1
|
Chen H, Shi J, Tang C, Xu J, Li B, Wang J, Zhou Y, Yang Y, Yang H, Huang Q, Yu W, Wang H, Wu D, Hu Y, Zhou H, Sun Q, Lu S. CHIKV infection drives shifts in the gastrointestinal microbiome and metabolites in rhesus monkeys. MICROBIOME 2024; 12:161. [PMID: 39223641 PMCID: PMC11367899 DOI: 10.1186/s40168-024-01895-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 07/30/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Many studies have demonstrated the association between intestinal microbiota and joint diseases. The "gut-joint axis" also has potential roles in chikungunya virus (CHIKV) infection. Pro-inflammatory arthritis after CHIKV infection might disrupt host homeostasis and lead to dysbacteriosis. This study investigated the characteristics of fecal and gut microbiota, intestinal metabolites, and the changes in gene regulation of intestinal tissues after CHIKV infection using multi-omics analysis to explore the involvement of gut microbiota in the pathogenesis of CHIKV infection. RESULTS CHIKV infection increases the systemic burden of inflammation in the GI system of infected animals. Moreover, infection-induced alterations in GI microbiota and metabolites may be indirectly involved in the modulation of GI and bone inflammation after CHIKV infection, including the modulation of inflammasomes and interleukin-17 inflammatory cytokine levels. CONCLUSION Our results suggest that the GI tract and its microbes are involved in the modulation of CHIKV infection, which could serve as an indicator for the adjuvant treatment of CHIKV infection. Video Abstract.
Collapse
Affiliation(s)
- Hongyu Chen
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College (IMBCAMS&PUMC), 935 Jiaoling Road, Kunming, Yunnan, 650118, China
| | - Jiandong Shi
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College (IMBCAMS&PUMC), 935 Jiaoling Road, Kunming, Yunnan, 650118, China
| | - Cong Tang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College (IMBCAMS&PUMC), 935 Jiaoling Road, Kunming, Yunnan, 650118, China
| | - Jingwen Xu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College (IMBCAMS&PUMC), 935 Jiaoling Road, Kunming, Yunnan, 650118, China
| | - Bai Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College (IMBCAMS&PUMC), 935 Jiaoling Road, Kunming, Yunnan, 650118, China
| | - Junbin Wang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College (IMBCAMS&PUMC), 935 Jiaoling Road, Kunming, Yunnan, 650118, China
| | - Yanan Zhou
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College (IMBCAMS&PUMC), 935 Jiaoling Road, Kunming, Yunnan, 650118, China
| | - Yun Yang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College (IMBCAMS&PUMC), 935 Jiaoling Road, Kunming, Yunnan, 650118, China
| | - Hao Yang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College (IMBCAMS&PUMC), 935 Jiaoling Road, Kunming, Yunnan, 650118, China
| | - Qing Huang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College (IMBCAMS&PUMC), 935 Jiaoling Road, Kunming, Yunnan, 650118, China
| | - Wenhai Yu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College (IMBCAMS&PUMC), 935 Jiaoling Road, Kunming, Yunnan, 650118, China
| | - Haixuan Wang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College (IMBCAMS&PUMC), 935 Jiaoling Road, Kunming, Yunnan, 650118, China
| | - Daoju Wu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College (IMBCAMS&PUMC), 935 Jiaoling Road, Kunming, Yunnan, 650118, China
| | - Yunzhang Hu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College (IMBCAMS&PUMC), 935 Jiaoling Road, Kunming, Yunnan, 650118, China.
| | - Hongning Zhou
- Yunnan Provincial Key Laboratory of Insect-Borne Infectious Diseases Control & Yunan International Joint Laboratory of Tropical Infectious Diseases of Yunnan Institute of Parasitic Diseases, Puer, Yunnan, 665000, China.
| | - Qingming Sun
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College (IMBCAMS&PUMC), 935 Jiaoling Road, Kunming, Yunnan, 650118, China.
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, Beijing, China.
- State Key Laboratory of Respiratory Health and Multimorbidity, Beijing, China.
| | - Shuaiyao Lu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College (IMBCAMS&PUMC), 935 Jiaoling Road, Kunming, Yunnan, 650118, China.
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, Beijing, China.
- State Key Laboratory of Respiratory Health and Multimorbidity, Beijing, China.
| |
Collapse
|
2
|
Brito RMDM, de Melo MF, Fernandes JV, Valverde JG, Matta Guedes PM, de Araújo JMG, Nascimento MSL. Acute Chikungunya Virus Infection Triggers a Diverse Range of T Helper Lymphocyte Profiles. Viruses 2024; 16:1387. [PMID: 39339863 PMCID: PMC11437511 DOI: 10.3390/v16091387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
Chikungunya virus (CHIKV) is an arbovirus causing acute febrile illness with severe joint pain, often leading to chronic arthralgia. This study investigated the adaptive immune responses during the early stages of symptomatic acute CHIKV infection, focusing on the transcription factors and cytokines linked to Th1, Th2, Th17, and Treg cells. Thirty-six individuals were enrolled: nine healthy controls and 27 CHIKV-positive patients confirmed by qRT-PCR. Blood samples were analyzed for the mRNA expression of transcription factors (Tbet, GATA3, FoxP3, STAT3, RORγt) and cytokines (IFN-γ, IL-4, IL-17, IL-22, TGF-β, IL-10). The results showed the significant upregulation of Tbet, GATA3, FoxP3, STAT3, and RORγt in CHIKV-positive patients, with RORγt displaying the highest increase. Correspondingly, cytokines IFN-γ, IL-4, IL-17, and IL-22 were upregulated, while TGF-β was downregulated. Principal component analysis (PCA) confirmed the distinct immune profiles between CHIKV-positive and healthy individuals. A correlation analysis indicated that higher Tbet expression correlated with a lower viral load, whereas FoxP3 and TGF-β were associated with higher viral loads. Our study sheds light on the intricate immune responses during acute CHIKV infection, characterized by a mixed Th1, Th2, Th17, and Treg response profile. These results emphasize the complex interplay between different adaptive immune responses and how they may contribute to the pathogenesis of Chikungunya fever.
Collapse
Affiliation(s)
| | - Marília Farias de Melo
- Department of Microbiology and Parasitology, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
| | - José Veríssimo Fernandes
- Department of Microbiology and Parasitology, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
| | - Joanna Gardel Valverde
- Institute of Tropical Medicine of Rio Grande do Norte, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
| | - Paulo Marcos Matta Guedes
- Department of Microbiology and Parasitology, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
| | - Josélio Maria Galvão de Araújo
- Department of Microbiology and Parasitology, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
| | - Manuela Sales Lima Nascimento
- Department of Microbiology and Parasitology, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
| |
Collapse
|
3
|
de Oliveira Souza R, Duarte Júnior JWB, Della Casa VS, Santoro Rosa D, Renia L, Claser C. Unraveling the complex interplay: immunopathology and immune evasion strategies of alphaviruses with emphasis on neurological implications. Front Cell Infect Microbiol 2024; 14:1421571. [PMID: 39211797 PMCID: PMC11358129 DOI: 10.3389/fcimb.2024.1421571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/09/2024] [Indexed: 09/04/2024] Open
Abstract
Arthritogenic alphaviruses pose a significant public health concern due to their ability to cause joint inflammation, with emerging evidence of potential neurological consequences. In this review, we examine the immunopathology and immune evasion strategies employed by these viruses, highlighting their complex mechanisms of pathogenesis and neurological implications. We delve into how these viruses manipulate host immune responses, modulate inflammatory pathways, and potentially establish persistent infections. Further, we explore their ability to breach the blood-brain barrier, triggering neurological complications, and how co-infections exacerbate neurological outcomes. This review synthesizes current research to provide a comprehensive overview of the immunopathological mechanisms driving arthritogenic alphavirus infections and their impact on neurological health. By highlighting knowledge gaps, it underscores the need for research to unravel the complexities of virus-host interactions. This deeper understanding is crucial for developing targeted therapies to address both joint and neurological manifestations of these infections.
Collapse
Affiliation(s)
- Raquel de Oliveira Souza
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | | | - Victória Simões Della Casa
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Daniela Santoro Rosa
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Laurent Renia
- ASTAR Infectious Diseases Labs (ASTAR ID Labs), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Carla Claser
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| |
Collapse
|
4
|
Chen D, Liang H, Huang L, Zhou H, Wang Z. Liraglutide enhances the effect of checkpoint blockade in lung and liver cancers through the inhibition of neutrophil extracellular traps. FEBS Open Bio 2024; 14:1365-1377. [PMID: 36271684 PMCID: PMC11301266 DOI: 10.1002/2211-5463.13499] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 09/20/2022] [Accepted: 10/20/2022] [Indexed: 11/09/2022] Open
Abstract
Glucagon-like peptide-1 (GLP-1) regulates glycemic excursions by augmenting insulin production and inhibiting glucagon secretion. Liraglutide, a long-acting GLP-1 analog, can improve glycemic control for treating type 2 diabetes and prevent neutrophil extravasation in inflammation. Here, we explored the role of liraglutide in the development and therapy of murine lung and liver cancers. In this study, liraglutide substantially decreased circulating neutrophil extracellular trap (NET) markers myeloperoxidase, elastase, and dsDNA in Lewis lung cancer (LLC) and Hepa1-6 tumor-bearing mice. Furthermore, liraglutide downregulated NETs and reactive oxygen species (ROS) of neutrophils in the tumor microenvironment. Functionally, in vitro experiments showed that liraglutide reduced NET formation by inhibiting ROS. In addition, we showed that liraglutide enhanced the anti-tumoral efficiency of programmed cell death-1 (PD-1) inhibition in LLC and Hepa1-6 tumor-bearing C57BL/6 mice. However, the removal of NETs significantly weakened the antitumor efficiency of liraglutide. We further demonstrated that the long-term antitumor CD8+ T cell responses induced by the combination therapy rejected rechallenges by respective tumor cell lines. Taken together, our findings suggest that liraglutide may promote the anti-tumoral efficiency of PD-1 inhibition by reducing NETs in lung and liver cancers.
Collapse
Affiliation(s)
- Duo Chen
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chao‐Yang HospitalCapital Medical UniversityBeijingChina
| | - Hongxin Liang
- Department of Thoracic Surgery, Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina
| | - Luyu Huang
- Department of Surgery, Competence Center of Thoracic SurgeryCharité Universitätsmedizin BerlinGermany
| | - Haiyu Zhou
- Department of Thoracic Surgery, Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina
| | - Zheng Wang
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chao‐Yang HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
5
|
Shaikh MS, Faiyazuddin M, Khan MS, Pathan SK, Syed IJ, Gholap AD, Akhtar MS, Sah R, Mehta R, Sah S, Bonilla-Aldana DK, Luna C, Rodriguez-Morales AJ. Chikungunya virus vaccine: a decade of progress solving epidemiological dilemma, emerging concepts, and immunological interventions. Front Microbiol 2024; 15:1413250. [PMID: 39104592 PMCID: PMC11298817 DOI: 10.3389/fmicb.2024.1413250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 07/01/2024] [Indexed: 08/07/2024] Open
Abstract
Chikungunya virus (CHIKV), a single-stranded RNA virus transmitted by Aedes mosquitoes, poses a significant global health threat, with severe complications observed in vulnerable populations. The only licensed vaccine, IXCHIQ, approved by the US FDA, is insufficient to address the growing disease burden, particularly in endemic regions lacking herd immunity. Monoclonal antibodies (mAbs), explicitly targeting structural proteins E1/E2, demonstrate promise in passive transfer studies, with mouse and human-derived mAbs showing protective efficacy. This article explores various vaccine candidates, including live attenuated, killed, nucleic acid-based (DNA/RNA), virus-like particle, chimeric, subunit, and adenovirus vectored vaccines. RNA vaccines have emerged as promising candidates due to their rapid response capabilities and enhanced safety profile. This review underscores the importance of the E1 and E2 proteins as immunogens, emphasizing their antigenic potential. Several vaccine candidates, such as CHIKV/IRES, measles vector (MV-CHIK), synthetic DNA-encoded antibodies, and mRNA-lipid nanoparticle vaccines, demonstrate encouraging preclinical and clinical results. In addition to identifying potential molecular targets for antiviral therapy, the study looks into the roles played by Toll-like receptors, RIG-I, and NOD-like receptors in the immune response to CHIKV. It also offers insights into novel tactics and promising vaccine candidates. This article discusses potential antiviral targets, the significance of E1 and E2 proteins, monoclonal antibodies, and RNA vaccines as prospective Chikungunya virus vaccine candidates.
Collapse
Affiliation(s)
| | - Md. Faiyazuddin
- School of Pharmacy, Al – Karim University, Katihar, India
- Centre for Global Health Research, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | | | - Shahbaz K. Pathan
- Medmecs Medical Coding & Billing Services, Universal Business Park, Mumbai, Maharashtra, India
| | - Imran J. Syed
- Y. B. Chavan College of Pharmacy, Aurangabad, Maharashtra, India
- SBSPM’s B. Pharmacy College, Beed, Maharashtra, India
| | - Amol D. Gholap
- Department of Pharmaceutics, St. John Institute of Pharmacy and Research, Palghar, Maharashtra, India
| | - Mohammad Shabib Akhtar
- Department of Clinical Pharmacy, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Ranjit Sah
- Green City Hospital, Kathmandu, Nepal
- Research Unit, Department of Microbiology, Dr. DY Patil Medical College, Hospital and Research Centre, DY Patil Vidyapeeth, Pune, Maharashtra, India
- Department of Public Health Dentistry, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pune, Maharashtra, India
| | - Rachana Mehta
- Dr Lal PathLabs Nepal, Kathmandu, Nepal
- Medical Laboratories Techniques Department, AL-Mustaqbal University, Hillah, Babil, Iraq
- Clinical Microbiology, School of Dental Science, Manav Rachna International Institute of Research and Studies, Faridabad, Haryana, India
| | | | | | - Camila Luna
- Faculty of Health Sciences, Universidad Científica del Sur, Lima, Peru
| | - Alfonso J. Rodriguez-Morales
- Faculty of Health Sciences, Universidad Científica del Sur, Lima, Peru
- Grupo de Investigación Biomedicina, Faculty of Medicine, Fundación Universitaria Autónoma de las Américas-Institución Universitaria Visión de las Américas, Pereira, Colombia
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon
| |
Collapse
|
6
|
Ng WH, Amaral K, Javelle E, Mahalingam S. Chronic chikungunya disease (CCD): clinical insights, immunopathogenesis and therapeutic perspectives. QJM 2024; 117:489-494. [PMID: 38377410 PMCID: PMC11290245 DOI: 10.1093/qjmed/hcae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Indexed: 02/22/2024] Open
Abstract
Chikungunya virus, an arthropod-borne pathogen is recognized by the World Health Organization as a top priority Emerging Infectious Disease and is ranked fourth in public health needs according to the Coalition for Epidemic Preparedness Innovations. Despite its substantial impact, as evidenced by an annual estimate of 120 274 disability-adjusted life years, our understanding of the chronic aspects of chikungunya disease remains limited. This review focuses on chronic chikungunya disease, emphasizing its clinical manifestations, immunopathogenesis, therapeutic options and disease burden.
Collapse
Affiliation(s)
- W H Ng
- Emerging Viruses, Inflammation and Therapeutics Group, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
- Global Virus Network (GVN) Centre of Excellence in Arboviruses, Griffith University, Gold Coast, QLD, Australia
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD, Australia
| | - K Amaral
- Department of Health Sciences, Federal University of Cariri, Barbalha, Ceará, Brazil
| | - E Javelle
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France
- Aix Marseille Université, IRD, SSA, AP-HM, VITROME, Marseille, France
- Unit of Infectious Diseases and Tropical Medicine, IHU Méditerranée Infection, Marseille, France
- Service de Pathologie Infectieuse et Tropicale, Hôpital d'Instruction des Armées Laveran, Marseille, France
| | - S Mahalingam
- Emerging Viruses, Inflammation and Therapeutics Group, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
- Global Virus Network (GVN) Centre of Excellence in Arboviruses, Griffith University, Gold Coast, QLD, Australia
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD, Australia
| |
Collapse
|
7
|
Adam A, Woolsey C, Lu H, Plante K, Wallace SM, Rodriguez L, Shinde DP, Cui Y, Franz AWE, Thangamani S, Comer JE, Weaver SC, Wang T. A safe insect-based Chikungunya fever vaccine affords rapid and durable protection in cynomolgus macaques. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.21.595029. [PMID: 38826312 PMCID: PMC11142085 DOI: 10.1101/2024.05.21.595029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Chikungunya virus (CHIKV), which induces chikungunya fever and chronic arthralgia, is an emerging public health concern. Safe and efficient vaccination strategies are needed to prevent or mitigate virus-associated acute and chronic morbidities for preparation of future outbreaks. Eilat (EILV)/CHIKV, a chimeric alphavirus which contains the structural proteins of CHIKV and the non-structural proteins of EILV, does not replicate in vertebrate cells. The chimeric virus was previously reported to induce protective adaptive immunity in mice. Here, we assessed the capacity of the virus to induce quick and durable protection in cynomolgus macaques. EILV/CHIKV protected macaques from wild-type (WT) CHIKV infection one year after a single dose vaccination. Transcriptome and in vitro functional analyses reveal that the chimeric virus triggered toll-like receptor signaling and T cell, memory B cell and antibody responses in a dose-dependent manner. Notably, EILV/CHIKV preferentially induced more durable, robust, and broader repertoire of CHIKV-specific T cell responses, compared to a live attenuated CHIKV 181/25 vaccine strain. The insect-based chimeric virus did not cause skin hypersensitivity reactions in guinea pigs sensitized to mosquito bites. Furthermore, EILV/CHIKV induced strong neutralization antibodies and protected cynomolgus macaques from WT CHIKV infection within six days post vaccination. Transcriptome analysis also suggest that the chimeric virus induction of multiple innate immune pathways, including Toll-like receptor signaling, type I IFN and IL-12 signaling, antigen presenting cell activation, and NK receptor signaling. Our findings suggest that EILV/CHIKV is a safe, highly efficacious vaccine, and provides both rapid and long-lasting protection in cynomolgus macaques.
Collapse
|
8
|
Caetano CCS, Azamor T, Meyer NM, Onwubueke C, Calabrese CM, Calabrese LH, Visperas A, Piuzzi NS, Husni ME, Foo SS, Chen W. Mechanistic insights into bone remodelling dysregulation by human viral pathogens. Nat Microbiol 2024; 9:322-335. [PMID: 38316931 PMCID: PMC11045166 DOI: 10.1038/s41564-023-01586-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 12/12/2023] [Indexed: 02/07/2024]
Abstract
Bone-related diseases (osteopathologies) associated with human virus infections have increased around the globe. Recent findings have highlighted the intricate interplay between viral infection, the host immune system and the bone remodelling process. Viral infections can disrupt bone homeostasis, contributing to conditions such as arthritis and soft tissue calcifications. Osteopathologies can occur after arbovirus infections such as chikungunya virus, dengue virus and Zika virus, as well as respiratory viruses, such as severe acute respiratory syndrome coronavirus 2 and enteroviruses such as Coxsackievirus B. Here we explore how human viruses dysregulate bone homeostasis, detailing viral factors, molecular mechanisms, host immune response changes and bone remodelling that ultimately result in osteopathologies. We highlight model systems and technologies to advance mechanistic understanding of viral-mediated bone alterations. Finally, we propose potential prophylactic and therapeutic strategies, introduce 'osteovirology' as a research field highlighting the underestimated roles of viruses in bone-related diseases, and discuss research avenues for further investigation.
Collapse
Affiliation(s)
- Camila C S Caetano
- Infection Biology Program, Global Center for Pathogen Research and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Tamiris Azamor
- Infection Biology Program, Global Center for Pathogen Research and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Nikki M Meyer
- Infection Biology Program, Global Center for Pathogen Research and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Chineme Onwubueke
- Infection Biology Program, Global Center for Pathogen Research and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Cassandra M Calabrese
- Department of Rheumatic and Immunologic Diseases, Cleveland Clinic, Cleveland, OH, USA
| | - Leonard H Calabrese
- Department of Rheumatic and Immunologic Diseases, Cleveland Clinic, Cleveland, OH, USA
| | - Anabelle Visperas
- Department of Orthopedic Surgery, Cleveland Clinic, Cleveland, OH, USA
| | - Nicolas S Piuzzi
- Department of Orthopedic Surgery, Cleveland Clinic, Cleveland, OH, USA
| | - M Elaine Husni
- Department of Rheumatic and Immunologic Diseases, Cleveland Clinic, Cleveland, OH, USA
| | - Suan-Sin Foo
- Infection Biology Program, Global Center for Pathogen Research and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA.
| | - Weiqiang Chen
- Infection Biology Program, Global Center for Pathogen Research and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
9
|
Song MS, Lee DK, Lee CY, Park SC, Yang J. Host Subcellular Organelles: Targets of Viral Manipulation. Int J Mol Sci 2024; 25:1638. [PMID: 38338917 PMCID: PMC10855258 DOI: 10.3390/ijms25031638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
Viruses have evolved sophisticated mechanisms to manipulate host cell processes and utilize intracellular organelles to facilitate their replication. These complex interactions between viruses and cellular organelles allow them to hijack the cellular machinery and impair homeostasis. Moreover, viral infection alters the cell membrane's structure and composition and induces vesicle formation to facilitate intracellular trafficking of viral components. However, the research focus has predominantly been on the immune response elicited by viruses, often overlooking the significant alterations that viruses induce in cellular organelles. Gaining a deeper understanding of these virus-induced cellular changes is crucial for elucidating the full life cycle of viruses and developing potent antiviral therapies. Exploring virus-induced cellular changes could substantially improve our understanding of viral infection mechanisms.
Collapse
Affiliation(s)
- Min Seok Song
- Department of Physiology and Convergence Medical Science, Institute of Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Dong-Kun Lee
- Department of Physiology and Convergence Medical Science, Institute of Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Chung-Young Lee
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Sang-Cheol Park
- Artificial Intelligence and Robotics Laboratory, Myongji Hospital, Goyang 10475, Republic of Korea
| | - Jinsung Yang
- Department of Biochemistry and Convergence Medical Science, Institute of Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| |
Collapse
|
10
|
Ng WH, Liu X, Ling ZL, Santos CNO, Magalhães LS, Kueh AJ, Herold MJ, Taylor A, Freitas JR, Koit S, Wang S, Lloyd AR, Teixeira MM, Merits A, Almeida RP, King NJC, Mahalingam S. FHL1 promotes chikungunya and o'nyong-nyong virus infection and pathogenesis with implications for alphavirus vaccine design. Nat Commun 2023; 14:6605. [PMID: 37884534 PMCID: PMC10603155 DOI: 10.1038/s41467-023-42330-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/06/2023] [Indexed: 10/28/2023] Open
Abstract
Arthritogenic alphaviruses are positive-strand RNA viruses that cause debilitating musculoskeletal diseases affecting millions worldwide. A recent discovery identified the four-and-a-half-LIM domain protein 1 splice variant A (FHL1A) as a crucial host factor interacting with the hypervariable domain (HVD) of chikungunya virus (CHIKV) nonstructural protein 3 (nsP3). Here, we show that acute and chronic chikungunya disease in humans correlates with elevated levels of FHL1. We generated FHL1-/- mice, which when infected with CHIKV or o'nyong-nyong virus (ONNV) displayed reduced arthritis and myositis, fewer immune infiltrates, and reduced proinflammatory cytokine/chemokine outputs, compared to infected wild-type (WT) mice. Interestingly, disease signs were comparable in FHL1-/- and WT mice infected with arthritogenic alphaviruses Ross River virus (RRV) or Mayaro virus (MAYV). This aligns with pull-down assay data, which showed the ability of CHIKV and ONNV nsP3 to interact with FHL1, while RRV and MAYV nsP3s did not. We engineered a CHIKV mutant unable to bind FHL1 (CHIKV-ΔFHL1), which was avirulent in vivo. Following inoculation with CHIKV-ΔFHL1, mice were protected from disease upon challenge with CHIKV and ONNV, and viraemia was significantly reduced in RRV- and MAYV-challenged mice. Targeting FHL1-binding as an approach to vaccine design could lead to breakthroughs in mitigating alphaviral disease.
Collapse
Affiliation(s)
- Wern Hann Ng
- Emerging Viruses, Inflammation and Therapeutics Group, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, 4222, Australia
- Global Virus Network (GVN) Centre of Excellence in Arboviruses, Griffith University, Gold Coast, QLD, Australia
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD, Australia
| | - Xiang Liu
- Emerging Viruses, Inflammation and Therapeutics Group, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, 4222, Australia
- Global Virus Network (GVN) Centre of Excellence in Arboviruses, Griffith University, Gold Coast, QLD, Australia
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD, Australia
| | - Zheng L Ling
- Viral Immunopathology Laboratory, Infection, Immunity and Inflammation Research Theme, Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia
- Sydney Institute for Infectious Diseases, Sydney Medical School, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Camilla N O Santos
- Division of Immunology and Molecular Biology Laboratory, University Hospital/EBSERH, Federal University of Sergipe (UFS), Aracaju, Brazil
| | - Lucas S Magalhães
- Division of Immunology and Molecular Biology Laboratory, University Hospital/EBSERH, Federal University of Sergipe (UFS), Aracaju, Brazil
| | - Andrew J Kueh
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3050, Australia
| | - Marco J Herold
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3050, Australia
| | - Adam Taylor
- Emerging Viruses, Inflammation and Therapeutics Group, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, 4222, Australia
- Global Virus Network (GVN) Centre of Excellence in Arboviruses, Griffith University, Gold Coast, QLD, Australia
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD, Australia
| | - Joseph R Freitas
- Emerging Viruses, Inflammation and Therapeutics Group, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, 4222, Australia
- Global Virus Network (GVN) Centre of Excellence in Arboviruses, Griffith University, Gold Coast, QLD, Australia
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD, Australia
| | - Sandra Koit
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Sainan Wang
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Andrew R Lloyd
- Viral Immunology Systems Program, Kirby Institute, University of New South Wales, Kensington, NSW, Australia
| | - Mauro M Teixeira
- Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Andres Merits
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Roque P Almeida
- Division of Immunology and Molecular Biology Laboratory, University Hospital/EBSERH, Federal University of Sergipe (UFS), Aracaju, Brazil
| | - Nicholas J C King
- Emerging Viruses, Inflammation and Therapeutics Group, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, 4222, Australia
- Viral Immunopathology Laboratory, Infection, Immunity and Inflammation Research Theme, Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia
- Sydney Institute for Infectious Diseases, Sydney Medical School, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Suresh Mahalingam
- Emerging Viruses, Inflammation and Therapeutics Group, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, 4222, Australia.
- Global Virus Network (GVN) Centre of Excellence in Arboviruses, Griffith University, Gold Coast, QLD, Australia.
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD, Australia.
| |
Collapse
|
11
|
Kondo M, Matsushima Y, Nakanishi T, Iida S, Habe K, Yamanaka K. Consideration of serum IL-36α and β levels trends in two patients with chikungunya fever. Clin Case Rep 2023; 11:e7680. [PMID: 37469370 PMCID: PMC10352542 DOI: 10.1002/ccr3.7680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 06/13/2023] [Accepted: 06/23/2023] [Indexed: 07/21/2023] Open
Abstract
Key Clinical Message IL-36 might play a role as an initial immune mechanism against chikungunya fever, and regulating IL-36 production could be a potential treatment approach for this condition. Abstract Two Japanese siblings visited Cook Islands in 2015 and developed Chikungunya fever upon their return. The sister experienced high fever, joint pain, and leg swelling, while the brother had joint pain and a rash. Both siblings had a confirmed CHIKV infection and continued to experience prolonged joint pain, with the sister enduring chronic pain for about a year. In this study, the levels of IL-36 in the serum of two siblings who were infected with chikungunya fever during the acute and recovery phases were compared using ELISA. IL-36 is a cytokine that induces inflammation and is produced by cells in tissues such as the skin and mucosa. It was hypothesized that IL-36 may be involved in persistent joint pain after chikungunya fever infection. Both siblings experienced long-lasting joint pain after chikungunya fever infection. The levels of IL-36α and IL-36β decreased by 56 days after infection. In the results, IL-36 plays an important role in host immunity and may act as part of the immune response during chikungunya virus infection. Inhibiting the release of IL-36 could be a promising approach for developing new treatment methods for chikungunya fever.
Collapse
Affiliation(s)
- Makoto Kondo
- Department of Dermatology, Graduate School of MedicineMie UniversityTsuJapan
| | - Yoshiaki Matsushima
- Department of Dermatology, Graduate School of MedicineMie UniversityTsuJapan
| | - Takehisa Nakanishi
- Department of Dermatology, Graduate School of MedicineMie UniversityTsuJapan
| | - Shohei Iida
- Department of Dermatology, Graduate School of MedicineMie UniversityTsuJapan
| | - Koji Habe
- Department of Dermatology, Graduate School of MedicineMie UniversityTsuJapan
| | - Keiichi Yamanaka
- Department of Dermatology, Graduate School of MedicineMie UniversityTsuJapan
| |
Collapse
|
12
|
Bishop CR, Caten FT, Nakaya HI, Suhrbier A. Chikungunya patient transcriptional signatures faithfully recapitulated in a C57BL/6J mouse model. Front Immunol 2022; 13:1092370. [PMID: 36578476 PMCID: PMC9791225 DOI: 10.3389/fimmu.2022.1092370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 11/25/2022] [Indexed: 12/14/2022] Open
Abstract
Introduction An adult wild-type C57BL/6J mouse model of chikungunya virus (CHIKV) infection and disease has been extensively used to study the alphaviral arthritic immunopathology and to evaluate new interventions. How well mouse models recapitulate the gene expression profiles seen in humans remains controversial. Methods Herein we perform a comparative transcriptomics analysis using RNA-Seq datasets from the C57BL/6J CHIKV mouse model with datasets obtained from adults and children acutely infected with CHIKV. Results Despite sampling quite different tissues, peripheral blood from humans and feet from mice, gene expression profiles were quite similar, with an overlap of up to ≈50% for up-regulated single copy orthologue differentially expressed genes. Furthermore, high levels of significant concordance between mouse and human were seen for immune pathways and signatures, which were dominated by interferons, T cells and monocyte/macrophages. Importantly, predicted responses to a series of anti-inflammatory drug and biologic treatments also showed cogent similarities between species. Discussion Comparative transcriptomics and subsequent pathway analysis provides a detailed picture of how a given model recapitulates human gene expression. Using this method, we show that the C57BL/6J CHIKV mouse model provides a reliable and representative system in which to study CHIKV immunopathology and evaluate new treatments.
Collapse
Affiliation(s)
- Cameron R. Bishop
- Department of Infection and Inflammation, Queensland Institute of Medical Research, Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Felipe Ten Caten
- Pathology Advanced Translational Research Unit, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | - Helder I. Nakaya
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil,*Correspondence: Helder I. Nakaya, ; Andreas Suhrbier,
| | - Andreas Suhrbier
- Department of Infection and Inflammation, Queensland Institute of Medical Research, Berghofer Medical Research Institute, Brisbane, QLD, Australia,Global Virus Network (GVN) Center of Excellence, Australian Infectious Disease Research Centre, Brisbane, QLD, Australia,*Correspondence: Helder I. Nakaya, ; Andreas Suhrbier,
| |
Collapse
|
13
|
de Araújo S, de Melo Costa VR, Santos FM, de Sousa CDF, Moreira TP, Gonçalves MR, Félix FB, Queiroz-Junior CM, Campolina-Silva GH, Nogueira ML, Sugimoto MA, Bonilha CS, Perretti M, Souza DG, Costa VV, Teixeira MM. Annexin A1-FPR2/ALX Signaling Axis Regulates Acute Inflammation during Chikungunya Virus Infection. Cells 2022; 11:cells11172717. [PMID: 36078125 PMCID: PMC9454528 DOI: 10.3390/cells11172717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/24/2022] [Accepted: 08/24/2022] [Indexed: 12/03/2022] Open
Abstract
Chikungunya (CHIKV) is an arthritogenic alphavirus that causes a self-limiting disease usually accompanied by joint pain and/or polyarthralgia with disabling characteristics. Immune responses developed during the acute phase of CHIKV infection determine the rate of disease progression and resolution. Annexin A1 (AnxA1) is involved in both initiating inflammation and preventing over-response, being essential for a balanced end of inflammation. In this study, we investigated the role of the AnxA1-FPR2/ALX pathway during CHIKV infection. Genetic deletion of AnxA1 or its receptor enhanced inflammatory responses driven by CHIKV. These knockout mice showed increased neutrophil accumulation and augmented tissue damage at the site of infection compared with control mice. Conversely, treatment of wild-type animals with the AnxA1 mimetic peptide (Ac2–26) reduced neutrophil accumulation, decreased local concentration of inflammatory mediators and diminished mechanical hypernociception and paw edema induced by CHIKV-infection. Alterations in viral load were mild both in genetic deletion or with treatment. Combined, our data suggest that the AnxA1-FPR2/ALX pathway is a potential therapeutic strategy to control CHIKV-induced acute inflammation and polyarthralgia.
Collapse
Affiliation(s)
- Simone de Araújo
- Graduate Program in Biological Sciences Physiology and Pharmacology, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil
- Drug Research and Development Center, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Victor R. de Melo Costa
- Drug Research and Development Center, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Franciele M. Santos
- Drug Research and Development Center, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Carla D. Ferreira de Sousa
- Drug Research and Development Center, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Thaiane P. Moreira
- Drug Research and Development Center, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Matheus R. Gonçalves
- Drug Research and Development Center, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Franciel B. Félix
- Drug Research and Development Center, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Celso M. Queiroz-Junior
- Drug Research and Development Center, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Gabriel H. Campolina-Silva
- Drug Research and Development Center, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil
- Department of Obstetrics, Gynecology and Reproduction, CHU de Quebec Research Center (CHUL), Université Laval, Quebec, QC G1V 0A6, Canada
| | - Maurício Lacerda Nogueira
- Department of Dermatological, Infections, and Parasitic Diseases, School of Medicine (FAMERP), São José do Rio Preto, São Paulo 15090-000, Brazil
| | - Michelle A. Sugimoto
- Barts and The London School of Medicine and Dentistry, William Harvey Research Institute, Queen Mary University of London, London E1 4NS, UK
| | - Caio S. Bonilha
- Drug Research and Development Center, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil
- Center for Research on Inflammatory Diseases, University of São Paulo, São Paulo 05508-000, Brazil
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8QQ, UK
| | - Mauro Perretti
- Barts and The London School of Medicine and Dentistry, William Harvey Research Institute, Queen Mary University of London, London E1 4NS, UK
- Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, London E1 4NS, UK
| | - Danielle G. Souza
- Graduate Program in Microbiology, Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Vivian V. Costa
- Drug Research and Development Center, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil
- Graduate Program in Cell Biology, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil
- Correspondence: (V.V.C.); (M.M.T.); Tel.: +55-31-3409-3082 (V.V.C.); +55-31-3409-2651 (M.M.T.)
| | - Mauro M. Teixeira
- Drug Research and Development Center, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil
- Correspondence: (V.V.C.); (M.M.T.); Tel.: +55-31-3409-3082 (V.V.C.); +55-31-3409-2651 (M.M.T.)
| |
Collapse
|