1
|
McConville R, Krol JMM, Steel RWJ, O’Neill MT, Davey BK, Hodder AN, Nebl T, Cowman AF, Kneteman N, Boddey JA. Flp/ FRT-mediated disruption of ptex150 and exp2 in Plasmodium falciparum sporozoites inhibits liver-stage development. Proc Natl Acad Sci U S A 2024; 121:e2403442121. [PMID: 38968107 PMCID: PMC11252984 DOI: 10.1073/pnas.2403442121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/31/2024] [Indexed: 07/07/2024] Open
Abstract
Plasmodium falciparum causes severe malaria and assembles a protein translocon (PTEX) complex at the parasitophorous vacuole membrane (PVM) of infected erythrocytes, through which several hundred proteins are exported to facilitate growth. The preceding liver stage of infection involves growth in a hepatocyte-derived PVM; however, the importance of protein export during P. falciparum liver infection remains unexplored. Here, we use the FlpL/FRT system to conditionally excise genes in P. falciparum sporozoites for functional liver-stage studies. Disruption of PTEX members ptex150 and exp2 did not affect sporozoite development in mosquitoes or infectivity for hepatocytes but attenuated liver-stage growth in humanized mice. While PTEX150 deficiency reduced fitness on day 6 postinfection by 40%, EXP2 deficiency caused 100% loss of liver parasites, demonstrating that PTEX components are required for growth in hepatocytes to differing degrees. To characterize PTEX loss-of-function mutations, we localized four liver-stage Plasmodium export element (PEXEL) proteins. P. falciparum liver specific protein 2 (LISP2), liver-stage antigen 3 (LSA3), circumsporozoite protein (CSP), and a Plasmodium berghei LISP2 reporter all localized to the periphery of P. falciparum liver stages but were not exported beyond the PVM. Expression of LISP2 and CSP but not LSA3 was reduced in ptex150-FRT and exp2-FRT liver stages, suggesting that expression of some PEXEL proteins is affected directly or indirectly by PTEX disruption. These results show that PTEX150 and EXP2 are important for P. falciparum development in hepatocytes and emphasize the emerging complexity of PEXEL protein trafficking.
Collapse
Affiliation(s)
- Robyn McConville
- Division of Infectious Diseases & Immune Defence, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC3010, Australia
| | - Jelte M. M. Krol
- Division of Infectious Diseases & Immune Defence, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC3010, Australia
| | - Ryan W. J. Steel
- Division of Infectious Diseases & Immune Defence, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC3010, Australia
| | - Matthew T. O’Neill
- Division of Infectious Diseases & Immune Defence, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC3052, Australia
| | - Bethany K. Davey
- Division of Infectious Diseases & Immune Defence, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC3010, Australia
| | - Anthony N. Hodder
- Division of Infectious Diseases & Immune Defence, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC3010, Australia
| | - Thomas Nebl
- Division of Infectious Diseases & Immune Defence, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC3010, Australia
| | - Alan F. Cowman
- Division of Infectious Diseases & Immune Defence, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC3010, Australia
| | - Norman Kneteman
- Departments of Surgery, University of Alberta, Edmonton, ABT6G 2E1, Canada
| | - Justin A. Boddey
- Division of Infectious Diseases & Immune Defence, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC3010, Australia
| |
Collapse
|
2
|
Haskins BE, Gullicksrud JA, Wallbank BA, Dumaine JE, Guérin A, Cohn IS, O'Dea KM, Pardy RD, Merolle MI, Shallberg LA, Hunter EN, Byerly JH, Smith EJ, Buenconsejo GY, McLeod BI, Christian DA, Striepen B, Hunter CA. Dendritic cell-mediated responses to secreted Cryptosporidium effectors promote parasite-specific CD8 + T cell responses. Mucosal Immunol 2024; 17:387-401. [PMID: 38508522 PMCID: PMC11193387 DOI: 10.1016/j.mucimm.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 03/22/2024]
Abstract
Cryptosporidium causes debilitating diarrheal disease in patients with primary and acquired defects in T cell function. However, it has been a challenge to understand how this infection generates T cell responses and how they mediate parasite control. Here, Cryptosporidium was engineered to express a parasite effector protein (MEDLE-2) that contains the major histocompatibility complex-I restricted SIINFEKL epitope which is recognized by T cell receptor transgenic OT-I(OVA-TCR-I) clusters of differentiation (CD)8+ T cells. These modified parasites induced expansion of endogenous SIINFEKL-specific and OT-I CD8+ T cells that were a source of interferon-gamma (IFN-γ) that could restrict growth of Cryptosporidium. This T cell response was dependent on the translocation of the effector and similar results were observed with another secreted parasite effector (rhoptry protein 1). Although infection and these translocated effector proteins are restricted to intestinal epithelial cells, type 1 conventional dendritic cells were required to generate CD8+ T cell responses to these model antigens. These data sets highlight Cryptosporidium effectors as potential targets of the immune system and suggest that crosstalk between enterocytes and type 1 conventional dendritic cells is crucial for CD8+ T cell responses to Cryptosporidium.
Collapse
Affiliation(s)
- Breanne E Haskins
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, USA
| | - Jodi A Gullicksrud
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, USA; Cell Press, Cambridge, Massachusetts, USA
| | - Bethan A Wallbank
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, USA
| | - Jennifer E Dumaine
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, USA
| | - Amandine Guérin
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, USA
| | - Ian S Cohn
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, USA
| | - Keenan M O'Dea
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, USA
| | - Ryan D Pardy
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, USA
| | - Maria I Merolle
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, USA
| | - Lindsey A Shallberg
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, USA
| | - Emma N Hunter
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, USA
| | - Jessica H Byerly
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, USA
| | - Eleanor J Smith
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, USA
| | - Gracyn Y Buenconsejo
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, USA
| | - Briana I McLeod
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, USA
| | - David A Christian
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, USA
| | - Boris Striepen
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, USA
| | - Christopher A Hunter
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, USA.
| |
Collapse
|
3
|
Zhu C, Jiao S, Xu W. CD8 + Trms against malaria liver-stage: prospects and challenges. Front Immunol 2024; 15:1344941. [PMID: 38318178 PMCID: PMC10839007 DOI: 10.3389/fimmu.2024.1344941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/08/2024] [Indexed: 02/07/2024] Open
Abstract
Attenuated sporozoites provide a valuable model for exploring protective immunity against the malarial liver stage, guiding the design of highly efficient vaccines to prevent malaria infection. Liver tissue-resident CD8+ T cells (CD8+ Trm cells) are considered the host front-line defense against malaria and are crucial to developing prime-trap/target strategies for pre-erythrocytic stage vaccine immunization. However, the spatiotemporal regulatory mechanism of the generation of liver CD8+ Trm cells and their responses to sporozoite challenge, as well as the protective antigens they recognize remain largely unknown. Here, we discuss the knowledge gap regarding liver CD8+ Trm cell formation and the potential strategies to identify predominant protective antigens expressed in the exoerythrocytic stage, which is essential for high-efficacy malaria subunit pre-erythrocytic vaccine designation.
Collapse
Affiliation(s)
- Chengyu Zhu
- The School of Medicine, Chongqing University, Chongqing, China
- Department of Pathogenic Biology, Army Medical University (Third Military Medical University), Chongqing, China
| | - Shiming Jiao
- Department of Pathogenic Biology, Army Medical University (Third Military Medical University), Chongqing, China
| | - Wenyue Xu
- The School of Medicine, Chongqing University, Chongqing, China
- Department of Pathogenic Biology, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
4
|
Haskins BE, Gullicksrud JA, Wallbank BA, Dumaine JE, Guérin A, Cohn IS, O'Dea KM, Pardy RD, Merolle MI, Shallberg LA, Hunter EN, Byerly JH, Smith EJ, Buenconsejo GY, McLeod BI, Christian DA, Striepen B, Hunter CA. Dendritic cell-mediated responses to secreted Cryptosporidium effectors are required for parasite-specific CD8 + T cell responses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.16.553566. [PMID: 37645924 PMCID: PMC10462095 DOI: 10.1101/2023.08.16.553566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Cryptosporidium causes debilitating diarrheal disease in patients with primary and acquired defects in T cell function. However, it has been a challenge to understand how this infection generates T cell responses and how they mediate parasite control. Here, Cryptosporidium was engineered to express a parasite effector protein (MEDLE-2) that contains the MHC-I restricted SIINFEKL epitope which is recognized by TCR transgenic OT-I CD8 + T cells. These modified parasites induced expansion of endogenous SIINFEKL-specific and OT-I CD8 + T cells that were a source of IFN-γ that could restrict growth of Cryptosporidium . This T cell response was dependent on the translocation of the effector and similar results were observed with another secreted parasite effector (ROP1). Although infection and these translocated effector proteins are restricted to intestinal epithelial cells (IEC), type I dendritic cells (cDC1) were required to generate CD8 + T cell responses to these model antigens. These data sets highlight Cryptosporidium effectors as targets of the immune system and suggest that crosstalk between enterocytes and cDC1s is crucial for CD8 + T cell responses to Cryptosporidium .
Collapse
|
5
|
Arias CF, Acosta FJ, Fernandez-Arias C. Killing the competition: a theoretical framework for liver-stage malaria. Open Biol 2022; 12:210341. [PMID: 35350863 PMCID: PMC8965401 DOI: 10.1098/rsob.210341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The first stage of malaria infections takes place inside the host's hepatocytes. Remarkably, Plasmodium parasites do not infect hepatocytes immediately after reaching the liver. Instead, they migrate through several hepatocytes before infecting their definitive host cells, thus increasing their chances of immune destruction. Considering that malaria can proceed normally without cell traversal, this is indeed a puzzling behaviour. In fact, the role of hepatocyte traversal remains unknown to date, implying that the current understanding of malaria is incomplete. In this work, we hypothesize that the parasites traverse hepatocytes to actively trigger an immune response in the host. This behaviour would be part of a strategy of superinfection exclusion aimed to reduce intraspecific competition during the blood stage of the infection. Based on this hypothesis, we formulate a comprehensive theory of liver-stage malaria that integrates all the available knowledge about the infection. The interest of this new paradigm is not merely theoretical. It highlights major issues in the current empirical approach to the study of Plasmodium and suggests new strategies to fight malaria.
Collapse
Affiliation(s)
- Clemente F. Arias
- Centro de Investigaciones Biológicas (CSIC), Madrid, Spain,Grupo Interdisciplinar de Sistemas Complejos de Madrid, Spain
| | | | - Cristina Fernandez-Arias
- Departamento de Inmunología, Universidad Complutense de Madrid, Spain,Instituto de Medicina Molecular, Universidade de Lisboa, Portugal
| |
Collapse
|
6
|
Kreutzfeld O, Grützke J, Ingmundson A, Müller K, Matuschewski K. Absence of PEXEL-Dependent Protein Export in Plasmodium Liver Stages Cannot Be Restored by Gain of the HSP101 Protein Translocon ATPase. Front Genet 2021; 12:742153. [PMID: 34956312 PMCID: PMC8693896 DOI: 10.3389/fgene.2021.742153] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/18/2021] [Indexed: 11/13/2022] Open
Abstract
Host cell remodeling is critical for successful Plasmodium replication inside erythrocytes and achieved by targeted export of parasite-encoded proteins. In contrast, during liver infection the malarial parasite appears to avoid protein export, perhaps to limit exposure of parasite antigens by infected liver cells. HSP101, the force-generating ATPase of the protein translocon of exported proteins (PTEX) is the only component that is switched off during early liver infection. Here, we generated transgenic Plasmodium berghei parasite lines that restore liver stage expression of HSP101. HSP101 expression in infected hepatocytes was achieved by swapping the endogenous promoter with the ptex150 promoter and by inserting an additional copy under the control of the elongation one alpha (ef1α) promoter. Both promoters drive constitutive and, hence, also pre-erythrocytic expression. Transgenic parasites were able to complete the life cycle, but failed to export PEXEL-proteins in early liver stages. Our results suggest that PTEX-dependent early liver stage export cannot be restored by addition of HSP101, indicative of alternative export complexes or other functions of the PTEX core complex during liver infection.
Collapse
Affiliation(s)
- Oriana Kreutzfeld
- Molecular Parasitology, Institute of Biology/Faculty for Life Sciences, Humboldt Universität zu Berlin, Berlin, Germany.,Parasitology Unit, Max Planck Institute for Infection Biology, Berlin, Germany.,Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Josephine Grützke
- Molecular Parasitology, Institute of Biology/Faculty for Life Sciences, Humboldt Universität zu Berlin, Berlin, Germany.,Parasitology Unit, Max Planck Institute for Infection Biology, Berlin, Germany.,Department of Biological Safety, Federal Institute for Risk Assessment, Berlin, Germany
| | - Alyssa Ingmundson
- Molecular Parasitology, Institute of Biology/Faculty for Life Sciences, Humboldt Universität zu Berlin, Berlin, Germany.,Parasitology Unit, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Katja Müller
- Molecular Parasitology, Institute of Biology/Faculty for Life Sciences, Humboldt Universität zu Berlin, Berlin, Germany.,Parasitology Unit, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Kai Matuschewski
- Molecular Parasitology, Institute of Biology/Faculty for Life Sciences, Humboldt Universität zu Berlin, Berlin, Germany.,Parasitology Unit, Max Planck Institute for Infection Biology, Berlin, Germany
| |
Collapse
|
7
|
Gibbins MP, Müller K, Matuschewski K, Silvie O, Hafalla JCR. Inferior T cell immunogenicity of a Plasmodium berghei model liver stage antigen expressed throughout pre-erythrocytic maturation. Parasite Immunol 2021; 43:e12877. [PMID: 34515999 DOI: 10.1111/pim.12877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 12/01/2022]
Abstract
Sporozoite antigens are the basis of a number of malaria vaccines being tested, but the contribution of antigens expressed during subsequent liver stage development to pre-erythrocytic stage immunity is poorly understood. We previously showed that, following immunisation with radiation attenuated sporozoites (RAS), a model epitope embedded in a sporozoite surface protein elicited robust CD8+ T cell responses, whilst the same epitope in a liver stage antigen induced inferior responses. Since RAS arrest early in their development in host hepatocytes, we hypothesised that extending parasite maturation in the liver could considerably improve the epitope-specific CD8+ T cell response. Here, we employed a late liver stage arrested parasite model, azithromycin prophylaxis alongside live sporozoites, to increase expression of the model epitope until full liver stage maturation. Strikingly, this alternative immunisation strategy, which has been shown to elicit superior protection, failed to improve the resulting epitope-specific CD8+ T cell responses. Our findings support the notion that liver stage antigens are poorly immunogenic and provide additional caution about prioritising antigens for vaccine development based solely on immunogenicity.
Collapse
Affiliation(s)
- Matthew P Gibbins
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Katja Müller
- Parasitology Unit, Max Planck Institute for Infection Biology, Berlin, Germany.,Institute of Biology, Humboldt University, Berlin, Germany
| | - Kai Matuschewski
- Parasitology Unit, Max Planck Institute for Infection Biology, Berlin, Germany.,Institute of Biology, Humboldt University, Berlin, Germany
| | - Olivier Silvie
- Sorbonne Université, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses, CIMI-Paris, Paris, France
| | - Julius Clemence R Hafalla
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
8
|
Hon C, Friesen J, Ingmundson A, Scheppan D, Hafalla JCR, Müller K, Matuschewski K. Conservation of S20 as an Ineffective and Disposable IFNγ-Inducing Determinant of Plasmodium Sporozoites Indicates Diversion of Cellular Immunity. Front Microbiol 2021; 12:703804. [PMID: 34421862 PMCID: PMC8377727 DOI: 10.3389/fmicb.2021.703804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/07/2021] [Indexed: 11/19/2022] Open
Abstract
Despite many decades of research to develop a malaria vaccine, only one vaccine candidate has been explored in pivotal phase III clinical trials. This candidate subunit vaccine consists of a portion of a single Plasmodium antigen, circumsporozoite protein (CSP). This antigen was initially identified in the murine malaria model and shown to contain an immunodominant and protective CD8+ T cell epitope specific to the H-2Kd (BALB/c)-restricted genetic background. A high-content screen for CD8+ epitopes in the H2Kb/Db (C57BL/6)-restricted genetic background, identified two distinct dominant epitopes. In this study, we present a characterization of one corresponding antigen, the Plasmodium sporozoite-specific protein S20. Plasmodium berghei S20 knockout sporozoites and liver stages developed normally in vitro and in vivo. This potent infectivity of s20(-) sporozoites permitted comparative analysis of knockout and wild-type parasites in cell-based vaccination. Protective immunity of irradiation-arrested s20(-) sporozoites in single, double and triple immunizations was similar to irradiated unaltered sporozoites in homologous challenge experiments. These findings demonstrate the presence of an immunogenic Plasmodium pre-erythrocytic determinant, which is not essential for eliciting protection. Although S20 is not needed for colonization of the mammalian host and for initiation of a blood infection, it is conserved amongst Plasmodium species. Malarial parasites express conserved, immunogenic proteins that are not required to establish infection but might play potential roles in diverting cellular immune responses.
Collapse
Affiliation(s)
- Calvin Hon
- Department of Molecular Parasitology, Institute of Biology, Humboldt University, Berlin, Germany
| | - Johannes Friesen
- Parasitology Unit, Max Planck Institute for Infection Biology, Berlin, Germany.,Medical Care Unit Labor 28 GmbH, Berlin, Germany
| | - Alyssa Ingmundson
- Department of Molecular Parasitology, Institute of Biology, Humboldt University, Berlin, Germany.,Parasitology Unit, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Diana Scheppan
- Parasitology Unit, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Julius C R Hafalla
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Katja Müller
- Department of Molecular Parasitology, Institute of Biology, Humboldt University, Berlin, Germany.,Parasitology Unit, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Kai Matuschewski
- Department of Molecular Parasitology, Institute of Biology, Humboldt University, Berlin, Germany.,Parasitology Unit, Max Planck Institute for Infection Biology, Berlin, Germany
| |
Collapse
|
9
|
Kolli SK, Salman AM, Ramesar J, Chevalley-Maurel S, Kroeze H, Geurten FGA, Miyazaki S, Mukhopadhyay E, Marin-Mogollon C, Franke-Fayard B, Hill AVS, Janse CJ. Screening of viral-vectored P. falciparum pre-erythrocytic candidate vaccine antigens using chimeric rodent parasites. PLoS One 2021; 16:e0254498. [PMID: 34252120 PMCID: PMC8274855 DOI: 10.1371/journal.pone.0254498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/28/2021] [Indexed: 11/19/2022] Open
Abstract
To screen for additional vaccine candidate antigens of Plasmodium pre-erythrocytic stages, fourteen P. falciparum proteins were selected based on expression in sporozoites or their role in establishment of hepatocyte infection. For preclinical evaluation of immunogenicity of these proteins in mice, chimeric P. berghei sporozoites were created that express the P. falciparum proteins in sporozoites as an additional copy gene under control of the uis4 gene promoter. All fourteen chimeric parasites produced sporozoites but sporozoites of eight lines failed to establish a liver infection, indicating a negative impact of these P. falciparum proteins on sporozoite infectivity. Immunogenicity of the other six proteins (SPELD, ETRAMP10.3, SIAP2, SPATR, HT, RPL3) was analyzed by immunization of inbred BALB/c and outbred CD-1 mice with viral-vectored (ChAd63 or ChAdOx1, MVA) vaccines, followed by challenge with chimeric sporozoites. Protective immunogenicity was determined by analyzing parasite liver load and prepatent period of blood stage infection after challenge. Of the six proteins only SPELD immunized mice showed partial protection. We discuss both the low protective immunogenicity of these proteins in the chimeric rodent malaria challenge model and the negative effect on P. berghei sporozoite infectivity of several P. falciparum proteins expressed in the chimeric sporozoites.
Collapse
Affiliation(s)
- Surendra Kumar Kolli
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Ahmed M. Salman
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Jai Ramesar
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | | | - Hans Kroeze
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Fiona G. A. Geurten
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Shinya Miyazaki
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Ekta Mukhopadhyay
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | | | | | - Adrian V. S. Hill
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Chris J. Janse
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
10
|
Müller K, Gibbins MP, Roberts M, Reyes‐Sandoval A, Hill AVS, Draper SJ, Matuschewski K, Silvie O, Hafalla JCR. Low immunogenicity of malaria pre-erythrocytic stages can be overcome by vaccination. EMBO Mol Med 2021; 13:e13390. [PMID: 33709544 PMCID: PMC8033512 DOI: 10.15252/emmm.202013390] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 02/03/2021] [Accepted: 02/05/2021] [Indexed: 11/09/2022] Open
Abstract
Immunogenicity is considered one important criterion for progression of candidate vaccines to further clinical evaluation. We tested this assumption in an infection and vaccination model for malaria pre-erythrocytic stages. We engineered Plasmodium berghei parasites that harbour a well-characterised epitope for stimulation of CD8+ T cells, either as an antigen in the sporozoite surface-expressed circumsporozoite protein or the parasitophorous vacuole membrane associated protein upregulated in sporozoites 4 (UIS4) expressed in exo-erythrocytic forms (EEFs). We show that the antigen origin results in profound differences in immunogenicity with a sporozoite antigen eliciting robust, superior antigen-specific CD8+ T-cell responses, whilst an EEF antigen evokes poor responses. Despite their contrasting immunogenic properties, both sporozoite and EEF antigens gain access to antigen presentation pathways in hepatocytes, as recognition and targeting by vaccine-induced effector CD8+ T cells results in high levels of protection when targeting either antigen. Our study is the first demonstration that poorly immunogenic EEF antigens do not preclude their susceptibility to antigen-specific CD8+ T-cell killing, which has wide-ranging implications on antigen prioritisation for next-generation pre-erythrocytic malaria vaccines.
Collapse
Affiliation(s)
- Katja Müller
- Parasitology UnitMax Planck Institute for Infection BiologyBerlinGermany
- Department of Molecular ParasitologyInstitute of BiologyHumboldt UniversityBerlinGermany
| | - Matthew P Gibbins
- Department of Infection BiologyFaculty of Infectious and Tropical DiseasesLondon School of Hygiene and Tropical MedicineLondonUK
- Present address:
Wellcome Centre for Integrative ParasitologyInstitute of Infection, Immunity and InflammationUniversity of GlasgowGlasgowUK
| | - Mark Roberts
- Department of Infection BiologyFaculty of Infectious and Tropical DiseasesLondon School of Hygiene and Tropical MedicineLondonUK
| | - Arturo Reyes‐Sandoval
- Jenner InstituteUniversity of OxfordOxfordUK
- Present address:
Instituto Politécnico NacionalIPN. Av. Luis Enrique Erro s/n, Unidad Adolfo López MateosMexico CityMexico
| | | | | | - Kai Matuschewski
- Parasitology UnitMax Planck Institute for Infection BiologyBerlinGermany
- Department of Molecular ParasitologyInstitute of BiologyHumboldt UniversityBerlinGermany
| | - Olivier Silvie
- Sorbonne Université, INSERM, CNRS, Centre d’Immunologie et des Maladies InfectieusesCIMI‐ParisParisFrance
| | - Julius Clemence R Hafalla
- Department of Infection BiologyFaculty of Infectious and Tropical DiseasesLondon School of Hygiene and Tropical MedicineLondonUK
| |
Collapse
|
11
|
Abstract
Obligate intracellular malaria parasites reside within a vacuolar compartment generated during invasion which is the principal interface between pathogen and host. To subvert their host cell and support their metabolism, these parasites coordinate a range of transport activities at this membrane interface that are critically important to parasite survival and virulence, including nutrient import, waste efflux, effector protein export, and uptake of host cell cytosol. Here, we review our current understanding of the transport mechanisms acting at the malaria parasite vacuole during the blood and liver-stages of development with a particular focus on recent advances in our understanding of effector protein translocation into the host cell by the Plasmodium Translocon of EXported proteins (PTEX) and small molecule transport by the PTEX membrane-spanning pore EXP2. Comparison to Toxoplasma gondii and other related apicomplexans is provided to highlight how similar and divergent mechanisms are employed to fulfill analogous transport activities.
Collapse
Affiliation(s)
- Josh R. Beck
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, United States of America
| | - Chi-Min Ho
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, United States of America
| |
Collapse
|
12
|
Siddiqui AJ, Bhardwaj J, Goyal M, Prakash K, Adnan M, Alreshidi MM, Patel M, Soni A, Redman W. Immune responses in liver and spleen against Plasmodium yoelii pre-erythrocytic stages in Swiss mice model. J Adv Res 2020; 24:29-41. [PMID: 32181014 PMCID: PMC7063113 DOI: 10.1016/j.jare.2020.02.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/08/2020] [Accepted: 02/25/2020] [Indexed: 12/11/2022] Open
Abstract
Though the immunity to malaria has been associated with cellular immune responses, the exact function of the phenotypic cell population is still unclear. This study investigated the host immune responses elicited during the pre-erythrocytic stage, post-Plasmodium yoelii sporozoite infection in Swiss mice model. For this purpose, we analyzed the dynamics of different subsets of immune cells population and cytokine levels in the hepatic mononuclear and splenic cells population during pre-erythrocytic liver-stage infection. We observed a significant reduction in the effectors immune cells population including CD8+ T cell, F4/80+ macrophage and in plasmacytoid dendritic cells (CD11c+ B220+). Interestingly, substantial down-regulation was also noted in pro-inflammatory cytokines (i.e. IFN-γ, TNF-α, IL-12, IL-2, IL-17 and iNOS), while, up-regulation of anti-inflammatory cytokines (i.e. IL-10, IL-4 and TGF-β) during asymptomatic pre-erythrocytic liver-stage infection. Collectively, this study demonstrated that during pre-erythrocytic development, Plasmodium yoelii sporozoite impaired the host activators of innate and adaptive immune responses by regulating the immune effector cells, gene expression and cytokines levels for the establishment of infection and subsequent development in the liver and spleen. The results in this study provided a better understanding of the events leading to malarial infection and will be helpful in supportive treatment and vaccine development strategy.
Collapse
Affiliation(s)
- Arif Jamal Siddiqui
- Department of Biology, College of Sciences, University of Ha'il, Ha'il, Saudi Arabia.,Division of Parasitology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Jyoti Bhardwaj
- Indiana University, School of Medicine, Indianapolis, IN, United States
| | - Manish Goyal
- Division of Parasitology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Kirtika Prakash
- Department of Obstetrics, Gynecology and Reproductive Sciences, College of Medicine, University of Vermont, VT, United States
| | - Mohd Adnan
- Department of Biology, College of Sciences, University of Ha'il, Ha'il, Saudi Arabia
| | - Mousa M Alreshidi
- Department of Biology, College of Sciences, University of Ha'il, Ha'il, Saudi Arabia
| | - Mitesh Patel
- Bapalal Vaidya Botanical Research Centre, Department of Biosciences, Veer Narmad South Gujarat University, Surat, Gujarat, India
| | - Awakash Soni
- Division of Parasitology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Whitni Redman
- Surgery Department, Division of Biomedical Research, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| |
Collapse
|
13
|
Winer B, Edgel KA, Zou X, Sellau J, Hadiwidjojo S, Garver LS, McDonough CE, Kelleher NL, Thomas PM, Villasante E, Ploss A, Gerbasi VR. Identification of Plasmodium falciparum proteoforms from liver stage models. Malar J 2020; 19:10. [PMID: 31910830 PMCID: PMC6947969 DOI: 10.1186/s12936-019-3093-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 12/26/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Immunization with attenuated malaria sporozoites protects humans from experimental malaria challenge by mosquito bite. Protection in humans is strongly correlated with the production of T cells targeting a heterogeneous population of pre-erythrocyte antigen proteoforms, including liver stage antigens. Currently, few T cell epitopes derived from Plasmodium falciparum, the major aetiologic agent of malaria in humans are known. METHODS In this study both in vitro and in vivo malaria liver stage models were used to sequence host and pathogen proteoforms. Proteoforms from these diverse models were subjected to mild acid elution (of soluble forms), multi-dimensional fractionation, tandem mass spectrometry, and top-down bioinformatics analysis to identify proteoforms in their intact state. RESULTS These results identify a group of host and malaria liver stage proteoforms that meet a 5% false discovery rate threshold. CONCLUSIONS This work provides proof-of-concept for the validity of this mass spectrometry/bioinformatic approach for future studies seeking to reveal malaria liver stage antigens towards vaccine development.
Collapse
Affiliation(s)
- Benjamin Winer
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ, 08544, USA
| | - Kimberly A Edgel
- Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
| | - Xiaoyan Zou
- Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA.,The Henry M Jackson Foundation, 6720A Rockledge Dr., Rockville, MD, 20817, USA
| | - Julie Sellau
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ, 08544, USA.,Department of Molecular Biology and Immunology, Molecular Infection Immunology, Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Straße 74, 20359, Hamburg, Germany
| | - Sri Hadiwidjojo
- Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA.,The Henry M Jackson Foundation, 6720A Rockledge Dr., Rockville, MD, 20817, USA
| | - Lindsey S Garver
- Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD, 20190, USA
| | | | - Neil L Kelleher
- Northwestern University National Resource for Translational Proteomics, Evanston, IL, 60208, USA
| | - Paul M Thomas
- Northwestern University National Resource for Translational Proteomics, Evanston, IL, 60208, USA
| | - Eileen Villasante
- Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
| | - Alexander Ploss
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ, 08544, USA.
| | - Vincent R Gerbasi
- Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA. .,Northwestern University National Resource for Translational Proteomics, Evanston, IL, 60208, USA.
| |
Collapse
|
14
|
Marin-Mogollon C, Salman AM, Koolen KMJ, Bolscher JM, van Pul FJA, Miyazaki S, Imai T, Othman AS, Ramesar J, van Gemert GJ, Kroeze H, Chevalley-Maurel S, Franke-Fayard B, Sauerwein RW, Hill AVS, Dechering KJ, Janse CJ, Khan SM. A P. falciparum NF54 Reporter Line Expressing mCherry-Luciferase in Gametocytes, Sporozoites, and Liver-Stages. Front Cell Infect Microbiol 2019; 9:96. [PMID: 31058097 PMCID: PMC6477837 DOI: 10.3389/fcimb.2019.00096] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 03/22/2019] [Indexed: 12/16/2022] Open
Abstract
Transgenic malaria parasites expressing fluorescent and bioluminescent proteins are valuable tools to interrogate malaria-parasite biology and to evaluate drugs and vaccines. Using CRISPR/Cas9 methodology a transgenic Plasmodium falciparum (Pf) NF54 line was generated that expresses a fusion of mCherry and luciferase genes under the control of the Pf etramp10.3 gene promoter (line mCherry-luc@etramp10.3). Pf etramp10.3 is related to rodent Plasmodium uis4 and the uis4 promoter has been used to drive high transgene expression in rodent parasite sporozoites and liver-stages. We examined transgene expression throughout the complete life cycle and compared this expression to transgenic lines expressing mCherry-luciferase and GFP-luciferase under control of the constitutive gapdh and eef1a promoters. The mCherry-luc@etramp10.3 parasites express mCherry in gametocytes, sporozoites, and liver-stages. While no mCherry signal was detected in asexual blood-stage parasites above background levels, luciferase expression was detected in asexual blood-stages, as well as in gametocytes, sporozoites and liver-stages, with the highest levels of reporter expression detected in stage III-V gametocytes and in sporozoites. The expression of mCherry and luciferase in gametocytes and sporozoites makes this transgenic parasite line suitable to use in in vitro assays that examine the effect of transmission blocking inhibitors and to analyse gametocyte and sporozoite biology.
Collapse
Affiliation(s)
| | - Ahmed M Salman
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | | | | | - Fiona J A van Pul
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Shinya Miyazaki
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Takashi Imai
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands.,Department of Infectious Diseases and Host Defense, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Ahmad Syibli Othman
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands.,Faculty of Health Sciences, Universiti Sultan Zainal Abidin, Terengganu, Malaysia
| | - Jai Ramesar
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Geert-Jan van Gemert
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Hans Kroeze
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | | | | | - Robert W Sauerwein
- TropIQ Health Sciences, Nijmegen, Netherlands.,Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Adrian V S Hill
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | | | - Chris J Janse
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Shahid M Khan
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
15
|
Abstract
The development of highly effective and durable vaccines against the human malaria parasites Plasmodium falciparum and P. vivax remains a key priority. Decades of endeavor have taught that achieving this goal will be challenging; however, recent innovation in malaria vaccine research and a diverse pipeline of novel vaccine candidates for clinical assessment provides optimism. With first-generation pre-erythrocytic vaccines aiming for licensure in the coming years, it is important to reflect on how next-generation approaches can improve on their success. Here we review the latest vaccine approaches that seek to prevent malaria infection, disease, and transmission and highlight some of the major underlying immunological and molecular mechanisms of protection. The synthesis of rational antigen selection, immunogen design, and immunization strategies to induce quantitatively and qualitatively improved immune effector mechanisms offers promise for achieving sustained high-level protection.
Collapse
|
16
|
Frank R, Gabel M, Heiss K, Mueller AK, Graw F. Varying Immunizations With Plasmodium Radiation-Attenuated Sporozoites Alter Tissue-Specific CD8 + T Cell Dynamics. Front Immunol 2018; 9:1137. [PMID: 29892289 PMCID: PMC5985394 DOI: 10.3389/fimmu.2018.01137] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 05/07/2018] [Indexed: 12/12/2022] Open
Abstract
Whole sporozoite vaccines represent one of the most promising strategies to induce protection against malaria. However, the development of efficient vaccination protocols still remains a major challenge. To understand how the generation of immunity is affected by variations in vaccination dosage and frequency, we systematically analyzed intrasplenic and intrahepatic CD8+ T cell responses following varied immunizations of mice with radiation-attenuated sporozoites. By combining experimental data and mathematical modeling, our analysis indicates a reversing role of spleen and liver in the generation of protective liver-resident CD8+ T cells during priming and booster injections: While the spleen acts as a critical source compartment during priming, the increase in vaccine-induced hepatic T cell levels is likely due to local reactivation in the liver in response to subsequent booster injections. Higher dosing accelerates the efficient generation of liver-resident CD8+ T cells by especially affecting their local reactivation. In addition, we determine the differentiation and migration pathway from splenic precursors toward hepatic memory cells thereby presenting a mechanistic framework for the impact of various vaccination protocols on these dynamics. Thus, our work provides important insights into organ-specific CD8+ T cell dynamics and their role and interplay in the formation of protective immunity against malaria.
Collapse
Affiliation(s)
- Roland Frank
- Centre for Infectious Diseases, Parasitology Unit, University Hospital Heidelberg, Heidelberg, Germany
| | - Michael Gabel
- Centre for Modeling and Simulation in the Biosciences, BioQuant-Center, Heidelberg University, Heidelberg, Germany
| | - Kirsten Heiss
- Centre for Infectious Diseases, Parasitology Unit, University Hospital Heidelberg, Heidelberg, Germany
| | - Ann-Kristin Mueller
- Centre for Infectious Diseases, Parasitology Unit, University Hospital Heidelberg, Heidelberg, Germany.,German Center for Infection Research (DZIF), Heidelberg, Germany
| | - Frederik Graw
- Centre for Modeling and Simulation in the Biosciences, BioQuant-Center, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
17
|
A Plasmodium Parasite with Complete Late Liver Stage Arrest Protects against Preerythrocytic and Erythrocytic Stage Infection in Mice. Infect Immun 2018; 86:IAI.00088-18. [PMID: 29440367 DOI: 10.1128/iai.00088-18] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 02/05/2018] [Indexed: 01/28/2023] Open
Abstract
Genetically attenuated malaria parasites (GAP) that arrest during liver stage development are powerful immunogens and afford complete and durable protection against sporozoite infection. Late liver stage-arresting GAP provide superior protection against sporozoite challenge in mice compared to early live stage-arresting attenuated parasites. However, very few late liver stage-arresting GAP have been generated to date. Therefore, identification of additional loci that are critical for late liver stage development and can be used to generate novel late liver stage-arresting GAPs is of importance. We further explored genetic attenuation in Plasmodium yoelii by combining two gene deletions, PlasMei2 and liver-specific protein 2 (LISP2), that each cause late liver stage arrest with various degrees of infrequent breakthrough to blood stage infection. The dual gene deletion resulted in a synthetic lethal phenotype that caused complete attenuation in a highly susceptible mouse strain. P. yoeliiplasmei2-lisp2- arrested late in liver stage development and did not persist in livers beyond 3 days after infection. Immunization with this GAP elicited robust protective antibody responses in outbred and inbred mice against sporozoites, liver stages, and blood stages as well as eliciting protective liver-resident T cells. The immunization afforded protection against both sporozoite challenge and blood stage challenge. These findings provide evidence that completely attenuated late liver stage-arresting GAP are achievable via the synthetic lethal approach and might enable a path forward for the creation of a completely attenuated late liver stage-arresting P. falciparum GAP.
Collapse
|
18
|
Othman AS, Marin-Mogollon C, Salman AM, Franke-Fayard BM, Janse CJ, Khan SM. The use of transgenic parasites in malaria vaccine research. Expert Rev Vaccines 2017; 16:1-13. [DOI: 10.1080/14760584.2017.1333426] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ahmad Syibli Othman
- Leiden Malaria Research Group, Parasitology, Leiden University Medical Center (LUMC), Leiden, the Netherlands
- Faculty of Health Sciences, Universiti Sultan Zainal Abidin, Terengganu, Malaysia
| | - Catherin Marin-Mogollon
- Leiden Malaria Research Group, Parasitology, Leiden University Medical Center (LUMC), Leiden, the Netherlands
| | | | - Blandine M. Franke-Fayard
- Leiden Malaria Research Group, Parasitology, Leiden University Medical Center (LUMC), Leiden, the Netherlands
| | - Chris J. Janse
- Leiden Malaria Research Group, Parasitology, Leiden University Medical Center (LUMC), Leiden, the Netherlands
| | - Shahid M. Khan
- Leiden Malaria Research Group, Parasitology, Leiden University Medical Center (LUMC), Leiden, the Netherlands
| |
Collapse
|
19
|
GFPuv-Expressing Recombinant Rickettsia typhi: a Useful Tool for the Study of Pathogenesis and CD8 + T Cell Immunology in R. typhi Infection. Infect Immun 2017; 85:IAI.00156-17. [PMID: 28289147 PMCID: PMC5442613 DOI: 10.1128/iai.00156-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 03/06/2017] [Indexed: 11/20/2022] Open
Abstract
Rickettsia typhi is the causative agent of endemic typhus, a disease with increasing incidence worldwide that can be fatal. Because of its obligate intracellular life style, genetic manipulation of the pathogen is difficult. Nonetheless, in recent years, genetic manipulation tools have been successfully applied to rickettsiae. We describe here for the first time the transformation of R. typhi with the pRAM18dRGA plasmid that originally derives from Rickettsia amblyommatis and encodes the expression of GFPuv (green fluorescent protein with maximal fluorescence when excited by UV light). Transformed R. typhi (R. typhiGFPuv) bacteria are viable, replicate with kinetics similar to those of wild-type R. typhi in cell culture, and stably maintain the plasmid and GFPuv expression under antibiotic treatment in vitro and in vivo during infection of mice. CB17 SCID mice infected with R. typhiGFPuv succumb to the infection with kinetics similar to those for animals infected with wild-type R. typhi and develop comparable pathology and bacterial loads in the organs, demonstrating that the plasmid does not influence pathogenicity. In the spleen and liver of infected CB17 SCID mice, the bacteria are detectable by immunofluorescence microscopy in neutrophils and macrophages by histological staining. Finally, we show for the first time that transformed rickettsiae can be used for the detection of CD8+ T cell responses. GFP-specific restimulation of spleen cells from R. typhiGFPuv-infected BALB/c mice elicits gamma interferon (IFN-γ), tumor necrosis factor alpha (TNF-α), and interleukin 2 (IL-2) secretion by CD8+ T cells. Thus, R. typhiGFPuv bacteria are a novel, potent tool to study infection with the pathogen in vitro and in vivo and the immune response to these bacteria.
Collapse
|
20
|
Agop-Nersesian C, De Niz M, Niklaus L, Prado M, Eickel N, Heussler VT. Shedding of host autophagic proteins from the parasitophorous vacuolar membrane of Plasmodium berghei. Sci Rep 2017; 7:2191. [PMID: 28526861 PMCID: PMC5438358 DOI: 10.1038/s41598-017-02156-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 04/05/2017] [Indexed: 01/05/2023] Open
Abstract
The hepatic stage of the malaria parasite Plasmodium is accompanied by an autophagy-mediated host response directly targeting the parasitophorous vacuolar membrane (PVM) harbouring the parasite. Removal of the PVM-associated autophagic proteins such as ubiquitin, p62, and LC3 correlates with parasite survival. Yet, it is unclear how Plasmodium avoids the deleterious effects of selective autophagy. Here we show that parasites trap host autophagic factors in the tubovesicular network (TVN), an expansion of the PVM into the host cytoplasm. In proliferating parasites, PVM-associated LC3 becomes immediately redirected into the TVN, where it accumulates distally from the parasite’s replicative centre. Finally, the host factors are shed as vesicles into the host cytoplasm. This strategy may enable the parasite to balance the benefits of the enhanced host catabolic activity with the risk of being eliminated by the cell’s cytosolic immune defence.
Collapse
Affiliation(s)
- Carolina Agop-Nersesian
- Institute of Cell Biology, University of Bern, 3012, Bern, Switzerland. .,Department of Molecular and Cell Biology, Henry M. Goldman School of Dental Medicine, Boston University, MA, 02118, USA.
| | - Mariana De Niz
- Institute of Cell Biology, University of Bern, 3012, Bern, Switzerland.,Wellcome Centre for Molecular Parasitology, University of Glasgow, G12 8QQ, Glasgow, UK
| | - Livia Niklaus
- Institute of Cell Biology, University of Bern, 3012, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012, Bern, Switzerland
| | - Monica Prado
- Bernhard Nocht Institute of Tropical Medicine, 20359, Hamburg, Germany.,Centro de Investigación en Enfermedades Tropicales (CIET), Universidad de Costa Rica, San José, Costa Rica, USA
| | - Nina Eickel
- Institute of Cell Biology, University of Bern, 3012, Bern, Switzerland.,CSL Behring, Bern, Switzerland
| | - Volker T Heussler
- Institute of Cell Biology, University of Bern, 3012, Bern, Switzerland.
| |
Collapse
|
21
|
Al-Nihmi FMA, Kolli SK, Reddy SR, Mastan BS, Togiri J, Maruthi M, Gupta R, Sijwali PS, Mishra S, Kumar KA. A Novel and Conserved Plasmodium Sporozoite Membrane Protein SPELD is Required for Maturation of Exo-erythrocytic Forms. Sci Rep 2017; 7:40407. [PMID: 28067322 PMCID: PMC5220379 DOI: 10.1038/srep40407] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 12/06/2016] [Indexed: 02/07/2023] Open
Abstract
Plasmodium sporozoites are the infective forms of malaria parasite to vertebrate host and undergo dramatic changes in their transcriptional repertoire during maturation in mosquito salivary glands. We report here the role of a novel and conserved Plasmodium berghei protein encoded by PBANKA_091090 in maturation of Exo-erythrocytic Forms (EEFs) and designate it as Sporozoite surface Protein Essential for Liver stage Development (PbSPELD). PBANKA_091090 was previously annotated as PB402615.00.0 and its transcript was recovered at maximal frequency in the Serial Analysis of the Gene Expression (SAGE) of Plasmodium berghei salivary gland sporozoites. An orthologue of this transcript was independently identified in Plasmodium vivax sporozoite microarrays and was designated as Sporozoite Conserved Orthologous Transcript-2 (scot-2). Functional characterization through reverse genetics revealed that PbSPELD is essential for Plasmodium liver stage maturation. mCherry transgenic of PbSPELD localized the protein to plasma membrane of sporozoites and early EEFs. Global microarray analysis of pbspeld ko revealed EEF attenuation being associated with down regulation of genes central to general transcription, cell cycle, proteosome and cadherin signaling. pbspeld mutant EEFs induced pre-erythrocytic immunity with 50% protective efficacy. Our studies have implications for attenuating the human Plasmodium liver stages by targeting SPELD locus.
Collapse
Affiliation(s)
| | - Surendra Kumar Kolli
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Segireddy Rameswara Reddy
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Babu S Mastan
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Jyothi Togiri
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Mulaka Maruthi
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Roshni Gupta
- Division of Parasitology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Puran Singh Sijwali
- CSIR-Centre for Cellular and Molecular Biology, Habsiguda, Uppal Road, Hyderabad 500007, India
| | - Satish Mishra
- Division of Parasitology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Kota Arun Kumar
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| |
Collapse
|
22
|
Cockburn IA, Zavala F. Dendritic cell function and antigen presentation in malaria. Curr Opin Immunol 2016; 40:1-6. [DOI: 10.1016/j.coi.2016.01.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 01/18/2016] [Indexed: 10/22/2022]
|
23
|
Doll KL, Pewe LL, Kurup SP, Harty JT. Discriminating Protective from Nonprotective Plasmodium-Specific CD8+ T Cell Responses. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2016; 196:4253-62. [PMID: 27084099 PMCID: PMC4868661 DOI: 10.4049/jimmunol.1600155] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 03/19/2016] [Indexed: 11/19/2022]
Abstract
Despite decades of research, malaria remains a global health crisis. Current subunit vaccine approaches do not provide efficient long-term, sterilizing immunity against Plasmodium infections in humans. Conversely, whole parasite vaccinations with their larger array of target Ags have conferred long-lasting sterilizing protection to humans. Similar studies in rodent models of malaria reveal that CD8(+) T cells play a critical role in liver-stage immunity after whole parasite vaccination. However, it is unknown whether all CD8(+) T cell specificities elicited by whole parasite vaccination contribute to protection, an issue of great relevance for enhanced subunit vaccination. In this article, we show that robust CD8(+) T cell responses of similar phenotype are mounted after prime-boost immunization against Plasmodium berghei glideosome-associated protein 5041-48-, sporozoite-specific protein 20318-325-, thrombospondin-related adhesion protein (TRAP) 130-138-, or circumsporozoite protein (CSP) 252-260-derived epitopes in mice, but only CSP252-260- and TRAP130-138-specific CD8(+) T cells provide sterilizing immunity and reduce liver parasite burden after sporozoite challenge. Further, CD8(+) T cells specific to sporozoite surface-expressed CSP and TRAP proteins, but not intracellular glideosome-associated protein 50 and sporozoite-specific protein 20, efficiently recognize sporozoite-infected hepatocytes in vitro. These results suggest that: 1) protection-relevant antigenic targets, regardless of their immunogenic potential, must be efficiently presented by infected hepatocytes for CD8(+) T cells to eliminate liver-stage Plasmodium infection; and 2) proteins expressed on the surface of sporozoites may be good target Ags for protective CD8(+) T cells.
Collapse
Affiliation(s)
- Katherine L Doll
- Department of Microbiology, University of Iowa, Iowa City, IA 52242
| | - Lecia L Pewe
- Department of Microbiology, University of Iowa, Iowa City, IA 52242
| | | | - John T Harty
- Department of Microbiology, University of Iowa, Iowa City, IA 52242; Department of Pathology, University of Iowa, Iowa City, IA 52242; and Interdisciplinary Program in Immunology, University of Iowa, Iowa City, IA 52242
| |
Collapse
|
24
|
Functional profiles of orphan membrane transporters in the life cycle of the malaria parasite. Nat Commun 2016; 7:10519. [PMID: 26796412 PMCID: PMC4736113 DOI: 10.1038/ncomms10519] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 12/15/2015] [Indexed: 01/28/2023] Open
Abstract
Assigning function to orphan membrane transport proteins and prioritizing candidates for detailed biochemical characterization remain fundamental challenges and are particularly important for medically relevant pathogens, such as malaria parasites. Here we present a comprehensive genetic analysis of 35 orphan transport proteins of Plasmodium berghei during its life cycle in mice and Anopheles mosquitoes. Six genes, including four candidate aminophospholipid transporters, are refractory to gene deletion, indicative of essential functions. We generate and phenotypically characterize 29 mutant strains with deletions of individual transporter genes. Whereas seven genes appear to be dispensable under the experimental conditions tested, deletion of any of the 22 other genes leads to specific defects in life cycle progression in vivo and/or host transition. Our study provides growing support for a potential link between heavy metal homeostasis and host switching and reveals potential targets for rational design of new intervention strategies against malaria. The functions of many putative membrane transport proteins of malaria parasites are unknown. Here, Kenthirapalan et al. use mutant strains carrying targeted gene deletions to study the functions of 35 such proteins during the life cycle of Plasmodium berghei in mosquito and mouse hosts.
Collapse
|
25
|
Kalanon M, Bargieri D, Sturm A, Matthews K, Ghosh S, Goodman CD, Thiberge S, Mollard V, McFadden GI, Ménard R, Koning‐Ward TF. The
Plasmodium
translocon of exported proteins component EXP2 is critical for establishing a patent malaria infection in mice. Cell Microbiol 2015; 18:399-412. [DOI: 10.1111/cmi.12520] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 08/26/2015] [Accepted: 08/31/2015] [Indexed: 12/12/2022]
Affiliation(s)
- Ming Kalanon
- Molecular and Medical Research Unit, School of MedicineDeakin University Waurn Ponds Geelong Victoria 3216 Australia
| | - Daniel Bargieri
- Unité de Biologie et Génétique du PaludismeInstitut Pasteur Paris France
- Department of Parasitology, Institute of Biomedical SciencesUniversity of São Paulo São Paulo SP Brazil
| | - Angelika Sturm
- School of BioSciencesThe University of Melbourne Parkville Victoria 3010 Australia
| | - Kathryn Matthews
- Molecular and Medical Research Unit, School of MedicineDeakin University Waurn Ponds Geelong Victoria 3216 Australia
| | - Sreejoyee Ghosh
- Molecular and Medical Research Unit, School of MedicineDeakin University Waurn Ponds Geelong Victoria 3216 Australia
| | | | - Sabine Thiberge
- Unité de Biologie et Génétique du PaludismeInstitut Pasteur Paris France
| | - Vanessa Mollard
- School of BioSciencesThe University of Melbourne Parkville Victoria 3010 Australia
| | - Geoffrey I. McFadden
- School of BioSciencesThe University of Melbourne Parkville Victoria 3010 Australia
| | - Robert Ménard
- Unité de Biologie et Génétique du PaludismeInstitut Pasteur Paris France
| | - Tania F. Koning‐Ward
- Molecular and Medical Research Unit, School of MedicineDeakin University Waurn Ponds Geelong Victoria 3216 Australia
| |
Collapse
|
26
|
Spielmann T, Gilberger TW. Critical Steps in Protein Export of Plasmodium falciparum Blood Stages. Trends Parasitol 2015; 31:514-525. [DOI: 10.1016/j.pt.2015.06.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 06/16/2015] [Accepted: 06/24/2015] [Indexed: 11/29/2022]
|
27
|
The Plasmodium berghei translocon of exported proteins reveals spatiotemporal dynamics of tubular extensions. Sci Rep 2015. [PMID: 26219962 PMCID: PMC4518229 DOI: 10.1038/srep12532] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The erythrocyte is an extraordinary host cell for intracellular pathogens and requires extensive remodelling to become permissive for infection. Malaria parasites modify their host red blood cells through protein export to acquire nutrients and evade immune responses. Endogenous fluorescent tagging of three signature proteins of the Plasmodium berghei translocon of exported proteins (PTEX), heat shock protein 101, exported protein 2 (EXP2), and PTEX88, revealed motile, tubular extensions of the parasitophorous vacuole that protrude from the parasite far into the red blood cell. EXP2 displays a more prominent presence at the periphery of the parasite, consistent with its proposed role in pore formation. The tubular compartment is most prominent during trophozoite growth. Distinct spatiotemporal expression of individual PTEX components during sporogony and liver-stage development indicates additional functions and tight regulation of the PTEX translocon during parasite life cycle progression. Together, live cell imaging and correlative light and electron microscopy permitted previously unrecognized spatiotemporal and subcellular resolution of PTEX-containing tubules in murine malaria parasites. These findings further refine current models for Plasmodium-induced erythrocyte makeover.
Collapse
|
28
|
Comparative assessment of vaccine vectors encoding ten malaria antigens identifies two protective liver-stage candidates. Sci Rep 2015; 5:11820. [PMID: 26139288 PMCID: PMC4490344 DOI: 10.1038/srep11820] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 06/01/2015] [Indexed: 12/15/2022] Open
Abstract
The development of an efficacious Plasmodium falciparum malaria vaccine remains a top priority for global health. Vaccination with irradiated sporozoites is able to provide complete sterile protection through the action of CD8+ T cells at the liver-stage of infection. However, this method is currently unsuitable for large-scale deployment and focus has instead turned to the development of sub-unit vaccines. Sub-unit vaccine efforts have traditionally focused on two well-known pre-erythrocytic antigens, CSP and TRAP, yet thousands of genes are expressed in the liver-stage. We sought to assess the ability of eight alternative P. falciparum pre-erythrocytic antigens to induce a high proportion of CD8+ T cells. We show that all antigens, when expressed individually in the non-replicating viral vectors ChAd63 and MVA, are capable of inducing an immune response in mice. Furthermore, we also developed chimeric P. berghei parasites expressing the cognate P. falciparum antigen to enable assessment of efficacy in mice. Our preliminary results indicate that vectors encoding either PfLSA1 or PfLSAP2 are capable of inducing sterile protection dependent on the presence of CD8+ T cells. This work has identified two promising P. falciparum liver-stage candidate antigens that will now undergo further testing in humans.
Collapse
|
29
|
Bayarsaikhan G, Akbari M, Yui K, Amino R. Antigen-driven focal inflammatory death of malaria liver stages. Front Microbiol 2015; 6:47. [PMID: 25699034 PMCID: PMC4316770 DOI: 10.3389/fmicb.2015.00047] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 01/14/2015] [Indexed: 01/24/2023] Open
Abstract
Multiple immunizations using live irradiated sporozoites, the infectious plasmodial stage delivered into the host skin during a mosquito bite, can elicit sterile immunity to malaria. CD8+ T cells seem to play an essential role in this protective immunity, since their depletion consistently abolishes sterilizing protection in several experimental models. So far, only a few parasite antigens are known to induce CD8+ T cell-dependent protection, but none of them can reach the levels of protection afforded by live attenuated parasites. Systematic attempts to identify novel antigens associated with this efficient cellular protection were so far unsuccessful. In addition, the precise mechanisms involved in the recognition and elimination of parasitized hepatocytes in vivo by CD8+ T cells still remain obscure. Recently, it has been shown that specific effector CD8+ T cells, after recognition of parasitized hepatocytes, recruit specific and non-specific activated CD8+ T cells to the site of infection, resulting in the formation of cellular clusters around and in the further elimination of intracellular parasites. The significance of this finding is discussed in the perspective of a general mechanism of antigen-dependent focalized inflammation and its consequences for the elimination of malaria liver stages.
Collapse
Affiliation(s)
- Ganchimeg Bayarsaikhan
- Unité de Biologie et Génétique du Paludisme, Département Parasites et Insectes Vecteurs, Institut Pasteur , Paris, France ; Division of Immunology, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University , Nagasaki, Japan
| | - Masoud Akbari
- Division of Immunology, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University , Nagasaki, Japan
| | - Katsuyuki Yui
- Division of Immunology, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University , Nagasaki, Japan
| | - Rogerio Amino
- Unité de Biologie et Génétique du Paludisme, Département Parasites et Insectes Vecteurs, Institut Pasteur , Paris, France
| |
Collapse
|