRPD2B (Pol IV), DRB3, CMT3, RDR6. The components that participate in different RNAi pathways were identified, including methylation induced by both constructs, as well as the code of these genes in Arabidopsis thaliana and its counterpart in N. benthamiana through different genome assembly. The expression of these genes was validated by quantitative reverse transcription polymerase chain reaction (RT-qPCR), where DCL3, DCL4, AGO1-1, AGO2, RDR6 and PPR1 showed increased expression during plant protection with the heterologous construct compared to those protected with the homologous construct. The results of this study confirmed the activation of the gene silencing mechanism at the transcriptional level with both constructs and established the possibility of their use as a protection system for both homologous and heterologous sequences.
Collapse
|
35
|
Transcriptome analysis of yellow passion fruit in response to cucumber mosaic virus infection. PLoS One 2021; 16:e0247127. [PMID: 33626083 PMCID: PMC7904197 DOI: 10.1371/journal.pone.0247127] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 02/02/2021] [Indexed: 01/19/2023] Open
Abstract
The cultivation and production of passion fruit (Passiflora edulis) are severely affected by viral disease. Yet there have been few studies of the molecular response of passion fruit to virus attack. In the present study, RNA-based transcriptional profiling (RNA-seq) was used to identify the gene expression profiles in yellow passion fruit (Passiflora edulis f. flavicarpa) leaves following inoculation with cucumber mosaic virus (CMV). Six RNA-seq libraries were constructed comprising a total of 42.23 Gb clean data. 1,545 differentially expressed genes (DEGs) were obtained (701 upregulated and 884 downregulated). Gene annotation analyses revealed that genes associated with plant hormone signal transduction, transcription factors, protein ubiquitination, detoxification, phenylpropanoid biosynthesis, photosynthesis and chlorophyll metabolism were significantly affected by CMV infection. The represented genes activated by CMV infection corresponded to transcription factors WRKY family, NAC family, protein ubiquitination and peroxidase. Several DEGs encoding protein TIFY, pathogenesis-related proteins, and RNA-dependent RNA polymerases also were upregualted by CMV infection. Overall, the information obtained in this study enriched the resources available for research into the molecular-genetic mechanisms of the passion fruit/CMV interaction, and might provide a theoretical basis for the prevention and management of passion fruit viral disease in the field.
Collapse
|
36
|
Kim Y, Kim YJ, Paek KH. Temperature-specific vsiRNA confers RNAi-mediated viral resistance at elevated temperature in Capsicum annuum. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:1432-1448. [PMID: 33165515 DOI: 10.1093/jxb/eraa527] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 11/02/2020] [Indexed: 05/12/2023]
Abstract
Resistance (R) gene-mediated resistance is a robust and efficient antiviral immune system in the plants. Thus, when R-mediated resistance was suppressed at elevated temperatures, resistance towards viruses was expected to be completely collapsed. Nonetheless, the multiplication of Tobacco mosaic virus pathotype P0 (TMV-P0) was inhibited, and TMV-P0 particles were only occasionally present in the systemic leaves of pepper plants (Capsicum annuum). RNAi-mediated RNA silencing is a well-known antiviral immune mechanism. At elevated temperatures, RNAi-mediated antiviral resistance was induced and virus-derived siRNAs (vsiRNAs) were dramatically increased. Through sRNA-sequencing (sRNA-Seq) analysis, we revealed that vsiRNAs derived from TMV-P0 were greatly increased. Intriguingly, virus-infected plants could select the temperature-specific vsiRNAs for antiviral resistance from the amplified vsiRNAs at elevated temperatures. Pre-application of these temperature-specific vsiRNAs endowed antiviral resistance of the plants. Therefore, plants sustain antiviral resistance by activating RNAi-mediated resistance, based on temperature-specific vsiRNAs at elevated temperatures.
Collapse
Affiliation(s)
- Yunsik Kim
- Department of Life Sciences, Korea University, Seoul, Republic of Korea
| | - Young Jin Kim
- Department of Life Sciences, Korea University, Seoul, Republic of Korea
| | - Kyung-Hee Paek
- Department of Life Sciences, Korea University, Seoul, Republic of Korea
| |
Collapse
|
37
|
Lei J, Dai P, Li Y, Zhang W, Zhou G, Liu C, Liu X. Heritable gene editing using FT mobile guide RNAs and DNA viruses. PLANT METHODS 2021; 17:20. [PMID: 33596981 PMCID: PMC7890912 DOI: 10.1186/s13007-021-00719-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/06/2021] [Indexed: 05/04/2023]
Abstract
BACKGROUND The virus-induced genome editing (VIGE) system can be used to quickly identify gene functions and generate knock-out libraries as an alternative to the virus-induced gene silencing (VIGS). Although plant virus-mediated VIGE has been shown to have great application prospects, edited genes cannot be transferred to the next generations using this system, as viruses cannot enter into shoot apical meristem (SAM) in plants. RESULTS We developed a novel cotton leaf crumple virus (CLCrV)-mediated VIGE system designed to target BRI1, GL2, PDS genes, and GUS transgene in A. thaliana by transforming Cas9 overexpression (Cas9-OE) A. thaliana. Given the deficiency of the VIGE system, ProYao::Cas9 and Pro35S::Cas9 A. thaliana were transformed by fusing 102 bp FT mRNAs with sgRNAs so as to explore the function of Flowering Locus T (FT) gene in delivering sgRNAs into SAM, thus avoiding tissue culture and stably acquiring heritable mutant offspring. Our results showed that sgRNAs fused with FT mRNA at the 5' end (FT strategy) effectively enabled gene editing in infected plants and allowed the acquisition of mutations heritable by the next generation, with an efficiency of 4.35-8.79%. In addition, gene-edited offspring by FT-sgRNAs did not contain any components of the CLCrV genome. CONCLUSIONS FT strategy can be used to acquire heritable mutant offspring avoiding tissue culture and stable transformation based on the CLCrV-mediated VIGE system in A. thaliana.
Collapse
Affiliation(s)
- Jianfeng Lei
- College of Agriculture, Xinjiang Agricultural University, Engineering Research Centre of Cotton, Ministry of Education, 311 Nongda East Road, Urumqi, 830052, P.R. China
| | - Peihong Dai
- College of Agriculture, Xinjiang Agricultural University, Engineering Research Centre of Cotton, Ministry of Education, 311 Nongda East Road, Urumqi, 830052, P.R. China
| | - Yue Li
- College of Agriculture, Xinjiang Agricultural University, Engineering Research Centre of Cotton, Ministry of Education, 311 Nongda East Road, Urumqi, 830052, P.R. China
| | - Wanqi Zhang
- College of Agriculture, Xinjiang Agricultural University, Engineering Research Centre of Cotton, Ministry of Education, 311 Nongda East Road, Urumqi, 830052, P.R. China
| | - Guantong Zhou
- College of Agriculture, Xinjiang Agricultural University, Engineering Research Centre of Cotton, Ministry of Education, 311 Nongda East Road, Urumqi, 830052, P.R. China
| | - Chao Liu
- College of Agriculture, Xinjiang Agricultural University, Engineering Research Centre of Cotton, Ministry of Education, 311 Nongda East Road, Urumqi, 830052, P.R. China
| | - Xiaodong Liu
- College of Agriculture, Xinjiang Agricultural University, Engineering Research Centre of Cotton, Ministry of Education, 311 Nongda East Road, Urumqi, 830052, P.R. China.
| |
Collapse
|
38
|
Ludman M, Fátyol K. Targeted inactivation of the AGO1 homeologues of Nicotiana benthamiana reveals their distinct roles in development and antiviral defence. THE NEW PHYTOLOGIST 2021; 229:1289-1297. [PMID: 33037631 DOI: 10.1111/nph.16992] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 09/25/2020] [Indexed: 06/11/2023]
Abstract
The Solanaceae family includes numerous highly valuable crops. Understanding the viral diseases that affect them is of great importance. Nicotiana benthamiana has contributed greatly to unravelling antiviral RNA interference, and can also be regarded as an adequate model for studying viral diseases of solanaceous crops. This species, however, as with many of its relatives, possesses an allopolyploid genome, in which homeologous gene pairs frequently occur. AGO1 is a pivotal component of most plant RNA silencing pathways. The Nicotiana benthamiana genome encodes two highly similar AGO1 homeologues: AGO1A and AGO1B. To understand their roles in planta, their genes were selectively inactivated. Given the inherent limitations of RNA interference-based techniques, we used genome editing to achieve this goal. We found that AGO1A was not required for normal development, while AGO1B was indispensable for that. By contrast, the two homeologues both contributed to antiviral defence. Additionally, we observed that AGO1B utilised miR168 poorly, which may help to retain a significant level of antiviral RNA interference during viral infection. Our results have important implications for the better understanding of viral diseases of economically important solanaceous crops.
Collapse
Affiliation(s)
- Márta Ludman
- Agricultural Biotechnology Institute, National Agricultural Research and Innovation Centre, Szent-Györgyi Albert u. 4, Gödöllő, 2100, Hungary
| | - Károly Fátyol
- Agricultural Biotechnology Institute, National Agricultural Research and Innovation Centre, Szent-Györgyi Albert u. 4, Gödöllő, 2100, Hungary
| |
Collapse
|
39
|
Wang ZQ, Zhao QM, Zhong X, Xiao L, Ma LX, Wu CF, Zhang Z, Zhang LQ, Tian Y, Fan W. Comparative analysis of maca (Lepidium meyenii) proteome profiles reveals insights into response mechanisms of herbal plants to high-temperature stress. BMC PLANT BIOLOGY 2020; 20:431. [PMID: 32938390 PMCID: PMC7493174 DOI: 10.1186/s12870-020-02645-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 09/10/2020] [Indexed: 05/14/2023]
Abstract
BACKGROUND High-temperature stress (HTS) is one of the main environmental stresses that limit plant growth and crop production in agricultural systems. Maca (Lepidium meyenii) is an important high-altitude herbaceous plant adapted to a wide range of environmental stimuli such as cold, strong wind and UV-B exposure. However, it is an extremely HTS-sensitive plant species. Thus far, there is limited information about gene/protein regulation and signaling pathways related to the heat stress responses in maca. In this study, proteome profiles of maca seedlings exposed to HTS for 12 h were investigated using a tandem mass tag (TMT)-based proteomic approach. RESULTS In total, 6966 proteins were identified, of which 300 showed significant alterations in expression following HTS. Bioinformatics analyses indicated that protein processing in endoplasmic reticulum was the most significantly up-regulated metabolic pathway following HTS. Quantitative RT-PCR (qRT-PCR) analysis showed that the expression levels of 19 genes encoding proteins mapped to this pathway were significantly up-regulated under HTS. These results show that protein processing in the endoplasmic reticulum may play a crucial role in the responses of maca to HTS. CONCLUSIONS Our proteomic data can be a good resource for functional proteomics of maca and our results may provide useful insights into the molecular response mechanisms underlying herbal plants to HTS.
Collapse
Affiliation(s)
- Zhan Qi Wang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou, 313000 China
| | - Qi Ming Zhao
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, 650201 China
| | - Xueting Zhong
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou, 313000 China
| | - Li Xiao
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou, 313000 China
| | - Li Xuan Ma
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201 China
| | - Chou Fei Wu
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou, 313000 China
| | - Zhongshan Zhang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou, 313000 China
| | - Li Qin Zhang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou, 313000 China
- Huzhou central hospital, Huzhou University, Huzhou, 313000 China
| | - Yang Tian
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201 China
| | - Wei Fan
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, 650201 China
| |
Collapse
|
40
|
Naoi T, Kitabayashi S, Kasai A, Sugawara K, Adkar-Purushothama CR, Senda M, Hataya T, Sano T. Suppression of RNA-dependent RNA polymerase 6 in tomatoes allows potato spindle tuber viroid to invade basal part but not apical part including pluripotent stem cells of shoot apical meristem. PLoS One 2020; 15:e0236481. [PMID: 32716919 PMCID: PMC7384629 DOI: 10.1371/journal.pone.0236481] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/06/2020] [Indexed: 01/29/2023] Open
Abstract
RNA-dependent RNA polymerase 6 (RDR6) is one of the key factors in plant defense responses and suppresses virus or viroid invasion into shoot apical meristem (SAM) in Nicotiana benthamiana. To evaluate the role of Solanum lycopersicum (Sl) RDR6 upon viroid infection, SlRDR6-suppressed (SlRDR6i) ‘Moneymaker’ tomatoes were generated by RNA interference and inoculated with intermediate or lethal strain of potato spindle tuber viroid (PSTVd). Suppression of SlRDR6 did not change disease symptoms of both PSTVd strains in ‘Moneymaker’ tomatoes. Analysis of PSTVd distribution in shoot apices by in situ hybridization revealed that both PSTVd strains similarly invade the basal part but not apical part including pluripotent stem cells of SAM in SlRDR6i plants at a low rate unlike a previous report in N. benthamiana. In addition, unexpectedly, amount of PSTVd accumulation was apparently lower in SlRDR6i plants than in control tomatoes transformed with empty cassette in early infection especially in the lethal strain. Meanwhile, SlRDR6 suppression did not affect the seed transmission rates of PSTVd. These results indicate that RDR6 generally suppresses PSTVd invasion into SAM in plants, while suppression of RDR6 does not necessarily elevate amount of PSTVd accumulation. Additionally, our results suggest that host factors such as RDR1 other than RDR6 may also be involved in the protection of SAM including pluripotent stem cells from PSTVd invasion and effective RNA silencing causing the decrease of PSTVd accumulation during early infection in tomato plants.
Collapse
Affiliation(s)
- Takashi Naoi
- Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | - Syoya Kitabayashi
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Japan
| | - Atsushi Kasai
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Japan
| | - Kohei Sugawara
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Japan
| | - Charith Raj Adkar-Purushothama
- Département de Biochimie, Faculté de Médecine des Sciences de la Santé, Pavillon de Recherche Appliquée au Cancer, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Mineo Senda
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Japan
| | - Tatsuji Hataya
- Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
- * E-mail: (TH); (TS)
| | - Teruo Sano
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Japan
- * E-mail: (TH); (TS)
| |
Collapse
|
41
|
Prakash V, Singh A, Singh AK, Dalmay T, Chakraborty S. Tobacco RNA-dependent RNA polymerase 1 affects the expression of defence-related genes in Nicotiana benthamiana upon Tomato leaf curl Gujarat virus infection. PLANTA 2020; 252:11. [PMID: 32613448 DOI: 10.1007/s00425-020-03417-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 06/26/2020] [Indexed: 05/25/2023]
Abstract
MAIN CONCLUSION RNA-dependent RNA polymerase 1 of Nicotiana tabacum modulates ToLCGV pathogenesis by influencing a number of defence-related genes in N. benthamiana plants. Key means of plants protecting themselves from the invading viruses is through RNA silencing. RNA-dependent RNA polymerase-1 (RDR1) is one of the crucial proteins of the RNA silencing pathway, which is induced after infection by viruses. RDR1 functions in the generation of small interfering RNAs (siRNAs) against the viral genome, thus it is antiviral in nature. Here, we used the transgenic Nicotiana benthamiana plant expressing N. tabacum NtRDR1 and observed reduced susceptibility towards Tomato leaf curl Gujarat virus (ToLCGV) infection compared to the wild-type N. benthamiana plants. To understand the reason for such reduced susceptibility, we prepared high-definition small RNA (sRNA) cDNA libraries from ToLCGV-infected wild-type N. benthamiana and NtRDR1 expressing N. benthamiana lines and carried out next-generation sequencing (NGS). We found that upon ToLCGV infection the majority of siRNAs generated from the host genome were of the 24 nucleotide (nt) class, while viral siRNAs (vsiRNAs) were of the 21-22-nt class, indicating that transcriptional gene silencing (TGS) is the major pathway for silencing of host genes while viral genes are silenced, predominantly, by post transcriptional gene silencing (PTGS) pathways. We estimated the changes in the expression of various defence-related genes, such as Constitutively Photomorphogenic-9 (COP9) signalosome (CSN) complex subunit-7, Pentatricopeptide repeat containing protein (PPRP), Laccase-3, Glutathione peroxidase-1 (GPX-1), Universal stress protein (USP) A-like protein, Heat shock transcription factor B4 (HSTF-B4), Auxin response factor-18 (ARF18), WRKY-6 and Short chain dehydrogenase reductase-3a. The differential expression of these genes might be linked with the enhanced tolerance of NtRDR1 N. benthamiana transgenic plants to ToLCGV. Our study suggests that reduced expression of subunit-7 of CSN complex and WRKY6, and increased expression of USPA-like protein might be linked with the reduced susceptibility of NtRDR1-transgenic N. benthamiana plants to ToLCGV.
Collapse
Affiliation(s)
- Ved Prakash
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Archana Singh
- School of Biological Sciences, University of East Anglia, Norwich, UK
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Ashish Kumar Singh
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Tamas Dalmay
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Supriya Chakraborty
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
42
|
Liu D, Yang Q. Expression patterns of NbrgsCaM family genes in Nicotiana benthamiana and their potential roles in development and stress responses. Sci Rep 2020; 10:9652. [PMID: 32541846 PMCID: PMC7296017 DOI: 10.1038/s41598-020-66670-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/20/2020] [Indexed: 11/09/2022] Open
Abstract
rgsCaM has been reported as a calmodulin-like (CML) factor induced by viral infection in Nicotiana. There are three CMLs that belong to the rgsCaM family in Arabidopsis thaliana. In this study, we found a total of 5 NbrgsCaM coding sequences in N. benthamiana genome. We analyzed transcription patterns of NbrgsCaMs in transgenic plants expressing a β-glucuronidase (GUS) under the promoter of NbrgsCaMs by histochemistry staining and RT-qPCR. Similar to their Arabidopsis homologs, most NbrgsCaMs have an overlapping but distinct expression pattern in response to developmental and environmental changes. Specifically, the NbrgsCaM4 promoter exhibited robust activity and showed distinct regulatory response to viral infection, developmental stages and other abiotic stimuli. Overall, these findings provide clues for further understanding of the NbrgsCaM family genes in regulating plant growth and development under biotic stress and environmental stimulation.
Collapse
Affiliation(s)
- Dandan Liu
- State Key Laboratory for Plant Disease and Insect Pest, Institute of Plant protection, China Academy of Agricultural Sciences, Beijing, 100193, China
| | - Qiuying Yang
- State Key Laboratory for Plant Disease and Insect Pest, Institute of Plant protection, China Academy of Agricultural Sciences, Beijing, 100193, China.
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan, 430062, China.
| |
Collapse
|
43
|
Tenllado F, Canto T. Effects of a changing environment on the defenses of plants to viruses. Curr Opin Virol 2020; 42:40-46. [PMID: 32531746 DOI: 10.1016/j.coviro.2020.04.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 04/18/2020] [Accepted: 04/21/2020] [Indexed: 12/11/2022]
Abstract
Since their appearance, plants have lived and evolved within changing environments that were determined by a host of abiotic and biotic factors. It is in this evolutionary context that both, the mechanisms of defense by plants against viruses and the viral reprogramming of plant routes were established, which combined define the outcomes of compatible infections. Current alterations in the chemistry of the atmosphere are causing changes in the global context in which plants and viruses interact that are unprecedented not in their nature but in their pace. We discuss here the potential reach of environment changes taking place now, and how the main abiotic parameters that are driving them can affect defense responses of plants to viruses in compatible infections.
Collapse
Affiliation(s)
- Francisco Tenllado
- Department of Environmental Biology, Margarita Salas Center for Biological Research, CIB-CSIC, Ramiro de Maeztu 9, Madrid 28040, Spain
| | - Tomas Canto
- Department of Environmental Biology, Margarita Salas Center for Biological Research, CIB-CSIC, Ramiro de Maeztu 9, Madrid 28040, Spain.
| |
Collapse
|
44
|
Fátyol K, Fekete KA, Ludman M. Double-Stranded-RNA-Binding Protein 2 Participates in Antiviral Defense. J Virol 2020; 94:e00017-20. [PMID: 32213615 PMCID: PMC7269452 DOI: 10.1128/jvi.00017-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 03/17/2020] [Indexed: 01/01/2023] Open
Abstract
Double-stranded RNA (dsRNA) is a common pattern formed during the replication of both RNA and DNA viruses. Perception of virus-derived dsRNAs by specialized receptor molecules leads to the activation of various antiviral measures. In plants, these defensive processes include the adaptive RNA interference (RNAi) pathway and innate pattern-triggered immune (PTI) responses. While details of the former process have been well established in recent years, the latter are still only partially understood at the molecular level. Nonetheless, emerging data suggest extensive cross talk between the different antiviral mechanisms. Here, we demonstrate that dsRNA-binding protein 2 (DRB2) of Nicotiana benthamiana plays a direct role in potato virus X (PVX)-elicited systemic necrosis. These results establish that DRB2, a known component of RNAi, is also involved in a virus-induced PTI response. In addition, our findings suggest that RNA-dependent polymerase 6 (RDR6)-dependent dsRNAs play an important role in the triggering of PVX-induced systemic necrosis. Based on our data, a model is formulated whereby competition between different DRB proteins for virus-derived dsRNAs helps establish the dominant antiviral pathways that are activated in response to virus infection.IMPORTANCE Plants employ multiple defense mechanisms to restrict viral infections, among which RNA interference is the best understood. The activation of innate immunity often leads to both local and systemic necrotic responses, which confine the virus to the infected cells and can also provide resistance to distal, noninfected parts of the organism. Systemic necrosis, which is regarded as a special form of the local hypersensitive response, results in necrosis of the apical stem region, usually causing the death of the plant. Here, we provide evidence that the dsRNA-binding protein 2 of Nicotiana benthamiana plays an important role in virus-induced systemic necrosis. Our findings are not only compatible with the recent hypothesis that DRB proteins act as viral invasion sensors but also extends it by proposing that DRBs play a critical role in establishing the dominant antiviral measures that are triggered during virus infection.
Collapse
Affiliation(s)
- Károly Fátyol
- Agricultural Biotechnology Institute, National Agricultural Research and Innovation, Gödöllő, Hungary
| | - Katalin Anna Fekete
- Agricultural Biotechnology Institute, National Agricultural Research and Innovation, Gödöllő, Hungary
| | - Márta Ludman
- Agricultural Biotechnology Institute, National Agricultural Research and Innovation, Gödöllő, Hungary
| |
Collapse
|
45
|
Guo Q, Zhang S, Sun R, Yao X, Zhang XF, Tatineni S, Meulia T, Qu F. Superinfection Exclusion by p28 of Turnip Crinkle Virus Is Separable from Its Replication Function. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:364-375. [PMID: 31880982 DOI: 10.1094/mpmi-09-19-0258-r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We recently reported that the p28 auxiliary replication protein encoded by turnip crinkle virus (TCV) is also responsible for eliciting superinfection exclusion (SIE) against superinfecting TCV. However, it remains unresolved whether the replication function of p28 could be separated from its ability to elicit SIE. Here, we report the identification of two single amino acid mutations that decouple these two functions. Using an Agrobacterium infiltration-based delivery system, we transiently expressed a series of p28 deletion and point mutants, and tested their ability to elicit SIE against a cointroduced TCV replicon. We found that substituting alanine (A) for valine (V) and phenylalanine (F) at p28 positions 181 and 182, respectively, modestly compromised SIE in transiently expressed p28 derivatives. Upon incorporation into TCV replicons, V181A and F182A decoupled TCV replication and SIE diametrically. Although V181A impaired SIE without detectably compromising replication, F182A abolished TCV replication but had no effect on SIE once the replication of the defective replicon was restored through complementation. Both mutations diminished accumulation of p28 protein, suggesting that p28 must reach a concentration threshold in order to elicit a strong SIE. Importantly, the severe reduction of F182A protein levels correlated with a dramatic loss in the number of intracellular p28 foci formed by p28-p28 interactions. Together, these findings not only decouple the replication and SIE functions of p28 but also unveil a concentration dependence for p28 coalescence and SIE elicitation. These data further highlight the role of p28 multimerization in driving the exclusion of secondary TCV infections.
Collapse
Affiliation(s)
- Qin Guo
- Department of Plant Pathology, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691, U.S.A
| | - Shaoyan Zhang
- Department of Plant Pathology, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691, U.S.A
| | - Rong Sun
- Department of Plant Pathology, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691, U.S.A
| | - Xiaolong Yao
- Department of Plant Pathology, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691, U.S.A
| | - Xiao-Feng Zhang
- Department of Plant Pathology, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691, U.S.A
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Satyanarayana Tatineni
- United States Department of Agriculture-Agricultural Research Service and Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE 68583, U.S.A
| | - Tea Meulia
- Department of Plant Pathology, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691, U.S.A
- Molecular and Cellular Imaging Center, Ohio Agricultural Research and Development Center, The Ohio State University
| | - Feng Qu
- Department of Plant Pathology, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691, U.S.A
| |
Collapse
|
46
|
Gago-Zachert S, Schuck J, Weinholdt C, Knoblich M, Pantaleo V, Grosse I, Gursinsky T, Behrens SE. Highly efficacious antiviral protection of plants by small interfering RNAs identified in vitro. Nucleic Acids Res 2019; 47:9343-9357. [PMID: 31433052 PMCID: PMC6755098 DOI: 10.1093/nar/gkz678] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 06/21/2019] [Accepted: 08/02/2019] [Indexed: 01/09/2023] Open
Abstract
In response to a viral infection, the plant’s RNA silencing machinery processes viral RNAs into a huge number of small interfering RNAs (siRNAs). However, a very few of these siRNAs actually interfere with viral replication. A reliable approach to identify these immunologically effective siRNAs (esiRNAs) and to define the characteristics underlying their activity has not been available so far. Here, we develop a novel screening approach that enables a rapid functional identification of antiviral esiRNAs. Tests on the efficacy of such identified esiRNAs of a model virus achieved a virtual full protection of plants against a massive subsequent infection in transient applications. We find that the functionality of esiRNAs depends crucially on two properties: the binding affinity to Argonaute proteins and the ability to access the target RNA. The ability to rapidly identify functional esiRNAs could be of great benefit for all RNA silencing-based plant protection measures against viruses and other pathogens.
Collapse
Affiliation(s)
- Selma Gago-Zachert
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle/Saale D-06120, Germany.,Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Halle/Saale D-06120, Germany
| | - Jana Schuck
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle/Saale D-06120, Germany
| | - Claus Weinholdt
- Institute of Computer Science, Martin Luther University Halle-Wittenberg, Halle/Saale D-06120, Germany
| | - Marie Knoblich
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle/Saale D-06120, Germany
| | - Vitantonio Pantaleo
- Institute for Sustainable Plant Protection-Consiglio Nazionale delle Ricerche, Research Unit of Bari, Bari I-70126, Italy
| | - Ivo Grosse
- Institute of Computer Science, Martin Luther University Halle-Wittenberg, Halle/Saale D-06120, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig D-04103, Germany
| | - Torsten Gursinsky
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle/Saale D-06120, Germany
| | - Sven-Erik Behrens
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle/Saale D-06120, Germany
| |
Collapse
|
47
|
Ibrahim A, Fros J, Bertran A, Sechan F, Odon V, Torrance L, Kormelink R, Simmonds P. A functional investigation of the suppression of CpG and UpA dinucleotide frequencies in plant RNA virus genomes. Sci Rep 2019; 9:18359. [PMID: 31797900 PMCID: PMC6892864 DOI: 10.1038/s41598-019-54853-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 11/19/2019] [Indexed: 01/08/2023] Open
Abstract
Frequencies of CpG and UpA dinucleotides in most plant RNA virus genomes show degrees of suppression comparable to those of vertebrate RNA viruses. While pathways that target CpG and UpAs in HIV-1 and echovirus 7 genomes and restrict their replication have been partly characterised, whether an analogous process drives dinucleotide underrepresentation in plant viruses remains undetermined. We examined replication phenotypes of compositionally modified mutants of potato virus Y (PVY) in which CpG or UpA frequencies were maximised in non-structural genes (including helicase and polymerase encoding domains) while retaining protein coding. PYV mutants with increased CpG dinucleotide frequencies showed a dose-dependent reduction in systemic spread and pathogenicity and up to 1000-fold attenuated replication kinetics in distal sites on agroinfiltration of tobacco plants (Nicotiana benthamiana). Even more extraordinarily, comparably modified UpA-high mutants displayed no pathology and over a million-fold reduction in replication. Tobacco plants with knockdown of RDP6 displayed similar attenuation of CpG- and UpA-high mutants suggesting that restriction occurred independently of the plant siRNA antiviral responses. Despite the evolutionary gulf between plant and vertebrate genomes and encoded antiviral strategies, these findings point towards the existence of novel virus restriction pathways in plants functionally analogous to innate defence components in vertebrate cells.
Collapse
Affiliation(s)
- Ahmad Ibrahim
- Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, OX1 3SY, UK
| | - Jelke Fros
- Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, OX1 3SY, UK
- Laboratory of Virology, Wageningen University, Droevendaalsesteeg 1, 6708, PB, Wageningen, The Netherlands
| | - Andre Bertran
- Laboratory of Virology, Wageningen University, Droevendaalsesteeg 1, 6708, PB, Wageningen, The Netherlands
| | - Ferdyansyah Sechan
- Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, OX1 3SY, UK
| | - Valerie Odon
- Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, OX1 3SY, UK
| | - Leslie Torrance
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Richard Kormelink
- Laboratory of Virology, Wageningen University, Droevendaalsesteeg 1, 6708, PB, Wageningen, The Netherlands
| | - Peter Simmonds
- Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, OX1 3SY, UK.
| |
Collapse
|
48
|
Ssamula A, Okiror A, Avrahami-Moyal L, Tam Y, Gaba V, Gibson RW, Gal-On A, Mukasa SB, Wasswa P. Factors influencing reversion from virus infection in sweetpotato. THE ANNALS OF APPLIED BIOLOGY 2019; 176:1-13. [PMID: 32139916 PMCID: PMC7053384 DOI: 10.1111/aab.12551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 05/08/2019] [Accepted: 08/13/2019] [Indexed: 06/10/2023]
Abstract
Viruses limit sweetpotato (Ipomoea batatas) production worldwide. Many sweetpotato landraces in East Africa are, however, largely virus-free. Moreover, some plants infected by the prevalent Sweet potato feathery mottle virus (SPFMV) may be able to revert to virus-free status. In this study, we analysed reversion from SPFMV, Sweet potato virus C, Sweet potato mild mottle virus, Sweet potato chlorotic stunt virus (SPCSV) and Sweet potato leaf curl Uganda virus using the indicator plant I. setosa and PCR/reverse-transcriptase PCR. We also investigated environmental factors (temperature and soil nutrients) that may influence reversion from virus infection. We tested reversion in the East African cultivars New Kawogo, NASPOT 1 and NASPOT 11, and the United States cultivars Resisto and Beauregard. Reverted plants were asymptomatic and virus was undetectable in assayed parts of the plant. After graft inoculation, only the East African cultivars mostly reverted at a high rate and from most viruses though cultivar Beauregard fully reverted following sap inoculation with Sweet potato virus C. None of the tested cultivars fully reverted from single or double infections involving SPCSV, and reversion was only observed in co-infections involving potyviruses. Root sprouts derived from SPFMV-reverted plants were also virus free. Reversion generally increased with increasing temperature and by improved soil nutrition. Overall, these results indicate variation in reversion by cultivar and that the natural ability of sweetpotato plants to revert from viruses is malleable, which has implications for both breeding and virus control.
Collapse
Affiliation(s)
- Alexander Ssamula
- Department of Agricultural Production, Makerere University, Kampala, Uganda
| | - Anthony Okiror
- Department of Agricultural Production, Makerere University, Kampala, Uganda
| | - Liat Avrahami-Moyal
- Department of Plant Pathology and Weed Research, Agricultural Research Organization–The Volcani Center, Rishon LeZion, Israel
| | - Yehudit Tam
- Department of Plant Pathology and Weed Research, Agricultural Research Organization–The Volcani Center, Rishon LeZion, Israel
| | - Victor Gaba
- Department of Plant Pathology and Weed Research, Agricultural Research Organization–The Volcani Center, Rishon LeZion, Israel
| | | | - Amit Gal-On
- Department of Plant Pathology and Weed Research, Agricultural Research Organization–The Volcani Center, Rishon LeZion, Israel
| | - Settumba B. Mukasa
- Department of Agricultural Production, Makerere University, Kampala, Uganda
| | - Peter Wasswa
- Department of Agricultural Production, Makerere University, Kampala, Uganda
| |
Collapse
|
49
|
Ludman M, Fátyol K. The virological model plant, Nicotiana benthamiana expresses a single functional RDR6 homeolog. Virology 2019; 537:143-148. [PMID: 31493652 DOI: 10.1016/j.virol.2019.08.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 08/15/2019] [Accepted: 08/18/2019] [Indexed: 01/31/2023]
Abstract
The RNA dependent RNA polymerase, RDR6 is involved in a variety of processes including the biogenesis of endogenous regulatory small RNAs, maintaining post-transcriptional gene silencing of transgenes and establishing efficient antiviral RNA silencing. In the virological model plant, Nicotiana benthamiana, functional studies of RDR6 has so far only been depended on RNAi based methodologies. These techniques however have inherent limitations, especially in the context of antiviral RNA silencing. To overcome this issue, we created rdr6 mutant N. benthamiana by the CRISPR/Cas9 genome editing system. Using the mutant, most of the proposed functions of RDR6 was confirmed. Additionally, the rdr6 N. benthamiana plant recapitulated closely the phenotype of the equivalent Arabidopsis mutant. In summary, the rdr6 N. benthamiana described here may be employed as a model system not only for the better understanding of the role of RDR6 in pathogen elicited immune responses but in various developmental processes as well.
Collapse
Affiliation(s)
- Márta Ludman
- Agricultural Biotechnology Institute, National Agricultural Research and Innovation Centre, Szent-Györgyi Albert u. 4, Gödöllő, 2100, Hungary
| | - Károly Fátyol
- Agricultural Biotechnology Institute, National Agricultural Research and Innovation Centre, Szent-Györgyi Albert u. 4, Gödöllő, 2100, Hungary.
| |
Collapse
|
50
|
Abstract
Plant virus genome replication and movement is dependent on host resources and factors. However, plants respond to virus infection through several mechanisms, such as autophagy, ubiquitination, mRNA decay and gene silencing, that target viral components. Viral factors work in synchrony with pro-viral host factors during the infection cycle and are targeted by antiviral responses. Accordingly, establishment of virus infection is genetically determined by the availability of the pro-viral factors necessary for genome replication and movement, and by the balance between plant defence and viral suppression of defence responses. Sequential requirement of pro-viral factors and the antagonistic activity of antiviral factors suggest a two-step model to explain plant-virus interactions. At each step of the infection process, host factors with antiviral activity have been identified. Here we review our current understanding of host factors with antiviral activity against plant viruses.
Collapse
Affiliation(s)
- Hernan Garcia‐Ruiz
- Nebraska Center for Virology, Department of Plant PathologyUniversity of Nebraska‐LincolnLincolnNE68503USA
| |
Collapse
|