1
|
Postolache TT, Duncan E, Yen P, Potocki E, Barnhart M, Federline A, Massa N, Dagdag A, Joseph J, Wadhawan A, Capan CD, Forton C, Lowry CA, Ortmeyer HK, Brenner LA. Toxoplasma gondii, suicidal behaviour and suicide risk factors in US Veterans enrolled in mental health treatment. Folia Parasitol (Praha) 2025; 72:2025.002. [PMID: 39817778 DOI: 10.14411/fp.2025.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 10/21/2024] [Indexed: 01/18/2025]
Abstract
Markers of chronic infection Toxoplasma gondii (Nicolle et Manceaux, 1908) have been associated with suicidal self-directed violence (SSDV). We present the results of the first study relating T. gondii IgG serology with suicide attempts and suicidal ideation in United States Veterans, known to have higher suicide rates than members of the general population. We also related T. gondii serology to SSDV risk factors, including valid and reliable measures of trait impulsivity, aggression, self-reported depression, and sleep disturbance. We recruited 407 Veterans enrolled at three Veterans Affairs Medical Centers with mean (S.D.) age = 45.6 (11.6) years; 304 men (74.7%); 203 with a history of SSDV and 204 with no history of any self-directed violence (SDV). Seropositivity and serointensity, categorised as high (top quartile) or low (lower three quartiles), were analysed in relationship to SSDV, suicidal ideation and clinical risk factors using age and gender-adjusted linear and logistic methods, after transformations and nonparametric tests when appropriate. Associations between seropositivity and SSDV and its risk factors were not significant in all groups. High serointensity, while not associated with SSDV or repeat suicide attempts, was positively associated with suicidal ideation, depression, impulsivity, and daytime dysfunction due to sleepiness (p < 0.05), but only in Veterans with a history of SSDV. In Veterans without a history of SDV, no associations were significant. These associations remained significant after adjustment for certain socioeconomic factors (i.e., income, homelessness, military rank). Including education in the model downgraded the statistical significance of suicidal ideation and depression to statistical trends, but the significance of associations with impulsivity and daytime dysfunction due to sleepiness remained. Major limitations include the cross-sectional design, overall low seropositivity within the sample, and potentially spurious results due to multiple comparisons. Thus, the results of this report need to be replicated in larger samples, ideally longitudinally.
Collapse
Affiliation(s)
- Teodor T Postolache
- Share senior authorship *Address for correspondence: Teodor T. Postolache, MD; 685 West Baltimore Street, MSTF Building, Room 930 Baltimore, MD 21201, USA
| | - Erica Duncan
- Atlanta Veterans Affairs Health Care System, Decatur, GA, USA
- Emory University School of Medicine, Department of Psychiatry and Behavioral Sciences, Atlanta, GA, USA
- Share senior authorship *Address for correspondence: Teodor T. Postolache, MD; 685 West Baltimore Street, MSTF Building, Room 930 Baltimore, MD 21201, USA
| | - Poyu Yen
- Mood and Anxiety Program, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Eileen Potocki
- VA Maryland Healthcare System, Baltimore VA Medical Center, Baltimore, MD, USA
| | - Meghan Barnhart
- Veterans Health Administration, Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Veterans Integrated Service Network (VISN) 19, Aurora, CO, USA
| | - Amanda Federline
- Mental Illness Research, Education and Clinical Center (MIRECC), Veterans Integrated Service Network (VISN) 5, VA Capitol Health Care Network, Baltimore, MD, USA
| | - Nicholas Massa
- Atlanta Veterans Affairs Health Care System, Decatur, GA, USA
| | - Aline Dagdag
- Mood and Anxiety Program, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Joshua Joseph
- Mood and Anxiety Program, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Abhishek Wadhawan
- Mood and Anxiety Program, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
- Saint Elizabeths Hospital, Department of Psychiatry, Washington, DC, USA
| | - Colt D Capan
- Department for Neurodegenerative Sciences, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Cameron Forton
- Department for Neurodegenerative Sciences, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Christopher A Lowry
- Veterans Health Administration, Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Veterans Integrated Service Network (VISN) 19, Aurora, CO, USA
- Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, CO, USA
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Heidi K Ortmeyer
- Baltimore VA Medical Center, Baltimore, MD, USA
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Lisa A Brenner
- Veterans Health Administration, Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Veterans Integrated Service Network (VISN) 19, Aurora, CO, USA
- Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, CO, USA
- Departments of Physical Medicine and Rehabilitation, Psychiatry and Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Share senior authorship *Address for correspondence: Teodor T. Postolache, MD; 685 West Baltimore Street, MSTF Building, Room 930 Baltimore, MD 21201, USA
| |
Collapse
|
2
|
de Brito Duval I, Cardozo ME, Souza JLN, de Medeiros Brito RM, Fujiwara RT, Bueno LL, Magalhães LMD. Parasite infections: how inflammation alters brain function. Trends Parasitol 2025:S1471-4922(24)00367-2. [PMID: 39779386 DOI: 10.1016/j.pt.2024.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/13/2024] [Accepted: 12/14/2024] [Indexed: 01/11/2025]
Abstract
Parasitic infections can profoundly impact brain function through inflammation within the central nervous system (CNS). Once viewed as an immune-privileged site, the CNS is now recognized as vulnerable to immune disruptions from both local and systemic infections. Recent studies reveal that certain parasites, such as Toxoplasma gondii and Plasmodium falciparum, can invade the CNS or influence it indirectly by triggering neuroinflammation. These processes may disrupt brain homeostasis, influence neurotransmission, and lead to significant behavioral or cognitive changes. This review discusses the pathways by which parasites disrupt CNS function and highlights systemic inflammation as a critical link between peripheral infections and neuroinflammatory conditions, advancing understanding of parasite-associated neurological complications.
Collapse
Affiliation(s)
- Isabela de Brito Duval
- Laboratory of Interactions in Immuno-Parasitology, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte-MG, Brazil; Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte-MG, Brazil
| | - Marcelo Eduardo Cardozo
- Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte-MG, Brazil
| | - Jorge Lucas Nascimento Souza
- Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte-MG, Brazil
| | - Ramayana Morais de Medeiros Brito
- Laboratory of Interactions in Immuno-Parasitology, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte-MG, Brazil; Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte-MG, Brazil
| | - Ricardo Toshio Fujiwara
- Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte-MG, Brazil
| | - Lilian Lacerda Bueno
- Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte-MG, Brazil
| | - Luisa Mourão Dias Magalhães
- Laboratory of Interactions in Immuno-Parasitology, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte-MG, Brazil.
| |
Collapse
|
3
|
Li Z, Yi H, Zheng X, Zhu Y, Lu B, Zhang N, Ma Z, Liu X, Yang X, Chang Y, Wu X. Toxoplasma gondii infection is associated with schizophrenia from the perspectives of seroepidemiology and serum metabolomics in Hunan Province, China. Microb Pathog 2024; 195:106880. [PMID: 39181191 DOI: 10.1016/j.micpath.2024.106880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/12/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Toxoplasma gondii (T.gondii) can influence the host's neurotransmission, central immune responses, and brain structure, potentially impacting the onset and development of various psychiatric disorders such as schizophrenia. We employed Electrochemiluminescence Immunoassay (ECLIA) to measure anti-Toxoplasma antibodies in 451 schizophrenic patients and 478 individuals from the general population in Hunan, China. The incidence rate of T.gondii infection in schizophrenic patients (8.87 %) was higher than that in the general population (3.77 %). A significant difference was observed among females, but not in males. Age-stratified analysis revealed significant differences in the 21-40 and 41-60 age groups. The two populations had no significant difference in the antibody titer for T. gondii infection. Additionally, the profile of circulating metabolites in the serum of schizophrenic patients with or without T. gondii infection was examined using non-targeted metabolomics assay. A total of 68 metabolites were differentially expressed between Toxoplasma-positive and Toxoplasma-negative groups, potentially mediating the connection between T. gondii infection and schizophrenia. Our research suggests that schizophrenic patients are susceptible to T. gondii infection with distinct metabolic program.
Collapse
Affiliation(s)
- Zhuolin Li
- Department of Parasitology, Xiangya School of Basic Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Huimin Yi
- Xiangtan Fifth People's Hospital, Hunan, China
| | - Xingxing Zheng
- Department of Parasitology, Xiangya School of Basic Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Yiting Zhu
- Department of Parasitology, Xiangya School of Basic Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Bin Lu
- Department of Parasitology, Xiangya School of Basic Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Ni Zhang
- Department of Parasitology, Xiangya School of Basic Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Zhenrong Ma
- Department of Parasitology, Xiangya School of Basic Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Xianshu Liu
- Department of Parasitology, Xiangya School of Basic Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Xuexian Yang
- Department of Molecular Genetic and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA
| | - Yunfeng Chang
- Department of Forensic Medicine Science, Xiangya School of Basic Medicine, Central South University, Changsha, 410013, Hunan, China.
| | - Xiang Wu
- Department of Parasitology, Xiangya School of Basic Medicine, Central South University, Changsha, 410013, Hunan, China.
| |
Collapse
|
4
|
Carrillo GL, Su J, Cawley ML, Wei D, Gill SK, Blader IJ, Fox MA. Complement-dependent loss of inhibitory synapses on pyramidal neurons following Toxoplasma gondii infection. J Neurochem 2024; 168:3365-3385. [PMID: 36683435 PMCID: PMC10363253 DOI: 10.1111/jnc.15770] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 01/06/2023] [Accepted: 01/15/2023] [Indexed: 01/24/2023]
Abstract
The apicomplexan parasite Toxoplasma gondii has developed mechanisms to establish a central nervous system infection in virtually all warm-blooded animals. Acute T. gondii infection can cause neuroinflammation, encephalitis, and seizures. Meanwhile, studies in humans, nonhuman primates, and rodents have linked chronic T. gondii infection with altered behavior and increased risk for neuropsychiatric disorders, including schizophrenia. These observations and associations raise questions about how this parasitic infection may alter neural circuits. We previously demonstrated that T. gondii infection triggers the loss of inhibitory perisomatic synapses, a type of synapse whose dysfunction or loss has been linked to neurological and neuropsychiatric disorders. We showed that phagocytic cells (including microglia and infiltrating monocytes) contribute to the loss of these inhibitory synapses. Here, we show that these phagocytic cells specifically ensheath excitatory pyramidal neurons, leading to the preferential loss of perisomatic synapses on these neurons and not those on cortical interneurons. Moreover, we show that infection induces an increased expression of the complement C3 gene, including by populations of these excitatory neurons. Infecting C3-deficient mice with T. gondii revealed that C3 is required for the loss of perisomatic inhibitory synapses. Interestingly, loss of C1q did not prevent the loss of perisomatic synapses following infection. Together, these findings provide evidence that T. gondii induces changes in excitatory pyramidal neurons that trigger the selective removal of inhibitory perisomatic synapses and provide a role for a nonclassical complement pathway in the remodeling of inhibitory circuits in the infected brain.
Collapse
Affiliation(s)
- Gabriela L. Carrillo
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia, 24016, USA
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, Virginia, 24061, USA
| | - Jianmin Su
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia, 24016, USA
- School of Neuroscience, College of Science, Virginia Tech, Blacksburg, Virginia, 24061, USA
| | - Mikel L. Cawley
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia, 24016, USA
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, Virginia, 24061, USA
| | - Derek Wei
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia, 24016, USA
- School of Neuroscience, College of Science, Virginia Tech, Blacksburg, Virginia, 24061, USA
| | - Simran K. Gill
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia, 24016, USA
- Department of Psychology, Roanoke College, Salem, Virginia, 24153, USA
- NeuroSURF Program, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia, 24016, USA
| | - Ira J. Blader
- Department of Microbiology and Immunology, University at Buffalo, Buffalo, New York, 14203, USA
| | - Michael A. Fox
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia, 24016, USA
- School of Neuroscience, College of Science, Virginia Tech, Blacksburg, Virginia, 24061, USA
- Department of Biological Sciences, College of Science, Virginia Tech, Blacksburg, Virginia, 24061, USA
- Department of Pediatrics, Virginia Tech Carilion School of Medicine, Roanoke, Virginia, 24016, USA
| |
Collapse
|
5
|
Teng S, Han C, Zhou J, He Z, Qian W. m 5C RNA methylation: a potential mechanism for infectious Alzheimer's disease. Front Cell Dev Biol 2024; 12:1440143. [PMID: 39175875 PMCID: PMC11338875 DOI: 10.3389/fcell.2024.1440143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/30/2024] [Indexed: 08/24/2024] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder caused by a variety of factors, including age, genetic susceptibility, cardiovascular disease, traumatic brain injury, and environmental factors. The pathogenesis of AD is largely associated with the overproduction and accumulation of amyloid-β peptides and the hyperphosphorylation of tau protein in the brain. Recent studies have identified the presence of diverse pathogens, including viruses, bacteria, and parasites, in the tissues of AD patients, underscoring the critical role of central nervous system infections in inducing pathological changes associated with AD. Nevertheless, it remains unestablished about the specific mechanism by which infections lead to the occurrence of AD. As an important post-transcriptional RNA modification, RNA 5-methylcytosine (m5C) methylation regulates a wide range of biological processes, including RNA splicing, nuclear export, stability, and translation, therefore affecting cellular function. Moreover, it has been recently demonstrated that multiple pathogenic microbial infections are associated with the m5C methylation of the host. However, the role of m5C methylation in infectious AD is still uncertain. Therefore, this review discusses the mechanisms of pathogen-induced AD and summarizes research on the molecular mechanisms of m5C methylation in infectious AD, thereby providing new insight into exploring the mechanism underlying infectious AD.
Collapse
Affiliation(s)
- Sisi Teng
- Department of Neurology, Shangjinnanfu Hospital, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Cunqiao Han
- Department of Emergency, Shangjinnanfu Hospital, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jian Zhou
- Department of Immunology, International Cancer Center, Shenzhen University Health Science Center, Shenzhen, Guangdong, China
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, Guangdong, China
| | - Zhenyan He
- Department of Neurosurgery, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Weiwei Qian
- Department of Emergency, Shangjinnanfu Hospital, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Emergency Medicine, Laboratory of Emergency Medicine, West China Hospital, and Disaster Medical Center, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
6
|
Bergersen KV, Kavvathas B, Ford BD, Wilson EH. Toxoplasma infection induces an aged neutrophil population in the CNS that is associated with neuronal protection. J Neuroinflammation 2024; 21:189. [PMID: 39095837 PMCID: PMC11297776 DOI: 10.1186/s12974-024-03176-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/15/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Infection with the protozoan parasite Toxoplasma gondii leads to the formation of lifelong cysts in neurons that can have devastating consequences in the immunocompromised. In the immunocompetent individual, anti-parasitic effector mechanisms and a balanced immune response characterized by pro- and anti-inflammatory cytokine production establishes an asymptomatic infection that rarely leads to neurological symptoms. Several mechanisms are known to play a role in this successful immune response in the brain including T cell production of IFNγ and IL-10 and the involvement of CNS resident cells. This limitation of clinical neuropathology during chronic infection suggests a balance between immune response and neuroprotective mechanisms that collectively prevent clinical manifestations of disease. However, how these two vital mechanisms of protection interact during chronic Toxoplasma infection remains poorly understood. MAIN TEXT This study demonstrates a previously undescribed connection between innate neutrophils found chronically in the brain, termed "chronic brain neutrophils" (CBNeuts), and neuroprotective mechanisms during Toxoplasma infection. Lack of CBNeuts during chronic infection, accomplished via systemic neutrophil depletion, led to enhanced infection and deleterious effects on neuronal regeneration and repair mechanisms in the brain. Phenotypic and transcriptomic analysis of CBNeuts identified them as distinct from peripheral neutrophils and revealed two main subsets of CBNeuts that display heterogeneity towards both classical effector and neuroprotective functions in an age-dependent manner. Further phenotypic profiling defined expression of the neuroprotective molecules NRG-1 andErbB4 by these cells, and the importance of this signaling pathway during chronic infection was demonstrated via NRG-1 treatment studies. CONCLUSIONS In conclusion, this work identifies CBNeuts as a heterogenous population geared towards both classical immune responses and neuroprotection during chronic Toxoplasma infection and provides the foundation for future mechanistic studies of these cells.
Collapse
Affiliation(s)
- Kristina V Bergersen
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, USA
| | - Bill Kavvathas
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, USA
| | - Byron D Ford
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, USA
- College of Medicine, Howard University, Washington, D.C., USA
| | - Emma H Wilson
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, USA.
| |
Collapse
|
7
|
Nayeri T, Sarvi S, Daryani A. Effective factors in the pathogenesis of Toxoplasmagondii. Heliyon 2024; 10:e31558. [PMID: 38818168 PMCID: PMC11137575 DOI: 10.1016/j.heliyon.2024.e31558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 05/11/2024] [Accepted: 05/17/2024] [Indexed: 06/01/2024] Open
Abstract
Toxoplasma gondii (T. gondii) is a cosmopolitan protozoan parasite in humans and animals. It infects about 30 % of the human population worldwide and causes potentially fatal diseases in immunocompromised hosts and neonates. For this study, five English-language databases (ScienceDirect, ProQuest, Web of Science, PubMed, and Scopus) and the internet search engine Google Scholar were searched. This review was accomplished to draw a global perspective of what is known about the pathogenesis of T. gondii and various factors affecting it. Virulence and immune responses can influence the mechanisms of parasite pathogenesis and these factors are in turn influenced by other factors. In addition to the host's genetic background, the type of Toxoplasma strain, the routes of transmission of infection, the number of passages, and different phases of parasite life affect virulence. The identification of virulence factors of the parasite could provide promising insights into the pathogenesis of this parasite. The results of this study can be an incentive to conduct more intensive research to design and develop new anti-Toxoplasma agents (drugs and vaccines) to treat or prevent this infection. In addition, further studies are needed to better understand the key agents in the pathogenesis of T. gondii.
Collapse
Affiliation(s)
- Tooran Nayeri
- Infectious and Tropical Diseases Research Center, Dezful University of Medical Sciences, Dezful, Iran
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Shahabeddin Sarvi
- Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ahmad Daryani
- Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
8
|
Marazziti D, Massa L, Carbone MG, Palermo S, Arone A, D’Angelo G, Schulz Bizzozzero Crivelli N, Gurrieri R, Perrone P, Palagini L, Dell’Osso L. Silent Infections are not So Silent: The Emerging Role of Combined Infections, Inflammation, and Vitamin Levels in OCD. CLINICAL NEUROPSYCHIATRY 2024; 21:7-21. [PMID: 38559435 PMCID: PMC10979795 DOI: 10.36131/cnfioritieditore20240101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Objective Recent evidence highlights that different agents may trigger immune-mediated processes involved in the pathophysiology of different neuropsychiatric conditions. Given the limited information on obsessive-compulsive disorder (OCD), the present study aimed at assessing current/past infections and plasma levels of vitamin D, vitamin B12, folic acid, homocysteine and common peripheral inflammatory markers in a group of OCD outpatients. Method The sample included 217 adult outpatients with an OCD diagnosis according to the DSM-5 criteria. The Yale-Brown Obsessive-Compulsive Scale (Y-BOCS) was used to assess the clinical phenotype and symptom severity. Laboratory blood tests measured levels of vitamin D, vitamin B12, folic acid, homocysteine, erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), blood count and antibodies titers for cytomegalovirus (CMV), Epstein Barr virus (EBV), Toxoplasma gondii and antistreptolysin titer. Results Sixty-one patients had a previous EBV infection, 46 were seropositive for CMV IgG, 24 showed positive antistreptolysin titer, 14 were seropositive for Toxoplasma gondii IgG, and four for CMV IgM. More than a half of patients showed vitamin D insufficiency. Compared to seronegative patients, patients with a past EBV infection displayed significantly higher scores on the Y-BOCS total score and compulsion subscale, and other symptoms. Vitamin D was negatively correlated with both the Y-BOCS total score and the subscales scores. Folic acid was negatively correlated with the Y-BOCS total and obsessions subscale score. Conclusions The findings of our study show an association between Epstein-Barr infection and hypovitaminosis D and the overall severity and specific symptom patterns of OCD. The laboratory measures used in this study are useful, cheap and easy parameters that should be routinely assessed in patients with OCD. Further studies are needed to clarify their role in OCD pathophysiology and outcomes, as well as the potential therapeutic impact of vitamins and antibiotics/immunomodulatory agents in OCD and other psychiatric conditions.
Collapse
Affiliation(s)
- Donatella Marazziti
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, Pisa, Italy
- Saint Camillus International University of Health and Medical Sciences, Rome, Italy
| | - Lucia Massa
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, Pisa, Italy
| | - Manuel Glauco Carbone
- Department of Medicine and Surgery, Division of Psychiatry, University of Insubria, Varese, Italy
| | - Stefania Palermo
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, Pisa, Italy
| | - Alessandro Arone
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, Pisa, Italy
| | - Giorgia D’Angelo
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, Pisa, Italy
| | | | - Riccardo Gurrieri
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, Pisa, Italy
| | - Paola Perrone
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, Pisa, Italy
| | - Laura Palagini
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, Pisa, Italy
| | - Liliana Dell’Osso
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, Pisa, Italy
| |
Collapse
|
9
|
Fahmy MEA, Shalaby MA, Issa R, Badawi M, Magdy M, Afife AA, Abdel-Aal AA. Ivermectin modulated cerebral γ-aminobutyric acid (GABA) and reduced the number of chronic Toxoplasma gondii cysts significantly in the brains of immunocompromised mice. J Parasit Dis 2023; 47:635-643. [PMID: 37520203 PMCID: PMC10382416 DOI: 10.1007/s12639-023-01608-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 06/09/2023] [Indexed: 08/01/2023] Open
Abstract
Disruption of GABAergic signaling could exaggerate the inflammatory reaction associated with Toxoplasma gondii infection, as well as produce neurophysiological consequences including seizures that occur within the brain tissues. The current study aimed to evaluate the efficacy of ivermectin (IVM) in treating latent cerebral toxoplasmosis and define its role in the neuromodulation of cerebral tissue GABA expression, conducted in an immunocompromised dexamethasone-treated mouse model infected with the ME49 Toxoplasma strain. The control (non-infected non-treated) group showed a mean of 22.1 ± 0.71 for local expression of GABA. Significantly lower expression (3.78 ± 1.38) was recorded in the infected non-treated group (p ≤ 0.05). On the contrary, a significantly higher expression was reported in the group infected and treated with IVM than in the infected non-treated group (19.8 ± 0.8). While the infected spiramycin (SP)-treated group reported a significantly lower level than the control. Non-infected groups that received only IVM or SP recorded 22.3 ± 0.45 and 22 ± 0.89 respectively with no significant difference. IVM is shown in this work, not only to reduce the size and the number of Toxoplasma cystic lesions within the brain significantly with a reduction rate of 68.85% but to also increase the level of GABA local expression significantly in addition to improving cerebral histopathology. Thus, IVM by its ability to modulate GABA expression may improve such clinical situations, if used as a treatment either exclusively or in combination with other medications.
Collapse
Affiliation(s)
| | - Maisa Ahmed Shalaby
- Medical Parasitology Department, Theodor Bilharz Research Institute (TBRI), Giza, Egypt
| | - Ragaa Issa
- Departement of Parasitology, Research Institute of Ophthalmology, Giza, Egypt
| | - Manal Badawi
- Departement of Pathology, National Research Centre, Giza, Egypt
| | - Mona Magdy
- Department of Pathology, Theodor Bilharz Research Institute (TBRI), Giza, Egypt
| | - Adam Ashraf Afife
- College of Life Sciences, Faculty of Medicine, Leicester University, Leicester, UK
| | - Amany Ahmed Abdel-Aal
- Department of Medical Parasitology, Faculty of Medicine, Cairo University, Cairo, Egypt
- Department of Postgraduate Studies and Scientific Research, Armed Forces College of Medicine (AFCM), Cairo, Egypt
| |
Collapse
|
10
|
Choopani S, Kiani B, Aliakbari S, Babaie J, Golkar M, Pourbadie HG, Sayyah M. Latent toxoplasmosis impairs learning and memory yet strengthens short-term and long-term hippocampal synaptic plasticity at perforant pathway-dentate gyrus, and Schaffer collatterals-CA1 synapses. Sci Rep 2023; 13:8959. [PMID: 37268701 DOI: 10.1038/s41598-023-35971-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/26/2023] [Indexed: 06/04/2023] Open
Abstract
Investigating long-term potentiation (LTP) in disease models provides essential mechanistic insight into synaptic dysfunction and relevant behavioral changes in many neuropsychiatric and neurological diseases. Toxoplasma (T) gondii is an intracellular parasite causing bizarre changes in host's mind including losing inherent fear of life-threatening situations. We examined hippocampal-dependent behavior as well as in vivo short- and long-term synaptic plasticity (STP and LTP) in rats with latent toxoplasmosis. Rats were infected by T. gondii cysts. Existence of REP-529 genomic sequence of the parasite in the brain was detected by RT-qPCR. Four and eight weeks after infection, spatial, and inhibitory memories of rats were assessed by Morris water maze and shuttle box tests, respectively. Eight weeks after infection, STP was assessed in dentate gyrus (DG) and CA1 by double pulse stimulation of perforant pathway and Shaffer collaterals, respectively. High frequency stimulation (HFS) was applied to induce LTP in entorhinal cortex-DG (400 Hz), and CA3-CA1 (200 Hz) synapses. T. gondii infection retarded spatial learning and memory performance at eight weeks post-infection period, whereas inhibitory memory was not changed. Unlike uninfected rats that normally showed paired-pulse depression, the infected rats developed paired-pulse facilitation, indicating an inhibitory synaptic network disruption. T. gondii-infected rats displayed strengthened LTP of both CA1-pyramidal and DG-granule cell population spikes. These data indicate that T. gondii disrupts inhibition/excitation balance and causes bizarre changes to the post-synaptic neuronal excitability, which may ultimately contribute to the abnormal behavior of the infected host.
Collapse
Affiliation(s)
- Samira Choopani
- Department of Physiology and Pharmacology, Pasteur Institute of Iran, Tehran, Iran
| | - Bahereh Kiani
- Department of Physiology and Pharmacology, Pasteur Institute of Iran, Tehran, Iran
- Department of Biology, Damghan University, Damghan, Iran
| | - Shayan Aliakbari
- Department of Physiology and Pharmacology, Pasteur Institute of Iran, Tehran, Iran
| | - Jalal Babaie
- Department of Parasitology, Pasteur Institute of Iran, Tehran, Iran
| | - Majid Golkar
- Department of Parasitology, Pasteur Institute of Iran, Tehran, Iran
| | | | - Mohammad Sayyah
- Department of Physiology and Pharmacology, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
11
|
Wu Y, Xu D, He Y, Yan Z, Liu R, Liu Z, He C, Liu X, Yu Y, Yang X, Pan W. Dimethyl itaconate ameliorates the deficits of goal-directed behavior in Toxoplasma gondii infected mice. PLoS Negl Trop Dis 2023; 17:e0011350. [PMID: 37256871 DOI: 10.1371/journal.pntd.0011350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 05/02/2023] [Indexed: 06/02/2023] Open
Abstract
BACKGROUND The neurotrophic parasite Toxoplasma gondii (T. gondii) has been implicated as a risk factor for neurodegenerative diseases. However, there is only limited information concerning its underlying mechanism and therapeutic strategy. Here, we investigated the effects of T. gondii chronic infection on the goal-directed cognitive behavior in mice. Moreover, we evaluated the preventive and therapeutic effect of dimethyl itaconate on the behavior deficits induced by the parasite. METHODS The infection model was established by orally infecting the cysts of T. gondii. Dimethyl itaconate was intraperitoneally administered before or after the infection. Y-maze and temporal order memory (TOM) tests were used to evaluate the prefrontal cortex-dependent behavior performance. Golgi staining, transmission electron microscopy, indirect immunofluorescence, western blot, and RNA sequencing were utilized to determine the pathological changes in the prefrontal cortex of mice. RESULTS We showed that T. gondii infection impaired the prefrontal cortex-dependent goal-directed behavior. The infection significantly downregulated the expression of the genes associated with synaptic transmission, plasticity, and cognitive behavior in the prefrontal cortex of mice. On the contrary, the infection robustly upregulated the expression of activation makers of microglia and astrocytes. In addition, the metabolic phenotype of the prefrontal cortex post infection was characterized by the enhancement of glycolysis and fatty acid oxidation, the blockage of the Krebs cycle, and the disorder of aconitate decarboxylase 1 (ACOD1)-itaconate axis. Notably, the administration of dimethyl itaconate significantly prevented and treated the cognitive impairment induced by T. gondii, which was evidenced by the improvement of behavioral deficits, synaptic ultrastructure lesion and neuroinflammation. CONCLUSION The present study demonstrates that T. gondii infection induces the deficits of the goal-directed behavior, which is associated with neuroinflammation, the impairment of synaptic ultrastructure, and the metabolic shifts in the prefrontal cortex of mice. Moreover, we report that dimethyl itaconate has the potential to prevent and treat the behavior deficits.
Collapse
Affiliation(s)
- Yongshuai Wu
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
- The First Clinical Medical College, Xuzhou Medical University, Xuzhou, China
- National Experimental Teaching Demonstration Center of Basic Medicine (Xuzhou Medical University), Xuzhou, China
| | - Daxiang Xu
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Yan He
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
- The First Clinical Medical College, Xuzhou Medical University, Xuzhou, China
- National Experimental Teaching Demonstration Center of Basic Medicine (Xuzhou Medical University), Xuzhou, China
| | - Ziyi Yan
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
- The First Clinical Medical College, Xuzhou Medical University, Xuzhou, China
- National Experimental Teaching Demonstration Center of Basic Medicine (Xuzhou Medical University), Xuzhou, China
| | - Rundong Liu
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
- The First Clinical Medical College, Xuzhou Medical University, Xuzhou, China
- National Experimental Teaching Demonstration Center of Basic Medicine (Xuzhou Medical University), Xuzhou, China
| | - Zhuanzhuan Liu
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
- National Experimental Teaching Demonstration Center of Basic Medicine (Xuzhou Medical University), Xuzhou, China
| | - Cheng He
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
- National Experimental Teaching Demonstration Center of Basic Medicine (Xuzhou Medical University), Xuzhou, China
| | - Xiaomei Liu
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
- National Experimental Teaching Demonstration Center of Basic Medicine (Xuzhou Medical University), Xuzhou, China
| | - Yinghua Yu
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
- National Experimental Teaching Demonstration Center of Basic Medicine (Xuzhou Medical University), Xuzhou, China
| | - Xiaoying Yang
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
- National Experimental Teaching Demonstration Center of Basic Medicine (Xuzhou Medical University), Xuzhou, China
| | - Wei Pan
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
- National Experimental Teaching Demonstration Center of Basic Medicine (Xuzhou Medical University), Xuzhou, China
| |
Collapse
|
12
|
Tedford E, Badya NB, Laing C, Asaoka N, Kaneko S, Filippi BM, McConkey GA. Infection-induced extracellular vesicles evoke neuronal transcriptional and epigenetic changes. Sci Rep 2023; 13:6913. [PMID: 37106020 PMCID: PMC10140046 DOI: 10.1038/s41598-023-34074-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 04/24/2023] [Indexed: 04/29/2023] Open
Abstract
Infection with the protozoan Toxoplasma gondii induces changes in neurotransmission, neuroinflammation, and behavior, yet it remains elusive how these changes come about. In this study we investigated how norepinephrine levels are altered by infection. TINEV (Toxoplasma-induced neuronal extracellular vesicles) isolated from infected noradrenergic cells down-regulated dopamine ß-hydroxylase (DBH) gene expression in human and rodent cells. Here we report that intracerebral injection of TINEVs into the brain is sufficient to induce DBH down-regulation and distrupt catecholaminergic signalling. Further, TINEV treatment induced hypermethylation upstream of the DBH gene. An antisense lncRNA to DBH was found in purified TINEV preparations. Paracrine signalling to induce transcriptional gene silencing and DNA methylation may be a common mode to regulate neurologic function.
Collapse
Affiliation(s)
- Ellen Tedford
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Norhidayah Binti Badya
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Conor Laing
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Nozomi Asaoka
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimoadachi-Cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Shuji Kaneko
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimoadachi-Cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Beatrice Maria Filippi
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Glenn Alan McConkey
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
13
|
Xiao J, Li Y, Rowley T, Huang J, Yolken RH, Viscidi RP. Immunotherapy targeting the PD-1 pathway alleviates neuroinflammation caused by chronic Toxoplasma infection. Sci Rep 2023; 13:1288. [PMID: 36690687 PMCID: PMC9870997 DOI: 10.1038/s41598-023-28322-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/17/2023] [Indexed: 01/25/2023] Open
Abstract
Toxoplasma gondii can infect the host brain and trigger neuroinflammation. Such neuroinflammation might persist for years if the infection is not resolved, resulting in harmful outcomes for the brain. We have previously demonstrated the efficacy of immunotherapy targeting the programmed cell death protein 1 (PD-1) pathway on clearance of Toxoplasma tissue cysts. We aimed to test whether parasite clearance would lead to the resolution of neuroinflammation in infected brains. We established chronic Toxoplasma infection in BALB/c mice using the cyst-forming Prugniaud strain. Mice then received αPD-L1 or isotype control antibodies. After completion of the therapy, mice were euthanized six weeks later. The number of brain tissue cysts, Toxoplasma-specific CD8 + T cell proliferation and IFN-γ secretion, serum cytokine and chemokine levels, and CNS inflammation were measured. In αPD-L1-treated mice, we observed reduced brain tissue cysts, increased spleen weight, elevated IFN-γ production by antigen-specific CD8 + T cells, and a general increase in multiple serum cytokines and chemokines. Importantly, αPD-L1-treated mice displayed attenuation of meningeal lymphocytes, reactive astrocytes, and C1q expression. The reduction in inflammation-related proteins is correlated with reduced parasite burden. These results suggest that promoting systemic immunity results in parasite clearance, which in turn alleviates neuroinflammation. Our study may have implications for some brain infections where neuroinflammation is a critical component.
Collapse
Affiliation(s)
- Jianchun Xiao
- Stanley Division of Developmental Neurovirology, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD, 21287, USA.
| | - Ye Li
- Stanley Division of Developmental Neurovirology, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD, 21287, USA
| | - Treva Rowley
- Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD, 21287, USA
| | - Jing Huang
- Stanley Division of Developmental Neurovirology, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD, 21287, USA
| | - Robert H Yolken
- Stanley Division of Developmental Neurovirology, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD, 21287, USA
| | - Raphael P Viscidi
- Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD, 21287, USA
| |
Collapse
|
14
|
Baker TL, Uboldi AD, Tonkin CJ, Wright DK, Vo A, Wilson T, Mychasiuk R, McDonald SJ, Semple BD, Sun M, Shultz SR. Pre-existing Toxoplasma gondii infection increases susceptibility to pentylenetetrazol-induced seizures independent of traumatic brain injury in mice. Front Mol Neurosci 2023; 15:1079097. [PMID: 36683847 PMCID: PMC9849700 DOI: 10.3389/fnmol.2022.1079097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/09/2022] [Indexed: 01/06/2023] Open
Abstract
Introduction Post-traumatic epilepsy (PTE) is a debilitating chronic outcome of traumatic brain injury (TBI), and neuroinflammation is implicated in increased seizure susceptibility and epileptogenesis. However, how common clinical factors, such as infection, may modify neuroinflammation and PTE development has been understudied. The neurotropic parasite, Toxoplasma gondii (T. gondii) incurably infects one-third of the world's population. Thus, many TBI patients have a pre-existing T. gondii infection at the time of injury. T. gondii infection results in chronic low-grade inflammation and altered signaling pathways within the brain, and preliminary clinical evidence suggest that it may be a risk factor for epilepsy. Despite this, no studies have considered how a pre-existing T. gondii infection may alter the development of PTE. Methods This study aimed to provide insight into this knowledge gap by assessing how a pre-existing T. gondii infection alters susceptibility to, and severity of, pentylenetetrazol (PTZ)-induced seizures (i.e., a surrogate marker of epileptogenesis/PTE) at a chronic stage of TBI recovery. We hypothesized that T. gondii will increase the likelihood and severity of seizures following PTZ administration, and that this would occur in the presence of intensified neuroinflammation. To test this, 6-week old male and female C57BL/6 Jax mice were intraperitoneally injected with 50,000 T. gondii tachyzoites or with the PBS vehicle only. At 12-weeks old, mice either received a severe TBI via controlled cortical impact or sham injury. At 18-weeks post-injury, mice were administered 40 mg/kg PTZ and video-recorded for evaluation of seizure susceptibility. Fresh cortical tissue was then collected for gene expression analyses. Results Although no synergistic effects were evident between infection and TBI, chronic T. gondii infection alone had robust effects on the PTZ-seizure response and gene expression of markers related to inflammatory, oxidative stress, and glutamatergic pathways. In addition to this, females were more susceptible to PTZ-induced seizures than males. While TBI did not impact PTZ responses, injury effects were evident at the molecular level. Discussion Our data suggests that a pre-existing T. gondii infection is an important modifier of seizure susceptibility independent of brain injury, and considerable attention should be directed toward delineating the mechanisms underlying this pro-epileptogenic factor.
Collapse
Affiliation(s)
- Tamara L. Baker
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Alessandro D. Uboldi
- Division of Infectious Disease and Immune Defense, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Christopher J. Tonkin
- Division of Infectious Disease and Immune Defense, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - David K. Wright
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Anh Vo
- Monash Health Translation Precinct, Monash University, Melbourne, VIC, Australia
| | - Trevor Wilson
- Monash Health Translation Precinct, Monash University, Melbourne, VIC, Australia
| | - Richelle Mychasiuk
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Stuart J. McDonald
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Bridgette D. Semple
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Mujun Sun
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Sandy R. Shultz
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia,Health Sciences, Vancouver Island University, Nanaimo, BC, Canada,*Correspondence: Sandy R. Shultz,
| |
Collapse
|
15
|
Halonen SK. Use of in vitro derived human neuronal models to study host-parasite interactions of Toxoplasma gondii in neurons and neuropathogenesis of chronic toxoplasmosis. Front Cell Infect Microbiol 2023; 13:1129451. [PMID: 36968101 PMCID: PMC10031036 DOI: 10.3389/fcimb.2023.1129451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/14/2023] [Indexed: 03/29/2023] Open
Abstract
Toxoplasma gondii infects approximately one-third of the world's population resulting in a chronic infection with the parasite located in cysts in neurons in the brain. In most immunocompetent hosts the chronic infection is asymptomatic, but several studies have found correlations between Toxoplasma seropositivity and neuropsychiatric disorders, including Schizophrenia, and some other neurological disorders. Host-parasite interactions of bradyzoites in cysts in neurons is not well understood due in part to the lack of suitable in vitro human neuronal models. The advent of stem cell technologies in which human neurons can be derived in vitro from human induced pluripotent stem cells (hiPSCs) or direct conversion of somatic cells generating induced neurons (iNs), affords the opportunity to develop in vitro human neuronal culture systems to advance the understanding of T. gondii in human neurons. Human neurons derived from hiPSCs or iNs, generate pure human neuron monolayers that express differentiated neuronal characteristics. hiPSCs also generate 3D neuronal models that better recapitulate the cytoarchitecture of the human brain. In this review, an overview of iPSC-derived neurons and iN protocols leading to 2D human neuron cultures and hiPSC-derived 3D cerebral organoids will be given. The potential applications of these 2D and 3D human neuronal models to address questions about host-parasite interactions of T. gondii in neurons and the parasite in the CNS, will be discussed. These human neuronal in vitro models hold the promise to advance the understanding of T. gondii in human neurons and to improve the understanding of neuropathogenesis of chronic toxoplasmosis.
Collapse
|
16
|
Effects of diverse Types of Toxoplasma gondii on the outcome of Alzheimer's disease in the rat model. Microb Pathog 2023; 174:105931. [PMID: 36473668 DOI: 10.1016/j.micpath.2022.105931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/02/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
Toxoplasma gondii has lifelong persistence in the brain and its cysts can affect gene expression and change diverse biological functions of neurons. Many studies indicated T. gondii infection as a risk factor for the development of behavioral changes and neurodegenerative diseases such as Alzheimer's disease (AD), although the etiopathogenetic link between them has not been exactly elucidated. The current study aimed to examine the effects of chronic toxoplasmosis infection with Types I, II, and III strains (RH, PRU, and VEG) alone and in combination on cognitive impairments and neuronal death in the Aβ1-42-induced rat model of Alzheimer's disease. In the chronic toxoplasmosis phase, Alzheimer's induction was conducted by injecting Aβ1-42 oligomers into the rat brain hippocampus. Behavioral tests were conducted 10 days after the AD induction. Real-time PCR was performed to evaluate T. gondii parasite burden by amplification of the B1 gene. Cytokines IL-1β, TNF-α, and IL-10 were assayed in brain tissue supernatant using ELISA. Also, histopathological examinations were conducted to calculate inflammatory changes and neuronal death in the brain. Our findings showed that chronic toxoplasmosis infection with PRU reduces cognitive disorders, while the RH strain of T. gondii plays a destructive role and aggravates cognitive impairments in AD. Also, infection with a combination of PRU and VEG strains significantly improved spatial learning and memory impairments in Alzheimer's rat model. Histopathological findings also confirmed the results of behavioral tests, so that in AβPRU and AβPRU + VEG groups, neuronal death and infiltration of inflammatory cells were negligible and significantly less than in Alzheimer's and AβRH groups. Our findings indicate that chronic toxoplasmosis infection with PRU strain alone, also in combination with VEG strain can significantly improve cognitive disorders in AD rats, while RH strain plays a destructive role in AD pathogenesis.
Collapse
|
17
|
He Y, Xu D, Yan Z, Wu Y, Zhang Y, Tian X, Zhu J, Liu Z, Cheng W, Zheng K, Yang X, Yu Y, Pan W. A metabolite attenuates neuroinflammation, synaptic loss and cognitive deficits induced by chronic infection of Toxoplasma gondii. Front Immunol 2022; 13:1043572. [PMID: 36618398 PMCID: PMC9815861 DOI: 10.3389/fimmu.2022.1043572] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Background Neurodegenerative diseases including AD is currently one of intractable problems globally due to the insufficiency of intervention strategies. Long-term infection of Toxoplasma gondii (T. gondii) can induce cognitive impairment in hosts, which is closely implicated in the pathogenesis of neurodegenerative diseases. Aconitate decarboxylase 1 (Acod1) and its produced metabolite itaconate (termed Acod1/itaconate axis), have recently attracted extensive interests due to its anti-inflammatory role in macrophages. However, whether the axis can influence cognitive function remains unknown. Methods A chronic T. gondii-infected mice (C57BL/6J) model was established via administration of cysts by gavage. Novel location (NL), novel object recognition (NOR), Y-maze spatial memory and nest building tests were used to evaluate the behavior performance. Transmission electron microscopy, immunofluorescence, RT-PCR, western-blotting and RNA sequencing were utilized to determine the pathological changes, neuroinflammation and transcription profile in hippocampus tissues post infection, respectively. Moreover, the protective effect of Acod1/itaconate axis in T. gondii-induced cognitive deficits was evaluated. Results We found that the latent infection of the parasite impaired the cognitive function, which was assessed behaviorally by novel location (NL), novel object recognition (NOR), Y-maze spatial memory and nest building tests. RNA sequencing of hippocampus showed that the infection downregulated the expression of genes related to synaptic plasticity, transmission and cognitive behavior. To our attention, the infection robustly upregulated the expression of genes associated with pro-inflammatory responses, which was characterized by microglia activation and disorder of Acod1/itaconate axis. Interestingly, administration of dimethyl itaconate (DI, an itaconate derivative with cell membrane permeability) could significantly ameliorate the cognitive deficits induced by T. gondii, which was proved by improvement of behavior performance and synaptic ultrastructure impairment, and lower accumulation of pro-inflammatory microglia. Notably, DI administration had a potential therapeutic effect on the cognitive deficits and synaptic impairment induced by the parasitic infection. Conclusions Overall, these findings provide a novel insight for the pathogenesis of T. gondii-related cognitive deficits in hosts, and also provide a novel clue for the potential therapeutic strategies.
Collapse
Affiliation(s)
- Yan He
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China,The First Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, China,National Experimental Teaching Demonstration Center of Basic Medicine (Xuzhou Medical University), Xuzhou, Jiangsu, China
| | - Daxiang Xu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ziyi Yan
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China,The First Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, China,National Experimental Teaching Demonstration Center of Basic Medicine (Xuzhou Medical University), Xuzhou, Jiangsu, China
| | - Yongshuai Wu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China,The First Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, China,National Experimental Teaching Demonstration Center of Basic Medicine (Xuzhou Medical University), Xuzhou, Jiangsu, China
| | - Yongsheng Zhang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China,The First Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, China,National Experimental Teaching Demonstration Center of Basic Medicine (Xuzhou Medical University), Xuzhou, Jiangsu, China
| | - Xiaokang Tian
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China,The First Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, China,National Experimental Teaching Demonstration Center of Basic Medicine (Xuzhou Medical University), Xuzhou, Jiangsu, China
| | - Jinhang Zhu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China,National Experimental Teaching Demonstration Center of Basic Medicine (Xuzhou Medical University), Xuzhou, Jiangsu, China,The Second Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhuanzhuan Liu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Wanpeng Cheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Kuiyang Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiaoying Yang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China,*Correspondence: Wei Pan, ; Yinghua Yu, ; Xiaoying Yang,
| | - Yinghua Yu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China,*Correspondence: Wei Pan, ; Yinghua Yu, ; Xiaoying Yang,
| | - Wei Pan
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China,*Correspondence: Wei Pan, ; Yinghua Yu, ; Xiaoying Yang,
| |
Collapse
|
18
|
Naranjo-Galvis CA, Cardona-Londoño KY, Orrego-Cardozo M, Elcoroaristizabal-Martín X. Toxoplasma gondii infection and peripheral-blood gene expression profiling of older people reveals dysregulation of cytokines and identifies hub genes as potential therapeutic targets. Heliyon 2022; 8:e10576. [PMID: 36119857 PMCID: PMC9478394 DOI: 10.1016/j.heliyon.2022.e10576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 11/12/2021] [Accepted: 09/02/2022] [Indexed: 11/21/2022] Open
Abstract
Infections of humans with the protozoan parasite Toxoplasma gondii (T. gondii) can lead to the disease's development, even in an asymptomatic status. However, the mechanisms that result in these clinical outcomes after infection are poorly understood. This study aimed to explore the molecular pathogenesis of toxoplasmosis-related inflammation through next-generation sequencing, to assess RNA expression profiles in peripheral blood from 5 female patients with chronic toxoplasmosis and 5 healthy female controls. All plasma samples were analyzed for anti-Toxoplasma IgG and IgM antibody titers by using electrochemiluminescence. Detection of acute and chronic toxoplasmosis was carried out using the ELISA IgG avidity. We evaluated the levels of INF-γ, IL-2, IL-12, TNF-α, IL-10, and IL-1β in culture supernatants of Peripheral Blood Mononuclear Cells infected with Toxoplasma lysate antigen (TLA) prepared with tachyzoites of strain T. gondii RH. Differential expression analysis was performed using DESeq2, pathway and enrichment analysis of DEGs was done on WEB-based Gene SeT AnaLysis Toolkit (WebGestalt) and Protein-protein interaction was carried out using NetworkAnalyst with STRING. In older people with chronic asymptomatic infection, a significant difference in the levels of inflammatory cytokines INF-γ and IL-2 was observed compared to seronegative individuals. Our results revealed differences in the regulation of critical biological processes involved in host responses to chronic T. gondii infection. Gene ontology analysis revealed several biologically relevant inflammatory and immune-related pathways.
Collapse
Affiliation(s)
- Carlos A Naranjo-Galvis
- Facultad de Salud, Universidad Autónoma de Manizales, Antigua Estación Del Ferrocarril, Manizales, Caldas, Colombia
| | - Kelly Y Cardona-Londoño
- Facultad de Salud, Universidad Autónoma de Manizales, Antigua Estación Del Ferrocarril, Manizales, Caldas, Colombia
| | - Mary Orrego-Cardozo
- Facultad de Salud, Universidad Autónoma de Manizales, Antigua Estación Del Ferrocarril, Manizales, Caldas, Colombia
| | | |
Collapse
|
19
|
Johnson HJ, Koshy AA. Understanding neuroinflammation through central nervous system infections. Curr Opin Neurobiol 2022; 76:102619. [PMID: 35985075 PMCID: PMC10147316 DOI: 10.1016/j.conb.2022.102619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/09/2022] [Accepted: 07/08/2022] [Indexed: 11/28/2022]
Abstract
Neuroinflammation is now recognized to compound many central nervous system (CNS) pathologies, from stroke to dementia. As immune responses evolved to handle infections, studying CNS infections can offer unique insights into the CNS immune response and address questions such as: What defenses and strategies do CNS parenchymal cells deploy in response to a dangerous pathogen? How do CNS cells interact with each other and infiltrating immune cells to control microbes? What pathways are beneficial for the host or for the pathogen? Here, we review recent studies that use CNS-tropic infections in combination with cutting-edge techniques to delve into the complex relationships between microbes, immune cells, and cells of the CNS.
Collapse
Affiliation(s)
- Hannah J Johnson
- Neuroscience Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ, USA
| | - Anita A Koshy
- Neuroscience Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ, USA; Department of Neurology, University of Arizona, Tucson, AZ, USA; BIO5 Institute, University of Arizona, Tucson, AZ, USA; Department of Immunobiology, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
20
|
Cromar GL, Epp JR, Popovic A, Gu Y, Ha V, Walters BJ, St. Pierre J, Xiong X, Howland JG, Josselyn SA, Frankland PW, Parkinson J. Toxoplasma infection in male mice alters dopamine-sensitive behaviors and host gene expression patterns associated with neuropsychiatric disease. PLoS Negl Trop Dis 2022; 16:e0010600. [PMID: 35857765 PMCID: PMC9342775 DOI: 10.1371/journal.pntd.0010600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 08/01/2022] [Accepted: 06/21/2022] [Indexed: 11/18/2022] Open
Abstract
During chronic infection, the single celled parasite, Toxoplasma gondii, can migrate to the brain where it has been associated with altered dopamine function and the capacity to modulate host behavior, increasing risk of neurocognitive disorders. Here we explore alterations in dopamine-related behavior in a new mouse model based on stimulant (cocaine)-induced hyperactivity. In combination with cocaine, infection resulted in heightened sensorimotor deficits and impairment in prepulse inhibition response, which are commonly disrupted in neuropsychiatric conditions. To identify molecular pathways in the brain affected by chronic T. gondii infection, we investigated patterns of gene expression. As expected, infection was associated with an enrichment of genes associated with general immune response pathways, that otherwise limits statistical power to identify more informative pathways. To overcome this limitation and focus on pathways of neurological relevance, we developed a novel context enrichment approach that relies on a customized ontology. Applying this approach, we identified genes that exhibited unexpected patterns of expression arising from the combination of cocaine exposure and infection. These include sets of genes which exhibited dampened response to cocaine in infected mice, suggesting a possible mechanism for some observed behaviors and a neuroprotective effect that may be advantageous to parasite persistence. This model offers a powerful new approach to dissect the molecular pathways by which T. gondii infection contributes to neurocognitive disorders.
Collapse
Affiliation(s)
- Graham L. Cromar
- Program in Molecular Medicine, Hospital for Sick Children, Toronto, Canada
| | - Jonathan R. Epp
- Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Canada
| | - Ana Popovic
- Program in Molecular Medicine, Hospital for Sick Children, Toronto, Canada
- Dept. of Biochemistry, University of Toronto, Toronto, Canada
| | - Yusing Gu
- Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Canada
| | - Violet Ha
- Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Canada
| | - Brandon J. Walters
- Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Canada
| | - James St. Pierre
- Program in Molecular Medicine, Hospital for Sick Children, Toronto, Canada
| | - Xuejian Xiong
- Program in Molecular Medicine, Hospital for Sick Children, Toronto, Canada
| | - John G. Howland
- Dept. of Anatomy, Physiology and Pharmacology, University of Saskatchewan, Saskatoon, Canada
| | - Sheena A. Josselyn
- Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Canada
- Dept. of Physiology, University of Toronto, Toronto, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Canada
- Dept. of Psychology, University of Toronto, Toronto, Canada
| | - Paul W. Frankland
- Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Canada
- Dept. of Physiology, University of Toronto, Toronto, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Canada
- Dept. of Psychology, University of Toronto, Toronto, Canada
- * E-mail: (PF); (JP)
| | - John Parkinson
- Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Canada
- Dept. of Biochemistry, University of Toronto, Toronto, Canada
- Dept. of Molecular Genetics, University of Toronto, Toronto, Canada
- * E-mail: (PF); (JP)
| |
Collapse
|
21
|
Alvarado-Esquivel C, Estrada-Martínez S, Pérez-Álamos AR, Ramos-Nevárez A, Botello-Calderón K, Alvarado-Félix ÁO, Vaquera-Enríquez R, Alvarado-Félix GA, Sifuentes-Álvarez A, Guido-Arreola CA, Rábago-Sánchez E, Saenz-Soto L. Toxoplasma gondii infection and insomnia: A case control seroprevalence study. PLoS One 2022; 17:e0266214. [PMID: 35679264 PMCID: PMC9182222 DOI: 10.1371/journal.pone.0266214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/24/2022] [Indexed: 11/19/2022] Open
Abstract
We determined the association between Toxoplasma gondii (T. gondii) infection and insomnia. Through an age-and gender-matched case-control study, 577 people with insomnia (cases) and 577 people without insomnia (controls) were tested for anti-T. gondii IgG and IgM antibodies using commercially available enzyme-immunoassays. Anti-T. gondii IgG antibodies were found in 71 (12.3%) of 577 individuals with insomnia and in 46 (8.0%) of 577 controls (OR = 1.62; 95% CI: 1.09–2.39; P = 0.01). Men with insomnia had a higher (16/73: 21.9%) seroprevalence of T. gondii infection than men without insomnia (5/73: 6.8%) (OR: 3.81; 95% CI: 1.31–11.06; P = 0.009). The rate of high (>150 IU/ml) anti-T. gondii IgG antibody levels in cases was higher than the one in controls (OR = 2.21; 95% CI: 1.13–4.31; P = 0.01). Men with insomnia had a higher (8/73: 11.0%) rate of high anti-T. gondii IgG antibody levels than men without insomnia (0/73: 0.0%) (P = 0.006). The rate of high anti-T. gondii IgG antibody levels in cases >50 years old (11/180: 6.1%) was higher than that (3/180: 1.7%) in controls of the same age group (OR: 3.84; 95% CI: 1.05–14.00; P = 0.05). No difference in the rate of IgM seropositivity between cases and controls was found (OR = 1.33; 95% CI: 0.57–3.11; P = 0.50). Results of this seroepidemiology study suggest that infection with T. gondii is associated with insomnia. Men older than 50 years with T. gondii exposure might be prone to insomnia. Further research to confirm the association between seropositivity and serointensity to T. gondii and insomnia is needed.
Collapse
Affiliation(s)
- Cosme Alvarado-Esquivel
- Biomedical Research Laboratory, Faculty of Medicine and Nutrition, Juárez University of Durango State, Durango, Mexico
- * E-mail:
| | - Sergio Estrada-Martínez
- Institute for Scientific Research “Dr. Roberto Rivera-Damm”, Juárez University of Durango State, Durango, Mexico
| | - Alma Rosa Pérez-Álamos
- Institute for Scientific Research “Dr. Roberto Rivera-Damm”, Juárez University of Durango State, Durango, Mexico
| | - Agar Ramos-Nevárez
- Clínica de Medicina Familiar, Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, Durango, Mexico
| | - Karina Botello-Calderón
- Biomedical Research Laboratory, Faculty of Medicine and Nutrition, Juárez University of Durango State, Durango, Mexico
| | - Ángel Osvaldo Alvarado-Félix
- Biomedical Research Laboratory, Faculty of Medicine and Nutrition, Juárez University of Durango State, Durango, Mexico
| | - Raquel Vaquera-Enríquez
- Health Center No. 2 “Dr. Carlos Santamaría”, Servicios de Salud de Durango, Durango, Durango, Mexico
| | - Gustavo Alexis Alvarado-Félix
- Biomedical Research Laboratory, Faculty of Medicine and Nutrition, Juárez University of Durango State, Durango, Mexico
| | - Antonio Sifuentes-Álvarez
- Biomedical Research Laboratory, Faculty of Medicine and Nutrition, Juárez University of Durango State, Durango, Mexico
| | - Carlos Alberto Guido-Arreola
- Clínica de Medicina Familiar, Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, Durango, Mexico
| | - Elizabeth Rábago-Sánchez
- Biomedical Research Laboratory, Faculty of Medicine and Nutrition, Juárez University of Durango State, Durango, Mexico
| | - Leandro Saenz-Soto
- Clínica de Medicina Familiar, Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, Durango, Mexico
| |
Collapse
|
22
|
Idro R, Ogwang R, Barragan A, Raimondo JV, Masocha W. Neuroimmunology of Common Parasitic Infections in Africa. Front Immunol 2022; 13:791488. [PMID: 35222377 PMCID: PMC8866860 DOI: 10.3389/fimmu.2022.791488] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 01/18/2022] [Indexed: 11/13/2022] Open
Abstract
Parasitic infections of the central nervous system are an important cause of morbidity and mortality in Africa. The neurological, cognitive, and psychiatric sequelae of these infections result from a complex interplay between the parasites and the host inflammatory response. Here we review some of the diseases caused by selected parasitic organisms known to infect the nervous system including Plasmodium falciparum, Toxoplasma gondii, Trypanosoma brucei spp., and Taenia solium species. For each parasite, we describe the geographical distribution, prevalence, life cycle, and typical clinical symptoms of infection and pathogenesis. We pay particular attention to how the parasites infect the brain and the interaction between each organism and the host immune system. We describe how an understanding of these processes may guide optimal diagnostic and therapeutic strategies to treat these disorders. Finally, we highlight current gaps in our understanding of disease pathophysiology and call for increased interrogation of these often-neglected disorders of the nervous system.
Collapse
Affiliation(s)
- Richard Idro
- College of Health Sciences, Makerere University, Kampala, Uganda.,Centre of Tropical Neuroscience, Kitgum, Uganda.,Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
| | - Rodney Ogwang
- College of Health Sciences, Makerere University, Kampala, Uganda.,Centre of Tropical Neuroscience, Kitgum, Uganda.,Kenya Medical Research Institute (KEMRI) - Wellcome Trust Research Programme, Nairobi, Kenya
| | - Antonio Barragan
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Joseph Valentino Raimondo
- Division of Cell Biology, Department of Human Biology, Neuroscience Institute and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Willias Masocha
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Kuwait University, Safat, Kuwait
| |
Collapse
|
23
|
Nugraha RYB, Jeelani G, Nozaki T. Physiological roles and metabolism of γ-aminobutyric acid (GABA) in parasitic protozoa. Trends Parasitol 2022; 38:462-477. [DOI: 10.1016/j.pt.2022.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/20/2022] [Accepted: 02/04/2022] [Indexed: 11/16/2022]
|
24
|
Yin K, Xu C, Zhao G, Xie H. Epigenetic Manipulation of Psychiatric Behavioral Disorders Induced by Toxoplasma gondii. Front Cell Infect Microbiol 2022; 12:803502. [PMID: 35237531 PMCID: PMC8882818 DOI: 10.3389/fcimb.2022.803502] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/17/2022] [Indexed: 11/21/2022] Open
Abstract
Toxoplasma gondii is known to have a complex life cycle and infect almost all kinds of warm-blooded animals around the world. The brain of the host could be persistently infected by cerebral cysts, and a variety of psychiatric disorders such as schizophrenia and suicide have been reported to be related with latent toxoplasmosis. The infected animals showed fear reduction and a tendency to be preyed upon. However, the mechanism of this “parasites manipulation” effects have not been elucidated. Here, we reviewed the recent infection prevalence of toxoplasmosis and the evidence of mental and behavioral disorders induced by T. gondii and discussed the related physiological basis including dopamine dysregulation and gamma-aminobutyric acid (GABA) pathway and the controversial opinion of the necessity for cerebral cysts existence. Based on the recent advances, we speculated that the neuroendocrine programs and neurotransmitter imbalance may play a key role in this process. Simultaneously, studies in the evaluation of the expression pattern of related genes, long noncoding RNAs (lncRNAs), and mRNAs of the host provides a new point for understanding the mechanism of neurotransmitter dysfunction induced by parasite manipulation. Therefore, we summarized the animal models, T. gondii strains, and behavioral tests used in the related epigenetic studies and the responsible epigenetic processes; pinpointed opportunities and challenges in future research including the causality evidence of human psychiatric disorders, the statistical analysis for rodent-infected host to be more vulnerable preyed upon; and identified responsible genes and drug targets through epigenetics.
Collapse
|
25
|
Bando H, Fukuda Y, Watanabe N, Olawale JT, Kato K. Depletion of Intracellular Glutamine Pools Triggers Toxoplasma gondii Stage Conversion in Human Glutamatergic Neurons. Front Cell Infect Microbiol 2022; 11:788303. [PMID: 35096641 PMCID: PMC8793678 DOI: 10.3389/fcimb.2021.788303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 12/16/2021] [Indexed: 11/13/2022] Open
Abstract
Toxoplasma gondii chronically infects the brain as latent cysts containing bradyzoites and causes various effects in the host. Recently, the molecular mechanisms of cyst formation in the mouse brain have been elucidated, but those in the human brain remain largely unknown. Here, we show that abnormal glutamine metabolism caused by both interferon-γ (IFN-γ) stimulation and T. gondii infection induce cyst formation in human neuroblastoma cells regardless of the anti-T. gondii host factor nitric oxide (NO) level or Indoleamine 2,3-dioxygenase-1 (IDO1) expression. IFN-γ stimulation promoted intracellular glutamine degradation in human neuronal cells. Additionally, T. gondii infection inhibited the mRNA expression of the host glutamine transporters SLC38A1 and SLC38A2. These dual effects led to glutamine starvation and triggered T. gondii stage conversion in human neuronal cells. Furthermore, these mechanisms are conserved in human iPSC-derived glutamatergic neurons. Taken together, our data suggest that glutamine starvation in host cells is an important trigger of T. gondii stage conversion in human neurons.
Collapse
Affiliation(s)
- Hironori Bando
- Laboratory of Sustainable Animal Environment, Graduate School of Agricultural Science, Tohoku University, Osaki, Japan
| | - Yasuhiro Fukuda
- Laboratory of Sustainable Animal Environment, Graduate School of Agricultural Science, Tohoku University, Osaki, Japan
| | - Nina Watanabe
- Laboratory of Sustainable Animal Environment, Graduate School of Agricultural Science, Tohoku University, Osaki, Japan
| | - Jeje Temitope Olawale
- Laboratory of Sustainable Animal Environment, Graduate School of Agricultural Science, Tohoku University, Osaki, Japan
- Department of Biochemistry, Faculty of Science, Federal University Oye-Ekiti, Oye-Ekiti, Ekiti State, Nigeria
- Department of Biochemistry, School of Science, Federal University of Technology, Akure, Nigeria
| | - Kentaro Kato
- Laboratory of Sustainable Animal Environment, Graduate School of Agricultural Science, Tohoku University, Osaki, Japan
- *Correspondence: Kentaro Kato,
| |
Collapse
|
26
|
Nayeri T, Sarvi S, Daryani A. Toxoplasmosis: Targeting neurotransmitter systems in psychiatric disorders. Metab Brain Dis 2022; 37:123-146. [PMID: 34476718 DOI: 10.1007/s11011-021-00824-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 08/14/2021] [Indexed: 12/30/2022]
Abstract
The most common form of the disease caused by Toxoplasma gondii (T. gondii) is latent toxoplasmosis due to the formation of tissue cysts in various organs, such as the brain. Latent toxoplasmosis is probably a risk factor in the development of some neuropsychiatric disorders. Behavioral changes after infection are caused by the host immune response, manipulation by the parasite, central nervous system (CNS) inflammation, as well as changes in hormonal and neuromodulator relationships. The present review focused on the exact mechanisms of T. gondii effect on the alteration of behavior and neurotransmitter levels, their catabolites and metabolites, as well as the interaction between immune responses and this parasite in the etiopathogenesis of psychiatric disorders. The dysfunction of neurotransmitters in the neural transmission is associated with several neuropsychiatric disorders. However, further intensive studies are required to determine the effect of this parasite on altering the level of neurotransmitters and the role of neurotransmitters in the etiology of host behavioral changes.
Collapse
Affiliation(s)
- Tooran Nayeri
- Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Shahabeddin Sarvi
- Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ahmad Daryani
- Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
- Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
27
|
Alizadeh Khatir A, Moghaddam SA, Almukhtar M, Ghorbani H, Babazadeh A, Mehravar S, Rostami A. Toxoplasma infection and risk of epilepsy: A case-control study of incident patients. Microb Pathog 2021; 161:105302. [PMID: 34808274 DOI: 10.1016/j.micpath.2021.105302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 11/14/2021] [Accepted: 11/18/2021] [Indexed: 10/19/2022]
Abstract
We performed an age matched case-control study of incident epileptic patients to assess the relationship between Toxoplasma gondii seropositivity and epilepsy. Cases were 94 newly diagnosed patients (mean age, 36.7 ± 15.9) with unprovoked convulsive epilepsy of unknown etiology and controls were 88 healthy individuals (mean age, 37.5 ± 17.1) with no history of epilepsy or neurological disorders. Sera of all subjects were examined for anti-Toxoplasma IgG antibodies using commercially enzyme-linked immunoassays. We calculated odds ratios (ORs) and 95% confidence intervals (CIs) using univariate analysis and logistic regression, adjusted for potential confounders. The prevalence of anti-Toxoplasma IgG antibodies in epileptic patients (68.1%; 95%CI, 57.6-77.3%) was significantly higher than healthy controls (47.7%; 95%CI, 36.9-58.6%), indicating a significant relationship between Toxoplasma infection seropositivity and epilepsy (adjusted OR, 2.58; 95%CI, 1.16-5.72; P value < 0.05). The univariate analyses showed more than two-fold higher Toxoplasma seropositivity in patients with focal (OR, 2.31; 95%CI, 0.94-5.67) and generalized (OR, 2.35; 95%CI, 1.215-4.57) seizures versus healthy controls. Our findings support hypothesis that Toxoplasma infection/exposure may play an important role in development of epilepsy. Preventive measures to control of Toxoplasma infection especially in north of Iran and early treatment might be effective to reduce the occurrence of epilepsy in this region.
Collapse
Affiliation(s)
- Ali Alizadeh Khatir
- Mobility Impairment Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | | | | | - Hossein Ghorbani
- Department of Pathology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Arefeh Babazadeh
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Saeed Mehravar
- Department of Epidemiology and Statistics, School of Public Health, Tehran University of Medical Science, Tehran, Iran
| | - Ali Rostami
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
28
|
Rostami-Mansoor S, Kalantari N, Gorgani-Firouzjaee T, Ghaffari S, Ghasemi-Kasman M. Modulation of mRNA Expression of Monoacylglycerol Lipase, Diacylglycerol Lipase and Cannabinoid Receptor-1 in Mice Experimentally Infected with T. gondii. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2021; 10:149-155. [PMID: 34703798 PMCID: PMC8496245 DOI: 10.22088/ijmcm.bums.10.2.149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 05/15/2021] [Indexed: 11/01/2022]
Abstract
Toxoplasma gondii, an obligate intracellular parasite, infects more than 30% of world's population. This parasite is considered to be neurotropic, and has high tropism for the central nervous system, and potentially induces cryptogenic epilepsy by no clear mechanism. The current study aimed to investigate the alteration of the main components of the endocannabinoid signaling systems in T. gondii-infected mice. For this purpose, the levels of mRNA expression of monoacylglycerol lipase (MAGL), diacylglycerol lipase (DAGL) and cannabinoid receptor-1 (CB1), were measured by quantitative real time PCR.The mRNA expression level of MAGL was increased by ~ 8-fold in the brains of the Toxoplasma-infected group in comparison with non-infected mice (P<0.0001). The mRNA expression of CB1 gene in the brain of the infected mice was ~ 2 times higher than that measured in control group (P<0.01). The mRNA expression level of DAGL remained unchanged in the infected mice. Overall a substantial increase in MAGL and CB1 expression without any changes in DAGL, in the brain of infected mice suggests that T. gondii disturbs the endocannabinoid signaling pathways, which are known as neurotransmitter modulators involved in epilepsy.
Collapse
Affiliation(s)
- Sahar Rostami-Mansoor
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Narges Kalantari
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Tahmineh Gorgani-Firouzjaee
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Salman Ghaffari
- Department of Mycology and Parasitology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Maryam Ghasemi-Kasman
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
29
|
Correa Leite PE, de Araujo Portes J, Pereira MR, Russo FB, Martins-Duarte ES, Almeida Dos Santos N, Attias M, Barrantes FJ, Baleeiro Beltrão-Braga PC, de Souza W. Morphological and biochemical repercussions of Toxoplasma gondii infection in a 3D human brain neurospheres model. Brain Behav Immun Health 2021; 11:100190. [PMID: 34589727 PMCID: PMC8474451 DOI: 10.1016/j.bbih.2020.100190] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 12/06/2020] [Indexed: 12/19/2022] Open
Abstract
Background Toxoplasmosis is caused by the parasite Toxoplasma gondii that can infect the central nervous system (CNS), promoting neuroinflammation, neuronal loss, neurotransmitter imbalance and behavioral alterations. T. gondii infection is also related to neuropsychiatric disorders such as schizophrenia. The pathogenicity and inflammatory response in rodents are different to the case of humans, compromising the correlation between the behavioral alterations and physiological modifications observed in the disease. In the present work we used BrainSpheres, a 3D CNS model derived from human pluripotent stem cells (iPSC), to investigate the morphological and biochemical repercussions of T. gondii infection in human neural cells. Methods We evaluated T. gondii ME49 strain proliferation and cyst formation in both 2D cultured human neural cells and BrainSpheres. Aspects of cell morphology, ultrastructure, viability, gene expression of neural phenotype markers, as well as secretion of inflammatory mediators were evaluated for 2 and 4 weeks post infection in BrainSpheres. Results T. gondii can infect BrainSpheres, proliferating and inducing cysts formation, neural cell death, alteration in neural gene expression and triggering the release of several inflammatory mediators. Conclusions BrainSpheres reproduce many aspects of T. gondii infection in human CNS, constituting a useful model to study the neurotoxicity and neuroinflammation mediated by the parasite. In addition, these data could be important for future studies aiming at better understanding possible correlations between psychiatric disorders and human CNS infection with T. gondii. T. gondii infects, proliferates and induce cysts formation in neurospheres. T. gondii infection induces neural cell death in neurospheres. T. gondii infection promotes alteration in neural gene expression in neurospheres. T. gondii infection promotes release of inflammatory mediators in neurospheres.
Collapse
Affiliation(s)
- Paulo Emilio Correa Leite
- Institute of Biophysics Carlos Chagas Filho and National Center for Structural Biology and Bioimaging (CENABIO), Federal University of Rio de Janeiro, RJ, Brazil.,Directory of Metrology Applied to Life Sciences (Dimav), National Institute of Metrology Quality and Technology (INMETRO), Duque de Caxias, RJ, Brazil
| | - Juliana de Araujo Portes
- Institute of Biophysics Carlos Chagas Filho and National Center for Structural Biology and Bioimaging (CENABIO), Federal University of Rio de Janeiro, RJ, Brazil
| | | | - Fabiele Baldino Russo
- Laboratory of Disease Modeling, Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo, SP, Brazil
| | - Erica S Martins-Duarte
- Institute of Biophysics Carlos Chagas Filho and National Center for Structural Biology and Bioimaging (CENABIO), Federal University of Rio de Janeiro, RJ, Brazil.,Department of Parasitology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Nathalia Almeida Dos Santos
- Laboratory of Disease Modeling, Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo, SP, Brazil.,Centre for Stem Cells and Regenerative Medicine, King's College London, Guy's Hospital, London, UK
| | - Marcia Attias
- Institute of Biophysics Carlos Chagas Filho and National Center for Structural Biology and Bioimaging (CENABIO), Federal University of Rio de Janeiro, RJ, Brazil
| | - Francisco J Barrantes
- Laboratory of Molecular Neurobiology, Institute for Biomedical Research (BIOMED), UCA-CONICET, Buenos Aires, Argentina
| | - Patricia Cristina Baleeiro Beltrão-Braga
- Laboratory of Disease Modeling, Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo, SP, Brazil.,Scientific Platform Pasteur-USP, São Paulo, SP, Brazil
| | - Wanderley de Souza
- Institute of Biophysics Carlos Chagas Filho and National Center for Structural Biology and Bioimaging (CENABIO), Federal University of Rio de Janeiro, RJ, Brazil
| |
Collapse
|
30
|
Mouveaux T, Roger E, Gueye A, Eysert F, Huot L, Grenier-Boley B, Lambert JC, Gissot M. Primary brain cell infection by Toxoplasma gondii reveals the extent and dynamics of parasite differentiation and its impact on neuron biology. Open Biol 2021; 11:210053. [PMID: 34610266 PMCID: PMC8492179 DOI: 10.1098/rsob.210053] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Toxoplasma gondii is a eukaryotic parasite that forms latent cysts in the brain of immunocompetent individuals. The latent parasite infection of the immune-privileged central nervous system is linked to most complications. With no drug currently available to eliminate the latent cysts in the brain of infected hosts, the consequences of neurons' long-term infection are unknown. It has long been known that T. gondii specifically differentiates into a latent form (bradyzoite) in neurons, but how the infected neuron responds to the infection remains to be elucidated. We have established a new in vitro model resulting in the production of mature bradyzoite cysts in brain cells. Using dual, host and parasite RNA-seq, we characterized the dynamics of differentiation of the parasite, revealing the involvement of key pathways in this process. Moreover, we identified how the infected brain cells responded to the parasite infection revealing the drastic changes that take place. We showed that neuronal-specific pathways are strongly affected, with synapse signalling being particularly affected, especially glutamatergic synapse signalling. The establishment of this new in vitro model allows investigating both the dynamics of parasite differentiation and the specific response of neurons to long-term infection by this parasite.
Collapse
Affiliation(s)
- Thomas Mouveaux
- U1019—UMR 9017—CIIL—Center for Infection and Immunity of Lille, University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, F-59000 Lille, France
| | - Emmanuel Roger
- U1019—UMR 9017—CIIL—Center for Infection and Immunity of Lille, University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, F-59000 Lille, France
| | - Alioune Gueye
- U1019—UMR 9017—CIIL—Center for Infection and Immunity of Lille, University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, F-59000 Lille, France
| | - Fanny Eysert
- U1167, University of Lille, Inserm, Institut Pasteur de Lille, F-59000 Lille, France
| | - Ludovic Huot
- U1019—UMR 9017—CIIL—Center for Infection and Immunity of Lille, University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, F-59000 Lille, France
| | | | - Jean-Charles Lambert
- U1167, University of Lille, Inserm, Institut Pasteur de Lille, F-59000 Lille, France
| | - Mathieu Gissot
- U1019—UMR 9017—CIIL—Center for Infection and Immunity of Lille, University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, F-59000 Lille, France
| |
Collapse
|
31
|
Social preference is maintained in mice with impaired startle reflex and glutamate/D-serine imbalance induced by chronic cerebral toxoplasmosis. Sci Rep 2021; 11:14029. [PMID: 34234237 PMCID: PMC8263783 DOI: 10.1038/s41598-021-93504-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 06/11/2021] [Indexed: 02/06/2023] Open
Abstract
Toxoplasma gondii is an opportunistic protozoan pathogen with a wide geographic distribution. The chronic phase of toxoplasmosis is often asymptomatic in humans and is characterized by tissue cysts throughout the central nervous system and muscle cells. T. gondii and other pathogens with tropism for the central nervous system are considered risk factors in the etiology of several neuropsychiatric disorders, such as schizophrenia and bipolar disorder, besides neurological diseases. Currently, it is known that cerebral toxoplasmosis increases dopamine levels in the brain and it is related to behavioral changes in animals and humans. Here we evaluate whether chronic T. gondii infection, using the cystogenic ME-49 strain, could induce behavioral alterations associated with neuropsychiatric disorders and glutamatergic neurotransmission dysfunction. We observed that the startle amplitude is reduced in the infected animals as well as glutamate and D-serine levels in prefrontal cortical and hippocampal tissue homogenates. Moreover, we did not detect alterations in social preference and spontaneous alternation despite severe motor impairment. Thus, we conclude that behavioral and cognitive aspects are maintained even though severe neural damage is observed by chronic infection of C57Bl/6 mice with the ME-49 strain.
Collapse
|
32
|
Wang GY, Luan ZL, Che NW, Yan DB, Sun XW, Zhang C, Yin J. Inhibition of microRNA-129-2-3p protects against refractory temporal lobe epilepsy by regulating GABRA1. Brain Behav 2021; 11:e02195. [PMID: 34029007 PMCID: PMC8323041 DOI: 10.1002/brb3.2195] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 03/30/2021] [Accepted: 05/05/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Accumulating evidence demonstrates that certain microRNAs play critical roles in epileptogenesis. Our previous studies found microRNA (miR)-129-2-3p was induced in patients with refractory temporal lobe epilepsy (TLE). In this study, we aimed to explore the role of miR-129-2-3p in TLE pathogenesis. METHOD By bioinformatics, we predicted miR-129-2-3p may target the gene GABRA1 encoding the GABA type A receptor subunit alpha 1. Luciferase assay was used to investigate the regulation of miR-129-2-3p on GABRA1 3'UTR. The dynamic expression of miR-129-2-3p and GABRA1 mRNA and protein levels were measured in primary hippocampal neurons and a rat kainic acid (KA)-induced seizure model by quantitative reverse transcription-polymerase chain reaction (qPCR), Western blotting, and immunostaining. MiR-129-2-3p agomir and antagomir were utilized to explore their role in determining GABRA1 expression. The effects of targeting miR-129-2-3p and GABRA1 on epilepsy were assessed by electroencephalography (EEG) and immunostaining. RESULTS Luciferase assay, qPCR, and Western blot results suggested GABRA1 as a direct target of miR-129-2-3p. MiR-129-2-3p level was significantly upregulated, whereas GABRA1 expression downregulated in KA-treated rat primary hippocampal neurons and KA-induced seizure model. In vivo knockdown of miR-129-2-3p by antagomir alleviated the seizure-like EEG findings in accordance with the upregulation of GABRA1. Furthermore, the seizure-suppressing effect of the antagomir was partly GABRA1 dependent. CONCLUSIONS The results suggested GABRA1 as a target of miR-129-2-3p in rat primary hippocampal neurons and a rat kainic acid (KA) seizure model. Silencing of miR-129-2-3p exerted a seizure-suppressing effect in rats. MiR-129-2-3p/GABRA1 pathway may represent a potential target for the prevention and treatment of refractory epilepsy.
Collapse
Affiliation(s)
- Guan-Yu Wang
- Department of Neurosurgery, the Second Affiliated Hospital of Dalian Medical University, Dalian, China.,Epileptic Center of Liaoning, the Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Zhi-Lin Luan
- Department of Neurosurgery, the Second Affiliated Hospital of Dalian Medical University, Dalian, China.,Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| | - Ning-Wei Che
- Department of Neurosurgery, the Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - De-Bin Yan
- Department of Neurosurgery, the Second Affiliated Hospital of Dalian Medical University, Dalian, China.,Epileptic Center of Liaoning, the Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xiao-Wan Sun
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| | - Cong Zhang
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| | - Jian Yin
- Department of Neurosurgery, the Second Affiliated Hospital of Dalian Medical University, Dalian, China.,Epileptic Center of Liaoning, the Second Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
33
|
The Toxoplasma Polymorphic Effector GRA15 Mediates Seizure Induction by Modulating Interleukin-1 Signaling in the Brain. mBio 2021; 12:e0133121. [PMID: 34154412 PMCID: PMC8262954 DOI: 10.1128/mbio.01331-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Toxoplasmic encephalitis can develop in individuals infected with the protozoan parasite Toxoplasma gondii and is typified by parasite replication and inflammation within the brain. Patients often present with seizures, but the parasite genes and host pathways involved in seizure development and/or propagation are unknown. We previously reported that seizure induction in Toxoplasma-infected mice is parasite strain dependent. Using quantitative trait locus mapping, we identify four loci in the Toxoplasma genome that potentially correlate with seizure development. In one locus, we identify the polymorphic virulence factor, GRA15, as a Toxoplasma gene associated with onset of seizures. GRA15 was previously shown to regulate host NF-κB-dependent gene expression during acute infections, and we demonstrate a similar role for GRA15 in brains of toxoplasmic encephalitic mice. GRA15 is important for increased expression of interleukin 1 beta (IL-1β) and other IL-1 pathway host genes, which is significant since IL-1 signaling is involved in onset of seizures. Inhibiting IL-1 receptor signaling reduced seizure severity in Toxoplasma-infected mice. These data reveal one mechanism by which seizures are induced during toxoplasmic encephalitis.
Collapse
|
34
|
GABAergic signaling by cells of the immune system: more the rule than the exception. Cell Mol Life Sci 2021; 78:5667-5679. [PMID: 34152447 PMCID: PMC8316187 DOI: 10.1007/s00018-021-03881-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/17/2021] [Accepted: 06/11/2021] [Indexed: 11/23/2022]
Abstract
Gamma-aminobutyric acid (GABA) is best known as an essential neurotransmitter in the evolved central nervous system (CNS) of vertebrates. However, GABA antedates the development of the CNS as a bioactive molecule in metabolism and stress-coupled responses of prokaryotes, invertebrates and plants. Here, we focus on the emerging findings of GABA signaling in the mammalian immune system. Recent reports show that mononuclear phagocytes and lymphocytes, for instance dendritic cells, microglia, T cells and NK cells, express a GABAergic signaling machinery. Mounting evidence shows that GABA receptor signaling impacts central immune functions, such as cell migration, cytokine secretion, immune cell activation and cytotoxic responses. Furthermore, the GABAergic signaling machinery of leukocytes is implicated in responses to microbial infection and is co-opted by protozoan parasites for colonization of the host. Peripheral GABA signaling is also implicated in inflammatory conditions and diseases, such as type 1 diabetes, rheumatoid arthritis and cancer cell metastasis. Adding to its role in neurotransmission, growing evidence shows that the non-proteinogenic amino acid GABA acts as an intercellular signaling molecule in the immune system and, as an interspecies signaling molecule in host–microbe interactions. Altogether, the data raise the assumption of conserved GABA signaling in a broad range of mammalian cells and diversification of function in the immune system.
Collapse
|
35
|
Mendez OA, Flores Machado E, Lu J, Koshy AA. Injection with Toxoplasma gondii protein affects neuron health and survival. eLife 2021; 10:e67681. [PMID: 34106047 PMCID: PMC8270641 DOI: 10.7554/elife.67681] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 06/09/2021] [Indexed: 01/22/2023] Open
Abstract
Toxoplasma gondii is an intracellular parasite that causes a long-term latent infection of neurons. Using a custom MATLAB-based mapping program in combination with a mouse model that allows us to permanently mark neurons injected with parasite proteins, we found that Toxoplasma-injected neurons (TINs) are heterogeneously distributed in the brain, primarily localizing to the cortex followed by the striatum. In addition, we determined that cortical TINs are commonly (>50%) excitatory neurons (FoxP2+) and that striatal TINs are often (>65%) medium spiny neurons (MSNs) (FoxP2+). By performing single neuron patch clamping on striatal TINs and neighboring uninfected MSNs, we discovered that TINs have highly aberrant electrophysiology. As approximately 90% of TINs will die by 8 weeks post-infection, this abnormal physiology suggests that injection with Toxoplasma protein-either directly or indirectly-affects neuronal health and survival. Collectively, these data offer the first insights into which neurons interact with Toxoplasma and how these interactions alter neuron physiology in vivo.
Collapse
Affiliation(s)
- Oscar A Mendez
- Graduate Interdisciplinary Program in Neuroscience, University of ArizonaTucsonUnited States
| | | | - Jing Lu
- College of Nursing, University of ArizonaTucsonUnited States
| | - Anita A Koshy
- BIO5 Institute, University of ArizonaTucsonUnited States
- Department of Immunobiology, University of ArizonaTucsonUnited States
- Department of Neurology, University of ArizonaTucsonUnited States
| |
Collapse
|
36
|
Bergersen KV, Barnes A, Worth D, David C, Wilson EH. Targeted Transcriptomic Analysis of C57BL/6 and BALB/c Mice During Progressive Chronic Toxoplasma gondii Infection Reveals Changes in Host and Parasite Gene Expression Relating to Neuropathology and Resolution. Front Cell Infect Microbiol 2021; 11:645778. [PMID: 33816350 PMCID: PMC8012756 DOI: 10.3389/fcimb.2021.645778] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 02/23/2021] [Indexed: 02/06/2023] Open
Abstract
Toxoplasma gondii is a resilient parasite that infects a multitude of warm-blooded hosts and results in a lifelong chronic infection requiring continuous responses by the host. Chronic infection is characterized by a balanced immune response and neuropathology that are driven by changes in gene expression. Previous research pertaining to these processes has been conducted in various mouse models, and much knowledge of infection-induced gene expression changes has been acquired through the use of high throughput sequencing techniques in different mouse strains and post-mortem human studies. However, lack of infection time course data poses a prominent missing link in the understanding of chronic infection, and there is still much that is unknown regarding changes in genes specifically relating to neuropathology and resulting repair mechanisms as infection progresses throughout the different stages of chronicity. In this paper, we present a targeted approach to gene expression analysis during T. gondii infection through the use of NanoString nCounter gene expression assays. Wild type C57BL/6 and BALB/c background mice were infected, and transcriptional changes in the brain were evaluated at 14, 28, and 56 days post infection. Results demonstrate a dramatic shift in both previously demonstrated and novel gene expression relating to neuropathology and resolution in C57BL/6 mice. In addition, comparison between BALB/c and C57BL/6 mice demonstrate initial differences in gene expression that evolve over the course of infection and indicate decreased neuropathology and enhanced repair in BALB/c mice. In conclusion, these studies provide a targeted approach to gene expression analysis in the brain during infection and provide elaboration on previously identified transcriptional changes and also offer insights into further understanding the complexities of chronic T. gondii infection.
Collapse
Affiliation(s)
- Kristina V Bergersen
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Ashli Barnes
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Danielle Worth
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Clement David
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States.,NanoString Technologies, Seattle, WA, United States
| | - Emma H Wilson
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
37
|
Shinjyo N, Nakayama H, Li L, Ishimaru K, Hikosaka K, Suzuki N, Yoshida H, Norose K. Hypericum perforatum extract and hyperforin inhibit the growth of neurotropic parasite Toxoplasma gondii and infection-induced inflammatory responses of glial cells in vitro. JOURNAL OF ETHNOPHARMACOLOGY 2021; 267:113525. [PMID: 33129946 DOI: 10.1016/j.jep.2020.113525] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 09/19/2020] [Accepted: 10/26/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Hypericum perforatum L. has been widely used as a natural antidepressant. However, it is unknown whether it is effective in treating infection-induced neuropsychiatric disorders. AIM OF THE STUDY In order to evaluate the effectiveness of H. perforatum against infection with neurotropic parasite Toxoplasma gondii, which has been linked to neuropsychiatric disorders, this study investigated the anti-Toxoplasma activity using in vitro models. MATERIALS AND METHODS Dried alcoholic extracts were prepared from three Hypericum species: H. perforatum, H. erectum, and H. ascyron. H. perforatum extract was further separated by solvent-partitioning. Hyperforin and hypericin levels in the extracts and fractions were analyzed by high resolution LC-MS. Anti-Toxoplasma activities were tested in vitro, using cell lines (Vero and Raw264), murine primary mixed glia, and primary neuron-glia. Toxoplasma proliferation and stage conversion were analyzed by qPCR. Infection-induced damages to the host cells were analyzed by Sulforhodamine B cytotoxicity assay (Vero) and immunofluorescent microscopy (neurons). Infection-induced inflammatory responses in glial cells were analysed by qPCR and immunofluorescent microscopy. RESULTS Hyperforin was identified only in H. perforatum among the three tested species, whereas hypericin was present in H. perforatum and H. erectum. H. perforatum extract and hyperforin-enriched fraction, as well as hyperforin, exhibited significant anti-Toxoplasma property as well as inhibitory activity against infection-induced inflammatory responses in glial cells. In addition, H. perforatum-derived hyperforin-enriched fraction restored neuro-supportive environment in mixed neuron-glia culture. CONCLUSIONS H. perforatum and its major constituent hyperforin are promising anti-Toxoplasma agents that could potentially protect neurons and glial cells against infection-induced damages. Further study is warranted to establish in vivo efficacy.
Collapse
Affiliation(s)
- Noriko Shinjyo
- Department of Infection and Host Defense, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan; School of Tropical Medicine and Global Health, Nagasaki University, 1-12-4, Sakamoto, Nagasaki, 852-8523, Japan.
| | - Hideyuki Nakayama
- Saga Prefectural Institute of Public Health and Pharmaceutical Research, 1-20 Hacchounawate, Saga, 849-0925, Japan
| | - Li Li
- Department of Infection and Host Defense, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Kanji Ishimaru
- Department of Biological Resource Sciences, Faculty of Agriculture, Saga University, 1 Honjo, Saga, 840-8502, Japan
| | - Kenji Hikosaka
- Department of Infection and Host Defense, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Noriyuki Suzuki
- Department of Toxicology and Environmental Health, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Hiroki Yoshida
- Division of Molecular and Cellular Immunoscience, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga, 849-8501, Japan
| | - Kazumi Norose
- Department of Infection and Host Defense, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| |
Collapse
|
38
|
Laing C, Blanchard N, McConkey GA. Noradrenergic Signaling and Neuroinflammation Crosstalk Regulate Toxoplasma gondii-Induced Behavioral Changes. Trends Immunol 2020; 41:1072-1082. [PMID: 33214056 DOI: 10.1016/j.it.2020.10.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 10/05/2020] [Accepted: 10/08/2020] [Indexed: 12/11/2022]
Abstract
Infections of the nervous system elicit neuroimmune responses and alter neurotransmission, affecting host neurological functions. Chronic infection with the apicomplexan parasite Toxoplasma correlates with certain neurological disorders in humans and alters behavior in rodents. Here, we propose that the crosstalk between neurotransmission and neuroinflammation may underlie some of these cognitive changes. We discuss how T. gondii infection suppresses noradrenergic signaling and how the restoration of this pathway improves behavioral aberrations, suggesting that altered neurotransmission and neuroimmune responses may act in concert to perturb behavior. This interaction might apply to other infectious agents, such as viruses, that elicit cognitive changes. We hypothesize that neurotransmitter signaling in immune cells can contribute to behavioral changes associated with brain infection, offering opportunities for potential therapeutic targeting.
Collapse
Affiliation(s)
- Conor Laing
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Nicolas Blanchard
- Centre de Physiopathologie Toulouse Purpan (CPTP), Inserm, CNRS, Université de Toulouse, Toulouse, France.
| | - Glenn A McConkey
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK.
| |
Collapse
|
39
|
Carrillo GL, Ballard VA, Glausen T, Boone Z, Teamer J, Hinkson CL, Wohlfert EA, Blader IJ, Fox MA. Toxoplasma infection induces microglia-neuron contact and the loss of perisomatic inhibitory synapses. Glia 2020; 68:1968-1986. [PMID: 32157745 PMCID: PMC7423646 DOI: 10.1002/glia.23816] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 12/17/2022]
Abstract
Infection and inflammation within the brain induces changes in neuronal connectivity and function. The intracellular protozoan parasite, Toxoplasma gondii, is one pathogen that infects the brain and can cause encephalitis and seizures. Persistent infection by this parasite is also associated with behavioral alterations and an increased risk for developing psychiatric illness, including schizophrenia. Current evidence from studies in humans and mouse models suggest that both seizures and schizophrenia result from a loss or dysfunction of inhibitory synapses. In line with this, we recently reported that persistent T. gondii infection alters the distribution of glutamic acid decarboxylase 67 (GAD67), an enzyme that catalyzes GABA synthesis in inhibitory synapses. These changes could reflect a redistribution of presynaptic machinery in inhibitory neurons or a loss of inhibitory nerve terminals. To directly assess the latter possibility, we employed serial block face scanning electron microscopy (SBFSEM) and quantified inhibitory perisomatic synapses in neocortex and hippocampus following parasitic infection. Not only did persistent infection lead to a significant loss of perisomatic synapses, it induced the ensheathment of neuronal somata by myeloid-derived cells. Immunohistochemical, genetic, and ultrastructural analyses revealed that these myeloid-derived cells included activated microglia. Finally, ultrastructural analysis identified myeloid-derived cells enveloping perisomatic nerve terminals, suggesting they may actively displace or phagocytose synaptic elements. Thus, these results suggest that activated microglia contribute to perisomatic inhibitory synapse loss following parasitic infection and offer a novel mechanism as to how persistent T. gondii infection may contribute to both seizures and psychiatric illness.
Collapse
Affiliation(s)
- Gabriela L. Carrillo
- Center for Neurobiology Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, 2 Riverside Circle, Roanoke, VA 24016
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA 24061
| | - Valerie A. Ballard
- Center for Neurobiology Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, 2 Riverside Circle, Roanoke, VA 24016
- Roanoke Valley Governor’s School, Roanoke VA 24015
| | - Taylor Glausen
- Department of Microbiology and Immunology, University at Buffalo, Buffalo NY 14260
| | - Zack Boone
- Center for Neurobiology Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, 2 Riverside Circle, Roanoke, VA 24016
- School of Neuroscience, Virginia Tech, Blacksburg, VA 24061
| | - Joseph Teamer
- Center for Neurobiology Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, 2 Riverside Circle, Roanoke, VA 24016
- FBRI neuroSURF Program, Roanoke, VA 24016
| | - Cyrus L. Hinkson
- Center for Neurobiology Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, 2 Riverside Circle, Roanoke, VA 24016
- Virginia Tech Carilion School of Medicine, Roanoke, VA 24016
| | | | - Ira J. Blader
- Department of Microbiology and Immunology, University at Buffalo, Buffalo NY 14260
| | - Michael A. Fox
- Center for Neurobiology Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, 2 Riverside Circle, Roanoke, VA 24016
- School of Neuroscience, Virginia Tech, Blacksburg, VA 24061
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061
- Department of Pediatrics, Virginia Tech Carilion School of Medicine, Roanoke, VA 24016
| |
Collapse
|
40
|
Meurer YDSR, Brito RMDM, da Silva VP, Andade JMDA, Linhares SSG, Pereira Junior A, de Andrade-Neto VF, de Sá AL, Oliveira CBSD. Toxoplasma gondii infection damages the perineuronal nets in a murine model. Mem Inst Oswaldo Cruz 2020; 115:e200007. [PMID: 32935749 PMCID: PMC7491278 DOI: 10.1590/0074-02760200007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 08/10/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Behavioral and neurochemical alterations associated with toxoplasmosis may be influenced by the persistence of tissue cysts and activation of an immune response in the brain of Toxoplasma gondii-infected hosts. The cerebral extracellular matrix is organised as perineuronal nets (PNNs) that are both released and ensheath by some neurons and glial cells. There is evidences to suggest that PNNs impairment is a pathophysiological mechanism associated with neuropsychiatric conditions. However, there is a lack of information regarding the impact of parasitic infections on the PNNs integrity and how this could affect the host’s behavior. OBJECTIVES In this context, we aimed to analyse the impact of T. gondii infection on cyst burden, PNNs integrity, and possible effects in the locomotor activity of chronically infected mice. METHODS We infected mice with T. gondii ME-49 strain. After thirty days, we assessed locomotor performance of animals using the open field test, followed by evaluation of cysts burden and PNNs integrity in four brain regions (primary and secondary motor cortices, prefrontal and somesthetic cortex) to assess the PNNs integrity using Wisteria floribunda agglutinin (WFA) labeling by immunohistochemical analyses. FINDINGS AND MAIN CONCLUSIONS Our findings revealed a random distribution of cysts in the brain, the disruption of PNNs surrounding neurons in four areas of the cerebral cortex and hyperlocomotor behavior in T. gondii-infected mice. These results can contribute to elucidate the link toxoplasmosis with the establishment of neuroinflammatory response in neuropsychiatric disorders and to raise a discussion about the mechanisms related to changes in brain connectivity, with possible behavioral repercussions during chronic T. gondii infection.
Collapse
Affiliation(s)
- Ywlliane da Silva Rodrigues Meurer
- Universidade Federal da Paraíba, Programa de Pós-Graduação em Neurociência Cognitiva e Comportamento, João Pessoa, PB, Brasil.,Universidade Federal do Rio Grande do Norte, Programa de Pós-Graduação em Psicobiologia, Natal, RN, Brasil
| | - Ramayana Morais de Medeiros Brito
- Universidade Federal do Rio Grande do Norte, Departamento de Microbiologia e Parasitologia, Laboratório de Biologia da Málaria e Toxoplasmose - LABMAT, Natal, RN, Brasil
| | - Valeria Palheta da Silva
- Universidade Federal do Rio Grande do Norte, Programa de Pós-Graduação em Psicobiologia, Natal, RN, Brasil
| | - Joelma Maria de Araujo Andade
- Universidade Federal do Rio Grande do Norte, Departamento de Microbiologia e Parasitologia, Laboratório de Biologia da Málaria e Toxoplasmose - LABMAT, Natal, RN, Brasil
| | | | - Antonio Pereira Junior
- Universidade Federal do Pará, Instituto de Ciências da Sáude, Laboratório de Neuroplasticidade, Belém, PA, Brasil
| | - Valter Ferreira de Andrade-Neto
- Universidade Federal do Rio Grande do Norte, Departamento de Microbiologia e Parasitologia, Laboratório de Biologia da Málaria e Toxoplasmose - LABMAT, Natal, RN, Brasil
| | - Andrea Lima de Sá
- Universidade Federal do Rio Grande do Norte, Departamento de Microbiologia e Parasitologia, Laboratório de Biologia da Málaria e Toxoplasmose - LABMAT, Natal, RN, Brasil
| | - Claudio Bruno Silva de Oliveira
- Universidade Federal do Rio Grande do Norte, Departamento de Microbiologia e Parasitologia, Laboratório de Biologia da Málaria e Toxoplasmose - LABMAT, Natal, RN, Brasil
| |
Collapse
|
41
|
Paracrine Role for Somatostatin Interneurons in the Assembly of Perisomatic Inhibitory Synapses. J Neurosci 2020; 40:7421-7435. [PMID: 32847968 DOI: 10.1523/jneurosci.0613-20.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 07/24/2020] [Accepted: 08/18/2020] [Indexed: 12/13/2022] Open
Abstract
GABAergic interneurons represent a heterogenous group of cell types in neocortex that can be clustered based on developmental origin, morphology, physiology, and connectivity. Two abundant populations of cortical GABAergic interneurons include the low-threshold, somatostatin (SST)-expressing cells and the fast-spiking, parvalbumin (PV)-expressing cells. While SST+ and PV+ interneurons are both early born and migrate into the developing neocortex at similar times, SST+ cells are incorporated into functional circuits prior to PV+ cells. During this early period of neural development, SST+ cells play critical roles in the assembly and maturation of other cortical circuits; however, the mechanisms underlying this process remain poorly understood. Here, using both sexes of conditional mutant mice, we discovered that SST+ interneuron-derived Collagen XIX, a synaptogenic extracellular matrix protein, is required for the formation of GABAergic, perisomatic synapses by PV+ cells. These results, therefore, identify a paracrine mechanism by which early-born SST+ cells orchestrate inhibitory circuit formation in the developing neocortex.SIGNIFICANCE STATEMENT Inhibitory interneurons in the cerebral cortex represent a heterogenous group of cells that generate the inhibitory neurotransmitter GABA. One such interneuron type is the low-threshold, somatostatin (SST)-expressing cell, which is one of the first types of interneurons to migrate into the cerebral cortex and become incorporated into functional circuits. In addition, to contributing important roles in controlling the flow of information in the adult cerebral cortex, SST+ cells play important roles in the development of other neural circuits in the developing brain. Here, we identified an extracellular matrix protein that is released by these early-born SST+ neurons to orchestrate inhibitory circuit formation in the developing cerebral cortex.
Collapse
|
42
|
Sadeghi M, Riahi SM, Mohammadi M, Saber V, Aghamolaie S, Moghaddam SA, Aghaei S, Javanian M, Gamble HR, Rostami A. An updated meta-analysis of the association between Toxoplasma gondii infection and risk of epilepsy. Trans R Soc Trop Med Hyg 2020; 113:453-462. [PMID: 31034025 DOI: 10.1093/trstmh/trz025] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 03/08/2019] [Accepted: 03/26/2019] [Indexed: 12/19/2022] Open
Abstract
Toxoplasma gondii is a neurotropic pathogen with worldwide distribution. To evaluate the association between Toxoplasma infection and the risk of epilepsy by meta-analysis, observational peer-reviewed studies were retrieved from PubMed, Embase, Web of Science, Scopus and Google Scholar (up to 10 October 2018) and by reference review. Pooled risk estimates were calculated using a random effects model. Heterogeneity was assessed using Cochrane's Q-test and I2. In total, 16 eligible studies involving 19 data sets were included for the final analysis. A total 7897 participants (3771 epileptic patients, 4026 healthy controls) were included. The pooled odds ratio (OR) for Toxoplasma infection was increased to 1.72 (95% confidence interval [CI] 1.37 to 2.16) among patients with epilepsy. There was moderate heterogeneity among the studies (χ2=39.8, I2=62.3%, p=0.001). The ORs from subgroup analyses showed that both cryptogenic epilepsy (OR 2.65 [95% CI 1.91 to 3.68]) and active convulsive epilepsy (OR 1.37 [95% CI 1.09 to 1.72]) were significantly associated with Toxoplasma infection. Another subgroup analyses according to age showed a significant positive association in children (OR 1.33), adults (OR 1.57) and in all ages (OR 1.89). Our findings support the association between Toxoplasma infection and epilepsy. More prospective studies with larger sample sizes and more experimental studies are recommended to elucidate a causative relationship.
Collapse
Affiliation(s)
- Maryam Sadeghi
- Department of Medical Parasitology and Mycology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Riahi
- Department of Medical Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mona Mohammadi
- Clinical Parasitology Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Vafa Saber
- Department of Microbiology, Islamic Azad University, Varamin Pishva Branch, Tehran, Iran
| | - Somayeh Aghamolaie
- Department of Medical Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Shima Aghaei
- Department of Medical Mycology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mostafa Javanian
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - H Ray Gamble
- National Academy of Sciences, Washington, DC, USA
| | - Ali Rostami
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.,Immunoregulation Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
43
|
Ghanbari MM, Joneidi M, Kiani B, Babaie J, Sayyah M. Cannabinoid receptors and the proconvulsant effect of toxoplasmosis in mice. Microb Pathog 2020; 144:104204. [DOI: 10.1016/j.micpath.2020.104204] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/26/2020] [Accepted: 04/08/2020] [Indexed: 12/29/2022]
|
44
|
Ortiz-Guerrero G, Gonzalez-Reyes RE, de-la-Torre A, Medina-Rincón G, Nava-Mesa MO. Pathophysiological Mechanisms of Cognitive Impairment and Neurodegeneration by Toxoplasma gondii Infection. Brain Sci 2020; 10:brainsci10060369. [PMID: 32545619 PMCID: PMC7349234 DOI: 10.3390/brainsci10060369] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/09/2020] [Accepted: 06/11/2020] [Indexed: 12/12/2022] Open
Abstract
Toxoplasma gondii is an obligate intracellular parasite considered one of the most successful pathogens in the world, owing to its ability to produce long-lasting infections and to persist in the central nervous system (CNS) in most warm-blooded animals, including humans. This parasite has a preference to invade neurons and affect the functioning of glial cells. This could lead to neurological and behavioral changes associated with cognitive impairment. Although several studies in humans and animal models have reported controversial results about the relationship between toxoplasmosis and the onset of dementia as a causal factor, two recent meta-analyses have shown a relative association with Alzheimer’s disease (AD). AD is characterized by amyloid-β (Aβ) peptide accumulation, neurofibrillary tangles, and neuroinflammation. Different authors have found that toxoplasmosis may affect Aβ production in brain areas linked with memory functioning, and can induce a central immune response and neurotransmitter imbalance, which in turn, affect the nervous system microenvironment. In contrast, other studies have revealed a reduction of Aβ plaques and hyperphosphorylated tau protein formation in animal models, which might cause some protective effects. The aim of this article is to summarize and review the newest data in regard to different pathophysiological mechanisms of cerebral toxoplasmosis and their relationship with the development of AD and cognitive impairment. All these associations should be investigated further through clinical and experimental studies.
Collapse
Affiliation(s)
- Gloria Ortiz-Guerrero
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS 66160, USA;
| | - Rodrigo E. Gonzalez-Reyes
- GI en Neurociencias-NeURos, Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá 111221, Colombia; (R.E.G.-R.); (A.d.-l.-T.); (G.M.-R.)
| | - Alejandra de-la-Torre
- GI en Neurociencias-NeURos, Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá 111221, Colombia; (R.E.G.-R.); (A.d.-l.-T.); (G.M.-R.)
| | - German Medina-Rincón
- GI en Neurociencias-NeURos, Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá 111221, Colombia; (R.E.G.-R.); (A.d.-l.-T.); (G.M.-R.)
| | - Mauricio O. Nava-Mesa
- GI en Neurociencias-NeURos, Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá 111221, Colombia; (R.E.G.-R.); (A.d.-l.-T.); (G.M.-R.)
- Correspondence: ; Tel.: +57-1-2970200 (ext. 3354); Fax: +571-3440351
| |
Collapse
|
45
|
Sun X, Wang T, Wang Y, Ai K, Pan G, Li Y, Zhou C, He S, Cong H. Downregulation of lncRNA-11496 in the Brain Contributes to Microglia Apoptosis via Regulation of Mef2c in Chronic T. gondii Infection Mice. Front Mol Neurosci 2020; 13:77. [PMID: 32499679 PMCID: PMC7243434 DOI: 10.3389/fnmol.2020.00077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 04/20/2020] [Indexed: 01/02/2023] Open
Abstract
Though it is well known that chronic infections of Toxoplasma gondii (T. gondii) can induce mental and behavioral disorders in the host, little is known about the role of long non-coding RNAs (lncRNAs) in this pathological process. In this study, we employed an advanced lncRNAs and mRNAs integration chip (Affymetrix HTA 2.0) to detect the expression of both lncRNAs and mRNAs in T. gondii Chinese 1 strain infected mouse brain. As a result, for the first time, the downregulation of lncRNA-11496 (NONMMUGO11496) was identified as the responsible factor for this pathological process. We showed that dysregulation of lncRNA-11496 affected proliferation, differentiation and apoptosis of mouse microglia. Furthermore, we proved that Mef2c (Myocyte-specific enhancer factor 2C), a member of the MEF2 subfamily, is the target gene of lncRNA-11496. In a more detailed study, we confirmed that lncRNA-11496 positively regulated the expression of Mef2c by binding to histone deacetylase 2 (HDAC2). Importantly, Mef2c itself could coordinate neuronal differentiation, survival, as well as synapse formation. Thus, our current study provides the first evidence in terms of the modulatory action of lncRNAs in chronic toxoplasmosis in T. gondii infected mouse brain, providing a solid scientific basis for using lncRNA-11496 as a therapeutic target to treat T. gondii induced neurological disorder.
Collapse
Affiliation(s)
- Xiahui Sun
- Department of Pathogenic Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ting Wang
- Department of Pathogenic Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yongliang Wang
- Department of Pathogenic Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.,College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Kang Ai
- Department of Pathogenic Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ge Pan
- Department of Pathogenic Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yan Li
- Department of Pathogenic Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chunxue Zhou
- Department of Pathogenic Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shenyi He
- Department of Pathogenic Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Hua Cong
- Department of Pathogenic Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
46
|
Aging with Toxoplasma gondii results in pathogen clearance, resolution of inflammation, and minimal consequences to learning and memory. Sci Rep 2020; 10:7979. [PMID: 32409672 PMCID: PMC7224383 DOI: 10.1038/s41598-020-64823-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 04/15/2020] [Indexed: 12/31/2022] Open
Abstract
Persistent inflammation has been identified as a contributor to aging-related neurodegenerative disorders such as Alzheimer's disease. Normal aging, in the absence of dementia, also results in gradual cognitive decline and is thought to arise, in part, because of a chronic pro-inflammatory state in the brain. Toxoplasma gondii is an obligate intracellular parasite that establishes a persistent, asymptomatic infection of the central nervous system (CNS) accompanied by a pro-inflammatory immune response in many of its hosts, including humans and rodents. Several studies have suggested that the inflammation generated by certain strains of T. gondii infection can be neuroprotective in the context of a secondary insult like beta-amyloid accumulation or stroke. Given these neuroprotective studies, we hypothesized that a prolonged infection with T. gondii may protect against age-associated decline in cognition. To test this hypothesis, we infected young adult mice with either of two genetically distinct, persistent T. gondii strains (Prugniaud/type II/haplogroup 2 and CEP/type III/haplogroup 3) and monitored mouse weight, survival, and learning and memory over the ensuing 20 months. At the end of the study, we evaluated CNS inflammation and parasite burden in the surviving mice. We found that parasite infection had no impact on age-associated decline in learning and memory and that by 20 months post infection, in the surviving mice, we found no evidence of parasite DNA, cysts, or inflammation in the CNS. In addition, we found that mice infected with type III parasites, which are supposed to be less virulent than the type II parasites, had a lower rate of long-term survival. Collectively, these data indicate that T. gondii may not cause a life-long CNS infection. Rather, parasites are likely slowly cleared from the CNS and infection and parasite clearance neither positively nor negatively impacts learning and memory in aging.
Collapse
|
47
|
Jin Y, Yao Y, El-Ashram S, Tian J, Shen J, Ji Y. The Neurotropic Parasite Toxoplasma gondii Induces Astrocyte Polarization Through NFκB Pathway. Front Med (Lausanne) 2019; 6:267. [PMID: 31803748 PMCID: PMC6877604 DOI: 10.3389/fmed.2019.00267] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 10/31/2019] [Indexed: 12/29/2022] Open
Abstract
Background:Toxoplasma gondii is a protozoan parasite that chronically infects nearly one-third of the world's human population. In immunosuppressed individuals and fetus, infection with T. gondii contributes to a series of devastating conditions, including toxoplasmic encephalitis (TE), which is characterized by neuron damage in the central nervous system (CNS). Astrocyte polarization is currently found in some neurodegenerative diseases, and A1 subtype of astrocyte leads to neuron apoptosis. However, little information has been available on the role of astrocyte polarization in TE. Methods: In the present study, we established a mouse model to study TE and detected A1 astrocyte in the brains of mice with TE. Expression level of A1 astrocyte-specific marker C3 was evaluated using indirect fluorescent assay (IFA) and Western blotting. Primary mouse astrocytes were incubated with different concentrations of T. gondii excreted-secreted antigens (TgESAs) in vitro. Expression level of C3 and A1 astrocyte-specific transcription levels were assessed using Western blotting and qRT-PCR, respectively. Bay11-7082 was used to study nuclear factor (NF) κB pathway in TgESA-induced astrocyte polarization. Results: In mice with TE, the proportion of A1 astrocyte (GFAP+C3+) increased significantly. The results of in vitro study showed that TgESAs induced astrocyte polarization to A1 subtype. Blocking of NFκB pathway by Bay11-7082 inhibited TgESA-induced astrocyte polarization. Conclusions: Our preliminary study showed the involvement of A1 astrocyte in the process of TE in mice, and TgESAs could trigger astrocyte to polarize to A1 subtype. These findings suggest a new mechanism underlying the neuropathogenesis induced by T. gondii infection.
Collapse
Affiliation(s)
- Yu Jin
- Anhui Provincial Laboratory of Microbiology and Parasitology, Laboratory of Tropical and Parasitic Diseases Control, Department of Microbiology and Parasitology, Anhui Medical University, Hefei, China
| | - Yong Yao
- Anhui Provincial Laboratory of Microbiology and Parasitology, Laboratory of Tropical and Parasitic Diseases Control, Department of Microbiology and Parasitology, Anhui Medical University, Hefei, China
| | - Saeed El-Ashram
- School of Life Science and Engineering, Foshan University, Foshan, China.,Faculty of Science, Kafrelsheikh University, Kafr El-Shaikh, Egypt
| | - Jiaming Tian
- Anhui Provincial Laboratory of Microbiology and Parasitology, Laboratory of Tropical and Parasitic Diseases Control, Department of Microbiology and Parasitology, Anhui Medical University, Hefei, China
| | - Jilong Shen
- Anhui Provincial Laboratory of Microbiology and Parasitology, Laboratory of Tropical and Parasitic Diseases Control, Department of Microbiology and Parasitology, Anhui Medical University, Hefei, China
| | - Yongsheng Ji
- Anhui Provincial Laboratory of Microbiology and Parasitology, Laboratory of Tropical and Parasitic Diseases Control, Department of Microbiology and Parasitology, Anhui Medical University, Hefei, China
| |
Collapse
|
48
|
Tyebji S, Seizova S, Garnham AL, Hannan AJ, Tonkin CJ. Impaired social behaviour and molecular mediators of associated neural circuits during chronic Toxoplasma gondii infection in female mice. Brain Behav Immun 2019; 80:88-108. [PMID: 30807837 DOI: 10.1016/j.bbi.2019.02.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 02/15/2019] [Accepted: 02/22/2019] [Indexed: 12/24/2022] Open
Abstract
Toxoplasma gondii (T. gondii) is a neurotropic parasite that is associated with various neuropsychiatric disorders. Rodents infected with T. gondii display a plethora of behavioural alterations, and Toxoplasma infection in humans has been strongly associated with disorders such as schizophrenia, in which impaired social behaviour is an important feature. Elucidating changes at the cellular level relevant to neuropsychiatric conditions can lead to effective therapies. Here, we compare changes in behaviour during an acute and chronic T. gondii infection in female mice. Further, we notice that during chronic phase of infection, mice display impaired sociability when exposed to a novel conspecific. Also, we show that T. gondii infected mice display impaired short-term social recognition memory. However, object recognition memory remains intact. Using c-Fos as a marker of neuronal activity, we show that infection leads to an impairment in neuronal activation in the medial prefrontal cortex, hippocampus as well as the amygdala when mice are exposed to a social environment and a change in functional connectivity between these regions. We found changes in synaptic proteins that play a role in the process of neuronal activation such as synaptophysin, PSD-95 and changes in downstream substrates of cell activity such as cyclic AMP, phospho-CREB and BDNF. Our results point towards an imbalance in neuronal activity that can lead to a wider range of neuropsychiatric problems upon T. gondii infection.
Collapse
Affiliation(s)
- Shiraz Tyebji
- The Walter and Eliza Hall Institute of Medical Research, Melbourne 3052, Australia; Department of Medical Biology, The University of Melbourne, Melbourne 3052, Australia; Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville 3052, Victoria, Australia.
| | - Simona Seizova
- The Walter and Eliza Hall Institute of Medical Research, Melbourne 3052, Australia; Department of Medical Biology, The University of Melbourne, Melbourne 3052, Australia.
| | - Alexandra L Garnham
- The Walter and Eliza Hall Institute of Medical Research, Melbourne 3052, Australia; Department of Medical Biology, The University of Melbourne, Melbourne 3052, Australia.
| | - Anthony J Hannan
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville 3052, Victoria, Australia; Department of Anatomy and Neuroscience, University of Melbourne, Parkville 3052, Victoria, Australia.
| | - Christopher J Tonkin
- The Walter and Eliza Hall Institute of Medical Research, Melbourne 3052, Australia; Department of Medical Biology, The University of Melbourne, Melbourne 3052, Australia.
| |
Collapse
|
49
|
French T, Düsedau HP, Steffen J, Biswas A, Ahmed N, Hartmann S, Schüler T, Schott BH, Dunay IR. Neuronal impairment following chronic Toxoplasma gondii infection is aggravated by intestinal nematode challenge in an IFN-γ-dependent manner. J Neuroinflammation 2019; 16:159. [PMID: 31352901 PMCID: PMC6661741 DOI: 10.1186/s12974-019-1539-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 07/09/2019] [Indexed: 02/06/2023] Open
Abstract
Background It has become increasingly evident that the immune and nervous systems are closely intertwined, relying on one another during regular homeostatic conditions. Prolonged states of imbalance between neural and immune homeostasis, such as chronic neuroinflammation, are associated with a higher risk for neural damage. Toxoplasma gondii is a highly successful neurotropic parasite causing persistent subclinical neuroinflammation, which is associated with psychiatric and neurodegenerative disorders. Little is known, however, by what means neuroinflammation and the associated neural impairment can be modulated by peripheral inflammatory processes. Methods Expression of immune and synapse-associated genes was assessed via quantitative real-time PCR to investigate how T. gondii infection-induced chronic neuroinflammation and associated neuronal alterations can be reshaped by a subsequent acute intestinal nematode co-infection. Immune cell subsets were characterized via flow cytometry in the brain of infected mice. Sulfadiazine and interferon-γ-neutralizing antibody were applied to subdue neuroinflammation. Results Neuroinflammation induced by T. gondii infection of mice was associated with increased microglia activation, recruitment of immune cells into the brain exhibiting Th1 effector functions, and enhanced production of Th1 and pro-inflammatory molecules (IFN-γ, iNOS, IL-12, TNF, IL-6, and IL-1β) following co-infection with Heligmosomoides polygyrus. The accelerated cerebral Th1 immune response resulted in enhanced T. gondii removal but exacerbated the inflammation-related decrease of synapse-associated gene expression. Synaptic proteins EAAT2 and GABAAα1, which are involved in the excitation/inhibition balance in the CNS, were affected in particular. These synaptic alterations were partially recovered by reducing neuroinflammation indirectly via antiparasitic treatment and especially by application of IFN-γ-neutralizing antibody. Impaired iNOS expression following IFN-γ neutralization directly affected EAAT2 and GABAAα1 signaling, thus contributing to the microglial regulation of neurons. Besides, reduced CD36, TREM2, and C1qa gene expression points toward inflammation induced synaptic pruning as a fundamental mechanism. Conclusion Our results suggest that neuroimmune responses following chronic T. gondii infection can be modulated by acute enteric nematode co-infection. While consecutive co-infection promotes parasite elimination in the CNS, it also adversely affects gene expression of synaptic proteins, via an IFN-γ-dependent manner. Electronic supplementary material The online version of this article (10.1186/s12974-019-1539-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Timothy French
- Institute of Inflammation and Neurodegeneration, Medizinische Fakultät, Otto-von-Guericke-University Magdeburg, Leipziger Straße 44, 39120, Magdeburg, Germany
| | - Henning Peter Düsedau
- Institute of Inflammation and Neurodegeneration, Medizinische Fakultät, Otto-von-Guericke-University Magdeburg, Leipziger Straße 44, 39120, Magdeburg, Germany
| | - Johannes Steffen
- Institute of Inflammation and Neurodegeneration, Medizinische Fakultät, Otto-von-Guericke-University Magdeburg, Leipziger Straße 44, 39120, Magdeburg, Germany
| | - Aindrila Biswas
- Institute of Inflammation and Neurodegeneration, Medizinische Fakultät, Otto-von-Guericke-University Magdeburg, Leipziger Straße 44, 39120, Magdeburg, Germany
| | - Norus Ahmed
- Department of Veterinary Medicine, Institute of Immunology, Free University Berlin, Berlin, Germany
| | - Susanne Hartmann
- Department of Veterinary Medicine, Institute of Immunology, Free University Berlin, Berlin, Germany
| | - Thomas Schüler
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Björn H Schott
- Leibniz Institute of Neurobiology, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany.,Department of Psychiatry and Psychotherapy, University Medicine Göttingen, Göttingen, Germany
| | - Ildiko Rita Dunay
- Institute of Inflammation and Neurodegeneration, Medizinische Fakultät, Otto-von-Guericke-University Magdeburg, Leipziger Straße 44, 39120, Magdeburg, Germany. .,Center for Behavioral Brain Sciences, Magdeburg, Germany.
| |
Collapse
|
50
|
Ma J, He JJ, Hou JL, Zhou CX, Zhang FK, Elsheikha HM, Zhu XQ. Metabolomic signature of mouse cerebral cortex following Toxoplasma gondii infection. Parasit Vectors 2019; 12:373. [PMID: 31358041 PMCID: PMC6664753 DOI: 10.1186/s13071-019-3623-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 07/19/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The protozoan parasite Toxoplasma gondii infects and alters the neurotransmission in cerebral cortex and other brain regions, leading to neurobehavioral and neuropathologic changes in humans and animals. However, the molecules that contribute to these changes remain largely unknown. METHODS We have investigated the impact of T. gondii infection on the overall metabolism of mouse cerebral cortex. Mass-spectrometry-based metabolomics and multivariate statistical analysis were employed to discover metabolomic signatures that discriminate between cerebral cortex of T. gondii-infected and uninfected control mice. RESULTS Our results identified 73, 67 and 276 differentially abundant metabolites, which were involved in 25, 37 and 64 pathways at 7, 14 and 21 days post-infection (dpi), respectively. Metabolites in the unsaturated fatty acid biosynthesis pathway were upregulated as the infection progressed, indicating that T. gondii induces the biosynthesis of unsaturated fatty acids to promote its own growth and survival. Some of the downregulated metabolites were related to pathways, such as steroid hormone biosynthesis and arachidonic acid metabolism. Nine metabolites were identified as T. gondii responsive metabolites, namely galactosylsphingosine, arachidonic acid, LysoSM(d18:1), L-palmitoylcarnitine, calcitetrol, 27-Deoxy-5b-cyprinol, L-homophenylalanine, oleic acid and ceramide (d18:1/16:0). CONCLUSIONS Our data provide novel insight into the dysregulation of the metabolism of the mouse cerebral cortex during T. gondii infection and have important implications for studies of T. gondii pathogenesis.
Collapse
Affiliation(s)
- Jun Ma
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu, People's Republic of China
| | - Jun-Jun He
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu, People's Republic of China
| | - Jun-Ling Hou
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu, People's Republic of China
| | - Chun-Xue Zhou
- Department of Parasitology, Shandong University School of Basic Medicine, Jinan, 250012, Shandong, People's Republic of China
| | - Fu-Kai Zhang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu, People's Republic of China
| | - Hany M Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK.
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu, People's Republic of China.
| |
Collapse
|