1
|
Watt AE, Cummins ML, Donato CM, Wirth W, Porter AF, Andersson P, Donner E, Jennison AV, Seemann T, Djordjevic SP, Howden BP. Parameters for one health genomic surveillance of Escherichia coli from Australia. Nat Commun 2025; 16:17. [PMID: 39747833 PMCID: PMC11696363 DOI: 10.1038/s41467-024-55103-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 11/29/2024] [Indexed: 01/04/2025] Open
Abstract
Genomics is a cornerstone of modern pathogen epidemiology yet demonstrating transmission in a One Health context is challenging, as strains circulate and evolve within and between diverse hosts and environments. To identify phylogenetic linkages and better define relevant measures of genomic relatedness in a One Health context, we collated 5471 Escherichia coli genome sequences from Australia originating from humans (n = 2996), wild animals (n = 870), livestock (n = 649), companion animals (n = 375), environmental sources (n = 292) and food (n = 289) spanning over 36 years. Of the 827 multi-locus sequence types (STs) identified, 10 STs were commonly associated with cross-source genomic clusters, including the highly clonal ST131, pandemic zoonotic lineages such as ST95, and emerging human ExPEC ST1193. Here, we show that assessing genomic relationships at ≤ 100 SNP threshold enabled detection of cross-source linkage otherwise obscured when applying typical outbreak-oriented relatedness thresholds ( ≤ 20 SNPs) and should be considered in interrogation of One Health genomic datasets.
Collapse
Affiliation(s)
- Anne E Watt
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology at The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Microbiology and Immunology at The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Max L Cummins
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, New South Wales, Australia
- The Australian Centre for Genomic Epidemiological Microbiology, University of Technology Sydney, Ultimo, New South Wales, Australia
| | - Celeste M Donato
- Department of Microbiology and Immunology at The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
- Centre for Pathogen Genomics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Wytamma Wirth
- Department of Microbiology and Immunology at The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Ashleigh F Porter
- Department of Microbiology and Immunology at The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Patiyan Andersson
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology at The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Microbiology and Immunology at The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Erica Donner
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia, Australia
- Cooperative Research Centre for Solving Antimicrobial Resistance in Agribusiness, Food, and Environments (CRC SAAFE), Mawson Lakes, South Australia, Australia
| | - Amy V Jennison
- Public Health Microbiology, Public and Environmental Health, Pathology Queensland, Queensland Department of Health, Brisbane, Queensland, Australia
| | - Torsten Seemann
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology at The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Microbiology and Immunology at The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
- Centre for Pathogen Genomics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Steven P Djordjevic
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, New South Wales, Australia.
- The Australian Centre for Genomic Epidemiological Microbiology, University of Technology Sydney, Ultimo, New South Wales, Australia.
| | - Benjamin P Howden
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology at The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia.
- Department of Microbiology and Immunology at The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia.
- Centre for Pathogen Genomics, The University of Melbourne, Melbourne, Victoria, Australia.
- Department of Infectious Diseases, Austin Health, Heidelberg, Victoria, Australia.
| |
Collapse
|
2
|
Polani R, De Francesco A, Tomolillo D, Artuso I, Equestre M, Trirocco R, Arcari G, Antonelli G, Villa L, Prosseda G, Visca P, Carattoli A. Cefiderocol Resistance Conferred by Plasmid-Located Ferric Citrate Transport System in KPC-Producing Klebsiella pneumoniae. Emerg Infect Dis 2025; 31:123-124. [PMID: 39714320 DOI: 10.3201/eid3101.241426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024] Open
Abstract
Cefiderocol (FDC), a siderophore-cephalosporin conjugate, is the newest option for treating infection with carbapenem-resistant gram-negative bacteria. We identified a novel mechanism contributing to decreased FDC susceptibility in Klebsiella pneumoniae clinical isolates. The mechanism involves 2 coresident plasmids: pKpQIL, carrying variants of blaKPC carbapenemase gene, and pKPN, carrying the ferric citrate transport (FEC) system. We observed increasing FDC MICs in an Escherichia coli model system carrying different natural pKpQIL plasmids, encoding different K. pneumoniae carbapenemase (KPC) variants, in combination with a conjugative low copy number vector carrying the fec gene cluster from pKPN. We observed transcriptional repression of fiu, cirA, fepA, and fhuA siderophore receptor genes in blaKPC-fec-E. coli cells treated with ferric citrate. Screening of 27,793 K. pneumoniae whole-genome sequences revealed that the fec cluster occurs frequently in some globally distributed different KPC-producing K. pneumoniae clones (sequence types 258, 14, 45, and 512), contributing to reduced FDC susceptibility.
Collapse
|
3
|
Tsugami Y, Iwata T, Sugiyama A, Onishi M, Nakajima KI, Osaki M, Nagasawa Y. Involvement of adhesins (EcpD, FdeC, FimH) expressed in mammary pathogenic Escherichia coli on adhesion to bovine mammary epithelial cells. Antonie Van Leeuwenhoek 2024; 118:14. [PMID: 39361215 DOI: 10.1007/s10482-024-02025-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/19/2024] [Indexed: 10/06/2024]
Abstract
Mammary pathogenic Escherichia coli (MPEC) causes mastitis, which results in substantial economic losses to the dairy industry. A high percentage of Escherichia coli isolated from cows with clinical mastitis harbor adhesin genes, such as fimH. However, it is unclear whether these adhesins are important in the adhesion of MPEC to bovine mammary epithelial cells (BMECs). Therefore, we investigated the effect of adhesins (EcpD, FdeC, and FimH) in MPEC on adherence to the bovine mammary epithelium using cultured BMECs. For this purpose, we used wild-type MPEC as well as single- and double-mutants of fimH, ecpD, and fdeC, and performed adhesion assays with BMECs. First, BMECs were cultured in the presence of lactogenic hormones to induce milk component production and tight junction formation. The bacterial count of the wild-type strain that adhered to the BMECs increased in a dose-dependent manner. In deletion mutant strains, the ΔfimH strain showed lower adhesion (P < 0.05), whereas the adhesion ratio of the ΔecpD and ΔfdeC strains was not statistically different compared with that of the wild-type strain (P > 0.05). Additionally, the fimH/fdeC double-deletion mutants showed the lowest adhesion to BMECs. In conclusion, FimH is crucial in the adhesion of MPEC to BMECs. Overall, our work identifies FimH or FimH/FdeC as interesting targets for future drugs or vaccines to improve the treatment, prevention or chronicity of mastitis induced by MPEC.
Collapse
Affiliation(s)
- Yusaku Tsugami
- National Institute of Animal Health, National Agriculture and Food Research Organization, 4 Hitsujigaoka, Toyohira, Sapporo, Hokkaido, 062-0045, Japan
| | - Taketoshi Iwata
- National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0856, Japan
| | - Aoi Sugiyama
- National Institute of Animal Health, National Agriculture and Food Research Organization, 4 Hitsujigaoka, Toyohira, Sapporo, Hokkaido, 062-0045, Japan
| | - Megumi Onishi
- National Institute of Animal Health, National Agriculture and Food Research Organization, 4 Hitsujigaoka, Toyohira, Sapporo, Hokkaido, 062-0045, Japan
| | - Kei-Ichi Nakajima
- Department of Biochemistry, Asahikawa Medical University, 2-1-1-1 Midorigaoka Higashi, Asahikawa City, Hokkaido, 078-8510, Japan
- Hokkaido Agricultural Research Center, National Agriculture and Food Research Organization, 1 Hitsujigaoka, Toyohira, Sapporo, Hokkaido, 062-0045, Japan
| | - Makoto Osaki
- National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0856, Japan
| | - Yuya Nagasawa
- National Institute of Animal Health, National Agriculture and Food Research Organization, 4 Hitsujigaoka, Toyohira, Sapporo, Hokkaido, 062-0045, Japan.
| |
Collapse
|
4
|
Blum SE, Krifuks O, Weisblith L, Fleker M, Lavon Y, Zuckerman A, Hefer Y, Goldhor O, Gilad D, Schcolnic T, Leitner G. Evaluation of acoustic pulse technology as a non-antibiotic therapy for bovine intramammary infections: Assessing bacterial cure vs. recovery from inflammation. Front Vet Sci 2023; 10:1079269. [PMID: 36992975 PMCID: PMC10040550 DOI: 10.3389/fvets.2023.1079269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 02/15/2023] [Indexed: 03/16/2023] Open
Abstract
IntroductionThe spread of antimicrobial resistance (AMR) is a major threat to human and animal health. Therefore, new solutions are needed to prevent returning to a world without effective antibiotics. Mastitis in dairy cows is a major reason for antimicrobial use in food animal production, and mastitis-causing bacteria have the potential to develop AMR. In this study, acoustic pulse technology (APT) was explored as an alternative to antimicrobials for the treatment of mastitis in dairy cows. APT involves the local transmission of mechanical energy through soundwaves which stimulate anti-inflammatory and angiogenic responses in the udder. These responses promote udder recovery and enhance resistance to bacterial infections.MethodsWe examined 129 Israeli dairy cows with mastitis in this prospective, controlled study to assess the efficiency of APT treatment on cure and recovery rates. An accurate diagnosis of suspected or confirmed infectious mastitis was made from cows having clinical signs of mastitis and/or somatic cell count (SCC) of above 400,000 cells/mL. The cows were divided into three groups: Group 1 (n = 29), cows with no bacterial findings (NBF); Group 2 (n = 82), cows with clinical signs of mastitis or SCC >400,000 cells/mL in the most recent test; and Group 3 (n = 18), cows with chronic mastitis (two or more tests with SCC >400,000 cells/mL within 3 months). All the cows received APT treatment, which involved 400 pulses on two sides of the infected quarter, delivered in three phases over 3 days. The cure for the mammary gland was indicated by the absence of bacterial growth in post-treatment cultures and recovery by a decrease in SCC to < 250,000 cells/mL in two of three post-treatment tests.Results and discussionIn Group 2, cure and recovery rates were 67.1 and 64.6%, respectively, and were not significantly different between Gram-negative and Gram-positive infections. A similar recovery rate was found in NBF cows. However, in cows with chronic mastitis, both the cure and recovery rates were significantly lower (22.2 and 27.8%, respectively). These results have important implications for dairy farmers, as APT treatment could lead to substantial savings of up to $15,106/year in a 100-cow herd, considering the national estimated prevalence of mastitis and the cost of individual treatment. APT should be further investigated as a viable and sustainable alternative to antimicrobial therapy for mastitis, offering economic benefits to dairy producers and the possibility of preventing AMR.
Collapse
Affiliation(s)
- Shlomo Eduardo Blum
- Department of Bacteriology, Kimron Veterinary Institute, Bet Dagan, Israel
- *Correspondence: Shlomo Eduardo Blum
| | - Oleg Krifuks
- Department of Bacteriology, Kimron Veterinary Institute, Bet Dagan, Israel
| | - Limor Weisblith
- Department of Bacteriology, Kimron Veterinary Institute, Bet Dagan, Israel
| | - Marcelo Fleker
- Department of Bacteriology, Kimron Veterinary Institute, Bet Dagan, Israel
| | - Yaniv Lavon
- Israel Cattle Breeders Association, Caesarea, Israel
| | | | | | | | | | | | | |
Collapse
|
5
|
Pokharel P, Dhakal S, Dozois CM. The Diversity of Escherichia coli Pathotypes and Vaccination Strategies against This Versatile Bacterial Pathogen. Microorganisms 2023; 11:344. [PMID: 36838308 PMCID: PMC9965155 DOI: 10.3390/microorganisms11020344] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 02/03/2023] Open
Abstract
Escherichia coli (E. coli) is a gram-negative bacillus and resident of the normal intestinal microbiota. However, some E. coli strains can cause diseases in humans, other mammals and birds ranging from intestinal infections, for example, diarrhea and dysentery, to extraintestinal infections, such as urinary tract infections, respiratory tract infections, meningitis, and sepsis. In terms of morbidity and mortality, pathogenic E. coli has a great impact on public health, with an economic cost of several billion dollars annually worldwide. Antibiotics are not usually used as first-line treatment for diarrheal illness caused by E. coli and in the case of bloody diarrhea, antibiotics are avoided due to the increased risk of hemolytic uremic syndrome. On the other hand, extraintestinal infections are treated with various antibiotics depending on the site of infection and susceptibility testing. Several alarming papers concerning the rising antibiotic resistance rates in E. coli strains have been published. The silent pandemic of multidrug-resistant bacteria including pathogenic E. coli that have become more difficult to treat favored prophylactic approaches such as E. coli vaccines. This review provides an overview of the pathogenesis of different pathotypes of E. coli, the virulence factors involved and updates on the major aspects of vaccine development against different E. coli pathotypes.
Collapse
Affiliation(s)
- Pravil Pokharel
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), 531 Boul des Prairies, Laval, QC H7V 1B7, Canada
- Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Faculté de Médecine Vétérinaire, Université de Montréal Saint-Hyacinthe, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Sabin Dhakal
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), 531 Boul des Prairies, Laval, QC H7V 1B7, Canada
- Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Faculté de Médecine Vétérinaire, Université de Montréal Saint-Hyacinthe, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Charles M. Dozois
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), 531 Boul des Prairies, Laval, QC H7V 1B7, Canada
- Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Faculté de Médecine Vétérinaire, Université de Montréal Saint-Hyacinthe, Saint-Hyacinthe, QC J2S 2M2, Canada
- Pasteur Network, Laval, QC H7V 1B7, Canada
| |
Collapse
|
6
|
A Novel TLR4-SYK Interaction Axis Plays an Essential Role in the Innate Immunity Response in Bovine Mammary Epithelial Cells. Biomedicines 2022; 11:biomedicines11010097. [PMID: 36672605 PMCID: PMC9855420 DOI: 10.3390/biomedicines11010097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/11/2022] [Accepted: 12/21/2022] [Indexed: 12/31/2022] Open
Abstract
Mammary gland epithelium, as the first line of defense for bovine mammary gland immunity, is crucial in the process of mammary glands’ innate immunity, especially that of bovine mammary epithelial cells (bMECs). Our previous studies successfully marked SYK as an important candidate gene for mastitis traits via GWAS and preliminarily confirmed that SYK expression is down-regulated in bMECs with LPS (E. coli) stimulation, but its work mechanism is still unclear. In this study, for the first time, in vivo, TLR4 and SYK were colocalized and had a high correlation in mastitis mammary epithelium; protein−protein interaction results also confirmed that there was a direct interaction between them in mastitis tissue, suggesting that SYK participates in the immune regulation of the TLR4 cascade for bovine mastitis. In vitro, TLR4 also interacts with SYK in LPS (E. coli)-stimulated or GBS (S. agalactiae)-infected bMECs, respectively. Moreover, TLR4 mRNA expression and protein levels were little affected in bMECsSYK- with LPS stimulation or GBS infection, indicating that SYK is an important downstream element of the TLR4 cascade in bMECs. Interestingly, IL-1β, IL-8, NF-κB and NLRP3 expression in LPS-stimulated or GBS-infected bMECsSYK- were significantly higher than in the control group, while AKT1 expression was down-regulated, implying that SYK could inhibit the IL-1β, IL-8, NF-κB and NLRP3 expression and alleviate inflammation in bMECs with LPS and GBS. Taken together, our solid evidence supports that TLR4/SYK/NF-κB signal axis in bMECs regulates the innate immunity response to LPS or GBS.
Collapse
|
7
|
Goulart DB, Mellata M. Escherichia coli Mastitis in Dairy Cattle: Etiology, Diagnosis, and Treatment Challenges. Front Microbiol 2022; 13:928346. [PMID: 35875575 PMCID: PMC9301288 DOI: 10.3389/fmicb.2022.928346] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Bovine mastitis is an inflammation of the udder tissue parenchyma that causes pathological changes in the glandular tissue and abnormalities in milk leading to significant economic losses to the dairy industry across the world. Mammary pathogenic Escherichia (E.) coli (MPEC) is one of the main etiologic agents of acute clinical mastitis in dairy cattle. MPEC strains have virulence attributes to resist the host innate defenses and thrive in the mammary gland environment. The association between specific virulence factors of MPEC with the severity of mastitis in cattle is not fully understood. Furthermore, the indiscriminate use of antibiotics to treat mastitis has resulted in antimicrobial resistance to all major antibiotic classes in MPEC. A thorough understanding of MPEC’s pathogenesis and antimicrobial susceptibility pattern is required to develop better interventions to reduce mastitis incidence and prevalence in cattle and the environment. This review compiles important information on mastitis caused by MPEC (e.g., types of mastitis, host immune response, diagnosis, treatment, and control of the disease) as well as the current knowledge on MPEC virulence factors, antimicrobial resistance, and the dilemma of MPEC as a new pathotype. The information provided in this review is critical to identifying gaps in knowledge that will guide future studies to better design diagnostic, prevent, and develop therapeutic interventions for this significant dairy disease.
Collapse
Affiliation(s)
- Débora Brito Goulart
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States
- *Correspondence: Débora Brito Goulart,
| | - Melha Mellata
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, United States
- Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA, United States
- Melha Mellata,
| |
Collapse
|
8
|
Abstract
More than half of women will experience a urinary tract infection (UTI), with uropathogenic Escherichia coli (UPEC) causing ~80% of uncomplicated cases. Iron acquisition systems are essential for uropathogenesis, and UPEC strains encode highly diverse iron acquisition systems, underlining their importance. However, a recent UPEC clinical isolate, HM7, lacks this diversity and instead encodes the synthesis pathway for a sole siderophore, enterobactin. To determine if HM7 possesses unidentified iron acquisition systems, we performed RNA sequencing under iron-limiting conditions and demonstrated that the ferric citrate uptake system (fecABCDE and fecIR) was highly upregulated. Importantly, there are high levels of citrate within urine, some of which is bound to iron, and the fec system is enriched in UPEC isolates compared to fecal strains. Therefore, we hypothesized that HM7 and other similar strains use the fec system to acquire iron in the host. Deletion of both enterobactin biosynthesis and ferric citrate uptake (ΔfecA/ΔentB) abrogates use of ferric citrate as an iron source, and fecA provides an advantage in human urine in the absence of enterobactin. However, in a UTI mouse model, fecA is a fitness factor independent of enterobactin production, likely due to the action of host lipocalin-2 chelating ferrienterobactin. These findings indicate that ferric citrate uptake is used as an iron source when siderophore efficacy is limited, such as in the host during UTI. Defining these novel compensatory mechanisms and understanding the nutritional hierarchy of preferred iron sources within the urinary tract are important in the search for new approaches to combat UTI.
Collapse
|
9
|
Braun V, Hartmann MD, Hantke K. Transcription regulation of iron carrier transport genes by ECF sigma factors through signaling from the cell surface into the cytoplasm. FEMS Microbiol Rev 2022; 46:6524835. [PMID: 35138377 PMCID: PMC9249621 DOI: 10.1093/femsre/fuac010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 01/26/2022] [Accepted: 02/07/2022] [Indexed: 12/02/2022] Open
Abstract
Bacteria are usually iron-deficient because the Fe3+ in their environment is insoluble or is incorporated into proteins. To overcome their natural iron limitation, bacteria have developed sophisticated iron transport and regulation systems. In gram-negative bacteria, these include iron carriers, such as citrate, siderophores, and heme, which when loaded with Fe3+ adsorb with high specificity and affinity to outer membrane proteins. Binding of the iron carriers to the cell surface elicits a signal that initiates transcription of iron carrier transport and synthesis genes, referred to as “cell surface signaling”. Transcriptional regulation is not coupled to transport. Outer membrane proteins with signaling functions contain an additional N-terminal domain that in the periplasm makes contact with an anti-sigma factor regulatory protein that extends from the outer membrane into the cytoplasm. Binding of the iron carriers to the outer membrane receptors elicits proteolysis of the anti-sigma factor by two different proteases, Prc in the periplasm, and RseP in the cytoplasmic membrane, inactivates the anti-sigma function or results in the generation of an N-terminal peptide of ∼50 residues with pro-sigma activity yielding an active extracytoplasmic function (ECF) sigma factor. Signal recognition and signal transmission into the cytoplasm is discussed herein.
Collapse
Affiliation(s)
- Volkmar Braun
- Max Planck Institute for Biology, Department of Protein Evolution, Max Planck Ring 5, 72076 Tübingen, Germany
| | - Marcus D Hartmann
- Max Planck Institute for Biology, Department of Protein Evolution, Max Planck Ring 5, 72076 Tübingen, Germany
| | - Klaus Hantke
- IMIT Institute, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| |
Collapse
|
10
|
An overview on mastitis-associated Escherichia coli: Pathogenicity, host immunity and the use of alternative therapies. Microbiol Res 2021; 256:126960. [PMID: 35021119 DOI: 10.1016/j.micres.2021.126960] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/26/2021] [Accepted: 12/27/2021] [Indexed: 12/11/2022]
Abstract
Escherichia coli is one of the leading causes of bovine mastitis; it can cause sub-clinical, and clinical mastitis characterized by systemic changes, abnormal appearance of milk, and udder inflammation. E. coli pathogenicity in the bovine udder is due to the interaction between its virulence factors and the host factors; it was also linked to the presence of a new pathotype termed mammary pathogenic E. coli (MPEC). However, the presence of this pathotype is commonly debated. Its main virulence factor is the lipopolysaccharide (LPS) that is responsible for causing an endotoxic shock, and inducing a strong immune response by binding to the toll-like receptor 4 (TLR4), and stimulating the expression of chemokines (such as IL-8, and RANTES) and pro-inflammatory cytokines (such as IL-6, and IL-1β). This strong immune response could be used to develop alternative and safe approaches to control E. coli causing bovine mastitis by targeting pro-inflammatory cytokines that can damage the host tissue. The need for alternative treatments against E. coli is due to its ability to resist many conventional antibiotics, which is a huge challenge for curing ill animals. Therefore, the aim of this review was to highlight the pathogenicity of E. coli in the mammary gland, discuss the presence of the new putative pathotype, the mammary pathogenic E. coli (MPEC) pathotype, study the host's immune response, and the alternative treatments that are used against mastitis-associated E. coli.
Collapse
|
11
|
Chen Q, Wang S, Guo J, Xie Q, Evivie SE, Song Y, Li B, Huo G. The Protective Effects of Lactobacillus plantarum KLDS 1.0344 on LPS-Induced Mastitis In Vitro and In Vivo. Front Immunol 2021; 12:770822. [PMID: 34858427 PMCID: PMC8630701 DOI: 10.3389/fimmu.2021.770822] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 10/21/2021] [Indexed: 12/02/2022] Open
Abstract
Cow mastitis, which significantly lowers milk quality, is mainly caused by pathogenic bacteria such as E. coli. Previous studies have suggested that lactic acid bacteria can have antagonistic effects on pathogenic bacteria that cause mastitis. In the current study, we evaluated the in vitro and in vivo alleviative effects of L. plantarum KLDS 1.0344 in mastitis treatment. In vitro antibacterial experiments were performed using bovine mammary epithelial cell (bMEC), followed by in vivo studies involving mastitis mouse models. In vitro results indicate that lactic acid was the primary substance inhibiting the E. coli pathogen. Meanwhile, treatment with L. plantarum KLDS 1.0344 can reduce cytokines' mRNA expression levels in the inflammatory response of bMEC induced by LPS. In vivo, the use of this strain reduced the secretion of inflammatory factors IL-6, IL-1β, and TNF-α, and decreased the activity of myeloperoxidase (MPO), and inhibited the secretion of p-p65 and p-IκBα. These results indicate that L. plantarum KLDS 1.0344 pretreatment can reduce the expression of inflammatory factors by inhibiting the activation of NF-κB signaling pathway, thus exerting prevent the occurrence of inflammation in vivo. Our findings show that L. plantarum KLDS 1.0344 has excellent properties as an alternative to antibiotics and can be developed into lactic acid bacteria preparation to prevent mastitis disease.
Collapse
Affiliation(s)
- Qingxue Chen
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
- Food College, Northeast Agricultural University, Harbin, China
| | - Song Wang
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
- Food College, Northeast Agricultural University, Harbin, China
| | - Jiayao Guo
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
- Food College, Northeast Agricultural University, Harbin, China
| | - Qinggang Xie
- Heilongjiang Feihe Dairy Company Ltd., Qiqihaer, China
| | - Smith Etareri Evivie
- Department of Animal Science, Faculty of Agriculture, University of Benin, Benin City, Nigeria
- Department of Food Science and Human Nutrition, Faculty of Agriculture, University of Benin, Benin City, Nigeria
| | - Yue Song
- Food College, Northeast Agricultural University, Harbin, China
| | - Bailiang Li
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
- Food College, Northeast Agricultural University, Harbin, China
| | - Guicheng Huo
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
- Food College, Northeast Agricultural University, Harbin, China
| |
Collapse
|
12
|
Ghahramani N, Shodja J, Rafat SA, Panahi B, Hasanpur K. Integrative Systems Biology Analysis Elucidates Mastitis Disease Underlying Functional Modules in Dairy Cattle. Front Genet 2021; 12:712306. [PMID: 34691146 PMCID: PMC8531812 DOI: 10.3389/fgene.2021.712306] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/30/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Mastitis is the most prevalent disease in dairy cattle and one of the most significant bovine pathologies affecting milk production, animal health, and reproduction. In addition, mastitis is the most common, expensive, and contagious infection in the dairy industry. Methods: A meta-analysis of microarray and RNA-seq data was conducted to identify candidate genes and functional modules associated with mastitis disease. The results were then applied to systems biology analysis via weighted gene coexpression network analysis (WGCNA), Gene Ontology, enrichment analysis for the Kyoto Encyclopedia of Genes and Genomes (KEGG), and modeling using machine-learning algorithms. Results: Microarray and RNA-seq datasets were generated for 2,089 and 2,794 meta-genes, respectively. Between microarray and RNA-seq datasets, a total of 360 meta-genes were found that were significantly enriched as "peroxisome," "NOD-like receptor signaling pathway," "IL-17 signaling pathway," and "TNF signaling pathway" KEGG pathways. The turquoise module (n = 214 genes) and the brown module (n = 57 genes) were identified as critical functional modules associated with mastitis through WGCNA. PRDX5, RAB5C, ACTN4, SLC25A16, MAPK6, CD53, NCKAP1L, ARHGEF2, COL9A1, and PTPRC genes were detected as hub genes in identified functional modules. Finally, using attribute weighting and machine-learning methods, hub genes that are sufficiently informative in Escherichia coli mastitis were used to optimize predictive models. The constructed model proposed the optimal approach for the meta-genes and validated several high-ranked genes as biomarkers for E. coli mastitis using the decision tree (DT) method. Conclusion: The candidate genes and pathways proposed in this study may shed new light on the underlying molecular mechanisms of mastitis disease and suggest new approaches for diagnosing and treating E. coli mastitis in dairy cattle.
Collapse
Affiliation(s)
- Nooshin Ghahramani
- Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Jalil Shodja
- Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Seyed Abbas Rafat
- Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Bahman Panahi
- Department of Genomics, Branch for Northwest & West Region, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Tabriz, Iran
| | - Karim Hasanpur
- Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| |
Collapse
|
13
|
Li Y, Zhu Y, Chu B, Liu N, Chen S, Wang J. Lactobacillus rhamnosus GR-1 Prevents Escherichia coli-Induced Apoptosis Through PINK1/Parkin-Mediated Mitophagy in Bovine Mastitis. Front Immunol 2021; 12:715098. [PMID: 34594329 PMCID: PMC8476910 DOI: 10.3389/fimmu.2021.715098] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/27/2021] [Indexed: 12/16/2022] Open
Abstract
Escherichia coli is one of the most important pathogens that cause clinical mastitis in dairy cattle worldwide and lead to severe economic losses. Antibiotics are often used to treat this inflammatory disease; however, antimicrobial resistance and environmental pollution cannot be ignored. Probiotic is the best alternative; however, its mechanisms of action to prevent mastitis remain unclear. Moreover, the role of probiotics in regulating mitophagy, a selective autophagy that maintains mitochondrial quality, needs to be explored. E. coli infection induced NOD-like receptor family member pyrin domain-containing protein 3 (NLRP3) inflammasome assembly, Caspase-1 activation, and apoptosis in MAC-T cells. Infection also resulted in mitochondrial damage and subsequent increase in reactive oxygen species (ROS) production. Moreover, inhibition of ROS release by scavenger N-acetyl-L-cysteine (NAC) abrogated the importance of ROS in NLRP3 assembly and apoptosis in MAC-T cells. Pretreatment with Lactobacillus rhamnosus GR-1 (LGR-1), a probiotic, alleviated E. coli-induced NLRP3 inflammasome activation and apoptosis via ROS inhibition. Besides, E. coli infection inhibited mitophagy while LGR-1 pretreatment augmented PINK1/Parkin–mediated mitophagy activation, which further blocked ROS generation. To explore the effect of LGR-1 in vivo, a mouse mastitis model was established. The results showed that LGR-1 pretreatment had preventive and protective effects on E. coli induced mastitis, and could reduce cytokines levels such as IL-1β and TNF-α. In accordance with the results in vitro, E. coli can inhibit mitophagy and activate NLRP3 inflammasome and apoptosis, while LGR-1 can weaken the effect of E. coli. Taken together, our data indicated that LGR-1 pretreatment induced PINK1/Parkin-mediated mitophagy that eliminated damaged mitochondria and reduced ROS production and NLRP3 inflammasome activation, which subsequently decreased E. coli-induced apoptosis. To conclude, our study suggests that therapeutic strategies aiming at the upregulation of mitophagy under E. coli-induced mastitis may preserve mitochondrial function and provide theoretical support for the application of probiotics in bovine mastitis.
Collapse
Affiliation(s)
- Yanan Li
- Department of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yaohong Zhu
- Department of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Bingxin Chu
- Department of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Ning Liu
- Department of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Shiyan Chen
- Department of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jiufeng Wang
- Department of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
14
|
CHOPRA MEENU, BANDYOPADHYAY SAMIRAN, BHATTACHARYA DEBARAJ, BANERJEE JAYDEEP, SINGH RAVIKANT, SWARNKAR MOHIT, SINGH ANILKUMAR, DE SACHINANDAN. Genome based phylogeny and virulence factor analysis of mastitis causing Escherichia coli isolated from Indian cattle. THE INDIAN JOURNAL OF ANIMAL SCIENCES 2021; 90:1577-1583. [DOI: https:/doi.org/10.56093/ijans.v90i12.113165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Mastitis is a highly infectious disease prevalent in dairy cattle and it is majorly caused by Escherichia coli (E. coli). The objective of present study is to investigate the occurrence of virulence genes, antimicrobial susceptibility and comparative analysis of E. coli (IVRI KOL CP4 and CM IVRI KOL-1) isolates from mastitis infected animal. Whole-genome sequencing (WGS) was performed using a PacBio RS II system and de novo assembled using Hierarchical Genome Assembly Process (HGAP3). Bacterial Pan Genome Analysis Pipeline (BPGA) was used for pangenome analysis. A set of 50 E. coli isolates were used for comparative analysis (48 collected from the database and 2 reference sequences). Core genes were further concatenated for phylogenetic analyses. In silico analysis was performed for antibiotic resistance and virulence gene identification. Both of the E. coli isolates carried many resistance genes including, b-lactamase, quinolones, rifampicin, macrolide, aminoglycoside and phenicols resistance. We detected 39 virulence genes in IVRI KOL CP4 and 52 in CM IVRI KOL-1 which include toxins, adhesions, invasins, secretion machineries or iron acquisition system. High prevalence of mastitis strains belongs to phylogroups A, although few isolates were also assigned to phylogenetic groups B1 and B2. In conclusion, the present study reported the presence of genes involved in Adherence, Iron acquisition, secretion system and toxins which shown to be crucial in MPEC pathogenicity. This is the first whole genome analysis of MPEC strains to be carried out in Indian isolate to highlights the spread of resistance and virulence genes in food animals.
Collapse
|
15
|
Rainard P, Gilbert FB, Germon P, Foucras G. Invited review: A critical appraisal of mastitis vaccines for dairy cows. J Dairy Sci 2021; 104:10427-10448. [PMID: 34218921 DOI: 10.3168/jds.2021-20434] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/23/2021] [Indexed: 11/19/2022]
Abstract
Infections of the mammary gland remain a frequent disease of dairy ruminants that negatively affect animal welfare, milk quality, farmer serenity, and farming profitability and cause an increase in use of antimicrobials. There is a need for efficacious vaccines to alleviate the burden of mastitis in dairy farming, but this need has not been satisfactorily fulfilled despite decades of research. A careful appraisal of past and current research on mastitis vaccines reveals the peculiarities but also the commonalities among mammary gland infections associated with the major mastitis pathogens Escherichia coli, Staphylococcus aureus, Streptococcus uberis, Streptococcus agalactiae, or Streptococcus dysgalactiae. A major pitfall is that the immune mechanisms of effective protection have not been fully identified. Until now, vaccine development has been directed toward the generation of antibodies. In this review, we drew up an inventory of the main approaches used to design vaccines that aim at the major pathogens for the mammary gland, and we critically appraised the current and tentative vaccines. In particular, we sought to relate efficacy to vaccine-induced defense mechanisms to shed light on some possible reasons for current vaccine shortcomings. Based on the lessons learned from past attempts and the recent results of current research, the design of effective vaccines may take a new turn in the years to come.
Collapse
Affiliation(s)
- Pascal Rainard
- Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Université de Tours, Infectiologie et Santé Publique, 37380 Nouzilly, France.
| | - Florence B Gilbert
- Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Université de Tours, Infectiologie et Santé Publique, 37380 Nouzilly, France
| | - Pierre Germon
- Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Université de Tours, Infectiologie et Santé Publique, 37380 Nouzilly, France
| | - Gilles Foucras
- Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Université de Toulouse, École Nationale Vétérinaire de Toulouse, Interactions Hôtes-Agents Pathogènes, 31076 Toulouse, France
| |
Collapse
|
16
|
Jung D, Park S, Ruffini J, Dussault F, Dufour S, Ronholm J. Comparative genomic analysis of Escherichia coli isolates from cases of bovine clinical mastitis identifies nine specific pathotype marker genes. Microb Genom 2021; 7:000597. [PMID: 34227932 PMCID: PMC8477405 DOI: 10.1099/mgen.0.000597] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/29/2021] [Indexed: 01/03/2023] Open
Abstract
Escherichia coli is a major causative agent of environmental bovine mastitis and this disease causes significant economic losses for the dairy industry. There is still debate in the literature as to whether mammary pathogenic E. coli (MPEC) is indeed a unique E. coli pathotype, or whether this infection is merely an opportunistic infection caused by any E. coli isolate being displaced from the bovine gastrointestinal tract to the environment and, then, into the udder. In this study, we conducted a thorough genomic analysis of 113 novel MPEC isolates from clinical mastitis cases and 100 bovine commensal E. coli isolates. A phylogenomic analysis indicated that MPEC and commensal E. coli isolates formed clades based on common sequence types and O antigens, but did not cluster based on mammary pathogenicity. A comparative genomic analysis of MPEC and commensal isolates led to the identification of nine genes that were part of either the core or the soft-core MPEC genome, but were not found in any bovine commensal isolates. These apparent MPEC marker genes were genes involved with nutrient intake and metabolism [adeQ, adenine permease; nifJ, pyruvate-flavodoxin oxidoreductase; and yhjX, putative major facilitator superfamily (MFS)-type transporter], included fitness and virulence factors commonly seen in uropathogenic E. coli (pqqL, zinc metallopeptidase, and fdeC, intimin-like adhesin, respectively), and putative proteins [yfiE, uncharacterized helix-turn-helix-type transcriptional activator; ygjI, putative inner membrane transporter; and ygjJ, putative periplasmic protein]. Further characterization of these highly conserved MPEC genes may be critical to understanding the pathobiology of MPEC.
Collapse
Affiliation(s)
- Dongyun Jung
- Faculty of Agricultural and Environmental Sciences, Macdonald Campus, McGill University, Sainte Anne de Bellevue, Quebec, Canada
- Mastitis Network, Saint-Hyacinthe, Quebec J2S 2M2, Canada
| | - Soyoun Park
- Faculty of Agricultural and Environmental Sciences, Macdonald Campus, McGill University, Sainte Anne de Bellevue, Quebec, Canada
- Mastitis Network, Saint-Hyacinthe, Quebec J2S 2M2, Canada
| | - Janina Ruffini
- Faculty of Agricultural and Environmental Sciences, Macdonald Campus, McGill University, Sainte Anne de Bellevue, Quebec, Canada
| | | | - Simon Dufour
- Mastitis Network, Saint-Hyacinthe, Quebec J2S 2M2, Canada
- Regroupement FRQNT Op+Lait, Saint-Hyacinthe, Québec J2S 2M2, Canada
- Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
| | - Jennifer Ronholm
- Faculty of Agricultural and Environmental Sciences, Macdonald Campus, McGill University, Sainte Anne de Bellevue, Quebec, Canada
- Mastitis Network, Saint-Hyacinthe, Quebec J2S 2M2, Canada
- Regroupement FRQNT Op+Lait, Saint-Hyacinthe, Québec J2S 2M2, Canada
| |
Collapse
|
17
|
Yokoyama T, Niinae T, Tsumagari K, Imami K, Ishihama Y, Hizukuri Y, Akiyama Y. The Escherichia coli S2P intramembrane protease RseP regulates ferric citrate uptake by cleaving the sigma factor regulator FecR. J Biol Chem 2021; 296:100673. [PMID: 33865858 PMCID: PMC8144685 DOI: 10.1016/j.jbc.2021.100673] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/08/2021] [Accepted: 04/14/2021] [Indexed: 02/03/2023] Open
Abstract
Escherichia coli RseP, a member of the site-2 protease family of intramembrane proteases, is involved in the activation of the σE extracytoplasmic stress response and elimination of signal peptides from the cytoplasmic membrane. However, whether RseP has additional cellular functions is unclear. In this study, we used mass spectrometry-based quantitative proteomic analysis to search for new substrates that might reveal unknown physiological roles for RseP. Our data showed that the levels of several Fec system proteins encoded by the fecABCDE operon (fec operon) were significantly decreased in an RseP-deficient strain. The Fec system is responsible for the uptake of ferric citrate, and the transcription of the fec operon is controlled by FecI, an alternative sigma factor, and its regulator FecR, a single-pass transmembrane protein. Assays with a fec operon expression reporter demonstrated that the proteolytic activity of RseP is essential for the ferric citrate-dependent upregulation of the fec operon. Analysis using the FecR protein and FecR-derived model proteins showed that FecR undergoes sequential processing at the membrane and that RseP participates in the last step of this sequential processing to generate the N-terminal cytoplasmic fragment of FecR that participates in the transcription of the fec operon with FecI. A shortened FecR construct was not dependent on RseP for activation, confirming this cleavage step is the essential and sufficient role of RseP. Our study unveiled that E. coli RseP performs the intramembrane proteolysis of FecR, a novel physiological role that is essential for regulating iron uptake by the ferric citrate transport system.
Collapse
Affiliation(s)
- Tatsuhiko Yokoyama
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Tomoya Niinae
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Kazuya Tsumagari
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Koshi Imami
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Yasushi Ishihama
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Yohei Hizukuri
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.
| | - Yoshinori Akiyama
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.
| |
Collapse
|
18
|
Matilla MA, Ortega Á, Krell T. The role of solute binding proteins in signal transduction. Comput Struct Biotechnol J 2021; 19:1786-1805. [PMID: 33897981 PMCID: PMC8050422 DOI: 10.1016/j.csbj.2021.03.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/22/2021] [Accepted: 03/22/2021] [Indexed: 12/13/2022] Open
Abstract
The solute binding proteins (SBPs) of prokaryotes are present in the extracytosolic space. Although their primary function is providing substrates to transporters, SBPs also stimulate different signaling proteins, including chemoreceptors, sensor kinases, diguanylate cyclases/phosphodiesterases and Ser/Thr kinases, thereby causing a wide range of responses. While relatively few such systems have been identified, several pieces of evidence suggest that SBP-mediated receptor activation is a widespread mechanism. (1) These systems have been identified in Gram-positive and Gram-negative bacteria and archaea. (2) There is a structural diversity in the receptor domains that bind SBPs. (3) SBPs belonging to thirteen different families interact with receptor ligand binding domains (LBDs). (4) For the two most abundant receptor LBD families, dCache and four-helix-bundle, there are different modes of interaction with SBPs. (5) SBP-stimulated receptors carry out many different functions. The advantage of SBP-mediated receptor stimulation is attributed to a strict control of SBP levels, which allows a precise adjustment of the systeḿs sensitivity. We have compiled information on the effect of ligands on the transcript/protein levels of their cognate SBPs. In 87 % of the cases analysed, ligands altered SBP expression levels. The nature of the regulatory effect depended on the ligand family. Whereas inorganic ligands typically downregulate SBP expression, an upregulation was observed in response to most sugars and organic acids. A major unknown is the role that SBPs play in signaling and in receptor stimulation. This review attempts to summarize what is known and to present new information to narrow this gap in knowledge.
Collapse
Affiliation(s)
- Miguel A Matilla
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Prof. Albareda 1, Granada 18008, Spain
| | - Álvaro Ortega
- Department of Biochemistry and Molecular Biology 'B' and Immunology, Faculty of Chemistry, University of Murcia, Regional Campus of International Excellence "Campus Mare Nostrum", Murcia, Spain
| | - Tino Krell
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Prof. Albareda 1, Granada 18008, Spain
| |
Collapse
|
19
|
Wang Y, Nan X, Zhao Y, Jiang L, Wang M, Wang H, Zhang F, Xue F, Hua D, Liu J, Yao J, Xiong B. Rumen microbiome structure and metabolites activity in dairy cows with clinical and subclinical mastitis. J Anim Sci Biotechnol 2021; 12:36. [PMID: 33557959 PMCID: PMC7869221 DOI: 10.1186/s40104-020-00543-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 12/28/2020] [Indexed: 12/17/2022] Open
Abstract
Background Due to the high prevalence and complex etiology, bovine mastitis (BM) is one of the most important diseases to compromise dairy cow health and milk quality. The shift in milk compositions has been widely investigated during mastitis, but recent studies suggested that gastrointestinal microorganism also has a crucial effect on the inflammation of other peripheral tissues and organs, including the mammary gland. However, research focused on the variation of rumen inner-environment during mastitis is still limited. Therefore, the ruminal microbial profiles, metabolites, and milk compositions in cows with different udder health conditions were compared in the present study. Furthermore, the correlations between udder health status and ruminal conditions were investigated. Based on the somatic cell counts (SCC), California mastitis test (CMT) parameters and clinical symptoms of mastitis, 60 lactating Holstein dairy cows with similar body conditions (excepted for the udder health condition) were randomly divided into 3 groups (n = 20 per group) including the healthy (H) group, the subclinical mastitis (SM) group and the clinical mastitis (CM) group. Lactation performance and rumen fermentation parameters were recorded. And rumen microbiota and metabolites were also analyzed via 16S rRNA amplicon sequencing and untargeted metabolomics, respectively. Results As the degree of mastitis increased, rumen lactic acid (LA) (P < 0.01), acetate, propionate, butyrate, valerate (P < 0.001), and total volatile fatty acids (TVFAs) (P < 0.01) concentrations were significantly decreased. In the rumen of CM cows, the significantly increased bacteria related to intestinal and oral inflammation, such as Lachnospiraceae (FDR-adjusted P = 0.039), Moraxella (FDR-adjusted P = 0.011) and Neisseriaceae (FDR-adjusted P = 0.036), etc., were accompanied by a significant increase in 12-oxo-20-dihydroxy-leukotriene B4 (FDR-adjusted P = 5.97 × 10− 9) and 10beta-hydroxy-6beta-isobutyrylfuranoeremophilane (FDR-adjusted P = 3.88 × 10− 10). Meanwhile, in the rumen of SM cows, the Ruminiclostridium_9 (FDR-adjusted P = 0.042) and Enterorhabdus (FDR-adjusted P = 0.043) were increased along with increasing methenamine (FDR-adjusted P = 6.95 × 10− 6), 5-hydroxymethyl-2-furancarboxaldehyde (5-HMF) (FDR-adjusted P = 2.02 × 10− 6) and 6-methoxymellein (FDR-adjusted P = 2.57 × 10− 5). The short-chain fatty acids (SCFAs)-producing bacteria and probiotics in rumen, including Prevoterotoella_1 (FDR-adjusted P = 0.045) and Bifidobacterium (FDR-adjusted P = 0.035), etc., were significantly reduced, with decreasing 2-phenylbutyric acid (2-PBA) (FDR-adjusted P = 4.37 × 10− 6). Conclusion The results indicated that there was a significant shift in the ruminal microflora and metabolites associated with inflammation and immune responses during CM. Moreover, in the rumen of cows affected by SM, the relative abundance of several opportunistic pathogens and the level of metabolites which could produce antibacterial compounds or had a competitive inhibitory effect were all increased. Supplementary Information The online version contains supplementary material available at 10.1186/s40104-020-00543-1.
Collapse
Affiliation(s)
- Yue Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Xuemei Nan
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yiguang Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Linshu Jiang
- Beijing Key Laboratory for Dairy Cow Nutrition, Beijing University of Agriculture, Beijing, 102206, China.
| | - Mengling Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Hui Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Fan Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Fuguang Xue
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,Engineering Research Center of Feed Development, Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Dengke Hua
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jun Liu
- Langfang Academy of Agriculture and Forestry, Langfang, 065000, China
| | - Junhu Yao
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Benhai Xiong
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
20
|
García A, Fox JG. A One Health Perspective for Defining and Deciphering Escherichia coli Pathogenic Potential in Multiple Hosts. Comp Med 2021; 71:3-45. [PMID: 33419487 PMCID: PMC7898170 DOI: 10.30802/aalas-cm-20-000054] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/17/2020] [Accepted: 09/19/2020] [Indexed: 11/05/2022]
Abstract
E. coli is one of the most common species of bacteria colonizing humans and animals. The singularity of E. coli 's genus and species underestimates its multifaceted nature, which is represented by different strains, each with different combinations of distinct virulence factors. In fact, several E. coli pathotypes, or hybrid strains, may be associated with both subclinical infection and a range of clinical conditions, including enteric, urinary, and systemic infections. E. coli may also express DNA-damaging toxins that could impact cancer development. This review summarizes the different E. coli pathotypes in the context of their history, hosts, clinical signs, epidemiology, and control. The pathotypic characterization of E. coli in the context of disease in different animals, including humans, provides comparative and One Health perspectives that will guide future clinical and research investigations of E. coli infections.
Collapse
Key Words
- aa, aggregative adherence
- a/e, attaching and effacing
- aepec, atypical epec
- afa, afimbrial adhesin
- aida-i, adhesin involved in diffuse adherence
- aiec, adherent invasive e. coli
- apec, avian pathogenic e. coli
- atcc, american type culture collection
- bfp, bundle-forming pilus
- cd, crohn disease
- cdt, cytolethal distending toxin gene
- clb, colibactin
- cnf, cytotoxic necrotizing factor
- cs, coli surface (antigens)
- daec, diffusely adhering e. coli
- db, dutch belted
- eae, e. coli attaching and effacing gene
- eaec, enteroaggregative e. coli
- eaf, epec adherence factor (plasmid)
- eahec, entero-aggregative-hemorrhagic e. coli
- east-1, enteroaggregative e. coli heat-stable enterotoxin
- e. coli, escherichia coli
- ed, edema disease
- ehec, enterohemorrhagic e. coli
- eiec, enteroinvasive e. coli
- epec, enteropathogenic e. coli
- esbl, extended-spectrum β-lactamase
- esp, e. coli secreted protein
- etec, enterotoxigenic e. coli
- expec, extraintestinal pathogenic e. coli
- fyua, yersiniabactin receptor gene
- gi, gastrointestinal
- hly, hemolysin
- hus, hemolytic uremic syndrome
- ibd, inflammatory bowel disease
- la, localized adherence
- lee, locus of enterocyte effacement
- lpf, long polar fimbriae
- lt, heat-labile (enterotoxin)
- mlst, multilocus sequence typing
- ndm, new delhi metallo-β-lactamase
- nzw, new zealand white
- pap, pyelonephritis-associated pilus
- pks, polyketide synthase
- sfa, s fimbrial adhesin
- slt, shiga-like toxin
- st, heat-stable (enterotoxin)
- stec, stx-producing e. coli
- stx, shiga toxin
- tepec, typical epec
- upec, uropathogenic e. coli
- uti, urinary tract infection
Collapse
Affiliation(s)
- Alexis García
- Molecular Sciences Research Center, University of Puerto Rico, San Juan, Puerto Rico; Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts; Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts;,
| | - James G Fox
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts
| |
Collapse
|
21
|
Hantke K. Compilation of Escherichia coli K-12 outer membrane phage receptors - their function and some historical remarks. FEMS Microbiol Lett 2021; 367:5721240. [PMID: 32009155 DOI: 10.1093/femsle/fnaa013] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 01/31/2020] [Indexed: 02/07/2023] Open
Abstract
Many Escherichia coli phages have been sequenced, but in most cases their sequences alone do not suffice to predict their host specificity. Analysis of phage resistant E. coli K-12 mutants have uncovered a certain set of outer membrane proteins and polysaccharides as receptors. In this review, a compilation of E. coli K12 phage receptors is provided and their functional characterization, often driven by studies on phage resistant mutants, is discussed in the historical context. While great progress has been made in this field thus far, several proteins in the outer membrane still await characterization as phage receptors.
Collapse
Affiliation(s)
- Klaus Hantke
- IMIT, Interfakultäres Institut für Mikrobiologie und Infektionsmedizin University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| |
Collapse
|
22
|
Alawneh JI, Vezina B, Ramay HR, Al-Harbi H, James AS, Soust M, Moore RJ, Olchowy TWJ. Survey and Sequence Characterization of Bovine Mastitis-Associated Escherichia coli in Dairy Herds. Front Vet Sci 2020; 7:582297. [PMID: 33365333 PMCID: PMC7750360 DOI: 10.3389/fvets.2020.582297] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 11/05/2020] [Indexed: 01/29/2023] Open
Abstract
Escherichia coli is frequently associated with mastitis in cattle. "Pathogenic" and "commensal" isolates appear to be genetically similar. With a few exceptions, no notable genotypic differences have been found between commensal and mastitis-associated E. coli. In this study, 24 E. coli strains were isolated from dairy cows with clinical mastitis in three geographic regions of Australia (North Queensland, South Queensland, and Victoria), sequenced, then genomically surveyed. There was no observed relationship between sequence type (ST) and region (p = 0.51). The most common Multi Locus Sequence Type was ST10 (38%), then ST4429 (13%). Pangenomic analysis revealed a soft-core genome of 3,463 genes, including genes associated with antibiotic resistance, chemotaxis, motility, adhesion, biofilm formation, and pili. A total of 36 different plasmids were identified and generally found to have local distributions (p = 0.02). Only 2 plasmids contained antibiotic resistance genes, a p1303_5-like plasmid encoding multidrug-resistance (trimethoprim, quaternary ammonium, beta-lactam, streptomycin, sulfonamide, and kanamycin) from two North Queensland isolates on the same farm, while three Victorian isolates from the same farm contained a pCFSAN004177P_01-like plasmid encoding tetracycline-resistance. This pattern is consistent with a local spread of antibiotic resistance through plasmids of bovine mastitis cases. Notably, co-occurrence of plasmids containing virulence factors/antibiotic resistance with putative mobilization was rare, though the multidrug resistant p1303_5-like plasmid was predicted to be conjugative and is of some concern. This survey has provided greater understanding of antibiotic resistance within E. coli-associated bovine mastitis which will allow greater prediction and improved decision making in disease management.
Collapse
Affiliation(s)
- John I. Alawneh
- Good Clinical Practice Research Group, School of Veterinary Science, The University of Queensland, Gatton, QLD, Australia
- School of Veterinary Science, The University of Queensland, Gatton, QLD, Australia
| | - Ben Vezina
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia
| | - Hena R. Ramay
- International Microbiome Centre, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Hulayyil Al-Harbi
- Good Clinical Practice Research Group, School of Veterinary Science, The University of Queensland, Gatton, QLD, Australia
- School of Veterinary Science, The University of Queensland, Gatton, QLD, Australia
| | - Ameh S. James
- School of Veterinary Science, The University of Queensland, Gatton, QLD, Australia
| | - Martin Soust
- Terragen Biotech Pty Ltd., Coolum Beach, QLD, Australia
| | - Robert J. Moore
- School of Science, RMIT University, Melbourne, VIC, Australia
| | - Timothy W. J. Olchowy
- Good Clinical Practice Research Group, School of Veterinary Science, The University of Queensland, Gatton, QLD, Australia
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
23
|
Neill CJ, Harris S, Goldstone RJ, Lau ECHT, Henry TB, Yiu HHP, Smith DGE. Antibacterial Activities of Ga(III) against E. coli Are Substantially Impacted by Fe(III) Uptake Systems and Multidrug Resistance in Combination with Oxygen Levels. ACS Infect Dis 2020; 6:2959-2969. [PMID: 32960047 DOI: 10.1021/acsinfecdis.0c00425] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The continued emergence and spread of antimicrobial resistance (AMR), particularly multidrug resistant (MDR) bacteria, are increasing threats driving the search for additional and alternative antimicrobial agents. The World Health Organization (WHO) has categorized bacterial risk levels and includes Escherichia coli among the highest priority, making this both a convenient model bacterium and a clinically highly relevant species on which to base investigations of antimicrobials. Among many compounds examined for use as antimicrobials, Ga(III) complexes have shown promise. Nonetheless, the spectrum of activities, susceptibility of bacterial species, mechanisms of antimicrobial action, and bacterial characteristics influencing antibacterial actions are far from being completely understood; these are important considerations for any implementation of an effective antibacterial agent. In this investigation, we show that an alteration in growth conditions to physiologically relevant lowered oxygen (anaerobic) conditions substantially increases the minimum inhibitory concentrations (MICs) of Ga(III) required to inhibit growth for 46 wild-type E. coli strains. Several studies have implicated a Trojan horse hypothesis wherein bacterial Fe uptake systems have been linked to the promotion of Ga(III) uptake and result in enhanced antibacterial activity. Our studies show that, conversely, the carriage of accessory Fe uptake systems (Fe_acc) significantly increased the concentrations of Ga(III) required for antibacterial action. Similarly, it is shown that MDR strains are more resistant to Ga(III). The increased tolerance of Fe_acc/MDR strains was apparent under anaerobic conditions. This phenomenon of heightened tolerance has not previously been shown although the mechanisms remain to be defined. Nonetheless, this further highlights the significant contributions of bacterial metabolism, fitness, and AMR characteristics and their implications in evaluating novel antimicrobials.
Collapse
Affiliation(s)
- Christopher J. Neill
- The Institute of Biological Chemistry, Biophysics and Bioengineering (IB3), School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Susan Harris
- The Institute of Biological Chemistry, Biophysics and Bioengineering (IB3), School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Robert J. Goldstone
- The Institute of Biological Chemistry, Biophysics and Bioengineering (IB3), School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Elizabeth C. H. T. Lau
- Chemical Engineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Theodore B. Henry
- The Institute of Life and Earth Sciences (ILES), School of Energy, Geoscience, Infrastructure and Society, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Humphrey H. P. Yiu
- Chemical Engineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - David G. E. Smith
- The Institute of Biological Chemistry, Biophysics and Bioengineering (IB3), School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| |
Collapse
|
24
|
Vander Elst N, Breyne K, Steenbrugge J, Gibson AJ, Smith DGE, Germon P, Werling D, Meyer E. Enterobactin Deficiency in a Coliform Mastitis Isolate Decreases Its Fitness in a Murine Model: A Preliminary Host-Pathogen Interaction Study. Front Vet Sci 2020; 7:576583. [PMID: 33240956 PMCID: PMC7680728 DOI: 10.3389/fvets.2020.576583] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 10/05/2020] [Indexed: 11/13/2022] Open
Abstract
Iron is an essential nutrient for bacterial growth. Therefore, bacteria have evolved chelation mechanisms to acquire iron for their survival. Enterobactin, a chelator with high affinity for ferric iron, is secreted by Escherichia coli and contributes to its improved bacterial fitness. In this preliminary study, we evaluated enterobactin deficiency both in vitro and in vivo in the context of E. coli mastitis. Firstly, we showed that expression of lipocalin 2, a protein produced by the host that is able to both bind and deplete enterobactin, is increased upon E. coli infection in the cow's mastitic mammary gland. Secondly, we demonstrated in vitro that enterobactin deficiency does not alter interleukin (IL)-8 expression in bovine mammary epithelial cells and its associated neutrophil recruitment. However, a significantly increased reactive oxygen species production of these neutrophils was observed. Thirdly, we showed there was no significant difference in bacterial in vitro growth between the enterobactin-deficient mutant and its wild-type counterpart. However, when further explored in a murine model for bovine mastitis, the enterobactin-deficient mutant vs. the wild-type strain revealed a significant reduction of the bacterial load and, consequently, a decrease in pro-inflammatory cytokines (IL-1α,-1β,-4,-6, and-8). A reduced neutrophilic influx was also observed immunohistochemically. These findings therefore identify interference of the enterobactin iron-scavenging mechanism as a potential measure to decrease the fitness of E. coli in the mastitic mammary gland.
Collapse
Affiliation(s)
- Niels Vander Elst
- Laboratory of Biochemistry, Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Koen Breyne
- Laboratory of Biochemistry, Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
- Molecular Neurogenetics Unit, Department of Neurology and Center for Molecular Imaging Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Jonas Steenbrugge
- Laboratory of Biochemistry, Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Amanda Jane Gibson
- Centre of Excellence for Bovine TB, Institute of Biology, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, United Kingdom
| | - David George Emslie Smith
- School of Engineering and Physical Sciences, Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh, United Kingdom
| | - Pierre Germon
- INRAE, UMR ISP, Université François Rabelais de Tours, Nouzilly, France
| | - Dirk Werling
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, United Kingdom
| | - Evelyne Meyer
- Laboratory of Biochemistry, Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
25
|
Rahmani HK, Tabar GH, Badouei MA, Khoramian B. Development of three multiplex-PCR assays for virulence profiling of different iron acquisition systems in Escherichia coli. IRANIAN JOURNAL OF MICROBIOLOGY 2020; 12:281-288. [PMID: 32994898 PMCID: PMC7502150 DOI: 10.18502/ijm.v12i4.3930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
BACKGROUND AND OBJECTIVES Escherichia coli is responsible for various enteric and extraintestinal infections in animals and humans. Iron as an essential nutrient, has a proven role in pathogenicity of E. coli. Pathogenic E. coli benefits of having complicated systems for iron acquisition but our current knowledge is limited because of complexity of these systems. In the present study, three multiplex-PCR assays were developed to screen nine different virulence genes related to diverse iron acquisition systems in E. coli. MATERIALS AND METHODS The multiplex-PCR systems were designed and optimized in three panels. Each panel includes a triplex-PCR cocktail. The panels are as follow: panel 1: iroN, iutA and fecA; panel 2: fyuA, sitA and irp2; and panel 3: iucD, chuA and tonB. A total of 39 pathogenic E. coli was screened according to the designed multiplex-PCR. RESULTS In total, the top three frequent genes were tonB (100%), fecA (66.6%) and sitA (58.9%). With the exception of fecA and tonB, comparing the prevalence of genes among different origin of isolates (human, cattle, poultry and pigeon) showed significant associations (P < 0.05). Moreover, the iroN, sitA and iucD genes were significantly prevalent (P < 0.05) among members of extraintestinal pathogenic E. coli in comparison with the group of diarrheagenic E. coli. CONCLUSION The current multiplex-PCR assays could be a valuable, rapid and economic tool to investigate diverse iron acquisition systems in E. coli for more precise virulence typing of pathogenic or commensal strains.
Collapse
Affiliation(s)
- Hamideh Kalateh Rahmani
- Department of Pathobiology, School of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Gholamreza Hashemi Tabar
- Department of Pathobiology, School of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mahdi Askari Badouei
- Department of Pathobiology, School of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Babak Khoramian
- Department of Clinical Sciences, School of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
26
|
Finton MD, Meisal R, Porcellato D, Brandal LT, Lindstedt BA. Whole Genome Sequencing and Characterization of Multidrug-Resistant (MDR) Bacterial Strains Isolated From a Norwegian University Campus Pond. Front Microbiol 2020; 11:1273. [PMID: 32625184 PMCID: PMC7311804 DOI: 10.3389/fmicb.2020.01273] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 05/19/2020] [Indexed: 11/16/2022] Open
Abstract
The presence of extended-spectrum β-lactamase (ESBL)-producing bacteria in environmental sources has been reported worldwide and constitutes a serious risk of community-acquired infections with limited treatment options. The current study aimed to explore the presence of these worrisome bacteria in a pond located at the Norwegian University of Life Sciences in Ås, Norway. A total of 98 bacterial isolates survived growth on selective chromogenic media and were identified by 16S rRNA Sanger sequencing. All strains were evaluated for the presence of the most commonly found β-lactamases and ESBLs in clinical settings (blaCTX–M groups 1, 2, and 9, blaCMY, blaSHV, and blaTEM) and carbapenemases (blaIMP, blaKPC, blaNDM, blaOXA, blaSFC1, blaVIM) through multiplex PCR. A total of eight strains were determined to contain one or more genes of interest. Phenotypic resistance to 18 antimicrobial agents was assessed and isolates were subjected to whole genome sequencing through a combination of Oxford Nanopore’s MinION and Illumina’s MiSeq. Results revealed the presence of β-lactamase and ESBL-producing Escherichia coli, Klebsiella pneumoniae, Stenotrophomonas maltophilia, and a Paraburkholderia spp. Identified β-lactamases and ESBLs include blaCTX–M, blaTEM, blaCMY, blaSHV and a possible blaKPC-like gene, with both documented and novel sequences established. In addition, two inducible β-lactamases were found, a class A β-lactamase (L1) and a cephalosporinase (L2). All strains were determined to be multidrug resistant and numerous resistance genes to non-β-lactams were observed. In conclusion, this study demonstrates that environmental sources are a potential reservoir of clinically relevant ESBL-producing bacteria that may pose a health risk to humans upon exposure.
Collapse
Affiliation(s)
- Misti D Finton
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Roger Meisal
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Davide Porcellato
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Lin T Brandal
- Department of Zoonotic, Food- and Waterborne Infections, Norwegian Institute of Public Health, Oslo, Norway
| | - Bjørn-Arne Lindstedt
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
27
|
Carlson SK, Erickson DL, Wilson E. Staphylococcus aureus metal acquisition in the mastitic mammary gland. Microb Pathog 2020; 144:104179. [DOI: 10.1016/j.micpath.2020.104179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/23/2020] [Accepted: 03/27/2020] [Indexed: 12/28/2022]
|
28
|
Niedziela DA, Murphy MP, Grant J, Keane OM, Leonard FC. Clinical presentation and immune characteristics in first-lactation Holstein-Friesian cows following intramammary infection with genotypically distinct Staphylococcus aureus strains. J Dairy Sci 2020; 103:8453-8466. [PMID: 32622604 DOI: 10.3168/jds.2019-17433] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 04/27/2020] [Indexed: 11/19/2022]
Abstract
Staphylococcus aureus is an important cause of bovine mastitis, and intramammary infections caused by this pathogen are often characterized as mild, chronic, or persistent. The strains of Staph. aureus associated with mastitis belong to several distinct bovine-adapted bacterial lineages. Studies of host-pathogen interactions have demonstrated that significant differences exist between Staph. aureus strains and lineages in their ability to internalize and to elicit expression of chemokines and pro-inflammatory mediators in bovine cells in vitro. To determine the effect of bacterial strain on the response to intramammary infection in vivo, 14 disease-free, first-lactation cows were randomly allocated to 2 groups and challenged with Staph. aureus strain MOK023 (belonging to CC97) or MOK124 (belonging to CC151). Clinical signs of infection, as well as somatic cell count (SCC), bacterial load, IL-8 and IL-1β in milk, anti-Staph. aureus IgG in milk and serum, anti-Staph. aureus IgA in milk, and white blood cell populations in milk and blood were monitored for 30 d after the challenge. Cows infected with MOK023 generally developed subclinical mastitis, whereas cows infected with MOK124 generally developed clinical mastitis. Milk yield was reduced to a greater extent in response to infection with MOK124 compared with MOK023 in the first week of the study. Significantly higher SCC, IL-8, and IL-1β in milk as well as higher anti-Staph. aureus IgG and IgA in milk and anti-Staph. aureus IgG in serum were also observed in response to MOK124 compared with the response to MOK023. Higher proportions of neutrophils were observed in milk of animals infected with MOK124 than in animals infected with MOK023. Higher neutrophil concentration in blood was also observed in the MOK124 group compared with the MOK023 group. Overall, the results indicate that the outcome of mastitis mediated by Staph. aureus is strain dependent.
Collapse
Affiliation(s)
- Dagmara A Niedziela
- Animal and Bioscience Department, Teagasc, Grange, Dunsany, Co. Meath, Ireland C15 PW93; School of Veterinary Medicine, University College Dublin, Dublin 4, Ireland
| | - Mark P Murphy
- Animal and Bioscience Department, Teagasc, Grange, Dunsany, Co. Meath, Ireland C15 PW93
| | - Jim Grant
- Statistics and Applied Physics, Teagasc, Ashtown, Dublin 15, Ireland
| | - Orla M Keane
- Animal and Bioscience Department, Teagasc, Grange, Dunsany, Co. Meath, Ireland C15 PW93
| | - Finola C Leonard
- School of Veterinary Medicine, University College Dublin, Dublin 4, Ireland.
| |
Collapse
|
29
|
Blum SE, Heller DE, Jacoby S, Krifuks O, Merin U, Silanikove N, Lavon Y, Edery N, Leitner G. Physiological response of mammary glands to Escherichia coli infection:A conflict between glucose need for milk production and immune response. Sci Rep 2020; 10:9602. [PMID: 32541828 PMCID: PMC7296043 DOI: 10.1038/s41598-020-66612-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 05/13/2020] [Indexed: 11/25/2022] Open
Abstract
The mammary immune and physiological responses to distinct mammary-pathogenic E. coli (MPEC) strains were studied. One gland in each of ten cows were challenged intra-mammary and milk composition (lactose, fat, total protein, casein), biochemical (glucose, glucose-6-phosphate (Glu6P), oxalate, malate, lactate, pyruvate and citrate, malate and lactate dehydrogenases, lactate dehydrogenase (LDH), nitrite, lactic peroxidase, catalase, albumin, lactoferrin, immunoglobulin) and clotting parameters were followed for 35 days post-challenge. Challenge lead to clinical acute mastitis, with peak bacterial counts in milk at 16-24 h post-challenge. Biochemical and clotting parameters in milk reported were partially in accord with lipopolysaccharide-induced mastitis, but increased Glu6P and LDH activity and prolonged lactate dehydrogenase and Glu6P/Glu alterations were found. Some alterations measured in milk resolved within days after challenge, while others endured for above one month, regardless of bacterial clearance, and some reflected physiological responses to mastitis such as the balance between aerobic and anaerobic metabolism (citrate to lactate ratios). The results suggest that E. coli mastitis can be divided into two stages: an acute, clinical phase, as an immediate response to bacterial infection in the mammary gland, and a chronic phase, independent of bacteria clearance, in response to tissue damage caused during the acute phase.
Collapse
Affiliation(s)
- Shlomo E Blum
- National Mastitis Reference Center, Kimron Veterinary Institute, Ministry of Agriculture and Rural Development, P.O. Box 6, Bet Dagan, 50250, Israel
- Department of Animal Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, P.O.Box 12, Rehovot, 76100, Israel
| | - Dan E Heller
- Department of Animal Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, P.O.Box 12, Rehovot, 76100, Israel
| | - Shamay Jacoby
- Institute of Animal Science, A.R.O. The Volcani Center, P.O. Box 6, Bet Dagan, 50250, Israel
| | - Oleg Krifuks
- National Mastitis Reference Center, Kimron Veterinary Institute, Ministry of Agriculture and Rural Development, P.O. Box 6, Bet Dagan, 50250, Israel
| | - Uzi Merin
- Food Quality and Safety, Postharvest and Food Sciences, A.R.O. The Volcani Center, P.O. Box 6, Bet Dagan, 50250, Israel
| | - Nissim Silanikove
- Institute of Animal Science, A.R.O. The Volcani Center, P.O. Box 6, Bet Dagan, 50250, Israel
| | - Yaniv Lavon
- Israel Cattle Breeders Association, Caesarea, 38900, Israel
| | - Nir Edery
- National Mastitis Reference Center, Kimron Veterinary Institute, Ministry of Agriculture and Rural Development, P.O. Box 6, Bet Dagan, 50250, Israel
| | - Gabriel Leitner
- National Mastitis Reference Center, Kimron Veterinary Institute, Ministry of Agriculture and Rural Development, P.O. Box 6, Bet Dagan, 50250, Israel.
| |
Collapse
|
30
|
Salamon H, Nissim-Eliraz E, Ardronai O, Nissan I, Shpigel NY. The role of O-polysaccharide chain and complement resistance of Escherichia coli in mammary virulence. Vet Res 2020; 51:77. [PMID: 32539761 PMCID: PMC7294653 DOI: 10.1186/s13567-020-00804-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 05/27/2020] [Indexed: 12/19/2022] Open
Abstract
Mastitis, inflammation of the mammary gland, is a common disease of dairy animals. The disease is caused by bacterial infection ascending through the teat canal and mammary pathogenic Escherichia coli (MPEC) are common etiology. In the first phase of infection, virulence mechanisms, designated as niche factors, enable MPEC bacteria to resist innate antimicrobial mechanisms, replicate in milk, and to colonize the mammary gland. Next, massive replication of colonizing bacteria culminates in a large biomass of microbe-associated molecular patterns (MAMPs) recognized by pattern recognition receptors (PRRs) such as toll-like receptors (TLRs) mediating inflammatory signaling in mammary alveolar epithelial cells (MAEs) and macrophages. Bacterial lipopolysaccharides (LPSs), the prototypical class of MAMPs are sufficient to elicit mammary inflammation mediated by TLR4 signaling and activation of nuclear factor kB (NF-kB), the master regulator of inflammation. Using in vivo mastitis model, in low and high complements mice, and in vitro NF-kB luminescence reporter system in MAEs, we have found that the smooth configuration of LPS O-polysaccharides in MPEC enables the colonizing organisms to evade the host immune response by reducing inflammatory response and conferring resistance to complement. Screening a collection of MPEC field strains, we also found that all strains were complement resistant and 94% (45/48) were smooth. These results indicate that the structure of LPS O-polysaccharides chain is important for the pathogenesis of MPEC mastitis and provides protection against complement-mediated killing. Furthermore, we demonstrate a role for complement, a key component of innate immunity, in host-microbe interactions of the mammary gland.
Collapse
Affiliation(s)
- Hagit Salamon
- The Koret School of Veterinary Medicine, Hebrew University of Jerusalem, POB 12, 76100, Rehovot, Israel
| | - Einat Nissim-Eliraz
- The Koret School of Veterinary Medicine, Hebrew University of Jerusalem, POB 12, 76100, Rehovot, Israel
| | - Oded Ardronai
- The Koret School of Veterinary Medicine, Hebrew University of Jerusalem, POB 12, 76100, Rehovot, Israel
| | - Israel Nissan
- The Koret School of Veterinary Medicine, Hebrew University of Jerusalem, POB 12, 76100, Rehovot, Israel
| | - Nahum Y Shpigel
- The Koret School of Veterinary Medicine, Hebrew University of Jerusalem, POB 12, 76100, Rehovot, Israel.
| |
Collapse
|
31
|
Correlation between Milk Bacteriology, Cytology and Mammary Tissue Histology in Cows: Cure from the Pathogen or Recovery from the Inflammation. Pathogens 2020; 9:pathogens9050364. [PMID: 32397457 PMCID: PMC7281236 DOI: 10.3390/pathogens9050364] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 11/17/2022] Open
Abstract
The aim of the current study was to verify the existence of a significant correlation between bacterial isolation (or not) and mammary gland inflammation, using traditional bacterial culturing and PCR, milk leucocytes distributions, and tissue histology. Twenty-two cows were tested at the level of the individual gland for bacteriological culture and real-time PCR (RT-PCR), milk composition, somatic cells count (SCC), and cell differentiation. Post-slaughter samples of teat-ends and mammary tissues were tested for histology and bacteriology by RT-PCR. The 88 glands were assigned to either outcome: 1. Healthy—no inflammation and no bacterial finding (NBF) (n = 33); 2. Inflammation and NBF (n = 26); 3. Inflammation and intra-mammary infection (n = 22) with different bacteria. Bacteriology of milk samples and that of the RT-PCR showed 91.4% agreement. In the lobule’s tissues of healthy glands, ~50% were milk producers and the other glands had dry areas with increased fat globules with a low number of leukocytes. In contrast, ~75% of the infected glands were identified as inflamed, but with no isolation of bacteria. Infiltration of mononuclear cells and neutrophils into the connective tissue was observed but not in the lobule’s lumen. In summary, the study confirms that not every mastitis/inflammation is also an infection.
Collapse
|
32
|
Keane OM. Symposium review: Intramammary infections-Major pathogens and strain-associated complexity. J Dairy Sci 2019; 102:4713-4726. [PMID: 30827546 DOI: 10.3168/jds.2018-15326] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 01/08/2019] [Indexed: 01/30/2023]
Abstract
Intramammary infection (IMI) is one of the most costly diseases to the dairy industry. It is primarily due to bacterial infection and the major intramammary pathogens include Escherichia coli, Streptococcus uberis, and Staphylococcus aureus. The severity and outcome of IMI is dependent on several host factors including innate host resistance, energy balance, immune status, parity, and stage of lactation. Additionally, the infecting organism can influence the host immune response and progression of disease. It is increasingly recognized that not only the infecting pathogen species, but also the strain, can affect the transmission, severity, and outcome of IMI. For each of 3 major IMI-associated pathogens, S. aureus, Strep. uberis, and E. coli, specific strains have been identified that are adapted to the intramammary environment. Strain-dependent variation in the host immune response to infection has also been reported. The diversity of strains associated with IMI must be considered if vaccines effective against the full repertoire of mammary pathogenic strains are to be developed. Although important advances have been made recently in understanding the molecular mechanism underpinning strain-specific virulence, further research is required to fully elucidate the cellular and molecular pathogenesis of mammary adapted strains and the role of the strain in influencing the pathophysiology of infection. Improved understanding of molecular pathogenesis of strains associated with bovine IMI will contribute to the development of new control strategies, therapies, and vaccines. The development of enabling technologies such as pathogenomics, transcriptomics, and proteomics can facilitate system-level studies of strain-specific molecular pathogenesis and the identification of key mediators of host-pathogen interactions.
Collapse
Affiliation(s)
- O M Keane
- Animal and Bioscience Department, Teagasc, Grange, Dunsany, Co. Meath, Ireland C15 PW93.
| |
Collapse
|
33
|
Nagasawa Y, Kiku Y, Sugawara K, Yabusaki T, Oono K, Fujii K, Suzuki T, Maehana K, Hayashi T. The bacterial load in milk is associated with clinical severity in cases of bovine coliform mastitis. J Vet Med Sci 2018; 81:107-112. [PMID: 30473580 PMCID: PMC6361639 DOI: 10.1292/jvms.18-0581] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
We evaluated the relationship between the severity of coliform mastitis and bacterial load in 106 quarter milk samples. We found no significant relationship between somatic cell count and coliform bacterial load in milk in bovine clinical coliform mastitis. Results of the Cochran-Armitage test for trend in milk bacterial load proportions indicated a significant decreasing low group (P<0.001), increasing medium group (P<0.002) and increasing high group (P<0.02) with increasing clinical grade. The present study indicates that the coliform bacterial load in milk is significantly associated with clinical severity states in cases of bovine coliform mastitis, and can be a useful indicator for optimal management of this disease.
Collapse
Affiliation(s)
- Yuya Nagasawa
- Dairy Hygiene Unit, Division of Pathology and Pathophysiology, Hokkaido Research Station, National Institute of Animal Health, National Agriculture and Food Research Organization, 4 Hitsujigaoka, Toyohira, Sapporo, Hokkaido 062-0045, Japan
| | - Yoshio Kiku
- Dairy Hygiene Unit, Division of Pathology and Pathophysiology, Hokkaido Research Station, National Institute of Animal Health, National Agriculture and Food Research Organization, 4 Hitsujigaoka, Toyohira, Sapporo, Hokkaido 062-0045, Japan
| | - Kazue Sugawara
- Dairy Hygiene Unit, Division of Pathology and Pathophysiology, Hokkaido Research Station, National Institute of Animal Health, National Agriculture and Food Research Organization, 4 Hitsujigaoka, Toyohira, Sapporo, Hokkaido 062-0045, Japan
| | - Takahiro Yabusaki
- NOSAI Minami, 401-4 Shinotsu, Ebetsu, Hokkaido 067-0055, Japan.,Hokubu Veterinary Clinic, Chiba P.F.A.M.A.A, 99-1 Nira, Katori, Chiba 389-0407, Japan
| | - Kazuyoshi Oono
- NOSAI Minami, 401-4 Shinotsu, Ebetsu, Hokkaido 067-0055, Japan
| | - Kento Fujii
- NOSAI Minami, 401-4 Shinotsu, Ebetsu, Hokkaido 067-0055, Japan
| | - Takahide Suzuki
- NOSAI Minami, 401-4 Shinotsu, Ebetsu, Hokkaido 067-0055, Japan
| | - Koji Maehana
- Healthcare R&D Center, Asahi Kasei Corporation, 2-1 Samejima, Fuji, Shizuoka 416-8501, Japan
| | - Tomohito Hayashi
- Dairy Hygiene Unit, Division of Pathology and Pathophysiology, Hokkaido Research Station, National Institute of Animal Health, National Agriculture and Food Research Organization, 4 Hitsujigaoka, Toyohira, Sapporo, Hokkaido 062-0045, Japan
| |
Collapse
|